Award Number: DAMD17-01-1-0365

TITLE: Molecular Determinants of tGolgin-1 Function

PRINCIPAL INVESTIGATOR: Atsuko Yoshino, Ph.D.
Michael Marks, Ph.D.
Mark Lemmon, Ph.D.

CONTRACTING ORGANIZATION: The University of Pennsylvania
Philadelphia, Pennsylvania 19104-3246

REPORT DATE: July 2004

TYPE OF REPORT: Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Molecular Determinants of tGolgin-1 Function

Atsuko Yoshino, Ph.D.
Michael Marks, Ph.D.
Mark Lemmon, Ph.D.

The University of Pennsylvania
Philadelphia, Pennsylvania 19104-3246

E-Mail: ayoshino@mail.med.upenn.edu

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

13. ABSTRACT (Maximum 200 Words)
TGolgin-1 is a large, predominantly coiled-coil peripheral membrane protein that associates with the trans Golgi network (TGN) by virtue of a C-terminal GRIP domain. In the first two funding periods, we (1) used a dominant negative expression approach to show that GRIP domain proteins function in endosome to TGN recycling, and (2) used expression ablation with inhibitory RNA to show that TGolgin-1 is specifically required for linking the Golgi complex to microtubule motors. In the last funding period, we focused more specifically on the mechanism by which TGolgin-1 impacts Golgi positioning. We find that TGolgin-1 is required for recycling of a subset of molecules from endosomes to the TGN, in particular glycosphingolipids. Glycosphingolipids are critically important signalling molecules as well as regulators of cholesterol distribution in the cell. In the absence of TGolgin-1, a subset of glycosphingolipids are mistargeted to and accumulated within late endosomes and lysosomes. These data suggest that the primary function of TGolgin-1 is in regulating lipid distribution within cells, and that Golgi positioning defects are a consequence of continued defects in glycosphingolipid/cholesterol distribution. These results imply that altered lipid distribution may impact tumorigenesis in cancer cells that lack TGolgin-1 expression.

14. SUBJECT TERMS
Intracellular protein transport, trans golgi network, protein processing, golgin

15. NUMBER OF PAGES 40

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT Unclassified
18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified
19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified
20. LIMITATION OF ABSTRACT Unlimited

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z38-18
298-102
Table of Contents

Cover...1
SF 298...2
Table of Contents...3
Introduction..4
Body..4
Key Research Accomplishments...6
Reportable Outcomes..6
Conclusions...7
References...7
Appendices...8
INTRODUCTION

This report summarizes the training and research accomplishments over the third year of funding from award # DAMB17-01-1-0365. The award supports research directed toward understanding the function of tGolgin-1 (also known as golgin-245 and trans golgi p230), a peripheral membrane protein associated with the trans Golgi network (TGN) of mammalian cells (Erlich et al., 1996; Fritzler et al., 1995; Gleeson et al., 1996). tGolgin-1 is a member of a family of large peripheral membrane proteins that are predicted to consist largely of coiled-coil structure with a C-terminal GRIP domain. The GRIP domain was shown by several groups to mediate localization of these proteins to the cytosolic face of the Golgi complex and/or TGN (Barr, 1999; Brown et al., 2001; Kjer-Nielsen et al., 1999; Luke et al., 2003; Munro and Nichols, 1999). Two groups, including Dr. Chris Burd's group (Univ. of Pennsylvania) in collaboration with us, showed that GRIP domains mediate this function by binding to small Arf-like GTPase called Arl1 (Panic et al., 2003b; Setty et al., 2003). A function for tGolgin-1 or any of the other GRIP domain proteins has not yet been described. In addition to the GRIP domain and a large central coiled-coil region, tGolgin-1 is predicted to contain a small globular domain at the N-terminus.

BODY

We had shown, using a dominant-negative overexpression approach, that GRIP domain proteins contribute to the integrity of the TGN and to protein sorting and processing events that occur within the TGN, likely through regulating recycling of TGN resident proteins from endosomal compartments. Competitive displacement of endogenous GRIP domain proteins from the Golgi resulted in defects in resident integral membrane protein localization to the TGN and in TGN structure and function. Among those proteins that require GRIP-dependent TGN modifications and sorting functions are growth factor receptors associated with breast cancer induction, such as epidermal growth factor receptor and Her2, matrix metalloproteinases required for metastasis of breast tumors, and tumor antigens analogous to the melanoma-associated antigen Pmel17/gp100. Thus, GRIP domain overexpression may influence the growth and metastasis of tumors; moreover, dissecting how GRIP domain protein structure and function are related may reveal novel approaches for treatment of breast tumors. The goals of the experiments as proposed in the Statement of Work were to elucidate such structure/function relationships by dissecting functional domains of tGolgin-1 and by characterizing their interacting partners.

Since the inception of the funding from this grant, we have extended and published our preliminary data, accomplished several of the originally proposed aims in the Statement of Work, and made some new and very exciting discoveries regarding the function of tGolgin-1 specifically. As discussed in the last two progress reports, we modified the aims in the Statement of Work in accordance with these new discoveries. Below we detail our progress in the last funding period.

1. Role of GRIP domain proteins in maintenance of the TGN. A manuscript describing this work was in press at the time of the last funding period, and has now been published with Dr. Yoshino as the first author (Yoshino et al., 2003. J. Cell Sci. 116: 4441-4454; see appendix for reprint). The main findings of the study are that overexpression of GRIP domains results in (1) displacement of endogenous TGN resident proteins, but not residents of the Golgi stack or other subcellular organelles, to peripheral membranes, including multivesicular late endosomes; (2) vacuolization of the Golgi and the TGN; (3) disruption of protein transport of the vesicular stomatitis virus G protein from the Golgi to the plasma membrane; and (4) disruption of furin-dependent cleavage of a substrate protein. We speculated that this implicates a role for GRIP domain proteins or GRIP domain ligands in regulating the recycling of TGN resident proteins from endosomal compartments back to the TGN. As discussed below, this speculation is now supported and extended in the case of tGolgin-1.

2. Functional analysis of tGolgin-1. These studies were initiated during the first funding period (2001-2002) as the result of emerging technology using inhibitory RNAs (RNAi; (Elbashir et al., 2001; Elbashir et al., 2002)), and were the focus of the project in the last funding period. Dr. Yoshino used transfection of cultured cells with small inhibitory RNA duplexes (siRNA) to deplete endogenous tGolgin-1, and then assessed the effects on cell morphology, Golgi/TGN function, and membrane recycling. Using immunofluorescence and immunoelectron microscopy, Dr. Yoshino showed that in the absence of tGolgin-1 expression, the entire Golgi complex, including the TGN, becomes fragmented and reforms as "mini Golgi" elements. These elements were functional based on the efficient transport of
secretory cargo from the endoplasmic reticulum (ER) to the plasma membrane. Dr. Yoshino found that the mini Golgi stacks accumulated at ER exit sites marked by the accumulation of GFP-tagged Sec13 (a component of the COPII coat involved in ferrying cargo molecules from the ER to pre-Golgi intermediates). This phenotype is similar to that observed in cells in which minus-end-directed transport of pre-Golgi elements along microtubules is disrupted (Burkhardt et al., 1997; Cole et al., 1996), suggesting that tGolgin-1 function is required for efficient transport of pre-Golgi elements from ER exit sites to the microtubule organizing centre (MTOC). Dr. Yoshino used quantitative analysis of the motility of these Golgi elements (using cells expressing a GFP-tagged Golgi marker, GRASP65) to show that the elements were relatively immobile, as in cells with disrupted microtubules. These data indicated that tGolgin-1 is required for activity or recruitment of minus-end-directed microtubule motors rather than for “trapping” of Golgi elements at the MTOC. The data constitute the first evidence that the TGN – via its peripheral membrane protein, tGolgin-1 - is required to maintain the positional integrity of the Golgi complex.

As discussed in the last progress report, Dr. Yoshino showed that the requirement for tGolgin-1 in Golgi motility is likely due to an indirect mechanism rather than through direct binding of dynein/dynactin subunits to tGolgin-1. First, no interactions between dynein/dynactin and tGolgin-1 were observed using immunoprecipitation or chemical cross-linking from cell lysates or in vitro pull-down assays with recombinant proteins. Second, using immunofluorescence microscopy, pre-Golgi intermediates and TGN elements were found to move independently toward the MTOC in cells recovering from brefeldin A; tGolgin-1 was associated only with the TGN elements, and not the Golgi elements, indicating that the Golgi elements could effectively recruit and activate dynein/dynactin motors with no associated tGolgin-1. We therefore hypothesized that the disruption of Golgi-associated dynein/dynactin activity in tGolgin-1-depleted cells is the result of a recycling defect, such that a molecule critical for dynein recruitment requires tGolgin-1 for retrieval from post-Golgi membranes to the Golgi complex.

In this last funding period, Dr. Yoshino tested and confirmed this hypothesis. Dr. Yoshino used a fluorescent-tagged form of the Shiga toxin B fragment (STxB) as a probe for endosome to TGN recycling. STxB lacks the toxin activity of the Shiga holotoxin, but is required for transporting the toxic A subunit from the plasma membrane to the ER (from where the A subunit translocates to the cytosol to exert its toxic effect). STxB binds to the glycosphingolipid, Gb3, at the plasma membrane, and is then efficiently internalized. Normally, plasma membrane bound STxB is efficiently targeted to and accumulated within the Golgi complex within 45 minutes. By contrast, in cells depleted of tGolgin-1, internalized STxB is mislocalized to lysosomes, and accumulation in the Golgi is dramatically inhibited. This mislocalization is specific to the endosome-to-TGN recycling pathway, because tGolgin-1-depletion has no effect on transferrin recycling or targeting of proteins from the TGN to endosomes. Dr. Yoshino has recently obtained evidence that STxB mislocalization may reflect a general defect in glycosphingolipid sorting in tGolgin-1-depleted cells, since a similar mis-accumulation in lysosomes is observed for a fluorescent analogue of glycosphingolipids, lactosyl ceramide. These data indicate that tGolgin-1 functions in glycolipid sorting from the plasma membrane to the Golgi, and thus may indirectly affect the recruitment and/or activation of dynein/dynactin motors to the Golgi.

A manuscript describing these results, on which Dr. Yoshino is first author, is currently under revision after an initial submission to Molecular Biology of the Cell. We predict that the paper will be at least in press by the end of the year. This work is important in showing a requirement for the TGN, and perhaps of glycosphingolipids and/or associated cholesterol, in positioning the Golgi complex. Its role in Golgi positioning and glycolipid distribution may affect a number of biologically important functions relevant to breast cancer formation, metastasis and treatment such as maintenance of cell polarity, cell motility, cytotoxic T cell target susceptibility, and cell signalling.

3. Molecular determinants of tGolgin-1 function. As discussed in the last progress report, this was the main thrust of the work proposed in the original Statement of Work and significant progress was made over the first two periods. Specifically:

- We found in collaboration with Dr. Chris Burd (Univ. of Pennsylvania) that GRIP domains mediate Golgi localization by virtue of direct binding to the small Arf-like GTPase, Arl1, which itself is recruited to the Golgi upon activation of another Arf-like GTPase, Arl3 (Setty et al., 2003. Curr. Biol, 13: 401-404). This work was supported by data from two other laboratories
(Lu and Hong, 2003; Panic et al., 2003a; Panic et al., 2003b). Dr. Burd and one of the other laboratories have independently gone on to show that Arl3 is recruited to the Golgi in an unusual manner involving N-terminal acetylation and consequent binding to an integral membrane protein, Sys1 (Behnia et al., 2004; Setty et al., 2004).

- Dr. Yoshino found that the N-terminal domain of tGolgin-1 is capable of localizing to the Golgi complex by itself, and thus must be capable of binding to other macromolecules at the Golgi.

Due to the primary focus on Specific Aim 2 above, little progress was made in the last funding period toward this aim. Dr. Yoshino is trying to identify binding partners for the N-terminal domain at the Riken Institute in Japan, and a new post-doctoral researcher in my laboratory is probing which tGolgin-1 domains are required for tGolgin-1 function in mammalian cells. We anticipate that Dr. Yoshino will be a co-author on at least one more manuscript describing these results within another year.

Additional Training

Dr. Yoshino developed wonderfully as an independent researcher, extending a trend she began in the previous two funding periods. She developed Aims 2 and 3 above nearly completely independently of Drs. Marks and Lemmon, and as a result has made a very significant contribution to the field. Dr. Yoshino gained experience supervising technical staff and a graduate student, and became much more interactive with other lab members, faculty, and other scientists over the last year, networking and initiating new collaborations. Dr. Yoshino has matured phenomenally well in her abilities to develop new techniques on her own, to become enveloped in the literature, and to devise new experimental approaches based on her reading of the literature. Dr. Yoshino continued to improve to top form her presentation skills in group meetings and in personal interactions with members of the Marks, Lemmon, and Burd laboratories. In addition to in-house presentations, Dr. Yoshino presented her work at meetings of the Japanese Biochemical Society every year from 2001-2003, at the Molecular Membrane Biology Gordon Conference in 2001, and at a Keystone Conference on the Golgi in 2004. Her abstract to the Japanese Biochemical Society in 2003 was chosen for an oral presentation, which she delivered superbly according to my Japanese colleagues. Most importantly, Dr. Yoshino developed from a rather inexperienced, robotic student to a full-fledged colleague over the past three years. I am more proud of her accomplishments than of any other student or post-doctoral researcher under my tutelage in 8 years.

KEY RESEARCH ACCOMPLISHMENTS

- Completion of analysis of GRIP domain overexpression
- mislocalization of TGN resident integral membrane proteins
- vacuolization of the TGN
- disruption of TGN function (sorting to plasma membrane and furin-dependent proprotein processing)
- disruption of endosome to TGN recycling
- Functional analysis of tGolgin-1 using siRNA and live cell imaging
- dissociation of Golgi complex from microtubule organizing center
- reformation of functional "mini-Golgis" at endoplasmic reticulum exit sites
- lack of Golgi motility
- indirect requirement of tGolgin-1 for minus-end-directed movement of Golgi fragments on microtubules
- failure to detect interactions between tGolgin-1 and dynein/dynactin components
- defect in endosome-to-TGN cycling of glycosphingolipids
- Identification of Arl-1 as ligand for GRIP domains in yeast
- Initial characterization of tGolgin-1 N-terminal domain interactions with cellular factors

REPORTABLE OUTCOMES

7. Employment: Dr. Yoshino is now employed as a post-doctoral researcher at RIKEN Research Center for Allergy and Immunology, Yokohama City, Kanagawa, Japan.

CONCLUSIONS

Our research has assigned a function to tGolgin-1 and potentially other GRIP domain proteins, a group of peripheral Golgi-associated proteins for which no function had been previously known. These proteins, particularly tGolgin-1, appear to be involved in a critical step of macromolecule transport from endosomes to the TGN, a subcellular organelle required for protein sorting and modification within both the secretory and endocytic pathways. Disruption of this recycling pathway affects TGN function – such as delivery of critical growth factor receptors and proprotein cleavage of matrix metalloproteinases and other critical metastatic factors. Part of this disruption of function may be a consequence of misrouting of glycosphingolipids, as observed in the absence of tGolgin-1 expression. This latter requirement may explain an indirect requirement for tGolgin-1 in positioning the Golgi complex at the microtubule organizing center. Disruption of its function is thus anticipated to affect cell polarity, migration, and polarized secretion, as well as other cell functions dependent on cholesterol and glycosphingolipid balance. The gene encoding tGolgin-1 has been shown to be deleted in at least one lung carcinoma (Ishikawa et al., 1997), suggesting that manipulation of its function may be important for tumorigenesis. Continued work on the function and physical interactions of tGolgin-1 and other GRIP domain proteins may therefore provide us with insights into manipulation of tumors. More directly, elucidating the function of these mysterious peripheral membrane proteins will help us to understand the biology of intracellular protein transport.

Future work will focus on elucidating the cellular function of tGolgin-1 in glycosphingolipid metabolism, and on identifying interacting factors with the N-terminal domain of tGolgin-1 as a means of elucidating its mechanism of action.

REFERENCES

APPENDICES

Characterization of Mouse tGolgin-1 (Golgin-245/\textit{trans}-Golgi p230/256 kD Golgin) and Its Upregulation during Oligodendrocyte Development

DAVID A. COWAN, DENISE GAY, BERT M. BIELER, HUIZHEN ZHAO, ATSUKO YOSHINO, JAMES G. DAVIS, MARY M. TOMAYKO, RAMACHANDRAN MURALI, MARK I. GREENE, and MICHAEL S. MARKS

ABSTRACT

As part of an effort to identify gene products that are differentially regulated during oligodendrocyte development, we isolated a mouse cDNA that encodes tGolgin-1, a homolog of the human protein known as golgin-245, \textit{trans}-golgi p230, or 256 kD golgin. Human tGolgin-1 is the target of autoantibodies in patients with Sjögren’s syndrome, and is thought to be involved in vesicular transport processes at the \textit{trans}-Golgi network. Sequencing of cDNAs and EST clones comprising the full-length tGolgin-1 transcript predict marked homology with the amino- and carboxy-terminal regions of the human protein, but more limited homology within the central predicted coiled-coil region. Epitope tagged, truncated forms of mouse tGolgin-1, like those of its human homolog, were localized at steady state to the Golgi/\textit{trans}-Golgi network in transfected cells. The tGolgin-1 message was expressed in all tissues examined, but was highly upregulated in oligodendrocyte precursors at a stage just prior to myelination. This expression pattern suggests that tGolgin-1 may play a role in specialized transport processes associated with maturation and/or differentiation of oligodendrocyte precursors.

INTRODUCTION

Oligodendrocytes are responsible for the highly complex process of myelination within the central nervous system. Oligodendrocytes arise from undifferentiated neuroepithelial precursors within the ventricular zone of the spinal cord (Orentas and Miller, 1998). These precursors undergo a complex developmental program during which they differentiate first into highly proliferative, pluripotent migratory cells, and then into nonmigratory, immature oligodendrocytes that make direct physical contacts with target neurons (Pfeiffer \textit{et al.}, 1993; McMorris and McKinnon, 1996). Mature oligodendrocytes synthesize myelin components, such as myelin basic protein, myelin-associated glycoprotein, myelin/oligodendrocyte protein, and proteolipid protein, which are incorporated into myelin-rich regions of the plasma membrane that enwrap axons of adjacent neurons (Campagnoni, 1988). These developmental changes are marked by the expression of distinct cell surface markers, particularly glycolipids or glycoproteins, and are accompanied by dramatic changes in cellular morphology and physiology. These changes include the extension of cell processes, changes in expression of adhesion molecules and growth factor receptors, and ultimately, the generation and compaction of myelin sheets at great distances from the cell body (Pfeiffer \textit{et al.}, 1993).

The developmental changes in the physiologic and morphologic characteristics of oligodendrocyte precursors likely reflect alterations in the cytoskeleton and in the biosynthetic machinery of the cell. Indeed, unusual microtubule arrays (Lunn \textit{et al.}, 1997) and peripheral Golgi-like structures (de Vries \textit{et al.}, 1993) have been found in the extended processes of oligodendrocyte precursors. Furthermore, oligodendrocytes at later stages of development display a number of features characteristic of polarized cells (Pfeiffer \textit{et al.}, 1993), such as differential sorting of viral glycoproteins (de Vries \textit{et al.}, 1998). The generation of these unusual morphologic features and protein sorting pathways must be orchestrated within the cytoplasm and the central vacuolar system by structural and regulatory proteins, the expression of which is also likely to be developmentally regulated. For example, Rab3a and Rab3c, proteins respectively as-

Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.

505
associated with synaptic and endocrine secretory vesicles, are upregulated during later oligodendrocyte development (Madison et al., 1996), and a specialized Rab protein, Rab22b, is expressed selectively in oligodendrocyte lineage cells (Rodriguez-Gabin et al., 2001). It would be expected that Rab effector proteins and other components of the trafficking machinery would also be differentially regulated in these cells.

We previously described a novel cell surface determinant, termed OIP-1 (Oligodendrocyte Precursor protein-1), that is specifically expressed on developing oligodendrocyte precursors at a stage just prior to the onset of synthesis of myelin components (Gay et al., 1997). In an effort to characterize the OIP-1 antigen, we used an anti-OIP-1 monoclonal antibody (mab) to screen a cDNA expression library from a postnatal day 8 mouse brain. Using this approach, we identified a set of cDNA clones that encode partial, alternatively spliced forms of a single gene product. Sequence analysis of cDNAs spanning the entire coding region identified the gene product as the murine homolog of a human protein previously identified as golgin-245 (Fritzler et al., 1995), trans-golgi p230 (Kooy et al., 1992), or 256 kD golgin (H. P. Seelig, Genbank accession #X82834) and referred to here as tGolgin-1. tGolgin-1 is a peripherally membrane protein of unknown function found on the cytosolic face of the trans-Golgi network (TGN) and associated vesicles (Gleeson et al., 1996). It is part of a family of peripherally membrane proteins containing a large, central coiled-coil region and a C-terminal "GRIP" domain that is responsible for localization to the Golgi and/or TGN (Barr, 1999; Kjer-Nielsen et al., 1999a, 1999b; Munro and Nichols, 1999; Brown et al., 2001). tGolgin-1 mRNA was ubiquitously expressed, but was dramatically upregulated in oligodendrocyte precursors at the stage of development marked by expression of the OIP-1 determinant. We postulate that upregulation of tGolgin-1 during this stage of development facilitates either the establishment of peripheral Golgi-like structures in oligodendrocyte processes or the synthesis, targeting, or recycling of myelin constituents in preparation for myelin formation.

MATERIALS AND METHODS

Animals and tissue culture conditions

Virus-free BALB/c postnatal day 1 mice (Harlan, Indianapolis, IN) provided cerebral tissue for all primary oligodendrocyte and astrocyte cultures. Oligodendrocyte precursor culture conditions were as described in Gay et al. (1997). Cerebral cultures were maintained in Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS) for 2–4 weeks to generate enriched astrocyte populations. The BALB/c7 fibroblast and HeLa cell lines (ATCC) were maintained in DMEM/10% FBS.

cDNA library production, screening, and sequencing

mRNA was extracted from brain tissue of postnatal day (P)8 mice using the FastTrack system (Invitrogen, Carlsbad, CA), converted into cDNA and directionally cloned using the ZAP Express cDNA II cloning kit (Stratagene, La Jolla, CA). Recombinant fusion proteins were screened for binding to anti-OIP-1 mab with the Picoblue Immunoscreening Kit (Stratagene). These original cDNAs were sequenced using automated sequencing facilities and T3, T7, and internal designed primers. Sequences were analyzed using Geneworks and BLAST software. Additional regions were characterized following identification of mouse EST clones with homology to regions of the human p230 cDNA further 5' than the original mouse cDNA clones. EST clones with accession numbers (Acc) AA144704, AA561361, and AA389589 were obtained from Genome Systems Inc. (St. Louis, MO). The region between EST clone AA144704 and cDNA clone C91 was amplified by reverse transcriptase (RT) coupled polymerase chain reaction (PCR) from neonatal mouse brain RNA as described (Marks et al., 1995) and cloned using unique NheI and PshAI restriction sites. The region encompassing EST clone AA098411 up to the NdeI site of EST clone AA144704 was also generated by RT-PCR from neonatal mouse brain RNA. The region corresponding to the coding region for the N-terminus of human p230 was generated by RT-PCR from adult mouse brain and liver mRNA using a degenerate oligonucleotide encoding the N-terminal human p230 residues and a reverse primer downstream of the NdeI site. The sequence of the 5' UTR and the translation start site were inferred from overlapping genbank database entries (Acc BC003526, BFI62586, BI151932, and BE304004). See Figure 1 for schematic diagram. Oligonucleotide sequences are available upon request. Sequences of amplified regions were confirmed from at least three cloned products of at least two separate RT-PCR reactions, and only sequences confirmed by two or more database entries are listed for the 5' UTR. Coiled-coil predictions were done using the MTIDK matrix within the COILS v2.2 program from the Swiss Institute for Experimental Cancer Research (http://www.isrec.isb-sib.ch/software/COILS_form.html)

Northern analysis

RNA was isolated from the indicated tissues of female Balb/c mice using the FastTrack 2.0 kit (InVitroGen) for poly(A)+ RNA or the RNA STAT-60 kit (Tel-Test, Inc., Friendswood, TX) for total RNA. RNA samples (25 µg total or 2.5 µg polyA+) were fractionated on 0.8–0.9% agarose gels in formaldehyde/MOPS essentially as described (Sambrook et al., 1989). Gels were soaked in 0.05 M sodium hydroxide for 20 min, then 20× SSC for 1 h prior to transfer onto Immobilon Ny + filters (Millipore, Bedford, MA) overnight in 20× SSC. Blots were washed in DEPC-treated H2O, and then baked at 80°C for 2 h. Digoxigenin-labeled probes were generated by PCR using the PCR DIG Probe Synthesis Kit from Boehringer Mannheim-Roche (Palo Alto, CA), and hybridized to filters and developed using the DIG Luminescent Detection Kit according to the manufacturer's instructions. Bands were visualized using a Molecular Dynamics (Sunnyvale, CA) Storm 760 Phosphor Imager and ImageQuant v. 1.1 software. The probe for tGolgin-1 encompassed nt. 110–1172, and the probe for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) encompassed the entire open reading frame (nt. 47 to 1045).

HA-tagged constructs

HA11 epitope tag sequences were constructed by PCR for ligation onto the N- or C-terminal coding regions of the clone C91 cDNA sequence. For an N-terminal tag, a PCR product including a 5' Kozak consensus sequence, the coding region for an HA11 tag, and a region contiguous with the 5' sequence for
C91 was subcloned into the Sall and Sph1 sites of C91 to generate HA-tGolgin-C1247. For a C-terminal tag, a PCR product contiguous with the coding region for the C-terminus of C91 and containing a 3' HA tag followed by a stop codon was cloned into the NruI and XbaI sites of C91 to generate tGolgin-C1247-HA. Resultant constructs were subcloned into the pCDM8.1 expression vector (Bonifacino et al., 1990). Additional truncation products were generated by PCR from the original clones using similar designed primers, and all amplified products were verified by automated DNA sequencing.

Immunochemistry microscopy

HeLa cells plated on glass coverslips in six-well dishes were transiently transfected using the calcium phosphate method (Sambrook et al., 1989), fixed with 2% formaldehyde 40 h post-transfection, and processed for indirect intracellular immunofluorescence microscopy as previously described (Marks et al., 1995). Antibodies included a rabbit antiserum to TGN46 (Prescott et al., 1997) (a gift of V. Ponnambalam, Univ. Dundee), a rabbit antiserum to the β-COP subunit of COP I (a gift of Dr. J. Lippincott-Schwartz, National Inst. of Health, Bethesda, MD), anti-HA monoclonal antibody (BabCo, Richmond, CA) and secondary fluorescein-conjugated antibodies (Jackson ImmunoResearch, West Grove, PA). Slides were analyzed on a Zeiss Axioplan fluorescence microscope (Zeiss, Thornwood, NY), and photographic images were digitized using a Nikon LS-1500 film scanner. In one experiment, images were captured with a Leica TCS laser confocal scanning microscope equipped with a 100X, 1.4 N.A. oil immersion lens and the Leica TCS software package.

Flow cytometry and cell sorting

Precursors from day 4 (population 1 and 2) or day 9 (population 3) mixed mouse oligodendrocyte cultures were incubated with combinations of anti-OIP-1 (Gay et al., 1997), anti-O4, R-Mab (Ranscht et al., 1982) and O1 (anti-GalC) mAbs and prepared for cytofluorography as described (Gay et al., 1997). Cell sorting was accomplished using a FACStar Plus (Becton Dickinson, Franklin Lakes, NJ) and CellQuest software.

Semi-quantitative RT-PCR

mRNA was extracted from 10^5 cells using Micro-FastTrack (Invitrogen), converted to cDNA with Superscript II reverse transcriptase (Life Technologies, Rockville, MD) and PCR-amplified using the High Fidelity PCR system (Roche Applied Science, Indianapolis, IN). Semi-quantitative PCR was carried out on 5 x 10^3 cell equivalents with an α32P dCTP tracer using previously specified conditions (Tomayko and Cancro, 1998). Samples (2 µl) were removed at designated cycles, electrophoresed onto a 0.8% agarose gel, vacuum dried and subjected to autoradiography. Nonquantitative PCR was carried out for 40 cycles using mRNA from approximately 10^3 cells. The cDNA 1 PCR product was TA cloned and sequenced to show 100% identity to cDNA clone C91 (unpublished data). The actin primers were as specified (Tomayko and Cancro, 1998). The PLP 1 primers were 5'gactaagacacacttg3' (nt. 309 to 328) and 5'gaagagggccactg gga3' (nt. 923 to 943). The cDNA 1 primers for tGolgin-1 were 5'ggcgccggctggaggcag3' (nt. 3260 to 3280) and 5'gtcaagcttctgtgttcag3' (nt. 3640 to 3660).

The cDNA 2 primers were 5'ggtcagagcacagctg3' (nt. 4730 to 4750) and 5'gtcagcttctgggaatc3' (nt. 5216 to 5235).

RESULTS

Isolation of a tGolgin-1 cDNA by screening a postnatal mouse brain cDNA library with anti-OIP-1

OIP-1 was identified as a developmentally regulated cell surface determinant specific to premelaninizing oligodendrocyte precursors (Gay et al., 1997). Because these cells are most highly represented in the mouse brain during early postnatal development, a postnatal day 8 mouse brain cDNA expression library was screened with anti-OIP-1 mAb. Three independent cDNAs (clones C95, C49, and C91) were retrieved ranging in size from 2.2 kb to over 4 kb. Sequencing showed them to be identical except for a 63 bp deletion at the 3' end of the largest cDNA clone (C91). Figure 1a shows the relative sizes and sequence overlap of these cDNAs. The sequence of C91 contained a single open reading frame of 3741 nucleotides extending to the extreme 5' end. The 3' terminus was verified by the presence of multiple stop codons and a poly A tail.

Comparison of the predicted translation product of the C91 open reading frame to available databases identified three entries with considerable homology: golgin 245 (accession number U31906; Fritzzler et al., 1995), 256 kD golgin (acc. no. X82834), and trans-golgi p230 (acc. no. U41740) (Erlitch et al., 1996), corresponding to products of the GOLGA4 gene. These three molecules bear identical nucleotide sequences except for deletions within the 3' and/or 5' regions, and we, therefore, believe that they represent the product of a single gene with a single alternative splice site near the 3' end (see Discussion). Because of their immunolocalization to the TGN (Gleeson et al., 1996), we refer to them collectively as tGolgin-1. The region of homology extended through the entire predicted translation product of C91, but corresponded to only the C-terminal 1247 amino acids of the 2228-2230 residue full-length tGolgin-1 protein. This suggested that C91 was not a full-length cDNA for mouse tGolgin-1.

A BLAST search of the mouse EST database revealed numerous additional clones with predicted translated amino acid sequence similarity to regions within the N-terminal 1000 residues of human tGolgin-1. Two of these clones, Acc AA098411 and AA144704, were retrieved, and together spanned sequences encoding 878 additional contiguous residues N-terminal to those encoded by C91 (Fig. 1a). cDNA sequences between EST clone AA144704 and C91 were amplified by RT-PCR from postnatal mouse brain RNA, and EST clone AA098411 was reconstructed using RT-PCR from the same source using the available sequence deposited in Genbank. The coding region for the predicted N-terminal region was amplified by RT-PCR of prenatal mouse brain RNA using a degenerate primer corresponding to the coding region for the first six amino acids of human tGolgin-1 and a second reverse primer from within the coding region of EST clone AA144704. The remaining 5' UTR and coding region for the first six amino acids are inferred from overlapping entries in the Genbank database (see Materials and Methods for details). RT-PCR of mRNA from several sources indicated that all separately identified regions were colinear in a single RNA species (see below). We refer to this composite clone as mouse tGolgin-1.
FIG. (Continued) Isolation and sequence of mouse tGolgin-1 cDNA. (a) Schematic representation of regions of sequence overlap between transf-golgi p230, golgin-25, 256 kD golgin, isolated OIP-1 cDNA clones (C91, C49, and C95), EST clones (AA144704, AA561361, and AA389589), and additional regions identified in this work. The triangle represents the 63 bp insertion in p230 and clones C95 and C49. 1 and 2 represent the locations of PCR products used in Figure 7. Regions identified by RT-PCR only are indicated. Database represents the 5' UTR and translation start sequences that were deduced from the deposited sequences of Genbank entries BC003268, BF162586, B151932, and BE304004; these sequences were not confirmed by our direct sequencing, but represent overlap of the corresponding database entries. (b) Nucleotide sequence of mouse tGolgin-1 cDNA and deduced amino acid sequence. Italics represent the inferred sequences from the database entries as indicated above.
The complete cDNA sequence and deduced amino acid sequence of mouse tGolgin-1 is listed in Figure 1b, and the deduced amino acid sequence is compared with that of human tGolgin-1 in Figure 2A. The mouse tGolgin-1 open reading frame encodes 2238 amino acids with a predicted molecular mass of 258 kDa, compared to 2230 amino acids and 261 kDa for the human homolog. The predicted amino acid sequences of the two homologs show 70% identity and 85% similarity. Interestingly, two homologs of the same sequence are found in different regions of the Golgi complex, whereas golgin-245 and clone C91 had this region deleted, generating an alternative "SWLRTSS" C-terminal end. Both human and mouse proteins are predicted to consist primarily of coiled-coil domains, with short regions of potentially globular structure at the N- and C-terminals (Fig. 2B).

To determine whether the sequences we identified corresponded to the only mouse homolog of human tGolgin-1, we searched the database for homologous murine EST sequences using BLAST. We retrieved 145 nucleotide sequences that were greater than 93% identical to mouse tGolgin-1, most of which were mismatched at only one to three residues; given the distribution of the nucleotide differences, we suspect that these clones contain identical sequences to those in mouse tGolgin-1 and that differences reflect sequence errors and/or potential haplotype variations. Included among the retrieved sequences were clones homologous to EST clones spanning the entire mouse tGolgin-1 cDNA, with the exception of the short adenosine-rich stretch between C91 and AA144704. Searches of the database for translated sequences for homologous to either the human tGolgin-1 proteins or the translated mouse tGolgin-1 sequence resulted in no additional entries other than those identified in the basis of nucleotide similarity. This suggests that no other tGolgin-1 homologs have yet been entered in the EST database. The fact that they were obtained from highly diverse cDNA library sources suggests that they represent an ubiquitous mRNA, as would be expected for a tGolgin-1 homolog (see below).

Significant but low homology was also observed between the mouse tGolgin-1 deduced amino acid sequence and the C-terminal half of myosin II (unpublished data). This homology, which ranged from 23–45% over four distinct regions, correlated specifically with predicted coiled-coil regions as assessed using the MTIDK matrix (Lupas et al., 1991) (Fig. 2B). The GCG computer program "Momemt" used to calculate helical dipole moments to predict α-helical regions failed to find long helices within the tGolgin-1 sequence (unpublished data). These data cannot distinguish between the possibilities that tGolgin-1 is supercoiled like the myosin heavy chain C-terminal domain or globular with many small coiled-coil–like domains. However, because myosin II and several other coiled-coil containing Golgi- and endosome-associated peripheral membrane proteins are believed to form dimeric supercoiled structures, we anticipate that tGolgin-1 has a similar structure.

tGolgin-1 localization to the TGN through the C-terminal half of the molecule

Because human tGolgin-1 has been shown to be peripherally associated with the TGN (Gleeson et al., 1996), we assayed for the intracellular localization of the mouse tGolgin-1 C-terminal fragment encoded by C91. Expression vectors encoding HA11 epitope-tagged forms of the translation product of C91 (HA-C1247, representing the C-terminal 1247 aa of tGolgin-1) were transiently transfected into HeLa cells, and localization was determined by indirect intracellular immunofluorescence microscopy (IFM) using anti-HA11 antibodies. As shown in Figure 3, HA-C1247 localized to a paranuclear, reticular structure reminiscent of the Golgi complex. Parallel staining with an antiserum to the endogenous TGN resident protein, TGN46 (Fig. 3A and B), or to the Golgi stack-associated β-COP subunit of coatamer (Dudenh et al., 1991) (Fig. 3C and D) showed extensive overlap, suggesting that the C-terminal tGolgin-1 fragment primarily localizes to the TGN and/or the Golgi stacks. Similar results were obtained using C1247 tagged at the C-terminus with the HA11 epitope (unpublished data). Like human tGolgin-1 (Gleeson et al., 1996), the TGN-associated HA-C1247 was partially dispersed upon treatment with brefeldin A (unpublished data). These data further support the notion that we identified the mouse homolog of human tGolgin-1, and that tGolgin-1 localizes to the TGN.

The C-terminal 80 amino acids of human tGolgin-1 encompass a GRIP domain, a modestly conserved region that is necessary and sufficient to mediate localization to the TGN (Barr, 1999; Kjær-Nielsen et al., 1999a, 1999b; Munro and Nichols, 1999). To determine whether the comparable region of mouse tGolgin-1 was sufficient to mediate Golgi localization, we generated N-terminally HA-tagged truncation mutants containing the C-terminal 312, 186, or 81 amino acids of mouse tGolgin-1, and expressed them by transient transfection in HeLa cells. As shown in Figure 4a–f, immunofluorescence microscopy analyses indicated that all of these constructs localized well with TGN46. Mutagenesis of a critical conserved tyrosine residue at position 2187 completely disrupted localization, resulting in a diffuse cytoplasmic staining pattern (Figure 4g and h). These results indicate that mouse tGolgin-1 retains a functional GRIP domain, and that the C-terminal 81 amino acids are sufficient to specify localization to the Golgi/TGN.

Expression of mouse tGolgin-1 mRNA: abundant expression in oligodendrocyte precursors

The distribution of human tGolgin-1 mRNA in different tissues has not been evaluated. To assess the tissue distribution of mouse tGolgin-1, RNA was prepared from a panel of mouse tissues and hybridized with a probe derived from the coding region of the mouse tGolgin-1 cDNA (Fig. 5). tGolgin-1 mRNA migrates as a single major band of approximately 7.5 kb in length, as expected from the length of the predicted full-length cDNA and by analogy with the human tGolgin-1 mRNA. Overexposure of the blot reveals additional bands from brain tissue at approximately 9 and 12.5 kb, which may represent incompletely spliced heteronuclear RNAs or alternative splice products; the 9-kb band was only observed in brain tissue (unpublished data). The 7.5-kb mRNA is expressed in all tissues analyzed, as expected for a gene product involved in constitutive transport processes. Relative to the GADPH controls, no clear enrichment was observed in any tissue analyzed. Although these data do not rule out cell type variation in tGolgin-1 mRNA expression, they indicate that no tissue types are enriched in cells that express particularly high or low levels of tGolgin-1 mRNA.

Because tGolgin-1 was identified using an antibody to OIP-1 expressed on oligodendrocyte precursors, we next sought to
FIG. 2. Comparison of mouse and human tGolgin-1 amino acid sequences and coiled-coil predictions. (A) Deduced amino acid sequence of mouse (ms) tGolgin-1 and alignment with that of human (hu) tGolgin-1. The human tGolgin-1 sequence listed includes the N-terminal regions present in trans-golgi p230 and 256 kD golgin, but the C-terminal region of golgin-245 containing the region encoded by the 63bp alternatively spliced exon. Amino acid identities are darkly shaded and similarities are lightly shaded. Regions of marked homology between mouse and human sequences are indicated by thick lines above the sequence and by the letters a, b, c, and d to the right of the sequence. Potential grulin motifs are boxed. (B) Coiled-coil predictions using the MTIDK matrix and windows of 14 (i), 21 (ii), and 28 (iii) residues without weighting of positions 1 and 4. Similar patterns were obtained with weighting of these positions and using the MTK matrix.
FIG. 3. The HA-tagged gene product of partial tGolgin-1 clone C91 localizes to the TGN region. (A–D) HA-C1247, representing the C-terminal 1247 residues of tGolgin-1 tagged at the N-terminus with the HA11 epitope, was expressed in HeLa cells by transient transfection. Cells were fixed and stained with antibodies to HA11 (A, C) and to either endogenous TGN46 (B) or endogenous β-COP (D) and FITC- and Rhodamine Red X-conjugated secondary antibodies. A, B and C, D show representative immunofluorescence microscopy staining patterns from identical fields of cells. Note the presence of both transfected and untransfected cells in the same fields.

determine whether endogenous tGolgin-1 mRNA was more highly expressed specifically by this cell type. Sorted populations of neonatal mouse brain cells were analyzed by semiquantitative RT-PCR. This assay utilized limited numbers of PCR amplification cycles to assess the relative frequency of different mRNAs. First, oligodendrocyte precursors were sorted into three populations as defined by their expression of well-characterized developmental markers (see Fig. 6A and Gay et al., 1997, for developmental analyses). Population 1 (O4+ R-Mab−) contains the least mature cells, which express the O4 epitope characteristic of committed oligodendrocyte precursors but not the Ranscht epitope (R-Mab) characteristic of more differentiated, less proliferative cells. Population 2 (O4+ R-Mab+) contains cells at an intermediate stage of development in which R-Mab expression has been initiated but lack expression of myelin components. Population 3 (Gal-C+) contains the most mature cells that express myelin components; the first two populations contained no Gal C+ cells, as determined by flow cytometry (unpublished data). mRNA from equal cell numbers of each population was subjected to semiquantitative PCR using various primer sets. Using primers corresponding to actin cDNA, a linear increase in accumulation of actin product was seen with increasing rounds of amplification, although both astrocytes and fibroblasts contained much higher amounts of product, most likely reflecting their larger cell size and increased mRNA levels per cell (Fig. 6A).

RT-PCR products corresponding to DM20 and PLP, two temporally regulated proteins encoded by the same gene (Macklin et al., 1987), were assessed to verify the precursor stages under study. During oligodendrocyte development, DM20 transcription precedes that of PLP (Ikenaka et al., 1992; Timsit et al., 1992). As predicted, the smaller DM20 product was found in population 1, whereas both the DM20 and PLP products were found in the more mature populations 2 and 3 (Fig. 6A). Astrocytes also expressed some DM20/PLP products, most likely reflecting a few mature oligodendrocytes in this unsorted cell culture. These data validate that our sorted populations were relatively pure and that the RT-PCR assay faithfully reproduced previous characterizations.

To analyze for the presence of tGolgin-1 transcripts, PCR was performed using primers corresponding to a region of the cDNA sequence present in C91 (see Fig. 1a for PCR product locations along the cDNA sequence). As can be seen in Figure 6A, a PCR product of the appropriate size was obtained from populations 2 and 3. Population 1, astrocytes, and fibroblasts contained very weak bands, which may correspond to low levels of tGolgin-1 transcripts (see below). These data indicate that tGolgin-1 mRNA is expressed most extensively by stage II precursors. This corresponds to the appropriate developmental

FIG. 4. GRIP domain-dependent localization of C-terminal tGolgin-1 fragments to the TGN. N-terminal HA11-epitope tagged truncations of tGolgin-1 were expressed in HeLa cells by transient transfection, and fixed cells were stained with antibodies to HA11 (a, c, e, g) and to endogenous TGN46 (b, d, f, h) and fluorophore-tagged secondary antibodies. Cells were analyzed by immunofluorescence microscopy using a conventional (a-f) or confocal scanning (g, h) microscope. The truncations comprised the C-terminal 312 (C312, a, b), 187 (C187; c, d), or 81 (C81; e, f) residues. In g, h, the cells expressed C312 with a mutation changing the conserved tyrosine at position 2187 to an alanine (C312.Y2187A).
The sequences of these three proteins are nearly identical throughout their coding region; careful analysis of the sequence data indicates that they represent partial or complete clones of the same cDNA, except for the inclusion or exclusion of a 63bp exon near the coding region for the extreme C-terminus. The extreme 5' terminus of the golgin-245 sequence begins at the coding region for amino acid #130 of the trans-golgi p230 sequence, and we therefore believe that this is a 5'-truncated partial clone. The sequence of 256 kD golgin differs from that of trans-golgi p230 by the exclusion of a single G nucleotide at position 6666 within a poly-G tract; this shifts the reading frame for the predicted amino acid sequence to differ from those of trans-golgi p230 and golgin-245 near the C-terminus, and we therefore believe that this is a sequencing error. Because these proteins were localized to the trans-Golgi network and associated vesicles (Gleeson et al., 1996), we refer to them collectively as tGolgin-1. Here, we identify the cDNA for the mouse homolog of tGolgin-1, and show that it is expressed in particularly great abundance in oligodendrocyte precursors.

We previously described a unique cell surface marker on stage II oligodendrocyte precursors that was referred to as OIP-1 (Gay et al., 1997). Using the anti-OIP-1 mab to screen a postntal mouse brain cDNA expression library, we isolated three overlapping cDNAs that encoded a protein with homology to the C-terminal half of human tGolgin-1. Using the mouse EST database and RT-PCR, we extended these cDNAs to span a 7530 bp region with homology to the entire human tGolgin-1 cDNA. Several data suggest that this clone represents the major or only mouse homolog of human tGolgin-1. First, the mouse tGolgin-1 clones exhibited strong homology to human tGolgin-1, and a similar splice variation of a 63 bp exon occurred at the extreme 3' end of the coding region. Second, all of the available murine EST sequences with homology to human tGolgin-1 exhibited complete or nearly complete identity with the mouse sequence. These ESTs were derived from diverse embryonic and adult cDNA libraries. Third, like its human counterpart, HA-tagged truncated forms of the mouse protein localized to the TGN in transfected cells and could be partially displaced following treatment with brefeldin A. Finally, comparable to the analyses made of human tGolgin-1 thus far, the mouse mRNA was ubiquitously expressed, albeit at much higher levels in oligodendrocyte precursors. Collectively, this evidence suggests that we have identified the only mouse homolog of human tGolgin-1.

Interestingly, the degree of similarity between the human and mouse proteins varied throughout the coding region. Regions of highest homology (>90% identical) were present at the extreme C-terminus, spanning the GRIP domain and adjacent predicted coiled-coil regions, and within the 600 amino-terminal residues. These were interspersed with regions of modest homology (60-70% identity) throughout the bulk of the protein, within regions predicted to have a coiled-coil structure. We speculate that the less conserved regions retain general structural features that are required for tGolgin-1 function, such as coiled-coil structure, whereas the more highly conserved regions likely mediate specific interactions within a tGolgin-1 oligomer or with other conserved proteins or nonprotein effectors.

It is curious that three independent cDNA clones with overlapping sequences for tGolgin-1 were identified using an anti-

DISCUSSION

Identification of the murine tGolgin-1 homolog

Several groups identified and characterized a large, Golgi-localized protein as the target of autoantibodies in patients with Sjögren's Syndrome (Kooy et al., 1992; Fritzler et al., 1995). These groups cloned three homologous cDNAs that putatively encode proteins termed golgin-245 (Fritzler et al., 1995), trans-golgi p230 (Erlitch et al., 1996), and 256 kD Golgin (submitted to Genbank by H. P. Seelig), all of which reacted with patient antisera, but which differed in sequence at the 5' and 3' end.
FIG. 6. tGolgin-1 mRNA is highly expressed in oligodendrocyte precursors. Semiquantitative RT-PCR (A, B) of sorted oligodendrocyte precursor populations, astrocytes, and fibroblasts and 40-cycle RT-PCR (C) of astrocytes and fibroblasts. Top panels represent flow cytometric profiles of cultured day 4 (left) or day 9 (right) mouse oligodendrocyte precursors colabeled with either anti-O4 or anti-GaIC antibodies conjugated to FITC and PE-conjugated R-Mab as indicated. Sorted cells are boxed and numbered to indicate populations analyzed by RT-PCR (lower panels). Lower panels show PCR products from sorted populations, astrocytes, and fibroblasts using specific primers against designated proteins. Note that in A, PLP and cDNA1 PCR products were close to saturating levels even at the lowest cycle numbers (22, 24, 26 cycles). More representative samples, collected at lower cycle numbers (18, 20, 22 cycles), can be seen in B.
body to a cell surface marker on oligodendrocyte precursors. Although we have as yet been unable to express the full-length mouse tGolgin-1 protein in transfected cells, no cell surface expression of the clone C91 gene product could be detected with either anti-HA or anti-OIP-1 antibodies, and antibodies to human tGolgin-1 are nonreactive with the cell surface of human cell lines (unpublished data). Furthermore, except for the initial isolation from bacteriophage plaques of bacterial cultures, we were unable to demonstrate direct reactivity of the tGolgin-1 gene product with the anti-OIP-1 antibody using several assays (unpublished data). Finally, the deduced amino acid sequence contains no apparent signal sequence, consistent with the structure of a peripheral membrane protein. Nevertheless, endogenous Golgin-1 mRNA levels were greatly upregulated in stage II oligodendrocyte precursors, compared with precursors at other developmental stages or unrelated cells such as astrocytes and fibroblasts; this is the same developmental stage at which OIP-1 surface expression is observed. We speculate that either the OIP-1 determinant represents a small amount of surface expression of tGolgin-1 in cells in which it is highly expressed, or that high levels of tGolgin-1 protein are required to generate a determinant on a distinct molecule that can be recognized by the anti-OIP-1 mab (see below). Surface expression of a normally cytoplasmic protein would be unusual, but not unprecedented (Cleves and Kelly, 1996). Indeed, cellular myosin II, a protein with some homology to tGolgin-1 that also participates in vesicular transport from the TGN (Musch et al., 1997; Stow et al., 1998), has been reported to associate tightly with the neuronal plasma membrane (Li et al., 1994) and to localize to the cell surface (Michelis et al., 1994; Yanase et al., 1997).

A possible function for tGolgin-1 in the vesicular trafficking of glycolipids or proteolipids?

It has been postulated that components of the vesicular transport machinery are upregulated to accommodate myelination. Indeed, Rab3a and Rab3c, GTP-binding proteins associated with regulated secretion in neurons and other specialized cell types, have been shown to be upregulated during the late development and maturation of oligodendrocytes (Madison et al., 1996). Oligodendrocytes have been shown to possess features of polarized sorting (de Vries et al., 1998), and express a unique Rab protein, Rab22h, which is thought to be involved in trafficking between the TGN and endosomes (Rodriguez-Gabin et al., 2001). We found elevated tGolgin-1 mRNA levels at a point in development slightly earlier than that in which myelin deposits accumulate, that immediately preceding and coincident with high surface expression of R-Mab antigen. These results suggest that expression of tGolgin-1 can be upregulated to accommodate specific vesicular transport functions in oligodendrocyte precursors, such as an increased cargo load or specialized cargo. A role in the transport of specialized cargo is supported by the finding that human Golgin-1 and another TGN-associated peripheral membrane protein, myosin II, are present on separate vesicles associated with the TGN (Gleeson et al., 1996; Brown et al., 2001).

What might this specialized cargo be? Given the unique role of glycosphingolipids in oligodendrocyte biology, we speculate that tGolgin-1 may be involved in transport or synthesis of glycolipids. Glycolipids, including sulfatides such as the R-Mab antigen, are highly enriched in stage II oligodendrocyte precursors (Bansal et al., 1989; Bansal and Pfeiffer, 1992) at the same stage in which we find high levels of tGolgin-1 mRNA. Glycolipids are manufactured and assembled into myelin at the TGN (Simons et al., 2000) and progress to the cell surface through vesicular transport (Burkart et al., 1982; Gow et al., 1994). Glycosphingolipids play a general role in regulating Golgi export (Sprong et al., 2001b), protein sorting processes at the TGN (van Meer, 1998; Sprong et al., 2001a), and retrograde transport from the plasma membrane to the TGN (Falguères et al., 2001; Johannes and Goud, 1998). Moreover, the differentiation of oligodendrocytes has been shown to be associated with distinct glycolipid sorting processes (Watanabe et al., 1999), and maintenance of oligodendrocyte processes requires glycolipid cycling between the plasma membrane and the TGN (Benjamins and Nedelkoska, 1994). We speculate that tGolgin-1 may be involved in either the transport of glycolipids or sulfatides such as the R-Mab antigen (Bansal et al., 1989; Bansal and Pfeiffer, 1992), or in the localization of resident TGN enzymes that facilitate glycolipid or sulfatide synthesis. Perhaps the anti-OIP-1 antibody recognizes a glycolipid that binds to tGolgin-1 and for which cell surface expression or recycling is facilitated by tGolgin-1.

ACKNOWLEDGMENTS

We thank Diane Murphy for her help with confocal microscopy, Avinash Bhandoola for guidance in preparing and screening the cDNA library, and Dawn Harper for assistance in preparation of some of the constructs. D.G. was supported by the National Science Foundation grant NSF IBN-9631764, and grants from the National Multiple Sclerosis Foundation and Lucille P. Markey Charitable Trust. M.I.G. was partially supported by grant PO1 NS11037 from the National Institutes of Health. M.S.M., D.A.C., A.Y., and B.M.B. were supported by American Cancer Society Grants RPG-00-238-01-CSM and RPG-97-003-01-BE, and A.Y. was partially supported by a fellowship from the United States Department of the Army.

REFERENCES

BROWN, D.L., HEIMANN, K., LOCK, J., KJER-NIELSEN, L., VAN

Address reprint requests to:

Michael S. Marks, Ph.D.
Department of Pathology and Laboratory Medicine
University of Pennsylvania School of Medicine
230 John Morgan Bldg./6082
Philadelphia, PA 19104-6082

E-mail: marksm@mail.med.upenn.edu

Received for publication March 13, 2002; accepted March 15, 2002.
Golgi Recruitment of GRIP Domain Proteins by Arf-like GTPase 1 Is Regulated by Arf-like GTPase 3

Subba Rao Gangi Setty,1 Marcus E. Shin,1 Atsuko Yoshino,2 Michael S. Marks,2 and Christopher G. Burd1,3
1University of Pennsylvania School of Medicine Department of Cell and Developmental Biology
2Department of Pathology and Laboratory Medicine 421 Curie Boulevard
BRB 2/3, Room 1010
Philadelphia, Pennsylvania 19104-6058

Summary

Golgin are Golgi-localized proteins present in all molecularly characterized eukaryotes that function in Golgi transport and maintenance of Golgi structure. Some peripheral membrane Golgin, including the yeast Imh1 protein, contain the recently described GRIP domain that can independently mediate Golgi localization by an unknown mechanism [1-3]. To identify candidate Golgi receptors for GRIP domain proteins, a collection of Saccharomyces cerevisiae deletion mutants was visually screened by using yeast, mouse, and human GFP-GRIP domain fusion proteins for defects in Golgi localization. GFP-GRIP reporters were localized to the cytosol in cells lacking either of two ARF-like (ARL) GTPases, Arf1p and Arf3p. In vitro binding experiments demonstrated that activated Arf1p-GTP binds specifically and directly to the Imh1p GRIP domain. Arf1p colocalized with Imh1p-GRIP at the Golgi, and Golgi localization of Arf1p was regulated by the GTPase cycle of Arf3p. These results suggest a cascade in which the GTPase cycle of Arf3p regulates Golgi localization of Arf1p, which in turn binds to the GRIP domain of Imh1p and recruits it to the Golgi. The simultaneous localization of GRIP domains from yeast, mouse, and human in yeast expressed in yeast, and the presence of Arf1p and Arf3p homologs in these species, suggest that this is an evolutionarily conserved mechanism.

Results and Discussion

When expressed in mammalian tissue culture cells, isolated GRIP domains from yeast and mammalian proteins localize to the Golgi, and high-level expression of isolated GRIP domains displaces endogenous GRIP domain-containing proteins from the Golgi [1, 3]. These data suggest that a limiting, evolutionarily conserved receptor at the Golgi is responsible for recruitment of GRIP domain proteins. The yeast genome encodes a single protein, Imh1p, with a GRIP domain, and a GFP-Imh1p GRIP domain fusion protein localizes to punctate organelles that likely correspond to the Golgi [1]. We expressed the Imh1p GRIP domain as a fusion to a variant red fluorescent protein (RFP), DeRedT4, in cells coexpressing Sec7p-GFP, a pan Golgi marker protein [5], and Chs3p-GFP, which is localized predominantly to the late Golgi/post-Golgi endosome [6]. Nearly perfect colocalization was observed with Chs3p-GFP, and substantial colocalization was observed with Sec7p-GFP (Figure 1). Identical results were obtained with full-length Imh1p, and deletion of the GRIP domain from Imh1p resulted in cytosolic localization (data not shown), indicating that its GRIP domain mediates localization of the full-length protein, as is the case for human p230/AGolgin-1 [7]. In control experiments, no colocalization was observed in yeast expressing a GFP-FYVE domain protein (derived from human EEA1) that labels prevacuolar endosomes (data not shown) [8]. These results definitively demonstrate that the Imh1p GRIP domain localizes to the yeast Golgi and preferentially to late Golgi compartments.

To determine if the yeast Golgi contains a receptor that can be recognized by mammalian GRIP domains, we expressed GFP fusions to the mouse tGolgin-1 [9] and human Golgin-97 [10] GRIP domains in wild-type yeast cells. Both GRIP domains localized to punctate organelles (Figure 2), indicating that whatever element of the Golgi serves to recruit GRIP domain proteins is conserved between yeast and mammals. We hypothesized that since IMH1 is not an essential gene, the Golgi receptor that recruits Imh1p might also be encoded by a nonessential gene(s) or activity. Thus, to identify a candidate Golgi-localized receptor for GRIP domain proteins, we expressed the GFP-GRIP domain of yeast Imh1p in approximately 250 yeast strains with deletions of genes encoding nonessential, known, or predicted Golgi-localized proteins or proteins known to regulate traffic to, through, or out of the Golgi, and we screened these strains by fluorescence microscopy for loss of Golgi localization. In two strains, ari1Δ and ari3Δ, the GFP reporter was no longer localized to the Golgi and appeared cytosolic (Figure 2). Localization of mouse tGolgin-1 and human Golgin-97 GFP-GRIP domains in these mutant strains was similarly affected (Figure 2). Arf1p and Arf3p are divergent members of the ARF family of GTPases, referred to as ARF-like or ARL GTPases, and are highly conserved with the human ARL1 and ARF-related protein (ARP) GTPases, respectively [11].

Yeast ari1Δ, ari3Δ, and imh1Δ mutants have minor defects in sorting proteins to the lysosome-like vacuole; these defects suggest a role for these proteins in biosynthetic protein sorting in the late Golgi or in endosomes [12-16]. Moreover, human ARL1 has been localized to the Golgi of transfected cells and has been implicated in regulating Golgi structure and Golgi protein sorting [17, 18]. These findings, and the general observation that localization of many peripheral membrane proteins is often regulated by a Ras-related GTPase [19], led us to explore the possibility that Arf1p or Arf3p might serve as a receptor for GRIP domains on the Golgi. To test this, we purified recombinant Arf1p and Arf3p and assayed for binding to a GST fusion protein containing the yeast Imh1p GRIP domain. As shown in Figure 3, the constitu-
Figure 1. Imh1p GRIP Domain Localizes to Golgi Compartments

A red fluorescent protein (RFP)-Imh1p-GRIP fusion (encoding amino acids 736–912) was expressed in wild-type strains BY4741 or BY4742 expressing Sec7-GFP or Chs3p-GFP, which both localize to Golgi compartments. Colocalization can be observed as yellow in the panels on the right.

Figure 2. Golgi Localization of Yeast Imh1p. Mouse tGolgin-1, and Human Golgin-97 GRIP Domains Is Disrupted in ari1Δ and ari3Δ Mutants

GFP fusions to the Imh1p GRIP domain, the mouse tGolgin-1 GRIP domain (amino acids 2053–2238), or the human Golgin-97 GRIP domain (amino acids 583–767) were expressed in wild-type, ari1Δ, and ari3Δ strains and were photographed.
Arf1p in arl3Δ mutant cells and found that it was localized to the cytosol in arl3Δ cells, indicating that Arf1p functions to promote stable association of Arf1p with the Golgi (Figure 4). To determine if the nucleotide cycle of Arf3p regulates Arf1p-dependent Golgi localization of GRIP domains, we next examined localization of GFP-Imh1p-GRIP and Arf1p-GFP in arl3Δ mutant cells transformed with single copy plasmids expressing Arf3p(T31N) or Arf3p(Q78L) as the sole sources of Arf3p. As can be seen in Figure 4 and in Figure S1, both GFP-Imh1p-GRIP and Arf1-GFP were localized to the Golgi when activated Arf3p(Q78L) was present, but not when Arf3p(T31N) was present. Thus, Arf3p indirectly affects Arf1p-dependent localization of GFP-GRIPs because, in arl3Δ cells, Golgi localization of the GRIP domain receptor, Arf1-GFP, is abrogated.

These results lead us to propose a model in which the nucleotide cycle of Arf3p regulates Golgi localization of Arf1p, which, when activated by nucleotide exchange, recruits Imh1p to the Golgi via its GRIP domain. Orthologs of yeast Arf3p, Arf1p, and Imh1p are present in other eukaryotes, and because localization of mammalian GRIP domains in yeast requires the same proteins as yeast Imh1p, the ARL3/ARL11/IMH1 pathway appears to be conserved throughout eukaryotic evolution. Other components of this pathway are likely to include guanine nucleotide exchange factors (GEFs) and GTPase activating factors (GAPs) that regulate the nucleotide cycles of Arf3p and Arf1p. Mon2p (also called Ysl2p) was reported to be related to Sec7 family ARF GEFs, and high-level expression of ARL1, but not ARL3, was found to suppress the growth defect of a mon2Δ deletion mutant [20], raising the possibility that Mon2p may be a GEF for Arf1p. However, localization of Arf1p-GFP and GFP-Imh1p-GRIP is not substantially affected in a mon2Δ mutant (data not shown), although genetic evidence does implicate Mon2p as a component of the ARL3/ARL11/IMH1 pathway. Analysis of Golgi protein sorting

Figure 3. Activated Arf1p Binds the GST-Imh1p GRIP Domain

A fusion protein consisting of GST coupled to the Imh1p GRIP domain, or GST as a control, was captured on GSH-Sepharose and mixed with purified, recombinant wild-type ("WT"), GTPase-deficient ("GTP"), or GTP binding-defective ("GDP") Arf1p or Arf3p. After incubation, the beads were washed twice, and bound material was visualized by immunoblotting with antibodies to epitope-tagged Arf GTPases. Approximately 10% of the added input of each Arf GTPase is shown in the "I" lane (only the activated ["GTP"] Arf input lanes are shown).

inactive Arf3p(T31N) mutants expressed in arl3Δ cells from a single copy vector. A faint punctate signal was observed for constitutively active Arf3p(Q78L)-GFP (Figure 4), but Arf3p(T31N)-GFP was apparently localized to the cytosol (Figure S1). These observations suggest that Arf3p is localized to the Golgi in a nucleotide-dependent manner, although the low Arf3p-GFP signal precluded definitive colocalization with Golgi markers. Interestingly, Arf3p and its human ortholog ARFAP lack the consensus Glycine that is myristoylated in all characterized ARF GTPases, and this may explain in part why Arf3p is poorly localized to the Golgi at steady state.

The observations that GRIP domains are mislocalized in the arl3Δ strain, but that Arf3p does not appear to bind the Imh1p GRIP domain, led us to hypothesize that Arf3p might regulate localization of Arf1p. To test this hypothesis, we examined localization of GFP-tagged

Figure 4. The GTPase Cycle of Arf3p Regulates Golgi Localization of Arf1p and GFP-Imh1p-GRIP

(A-C) GFP-Imh1p-GRIP and Arf1p-GFP were visualized by fluorescence microscopy individually (A and B), and then the two micrographs were overlayered (C). (D) To visualize Arf3p within the cell, the GFP-tagged wild-type, inactive Arf3p(T31N) or constitutively active Arf3p(Q78L) were expressed from single copy vectors in the arl3Δ strain and were photographed (see Figure S1). (E) Localization of Arf1p in arl3Δ mutant cells was determined by expressing GFP-tagged wild-type Arf1p from a single copy vector that had been transformed into the arl3Δ strain. To determine if the GTPase cycle of Arf3p regulates Arf1p-dependent Golgi localization of the Imh1p GRIP domain, the arl3Δ strain was cotransformed with single copy vectors expressing wild-type or mutant arl3 genes and the GFP-Imh1p-GRIP plasmid. (F) Golgi localization of GFP-Imh1p-GRIP was observed in wild-type and Arf3p(Q78L) cells, but not in Arf3p(T31N) cells (Figure S1).
in imh1, arf1, and arf3 mutants, and identification of genetic interactions between mutations in imh1 and mutations affecting the Ypt6 Rab GTPase, suggest that it may serve in the retention and/or retrieval of proteins to the late Golgi [16, 20, 21, 22]. We have found that arf1Δ, arf3Δ, and mon2Δ alleles lead to synthetic lethality when combined with a deletion of ypt6 (Figure S2), as has been reported for an imh1Δ ypt6Δ double mutant [23]; this finding is consistent with these genes functioning together in a genetic pathway that is essential in the absence of Ypt6p.

Our findings are consistent with a cascade of ARF-like GTPases that function in a sequential manner to regulate protein localization in the Golgi. A cascade of sequentially acting yeast Rab GTPases that regulates vesicular transport of cargo to and through the Golgi has recently been described [24, 25], and it may be that an Arf GTPase cascade functions in an analogous manner to regulate recycling of proteins to the Golgi from endosomal compartments. This work establishes functions for the two yeast ARF-like GTPases and should open the door to a better understanding of the roles of this family of enzymes in regulating Golgi function.

Supplemental Material

Supplemental Material including a description of the Experimental Procedures used to construct and visualize the GFP- and RFP-tagged proteins and to perform the GRIP domain binding experiments is available at http://images.cellpress.com/supmat/ supmat.htm.

Acknowledgments

This work is supported by grants from the National Institutes of Health to C.G.B. (GM61221) and from the American Cancer Society to M.S.M. (RPG-90-238-01-CSM). We thank Enrique B. and Mark Lemmon, and Margaret Chou for helpful discussions and critical reading of the manuscript, Ben Glick and Randy Schekman for sharing reagents, and Charlie Boone, Amy Tong, and Sean Munro for sharing information before publication.

Received: November 25, 2002
Revised: December 20, 2002
Accepted: December 20, 2002
Published: March 4, 2003

References

A role for GRIP domain proteins and/or their ligands in structure and function of the trans Golgi network

Atsuko Yoshino\(^1\), Bert M. Bieler\(^1\), Dawn C. Harper\(^1\), David A. Cowan\(^1\), Shaheen Sutterwala\(^1\), Denise M. Gay\(^1\), Nelson B. Cole\(^1\), J. Michael McCaffrey\(^2\) and Michael S. Marks\(^1,\)*

\(^1\)Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
\(^2\)Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA

*Author for correspondence (e-mail: markm@mail.med.upenn.edu)

Accepted 7 July 2003

doi:10.1242/jcs.00746

Summary

tGolgin-1 (golgin-245, trans golgi p230) and golgin-97 are members of a family of peripheral membrane proteins of unknown function that localize to the trans Golgi network (TGN) through a conserved C-terminal GRIP domain. We have probed for GRIP protein function by assessing the consequences of overexpressed isolated GRIP domains. By semi-quantitative immunofluorescence microscopy we found that high level expression of epitope-tagged, GRIP domain-containing fragments of tGolgin-1 or golgin-97 specifically altered the characteristic pericentriolar distribution of TGN integral membrane and coat components. Concomitantly, vesicular transport from the TGN to the plasma membrane and furin-dependent cleavage of substrate proteins in the TGN were inhibited. Mutagenesis of a conserved tyrosine in the tGolgin-1 GRIP domain abolished these effects. GRIP domain overexpression had little effect on the distribution of most Golgi stack resident proteins and no effect on markers of other organelles. Electron microscopy analyses of GRIP domain-overexpressing cells revealed distended perinuclear vacuoles and a proliferation of multivesicular late endosomes to which the TGN resident protein TGN46 was largely mislocalized. These studies, the first to address the function of GRIP domain-containing proteins in higher eukaryotes, suggest that some or all of these proteins and/or their ligands function in maintaining the integrity of the TGN by regulating resident protein localization.

Key words: Golgin-245/p230, Golgin-97, TGN46, Endosomes, VSV-G

Introduction

The trans Golgi network (TGN) is a series of interconnected tubules and vesicles at the trans face of the Golgi stack that functions in the processing and sorting of glycoproteins and glycolipids at the interface of the biosynthetic and endosomal pathways (Griffiths and Simons, 1986; Traub and Kornfeld, 1997). TGN structure is dynamic, subject to constant influx and efflux of membrane from and to both secretory and endosomal compartments. Such dynamics require efficient membrane recycling to maintain a constant steady state composition of lipids and proteins. Hence, TGN resident integral membrane proteins, including glycosyl modifying enzymes (Geuze and Morre, 1991), proprotein processing enzymes (Seidah and Chretien, 1997; Varlamov and Fricker, 1998), SNARE proteins (Lewis et al., 2000; Mallard et al., 2002; Siniossoglou and Pelham, 2001), and putative cargo binding proteins such as TGN38/TGN46 (Banting and Ponnambalam, 1997), maintain a steady state accumulation within the TGN by active retention and recycling (Bryant and Stevens, 1997; Ghosh et al., 1998; Mallet and Maxfield, 1999; Ponnambalam et al., 1994). The best characterized recycling pathways involve retrieval of resident proteins and glycolipids from endosomes (Molloy et al., 1999; Rohn et al., 2000). The molecular mechanisms that regulate both the efflux of membrane to the cell surface and the retrieval from endosomes are only beginning to be understood, and include sorting signals on cargo proteins and specific cytoplasmic components to effect cargo movement (Mallard et al., 2002; Rohn et al., 2000). Among these components there are likely to exist as yet unidentified tethering factors (Lowe et al., 1998; Pfeffer, 1999).

In an effort to elucidate effectors regulating TGN biogenesis, we have focused on a group of large peripheral membrane proteins of unknown function characterized by an extensive predicted coiled-coil structure and a conserved C-terminal GRIP (Golgin-97, RanBP2α, Imhlp and trans golgi p230) domain (Barr, 1999; Kier-Nielsen et al., 1999a; Kier-Nielsen et al., 1999b; Munro and Nichols, 1999). The GRIP domain confers localization to the TGN and associated vesicles for all four mammalian GRIP domain-containing proteins (GRIP proteins): tGolgin-1 [(Cowan et al., 2002) also known as trans golgi p230 (Erlich et al., 1996), golgin-245 (Fritzler et al., 1995) and 256 kDa golgin (H. P. Seelig, GenBank accession no. X82834)], golgin-97, GCC88 and GCC185 (Brown et al., 2001; Gleeson et al., 1996; Luke et al., 2003). The single yeast GRIP protein, Imhlp, similarly localizes to the late Golgi (Panic et al., 2003; Setty et al., 2003). No function has yet been assigned to any GRIP protein, but indirect evidence supports a role in vesicular traffic at the TGN. Several GRIP domains bind to the small Arf-like GTPase, Arl1 (Lu et al., 2001; Panic et al., 2003; Setty et al., 2003; Van Valkenburgh et al., 2001), which itself may regulate Golgi and/or TGN structure (Lu et al., 2001; Van Valkenburgh et al., 2001; Panic et al., 2003). tGolgin-1 is associated with a class of vesicles released from Golgi membrane fractions in an in vitro budding assay (Brown et al.,
2001; Gleason et al., 1996). Finally, IMH1 displays both multicopy suppression and synthetic lethality with mutations in genes encoding the yeast Rab6 homologue, YPT6, and its nucleotide exchange factor, RIC1 (Li and Warner, 1996; Siniossoglou et al., 2000; Tsukada and Gallwitz, 1996; Tsukada et al., 1999), which themselves are implicated in endosome-to-TGN recycling (Bensen et al., 2001; Siniossoglou and Pelham, 2001; Tsukada et al., 1999). Given these data, and their structural similarities to known tethering proteins (Pfeffer, 1999), we hypothesized that mammalian GRIP proteins function in regulating protein recycling from endosomes to the TGN.

Overexpression of isolated GRIP domains by transfection competitively displaces endogenous GRIP proteins from Golgi membranes (Kjer-Nielsen et al., 1999a; Kjer-Nielsen et al., 1999b), presumably by competition for a limiting GRIP domain binding site. Such displacement would be expected to interfere with the function of endogenous GRIP proteins. We show here that in cells in which GRIP domain-containing fragments from tGolgin-1 or golgin-97 are overexpressed, the structure, resident protein localization and function of the TGN are largely disrupted. The results suggest that GRIP proteins or their ligands function in the maintenance of TGN integrity, probably through regulating TGN membrane protein localization.

Materials and Methods

Plasmids
cDNA clones encoding mouse tGolgin-1 and plasmids encoding N-terminally HA11 (influenza hemagglutinin 11) epitope-tagged truncated forms of tGolgin-1 encoding the C-terminal 312, 186, 81 or 50 amino acids (C312, C186, C81, C50), and a point mutant of C312, C312(Y2187A) (in which the codon for the critical GRIP domain tyrosine residue was altered to that for alanine) in the mammalian expression vector pCDM8.1 (Bonifacino et al., 1990) are described elsewhere (Cowan et al., 2002). T7 epitope-tagged C312 in pCDM8.1 was prepared by two-step polymerase chain reaction (Higuchi et al., 1988) using primers encoding the epitope tag and a Kozak consensus start site. A fragment encoding the C-terminal 179 amino acids of golgin-97 (G97-C179) was amplified by reverse transcriptase coupled PCR (RT-PCR) from RNA isolated from a human melanoma, MNT-1, and subcloned into pCDM8-HA11. Sequences of all PCR-derived inserts and of junctions of subcloned fragments were verified by automated dyeoxy sequencing. Details of the sequence of PCR primers used for plasmid construction are available upon request. The following constructs have been described previously as indicated: Tac in pCDM8.1 (Leonard et al., 1984); Tac chimeric proteins with the cytoplasmic domains of TGN38 [TGG (Humphrey et al., 1993)], furin [TTF (Voorhees et al., 1995)] or Lmp1 [TTL (Marks et al., 1996)], or the di-leucine-based sorting signal of CD3γ [Tac-DKQTLL (Letourneur and Klausner, 1992; Marks et al., 1996)] in pCDM8.1; Pme17 in pCI (Berson et al., 2001); furin with a C-terminal HA11 epitope tag in pXS (Bosshart et al., 1994); and the t045 variant of the vesicular stomatitis virus glycoprotein conjugated to enhanced green fluorescent protein [SVV-G-EGFP (Presley et al., 1997)].

Cell culture and transfections
HeLa cells were maintained in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum. Cells were transfected using calcium phosphate precipitation as described previously (Marks et al., 1996). For most experiments, cells grown on coverslips in six-well dishes were transfected with 7 μg of total DNA; in cases where moderate expression levels were desired, 50-100 ng of the desired expression construct were used. Except where noted, cells were analyzed 2-3 days following transfection. Stable transfectants of the CHO cell variant TRVb-1 expressing Tac chimeric proteins TGG and TTF (Ghosh et al., 1998; Mallet and Maxfield, 1999), provided by Dr. F. R. Maxfield (Weill Medical College of Cornell University, New York, NY), were transiently transfected using Superfect (Qiagen, Valencia, CA) or GenePORTER (Gene Therapy Systems, San Diego, CA) according to the manufacturers' instructions.

Antibodies

Antibodies are to the following molecules (sources are given in parentheses). HA11 epitope (mAb 16D12, Covance Research Products, Richmond, CA); mAbs 12CA5 and 3F10, Roche Molecular Biochemicals, Indianapolis, IN); TGN46 [rabbit anti-TGN46 (Prescott et al., 1997); sheep anti-TGN46, Serotec, Oxford, UK); cation-independent mannose 6-phosphate receptor (mAb oMPR300, Affinity BioReagents, Golden, CO); Tac (Santini et al., 1998); golgin-97 (rb tGolgin-97 and mAb tGolgin-97, E. K. L. Chan, Scripps Res. Inst., La Jolla, CA); giardin (Linstedt and Hauri, 1993); Rab6 (C-19 rb oRab6, Santa Cruz Biotechnology, Santa Cruz, CA); ERGIC-53 (Schweizer et al., 1988); mannosidase II (Moremen and Touster, 1985); galactosyltransferase (Berger and Hesford, 1985); MG160 (Gonatas et al., 1989); AP-1 (Ahlle et al., 1988); Lamp1 (Carlsson et al., 1988; Mane et al., 1988); Lamp2 (Mane et al., 1989); CD63 (mAb oCD63, Beckman Coulter, Fullerton, CA); transferrin receptor (mAb B3/25, Roche Molecular Biochemicals); T7 epitope (mAb from Novagen, Madison, WI). mAbs to EEA1, human tGolgin-1 (p230), GM130, p115 and syntaxin 6 were from Becton Dickinson/Transduction Laboratories (San Diego, CA). Secondary antibodies to mouse, rabbit, sheep or rat IgG conjugated to rhodamine red X (RRX), fluorescein isothiocyanate (FITC), aminomethylcoumarin acetate (AMCA), or gold (6 nm and 12 nm) were from Jackson ImmunoResearch (West Grove, PA). FITC- and Texas Red-conjugated secondary antibodies to mouse IgG isotypes were from Southern Biotechnology (Birmingham, AL).

Immunofluorescence microscopy

Cells were fixed with 2% formaldehyde and stained as described previously (Marks et al., 1995). Where indicated, cells were treated with 1 mg/ml laupentin or 10-50 μg/ml cycloheximide (CHX) prior to fixation. For transferrin uptake, cells on coverslips were incubated with FITC-transferrin (from Sigma; 20 μg/ml) in serum-free medium containing 0.5% bovine serum albumin for 15-20 minutes, then rinsed in warm PBS prior to fixation. Cells were analyzed on a Leica (Bannockburn, IL) DM IRBE microscope using a Hamamatsu (Hamamatsu, Japan) Orca digital camera and Improvision (Lexington, MA) OpenLab software. Semiquantitative analyses were done with the Measurements module using raw images taken at constant exposure times pre-determined to be sub-saturating for the brightest samples. Outlines were drawn around individual cells, and total fluorescence from each cell was determined by multiplying the total number of pixels within the outline by the average value per pixel (after subtracting a background value per pixel, taken from an area within the photographed field in which there were no cells). Images shown were obtained using the Volume Deconvolution module from a series of raw images in different z-axis planes.

Metabolic pulse/chase and immunoprecipitation

Cells transfected with C312, C312(Y2187A), or control vector together with pCI-Pme17 were metabolically labeled for 30 minutes with [35S]methionine/cysteine and chased for various periods of time. Cell lysates in Triton X-100 were immunoprecipitated with anti-Pme17, immunoprecipitates were fractionated by SDS-PAGE and gels were analyzed by phosphoimaging as described previously (Berson et al., 2001).
Electron microscopy analyses
HeLa cells cotransfected with C312 or C312(Y2187A) (42 µg/10 cm dish) and pCDM8.1-Tac (4.2 µg) (Marks et al., 1995) were harvested in PBS/5mM EDTA, washed and stained with anti-Tac antibodies conjugated to phycoerythrin (Beckman Coulter, Fullerton, CA). Fluorescently labeled cells were harvested using a FACStar Plus cell sorter. Sorted cells were fixed as described previously (McCafferty and Farquhar, 1995) after a 15 or 30 minutes incubation at 37°C with 5 mg/ml horseradish peroxidase (Sigma). For conventional electron microscopy (EM), cells were fixed in 100 mM cacodylate buffer, pH 7.4, containing 3% formaldehyde, 1.5% glutaraldehyde, and 2.5% sucrose for 1 hour, washed, and osmicated at 4°C in Pelan’s fixative containing 1% OsO4. Cells were then washed, treated with tannic acid, stained with uranyl acetate, dehydrated through a graded series of ethanol, and embedded in epon. 80 nm sections were cut on a LEICA UC7 ultramicrotome and analyzed on a Philips 420 TEM at 80 kV. For immunogold labeling of ultrathin cryosections, cells were fixed in PBS containing 4% paraformaldehyde for 1 hour, washed and harvested. Cell pellets were cryo-protected in 2.3 M sucrose containing 20% polyvinyl pyrrolidone, mounted on aluminum cryo-pins, and frozen in liquid nitrogen. Ultrathin cryosections were then cut on a Reichert UC7 ultramicrotome equipped with an FCS cryo-stage, and sections were collected onto 300 mesh, formvar/carbon-coated nickel grids. Grids were washed, blocked in 10% FCS, and incubated overnight with primary antibodies (10 µg/ml). After washing, grids were incubated with gold-conjugated secondary antibodies for 2 hours, washed, and embedded in a mixture containing 3.2% polyvinyl alcohol (10x10^5 mol. mass), 0.2% metallo cellulose (400 centipoises), and 0.2% uranyl acetate. Sections were analyzed on a Philips EM 410 transmission electron microscope.

Results
Disruption of TGN protein localization by overexpression of GRIP domains
In earlier work, HA-epitope-tagged, truncated forms of mouse tGolgin-1 containing the C-terminal 1247, 312, 186 or 81 amino acids, encompassing the GRIP domain, were efficiently localized to the Golgi when expressed at low levels by transfection in HeLa cells or other cell lines (Cowan et al., 2002). To probe GRIP protein function, we used immunofluorescence microscopy (IFM) to analyze whether high level expression of GRIP domain-containing fragments in transiently transfected HeLa cells affected the distribution of TGN resident proteins. HA-tagged C312 (corresponding to the C-terminal 312 amino acids of mouse tGolgin-1) was used in most experiments because of its enhanced expression and stability relative to the other truncated products, but similar results were observed using all GRIP domain-containing tGolgin-1 fragments. As the expression levels of C312 increased, pericentriluar anti-HA staining gave way to a diffuse staining pattern throughout the cytoplasm (Fig. 1b,c). We defined three qualitative fluorescence patterns: level I, a narrow ribbon-like structure consistent with Golgi localization; level II, a more diffuse paranuclear/pericentriluar structure with additional cytoplasmic staining; and level III, an intense cytoplasmic staining that may mask underlying structure. The C312 distribution in these cells was often reticular, perhaps reflecting association with ER membranes or cytoskeletal elements. Semiquantitative analysis of expression levels showed a correlation between total fluorescence intensity and the staining pattern observed (Fig. 1d). Consistent with previous reports (Kjer-Nielsen et al., 1999a; Kjer-Nielsen et al., 1999b), cells with level II or III staining patterns showed reduced or eliminated pericentriluar staining for endogenous tGolgin-1 and golgin-97 (see Fig. 3), likely reflecting competition for a limited GRIP domain binding site at the TGN (Barr, 1999; Kjer-Nielsen et al., 1999b).

Surprisingly, the localization of several TGN resident integral membrane proteins was disrupted in HeLa cells with high (level III) C312 expression (Fig. 2). TGN46, which localizes to a tight pericentriluar structure in untransfected cells or cells expressing low levels (level I) of C312 (Fig. 2, stars), was present in diffuse, vacuolated structures in cells with level III C312 expression (Fig. 2a-b); in some cells expressing extremely high levels, pericentriluar staining was completely absent (not shown). Similarly, HA-tagged furin, which localizes to the TGN in transfected HeLa cells (Bosshart et al., 1994), was mislocalized to a diffuse and ‘expanded’ pericentriluar structure in cells with level III expression of T7-epitope tagged C312 (Fig. 2e,f). These effects were independent of cell-type and a function of TGN localization rather than of unrelated functions of the TGN46 and furin luminal domains. This was evident in transiently transfected CHO cell variants by the C312-induced redistribution of the chimeric proteins TGG and TTF, which bear the cytoplasmic domains of TGN38 or furin, respectively, and the luminal and transmembrane domains of an irrelevant protein, Tae (Fig. 2g-h,i-k). Furthermore, AP-1, which associates with the TGN as a peripheral membrane protein, also failed to accumulate in the pericentriluar region in C312-overexpressing cells (Fig. 2m-n). Since TGN46/TGG and furin/TTF localize to the TGN via distinct cytoplasmic targeting signals (Humphrey et al., 1993; Voorhees et al., 1995) and recycling pathways (Ghosh et al., 1995).
Fig. 2. Overexpression of C312 disrupts the localization of TGN resident proteins. HeLa cells (a-f,m-o) or stable transfectants of TRVb-1 cells expressing TGG (g-i) or TTF (j-l) were transiently transfected with C312 or C312(Y2187A), as indicated, and analyzed by IFM using antibodies to the indicated proteins and to the HA tag (* columns) and appropriate secondary RRX- and FITC-conjugated secondary antibodies. The cells in d-f were cotransfected with furin-HA (50-100 ng/six-well dish) and T7-epitope-tagged C312 (5-7 µg/six-well dish); anti-HA was used to detect furin and anti-T7 to detect C312. (a,d,g,j,m) Cells with low C312 expression (level I); (b,e,h,k,n) cells with high expression (level III); (c,f,i,l,o) selected cells in which semiquantitative analyses showed levels of HA staining comparable to those in b, e, h, k, and n.

1998; Mallet and Maxfield, 1999), and AP-1 localization is mediated by independent mechanisms (Page and Robinson, 1995; Scaman et al., 1996), these data show that high level expression of C312 disrupted TGN localization mediated by multiple pathways. Similar results were obtained in COS, MOP8, and NRK cells (unpublished data). Note that the distribution of syntaxin 6 and the cation-independent mannose 6-phosphate receptor did not overlap significantly with the TGN in our untransfected HeLa cells, and thus no change in their distribution could be observed in cells overexpressing C312 (unpublished data).

Three approaches were used to show that the displacement of TGN proteins was due to overexpression of an intact GRIP domain. First, cells were transfected with HA-tagged C312 in which a tyrosine conserved in all GRIP domains was replaced by alanine [C312(Y2187A)]; this fragment failed to localize to the Golgi in transfected cells at any expression level (Cowan et al., 2002) (see also Barr, 1999; Kjer-Nielsen et al., 1999a; Munro and Nichols, 1999). Expression of C312(Y2187A) at levels comparable to those sufficient for the level III phenotype of intact C312 (assessed by semiquantitative analysis of anti-HA fluorescence intensity) failed to disrupt the localization of any analyzed TGN resident protein (Fig. 2c,f,i,l,o), indicating that the GRIP domain must be intact to effect TGN disruption. Second, TGN46 mislocalization was observed upon overexpression of a C-terminal fragment of golgin-97, g97.C179, containing an independent GRIP domain (Fig. 3m,n). Finally, using semiquantitative IFM analyses in triple stained HeLa cells, we found that comparable levels of C312 expression induced both the mislocalization of TGN46 and the displacement of the endogenous GRIP proteins, tGolgin-1 and golgin-97, from the Golgi (Fig. 3a-l). Taken together, these data suggest that saturation of GRIP domain binding sites on TGN membranes or on a GRIP effector molecule results in disruption of the steady state distribution of TGN resident proteins.
Fig. 3. Parallel displacement of TGN46 and endogenous GRIP domain proteins at similar expression levels of C312. (a-j) HeLa cells that were transiently transfected with C312 were analyzed by three-color IFM using rat anti-HA, mouse anti-tGolgin-1 and sheep anti-TGN46 with AMCA-, RRX- and FITC-conjugated species-specific antibodies, respectively. (a-i) Representative images of staining patterns for HA-C312 (a,d,g), TGN46 (b,e,h) and tGolgin-1 (c,f,i) obtained with C312 expressed at level I (a-c), II (d-f) and III (g-i). (j) Semiquantitative analyses of total cell expression level of AMCA fluorescence (representing C312) in cells characterized as having a tight pericentriolar Golgi staining pattern (intact), diffuse paracellular staining (diffuse), or diffuse cytoplasmic distribution (cytoplasmic) for TGN46 and endogenous tGolgin-1. C312 expression is plotted in arbitrary units on a log scale on the y axis; circles represent values for individual cells, and bars represent the median of all analyzed cells. (k,l) Cells transiently transfected with C312 were analyzed by IFM using antibodies to HA (k) and golgin-97 (l). Cells transiently transfected with g97-C179 were analyzed by IFM using antibodies to HA and to TGN46.

Furthermore, there were no consistent effects on the distribution of actin filaments, cell surface proteins, or markers of the endoplasmic reticulum (ER), ER/Golgi intermediate compartment, early endosomes, or late endosomes/lysosomes (Table 1). Pericentriolar staining for β1,4 galactosyltransferase (GalT), an enzyme that localizes to both the TGN and the trans Golgi cisternae, was disrupted in about half of the cells that overexpressed C312, but not in cells that overexpressed C312(Y2187A) (Fig. 5a-f). This effect was observed less consistently than for TGN46 or other TGN resident proteins (Fig. 2) and did not correlate with C312 expression level (unpublished data), perhaps reflecting the distribution of GalT to both the TGN and Golgi stacks (Nilsson et al., 1993; Rabouille et al., 1995) and cycling between these compartments (Cole et al., 1998; Miesenböck and Rothman, 1995). The results indicate that GRIP domain overexpression affects primarily TGN structure and/or protein localization, with minimal effects on the Golgi stacks and no discernible effects on other membranous organelles.

Rab6 has been implicated as a binding partner for the GRIP domains of tGolgin-1 and golgin-97 (Barr, 1999). Rab6 localization to the Golgi was only marginally affected in C312-overexpressing cells (Fig. 5g-l and Table 1); as for GalT, loss of tight pericentriolar Rab6 staining was observed in only a fraction (25.7%) of C312-overexpressing cells and did not correlate with C312 expression levels. This suggests that Rab6 localization to the Golgi is not dependent on binding of any particular GRIP-domain containing protein, and that excess GRIP domain cannot sequester Rab6 from membranes. Similar results were obtained with a more established GRIP domain binding partner, Arl1 (data not shown), which in yeast is known to regulate – but not to be regulated by – GRIP domain Golgi localization (Panic et al., 2003; Setty et al., 2003).

To determine whether GRIP domain overexpression interfered with a dynamic process, we tested whether the change in TGN46 distribution was reversible. Because C312 has a short half-life (Fig. 4a; see also Fig. 7), it could be rapidly depleted by CHX treatment of transfected HeLa cells; treatment for 1-4 hours increased the fraction of transgene-positive cells with level I staining at the expense of cells with level III staining (Fig. 4b), indicating a loss of cells with high level C312 expression. Analysis of this same population of cells for TGN46 localization indicated that the fraction of cells with a wild-type pericentriolar TGN46 staining pattern increased over time of CHX treatment (Fig. 4c). Thus, the effect of GRIP domain overexpression on TGN46 distribution is reversible.

Specificity of protein localization defects in GRIP domain overexpressing cells

To determine whether the effects of GRIP domain overexpression were limited to the TGN, we analyzed the distribution of residents of other organelles in cells expressing high levels of C312. Staining patterns for Golgi stack integral (giantin and mannosidase II; ManII) and peripheral (GM130 and p115) membrane proteins were unaffected by overexpression of C312 (Fig. 5a, a-h) or of other GRIP domain-containing fragments (unpublished data).
Fig. 4. Reversibility of TGN46 displacement induced by GRIP domain overexpression. (a) HeLa cells transiently transfected with C312 or C312(Y2187A) or control untransfected cells were metabolically labeled with [35S]methionine/cysteine for 30 minutes and then chased for 0, 1, 2, or 4 hours. C312 or C312(Y2187A) was immunoprecipitated from cell lysates at each time point using anti-HA antibodies, fractionated by SDS-PAGE, and total C312 levels were determined by phosphorimagining analysis of the 40 kDa band that was absent in the controls (see Fig. 7). The amount at time 0 was set to 100%, and the percentage remaining at each time point is plotted. A representative of 3 experiments is shown. (b,c) HeLa cells from the same well transiently transfected with C312 were treated with 10 µg/ml CHX for 0, 2 or 4 hours as indicated, fixed, and then analyzed by IFM using antibodies to the HA-epitope (b) and to TGN46 (c). (b) The percentage of cells in a representative experiment that were positively stained with anti-HA (n=238 to 269 per time point in this experiment) were characterized for phenotypic expression level of C312 expression. (c) The percentage of cells in the same experiment that were positively stained with anti-HA were characterized for phenotypic appearance of TGN46 staining; 'intact' TGN46 indicates a tight Golgi ribbon as in Fig. 2a.

Fig. 5. Localization of Golgi stack residents in cells overexpressing C312. HeLa cells transiently transfected with C312 were analyzed by IFM using antibodies to the HA-epitope (to detect C312) and to endogenous Golgi markers as indicated. (Aa-h) Cells overexpressing C312 and co-stained for giantin, mannosidase II (ManII), GM130 or p115. Examples are representative of all cells examined. (B) Cells co-stained for galactosyltransferase (GaIT; a-f) or Rab6 (g-i). In approximately 46% of analyzed C312-overexpressing cells (n=369 over 3 experiments), the GaIT staining pattern was similar to untransfected cells in the same field (a,b) and to cells transfected with C312(Y2187A) (c,f), whereas in the other 54%, GaIT staining was diffuse (c,d). A similar disparity was seen for Rab6; in approximately 74% of analyzed C312-overexpressing cells (n=175 over 2 representative experiments), Rab6 staining was similar to controls (g,h compared with k,l) and in 26%, Rab6 staining was diffuse (i,j).

TGN functional defects induced by GRIP domain overexpression

We next tested whether the alterations in TGN protein distribution observed upon overexpression of GRIP domains underlie TGN functional defects. First, we assayed protein transport from the ER to the plasma membrane using an EGFP-tagged form of the temperature-sensitive ts045 variant of VSV-G (Bergmann et al., 1981; Presley et al., 1997). VSV-G-EGFP misfolds at the restrictive temperature of 39°C and is thus retained within the ER of transfected HeLa cells, producing a reticular pattern throughout the cytoplasm visible by fluorescence microscopy (Fig. 6a) (Presley et al., 1997). When shifted to 32°C, accumulated VSV-G-EGFP synchronously exits the ER and traverses the Golgi complex en route to the plasma membrane. VSV-G-EGFP largely accumulates at the Golgi by 30 minutes and at the plasma membrane by 60
transport proceeded normally such that plasma membrane staining was apparent by 60 minutes (Fig. 6i), whereas in cells expressing extremely high levels of C312, no plasma membrane fluorescence was observed even after 3 hours (Fig. 6m).

As a second test of TGN function, we assessed the ability of proprotein convertases of the furin family to cleave a substrate protein. Furin localizes predominantly to the TGN (Shapiro et al., 1997) where it cleaves target proproteins at dibasic recognition sites (Nakayama, 1997). Pme17, a glycoprotein found in melanosome precursors in pigmented cells, is cleaved by furin or a related proprotein convertase en route to late endosomes in transfected HeLa cells (Berson et al., 2003). To determine whether furin cleavage is compromised in cells overexpressing GRIP domains, Pme17 processing was assessed by metabolic pulse/chase and immunoprecipitation in transfected HeLa cells expressing Pme17 without or with excess C312 or C312(Y2187A). In cells expressing Pme17 alone, a single ~100 kDa band (P1) present in cell lysates from pulse-labeled cells matured first to a slower migrating species (P2) by oligosaccharide processing in the Golgi, and then to two faster migrating species (Mα and Mβ) by proprotein convertase cleavage (Fig. 7b, lanes 1-4) as observed previously (Berson et al., 2001; Berson et al., 2003) and outlined schematically in Fig. 7a. By 4 hours, most of the P1 and P2 was converted to Mα and Mβ (lane 4). The kinetics of processing was virtually unchanged in cells co-expressing C312(Y2187A) (lanes 9-12). However, in cells co-expressing C312 at comparable levels (Fig. 7c), P2 accumulated and Mα and Mβ were not substantially generated (lanes 5-8). The formation of P2, which is resistant to digestion by endoglycosidase H (Berson et al., 2001; Berson et al., 2003), indicates that these cells had no, or minimal, defects in oligosaccharide processing within the Golgi stack. However, P2 accumulation coupled with Mα and Mβ depletion indicate that proprotein convertase cleavage of Pme17 was blocked. These data indicate that overexpression of GRIP domains compromises either enzymatic functions or the interactions between enzyme and substrate within the TGN.

Despite these defects, some sorting functions normally ascribed to the TGN appeared to remain intact in C312-overexpressing cells. Transport to late endosomes was unaltered relative to controls as assessed by the steady state localization of several endogenous late endosomal and lysosomal proteins and the transport kinetics of cotransfected chimeric proteins (Table 1). These results suggest that C312 overexpression affects only certain TGN subdomains or the cycling of only certain cargo.

Ultrastructural defects and mislocalization of TGN46 in cells overexpressing GRIP domains

To determine the effects of C312 overexpression on TGN morphology in more detail, cells were analyzed by EM. Cells expressing C312 or C312(Y2187A) were enriched by cell sorting following cotransfection with a plasma membrane marker, Tac; by IFM, >90% of sorted cells expressed C312 or C312(Y2187A), the majority at high levels. Sorted cells were incubated with horseradish peroxidase (HRP) for 15-30 minutes at 37°C as a marker of fluid phase endocytosis prior to fixation, and then analyzed by EM either for morphology
after embedding in epon or for immuno-EM after indirect immunogold labeling of ultrathin cryosections with antibodies to HA, HRP, and/or TGN46.

HeLa cells transfected with C312(Y2187A) displayed a relatively normal morphology, similar to untransfected cells, with intact, flattened pericentriolar Golgi cisternae (Fig. 8a). Cells transfected with C312 were more heterogeneous, but displayed general defects in Golgi morphology. Intact Golgi cisternae were difficult to find in most C312-expressing cells. They were replaced by large, pericentriolar vacuolated structures (Fig. 8b,c). The vacuoles varied in number, reflecting an apparent proliferation of Golgi/TGN rather than simply engorged cisternae. The structures often displaced a large fraction of the cytoplasm, and some of the vacuoles contained internal membrane sheets. Multivesicular endosomes (mve) were also more abundant in cells expressing C312 than those expressing C312(Y2187A) (e.g., see Fig. 8c). These data indicate that GRIP domain overexpression results in a large scale disruption of Golgi/TGN architecture and alterations in the abundance of late endosomes.

Fig. 6. GRIP domain overexpression affects Golgi to plasma membrane transport. HeLa cells were transiently transfected with expression vectors for VSV-G-EGFP (2.5 μg/six-well dish) and either vector alone (a-c'), C312(Y2187A) (d-f') or C312 (g-k') at 5μg/six-well dish. Cells were grown at 39°C for 1 day and then fixed either before (a,d,g) or after shifting to 32°C for the indicated times. Cells were analyzed by fluorescence microscopy after immunostaining with anti-HA and RRX-conjugated secondary antibodies (' panels); EGFP was visualized directly (non-' panels). (g-k') Examples of cells with similar anti-HA staining intensities to those shown in d-f'; (l-l') an example of a cell with low C312 expression, and (m,m') an example of a cell with very high C312 expression. All ' panels were taken at the same exposure time on samples prepared and analyzed on the same day. The 'spotty' appearance of VSV-G-EGFP localization in a, d and g may result from a fixation artifact.
Fig. 7. GRIP domain overexpression affects proprotein convertase activity on a substrate protein, Pmel17. (a) Schematic diagram of Pmel17 primary structure and processed forms, as shown by Berson et al. (Berson et al., 2001). (b) HeLa cells were transiently transfected with expression vectors for Pmel17 (10 μg/10 cm dish) and either vector alone (lanes 1-4), C312 (lanes 5-8) or C312(Y2187A) (lanes 9-12) at 39 μg/10 cm dish. Two days post-transfection cells were harvested and pulse labeled with [35S]methionine/cysteine for 30 minutes, and then chased for the indicated times. Pmel17 was immunoprecipitated from cell lysates at each time point, fractionated by SDS-PAGE, and visualized by phosphorimaging analysis. (c) Anti-HA immunoprecipitates from the same samples analyzed in the same way. Only the relevant portion of the gel encompassing C312 or C312(Y2187A) transgene products is shown.

Immuno-EM analyses (Fig. 9) revealed the basis for the phenotypes observed by IFM. In cells expressing high levels of C312(Y2187A), TGN46 was localized as expected to cisternae and tubulovesicular structures at the trans side of the Golgi stack (Fig. 9A). A similar pattern was observed in cells expressing low levels of C312, in which TGN46 and C312 were colocalized in these structures (unpublished data). In cells expressing high levels of C312, however, TGN46 was instead detected primarily in two types of membrane compartments.

Fig. 8. GRIP domain overexpression disrupts Golgi morphology. HeLa cells transfected with expression vectors for Tac and for (A) C312(Y2187A) or (B, C) C312 were sorted for Tac cell surface staining, exposed to HRP for 15-30 minutes at 37°C, and then fixed and embedded in epon for conventional EM analyses. Note the flattened stacks of Golgi complex (Gc) cisternae in A and their absence in B and C. m, mitochondrion; n, nucleolus. In C, stars are placed next to multivesicular bodies, which were abnormally abundant in most profiles from C312-transfected cells. Bars, 0.1 μm.
One type comprised large vacuolated structures with few internal membranes (Fig. 9B,C), probably corresponding to those observed by conventional EM (Fig. 8). These structures were labeled abundantly on the cytoplasmic face by anti-HA antibodies detecting the C312 transgene (anti-HA labeling was also observed throughout the cytoplasm and in large, electron dense inclusions; unpublished data). The second class of compartments comprised multivesicular structures with numerous intraluminal vesicles (Fig. 9D-F). These structures were mve, since they were also labeled by HRP following internalization for 15 or 30 min (Fig. 9E,F). TGN46 labeling in mve was found both on the limiting and intraluminal membranes, suggesting targeting for degradation in lysosomes. Since TGN46 normally bypasses the mve and trafficks through recycling endosomes en route to the TGN (Ghosh et al., 1998), these data suggest that GRIP domain overexpression results in TGN46 mistargeting to both late endocytic organelles and enlarged, vacuolated Golgi-derived structures, thus interfering with the normal delivery of TGN46 from the endocytic pathway to the TGN.

Discussion

Mammalian GRIP protein function has remained undefined, and a role for the yeast GRIP protein, lhm1p, in Golgi maintenance is inferred only from indirect genetic interactions. We have shown that overexpression of isolated GRIP domains in cultured mammalian cells results in specific disruption of TGN morphology, protein localization and function. The data provide evidence that at least one GRIP protein and/or GRIP ligand functions in TGN maintenance, probably by regulating recycling from endosomes.

Specificity of GRIP-domain-dependent disruption of vesicular transport

The displacement of endogenous GRIP proteins by expression of increasing doses of exogenous GRIP domains had been shown previously (Kjer-Nielsen et al., 1999a; Kjer-Nielsen et al., 1999b), but this is the first report to describe a concomitant...

Fig. 9. TGN46 localizes to vacuoles and to multivesicular bodies in C312-overexpressing cells. HeLa cells transfected with expression vectors for Tac and for (A) C312(Y2187A) or (B-F) C312 were sorted for Tac cell surface staining. Positive cells were exposed to HRP for 15-30 minutes at 37°C, then fixed, and ultrathin cryosections were labeled with antibodies to HA, TGN46 and or HRP and gold-conjugated secondary antibodies for immuno-EM analyses. (A-C) Sections were labeled with anti-HA and 10 nm gold-conjugated anti-mouse immunoglobulin, and anti-TGN46 and 5 nm gold-conjugated anti-sheep immunoglobulin. Arrowheads in B and C point to 5 nm gold particles. Note the labeling of the trans face of the Golgi complex by both anti-HA and anti-TGN46 in A, and the dense labeling of vacuoles with anti-HA in B and C. These examples show TGN46 in the vacuolated structures. (D-F) Sections were labeled with anti-HRP and 10 nm gold-conjugated anti-rabbit immunoglobulin, and anti-TGN46 and 5 nm gold-conjugated anti-sheep immunoglobulin. Arrowheads point to 5 nm gold particles (TGN46) in multivesicular endosomes (mve) that are also labeled by anti-HRP (10 nm gold). Bars, 0.1 μm.
redistribution of all TGN resident proteins. That TGN disruption required a functional GRIP domain was confirmed by (1) induction of a similar phenotype by hyper-expression of all GRIP-domain containing fragments of tGolgin-1 and golgin-97, (2) the inactivity of N-terminal tGolgin-1 fragments that lack the GRIP domain, and (3) the inactivity of a tGolgin-1 GRIP domain fragment with a mutation in the critical tyrosine residue. The innate instability of C-terminal fragments of tGolgin-1 (see Figs 4, 7) and the requirement for high level expression of GRIP domain-containing fragments to disrupt TGN localization may explain why this phenotype was not previously noted. Although TGN homeostasis was affected by overexpression of both tGolgin-1 and golgin-97 GRIP domains, subtle differences in the IFM staining pattern of the residual TGN and in the effects on some Golgi stack residents suggest some specificity in the function of individual GRIP domains.

With few exceptions, the disrupting effects of GRIP domain overexpression were limited to the TGN, with the strongest effects on TGN46 distribution. The effects did not extend to other organelles, consistent with the localization of GRIP proteins to the TGN (Brown et al., 2001; Gleeson et al., 1996; Luke et al., 2003). Effects on the Golgi stack were mixed. The distribution of most Golgi resident proteins by IFM was unaltered in GRIP overexpressing cells relative to controls, and Golgi function was largely unaffected based on the pericentriolar accumulation of ER-released VSVG-G and on the largely unchanged kinetics of acquisition of Golgi modifications to Pmel17. Other effects on the Golgi may have been secondary to TGN disruption, perhaps as a consequence of cycling of stack residents through the TGN (Johnston et al., 1994). Two Golgi stack residents that also localize to the TGN (Martinez et al., 1994; Rabouille et al., 1995), GalT and Rab6, were redistributed in only a fraction of cells that expressed GRIP domain fragments at a threshold level sufficient to disrupt TGN46 distribution and not in a manner that correlated with the expression level of GRIP. The failure to observe characteristic Golgi stacks by EM in cells overexpressing GRIP domains was probably because they were obscured by the bloated TGN membranes and/or because of slight Golgi cisternal dilution proximal to the centriole. Finally, the redistribution of the early Golgi v-SNARE, Gs28, in cells overexpressing the tGolgin-1-derived C312 (unpublished data) may, as for Rab6 and GaIT, reflect a more general distribution of this vSNARE throughout the Golgi and TGN (Nagahama et al., 1996).

How might TGN dynamics be disrupted by GRIP domain overexpression? The expansion of membrane observed by EM and the failure to sort VSVG-G from the Golgi to the plasma membrane suggest a defect in TGN export, consistent with in vitro budding of tGolgin-1-bound membranes from purified Golgi stacks (Gleeson et al., 1996). However, disrupted Golgi export is probably a secondary consequence of a primary failure to properly localize TGN resident proteins for several reasons. First, defective TGN export would not explain the redistribution of TGN resident proteins to peripheral structures. Second, this redistribution occurred at GRIP expression levels similar to those required to displace tGolgin-1 from the Golgi, suggesting that TGN46 mislocalization was a primary effect of competition for GRIP domain binding sites. Third, TGN46 was largely mislocalized to endosomes, from which TGN46 is normally recycled to the TGN (Ghosh et al., 1998; Mallet and Maxfield, 1999). We thus favor the interpretation that competition for GRIP domain binding sites interferes with the recycling of TGN46 from endosomes to the TGN (Fig. 10). The secretory defect could then result secondarily from the depletion of factors from the TGN that follow a similar recycling pathway and that are required for subsequent budding of plasma membrane-bound cargo, such as cargo recruitment proteins (Rojo et al., 1997) or v-SNAREs (Gurunathan et al., 2000; Salem et al., 1998; Springer and Schekman, 1998) (Fig. 10). Displacement of TGN resident proteins that follow a different recycling pathway, such as GalT and furin, might also be secondary to changes in TGN architecture. This model would explain why we did not observe redistribution of endosomal residents (Table 1), which rely on distinct cargo recruitment proteins and SNAREs with distinct recycling pathways. Our model predicts that only the post-endocytic endosome-to-TGN recycling step would be blocked by GRIP domain overexpression, consistent with qualitative assessments that failed to detect defects in internalization, recycling, and late endocytic delivery of several internalized cargo proteins (unpublished data).

Potential mechanisms of TGN disruption by GRIP domain overexpression

What might be the molecular basis for the effects of GRIP domain overexpression? One potential explanation is competitive displacement from GRIP domain binding sites of endogenous GRIP proteins that are required for TGN maintenance. The GRIP proteins may play a direct role in maintaining TGN homeostasis, or serve as regulators of an effector (or effectors) of TGN maintenance such that overexpression of the GRIP domain would saturate
binding sites and block effector function. The structural similarity of GRIP proteins to tethering factors involved in membrane fusion events at other sites within the secretory and endosomal system (reviewed by Pfeffer, 1996; Pfeffer, 1999) or to components of the ‘Golgi matrix’ required for stacking Golgi cisternae (Warren and Shorter, 2002) would be consistent with such a function. A second potential explanation for the effects is that overexpressed GRIP domains sequester GRIP domain ligands that function in TGN maintenance. Such ligands may interact with additional effectors, and thus their sequestration by excess GRIP domains could block functions in which GRIP proteins are not directly involved. The best candidate for such a ligand is Ar11. GTP-bound Ar11 associates with GRIP domains and other effectors in vitro (Lu et al., 2001; Panic et al., 2003; Setty et al., 2003; Van Valkenburgh et al., 2001) and in yeast is required for GRIP protein recruitment to the TGN (Panic et al., 2003; Setty et al., 2003). Moreover, the vacuolization of the Golgi and TGN observed here is similar to that observed upon overexpression of a predicted GTP-locked form of Ar11 (Lu et al., 2001; Van Valkenburgh et al., 2001), and another putative Ar11 effector in yeast, the VFT complex (Panic et al., 2003), has been implicated in regulating recycling from endosomes to the TGN (Siniossoglou et al., 2001; Siniossoglou et al., 2002). Another candidate GRIP ligand Rab6 (Barr, 1999), is a known effector of endosome to TGN recycling (Mallard et al., 2002) but less likely to be responsible for the observed phenotype; a GTP-locked form of Rab6 induces TGN46 redistribution (Martinez et al., 1994), but only at extremely high levels of expression and the effect is phenotypically distinct from that induced by GRIP overexpression (unpublished data). GRIP domains might also conceivably sequester lipid ligands, such as phosphatidylinositol phosphates which are known to regulate the morphology and function of the TGN and Golgi (Godi et al., 1999; Munro, 1998). Biochemical analyses of GRIP domain binding to Golgi membranes should help to identify potential GRIP effectors and the mechanism of GRIP overexpression-induced TGN disruption.

The authors wish to thank Sean Jordan for technical support, B. Wendland, C. Machamer and C. G. Burd for critical review of the manuscript, M. I. Greene for support of D.M.G., S. Munro, M. A. Lemmon and C. G. Burd for helpful discussions, H. Pletcher for help with cell sorting, and all of the investigators who graciously sent us reagents, particularly E. Berger, J. S. Bonifacino, T. Braulke, E. K. L. Chan, M. Fritzler, M. Fukuda, N. Gonatas, H.-P. Hauri, W. Hong, L. Johannes, J. Lippincott-Schwartz, F. Maxfield, K. Moremen, S. Munro and V. Ponnambalam. This work was primarily supported by American Cancer Society Research Project Grant RPG-00-238-01-CSM to M.S.M. and by National Science Foundation grant NSF-DBi-0099706 to J.M.M. A.Y. was supported in part by grant DAMB1-01-01-0365 from the US Dept of the Army. S.S. was partly supported by training grant 5 T32 CA 09140 from the National Cancer Institute. D.M.G. was supported by grants from the Lucille P. Markey Charitable Trust and the National Multiple Sclerosis Society.

References

Gurunathan, S., Chapman-Shinmoto, D., Trukovic, S. and Gerst, J. E.
GRIP domain proteins and TGN homeostasis

The 76th Annual Meeting of the Japanese Biochemical Society ('03)

Characterization of the function of TGN-localized peripheral membrane protein, tGolgin-1.

Authors: *Atsuko Yoshino* (1) J.Michael McCaffery (2) Michael S Marks (1)

Abstract:

tGolgin-1 (also known as trans golgi p230) is a large Golgi-associated peripheral membrane protein of unknown function. Here, we report the effect of specific gene silencing of tGolgin-1 using RNA interference (RNAi) in cultured cells. Upon transfection of HeLa cells with siRNA duplexes, the expression of tGolgin-1 was drastically reduced as assessed by immunofluorescence microscopy (IFM) and immunoblotting. Interestingly, the distribution of the Golgi and TGN was disrupted by gene silencing of tGolgin-1, resulting in the loss of a pericentriolar ribbon and the appearance of punctate, dispersed structures, which were localized in close proximity to ER exit sites and retained the characteristic cis/ trans polarity of the Golgi complex. This phenotype is similar to that observed in cells either in which microtubules are disrupted by nocodazole-treatment or in which dynein/ dynactin function is disturbed by dynamitin-overexpression. Importantly, microtubules remain intact in RNAi cells, and the peripheral Golgi-like structures align along the microtubules. These data suggest that tGolgin-1 is required for minus-end-directed motility of Golgi elements along microtubules and thus to maintain Golgi/TGN structure in close proximity to the MTOC. Now we further examine the vesicular motility in living cells.

(1320 bytes)