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ABSTRACT

This work adds new functionality to an existing visual programming environment.
It applies software maintenance techniques for use with the Java Language in a Microsoft
Windows operating system environment. The previously undocumented application is
intended to support programming with executable diagrams. This application has the
potential to expand programming access to non-programmers, provide better software
documentation and improve software maintainability. It is currently capable of
supporting meta-programming tasks such as parsing and compiler building. The 11,184
legacy lines of code(LOC) were corrected, extended and documented to support future

maintenance using an additional 957 LOC and changes to 45 LOC.
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l. INTRODUCTION

A. BACKGROUND

It is commonly acknowledged that even well commented code is not always easy
to understand. An investment of time is required to understand even simple
programming structure. As a result, supporting documentation has become part of
deliverable software. Graphical techniques have been developed to better express
program design and function. Universal Modeling Language can be used to provide
additional information about program design at a glance. Visual programming offers a
pictorial paradigm for computer programming. This technique combines graphical
technique with formal language meaning to produce a type of executable diagram or
model. Several past examples of visual languages include Sun Microsystem’s Java
Studio, open source Prograph and National Instrument’s LabVIEW. It is likely the
explosion of personal computer (PC) users after graphical user interface (GUI)
introduction may have a parallel in visual programming language usage. As this
technique matures toward mainstream acceptance, programming will become accessible
to a large part of the population.  Graphical techniques also have a well understood
application for education and would likely support visual programming languages in
classroom settings.
B. PURPOSE

This work is correction and extension of a GUI for a visual programming
language, more specifically a visual meta-programming language[1l], that provides
visualization of control and data flow while introducing visualization of data structures.

The task was to add new functionality and fix known errors in an existing application.

The greater purpose is support of basic research in visual programming languages
by continuing the implementation VisualRigal (REE-gal), described below.

[Visual Programming Languages are] stimulated by the following

premises:

1. People, in general, prefer pictures over words.

2. Pictures are more powerful than words as a means of
communication. They can convey more meaning in a more concise unit of
expression.



3. Pictures do not have the language barriers that natural
languages have. They are understood by people regardless of what
language they speak.[2]

In practical terms this research supports the following:

e Greater access to programming for non-programmers, specifically

application domain experts or customers

e Generation of visual documentation concurrent with programming, the

diagrams are executable

e Improved communication between distant parts of the development team

perhaps across primary languages

e More rapid understanding of program structure allowing focus on key
portions of application

As an example, a naval flight officer who programs can assist directly in
prototype development, improving the final products usefulness in combat and
significantly reducing the development time required.[3]

C. SCOPE, METHODOLOGY AND ASSUMPTIONS
1. Scope

a. Understanding of Current GUI Design

This work examines the existing design of the VisualRigal program,
which encompases 45 classes and approximately 10,000 lines of code. The goal is to
gather enough information to portray the program design with UML to enable further
maintenance and extension of the code.

b. Understanding of Current GUI Behavior

This work also examines high level behavior of the VisualRigal program.
The goal is to document sufficient understanding of the program behavior to support
future work and program use. Detailed program behavior is also documented for specific
areas of correction and extension.

C. Application of the Java Swing Classes to Extend and Correct
GUI Functionality

The work primary production is achieved through the application of Java
classes and language to correct desired behavior and support new functionality. Because
2



the Java language and individual Java Virtual Machines are evolving, there is no
expectation that this work represents a final solution. This belief is reinforced by the
history of the VisualRigal program outlined at the beginning of Chapter III.
2. Methodology
a. Comment Current Code and Discover Design
The intention of this work is to trace program execution enough to correct
and extend particular functionality. During this trace code comments will be developed
that support Sun’s Javadoc functionality. Additional comments have been developed to
answer the questions, “Why was this done?” and “Why was this technique used?” While
tracing execution, information discovered that contributes to an understanding of
program structure and design has been translated into UML descriptions
b. Develop Test Plan
As an understanding of design and program requirements emerges a test
plan will be developed that supports requirement fulfiliment and likely fault detection.
C. Extend Functionality
Functionality has been corrected and extended on a priority bases. A
successful change has been completed prior to coding additional changes. These changes
are prioritized based on customer requirements and best return on resource investment.
Best return is defined as greatest functionality increase for likely time invested.
d. Test with Progress
Testing has been done at the developer level while coding. Regression
testing of test cases and automated suites was also utilized.
e. Develop User’s Manual
A basic user’s manual has been created to outline operation and document
expected behavior of the program. It is included as an appendix.
f. Document Existing Design
The information collected starting with the first step of this work and
throughout is consolidated in a UML representation of program design.
3. Assumptions
Understanding of UML is required for a detailed understanding of program

design. Understanding of Java is required for a detailed understanding of code choices



and changes. However, a general understanding of the work is accessible to the average
college graduate.
D. THESIS ORGANIZATION

1. Chapter I: Introduction

Provides a brief overview of the background, purpose and method of this work.

2. Chapter I1: Background Information and Key Concept Review

Provides a brief history of visual programming and work leading to the current
work.

3. Chapter I11: Implementation of GUI

Provides an overview of code maintenance tools and techniques in a Java and MS
Windows environment. Additionally, provides a detailed description of program design
and this work’s corrections and extensions of the program code as well as the
implemented test plan.

4. Chapter 1V: Conclusion

Examines changes required as a result of testing, an assessment of the program
implementation, a review of the research questions and a discussion of likely future work
with comments on priorities.

5. Chapter V: Appendixes

Copies of documentation to supplement understanding of this work, to include:
original 1.0, commented original 1.1 and extended 2.0 application Java code, raw

Parasoft JTest Reports and user’s manual.



II. BACKGROUND INFORMATION AND KEY CONCEPT
REVIEW

A. SURVEY OF VISUAL PROGRAMMING

1. History

The beginning of modern visual programming languages is credited to Goldstine
and von Neumann’s work with flow charts.[4] This familiar paradigm indicates the
change of control as one follows the lines from node to node, and is more completely
called control flow charts. This sort of visual language is classified as a control flow
language.[5]

Further development has lead to a dataflow paradigm, popular in embedded
systems especially for space and communication applications.[6] Here the flow of data is
traced from node to node over the lines. If the node describes control decisions then a
combination of control flow and data flow is attained.[5] This two dimensional view is

the current state of the literature.

There is discussion of pure visual programming language, that is figures without
symbols. In this classification the mixing of diagrammatic elements with symbols, like
2>4, constitutes a hybrid language.[7] This view is consistent with current discussion
regarding the feasibility of model driven programming.[8] One criticism is that at some
level coding is required. This does not have to be a disadvantage. If a technique
provides general understanding at a glance and allows the reader to focus on those areas
of interest quickly to determine perhaps conditional boundaries, it has achieved

usefulness.

Spreadsheets are an example of a hybrid language.[5] There is information
contained in the representation of row and columns but no one would consider using a
spreadsheet without using the available symbols. Graphical representations should be

used where they make sense.

GUI component libraries, filled with buttons and selection tools, appear to be

moving toward standardization and are an example of a specialized hybrid language.[5]



Graphical techniques used to describe the Boolean expression above are cumbersome and
cannot compete with the simplicity of basic mathematical expression.

2. Benefits

The increased accessibility of programming has already been discussed as a
potential advantage for visual languages. However, the professional could benefit from
the creation of accessible documentation at the same time they are building the program.
If an application is built of executable diagrams, the visual code can help serve as a
reference for future maintenance and current turnover on a project.

3. Risks

As with any language there is uncertainty concerning the relationship between
what is coded and what is compiled. There is an implied contract that written code will
execute with fidelity to written structure. Likewise, there is an expectation that the
execution described in a diagram will perform consistent to the graphical representation.
I call this expectation for equivalence between the graphical and logical representation
the equivalence contract.

If visual programming becomes mainstream, how will vision impaired
programmers work? Graphical methods are the darling of the majority. Are there
interface options to support the vision minority? Will these options support the click and
drag GUI paradigm? This work does not address these questions but points out the
implications here.

B. VISUAL META-PROGRAMMING LANGUAGE

1. Intended Use

A graphical extension of the University of Latvia’s RIGAL, a textual meta-
programming language, VisualRigal is a domain specific language with graphical
techniques that can be applied to a general programming visual language. It is
considered a visual meta-programming language. That is, it is a programming language
for manipulating and describing programming languages. Common applications for this

type of language are compilers and parsers.[1]



It is this application of the language that provides a look at VisualRigal’s new
paradigm, visualization of data structure. VisualRigal provides control flow and data
flow, as is now common, but introduces a simple graphical syntax for describing atomic

data, lists and tree structures.

VisualRigal is composed of a GUI, a parser and a compiler. The compiler and
parser are already fully implemented. The current work is the maintenance and extension
of the GUI which produces a text file interface for the parsers consumption. Parser
output is compiled and is then executable.

2. Icons

The language is fully described in the reference but a low level description of the

major icons follow.
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Figure 1. Sample Application Screen with Some Elements Present

a. Port

A junction box for data. Ports on the left of an object are input ports that
is data enters the icon through that port. Ports on the right of an object are output ports.
This convention of in or out is muddled when referencing connectors since data flows out
of a diagram “input” port and into the connector. The filled in port on the lower right of

an icon is a fail port whose use is optional.
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Figure 2. Large Arrows with Dashed Ends Point to Port Icons

b. Connector
A data pipe which allows only one data element at a time.
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Figure 3.  Connector Icon

C. Stream
A data pipe which allows a continuous flow of data, as in UNIX pipes.
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Figure 4.  Stream Icon

d. Switch

A conditional or if-then statement. Uses a train track switch metaphor to
depict data-flow based on truth of Boolean statement contained in the icon. As with all
elements, can have 1 to many ports. All three port-sides of a switch have the same
number of ports. All data entering the left side of the switch is available at the right side

ports if the statement is true, or available at the bottom ports if the statement is false.
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Figure 7. Data Flow If a>b is False

e. Data Box

Icon to input data into data pipe. May also hold a C type operator, +, *,
++, etc. and perform primitive mathematics using these symbols. In the example below,
the smaller data box outputs the integer 5 on the first output port, while the larger outputs

the sum of the two input values on the second output port.
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Figure 8.  Data Box Icons

f. Nested Data Box
Represents the building block of a data structure. The structure can be
passed through a data pipe connected to the outer Box. Can be used to assemble lists and

trees. Provides visualization of data structure.
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h. Nested Pattern Box
Used to deconstruct the data structures assembled in the Nested Data

Boxes. Provides visualization of data structure.
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Figure 11.  Nested Pattern Boxes Showing 2 Part Data Structure

i Diagram Call

Allows reuse of diagram for subroutines or recursion.
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Figure 13.  Fork Icon
K. Merge

Merges data streams into single stream
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l. Alternative Pattern

Used for pattern matching in support of parsing, similar to a switch
statement. Starts looking for a pattern match at the top port. The first port with a
successful match consumes the input and moves control along the route defined by the
pattern matched. The example in the second figure will take an input stream and send the
data following an integer to the first ouput port, following a rational number to the second

ouput port and anything else to the fail port.
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Figure 16.  Parsing Usage of an Alternative Pattern

3. Application Examples
Examples are provided in the following figures. The first four define factorial
functions, taking an integer input N and producing an integer N!. The first figure shows a
18



recursive function demonstrating the ability of VisualRigal to describe recursive
functions. The second figure is an equivalent GUI diagram. Note the use of a single port
switch and data boxes with a mathematical operator in each figure. The third is an
equivalent iterative solution. This is followed by another GUI equivalent. The structure
of the diagram suggests the existence of parallelism in the program structure. This

additional information about the program comes with the visual representation.

#factorial: int = int

I
[
h 4

[— nN<=t

#factorial

Figure 17. Recursive Factorial Example After [8]
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#Ffactorral: Int -> Int

Figure 19. Iterative Factorial Example After [8]
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The next diagrams demonstrate the visibility of data structure in VisualRigal. The
first constructs a eational number data structure out of two input integers. The next figure
takes two such data structures and adds them correctly. In this addition figure the
simpiler path is when the denominators are equal. This path is represented by the top half
of the diagram and is very easy to follow. The second case is the lower path, when the
denominators are not equal. The diagram is harder to follow at this point giving a good
indication of the complexity of the logic involved. We instinctively recognize the
potential confusion at this point of the program. We are focused at a point in the routine
that needs carful attention to correctness or is a likely source of a fault.

& Dukd Ratiomal hamber o x|
File Edit Tools Helo

Figure 21. Function to Build Rational Number Data Structure
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1. IMPLEMENTATION OF GUI

A. GUI HISTORY

The VisualRigal GUI was originally implemented by Mr. Abu Islam in 2002. Mr.
Islam is a professional programmer who’s work was proceeding nicely when a new java
release disabled the save and restore feature of the GUI. Mr. Islam was unable to detect
the new fault in his implementation before his time was over. His effort did produce a

workable design implementation with over 10,000 lines of code.

The code indicates an experienced Java programmer using advanced techniques
supported by the Java Swing and AWT classes. His use of self commenting code is
generally excellent, providing signposts for the traveler who follows him. The code does
not support standard Javadoc comments, creating difficulty when trying to maintain or
extend this application.

B. CODE READING TOOLS USED

The main intent of the present work was production of a maintainable program
and feature extension. Finding the best tools for a particular task was never intended.
This represents the fastest way to progress at the given moment. With some exposure to
particular tools or work on a UNIX based system could undoubtedly provide a faster pace
of production. However, the methods listed here avoided a common project pitfall,
getting caught up in tools rather than production.

1. Package Search as a Grep Substitute

The first step toward understanding any program, without other documentation,
would be to start at the beginning. For a C-based language this means finding the main
method. There is a painful story concerning the search through the 45 program classes
that will not be related further. In any event, the preferred method for this phase is a
search over all files for the main signature. This can be accomplished with an IDE path
search or MS Windows search utility. This technique is simply the equivalent of an
UNIX grep command.

2. Javadoc

Javadoc, when properly supported by well commented code, can be an excellent
documentation resource. Javadoc is, however, dependent on the quality of comments and
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transparency of method and class naming. If the class containing the main method does
not identify itself with this fact, “ApplicationMain” for example, a tedious search
situation ensues. The main method will be listed with the methods of one of the classes

in an operational java program, but which one?

There is less text to search through in this case. The standard formatting of
Javadoc even makes it obvious where to look, in the methods section alphabetically
listed. But must the author once again open each classes Javadoc hoping to get lucky?

Additionally, he do not know how to search HTML pages.

The Javadoc hierarchy is of some utility, showing inheritance by indentation.
Assuming that main will be found in a top level class there were still 32 classes to search
with this rule in mind. Not a promising start to a work in understanding approximately
10,000 lines of code. The author’s solution is presented below under New Code
Implementation.

3. Simple UML Tool

BlueJ is an open source Java IDE design for use by students during there first
exposure to Java. One of its features is the representation of all classes in the target file
in UML form. BlueJ shows inheritance relationships and class uses. Though not a
complete UML representation of the code, the class uses provide additional information

the Javadoc inheritance structure does not.
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Figure 23.  Three Screens of UML Depiction From BlueJ.
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There are negative side-effects to BlueJ’s use for this purpose. Bluel explicitly
removes package statements from Java packages. This change makes the code unusable

for IDEs requiring packages.

BlueJ also adds an additional file to the folder. BlueJ opens to the same state at
which it was exited. This additional file probably records this state. In any event, this
file is not recognized by other IDEs making it more of a benign side effect than anything

else.

The UML diagram presented by BlueJ must be formatted by hand. There is no
provision for the “pretty printing” of this information nor printing. Thanks to the state
saving feature, once laid out for readability the work is done provided you maintain the
particular file that was formatted. Since you cannot normally use BlueJ and another IDE
on the same package this reformatting can become tedious.

4. Code Tracing for Understanding by Following Instantiations and
Events

Once the main method is located a traditional hand-trace of the code can begin.
There are likely as many techniques for code tracing by hand as there are code tracers.
The author has, in the past, used a trace utility to print out the code line reference number
as it executes. This can be a useful tool for debugging spaghetti code, but it was found

unnecessary for this event oriented program.

The author’s tracing method is presented here for illustration of the maintenance
process, working from a printout of the class containing the main method and tracing
through a print out of any instantiated code as necessary. It is his habit to annotate with
pencil, his notions of code purpose as he goes. In fact, these notes became the comments
to document the code. In this manner these hard copies immediately become usable
documentation for the code and commenting the code becomes a typing exercise, perfect

for one’s less cognitive periods.

Examination of classes as they instantiate develops an understanding of program
state at a given moment. In the case of an event driven program, these classes are likely
to contain the event driven methods allowing focus on a relatively small subset of the

code for initial understanding and maintenance. As Spinellis says, don’t try to
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understand all of the code, only that portion effected by the proposed change.[10] The
execution must be followed until a steady state is reached. Specifically the end of the
main method or event driven methods may be overlooked in a program with multiple

active event listeners, as is the case here.

At this point correction and extension of the code can begin. Once the event
listeners are identified and their related event methods found, the program must be traced
in terms of response to events. It is now time to examine particular behavior that is
incorrect by tracing from the event method to completion, presumably another steady
state awaiting the next event. If extension of the code is the current goal, the initiating
event must be traced unless it has no legacy use. When the new program behavior is
initiated by an event method not previously used the trace is unnecessary. If this
initiating event is currently used, a mouse click for example, the event should be traced to
completion in order to determine where the new behavior would be best inserted.

5. Assessing Method Invocation

Once it is determined that an existing method must be modified, it is necessary to
asses the impact of the change. Are there unintended side-effects from this change? Will
legacy use of this method provide the expected response? A first step towards answering

these questions is to examine all uses of this method.

A package search for the first part of the method signature, “methodName(“ can
provide a list of method invocation occurrences. Heavy use of overloaded methods for
polymorphic purposes can increase the complexity of this method. In such a case a more
elaborate tool may be needed, one that can associate parameter and variable types to
completely define the method signature.

6. IDE Method List

Both IDEs used, NetBeans and JBuilder 5.0, have a window that alphabetically
lists the methods of the class currently selected. This window can be useful for quickly
locating a class method. By selecting the method name in this window, the code listing
displays the portion of code beginning with the first line of the method listing. There are

some disadvantages to this technique.
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The methods may be listed alphabetically by access type along with variables and
other foundational information about the class. If this is the case, there may be a delay in
realizing you are looking in the wrong access type list for your method of interest.
Private methods were hard to find listed at the end with public methods listed at the
beginning and variables listed in between.

This list does not provide any information about method inheritance. If a method
is defined higher in the class inheritance hierarchy you may be better off using a package

search to find this method.
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C. DESIGN DOCUMENTATION
A requirements analysis of this application was conducted producing an expected

program design prior to code examination, shown below.

Program
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2
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DataObjectPattern
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ConnectorNode
L~
Female

Figure 24.  Expected Program Design Based on Requirements Analysis From Appendix D
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Examination of the code has produced an understanding of the actual design
implementation shown below. Note the grouping of classes by dashed and solid boxes:
Constants, Utility Classes and Unused Code. The unused code is thought to containe
classes that were original experiments for current element classes and unfinished work on

classes that could become elements if the work was finished.
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Figure 25.  Actual Design of VisualRigal based on Code Examination
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Extension of the code by the ElementStream and ElementAltPattern classes has

produced the following modified design.

ElementConnector ElementStream

ElementFork ElementAltPattern

<

Figure 26.  Thesis Class Extensions

D. NEW CODE IMPLEMENTATION

1. Finding Where to Begin

With all of the tools discussed available, except the package search or grep
equivalent, getting started was the most daunting part of the task. With the intention of
limiting the amount of random search, the author used the BlueJ UML diagram to begin
manually sorting the classes. Classes without inheritance where set off in a separate
group, per figures 1-3. There emerged 3 inheritance trees rooted in the following:
RigalFrame, ElementContainer and Element. None of these roots contained main() and
their children where unlikely to, so some of the classes were eliminated from the search.
At this point the Application class stood out as having no indicated uses. That is no other
class referenced Application as witnessed by the lack of use arrow heads. Problem
solved, Application class cont