‘ DRAESTANTIA PER SCIENT 44 ,

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

CODE MAINTENANCE AND DESIGN FOR A VISUAL
PROGRAMMING LANGUAGE GRAPHICAL USER
INTERFACE

by
Graham C. Pierson

September 2004

Thesis Advisor: Mikhail Auguston
Second Reader: Scott Coté

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Sept 2004 Master’s Thesis

4. TITLE AND SUBTITLE: Code Maintenance and Design for a | - FUNDING NUMBERS
Visual Programming Language Graphical User Interface
6. AUTHOR(S) Graham Pierson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE A
Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 words)

This work adds new functionality to an existing visual programming environment. It applies software maintenance
techniques for use with the Java Language in a Microsoft Windows operating system environment. The previously
undocumented application is intended to support programming with executable diagrams. This application has the potential to
expand programming access to non-programmers, provide better software documentation and improve software
maintainability. It is currently capable of supporting meta-programming tasks such as parsing and compiler building. The
11,184 legacy lines of code(LOC) were corrected, extended and documented to support future maintenance using an additional
957 LOC and changes to 45 LOC.

14. SUBJECT TERMS Code Maintenance, VPL, Visual Programming Language, Software | 15. NUMBER OF
Engineering, VisualRigal, Rigal, Graphical User Interface, Meta-programming, Code | PAGES
reading, notSerializableException, Software Design 179
16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

CODE MAINTENANCE AND DESIGN FOR A VISUAL PROGRAMMING
LANGUAGE GRAPHICAL USER INTERFACE

Graham C. Pierson
Major, United States Marine Corps
B.S., University of Puget Sound, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 2004
Author: Graham Pierson
Approved by: Mikail Auguston
Thesis Advisor

Scott Coté
Second Reader

Peter Denning
Chairman, Department of Computer Science

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

This work adds new functionality to an existing visual programming environment.
It applies software maintenance techniques for use with the Java Language in a Microsoft
Windows operating system environment. The previously undocumented application is
intended to support programming with executable diagrams. This application has the
potential to expand programming access to non-programmers, provide better software
documentation and improve software maintainability. It is currently capable of
supporting meta-programming tasks such as parsing and compiler building. The 11,184
legacy lines of code(LOC) were corrected, extended and documented to support future

maintenance using an additional 957 LOC and changes to 45 LOC.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUGCTION. ...ttt sttt sb bbb eneas 1
A BACKGROUND ..ottt sttt naenaeneas 1
B. PURPOSE ...ttt bbbt 1
C. SCOPE, METHODOLOGY AND ASSUMPTIONSccoovvviiiiernienen, 2
1. Tol0] o T PSP OT R PPRP 2
a. Understanding of Current GUI DesSign........cccccevvrieieenienenne 2
b. Understanding of Current GUI Behaviorcc.ccccovevivenne. 2
C. Application of the Java Swing Classes to Extend and
Correct GUI Functionalityccccccoviveveiieiieic e 2
2. AV 1= 4 pTo o (o] (o]0 VARSI URTRPRURPRS 3
a. Comment Current Code and Discover Design.............ccceeveuene 3
b. Develop TeSt Plan........ccooieiiiieeceee e 3
C. Extend Functionalityccoccevvevieiicie e 3
d. TeSt WIth Progress.....ccvoieeieiieiiee e 3
e. Develop User’s Manualccccooveveiieveeie e 3
f. Document EXiSting DeSIgNccoovveieiieienieniene e 3
3. ASSUMPLIONS ...ttt s esraenae e e sreenee s 3
D. THESIS ORGANIZATIONooiiiiiiiece ettt 4
1. Chapter 12 INtroduCtioN..........coov e 4
2 Chapter 11: Background Information and Key Concept Review....4
3 Chapter I11: Implementation of GUIccccccoeviieiiieni e 4
4, Chapter 1V: CONCIUSIONcooviiiiiieeie e 4
5. Chapter V: APPENAIXESccveiueiiiiieeiie e s esie e se e 4
BACKGROUND INFORMATION AND KEY CONCEPT REVIEW................... 5
A. SURVEY OF VISUAL PROGRAMMING.ccccoiiiiiieiine e, 5
1. HISTOMY .. e et 5
2. BENETITS ... 6
3. RISKS s 6
B. VISUAL META-PROGRAMMING LANGUAGE........ccooniiiiiiiiiiine 6
1. INTENAEA USE ...t et 6
2. FCOMS . 7
a. PO 7
b. CONNECION ... 8
C. SEFAIM. ...t 9
d. SWITCR o 10
e. DAt BOX....coiiieiiiieiiie et 12
f. Nested Data BOX.........ccoveiriieiinieiesiesiesieeieie e 13
g. Pattern BOX......cccviiiiiiiiic it 14
h. Nested Pattern BOX........coovieiiineiesiniseeeee e 15
I. Diagram Call ... 15
J. FFOTK e 16

K. T T OSSR 16

l. Alternative Pattern ... 17
3. ApPlication EXamMPIES........ccooiiiiiiie s 18
IMPLEMENTATION OF GUI ..coiiiiii et 25
A. GUI HISTORY ..ottt bbb 25
B. CODE READING TOOLS USED......cccooiiiiiiisiesieeeeeeriese e 25
1 Package Search as a Grep Substitute............cccooeviviieviiese e 25
2. N F- Y72 o (o oSSR 25
3. SIMPIE UML TOOL.....ciiiiiiee et 26
4 Code Tracing for Understanding by Following Instantiations
AN EVENTS. ..ot 28
5. Assessing Method INVOCatIoN..........ccoveiiriinienee e 29
6. IDE MEethod LStc..ooviiiiiiiiiiiieieeee s 29
C. DESIGN DOCUMENTATION ...cooiiiiiieieceeeseeee e 31
D. NEW CODE IMPLEMENTATIONccooiiiiiiiiiieeee e 33
1 Finding Where t0 Begin........cocoiiiiiiii e 33
2 Execution Path to Steady State Awaiting Eventccccccevenen. 33
3 Fix for 3 Compiler EXrOrs ... 35
4. Add Proper Nesting Output to Text Interfacec...cccecvveveivenenn. 36
5. Note on Nested Behaviors..........ccocoiiiiiieiiie e 42
6 Maintain Connections During Resizing of Data Boxes 42
7 Changes to Allow Saving with Restore as Implemented................ 48
8 Inconsistent Saves or EOF 0N OPeN.........cccoccvevvveeieeve e 49
0. Open With Title RESTOIe.......c.oiiiieiceee s 50
10. ClAN NBW ...t 53
11. RESTOIe SIGNATUIE.......coviiii i e 53
12. Showing Nesting with Progressive Thickeningccccocvvninnne 53
13, TWIlIght NESTING ...veeveiiccececece e 57
14, AdAING STrEAMS.....c.eiiiiiiiieiiieieee e 59
15. Adding Alternative Patterns..........ccccooevieieiie e 62
E. TEST PLAN oottt n et snenneenaans 64
1. ASSUMPLIONS ...ttt ra e 64
2. METNOAOIOGY ..o 64
a. Black BOX TESLING ...ccvveiviiieiieciece e 64
b. WHhite BOX TESINGciieiieiiieieiie e 64
F. TESTING RESULTS. ..ottt 64
1. Automated Test Results and COrrections..........ccoccevvvevveieesieenennnns 64
2. Manual TeSt RESUILScccveiiiiieiescresseee s 64
a. Deleted Nested Box Still Reported in Text File Interface64
b. Diagram Signature is Not Reported in Text File Interface...64
C. Resize of Elements Other Than Data Boxes Removes
CONNECLIONS...c.eiiiiticiieieee e 65
d. Unable to Change Number of Element Ports..............cccce..... 65
e. Diagram Element is Deleted While Adding Another............. 65
G. CORRECTIONS BASED ON TESTING BEHAVIOR..........ccccoovivinnene 65

viii

1. Corrections to Deleting Nested Box Behaviorcccccevevveenennee. 65
2. Correction to Have Diagram Signature Reported in Text File
INTEITACE ... s 67
3. Correction to Change number of Element Ports on Fork,
Merge and Alternative Pattern...........ccocveviiieniniiesese s 67
4, Correction to Prevent Diagram Element is Deletion While
Adding a Different EIement ... 68
IV. CONCLUSIONSottt ettt et et benne e 71
A. ASSESSMENT OF IMPLEMENTATIONccoiiiiiiieieeene s 71
1. SEFENQLNS ... s 71
a. Defacto Design is Similar to Design Produced by
Requirements ANalysSiS.........ccooiiiiieiiii e 71
b. Support of Equivalence Contract with Java Component
ADSEract INtErface.........coovveiiiii e 71
2. VVBAKINESSES ...ttt bbbttt bbb 71
a. Class Interfaces Not Fully Developed for Extension 71
3. Lacks DOCUMENTALIONccviiiieieiieiicrie s 72
B. LESSONS RELEARNEDccocoiiiiiieese e 72
1. Formal Design Improves Maintainabilityccccooevviiiiienne 72
2. Documented Code Improves Maintainabilitycccccoeennnen. 72
3. Understanding of Design and Requirements Improves
EXTENSION SOIUTIONS......oiiiiiiieie e 72
4. Object Oriented Design Improves Diagram to Interface Link......72
5. Some Testing is Better Than NONEccccevieiiiii i 73
6. Testing is Necessary to Expose Unexpected Behavior 73
C FUTURE WORK ..ottt 73
1. UPAAte COUE ... 73
2. Add New VisualRigal EIemMents..........ccccccvvvveieeieiiieiiece e 73
3. Adaptation of VisualRigal to the General Programming
0] 0= V[o ST P PRSI 73
LIST OF REFERENCESc oottt sttt naennaneas 75
APPENDIXES ...ttt bbb bbbttt n bbb benne s 77
A. TEST REPORT FOR TESTING PARASOFT MUST HAVE RULES ...77
B. CHANGES TO ORIGINAL CODE.......cccoctiitiiniiiieieiene e 80
C. VISUALRIGAL USER’S MANUALooviiitct e 122
D. REQUIREMENTS ANALYSIS ..ot 127
INTRODUGCTION. ...ttt ettt te e sa et et e saestestesneeneenaanes 131
PURPOSE OF THE SYSTEMociiiiiiiiiee e 131
SCOPE OF THE SYSTEMciiiiiiet sttt 131
DEFINITIONS, ACRONYMS AND ABBREVIATIONSccccooiiiiiiiienieien 131
REFERENGCES. ...ttt ettt st e e e 131
OVERVIEW ..ottt bbbttt bbbt 132
CURRENT SYSTEM ...ttt sttt snenneanaanaanaas 132

PROPOSED SYSTEMoiiiiiiii s 132

OVERVIEW ..ottt bbbt st sbe et e eneenes 132
FUNCTIONAL REQUIREMENTS ..ottt 132
Vision Statement EXCEIPLccoovvvieieiiesieee e 132

Vision Statement ANalYSISc.covvieiieie s 133

Lab Demonstration ANAlYSISc.ccoiveriinnieieie e 133
NONFUNCTIONAL REQUIREMENTS. ..ottt 133
4, IMPIEMENTALION ... 133
SYSTEM MODELS.......ooiiiiiieiet et 133
5. SCENAKIOS ...ttt sttt sttt sbe et reesbe e e 133
EAITEIEBMENT ... 134
OPEratEW/OMOUSE.c.viieiiiiieieeie sttt e 135
CreateTESINEST ... 135
deleteEIBMENTc.eeiee e 136
BUIACOMPONENT.......cciiiecie e 136
generateCodeErroneousDiagram..........cccoveeiereenenieeseeniesee e 139

6. USe CaSE MOMEL.......c.oiiiiiiiieeee s 139
FUNCOUE ...ttt r e e 140

STAMTPIOGIAM .. 140
diSplayCurrentNOUEooveieiieciecee e 140

[0 (o BT T To | o DU 140

SAVEDIAGIAM ...ttt 140
GENEIAtECOURot 140

ISPIAYETTON ..o e 141

T [0 [T o - Lo DS 142

CIEALE .oiiiiiii ettt e e nnre e 142

(1] 4TS 150

IMOVE oottt ettt ettt h et e b et e e e s b e et e e nn e e r e e nnn e e neennnas 150

AEIBTE e 153

7. ODbjJeCt MOMEL........oceeeiecee e 153

ENLItY ODJECTS .. s 154

Boundary ODJECES........ccoviiiiieiicc e 156

CONLrOl OBJECTS......eeviiiiieiieieie e 157

8. Dynamic Model.........c.cooveiiiiiiice e 159
CreateTestNest Sequence Diagramccooveeeereneneneneseseeeans 159
CreateDataNode Sequence Diagram..........cccccevveieiiieiiiesesieseennens 160
displayCurrentNode Sequence Diagram..........cccccoevervnencnnnnnnnen, 160

9. User interface- navigational paths and screen mock-ups............. 160
GLOSSARY ..ottt ettt ettt et et R R R Rt R e et et e tenreenenreeneeneanes 161
INITIAL DISTRIBUTION LIST .ottt 163

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11,
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21,
Figure 22.
Figure 23.
Figure 24.

Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32,
Figure 33.
Figure 34,
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.

LIST OF FIGURES

Sample Application Screen with Some Elements Present...........ccccoocvvereennene. 7
Large Arrows with Dashed Ends Point to Port ICONScccccvevveieeiecciecieene, 8
(0001 =Tot (o] g [0 o F U UP PR UPROTRRRR 9
SEEAM ICON ...t 10
SWITCH TCON .t e e e 11
Data FIOW [T @ D IS TIUE....ccviiiieieeee e 11
Data FIow 1T a>D IS FalSe......cooviieiieicc e 12
Data BOX ICONS........eiiiieiieiiee ettt 13
Creation of a Data Structure Using Nested Data Box 10Ncccccvevviiennenn 14
PAttern BOX ICONcooiiiiiiiii et 14
Nested Pattern Boxes Showing 2 Part Data Structureccccceveveveevvesnenenn 15
Diagram Call ICON........ccv i 16
] 1 oo USSR 16
Y [=T g0 T [T o TSR 17
AREINALIVE PALIEIN ..oviiiecicee et 18
Parsing Usage of an Alternative Patternccccoovvievi e 18
Recursive Factorial Example After [8] ..o 19
Recursive Factorial Example in GUI.........ccccoiieiiiic e 20
Iterative Factorial Example After [8].......ccoviiiiiiiiiiieeee e 21
Iterative Factorial Example in GULL..........ccooiiiiii i 22
Function to Build Rational Number Data Structureccocceecvveevverieseennnnn, 23
Function to Add Rational Number Data Structures..........cccocevvrenencsnnennnn 24
Three Screens of UML Depiction From BlueJ. ..., 27
Expected Program Design Based on Requirements Analysis From

APPENAIX D et 31
Actual Design of VisualRigal based on Code Examination...............cccceevu.... 32
Thesis Class EXIENSIONS.........ccuiiierieiiesieie et 33
Instantiation Order and Source with Location of Event Driven Methods 34
Improper Uses of Java Keyword “SUPEI™cooiirieieienenene e 35
Correction to Improper Use of Java Keyword “super”.........cccocvvvveviveveiieennnns 35
Sample of Graphically Nested Data BOXES...........cccovrereeiieienenenenesiseeeens 36
Text File Interface with Original Non-nested Behaviorccccccovveveennnee. 37
Original printText() Method with no Provision for Showing Nesting 38
New printText() Method Prints Root Boxes and Children Recursively.......... 39
New printNestText() Method Recursively Prints Child BOXesSc..cc....... 40
New printTabs() Method...........c.coiiiiiiiiicc e 40
Text File Interface with New Nested Behaviorccccvvvvviveieicennenescee, 41
Element With CONNECTIONSccviiiieieie e 43
Same Element After a Move Operation..........coceoevvreriniieienese e 43
Same Element After Resize Operationcccceevveveiieieeie s 44
Unnecessary Recast and Method Call...........ccooeiiiiiiinii e 44
New resize() Method Showing Original Method Callsccccceevvveiinenene. 45

Xi

Figure 42,
Figure 43.
Figure 44,
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52,
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.

Key Port Update Technique in Move Event Chaincccccoovvveieieinenenn, 46

New Method moveElementPorts()cccoveveiiieiieie e 47
Method flush() DiSabled ..., 49
State of Diagram When Saved...........ccceiveiiiie i 50
After Deleting Data BOXccooviiiiiiiiiiese s 51
Immedietly After Opening the Saved Diagramc.cccooveveiieeieeiecee s, 51
Diagram Restore Showing Artifacts on Mode BUEIONScccccveriiiniiennne, 52
Nesting Without Line ThiCKENINGc.cociiieiiiieiiece e 54
Nesting Without Line ThiCKENINGccccoiiiiiiiiiieeeeee e 55
New paint() Method to Allow Line Thickness Change...........cccocvevvevievvennenn. 56
New Method elementTreeLevel().......ocoviiiiiiiiieieeee e 56
Twilight Nesting EXamPIecoveiiiiiiieie e 58
Cause of TWIlIGt NESTINGooveiiiiiiieee s 59
Example of @ Stream CONNECLONcccvevveiieiieiece e 60
Duplicated Drawing ROULINEcccoiiiiiiiiiiiisieee e 62
Example of an Alternative Pattern...........ccccoveiiiie i 63
Changes to Element Deletion ROULINE............cccceiiiiiiiiieeee e 66
Change to RepOrt SIGNAtUIe.........ccveviiieee e 67
Two Possible Branches for Element Deletion ..o 68
Correction for Inadvertent Deletion When Connecting.........c.cccoeevevveieiiennnnn 69

Xii

Table 1.
Table 2.

LIST OF TABLES

Changes Required to Support Streams

Changes Required to Support Alternative Patterns

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

l. INTRODUCTION

A. BACKGROUND

It is commonly acknowledged that even well commented code is not always easy
to understand. An investment of time is required to understand even simple
programming structure. As a result, supporting documentation has become part of
deliverable software. Graphical techniques have been developed to better express
program design and function. Universal Modeling Language can be used to provide
additional information about program design at a glance. Visual programming offers a
pictorial paradigm for computer programming. This technique combines graphical
technique with formal language meaning to produce a type of executable diagram or
model. Several past examples of visual languages include Sun Microsystem’s Java
Studio, open source Prograph and National Instrument’s LabVIEW. It is likely the
explosion of personal computer (PC) users after graphical user interface (GUI)
introduction may have a parallel in visual programming language usage. As this
technique matures toward mainstream acceptance, programming will become accessible
to a large part of the population. Graphical techniques also have a well understood
application for education and would likely support visual programming languages in
classroom settings.
B. PURPOSE

This work is correction and extension of a GUI for a visual programming
language, more specifically a visual meta-programming language[1l], that provides
visualization of control and data flow while introducing visualization of data structures.

The task was to add new functionality and fix known errors in an existing application.

The greater purpose is support of basic research in visual programming languages
by continuing the implementation VisualRigal (REE-gal), described below.

[Visual Programming Languages are] stimulated by the following

premises:

1. People, in general, prefer pictures over words.

2. Pictures are more powerful than words as a means of
communication. They can convey more meaning in a more concise unit of
expression.

3. Pictures do not have the language barriers that natural
languages have. They are understood by people regardless of what
language they speak.[2]

In practical terms this research supports the following:

e Greater access to programming for non-programmers, specifically

application domain experts or customers

e Generation of visual documentation concurrent with programming, the

diagrams are executable

e Improved communication between distant parts of the development team

perhaps across primary languages

e More rapid understanding of program structure allowing focus on key
portions of application

As an example, a naval flight officer who programs can assist directly in
prototype development, improving the final products usefulness in combat and
significantly reducing the development time required.[3]

C. SCOPE, METHODOLOGY AND ASSUMPTIONS
1. Scope

a. Understanding of Current GUI Design

This work examines the existing design of the VisualRigal program,
which encompases 45 classes and approximately 10,000 lines of code. The goal is to
gather enough information to portray the program design with UML to enable further
maintenance and extension of the code.

b. Understanding of Current GUI Behavior

This work also examines high level behavior of the VisualRigal program.
The goal is to document sufficient understanding of the program behavior to support
future work and program use. Detailed program behavior is also documented for specific
areas of correction and extension.

C. Application of the Java Swing Classes to Extend and Correct
GUI Functionality

The work primary production is achieved through the application of Java
classes and language to correct desired behavior and support new functionality. Because
2

the Java language and individual Java Virtual Machines are evolving, there is no
expectation that this work represents a final solution. This belief is reinforced by the
history of the VisualRigal program outlined at the beginning of Chapter III.
2. Methodology
a. Comment Current Code and Discover Design
The intention of this work is to trace program execution enough to correct
and extend particular functionality. During this trace code comments will be developed
that support Sun’s Javadoc functionality. Additional comments have been developed to
answer the questions, “Why was this done?” and “Why was this technique used?” While
tracing execution, information discovered that contributes to an understanding of
program structure and design has been translated into UML descriptions
b. Develop Test Plan
As an understanding of design and program requirements emerges a test
plan will be developed that supports requirement fulfiliment and likely fault detection.
C. Extend Functionality
Functionality has been corrected and extended on a priority bases. A
successful change has been completed prior to coding additional changes. These changes
are prioritized based on customer requirements and best return on resource investment.
Best return is defined as greatest functionality increase for likely time invested.
d. Test with Progress
Testing has been done at the developer level while coding. Regression
testing of test cases and automated suites was also utilized.
e. Develop User’s Manual
A basic user’s manual has been created to outline operation and document
expected behavior of the program. It is included as an appendix.
f. Document Existing Design
The information collected starting with the first step of this work and
throughout is consolidated in a UML representation of program design.
3. Assumptions
Understanding of UML is required for a detailed understanding of program

design. Understanding of Java is required for a detailed understanding of code choices

and changes. However, a general understanding of the work is accessible to the average
college graduate.
D. THESIS ORGANIZATION

1. Chapter I: Introduction

Provides a brief overview of the background, purpose and method of this work.

2. Chapter I1: Background Information and Key Concept Review

Provides a brief history of visual programming and work leading to the current
work.

3. Chapter I11: Implementation of GUI

Provides an overview of code maintenance tools and techniques in a Java and MS
Windows environment. Additionally, provides a detailed description of program design
and this work’s corrections and extensions of the program code as well as the
implemented test plan.

4. Chapter 1V: Conclusion

Examines changes required as a result of testing, an assessment of the program
implementation, a review of the research questions and a discussion of likely future work
with comments on priorities.

5. Chapter V: Appendixes

Copies of documentation to supplement understanding of this work, to include:
original 1.0, commented original 1.1 and extended 2.0 application Java code, raw

Parasoft JTest Reports and user’s manual.

II. BACKGROUND INFORMATION AND KEY CONCEPT
REVIEW

A. SURVEY OF VISUAL PROGRAMMING

1. History

The beginning of modern visual programming languages is credited to Goldstine
and von Neumann’s work with flow charts.[4] This familiar paradigm indicates the
change of control as one follows the lines from node to node, and is more completely
called control flow charts. This sort of visual language is classified as a control flow
language.[5]

Further development has lead to a dataflow paradigm, popular in embedded
systems especially for space and communication applications.[6] Here the flow of data is
traced from node to node over the lines. If the node describes control decisions then a
combination of control flow and data flow is attained.[5] This two dimensional view is

the current state of the literature.

There is discussion of pure visual programming language, that is figures without
symbols. In this classification the mixing of diagrammatic elements with symbols, like
2>4, constitutes a hybrid language.[7] This view is consistent with current discussion
regarding the feasibility of model driven programming.[8] One criticism is that at some
level coding is required. This does not have to be a disadvantage. If a technique
provides general understanding at a glance and allows the reader to focus on those areas
of interest quickly to determine perhaps conditional boundaries, it has achieved

usefulness.

Spreadsheets are an example of a hybrid language.[5] There is information
contained in the representation of row and columns but no one would consider using a
spreadsheet without using the available symbols. Graphical representations should be

used where they make sense.

GUI component libraries, filled with buttons and selection tools, appear to be

moving toward standardization and are an example of a specialized hybrid language.[5]

Graphical techniques used to describe the Boolean expression above are cumbersome and
cannot compete with the simplicity of basic mathematical expression.

2. Benefits

The increased accessibility of programming has already been discussed as a
potential advantage for visual languages. However, the professional could benefit from
the creation of accessible documentation at the same time they are building the program.
If an application is built of executable diagrams, the visual code can help serve as a
reference for future maintenance and current turnover on a project.

3. Risks

As with any language there is uncertainty concerning the relationship between
what is coded and what is compiled. There is an implied contract that written code will
execute with fidelity to written structure. Likewise, there is an expectation that the
execution described in a diagram will perform consistent to the graphical representation.
I call this expectation for equivalence between the graphical and logical representation
the equivalence contract.

If visual programming becomes mainstream, how will vision impaired
programmers work? Graphical methods are the darling of the majority. Are there
interface options to support the vision minority? Will these options support the click and
drag GUI paradigm? This work does not address these questions but points out the
implications here.

B. VISUAL META-PROGRAMMING LANGUAGE

1. Intended Use

A graphical extension of the University of Latvia’s RIGAL, a textual meta-
programming language, VisualRigal is a domain specific language with graphical
techniques that can be applied to a general programming visual language. It is
considered a visual meta-programming language. That is, it is a programming language
for manipulating and describing programming languages. Common applications for this

type of language are compilers and parsers.[1]

It is this application of the language that provides a look at VisualRigal’s new
paradigm, visualization of data structure. VisualRigal provides control flow and data
flow, as is now common, but introduces a simple graphical syntax for describing atomic

data, lists and tree structures.

VisualRigal is composed of a GUI, a parser and a compiler. The compiler and
parser are already fully implemented. The current work is the maintenance and extension
of the GUI which produces a text file interface for the parsers consumption. Parser
output is compiled and is then executable.

2. Icons

The language is fully described in the reference but a low level description of the

major icons follow.

& Visual Rigal =10 xj
File Egit Tosts Help

] I

00 Bements
D
Nested Dat
itk
o [— st =
ested Pann e a =
D-Call L]
Fark e - E
Merge - l
9B scton]
Connsct f |‘| E
Properties ," 1 A
Move : __E-;-__i \ L[
et = - _."ﬂ 2 =
. = 3 A
Splinfime - - I & -
it Pt o - i I L]
Ext - \ IIII.
fireem | |
AR Parter

[CONNECT: Sesect Source Port

Figure 1. Sample Application Screen with Some Elements Present

a. Port

A junction box for data. Ports on the left of an object are input ports that
is data enters the icon through that port. Ports on the right of an object are output ports.
This convention of in or out is muddled when referencing connectors since data flows out
of a diagram “input” port and into the connector. The filled in port on the lower right of

an icon is a fail port whose use is optional.
7

Fila Ect Toots Halp

00 eemenns

Dwa

Hested Data.
Switch
Fanern

Mested Patlern

7
:

[=|=[0|=|%

< = =

Figure 2. Large Arrows with Dashed Ends Point to Port Icons

b. Connector
A data pipe which allows only one data element at a time.

File Edt Tools Help

Bl |elv|al=|=|os]|%

i}
i
|

Figure 3. Connector Icon

C. Stream
A data pipe which allows a continuous flow of data, as in UNIX pipes.

Visual figal =10 %)
File Edt Tools Help

00 semerns
Data
Nested Data
Smitch
Fartern _ e
NemedPaem | 5 ————
o-Call
Fark. e
Merge -
* Acrions
Canmect
Fropenies
o

Ariire o
o

)itz e]al=|=|a]|8 |

g
izl
--_._‘_____I

[comacT sewe sewce Fon

Figure 4. Stream Icon

d. Switch

A conditional or if-then statement. Uses a train track switch metaphor to
depict data-flow based on truth of Boolean statement contained in the icon. As with all
elements, can have 1 to many ports. All three port-sides of a switch have the same
number of ports. All data entering the left side of the switch is available at the right side

ports if the statement is true, or available at the bottom ports if the statement is false.

10

L6 velmaal =loj=|

Diageam Signanusre: Full

b

Bt |ie|vlgl=|=|o]8|w

]
8
I
f

Figure 5. Switch Icon

=101 x|
File Edt Tools Help

Diagram Signature. rull

axb

o

Mot e —

"

Delele B

*
§
v
Bz |val=|=]ol8]w

|
i
|
i

Figure 6. Data Flow If a>b is True

11

[vadmaal =lolx
File Est Tools Help
Diagram Sign i
[0 memenns
Data
Nested Data
it
P -
= =
Mested Faern | o o =
©-Call =
Fark O
Merae 4
IR wcans 2]
=)
Cannee —]
ropenes 2
s |
nnnnn =
Reie g
Spla line.
Edn Port -
Lt
Sresm
AN Pattarn

[cumest ucar ueve oxeet

Figure 7. Data Flow If a>b is False

e. Data Box

Icon to input data into data pipe. May also hold a C type operator, +, *,
++, etc. and perform primitive mathematics using these symbols. In the example below,
the smaller data box outputs the integer 5 on the first output port, while the larger outputs

the sum of the two input values on the second output port.

12

Visual Rigal =10 xj
Flle Edit Tocks Help

00 Bements

Dane

Netted Das . -
Swdich

Fatterm
Hested Paltern
O-Call .,

Gl eal=|=|o= %

[rommEeT: Seect Source pen

Figure 8. Data Box Icons

f. Nested Data Box
Represents the building block of a data structure. The structure can be
passed through a data pipe connected to the outer Box. Can be used to assemble lists and

trees. Provides visualization of data structure.

13

Fie Edt Tools el

00 clements

Hested Data

Palten
Moshed Pasiem
D-Call

I sctoae

Edit Port

Alt Pagem

Daagrarn Signatues: null

First Part ts Constant

Rrw Structure

Zecond Parl ks Input fo Disgram

[olefelelel-|-[alele

[COMIECT: Seled Souree For

Figure 9.

Fie Edt Tools el

00 clements

Hested Data

Pattern
Mosted Pafiem
D Call
Fork
Merge

I sctoae
Cennect
Propetbes

Eplit line
Edil Parl

At Patten

g.
Performs pattern matching on data.

Pattern Box

Creation of a Data Structure Using Nested Data Box Icon

Daagrann Signaturs: null

Patiarn Box

&
Ix

[olefe fel-|-Jale

[Eorentinoss Dissias properies

Figure 10.

Pattern Box Icon

14

h. Nested Pattern Box
Used to deconstruct the data structures assembled in the Nested Data

Boxes. Provides visualization of data structure.

=10] x|
Fie Edt Tool Hep
[i Bigrat
00 clements
Data
Hisled Data
0
Swilch e
Pattem o
Nested Pasem | o — e |
D-coll — — 2 |
Fork — o oy u]
Murge i Firgt Paart. a]
I covone i
Connect Structure o l
Properses _'___'__,___-——-"‘ N
.]
Move e —
o —f =
Delste e
Becond Pan |
Resize o = —]
Spli ing
Edit Pont
Exit
Siream L]
Alt Pagem
IGOFIEC‘I" Select Source Port

Figure 11. Nested Pattern Boxes Showing 2 Part Data Structure

i Diagram Call

Allows reuse of diagram for subroutines or recursion.

15

Fie Edt Tools el

Daagrarn Signatues: null

%
i

Connect Diagram Cat

i
H

Edit Port

Alt Pagem

&
Ix

[olefelefel-|-[alele

(Cument Mode: Asd Disgram Call Elamant

Figure 12. Diagram Call Icon
J. Fork

Duplicates data item.

Daagrarn Signatues: null

5 rctonn

At Patten

[ofefelfol-|olefe

Icmll Mods: Agd Ferk Elemant

Figure 13. Fork Icon
K. Merge

Merges data streams into single stream

16

vl fiaal =loj x|

Fie Edt Tools Hep

[0 etements

Data
Hested Data
Bwilch
Paltern

Nostod Pomen |, o &
D-Call B2
Fork [u]
Murge —']
% Actione D
Connect %
Properses
Move “‘j
Delete ‘T

Regize

Splnline
EditPar
Exit

Siream

Alt Patberm

|Cuament Moge: love Object

Figure 14. Merge Icon

l. Alternative Pattern

Used for pattern matching in support of parsing, similar to a switch
statement. Starts looking for a pattern match at the top port. The first port with a
successful match consumes the input and moves control along the route defined by the
pattern matched. The example in the second figure will take an input stream and send the
data following an integer to the first ouput port, following a rational number to the second

ouput port and anything else to the fail port.

17

Diagram Signaure: Full

Figure 15. Alternative Pattern

Mumber Siream -3 im, rational or fal

Figure 16. Parsing Usage of an Alternative Pattern

3. Application Examples
Examples are provided in the following figures. The first four define factorial
functions, taking an integer input N and producing an integer N!. The first figure shows a
18

recursive function demonstrating the ability of VisualRigal to describe recursive
functions. The second figure is an equivalent GUI diagram. Note the use of a single port
switch and data boxes with a mathematical operator in each figure. The third is an
equivalent iterative solution. This is followed by another GUI equivalent. The structure
of the diagram suggests the existence of parallelism in the program structure. This

additional information about the program comes with the visual representation.

#factorial: int = int

I
[
h 4

[— nN<=t

#factorial

Figure 17. Recursive Factorial Example After [8]

19

Hog 30.n05 P34S5 JLIINNOD

[=Tar=

py

[RLIOYIR 4

Py

W=

UI3LEd Y
Weans
ux3
Hod 1p3
aul| yds
azisay
alajag
anopy
saluadoly

1D3UU0D

abuap
Hdod

e2-aq

Uidalied
PR
TR PN

®lRg

dig4 sieol ¥p3 84

[euopRLE =

suoNaIY ﬁ

UJ3liRd palsan

ESUENTET | OD

Recursive Factorial Example in GUI
20

Figure 18.

#Ffactorral: Int -> Int

Figure 19. Iterative Factorial Example After [8]

21

13090 aA0} :2poy LY

=Tar=

W=

LA30ed 1Y
LN
n=3
Hod up3
aul wds
azisay
EXEIEN|
anapy
sadadaly

FEENN:)

ELSET
04

Ie23-q

uianEd
LI ns
BIR] paisapn

BIE(]

diaH siool wp3 a4

|euoyRyE

SUBIIY ﬁ

LIRNERY pR1sap

ESUEETE] OD

Iterative Factorial Example in GUI

Figure 20.

22

The next diagrams demonstrate the visibility of data structure in VisualRigal. The
first constructs a eational number data structure out of two input integers. The next figure
takes two such data structures and adds them correctly. In this addition figure the
simpiler path is when the denominators are equal. This path is represented by the top half
of the diagram and is very easy to follow. The second case is the lower path, when the
denominators are not equal. The diagram is harder to follow at this point giving a good
indication of the complexity of the logic involved. We instinctively recognize the
potential confusion at this point of the program. We are focused at a point in the routine
that needs carful attention to correctness or is a likely source of a fault.

& Dukd Ratiomal hamber o x|
File Edit Tools Helo

Figure 21. Function to Build Rational Number Data Structure

23

Hog 30Inog PR3435 (1IINNOD

==

J0iRUIWOUAQ B

WNS Jaquinp [euoney

m J0RIAWnp

i

JoEUIWEU] g

[EUOIEY pUOJAg

u
ADRAIWNN g

JoEulwEuI] g

[RUOITEY 35414

JOIERJIAWAN

[BUONES < [BUOIEL [EUOIES

diaH

UNEINERRTL
LMEAILS
43
uod up3
aul| wids
3z1s3y
232120
ELLIT)
saiuadoig

1DIUUDD

ELET
H40d
IR2-q
LIRS paisap
uianeg
[TRSIES
BIRQ paisap

IR

S|00L Wp3 a4

SUDNIY ﬁ

SaWag _U_G

Function to Add Rational Number Data Structures

Figure 22.

24

1. IMPLEMENTATION OF GUI

A. GUI HISTORY

The VisualRigal GUI was originally implemented by Mr. Abu Islam in 2002. Mr.
Islam is a professional programmer who’s work was proceeding nicely when a new java
release disabled the save and restore feature of the GUI. Mr. Islam was unable to detect
the new fault in his implementation before his time was over. His effort did produce a

workable design implementation with over 10,000 lines of code.

The code indicates an experienced Java programmer using advanced techniques
supported by the Java Swing and AWT classes. His use of self commenting code is
generally excellent, providing signposts for the traveler who follows him. The code does
not support standard Javadoc comments, creating difficulty when trying to maintain or
extend this application.

B. CODE READING TOOLS USED

The main intent of the present work was production of a maintainable program
and feature extension. Finding the best tools for a particular task was never intended.
This represents the fastest way to progress at the given moment. With some exposure to
particular tools or work on a UNIX based system could undoubtedly provide a faster pace
of production. However, the methods listed here avoided a common project pitfall,
getting caught up in tools rather than production.

1. Package Search as a Grep Substitute

The first step toward understanding any program, without other documentation,
would be to start at the beginning. For a C-based language this means finding the main
method. There is a painful story concerning the search through the 45 program classes
that will not be related further. In any event, the preferred method for this phase is a
search over all files for the main signature. This can be accomplished with an IDE path
search or MS Windows search utility. This technique is simply the equivalent of an
UNIX grep command.

2. Javadoc

Javadoc, when properly supported by well commented code, can be an excellent
documentation resource. Javadoc is, however, dependent on the quality of comments and

25

transparency of method and class naming. If the class containing the main method does
not identify itself with this fact, “ApplicationMain” for example, a tedious search
situation ensues. The main method will be listed with the methods of one of the classes

in an operational java program, but which one?

There is less text to search through in this case. The standard formatting of
Javadoc even makes it obvious where to look, in the methods section alphabetically
listed. But must the author once again open each classes Javadoc hoping to get lucky?

Additionally, he do not know how to search HTML pages.

The Javadoc hierarchy is of some utility, showing inheritance by indentation.
Assuming that main will be found in a top level class there were still 32 classes to search
with this rule in mind. Not a promising start to a work in understanding approximately
10,000 lines of code. The author’s solution is presented below under New Code
Implementation.

3. Simple UML Tool

BlueJ is an open source Java IDE design for use by students during there first
exposure to Java. One of its features is the representation of all classes in the target file
in UML form. BlueJ shows inheritance relationships and class uses. Though not a
complete UML representation of the code, the class uses provide additional information

the Javadoc inheritance structure does not.

26

B

i
T C
I L
i II; | e 3
i
HHlH
HItiE
te Hi
il
- S
H
: ae JI |,, i
o i |
H
i
Ir
i Py
|;| |
e El /
H
i |=

Figure 23. Three Screens of UML Depiction From BlueJ.

27

There are negative side-effects to BlueJ’s use for this purpose. Bluel explicitly
removes package statements from Java packages. This change makes the code unusable

for IDEs requiring packages.

BlueJ also adds an additional file to the folder. BlueJ opens to the same state at
which it was exited. This additional file probably records this state. In any event, this
file is not recognized by other IDEs making it more of a benign side effect than anything

else.

The UML diagram presented by BlueJ must be formatted by hand. There is no
provision for the “pretty printing” of this information nor printing. Thanks to the state
saving feature, once laid out for readability the work is done provided you maintain the
particular file that was formatted. Since you cannot normally use BlueJ and another IDE
on the same package this reformatting can become tedious.

4. Code Tracing for Understanding by Following Instantiations and
Events

Once the main method is located a traditional hand-trace of the code can begin.
There are likely as many techniques for code tracing by hand as there are code tracers.
The author has, in the past, used a trace utility to print out the code line reference number
as it executes. This can be a useful tool for debugging spaghetti code, but it was found

unnecessary for this event oriented program.

The author’s tracing method is presented here for illustration of the maintenance
process, working from a printout of the class containing the main method and tracing
through a print out of any instantiated code as necessary. It is his habit to annotate with
pencil, his notions of code purpose as he goes. In fact, these notes became the comments
to document the code. In this manner these hard copies immediately become usable
documentation for the code and commenting the code becomes a typing exercise, perfect

for one’s less cognitive periods.

Examination of classes as they instantiate develops an understanding of program
state at a given moment. In the case of an event driven program, these classes are likely
to contain the event driven methods allowing focus on a relatively small subset of the

code for initial understanding and maintenance. As Spinellis says, don’t try to

28

understand all of the code, only that portion effected by the proposed change.[10] The
execution must be followed until a steady state is reached. Specifically the end of the
main method or event driven methods may be overlooked in a program with multiple

active event listeners, as is the case here.

At this point correction and extension of the code can begin. Once the event
listeners are identified and their related event methods found, the program must be traced
in terms of response to events. It is now time to examine particular behavior that is
incorrect by tracing from the event method to completion, presumably another steady
state awaiting the next event. If extension of the code is the current goal, the initiating
event must be traced unless it has no legacy use. When the new program behavior is
initiated by an event method not previously used the trace is unnecessary. If this
initiating event is currently used, a mouse click for example, the event should be traced to
completion in order to determine where the new behavior would be best inserted.

5. Assessing Method Invocation

Once it is determined that an existing method must be modified, it is necessary to
asses the impact of the change. Are there unintended side-effects from this change? Will
legacy use of this method provide the expected response? A first step towards answering

these questions is to examine all uses of this method.

A package search for the first part of the method signature, “methodName(“ can
provide a list of method invocation occurrences. Heavy use of overloaded methods for
polymorphic purposes can increase the complexity of this method. In such a case a more
elaborate tool may be needed, one that can associate parameter and variable types to
completely define the method signature.

6. IDE Method List

Both IDEs used, NetBeans and JBuilder 5.0, have a window that alphabetically
lists the methods of the class currently selected. This window can be useful for quickly
locating a class method. By selecting the method name in this window, the code listing
displays the portion of code beginning with the first line of the method listing. There are

some disadvantages to this technique.

29

The methods may be listed alphabetically by access type along with variables and
other foundational information about the class. If this is the case, there may be a delay in
realizing you are looking in the wrong access type list for your method of interest.
Private methods were hard to find listed at the end with public methods listed at the
beginning and variables listed in between.

This list does not provide any information about method inheritance. If a method
is defined higher in the class inheritance hierarchy you may be better off using a package

search to find this method.

30

C. DESIGN DOCUMENTATION
A requirements analysis of this application was conducted producing an expected

program design prior to code examination, shown below.

Program
*

Diagram

DataNode
Connector
L
Node
Stream
2
[
Switch \
* Port
Data Flow
Merge -
AltenativePattern
Association
Fork
DataObjectPattern
ruleCall Male
ConnectorNode
L~
Female

Figure 24. Expected Program Design Based on Requirements Analysis From Appendix D

31

Examination of the code has produced an understanding of the actual design
implementation shown below. Note the grouping of classes by dashed and solid boxes:
Constants, Utility Classes and Unused Code. The unused code is thought to containe
classes that were original experiments for current element classes and unfinished work on

classes that could become elements if the work was finished.

Primary Elements

|———————————| Application
| Constants
| ConstantsElement ConstantsRigal
l 1 ? ApplicalionFrameO ApplicationFrameAboutBox

: | 1 1 1
| ConstantsStatus |
| | ToolBoxElementsAndActions
| 1

RigalFrameOrganizer 1

DialoglInf "

1 \aloginio 1 J_D RigalFrame

@ 1

1 Y 1
1 1 |
’g W 1 DialogContainerAndFrame
1 1
i
1

MultiLineLabel < ElementContainer /1 ToolBoxSwing

1 40
FileParser

DialogPortCaption

«datatype»Element][]

I /

1

Unused Code

1 1 Original
Experiments?

1 1
DialogElementProperties 11 | | DataBox Decision

ElementContainerWindow

Element Port

e
11
B 7 |
DialogPanelManger 1 1 1 GraphPort

1 Zf Square

ElementPortManager
DialogPanelVariable

DialogPanelFixed Unfinished

Work?
ElementTriangleOut
1 ElementContentRenderer

ElementMerge

T

ElementConnector

ElementTriangleln

Utility Classes
EndsWith UtilGraphics

ElementContainerPort| || |ElementData|| |ElementFork

LA ElementinputOutput

ElementSwitch JEmentPamern ElementDiagramCall |

UtilRigal -
ElementTriangle

ElementBitmap

- — — — — "

Figure 25. Actual Design of VisualRigal based on Code Examination

32

Extension of the code by the ElementStream and ElementAltPattern classes has

produced the following modified design.

ElementConnector ElementStream

ElementFork ElementAltPattern

<

Figure 26. Thesis Class Extensions

D. NEW CODE IMPLEMENTATION

1. Finding Where to Begin

With all of the tools discussed available, except the package search or grep
equivalent, getting started was the most daunting part of the task. With the intention of
limiting the amount of random search, the author used the BlueJ UML diagram to begin
manually sorting the classes. Classes without inheritance where set off in a separate
group, per figures 1-3. There emerged 3 inheritance trees rooted in the following:
RigalFrame, ElementContainer and Element. None of these roots contained main() and
their children where unlikely to, so some of the classes were eliminated from the search.
At this point the Application class stood out as having no indicated uses. That is no other
class referenced Application as witnessed by the lack of use arrow heads. Problem
solved, Application class cont