APPLICATION OF CORTICAL PROCESSING THEORY TO ACOUSTICAL ANALYSIS

SENSIMETRICS CORPORATION
48 GROVE STREET, SUITE 305
SOMERVILLE, MA 02144-2500

AFOSR/NL
4015 WILSON BLVD. ROOM 713
ARLINGTON, VA 22203-1954

This report summarizes work that has been completed in Phase I of the STTR program. We have implemented a closed-loop model of the auditory periphery with an efferent-inspired feedback and have quantitatively demonstrated its ability to produce spectrograms of noisy speech samples that are far more consistent with spectrograms of speech in quiet than are spectrograms produced by an open-loop model of the auditory periphery. This increase in performance in noise and increased robustness mimics the general observed behavior of humans. Whether this model of auditory periphery preserves phonetic information in patterns that follow psychophysical patterns will be rigorously inspected during Phase II, where the central part of the proposal, i.e. the formulation of a perception-based distance measure, will established.
A. INTRODUCTION

The overall goal of this STTR program is to formulate perception-related integration rules over time and frequency – presumably realized at post Auditory Nerve (AN) layers – in the context of speech perception in the presence of environmental noise. In particular, we aim at developing models of auditory processing capable of predicting phonetic confusions by normally-hearing listeners, under a variety of acoustic distortions. A prerequisite is to formulate the signal processing principles realized by the auditory system in providing the observed graceful degradation of human performance in noise.

Towards this end we suggest to model two interleaving functions: (1) the role of the descending pathway in regulating the operating point of the cochlea, resulting in AN representation of speech sounds that are less sensitive to changes in environmental conditions, and (2) the role of post-AN functions in extracting important acoustic-phonemic cues from the AN firing patterns. The underlying assumption is that the regulating mechanism and the post-AN mechanisms work in concert. Current models of the periphery are based upon the ascending pathway up through the AN. We propose to utilize the role of the descending pathway, mainly the Medial Olivocochlear (MOC)\(^1\) feedback mechanism, and the way the ascending and the descending pathways interact. As a case study we shall focus on processing of speech in the presence of additive speech-shaped noise. It is suggested that the cochlear response in the presence of background noise is (much) more stable than the output from current feed-forward models. This observation is based upon the physiological and psychophysical evidence we currently have about the possible role of the MOC efferent system (see summary in Sec. B. of the report). To model functions of post-AN processing we propose a psychophysically based approach. The post-AN functions will be modeled as a template-matching system, where a time-frequency input pattern is matched against internal templates using a psychophysically derived distance measure. We suggest that the success of post-AN mechanisms in reliably extracting speech-related information in noise is partly due to the “stabilizing” effect of the efferent system.

This report summarizes work that has been completed in Phase I of the STTR program. We have implemented a closed-loop model of the auditory periphery with efferent-inspired feedback and have demonstrated its ability to produce spectrograms of noisy speech samples that are more consistent with spectrograms of speech in quiet than are spectrograms produced by open-loop models of the auditory periphery. As a baseline system we used a model of an open-loop linear cochlea whose details are described in Sec. C.1. In Sec. C.2, we compare the performance of the baseline system with that of a model of an open-loop nonlinear cochlea. In Sec. C.3 we introduce a model of closed-loop nonlinear cochlea with an efferent-inspired feedback.

The output of each model was defined as the temporal response of the simulated Inner Hair Cell (IHC) array, organized in the form of spectrograms. The output of the closed-loop model was compared quantitatively with the output of the baseline open-loop model. The criterion for comparison was the amount of consistency between the spectrographic representation of noisy speech segments and that of the corresponding speech signals in quiet. Consistency was measured in terms of the distance between the noisy representations (with noise-intensity and

\(^1\) The origin of the MOC nerve bundle is in the medial region of the superior olive, and it projects back to different places along the cochlea partition in a tonotopical manner, making synapse connections to the outer-hair cells. Detailed description is provided in Sec. B.
SNR as parameters) and the representations of the speech in quiet (the reference). Sec. D. presents the quantitative evaluation. It shows that the closed-loop auditory model produces representations that are far more stable compared to those produced by the baseline (open-loop) auditory model. Whether this model of auditory periphery preserves phonetic information in patterns that follow psychophysical patterns will be rigorously inspected during Phase II, where the central part of the proposal, i.e. the formulation of a perception-based distance measure, will be established.

B. MOC EFFERENTS – BRIEF REVIEW

B.1 MOC efferents: morphology and physiology

Numerous papers have been published providing detailed morphological and neurophysiological description of the medial olivocochlear (MOC) efferent feedback system (e.g., Guinan, 1996; May and Sachs, 1992; Winslow and Sachs, 1988). MOC efferents originate from neurons medial, ventral and anterior to the medial superior olivary nucleus (MSO), have myelinated axons, and terminate directly on Outer Hair Cells (OHC). Medial efferents project predominantly to the contralateral cochlea, the innervation is largest near the center of the cochlea, with the crossed innervation biased toward the base compared to the uncrossed innervation (e.g., Guinan, 1996). Roughly two-thirds of medial efferents respond to ipsilateral sound, one-third to contralateral sound, and a small fraction to sound in either ear. Medial efferents have tuning curves that are similar to, or slightly wider than, those of AN fibers, and they project to different places along the cochlear partition in a tonotopical manner. Finally, medial efferents have longer latencies and group delays than AN fibers. In response to tone or noise bursts, most MOC efferents have latencies of 10-40ms. Group delays measured from modulation transfer functions are much more tightly clustered, averaged at about 8ms. We currently do not have a clear understanding of the functional role of this mechanism. Few suggestions have been offered, such as shifting of sound-level functions to higher sound levels, antimasving effect on responses to transient sounds in a continuous masker, preventing damage due to intense sound (e.g., Guinan, 1996). One speculated role, which is of particular interest for this proposal, is a dynamic regulation of the cochlear operating point depending on background acoustic stimulation, resulting in robust human performance in perceiving speech in a noisy background. There are a few neurophysiological studies to support this role. Using anesthetized cats with noisy acoustic stimuli, Winslow and Sachs (1988), for example, showed that by stimulating the MOC nerve bundle electrically, the dynamic range of discharge rate at the AN is partly recovered. Measuring neural responses of awake cats to noisy acoustic stimuli, May and Sachs (1992) showed that the dynamic range of discharge rate at the AN level is only moderately affected by changes in levels of background noise.

B.2 MOC efferents: psychophysics – speech and speech-like stimuli

Few behavioral studies indicate the potential role of the MOC efferent system in perceiving speech in the presence of background noise. Dewson (1968) presented evidence that MOC lesions impair the abilities of monkeys to discriminate the vowel sounds [i] and [u] in the presence of masking noise but have no effect on the performance of this task in quiet. More recently, Giraud et al. (1997), and Zeng et al. (2000) showed that the performance of human subjects after they undergo a vestibular neurectomy (presumably resulting in a severed MOC feedback) deteriorates phoneme perception when the speech is presented in a noisy background. These speech reception experiments, however, provide questionable evidence because of surgical
side effects such as uncertainties about the extent of the lesion and possible damage to cochlear elements. Recently, Ghitza (2004) quantified the role of the MOC efferent system by performing a test of initial consonant reception (the Diagnostic Rhyme Test) using subjects with normal hearing. Activation of selected parts of the efferent system was attempted by presenting speech and noise in various configurations (gated/continuous, monaural/binural). Initial results of these experiments show a gated/continuous difference analogous to the 'masking overshoot' in tone detection. These results are interpreted to support the hypothesis of a significant efferent contribution to initial phone discrimination in noise.

B.3 Summary
Mounting physiological data exists in support of the effect of MOC efferents on the mechanical properties of the cochlea and, in turn, on the enhancement of signal properties at the auditory nerve level, in particular when the signal is embedded in noise. The current theory on the role of MOC efferents in hearing is that they cause a reduction in OHC motility and shape that results in increased basilar membrane stiffness which in turn produces an inhibited IHC response in the presence of noise that is comparable to the IHC response produced by a noiseless environment. We develop this popular theory into a closed-loop model of the peripheral auditory model that adaptively adjusts its cochlear operating point such that the time-frequency IHC rate responses are more consistent over clean and noisy conditions than state-of-the-art open-loop systems that neglect efferent feedback.

C. PHASE I – MODEL DEVELOPMENT
The overall goal of Phase I was to develop a closed-loop model of the auditory periphery that incorporates the human efferent system and to demonstrate the ability of such a model to produce displays of noisy speech that are more consistent with displays of speech in quiet than are displays produced by open-loop models. In embarking on this endeavor, we tested different models of cochlear filters, linear [Gammatone filters (Patterson, 1995)] as well as nonlinear [MBPNL (Goldstein, 1990)].

In implementing a cochlear model we use a bank of overlapping cochlear channels uniformly distributed along the ERB scale (Moore and Glasberg, 1983), four channels per ERB. Each cochlear channel comprises a filter (Gammatone or MBPNL) followed by a generic model of the IHC (half-wave rectification followed by a low-pass filter, representing the reduction of synchrony with CF). The dynamic range of the simulated IHC response is restricted – from below and above – to a “dynamic-range window” (DRW), representing the observed dynamic range at the AN level (i.e. the AN rate-intensity function); the lower bound and upper bound of the DRW stand for the spontaneous rate and rate-saturation, respectively.

C.1. Linear cochlear model with Gammatone filters
A linear Gammatone filter bank, which represents a linear based filtering strategy, was first examined as a baseline. Displays of the simulated IHC response were examined for noise intensity levels of 70, 60, and 50dB_SPL and for SNR values of 20, 10, and 5dB. Figure 2 provides a spectrographic example. The figure contains a 3-by-3 matrix of images; the abscissa represents the intensity of the background noise, in dB_SPL. The ordinate represents SNR, in dB. Each image represents the simulated IHC responses to the diphone s-a (duration of 249ms) spoken by a male speaker. Figure 2 depicts the simulated open-loop Gammatone IHC response, with DRW=40dB. The position of the DRW was set such that speech is visible for the 50dB_SPL×SNR=5dB condition. Upper bound of the DRW was chosen such that
70dB_SPL×SNR=20dB condition is not oversaturated. A large inconsistency is observed across varying noise intensity and SNR levels. Note that for the DRW we chose, at 50dB_SPL noise intensity level much of the speech energy is not present in the simulated IHC response for. Had the DRW range been shifted lower, more of the speech energy of the 50dB_SPL noise intensity level would have been visible but also much noise.

C.2. Open-loop nonlinear cochlear model

A second model that we examined was Goldstein’s Multi Band Pass Non Linear (MBPNL) model of nonlinear cochlear mechanics (Goldstein, 1990). This model operates in the time domain and changes its gain and bandwidth with changes in the input intensity, in accordance with observed physiological and psychophysical behavior. The MBPNL model is shown in figure 3. The lower path (H1/H2) is a compressive nonlinear filter that represents the sensitive, narrowband compressive nonlinearity at the tip of the basilar membrane tuning curves. The upper path (H3/H2) is a linear filter (expanding function preceded by its inverse results in a unitary transformation) that represents the insensitive, broadband linear tail response of basilar-membrane tuning curves (after Goldstein, 1990). The parameter G controls the gain of the tip of the basilar membrane tuning curves, and is used to model the inhibitory efferent-induced response in the presence of noise (see Sec. C.3. below). For the open-loop MBPNL model the tip gain is set to G=40dB, to best mimic psychophysical tuning curves of a healthy cochlea in quiet (Goldstein, 1990).

The "iso-input" frequency response of an MBPNL filter at CF of 3400Hz is shown in figure 4. The frequency response for the open-loop MBPNL model is shown at the upper-left corner (i.e. for G=40dB). For an input signal s(t)=A\sin(\omega_0 t), with A and \omega_0 fixed, the MBPNL behaves as a linear system with a fixed "operating point" on the expanding and compressive nonlinear curves, determined by A. Figure 4 shows the iso-input frequency response of the system for different values of A. For a given A, a discrete "chirp" signal was presented to the MBPNL, with a slowly changing frequency. Changes in \omega_0 occurred only after the system reached steady-state, for a proper gain measurement. For a 0dB input level \lambda=1, the gain at CF is approximately 40dB. As the input level increases the gain drops and the bandwidth increases, in accordance with physiological and psycho-physical behavior.

Figure 5 shows the simulated IHC response generated by the open-loop MBPNL to the diphone s_a (same as in Fig. 2) for noise intensity levels of 70, 60, and 50dB_SPL and for SNR values of 20, 10, and 5dB. The tip-gain is set to G=40dB and held constant for all SNR and noise levels. Here, we set DRW=22dB (down from 40dB for the Gammatone) because of the reduction in the overall dynamic range at the MBPNL output due to its inherent nonlinearity. The position of the DRW was chosen such that the speech energy of the simulated IHC response for the 70dB_SPL×SNR=5dB condition matched that of the same condition of the Gammatone model. Like the displays produced by the Gammatone model, the open-loop MBPNL displays show a large inconsistency across varying noise levels. Notice that for both open-loop models (Gammatone- and MBPNL- based) we could not find a “sweet-spot” for the DRW position that will provide a consistent display at the output, across rows and columns.

C.3. Cochlear model with efferent-inspired feedback

From the open-loop MBPNL model, we developed a closed-loop MBPNL model that includes an efferent-inspired feedback mechanism. Morphologically (e.g. Guinan, 1996), MOC neurons project to different places along the cochlea partition in a tonotopical manner, making synapse
connections to the outer-hair cells and, hence, affecting the mechanical properties of the cochlea (e.g. increase in basilar-membrane stiffness). Therefore, we introduce a frequency dependent feedback mechanism which controls the tip-gain (G) of each MBPNL channel according to the intensity level of sustained noise at that frequency band. As shown in Fig. 4, the upper-left panel represents the nominal response (i.e. healthy cochlea, in quiet), with the tip-gain G=40dB. By reducing G, the MBPNL response to weaker stimuli (e.g. background noise) is controlled. The lower right panel, for example, shows the MBPNL response for G=10dB. For high energy tone stimuli the MBPNL response is hardly affected, while the response for low energy stimuli (e.g. -80dB Re maximum input range) is reduced by some 30dB. In our efferent-inspired model, G is adjusted such that the average power of the cochlear output, in response to background noise at the input, will be such that the simulated IHC response to noise will be kept just below the lower bound of the DRW.

Figure 6 depicts the simulated IHC response of an intermediate version of our closed-loop MBPNL model. DRW=22dB, its position is fixed at the same location as in the open-loop MBPNL model. The value of the tip gain (G) per cochlear channel is adjusted using the average power per frequency band, computed over 300ms duration of a speech-shaped noise preceding the speech signal. Due to the nature of the noise-responsive feedback, display of background noise is largely eliminated for all dB_SPL×SNR conditions. At a given SNR, displays of processed noisy speech are consistent across dB SPL noise level (rows in Fig. 6). As expected, at a fixed dB_SPL level, as the SNR drops (i.e. as the speech energy drops) the intensity of speech information in the spectrographic display dims (columns in Fig. 6).

Figure 8 shows the spectrographic displays of our current closed-loop MBPNL model, were the output of each MBPNL channel is normalized to a fixed dynamic range. The rational behind the normalization at the output stems from neurophysiological studies on anesthetized cats with noisy acoustic stimuli, which show that by stimulating the MOC nerve bundle electrically, the dynamic range of discharge rate at the AN is recovered (e.g. Winslow and Sachs, 1988)², as is illustrated in Fig. 7. Upon visual examination, it can easily be seen that the displays are even more consistent across dB_SPL×SNR conditions than those of Fig. 6.

D. QUANTITATIVE EVALUATION

To obtain quantitative results, 96 processed noisy diphone pairs were compared in a simulated 2 alternative forced choice DRT test. Tests were run on the outputs of the open-loop Gammatone and the efferent-inspired closed-loop MBPNL models, after temporal smoothing. Template “states” were chosen for each DRT diphone-pair. In this study, the template states were the processed diphones at the 70dB_SPL×SNR=10dB condition (top two panels in figure 9). The test stimuli were the same diphone tokens in different noise intensity levels and different values of SNR. For a given test token the MSE distance between the selected test token and the two template states was computed. The state template with the smaller MSE distance from the test token was selected as the simulated DRT response. Figure 10 shows the average percent correct responses as a function of noise intensity level for the open-loop Gammatone (+) and the closed-loop MBPNL (x). Average is over all DRT words and all SNR values. As the plot indicates, the closed-loop MBPNL model behaved more consistently over all noise intensity levels than the

² Concurring with this observation are measurements of neural responses of awake cats to noisy acoustic stimuli, showing that the dynamic range of discharge rate at the AN level is hardly affected by changes in levels of background noise (May and Sachs, 1992).
open-loop system. The performance of the open-loop system significantly degraded as the noise intensity level varied further from the template noise intensity level (70dB_SPL in this example). Figure 11 shows a more detailed version of Fig. 10; errors – averaged is over all DRT words – are plotted as a function of SNR, with noise intensity (in dB_SPL) as a parameter. For the open-loop model best performance occurs at 70dB_SPL – the template noise condition (as expected, no errors occur at SNR=10dB – the template SNR). The extent of inconsistency is reflected by the poor (close to chance) performance at all other noise intensities, for all SNR values (an unexplained exception is the 60dB_SPL×SNR=20dB condition). In contrast, performance with the closed-loop MBPNL model is very consistent across all conditions. Figure 12 is yet another way of looking at the same data; here, errors are plotted as a function of noise intensity, with SNR as the parameter. Similar conclusion can be drawn, i.e. for the open-loop model, for each SNR best performance occurs at 70dB_SPL (the template noise condition); at all other noise intensity levels performance is close to chance. Far fewer errors are made when the closed-loop model is used; most the errors are in noise intensity levels away from the template noise condition.

E. SUMMARY

This report summarizes work that has been completed in Phase I of the STTR program. We have implemented a closed-loop model of the auditory periphery with an efferent-inspired feedback and have quantitatively demonstrated its ability to produce spectrograms of noisy speech samples that are far more consistent with spectrograms of speech in quiet than are spectrograms produced by an open-loop model of the auditory periphery. This increase in performance in noise and increased robustness mimics the general observed behavior of humans. Whether this model of auditory periphery preserves phonetic information in patterns that follow psychophysical patterns will be rigorously inspected during Phase II, where the central part of the proposal, i.e. the formulation of a perception-based distance measure, will be established.
Figure 1. A schematic description of our conceptual model of perception of diphones

Figure 2. Simulated IHC response to diphone s_a, produced by an open-loop Gammatone model; DRW=40db; Position of DRW set such that speech is visible for the 50 db SPL Noise and SNR=5db condition. Upper bound of DRW chosen such that 70dB_SPL×SNR=20dB condition is not oversaturated.
Figure 3. Goldstein’s MBPNL model

Figure 4. Iso-input frequency responses of an MBPNL filter (at CF of 3400Hz) for different values of tip–gain, G. From Upper–left, clockwise: G=40, 30, 20 and 10dB. Upper–left corner (G=40dB) is for healthy cochlea in quiet (Goldstein, 1990).
Figure 5. Simulated IHC response to diphone s_a, produced by an open-loop MBPNL model; Fixed G=40dB; DRW=22dB; DRW chosen to approximately match speech power of the Open loop Gammatone model displays of figure 2.

Figure 6. Simulated IHC response to diphone s_a, produced by an intermediate closed-loop MBPNL model. DRW is same as in open-loop MBPNL mode.
Figure 7. Illustration of the observed efferent–induced dynamic range recovery of the discharge rate in the presence of background noise (e.g. Winslow and Sachs, 1988). Discharge rate versus Tone level is cartooned in quiet condition (full dynamic range, black); anesthetized cat, i.e. no efferents activity (much reduced dynamic range, red) and with electrical stimulation of COCB nerve bundle.

Figure 8. Simulated IHC response to dipphone s.a, produced by the efferent–inspired closed–Loop MBPNL. DRW is same as in open–loop MBPNL mode. Output of each MBPNL channel is normalized to a fixed dynamic range.
Figure 9. Temporally smoothed simulated IHC response produced by the efferent-inspired closed-Loop MBPNL (with normalization at the output). Representations at the 70dB_SPLSNR=10dB condition are chosen as template "states". A mimic of the "one-interval two-alternative forced-choice" paradigm is conducted for each DRT word-pair.

Figure 10. Percent correct responses as a function of noise intensity level for the open-loop Gammatone (+) and the closed-loop MBPNL (×), using the 70dB_SPLSNR=10dB condition as template. Average is over all DRT words and all SNR values.
Figure 11. Same data as in Fig. 10, in more details. Errors (in percent) are averaged over all DRT words and plotted as a function of SNR, with noise intensity (in dB_SPL) as a parameter.

Figure 12. Same data as in Fig. 10, in more details. Errors (in percent) are averaged over all DRT words and plotted as a function of noise intensity, with SNR as a parameter.
BIBLIOGRAPHY

