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Abstract

Previous AFIT research with density functional theory (DFT) has shown itself

to be accurate for small SimCn (m,n ≤ 5) clusters at a fraction of the cost of other

quantum mechanical methods, but it is only a ground state theory. Time dependent

density functional theory (TDDFT), however, is able to calculate excited states as

well. Evaluating the accuracy of these methods with respect to the excited states of

these clusters was the focus of this research, specifically with respect to the excitation

energies, geometries, and vibrational frequencies. It is shown that for the excited

states that can be expressed as a single electron configuration, energies calculated

are generally within .1 eV or better of experimental differences. A possible scheme

for correcting multiconfigurational states is also presented, which also brings those

energies to within .1 eV of experiment.

This research has demonstrated the ability of TDDFT to give an accurate pic-

ture of silicon carbide excitations, placing future calculations with larger clusters on

solid ground. Calculations on larger, cage-like structures show excitation energies

consistent with spectroscopic measurements of SiC surface defects, suggesting the

possibility that the SiC surface forms similar clusters. Calculations on the equilib-

rium geometries and vibrational frequencies of yet unobserved states of the smaller

clusters can aid in their detection in interstellar atmospheres and the laboratory.

Most importantly, this research offers further insight into how silicon and carbon

interact with one another, which may one day lead to better semiconductors for

aerospace applications.
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EXCITED STATES OF SILICON CARBIDE CLUSTERS BY

TIME DEPENDENT DENSITY FUNCTIONAL THEORY

1. Introduction

The Air Force needs wide band gap semiconductors for aerospace applications.

One of the most promising materials for these applications is silicon carbide (SiC).

Silicon carbide has a wide band gap, high thermal conductivity, high breakdown

electric field, high saturated electron drift velocity, and is resistant to radiation.

These qualities make it an ideal material for electronic devices in high temperature

environments, like the interior of jet engines, and high radiation environments, such

as space.[58]

One of these devices is the MOSFET (metal oxide semiconductor field effect

transistor), but, lattice defects near the oxide interface and a poor control of the

SiC surface make SiC MOSFETs difficult to fabricate. To better understand these

defects, efforts have been underway to model semiconductor defects with quantum

mechanics. However, it is virtually impossible to model an entire lattice and ap-

proximations have to be made. The SIMMOM (Surface Integrated Molecular Or-

bital/Molecular Mechanics) approach, created by Jim Shoemaker et. al., takes a

major step by treating small clusters quantum mechanically and embedding those

clusters in a molecular mechanics framework to simulate the rest of lattice.[60] An

example of such an embedded cluster can be seen in Figure 1. However, the com-

putational cost of these simulations is still too great if no approximations are made

for the embedded cluster. So, before any of this can be accomplished, we must know

1



Figure 1 Example of a SIMMOM cluster
In this figure, the darker spheres represent the atoms within a SiC lattice that are
treated quantum mechanically, while the larger and smaller spheres represent silicon
and carbon atoms, respectively.

what quantum mechanical approximations and computational methods can be used

without diminishing accuracy.

Here at the Air Force Institute of Technology, this task has begun by studying

the smallest of these clusters using an efficient and reliable method known as density

functional theory (DFT). DFT Calculations by Ms. Jean Henry in 2001 [31] were

comparable to known experimental values for SimCn m,n ≤ 4 clusters in the neutral

and anion states. Further work by Lt. John Roberts on SimCnO clusters has also

shown similarly favorable results, and he along with Dr. Xiaofeng Duan extended

Ms. Henry’s cluster geometry map, shown in Figure 2.[21] However, this work has

all been focused on cluster ground states because standard implementations of DFT

are only equipped to model ground electronic states.

Ground state calculations alone can not model the relative energies of electronic

states near the surface and around defects. Various spectroscopic techniques can

2



Figure 2 Map of the Ground State Geometries of SimCn Clusters [31, 21]
These geometries were generated using B3LYP density functional calculations by
researchers at AFIT, showing the lowest energy isomer when calculated with the
aug-cc-pVDZ basis set. The aug-cc-pVTZ basis set correctly predicts SiC2 to be
triangular instead of linear as shown above.

detect the the presence of these electronic states, and the energy difference of those

states with the ground state. [64] But, without calculations it is impossible to assign

the features in various spectra to the structures of defects and surface anomalies. We

must be able to compare accurate quantum mechanical models for the ground and

excited states of these structures to experiment. Time Dependent DFT (TDDFT)

allows DFT methods to give predictions about excited states as well, and the method

is also very efficient when compared with other excited state methods. Thus, the next

step in AFIT’s drive towards semiconductor modeling is to test TDDFT on these

clusters, and benchmark the results with the excited states observed in experiments.

3



There have been a handful of SimCn cluster excited states detected in exper-

iment. The first “discovery” of an excited state cluster was actually in 1926 when

blue-green bands were identified in certain stars by Merril and Sanford [42]. It was

later shown that these spectral lines came from transitions between the two lowest

lying electronic states of SiC2. Michalopoulos et. al. correctly identified the trian-

gular structure of this molecule and detected these transitions using resonant two

photon ionization (R2PI) spectroscopy.[43] After this laboratory detection of SiC2,

a handful of optical transitions in the smallest of these clusters, SiC, were detected

using various spectroscopic techniques.[8, 11, 10, 29] As a result, there are at least

six electronic states of this molecule that have been observed in experiment: the X

3Π, A 3Σ−, B 3Σ+, C 3Π, b 1Π, and d 1Σ+ states. Later work by Grutter et. al.[29]

was able to obtain vibrational frequencies and excitation energies for the A 2Π and

B 2Σ+ excited states of the anion as well.

Numerous experiments have also been performed using anion photoelectron

spectroscopy (PES), where peaks that do not correspond to any allowed vibrational

transitions appear.[17] This leaves the possibility that they involve other isomers or

excited states. A peak in the spectrum of SiC3 likely corresponds to an excited state.

Another peak in the spectrum of Si2C3 likely corresponds to a low lying isomer, but

may also be from an excited state. There are also two possible excited state peaks

in the spectrum produced by Lineberger et. al. of Si2C4. The earlier PES work of

Nakajima et. al. may also have excited state information available, but only if the

contributions of the ground and excited states can be distinguished.[46]

These experiments can thus serve as a testing ground for the effectiveness

of various excited state quantum mechanical methods on SimCn clusters, but it is

also useful to compare with other computational methods. However, there are not

many calculations to compare with. There were a few theoretical studies of the

excited states of SiC, the smallest cluster I examined, in the 1980’s.[8, 38] There was

also a theoretical study of the excited states of Si2C. Finally, there was a study by

4



Rintelman and Gordan where two low lying states of the linear isomers of SiC3 and

Si2C2 were calculated.

1.1 Objective

In this thesis work, TDDFT and DFT were used to investigate the excited

states of SimCn clusters, using Gaussian 03 and similar quantum chemistry packages.

Predictions are made about the electronic spectrum and the character of the excited

states. Spectroscopic simulations are used in conjuction with various experimental

spectra to distinguish between ground and excited state information and assess the

accuracy of geometries and vibrational frequencies. The performance of any relevant

approximation schemes and levels of theory was determined and recommendations

for future calculations are be given.

1.2 Research Objectives/Questions/Hypotheses

In this research, I answer the following questions:

1) Can we expect many more excited states of these clusters in Photoelectron

spectra?

2) What will the spectrum look like of these excited states?

3) Can any inferences be made about the excited states of larger clusters?

4) How accurate is DFT/TDDFT with respect to experimental results for

excitation energies?

5) Are there any major shortfalls of TDDFT? Can these shortfalls be corrected?

1.3 Scope

This study is concerned with the excited electronic states using the ground state

geometries determined by Ms. Henry, Lt. Roberts, and Dr. Duan[31, 21] as starting

points, as well as the geometries of low lying isomers. I determine the equilibrium

5



geometries, vibrational frequencies, and excitation energies of the selected clusters

for the first four excited states in hopes of aiding experimental detection. I also

present insights into the bonding of silicon and carbon by examining the orbital

interactions, and suggest ties between the work that has been done with clusters to

the silicon carbide surface.
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2. Theory

2.1 Chapter Overview

The purpose of this chapter is to provide the preliminaries needed to under-

stand the results of the calculations I have completed. The quantum mechanics of

nuclei moving within these clusters is the easiest place to start. From there I will

move to the quantum mechanics of the electrons which ultimately drives the mo-

tion of the nuclei. After that, I will talk about density functional theory and time

dependant density functional theory, which are the specific theoretical models used

in this work. Finally, I will put everything together in the context of photoelec-

tron spectroscopy and other experiments which will serve as an ample foundation to

understand the results I have generated.

2.2 Quantum Mechanics [16]

Quantum mechanics has been the most influential theory in physics and chem-

istry for the past century. It postulates that all physical systems can be described

by a wave function, Ψ. For a molecule like SiC, the wavefunction is a product of

parts that specify the locations of each particle in the whole molecule, e.g.:

ΨSiC = Ψcarbon−nucleusΨsilicon−nucleusΨelectrons

The wavefunction can be used to calculate a a probability density function,

ρ(~r, t) for locating the particles in the system at a given position ~r and time t. This

is given by the absolute value squared of the wavefunction:

ρ(~r) = 〈Ψ(~r) | Ψ(~r)〉 = |Ψ(~r)|2
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When integrated over all space, this probability cannot exceed one, and this con-

straint is known as the normalization condition:

∫

|Ψ(~r)|2 dr = 1

The wavefunction for a system changes in time according to the time dependent

Schrodinger equation. In Cartesian coordinates, this is:

id/dtΨ(~r, t) = Ĥ(~r, t)Ψ(~r, t) = − p2

2m
Ψ(~r, t) + V (~r, t)Ψ(~r, t)

− p2

2m
Ψ(~r, t) = ~

2∇2Ψ(~r, t)

The Hamiltonian, Ĥ, relates the state of the particles to the total energy of the

system. This energy can be divided into kinetic energy, ∇2Ψ(~r, t), and potential

energy, V (~r, t)Ψ(~r, t).

The Hamiltonian is the an important example of what is known as an operator.

If we operate on the wavefunction by the Hamiltonian, we get an expression for the

energy of the system. In fact, for any measurement taken of a quantum mechanical

system, the quantity being measured can be expressed with an operator. For the

sake of generality let us consider an arbitrary operator, Ô. Since the probability

distribution is normalized, the average or expectation value of the operator is given

by:
∫

Ψ∗(~r, t)Ô(~r, t)Ψ(~r, t)dr =
〈

Ô(~r, t)
〉

Thus, the total energy of a quantum mechanical system is given by:

∫

Ψ∗(~r, t)Ĥ(~r, t)Ψ(~r, t)dr =
〈

Ĥ(~r, t)
〉
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The wavefunction Ψ can be expressed as a normalized vector with values for

every point in space and time. When this is done, the products and integrals above

become matrix multiplication with the operator O being left and right multiplied

by the two vectors to give a single value. To express this in “bra-ket” notation, the

most common notation used in quantum mechanics, we have:

∫

Ψ∗(~r, t)O(~r, t)Ψ(~r, t)dr = 〈Ψ|O |Ψ〉

The vectors are known respectively as the “bra,” 〈Ψ∗|, and the “ket,” |Ψ〉. Using

this compact notation, the overlap of two different wavefunctions is:

∫

Ψ∗

1(~r, t)Ψ2(~r, t)dr = 〈Ψ1| Ψ2〉

It is also useful to note that what we normally think of as a function of space, Ψ(~r)

can also be thought of as the overlap integral of the vector |Ψ〉 and a dirac delta

function centered at the coordinate r, which can be expressed by:

〈r |Ψ〉 = Ψ(r)

Normally, we do not already know the solution for the wavefunction for a system. In

some problems the solution for the wavefunction can be as simple as quick boundary

value problems, while solutions for the molecules in this research can require days

to evaluate on supercomputers.

Because the operators can be expressed as matrices, linear algebraic methods

are used to get answers. We can express the wave function vector in terms of a

convenient basis, such as Cartesian coordinates, plane waves, spherical harmonics or

any other set of functions that can represent the wavefunction accurately. Once this

is done, a solution is found by finding the eigenvectors that diagonalize the Hamil-

9



tonian. Thus the time independent Schrodinger equation becomes an eigenvalue

problem and the solution becomes:

Ĥ |m〉 = εm |m〉

where the |m〉 and εm are the respective eigenstates and eigenvalues of the Hamilto-

nian operator. The wavefunction is then expressed as a linear combination of these

eigenvectors.

Ψ =
∞

∑

m=0

cm |m〉

If the original basis was infinite and complete, the lowest eigenvalue would be the

ground state. The time dependence of the each eigenstate can then be expressed in

terms of the original Schrodinger equation in matrix form:

i
d

dt
cm(t) |m〉 = cm(t)Ĥ |m〉 = εmcm(t) |m〉

This has the solution:

cm(t) = cm(0) exp(±iεmt/~)

This solution shows that for a system described by a single eigenstate, the probability

density does not change over time, and the system will not radiate energy away

electromagnetically. However, a system described by a mixture of two or more

non-degenerate eigenstates will have a changing probability density that will emit

energy via electromagnetic radiation until it settles at a lower energy eigenstate.

As a result, quantum mechanical systems can only stop at these eigenstates, which

means that the energy they radiate or absorb can only come in discrete amounts. A

spectroscopist can measure these discrete amounts of energy and to know what state

the system was in before and after these transitions, but only if there are theoretical

results for the relative energies of these states.
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The Schrodinger equation mentioned above has an analytic solution for only

a few systems. In the case that the potential energy does not vary with time, the

equation is separable between time and space. The time dependent part of the

wavefunction can then be expressed as:

〈t |Ψ〉 = eiEt/~ |m〉

In the absence of a potential, the spatial solution of the Schrodinger equation be-

comes a linear combination of plane waves. The center of mass for any molecule could

be described by such linear combinations, but this does not help us to understand

the interaction between the particles that make up the molecule.

2.2.1 Computation of Molecular Systems [62]. The solution for a molecular

problem is a coupled differential equation of too many variables to handle all at once,

so chemists simplify the picture and work up to every last detail. Approximations are

made based on reasonable chemical and physical arguments to allow the computer

to reach a solution, and then these approximations are corrected with subsequently

higher level calculations. These approximations allow the computer to converge to

a solution, but they also give a framework for people to understand the results and

(if they are talented enough) make predictions without turning on the computer.

The first approximation that is traditionally made is called the Born-Oppenheimer

approximation. The mass of a proton (and thus any nucleus) is over 900 times the

mass of an electron. Thus the kinetic energies of the nuclei are small compared to the

rest of the system. The Born-Oppenheimer approximation assumes that the nuclei

barely move when compared with the electrons, so that the electrons adjusts before

the nuclei can. At every nuclear arrangement there is an electronic configuration

that minimizes the total electron energy, and the energies of these electron configu-

rations can can be used to generate a potential energy surface. The low point of the
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valleys of that potential energy surface determines the most stable positions of the

nuclei.

At first glance, we have 3M (M being the number of nuclei) total degrees of

freedom and therefore, 3M is the dimension for this potential energy surface, but

this is quickly reduced. However, I have already mentioned that the center of mass

can be used to describe the translation of the molecule as a whole, and this reduces

the total degrees of freedom by three. The coordinates can also be rotated without

changing the locations of the nuclei with respect to one another, further reducing

the degrees of freedom. Thus, for a diatomic molecule we only need to specify the

interatomic distance. For a triatomic molecule we only need two more coordinates,

and for every atom greater than three we need an additional three coordinates. If a

molecule is symmetric, like Si4C4, even fewer coordinates need to be specified.

A gradient in the potential energy surface exerts a force on the nuclei that

causes the molecule to change shape. Thus the low points of the potential energy

surface are stable geometries, known as isomers, that may or may not occur in

nature. The relative proportions of each isomer can be described by a Boltzman

distribution or a similar distribution from statistical mechanics, and except at very

high temperatures the the lowest energy isomer will often be the one that is most

likely found. Finding these low lying isomers computationally is a process known as a

geometry optimization. A quantum chemistry program like Gaussian, NWChem, or

Turbomole takes a small sample of the potential energy surface at a geometry given

by the user, to see what direction the forces are pointing and how curved the surface

is. Based on that sample, the program guesses what the minimum energy nuclear

configuration will be. The process is repeated in steps until the guesses converge

and the forces are essentially zero.

2.2.2 Vibration Frequencies and Normal Modes. Although the first deriva-

tive of the potential energy surface is zero when the geometry is minimized, the
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second derivative of the potential energy surface is not. The interaction between the

nuclei can be treated as a system of coupled harmonic oscillators where the non-

zero second derivatives are the spring constants. This approximation helps because

the harmonic oscillator has a relatively simple analytic solution, which I will only

summarize here because the full solution can be found in any introductory quantum

mechanics textbook[16]. The total energy of a particle in a quadratic potential well

is given by the sum of the kinetic and potential energies:

E = T + V =
p2

2m
+

1

2
mω2x2

Here, ω is the characteristic frequency of the oscillator, and m is the mass of the

particle in the harmonic well. The ground state of the system is a Gaussian function

centered at the bottom of the well:

〈x |ϕ0〉 =
(mω

π~

)1/4

e−
1

2

mω

~
x2

Furthermore, the excited states are given by:

〈x |ϕn〉 =
1√
n

1√
2n

[

√

mω

~
x−

√

~

mω

d

dx

]n

ϕ0(x)

Finally, energy eigenvalue for the nth state is ~ω (n+1/2).

The one dimensional harmonic oscillator can quickly be generalized to multiple

dimensions, and it is easy to show that the resulting multidimensional wavefunctions

are the product of one dimensional harmonic oscillator wavefunctions.

With this approximation in mind, a quantum chemistry program starts with

the ground state geometry and calculates the energy and gradient for slight shifts

of each of the M nuclei in all three directions. With this information the second

derivatives, k̂, with respect to nuclear coordinates are obtained, and an equation for
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Figure 3 Atomic Orbitals for Atomic Silicon
These contour plots show the 1s (1), 2s (2), 2p (3,4,5), 3s (6) and 3p (7,8,9) orbitals
of atomic silicon.

the system’s vibrational behavior can be expressed in matrix form:

m̂ ~̈X = k̂ ~X

Here, m̂ is a diagonal matrix containing the nuclear masses, and the matrix k̂ is

known as a “Hessian”. The eigenvalues of this system are the vibrational frequencies,

and the eigenvectors are known as the normal modes. While the geometries of many

systems can not be directly measured, the vibrational frequencies can be measured

in many different ways. Furthermore, the normal mode wavefunctions can be used

to approximate the nuclear wavefunctions as solutions to multidimensional quantum

mechanical harmonic oscillators. This gives an analytic expression for the overlap

integral between two nuclear wavefunctions, which is proportional to the intensity

of transitions from one vibrational state to the next.[14] The height of vibrational

peaks should then be proportional to the overlap integral of the respective transitions,

and the accuracy of a given geometry is can be supported or refuted by vibrational

spectroscopy.

2.2.3 The Hydrogen Atom and Atomic Orbitals [16]. Another analytic so-

lution to the Schrodinger equation is for the hydrogen atom and other single electron
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ions. It is very important because it is the foundation for understanding electronic

state models. The potential energy has a simple -1/r dependence, so separation of

variables can be used to obtain radial and angular components to the eigenstates of

the wavefunction.

〈r, θ, ϕ |Ψ〉 = Rn(r)Y l
m(θ, ϕ)

The Y l
m(θ, ϕ) are spherical harmonics, while the radial dependence Rn(r) has the

form:

Rn(r) = Ln(r)e−r/a0

where Ln is the nth Laguerre polynomial, a class of orthogonal polynomials that are

the solution to the radial equation.

The eigenvalues of the spatial Hamiltonian are specified by n, l, and m, and

these three are known as quantum numbers. The number n denotes the total elec-

tron energy, the number l denotes the angular momentum, and m denotes the z

component of the angular momentum. There is a fourth quantum number, s, which

accounts for the spin (a relativistic effect [5]) of the electron, either α (spin up) or

β (spin down). The eigenfunctions that these quantum numbers specify are known

as orbitals, and they form the foundation for understanding the way electrons be-

have in other atoms. The Pauli exclusion principle prevents any two electrons from

occupying the same quantum state, so instead of all the electrons dropping to the

lowest energy orbital, each orbital is filled by at most one α and one β electron.

These orbitals distort radially as the electrons fill these shells, but much of the same

spherical symmetry remains. They can be classified by the number and location of

nodal planes, places where the wavefunction goes from positive to negative.

As a visual aid, the atomic orbitals for silicon can be seen in Figure 3, and

the atomic orbitals for carbon are qualitatively just like the first five silicon atomic

orbitals in the same figure. These pictures are contour plots of each orbital, where

the positive and negative contours are differentiated by the grey shading. Because
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the contour value is non-zero (typically .01 throughout this paper), the location of

the nodal planes may not be immediately evident, but they can be found by looking

for the midway point between the positive and negative contours shown.

The spherical functions are known as “s” functions and the polarized functions

are known as “p” functions. An s function has no nodal plane, while a p function has

one. Functions with more nodal planes exist as well, where the angular dependance

changes a great deal. For example, a function with two nodal planes, the xz and yz

planes, can be designated a “dxz” function. The number of nodal planes increases

the kinetic energy of an orbital, and as a result the atomic d orbitals are not occupied

in silicon or carbon, although they sometimes participate in silicon bonding.

Table 1 Conversion of Atomic Units to SI Units [62]

Physical Quantity Conversion Factor X Value of X (SI)

Length ao 5.2918 x 10−11 m
Mass me 9.1095 x 10−31 kg
Charge e 1.6022 x 10−19 C
Energy Ea 4.3598 x 10−18 J
Angular Momentum ~ 1.0546 x 10−34 J s

Wave function a
−3/2
o 2.5978 x 1015 m−3/2

Also, the useful “atomic units” system is based on the hydrogen atom, and it

greatly reduces the number of physical constants in the equation for the Hamiltonian

of any molecular system. Mass, charge, energy, and distance are all expressed in

terms of the electron mass, electron charge, Planck’s constant, and the Bohr radius

of the hydrogen atom. The final unit for energy is called the hartree. One hartree

is equal to 27.211 eV, which is twice the binding energy of a hydrogen atom. The

atomic units system is summarized in Table 1.
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Figure 4 Molecular Orbitals for a 1Σ SiC

2.3 Basic Molecular Orbital Theory [50, 2]

While there are many qualitative lessons that can be learned from the hydro-

genic atom, the move to molecules adds more complexity. To understand much of my

research, the reader must understand some simple molecular orbital theory. The ap-

proach that I have found quite helpful when describing the orbitals of SimCn clusters

is known as LCAO, or linear combination of atomic orbitals. As its name implies, it

takes the approach that the molecular orbitals can be described as combinations of

the atomic orbitals.

When two atoms come close together their atomic orbitals start to overlap, ei-

ther constructively (in phase) or destructively (out of phase). When the orbitals add

constructively, they form “bonding orbitals”, where electron density collects between

the two atoms. When they add destructively, the resulting orbital is known as an

“anti-bonding orbital”. An anti-bonding orbital will form a nodal plane somewhere

between the two atoms, so that the wavefunction will be shaded on one and unshaded

on the other in a contour plot. To help illustrate this, the orbitals calculated for SiC

can be seen in Figure 4.

As the observant person can tell, the first six orbitals look just like atomic

orbitals. This is because much of the orbital interaction in many molecular systems
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is largely restricted to the valence electrons. This is also true with carbon and silicon,

where each have four valence electrons and the rest of the electrons are not greatly

affected by chemical processes. In the rest of my orbital plots, I won’t include these

“core” orbitals because they don’t change much at all.

But starting with orbital 7, we can see the LCAO theory in action. This orbital

is the result of adding the valence s functions in phase from carbon and silicon, and

is a bonding orbital. Orbital 8 is an antibonding orbital, formed mostly from the

subtraction of the same two atomic s orbitals. In a linear molecule, the axis along

the chain of the molecules is designated the z-axis, and the molecular orbitals that

are symmetric around this axis are designated as σ orbitals. Clearly, orbitals 7 and

8 are σ orbitals.

In a similar manner, orbitals that transform like the functions x or y upon

rotation are known as π orbitals. These designations come from the same idea as

the atomic orbitals, but using greek versions of s and p to distinguish molecular

orbitals from atomic orbitals. Thus, it is easy to see that orbitals 9 and 10 of SiC are

bonding π orbitals. Finally, we can understand orbital 11 as a linear combination of

the pz orbitals of carbon and sillicon. It is a bonding σ orbital because the atomic

orbitals are in phase and we can see the density between the two atoms.

2.3.1 Symmetry and Group Theory. In other molecules, the symmetry of

each orbital is designated by the symmetry group irreducible representation (known

as “irreps”) of the highest symmetry that the molecules has. Most of my molecules

could be grouped into what is known as the C2v symmetry group, and there is an

analogy between this group and the linear molecules (members of the C∞v symmetry

group). To see this analogy, first select the axis with the highest symmetry as the z

axis. If the molecule is planar, select the y axis so that all the atoms are in the yz

plane, but otherwise select a yz plane that gives the molecule reflective symmetry.

Once this is done, there are four symmetry irreps. The irrep A1 is like the sigma
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orbitals, if you reflect the wavefunction about the y or x axes, it does not change.

The irreps B1 and B2 behave like πx and πy functions with respect to reflection.

The final irrep of this symmetry group, A2, behaves like the simple function xy

upon reflection about the xz or yz planes. Each orbital is then designated with the

lowercase version of the irrep, just as atomic orbitals use lowercase designations.

Since these irreps transform like functions of x and y, they can also be multiplied

together in simple ways that are tabulated in group tables and coded into quantum

chemistry programs.

As mentioned before, the atomic orbitals and the orbitals of linear molecules

can also be described by the C∞v symmetry group. However, the rules of multiplica-

tion for this groups are also the rules for the addition of angular momentum. Those

rules can be summarized as adding the z component of the angular momentum. Any

σ and s orbitals have angular momentum z-component values of 0. The complex

linear combination of π orbitals, πx + iπy, has an angular momentum z-component

of +1, and πx - iπy has an angular momentum z-component value of -1.

π+ =
1√
2
(πx + iπy)

π− =
1√
2
(πx − iπy)

For example, a doubly occupied π+ orbital has a total angular momentum of 2, while

a singly occupied pair of π+ and π− orbitals will have a total angular momentum of

0. The resulting two electron wavefunction will have the same axial symmetry as an

atomic or molecular orbital with the same total angular momentum.

2.3.2 Spin and Term Symbols. Once we know some basic information

about the orbitals that are occupied by a molecule in a certain electronic state,

we have to be able to express that information succinctly. This is done by term

symbols. A term symbols has three parts, the spin multiplicity, the symmetry or
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Figure 5 Orbital Occupation Diagram For Two States of SiC

angular momentum of the electronic state, and a letter to distinguish it from all the

other electronic states. I have provided Figure 5 as a visual aid to illustrate the

following process in the context of identifying two states of SiC.

The spin multiplicity of a state gives us information about how the α and β

electrons occupy orbitals. In this research, all the neutral molecule spin multiplicities

are either triplet or singlet. In a singlet state, every α electron is paired with a β

electron. But, in a triplet state there are two more α electrons than β electrons, so

by the Pauli exclusion principle these extra two electrons can not occupy the same

orbital.

The next part of the term symbol is the result of group multiplication of the

occupied orbital symmetry irreps. This part is written using uppercase instead of
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lowercase symbols. So for the simple two electron case mentioned above, if the total

angular momentum was 2, the symbol would be “∆”. If the total angular momentum

was 0, the symbol would be “Σ.”

The letter used to differentiate between states is a capital “X” if the state is

the ground state. If the state is of the same spin multiplicity as the ground state,

this letter is also capitalized, and the letters of the alphabet are used starting with

“A”. If the state has a different spin multiplicity, lowercase letters are used instead,

yet still starting with “a”.

Putting everything together, we can take the example of the ground state of

SiC. This molecule has two α electrons occupying different orbitals alone, so we know

it is a triplet molecule. If we add the angular momentum we get a total of 1, leading

to a Π state. Since it is the ground state, we can now designate it as X 3Π. The

other term symbol in Figure 5 can be found using the same methodology. So how

do we do calculations on this and other molecules?

2.4 Many Electron Quantum Mechanics

For a molecular system in atomic units, The Hamiltonian has the form:

Ĥ = −1

2

N
∑

i=1

∇2 − 1

2

M
∑

A=1

1

MA
∇2 −

N
∑

i=1

M
∑

A=1

ZA

riA
+

N
∑

i=1

N
∑

j<i

1

rij
+

M
∑

A=1

M
∑

B>A

ZAZB

RAB

The terms on the right hand side are, from left to right, the kinetic energy of the

electrons, kinetic energy of the nuclei, nuclear-electron attraction, electron-electron

repulsion, and nuclear-nuclear repulsion. The MA are the masses of each nucleus

expressed in atomic units, ZA are the atomic numbers of each nucleus. The distance

between an electron and a nucleus is denoted by riA, between electrons by rij, and

between nuclei by RAB . These contributions to the energy are obviously summed

over all of the electrons and nuclei in the system. Because the interaction between

multiple electrons is an inseparable term in the Hamiltonian, methods used to arrive
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at analytical solutions break down and we are forced to make approximations and

solve the problem numerically.

Even after the Born Oppenheimer approximation is made we are left with an

electronic Hamiltonian of the form:

Ĥelec = −1

2

N
∑

i=1

∇2 −
N

∑

i=1

M
∑

A=1

ZA

riA
+

N
∑

i=1

N
∑

j<i

1

rij
= T̂ + V̂Ne + V̂ee

The wave function for the electrons is a product of individual electron wavefunctions,

known as a Hartree product.

Ψ = ψ1ψ2...ψn

However, that product alone is not enough to describe the system. Elementary

particles like electrons are indistinguishable from other like particles, but the Hartree

product mentioned above would allow us to examine each electron as if we could tell

them apart. The probability of finding an electron has to be the same for any electron

at any location, and this means that the wavefunction must be either symmetric or

antisymmetric with respect to exchanging particles, but not a mixture of both.

Ψ = ψ1ψ2...ψn = ψ2ψ1...ψn Symmetric

Ψ = ψ1ψ2...ψn = −ψ2ψ1...ψn Antisymmetric

By definition, bosons have a symmetric wavefunction that will be exactly the

same if you switch two particles. Fermions, which include all electrons, have an anti-

symmetric wavefunction that will be exactly negative after a switch. If we pretended

for a moment that two electrons of the same spin did somehow occupy the same spa-

tial orbital, we would find that switching them would not make the wavefunction

negative, and the wavefunction would not be antisymmetric. Thus the requirement

that the multi-particle wavefunction be antisymmetric limits the number of like-spin
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electrons in an orbital to one. Since there are two types of electron spin, α or β, the

highest number of electrons permitted in a spatial orbital is two. This is the source

of the Pauli Exclusion Principle and the shell structure that gives the periodic table

it’s shape.

2.4.1 The Hartree Fock Approximation. To meet the antisymmetry re-

quirement, a Slater determinant can be used to represent the wavefunction:

|Ψ〉 =
1√
N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|1 : ψ1〉 |1 : ψ2〉 ... |1 : ψN〉
|2 : ψ1〉 |2 : ψ2〉 ... |2 : ψN〉
... ... ... ...

|N : ψ1〉 |N : ψ2〉 ... |N : ψN〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

You can think of a Slater determinant as one orbital occupation diagram, like the

one shown previously for SiC in Figure 5. All the Slater determinant does is sum up

all the possible combinations of a pattern of electrons occupying the same orbitals

so that you can no longer tell them apart. It can be shown mathematically that

any antisymmetric wavefunction can be expressed as a linear combination of deter-

minants, but the number of determinants we need is unknown. The Hartree Fock

approximation simply finds the lowest energy single determinant by the following

procedure. Recall that the Hamiltonian for only the electronic energy is:

Ĥelec = −1

2

N
∑

i=1

∇2 −
N

∑

i=1

M
∑

A=1

ZA

riA

+
N

∑

i=1

N
∑

j<i

1

rij

= T̂ + V̂Ne + V̂ee

The summations over i can be removed and approximated by N one-electron Fock

operators, defined by:

f̂i = −1

2
∇2 −

M
∑

A=1

ZA

riA

+ VHF (i)
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Here VHF is is the average potential felt by electron i from the other N-1 electrons.

Solving the eigenvalue equation leads to the Hartree Fock ground state energy of the

system. Because both of these equations invoke one another, they have to iterate

back and forth until they agree. This procedure in general is known as Self-Consistent

Field or SCF, and it is the back bone of any quantum chemical calculation.

In truth, although the Hartree Forck theory is foundational to understanding

much of what happens in quantum chemistry, it doesn’t give very good answers as

far as we are concerned. The energy difference between the Hartree Fock energy and

the real answer is called the correlation energy, and other determinants are needed

to capture it. Procedures such as Multiconfigurational SCF (MCSCF), Complete

Active Space SCF (CASSCF), and Configuration Interaction (CI) have been created

to capture the correlation energy, by using more and more determinants. However,

each additional determinant makes the calculation more and more expensive, and

one of the goals of this research is to find a cheap way to get good results. My

research took another route to solve for the electronic energy.

2.5 Density Functional Theory

Another approach to the solution of these molecular systems is known as den-

sity functional theory, where the electron density, ρ(r), is used as the principle vari-

able instead of the many-body wavefunction. I will present some of the first attempts

to do this for historical reasons, and eventually present the methods used in this re-

search.

2.5.1 The Thomas Fermi Model. The 1927 Thomas-Fermi Model was

the first attempt to use the electron density as the principal variable in atomic

calculations. Based on statistical mechanics instead of quantum mechanics, it used

24



the same electron kinetic energy as that of a uniform electron gas.

ETF [ρ(~r)] =
3

10
(3π2)2/3

∫

ρ5/3(~r)dr − Z

∫

ρ(~r)

r
d~r +

1

2

∫∫

ρ(~r1)ρ(~r2)/r12d~r1d~r2

This result was not very accurate at all, but it was the first example of a real density

functional theory that did not bother with the wave function at all. At the time

however, there was no proof that this was physically justified. Rather, the Thomas

Fermi approach was based on assumptions and intuition. It took a little over 30

years for the general approach of using the density as the primary variable to be

mathematically validated.

2.5.2 The Hohenburg – Kohn Theorems. It was proven by Hohenburg

and Kohn that “the full many particle ground state is a unique functional of the

density.”[36] This can be proven in the context of molecules by contradiction. Assume

two different isomers or molecules somehow led to the same ground state electron

density.

VNe ⇒ Ĥ ⇒ Ψ ⇒ ρ(r) ⇐ Ψ′ ⇐ Ĥ ′ ⇐ V ′

Ne

The difference between the nuclear-electron attraction causes differences in the Hamil-

tonian and also the ground state wavefunction for the primed and unprimed cases

above. By the variational principle, we know that the lowest energy for the unprimed

Hamiltonian will come from the unprimed wavefunction.

E0 = 〈Ψ| Ĥ |Ψ〉 < 〈Ψ| Ĥ |Ψ′〉

= 〈Ψ| Ĥ , |Ψ′〉 + 〈Ψ′| Ĥ − Ĥ ′ |Ψ′〉 = E ′

0 + 〈Ψ′| Ĥ − Ĥ ′ |Ψ′〉

The same, however, can be said of the primed variables:

E ′

0 < E0 + 〈Ψ| Ĥ ′ − Ĥ |Ψ〉
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Because the only difference between the two Hamiltonians is the external potential

which is integrated over the same density for both primed and unprimed variables,

addition of these two equations leaves a contradiction.

E0 + E ′

0 < E0 + E ′

0 → 0 < 0

Thus, for the same ground state density to appear in two molecules, those two

molecules can not be different. A solution for the ground state density determines

the ground state wave-function and thus all the energetic properties of the system,

and by definition the ground state density (and any other density for that matter)

is determined by the wavefunction.

This means a one to one mapping exists between ground state densities and

wavefunctions. In the second Hohenburg Kohn theorem, this one to one functional is

used to show that the variational methods that are so crucial to finding the ground

state of a system by wavefunction methods can be used on the density as well.

However, the form of the unique functional that maps the density to the wave-

functions is unknown, and a great amount of effort has been expended in trying to

find approximate functionals that can give accurate results.

2.6 The Kohn Sham Approach

The first strides toward a chemically relevant density functional theory were

undertaken by Kohn and Sham in 1965. The contribution of the coulomb repulsion

energy of an arbitrary charge density has a well known form from classical physics.

The problem however, is that the classical equation assumes all the electron density

interacts with all of the rest of the electron density, when in fact the density from

one electron does not interact with the rest of the density from that same electron.

This self interaction demands that a non classical term is added that must also be
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approximated, Encl.

Eee[ρ] =
1

2

∫∫

ρ(r1)ρ(r2)

r12
dr1dr2 + Encl

Next, in the switch from the wavefunction to the density, we have lost important

information about the kinetic energy of the system. The ∇2 operator for the kinetic

energy operates on the wave function before the wavefunction is multiplied by itself

to find the probability density. In the form of an equation:

Kinetic Energy = 〈Ψ
∣

∣∇2
∣

∣ Ψ〉 6= ∇2ρ

The relatively simple act of taking the second spatial derivative of the wavefunction

cannot be applied to the electron density, and this creates problems because the

shell structure comes from the second spatial derivative of the wavefunction. The

electronic shell structure is the foundation of chemistry, and if this shell structure is

not reproduced, as was the case with many of the earliest density functional theories,

chemical bonding cannot be modeled.

Kohn and Sham reproduced this shell structure by using orbitals similar to the

Hartree Fock method described above. However these Kohn-Sham orbitals are the

solutions of a density functional theory based one electron operator instead of the

Fock operator. In fact, the Hartree Fock equations are a special case of the Kohn

Sham equations. The form of the Kohn Sham equations are:

fKSϕm = εmϕm

[

−1

2
∇2 + Veff(r1)

]

ϕm = εmϕm

Veff(r1) =

∫

ρ(r2)

r12
dr2 + VXC −

M
∑

A

ZA

r1A
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The non-classical contributions of the coulomb and kinetic energies mentioned above

are combined into what is known as the exchange-correlation functional, VXC . The

exchange correlation energy is the only approximation that has been made, every-

thing else is in principle exact. So, instead of paying the computational price for

multiple determinants, the answer is improved by finding better approximations for

the exchange-correlation functional.

2.6.1 Local Density and Local Spin Density Approximations. The simplest

method to treat the exchange correlation term is known as the Local Density Ap-

proximation (LDA). This method is based on what the exchange correlation energy

would be in a uniform electron gas of the same density. The Local Spin Density

Approximation (LSDA) is similar, dealing with the respective densities of α and β

electrons instead of both at once. The exchange term for this approximation has an

analytic form, which is

εX = −3

4

3

√

3ρ(r)

π

The correlation term however, does not have a known analytic form. However Monte

Carlo simulations done by Ceperly and Alder in 1980 have been fit by various in-

terpolation schemes, so that an analytic expression can be used in calculation. The

most commonly used fits are known as those presented by Vosko, Wilk, and Nusair

(VWN) in 1980. Of course, these approximations are no longer valid in situations

where the electron density changes over space, which includes every molecule.

2.6.2 Generalized Gradient Approximations. To compensate for changing

densities, generalized gradient approximations were introduced. Treating the ex-

change correlation energy as a Taylor expansion about the density at every point

gives the form

EGEA
XC [ρα, ρβ] =

∫

ρεXC(ρα, ρβ)dr +
∑

σ

∫

Cσ,σ′

XC (ρα, ρβ)
∇ρσ

ρ
2/3
σ

∇ρσ′

ρ
2/3

σ′

dr.
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This is known as the gradient expansion approximation (GEA), but it also fails when

applied to molecular systems. A more successful approach has been generalized

gradient approximations (GGA) of the form

EGGA
XC [ρα, ρβ] =

∫

f(ρα, ρβ,∇ρβ,∇ρβ)dr

There have been many choices for the functional f, but one in particular should

be mentioned here since it is used in this research. In 1988 Lee, Yang, and Parr

developed a correlation functional (LYP) based on a highly accurate wavefunction

approach to the helium atom containing only one parameter.

2.6.3 Hybrid Functionals. Hybrid functionals combine the good qualities

of the LDA and the GGA’s by offering exchange correlation functionals that may be

mixtures of the two and some amount of exact (HF) exchange. There are many of

these functionals, and the way to know what will work in a given situation is based

on what has proved successful in the past.

For this research, the B3LYP functional was used for most calculations because

of it’s proven success in previous work with these clusters. The form of this functional

is

EB3LY P
XC = (1 − a)ELSD

X + aEλ=0

XC + bEB88

X + cELY P
C + (1 − c)ELSD

C

The B stands for Becke, the originator of both this functional and the B88 functional

for the exchange. The 3 stands for the three empircally determined parameters, a, b,

and c, used in the functional, and the LYP means that the LYP correlation mentioned

above is used as well. The functional performs surprisingly well even with situations

that weren’t included in the original experimental set.
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2.7 Time Dependent Density Functional Theory

As noted before, the external potential inside the Hamiltonian determines the

time evolution of the wavefunction via the Schrodinger equation.

id/dtΨ = ĤΨ

But we also know that the density at any point in space is determined by the wave-

function. Although the Hohenburg-Kohn theorem proved that there is a mapping

from the ground state density to the external potential, a system evolving in time

is not in the ground state. Runge and Gross[28] formalized time dependent density

functional theory and extended the Hohenburg-Kohn theorem’s into the time do-

main, by proving that two spatially different external potentials cannot induce the

same time dependent densities. To sketch the proof, which is done by contradiction,

suppose there were two different potentials that induced the same densities. Because

the gradient of a potential is force, which is the time derivative of current, these two

differing potentials will lead to different current densities. But since the divergence

of current density is the time derivative of density, the two differing potentials must

induce different densities.

Because of this extension of the Hohenburg-Kohn theorems into the time do-

main, we can then know that the wavefunction of a system is a unique functional

of the time dependent density, where the following set of hydrodynamical equations

governs the time evolution of the system:

∂/∂tρ(r, t) = −∇ · j(r, t)

∂/∂tj(r, t) = P[ρ](r, t)

P[ρ](r, t) ≡ −i 〈Ψ[ρ](t)| [ĵ(r), Ĥ(t)] |Ψ[ρ](t}〉
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While this is a formally exact way to find the solution to any time dependent system

and a useful way to visualize the relationship between DFT and many macroscopic

systems, it has the same problems that early DFT methods had in that it does not

represent the orbital structure of molecular systems. Instead, many applications of

TDDFT, to include this proposed research, build off of the Kohn-Sham ground state

theory of DFT by considering the first order response of the ground state density in

a time dependent electric field.

2.7.1 TD Density Functional Response Theory. A time dependent Kohn-

Sham scheme can be constructed from the principle of least action. Given a time

dependant Hamiltonian, the action is:

A =

∫
〈

Ψ(t)|i ∂
∂t

− Ĥ − v(r, t)|Ψ(t)

〉

dt = A[ρ] + const.

It is known from elementary quantum mechanics that minimizing the action

leads to the time dependent Schrodinger equation, but we are interested in finding

the analog in terms of the Kohn-Sham wavefunction. In theory, the expected value

of the Hamiltonian is no different than the energy given by the Kohn-Sham scheme.

Furthermore, the expected value of the time derivative operator simply becomes half

the time derivative of the density, which is precisely what the time derivative oper-

ating on the Kohn Sham orbitals produces. Thus the wavefunction and Hamiltonian

inside the action integral can be replaced entirely by their counterparts in the Kohn

Sham scheme. The time dependent Kohn-Sham equations quickly follow.

[

−1

2
∇2 + veff(r, t)

]

ψi = i
∂

∂t
ψi

veff(r, t) = v(r, t) +

∫

ρ(r, t)

r − r′
dr′ + vxc(r, t)
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The time dependent exchange correlation potential is handled by assuming

the exchange correlation contribution to the energy changes slowly with time. If the

action due to exchange correlation, Axc is Taylor expanded with respect to time and

only the first term is kept, the result is that the exchange correlation potential at a

given time is approximated by the exchange correlation of the density at that time.

This is known as the the adiabatic approximation.

vxc(r, t) =
δAxc

δρ(r, t)
∼= δExc

δρt(r)
= vxc[ρt](r)

Once the adiabatic approximation is made, it is possible to derive the first order

response, δρ, of the Kohn-Sham wavefunction to a perturbing potential, w(ω), with

frequency ω. We first assume a form for the response in the basis of the Kohn-Sham

orbitals, δPij:

δρ(r, ω) =
∑

i,j

ψiδPij(w)ψj

Solving for the response of a multi-body system, we then have:

δPij =
fj − fi

ω − (εi − εj)

[

wij(ω) +
∑

kl

Kij,klδPkl(ω)

]

The matrix K is known as the coupling matrix because it couples the shift in charge

density with the resulting change in potential. This term in the response equation

is known as vSCF .

δvSCF
ij (ω) =

∑

kl

Kij,klPkl

The elements of the matrix K require the evaluation of four center integrals for

potential and exchange correlation potential, because the potential felt by electrons

in orbitals i and j will change if the electrons in orbitals k and l have moved:

Kij,kl =
∂vSCF

ij

∂Pkl

=

∫ ∫

ψiψj
1

r12
ψkψl +

∫ ∫

ψiψj
∂2Exc[ρ]

∂ρα∂ρβ

ψkψl
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Because this coupling matrix multiplies the response matrix as part of the solution

to the response matrix, the response matrix requires a self consistent calculation.

Once a solution has converged, this calculation yields the dynamic polarizabilities of

the system. The implementation of this process involves casting the process above

into an eigenvalue problem.

Ω~FI = ω2 ~FI

The matrix is then block diagonalized to give the number of eigenvalues for Ω that

a user requests. These eigenvalues correspond to the excitation frequencies and the

eigenvectors FI can can be related to the oscillator strengths fI.

fI =
2

3
(EI − E0)

(

|〈Ψ0| x̂ |ΨI〉|2 + |〈Ψ0| ŷ |ΨI〉|2 + |〈Ψ0| ẑ |ΨI〉|2
)

As mentioned, TDDFT has performed extraordinarily well with respect to

other methods for determining excited states, especially when the computational

cost of the method is considered.

2.8 Experiments and Other Calculations

In this section I will summarize the experiments from which excited state data

was extracted and used to compare with my calculations. I also present a breif

review of other calculations that have been performed that have been useful for

comparisons.

2.8.1 Photoelectron Spectroscopy. Anion photoelectron spectroscopy has

become one of the most powerful tools for confirming the accuracy of quantum

mechanics calculations. It gives a great deal of information about the electronic

structure and vibrational states of the neutral and anionic species, and it allows the

species of interest to be isolated. The experiment by Dr. Lineberger et. al. uses a

photoelectron spectrometer, whose setup is shown in 6. The details of its operation
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Figure 6 The experimental setup of a photoelectron spectrometer

are only summarized here because further detail has been published elsewhere.[24] A

cold cathode discharge is used to form SimCn anions when Ar+ ions are accelerated

towards a SiC rod. The anions are accelerated towards a mass spectrometer and then

the desired species are selected using a Wien filter. The beam of anions is made to

intersect a 364 nm laser, which photodetaches the extra electron on the anions. This

leaves a neutral species and a free electron. The kinetic energy of the photodetached

electrons are then measured and recorded in a spectrum. The spectrum of electron

kinetic energy is related to the binding energy felt by each electron by conservation

of energy:

Ephoton − Eelectron = Ebinding + Eelectronic + Evibrational + Erotational
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This means that the relative energy of the resulting state of the neutral molecule

can be calculated from the location of the electron peaks recorded in the spectrum,

but more information can be obtained as well. The geometry of the anion is slightly

different from the ground state geometry of the neutral molecule. When the laser

detaches the extra electron in the anion, the electrons quickly readjust before the

nuclei can move at all, and the nuclei suddenly feel the potential energy surface

of the neutral state. Thus we have the wave function of a harmonic oscillator dis-

placed slightly from the center of the potential well, which is a mixture of the ground

state and the vibrationally excited states. The greater the displacement from the

ground state, the higher the probability of being in a higher vibrationally excited

state. Thus, the intensity of each peak gives information about the geometries of

the anion and neutral state, and the location of each peak give information about

the vibrational frequencies.

Of particular interest and illustrative value is the spectrum of Si2C4, shown in

Figure 7. Neutral Si2C4 is a ground state triplet molecule. The large peak A is from

electrons ejected with the vertical detachment energy, the energy difference between

the anion and neutral molecule at the anion geometry. The hundreds of anions that

made up this peak left the electron with all of the binding energy, and the molecule

had no energy left over for a higher electronic state or vibrational state. Peaks C, E,

G, and H have all been identified as transitions to vibrational modes of the ground

state triplet. These identifications are confirmed by the results of a Franck-Condon

simulation that can be seen in the dashed lines underneath the solid line spectrum.

This type of simulation takes the calculated vibrational modes and geometries and

finds the overlap integrals between the initial (in this case the anion) and final (in

this case the possible electronic and vibrational states of the neutral) states. The

overlap integrals are usually proportional to the heights of each peak, and since the

simulation fails to perfectly match the spectrum it likely means that the calculated

geometries are slightly off. However, the simulation does demonstrate that the peaks
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C, E, G, and H can all be explained by transitions to vibrational mode.That leaves

peaks B and D. From low level Hartree-Fock calculations it is known that two singlet

states lie close in energy to the triplet state, and it logically makes sense that peaks

B and D correspond to those singlet states. Beyond that however, it is difficult to

know which singlet state is really the lower in energy. Excited state theories like

TDDFT have the potential to tell the difference.

Similarly, the first unidentified peak in the SiC3 anion spectrum, peak I in

Figure 9, likely corresponds to an excited state in the neutral atom. The smaller

peaks, J, K, and L are indicative of vibrational modes for the excited state of peak I,

showing similar low frequency vibrations to the main peak A and its corresponding

vibrations B-F. Peak AA likely corresponds to transitions involving the nonlinear

isomers of SiC3.

In another work[20], the spectrum for Si2C3 was analyzed. However, it was

suggested that the unidentified peak H in the spectrum corresponds to transitions

involving a nonlinear isomer and not an excited electronic state. TDDFT has the

potential to strengthen this assignment by showing that no excited states align with

this energy.

A summary of the unidentified photoelectron spectroscopy peaks and the cor-

responding energy differences from the ground state anion to neutral are listed in

Table 2.

2.8.2 Other Forms of Spectroscopy. The fundamental physics of other

forms of spectroscopy relevant to this research are not all that different from the

essentials of photoelectron spectroscopy. The biggest difference is that instead of

measuring the kinetic energy of an electron as in photoelectron spectroscopy, most

of these experiments measure the absorption or emission photons.

High resolution Fourier transform emission spectroscopy was used quite a bit

in the study of SiC. P.F. Bernath et. al used it to detect the first known transition of
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Table 2 Binding Energies of Unidentified Peaks and the Difference From the Main
Peak.[20, 17]

Binding Energies (eV)

Molecule
Ground Unidentified

Peaks
Differences (eV)

C3Si 2.827 3.101 2.629 0.274 -0.198

C4Si2 2.543 2.652 2.738 0.109 0.195

Si2C3 1.766 2.245 2.297 0.479 0.531

SiC, the d1Σ+-b1Π band. [8] Their technique involves heating a SiC cathode to cause

the molecule to emit photons, which they then detected using a Fourier transform

spectrometer. Similar experiments were used to detect the A3Σ−-X3Π band. [10]

The method does allow rotational transitions to be measured, giving the geometries

of each state involved in the transition as well.

Laser Induced Fluorescence (LIF) spectroscopy involves electronically exciting

the molecules with a tunable laser, and this was the method used to detect the

C3Π−-X3Π band of SiC.[11] Once excited, the molecules emit photons as they return

to the ground electronic state, and additional hot bands reveal more information

about the rotational and vibrational states of the molecule.

Grutter et. al.[29] used a slightly different technique that was not named.

They trapped SiC anions in a Neon matrix by cooling the mixture to 5K. Then

they slowly neutralized the anions with a mercury lamp over the course of the two
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hours in which they grew the Neon matrix. During this time the absorption spectra

were measured of the SiC anion and neutral species. This technique was effective in

detecting vibrational bands of four states of neutral SiC and three states of its anion.

However, unlike the other methods, the Neon matrix left virtually no rotational

freedom, and they inferred no geometric data.

Resonant Two Photon Ionization (R2PI) was the technique that Michalpoulos

[43] et. al. used to prove that SiC2 was a triangular molecule. They used a Nd-YAG

laser to electronically excite the molecules, then further excited them with a 1570

Å excimer laser. Because the technique gives a very high resolution, they were able

to measure the rotational peaks around the 0-0 band. From that information they

were able to calculate the geometry of the molecule.

Low energy cathodoluminescences spectroscopy is the final spectroscopic method

that gave data about electronic state transitions in SiC, but it is unique from the

other methods I mentioned in that it does not treat clusters in the gas phases. In-

stead, electrons are accelerated towards a clean SiC surface through potentials from

.5 to 2 kV. Lower energy electrons do not penetrate as deep into the SiC crystal,

which means they will deposit their energy on the surface, and this will cause tran-

sitions related to the electronic states of different surface structures. Young, Jones,

and Brillson [64] successfully demonstrated the presence of such transitions in the

neighborhood of 1 to 2 eV. There is a possibility that some of these surface struc-

tures may correspond to the ground state geometries generated by researchers here

at AFIT.

2.8.3 Previous Calculations. In addition to experimental data, there have

been some useful calculations that should be mentioned. There is of course the AFIT

produced SimCn map from which I have all of the B3LYP/aug-cc-pVDZ geometric

data needed to start calculations of the excited states. This level of theory has proven

its success with the ground states of chains as long as SiC9 [19], and has appeared
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in many other calculations of other chains.[27] There are other density functional

calculations available in the literature [33], as well as MP2 and HF calculations

[46], but these use smaller basis sets and/or less successful exchange correlation

functionals. There are also MP2 and HF calculations Furthermore, they do not

mention excited states. Therefore, I will not refer to this work.

For the simplest molecule, SiC, a variety of MCSCF calculations are available

for the neutral and anionic species, including some excited states. The earliest of

this work was completed in the 1980’s. [52, 3, 38] Most recently, Z.-L. Cai and J.P.

Francois calculated the X2Σ+, A2Π, and B2Σ+ states of the anion using a variety

of methods, particularly coupled cluster and multireference configuration interaction

techniques. [12] Such calculations have been in good agreement with experimental

values for SiC. Therefore, I will cite the experimental results instead of the theoretical

results when assessing the accuracy of my answers for this molecule.

Another paper on the electronic states of Si2C was written in 1996 by A.

Splielfiedel et. al.[61] They used coupled cluster and configuratio interaction methods

to calculate slices of the potential energy surfaces for multiple singlet and triplet

states, along with vertical excitation energies at various geometries. However, they

did not give equilibrium geometries for the excited states or vibrational frequencies,

so I cannot make a one to one comparison with my calculations and their work.

Finally, for SiC3 and Si2C2, a very useful paper by Rintelman and Gordon [53]

uses second order multiconfigurational quasi-degenerate perturbation theory (MC-

QDPT) to calculate the relative energies of the lowest singlet and triplet states.

They also use other ab-initio methods to calculate the geometries and vibrational

frequencies for the isomers of these two clusters that I consider. This is the last

theoretical paper I have seen with information about excited states of these clusters.

Therefore, most calculations beyond the states mentioned in these papers will be the

first of their kind.
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a)

b)

Figure 7 Photoelectron spectroscopy of the Si2C4 anion.
Simulated (a) and actual (b) photoelectron spectrum of Si2C4 anion. The simulation
was created in Mathematica using B3LYP-aug-cc-pVDZ values of geometry and
vibration frequencies, and the experimental values for the locations of peaks A and
B. The simulation demonstrates that peak D is not a vibrational state of the linear
isomer.
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Figure 8 Photoelectron Spectroscopy of the Si2C3 anion.[20]
Actual photoelectron spectrum of Si2C3 showing the unidentified peak H.

Figure 9 Photoelectron Spectroscopy of the SiC3 anion.
Actual photoelectron spectrum of SiC3 showing that peak I is from a transition to
an excited state.
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3. Methodology

3.1 Chapter Overview

The purpose of this chapter is to present the method I used in this research.

My first goal was to get as many calculations done and processed as I could for the

purposes of spectroscopic and astronomical detection of these clusters. When this

was accomplished, I worked on consolidating the data into formats which could be

used as efficient tools for the analysis of the excited states. Thus, I will first go into

some of the technical issues of the various quantum chemistry packages I used, and

then on to some of the tools I used or wrote to complete these tasks.

3.1.1 Gaussian Input. Although I used NWChem and Turbomole for some

calculations, the bulk of this work was completed using the Gaussian 03 [26] compu-

tational chemistry package at the ASC MSRC[1] supercomputing center. I will walk

through some of the basics of using Gaussian 03 with the example shown in Figure

10. The Gaussian website, www.gaussian.com, can be consulted for information on

other types of calculations as well.

This particular input file is meant to optimize and calculate the vibrational

frequencies of an excited state of what is believed [56] to be the ground state isomer

of SiC3. Line 1 of this file requests 3 processors using the “Linda” parallelization

environment. Line 2 specifies the checkpoint file where results of the calculation will

be stored in binary. Line 3 is the route section, and it contains the computational

method Gaussian will use. I am requesting a geometry optimization (opt) with

the B3LYP/aug-cc-pVTZ level of theory, using TDDFT (td). The TDDFT root

to optimize will be the fourth of seven singlet roots requested. The blank fourth

line terminates the route section. Line 5 is the job title, and this section is also

terminated by a blank line. Line 7 gives the charge and multiplicity of the molecule.

Lines 8 through 15 specify the geometry using a symbolic z-matrix, where the first
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%nprocl= 3

%chk=ns4tzr13r1.chk

#p b3lyp td=(singlets nstates=7 root=4 fc) /aug-cc-pvtz opt

TDDFT Optimization

0 1

Si 0 0.0 0.0 zSi

C 0 0.0 yC 0.0

C 0 0.0 -yC 0.0

C 0 0.0 0.0 zC

Variables:

zSi 1.69218

zC -1.22678

yC 0.734263

--Link1--

%Chk=ns4tzr13r1.chk

#p b3lyp td=(singlets nstates=7 root=4 fc)

aug-cc-pvtz Geom=Check Guess=Read Freq

TDDFT Vibrations Job

0 1

Figure 10 Example of Gaussian Input For Rhomboidal SiC3

SCF Done: E(RB+HF-LYP) = -403.517381532 A.U. after 16 cycles

Convg = 0.7810D-09 -V/T = 2.0033

S**2 = 0.0000

KE= 4.021730551536D+02 PE=-1.155710805153D+03 EE= 2.488651749742D+02

Figure 11 Gaussian SCF Iteration Output

Excited State 3: Singlet-B2 1.0714 eV 1157.22 nm f=0.0009

16 -> 19 0.63818

This state for optimization and/or second-order correction.

Total Energy, E(RPA) = -403.476172188

Figure 12 Gaussian TDDFT Output
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----------------------------

! Optimized Parameters !

! (Angstroms and Degrees) !

---------------------- ----------------------

! Name Value Derivative information (Atomic Units) !

------------------------------------------------------------------------

! zSi 1.5919 -DE/DX = -0.0002 !

! zC -1.1834 -DE/DX = -0.0002 !

! yC 0.8828 -DE/DX = 0.0 !

------------------------------------------------------------------------

Figure 13 Gaussian Optimized Geometry Output

integer zero after each atomic symbol tells Gaussian to use cartesian coordinates

instead of traditional z-matrix coordinates. Line 17 starts another job, and much

is the same except that a hessian is being calculated with the “Freq” keyword to

obtain vibrational frequencies. The “Geom=Check” and “Guess=Read” keywords

tell Gaussian to get the geometry and the initial guess of the wavefunction from the

checkpoint file.

3.1.2 Select Low Lying Isomers for Analysis. Thanks to previous work,

[31, 21] the ground state geometries of each of the molecules are known at the

B3LYP/aug-cc-pVDZ level of theory using the quantum chemistry programs GAMESS

and Gaussian 98. However, certain isomers are close enough in energy to the ground

state that they may also appear in nature. As a result, I have included them in my

analysis as well since their excited states may also be of interest. All of the isomers

I chose to analyze are referenced in the results chapter.

3.1.3 Optimize and Calculate Hessians with DFT. For useful compar-

isons with the excited states, I performed geometry optimizations and Hessians of

the ground states with DFT at the B3LYP/aug-cc-pVDZ and B3LYP/aug-cc-pVTZ

levels of theory. This was simplified in many cases by the previous work of Ms.

Henry, Lt. Roberts, and Dr. Duan, and the availability of some experimental ge-
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ometries in other published literature. However, this step was necessary because of

integration grid differences between the various quantum chemistry packages.

3.1.4 TDDFT Optimizations and Hessians. Once I had completed the

ground state geometries in Gaussian 03, I ran excited state optimizations using

the ground state geometry as the starting point. I generally selected the first four

TDDFT roots to optimize, while requesting at least two more roots to ensure the

important ones were not skipped by the numerical algorithm. Because of time con-

straints, not every optimization was fully converged by the end of this research.

However, if the optimization did converge I also attempted to calculate Hessians.

3.1.5 Gaussian Output. Once the calculations were completed, the infor-

mation had to be extracted from the output files. The output file from an Gaus-

sian run is very long. It lists all the calculated information about the molecule in

question in the order it was calculated. But it also includes basis functions, SCF

convergence information, memory statistics, geometrical steps and a host of other

bits and pieces of information that have no spectroscopic signifigance whatsoever.

However, there are some key parts of the output that are very important that can

be seen in the figures in this chapter. For example, the frequency output gives the

vibrational frequency, normal modes, and reduced masses, all of which are needed to

do a Franck-Condon simulation. The end of an SCF iteration gives the total DFT

or HF energy of the molecule. All of this data may be important to someone in

spectroscopy.

3.1.6 Unix Scripting. To complete the process outlined above for as many

isomers as I did in the relatively short amount of time available, I had to write

many scripts in Unix. I needed a way to submit and resubmit optimization jobs

automatically, and I also needed to process the data and condense it into a form

that was useful for spectroscopy. To aid in these processes, I learned the powerful
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1 2 3

B1 B2 A1

Frequencies -- 258.3403 527.9079 554.7329

Red. masses -- 12.6197 13.0347 14.2658

Frc consts -- 0.4962 2.1403 2.5865

IR Inten -- 0.0000 0.0000 0.0000

Atom AN X Y Z X Y Z X Y Z

1 14 0.20 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.38

2 6 -0.54 0.00 0.00 0.00 -0.55 0.20 0.00 -0.52 -0.19

3 6 -0.54 0.00 0.00 0.00 -0.55 -0.20 0.00 0.52 -0.19

4 6 0.62 0.00 0.00 0.00 0.50 0.00 0.00 0.00 -0.49

4 5 6

A1 A1 B2

Frequencies -- 884.1597 1061.9425 2382.0084

Red. masses -- 14.1344 12.1397 12.3085

Frc consts -- 6.5101 8.0661 41.1472

IR Inten -- 0.0000 0.0000 0.0000

Atom AN X Y Z X Y Z X Y Z

1 14 0.00 0.00 0.37 0.00 0.00 0.09 0.00 0.14 0.00

2 6 0.00 0.56 -0.27 0.00 -0.09 -0.47 0.00 0.08 0.61

3 6 0.00 -0.56 -0.27 0.00 0.09 -0.47 0.00 0.08 -0.61

4 6 0.00 0.00 -0.32 0.00 0.00 0.73 0.00 -0.47 0.00

Figure 14 Gaussian Frequency Output

text processing language known as ”awk,” and used it to write scripts that could

read all of my output files for the important information. That information was

put into tables or used to write new Gaussian input files to resubmit a geometry

optimization where it left off. I highly recommend this language to anyone working

in any kind of Unix environment, because it let me replace hours of repeating the

same editing keystrokes literally hundreds of times over with calls of a handful of a

few shell scripts. It took some extra time to make those scripts work, but the scripts

allowed me to resubmit jobs to the MSRC more rapidly and get a higher priority in

the work queue than if I had to restart each job manually. This was the only reason

I was able to get as many excited state optimizations completed as I did. Figure 15

shows the type of useful information that was extracted using a script in awk.
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3.1.7 Mathematica Analyses. For some of the molecules, I also calculated

the Franck-Condon factors using a routine I wrote in Mathematica following an algo-

rithm laid out by Dr. Peter Chen[14]. The differences between the anion and neutral

state geometries are expressed as a linear combination of the normal mode vectors

of the neutral state, and the coefficients of that linear combination are known as

the Franck–Condon factors. When the Franck-Condon factors have been calculated,

everything needed to perform a spectroscopy simulation is available.

3.1.8 Molden Visualization. When calculations were completed, I needed

to view the orbitals to gain an understanding of what was happening electronically

in the states of each molecule. This was completed by using the Molden application.

[57] This can be downloaded free of charge at:

http://www.cmbi.kun.nl/ schaft/molden/molden.html
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Figure 15 Example Of Script Output for C 1A2 SiC3

Basis: Aug-CC-pVDZ S**2:

Molecule: C3Si

Charge: 0 Multiplicity: 1

Route: #p b3lyp td=(singlets nstates=6 root=3 fc) /aug-cc-pvdz opt

#p b3lyp td=(singlets nstates=6 root=3 fc) /aug-cc-pvdz

Geom=Check Guess=Read Freq

Energy(Hartree): -403.525164940 ZPE corrected: -403.461618

Root Followed: 3

Excitation[Bounds]: 1.1284 [-0.4802, 3.3406 ] eV

Term Symbol: Singlet -A2

Oscillator Strength: 0.0011, between -0.0000 and 0.0011

Transition Moments: X: 0.0000 Y: 0.0000 Z: 0.0000

Orbitals Involved:

16 -> 17 = 0.81879

Spatial Extent: 235.2910 [ 232.8642 , 239.5384 ]

Spin Density:

Dipole Moments: X: 0.0000 Y: 0.0000 Z: 4.1767 Tot: 4.1767

Highest Memory Req’: 326.3 Geometry Iterations: 15

Start and End Times: 16:32:06 - 22:25:54

Processor Hours Used: 17.69 Hours

Valence Orbitals:

Occupied 13 A:(B1) -0.39169 B:(B1) -0.39169

Occupied 14 A:(A1) -0.34055 B:(A1) -0.34055

Occupied 15 A:(A1) -0.30963 B:(A1) -0.30963

Occupied 16 A:(A1) -0.24286 B:(A1) -0.24286

Virtual 1 a:(A2) -0.15139 b:(A2) -0.15139

Virtual 2 a:(B1) -0.06917 b:(B1) -0.06917

Virtual 3 a:(B2) -0.05705 b:(B2) -0.05705

Geometric Parameters (Angstroms or Degrees):

Conv 1

R(1,2) 1.8968 R(1,3) 1.8968 R(1,4) 2.5928

R(2,3) 1.9590 R(2,4) 1.3775 R(3,4) 1.3775

Frequencies (cm**-1):

142.5326 636.2960 827.5450 870.1262 1400.6915 2511.4986

---- End of Data ----
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4. Analysis and Results

In the interest of space and readability, I will not present the numerical results of

every calculation in this chapter. The interested reader can consult the appendix

if there are spectroscopic quantities or orbital energy diagrams of interest for a

particular electronic state. What I present here are the trends in the data that I was

able to recognize, and if there are exceptions to those trends make those known to

the reader. This section will be broken into my findings for the chains (linear), cyclic

(two dimensional, planar), and cage (three dimensional) structures, with subdivisions

where useful. At the end of each section I will present my calculations alongside any

experimental results. I will refer to the number of silicon atoms with the letter m,

and the letter n for the number of carbons. Finally, unless otherwise indicated, all

numerical results in this section are from B3LYP/aug-cc-pVDZ calculations or the

TDDFT equivalent for excited states.

4.1 Linear molecules

As found in most previous work[21, 31, 33], most clusters with two or less

silicon atoms have a stable, silicon-terminated chain structures. Rotational and

vibrational spectroscopy has confirmed that B3LYP is effective at describing the

ground states of these chains.[19, 21, 17, 20] In these molecules, double bonds link

the members of each chain, and as previous work and experiments have shown, even

membered chains have triplet ground states and odd membered chains have singlet

ground states. As I will discuss, the excited states of these molecules can be best

subdivided along these same lines. Because they are all terminated by at least one

silicon, when comparing like membered chains I will refer to the carbon terminated

chain or the silicon terminated chain to differentiate between the singly and doubly

Si terminated chains.
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a) b) c) d)

e)

Figure 16 Geometries of Odd Membered Chains
a) Linear SiC2 b) Si2C, c) SiC4, d) Si2C3, and e) SiC6.
Experiments have shown that SiC2 is not a linear molecule, and neither the
B3LYP/aug-cc-pVDZ or the B3LYP/aug-cc-pVTZ levels of theory predict a stable
linear geometry. However it is included here because it is informative.

4.1.1 Odd Membered Chains. The orbitals in the linear chains can be

understood using simple symmetry arguments. The number of occupied valence σ

orbitals in all of the linear chains, even or odd, is always m+n+1, or simply the

number of atoms in the chain plus one. If we align a coordinate system so that each

atom is on the z-axis, these σ orbitals can all be qualitatively obtained by drawing a

series of orbitals, starting with a fully bonding orbital and incrementing the number

of nodal xy planes. This procedure hybridizes the valence s and pz atomic orbitals

in each member of the chain, where the lowest orbitals will be of mostly s character

and the higher orbitals will be mostly pz character. The π orbitals have a similar

pattern. After counting the total number of electrons and the number of occupied σ

orbitals, the number of electron pairs remaining to occupy π orbitals must then be

m+n-1. In odd membered chains, this means each molecule will have a closed shell.

Similar to the σ orbitals, the lowest pair of π orbitals will have no nodal xy planes,

and each successive orbital will have an additional nodal plane. The nodes appear

between the atoms where possible, so that no d functions are needed in the atomic
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Occupied:

12 13 14 15 16 17
Virtual:

18 19

Figure 17 Valence Orbitals for Linear X 1Σ Si2C
Si2C is the best starting point for grasping the procedure of creating symmetry
orbitals in these chains. The creation of σ orbitals by increasing the nodes by one
is unambiguously depicted in orbitals 12 through 15. These can be alternatively
labeled as the σ0, σ1, σ2, and σ3 orbitals. The first two steps of the same process
with the π orbitals is shown in orbitals 16 through 19, the π0 and π1 orbitals of this
cluster.

orbitals. All of this can be seen with the simple examples of linear Si2C and SiC2 in

Figures 18 and 17.

There is a trend in the orbitals with respect to the contribution of silicon and

carbon atomic orbitals. The first thing to note is that the prominence of the silicon

atomic orbitals in each molecular orbital decreases as orbital energy gets lower. This

can be seen just by comparing the orbitals of the two clusters SiC4 with Si2C3,

seen in Figures 19 and 20. This becomes important in the excited states, because

eventually the terminal silicon atomic orbitals contribute significantly to a virtual

orbital. In particular, it is the silicon px and py atomic orbitals that make the

strongest contribution to the first few virtual π orbitals. Because the virtual orbitals

have a heavier atomic silicon character than the occupied orbitals, excitations into

these orbitals cause the terminal silicon atoms to relax away from the rest of the

chain by a few hundredths of an angstrom.
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Occupied:

8 9 10 11 12 13
Virtual:

14 15

Figure 18 Valence Orbitals for Linear X 1 Σ SiC2

SiC2 differs from Si2C in that it is no longer symmetric about the center of the
chain. As a result, the σ and π orbitals will have larger contributions from the
atomic orbitals of the silicon or carbon terminated end. This preference to one side
or the other tends to alternate from one symmetry orbital to the next, beginning
with a preference for the carbon terminated end.

A trend can also be recognized with the orbital energies of each of these clusters,

and examples can be seen in Figures 22 through 24. These diagrams show that the

energy gap between the π orbitals decreases if we replace the terminal carbon with

a terminal silicon. This is because the overlap integral between the p functions of

silicon is much less than that of carbon, so the orbital energy levels do not split as

much. This splitting increases as we add more carbon atoms to the chain because the

ratio of silicon to carbon p orbitals drops, and the total amount of overlap between

the atomic orbitals increases.

And while carbon terminated chains have greater splitting than the silicon

terminated chains, the exact opposite trend happens with the two highest occupied

σ orbitals in longer chains. The σ orbitals in the SiCn case are preferentially towards

the carbon or silicon terminated end, making them split. However, having both

sides equally terminated by a silicon atom makes the situation symmetric, and as

the chains get longer these orbitals start to become nearly degenerate. Increasing

the length of the chain also has the same effect for the carbon terminated chains,
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Occupied:

10 11 12 13 14 15 16

17 18 19
Virtual:

20 21 22 23

Figure 19 Valence Orbitals for Linear X 1Σ SiC4

The orbitals of SiC4 can be quickly understood by the same procedure used for
SiC2. However, the preference the σ orbitals have for alternating sides becomes so
pronounced that the rest of the nodes are not visible in the plots of orbitals 16 and
17 because the contributions from the unpreferred side are too small.

but this does not happen with shorter chains like SiC2 because the silicon atom has

to be far from the center of the chain for the electrons to treat it like another carbon

atom.

Putting these two orbital energy trends together, we can explain why the

HOMO orbital of linear SiC2 and SiC4 is of σ symmetry, but it is a pair of de-

generate π orbitals in Si2C and Si2C3. The improved bonding of the π orbitals and

the lack of symmetry in the σ orbitals lets the π orbitals slip beneath the σ orbital.

This type of trend is almost counterintuitive, because it suggests that for the low

lying excited states of the shorter chains, it may be more useful to group the chains

by the terminal atoms instead of by the chain length.

However, an analysis of the HOMO-LUMO gap and first excitation energies in

Table 3 takes the side of intuition. The HOMO-LUMO gap decreases by approxi-

mately .5 eV when two more carbon atoms are added. This keep the gap in carbon

terminate chains .2 eV higher than the equally membered silicon terminated chains.
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Occupied:

14 15 16 17 18 19

20 21 22 23
Virtual:

24 25 26 27

Figure 20 Valence Orbitals for Linear X 1Σ Si2C3

The orbitals for Si2C3 can again be understood by the symmetry orbitals procedures
previously mentioned. Furthermore, orbitals 20 and 21 are the first clear examples
of σ orbitals becoming nearly degenerate. The orbital plots show that they involve
nearly the exact same atomic orbitals, but orbital 21 has an extra node in the center.
Linear combinations of these two would give orbitals similar to orbitals 16 and 17 in
SiC4.

Thus, it is in fact more informative to classify these chains by length, recognizing

that the terminal atom shifts the relative energies in a predictable manner.

To my knowledge, there have been no detections of the excited states of these

particular clusters. Lineberger et. al. detected a non-vibrational peak in the photo-

electron spectrum of Si2C3, but based on my calculations it was too close energetically

to the ground state to be a singlet or triplet excited state of the linear isomer. Thus

their tentative conclusion that the peak was from a non-linear isomer is supported.

Thermodynamics can explain why excited states of these clusters are so elusive.

First, the excitation energies in the neighborhood of 2 eV are quite high. The

excitation energy goes down with increasing cluster size, but so does the chance

of creating a longer chain. Second, these linear clusters, while they are stable, are

probably not favored by increased entropy, likely losing their linearity upon collisions.
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Virtual:
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29

Figure 21 Valence Orbitals for Linear X 1Σ SiC6

Although SiC6 was not a part of the original SiC map produced at AFIT, I offer it
here as useful evidence that the procedures and trends described here likely apply
to all SimCn chains.

4.1.2 Even Membered Chains. And while excited states of the odd mem-

bered chains have proved elusive, that is not completely the case with the excited

states of the even membered chains. The orbitals actually exhibit the same symme-

try and energetic trends as the odd membered chains. For example, the orbitals of

Si2C4, shown in Figure 26, can be understood by the same arguments used for the

odd membered chains. The difference in the even membered chains has to do with

the orbital occupation patterns, so I will begin there. As mentioned previously, each

of these molecules has a triplet ground state, and the reason for this can be seen

in terms of the same arguments made in the previous section. As mentioned, there
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Figure 22 Orbital Energies of Linear Three Membered Chains
This orbital energy diagram shows that the π splitting (difference between orbitals 12
and 15) in the carbon terminated chain SiC2 is much greater than the like membered
chain Si2C (orbitals 16 and 18). This trend continues for longer chains as well.

are still m+n+1 occupied σ orbitals, and that leaves 2(m+n-1) electrons to fill the

π shells, just as in the odd membered chains. This is the source of the difference.

In the change from an odd to an even membered cluster, the number of σ

orbitals changes by one, and this leaves four valence electrons with three nearly

degenerate orbitals. Even if, as we have seen happen in longer chains, the highest σ

orbital drops in energy so that it is no longer nearly degenerate with the partially

filled π shell, we are still left with two electrons to fill two π shells. Either way,

we are left with open shell systems. Orbital energy diagrams for these open shell

systems can be seen in Figures 27 and 28.
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Figure 23 Orbital Energies of Linear Five Membered Chains
As mentioned in the text, it is easy to see that orbitals 20 and 21 of Si2C3 become
nearly degenerate, an effect that can be justified by comparing these two orbitals. As
the chains get longer, the orbitals analogous to these will have less contribution from
the central atoms that make these two orbitals different. Thus this energy difference
will only get smaller.

These open shells can generate handful of low lying singlet and triplet states

simply by populating the space of these three orbitals, leading to the triplet ground

state. These low lying excited states that can be produced by various occupations

of this partially filled π-σ tier are: 1Σ+, 1Π, 1∆, 3Σ−, 3Π, and 3∆.

Because of these open shell configurations, the orbital energy behaviors ob-

served in the odd membered chains become crucially important. Since the larger

carbon terminated clusters continue to have a larger π orbital splitting and the

longer silicon terminated clusters continue to push the highest σ orbitals together,
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Figure 24 Orbital Energies of Linear Seven Membered Chains
This plot of the orbital energies of SiC6 shows that, as carbon terminated chains
get longer, the highest occupied σ orbital does drop beneath the highest occupied π
orbitals.

it will only be in the smaller carbon terminated clusters that the highest occupied σ

orbital will play an important role in the low lying states.

This is exemplified of course, by the X-3Π state of SiC, where the highest

occupied σ orbital becomes nearly degenerate with the highest occupied π orbitals.

In this molecule, the chain is no where near long enough to treat the silicon like

another carbon atom, and the splitting between the π orbitals is relatively low. The

result is that these top three molecular orbitals are close enough energetically that

populating them with electrons can change their relative order. To minimize the
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Table 3 Excitations and HOMO-LUMO Gap of Odd Membered Chains
Cluster H-L Gap ∆ E
SiC2 3.87 2.573
Si2C 3.60 2.555
SiC4 3.24 2.092
Si2C3 2.97 1.835
SiC6 2.88 1.781

This table simply shows the HOMO-LUMO gap in each chain. This gap decreases
if the chain is longer or if both ends are terminated by silicon atoms.

a) b) c) d)

e)

Figure 25 Geometries of Even Membered Chains
a) SiC b) Si2C2 c) SiC3 d) Si2C4 e) SiC5

Occupied:

22) 23) 24) 25)
Partially Occupied:

26) 27)
Virtual:

28) 29) 30) 31)

Figure 26 Valence Orbitals for Linear X 1Σ Si2C4
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Figure 27 Orbital Energy Comparison of Linear Four Membered Chains
In this diagram and in Figure 28, the same trends of orbital energies as in odd
membered chains is observed. Carbon terminated π splitting is greater, as is the
difference between the highest occupied σ orbitals. As mentioned in the text, the
difference between this and the odd membered chains is the partial occupation of
the π orbitals.

repulsion between them, three electrons occupy the π shell and one occupies the σ

orbital, leading to the X-3Π ground state.

Beyond the open π shell there are additional π orbitals that behave analogously

to the π structures of the odd membered chains. Thus, excitations to these orbitals

can be expected to behave similarly to the singlet excited states of the odd membered

chains. However, I requested the same number of excited states for all clusters, and

this excluded these higher excited states. Furthermore, most of my time with these
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Figure 28 Orbital Energy Comparison of Linear Six Membered Chains
In Si2C4, we can see the highest occupied σ orbitals become nearly degenerate, while
the highest occupied σ orbitals of SiC5 also come closer in energy than those of SiC3.
This suggests that as the chains gets longer the carbon-terminated ones may also
have the σ degeneracy associated with the silicon-terminated chains.

clusters was spent trying to capture the behavoir of the low lying states because there

are some major difficulties involved with using DFT to model open shell systems.

Standard density functional theory implementations do not handle open shell

systems very well because certain open shell states cannot be represented as a sin-

gle Slater determinant.[36] In the case of triplet states, linear combinations of the

degenerate triplet states can lead to an accurate single determinant picture, so a

single determinant is adequate. The quantum chemistry packages I used were able

to take advantage of this approach for the triplet ground states and obtain results
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in good agreement with experiment. However, this approach will not work for 1Σ

states because these are not degenerate states.

The ground singlet states were consistently too high in energy above values

from recent experimental work for SiC3 and Si2C4, [17, 20] but even more alarming

was the fact that the first singlet TDDFT root would often be another singlet state

of lower energy. The energy of that lower state was also too high, while a triplet

root would give exactly the same result as the DFT triplet calculation would lie. I

could see that the ground state DFT singlet wavefunction was not the real ground

state, and this problem made it impossible to match these low lying singlet roots to

calculations or experiment.

However, even with the ground triplet states there were certain problems that

deserve to be noted. Particularly, if one π orbital was occupied differently from the

other, as was the case with X-3Π SiC, the orbitals would no longer be degenerate

as they should be. While I do not believe this hurt the accuracy of the energies

calculated, it raised a flag as to how realistic the wavefunction was. In truth we

know exactly how to fix the problem, simply by taking a linear combination of

the two major determinants involved. However, this is not integrated smoothly

into the Gaussian 03 implementations of DFT that I used, or for that matter any

other quantum chemistry program that I could use. Furthermore, changing the

computational method whenever something seemed wrong seemed like a slippery

slope down the path of individually adjusting each calculation to fit experiment. I

wanted a more objective justification for any corrections to my calculations.

After some research, I found that the problem with the singlet states and

the triplet degeneracy splitting involved the fact that quantum chemistry packages

restrict orbitals to the space of the real numbers when a full quantum mechanical

solution would use complex orbitals. This can be seen simply from recognizing that

true π orbitals of a perfectly linear molecule are not designated as πx or πy, but a
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complex linear combinations of the two.

π+ =
1√
2
(πx + iπy)

π− =
1√
2
(πx − iπy)

These linear combinations have equal charge density around the z-axis in-

stead of the unphysical picture of an electron avoiding the xz or yz planes of a

linear molecule for no apparent reason, and they are the true eigenfunctions of the

Hamiltonian. Recalling that the product of these two linear combinations, expressed

compactly as (x+iy)(x-iy), actually turns out to be of Σ symmetry, i.e. x2+y2, and

the product of either with itself, e.g. (x+iy)(x+iy), is of ∆ symmetry, the glaring

difference with real orbitals is clear. Following the logic of Dr. Masunov and his new

theoretical method for dealing with this type of problem, known as spin-balanced

unrestricted Kohn Sham formalism (SB-UKS),[39] I found that the use of an addi-

tional determinant was fully justified in the case of open shell degenerate π orbitals.

In his complex orbital scheme, the real spatial part of any α orbital is set equal to

the imaginary part of the corresponding spatial β orbital, and vice versa. In the case

of non-degenerate orbitals, this doesn’t change anything. But, degenerate π orbitals

immediately are given the character of angular momentum eigenfunctions, and if this

is done all of my problems, from broken symmetry to poor singlet energies, would

disappear.

I am unaware of any implementation of complex orbital DFT, and Dr. Masunov

has not yet implemented SB-UKS. However Gaussian 03[26] has an implementation

of Hartree Fock theory that uses complex orbitals which may be used to calibrate

the non-dynamic correlation experienced by a single determinant. For example, the

1Σ state of SiC3 is .28 eV lower in energy when calculated with complex HF instead

of real orbitals. This may be a good approximate measure of the amount of non-
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Table 4 Singlet Energies Before and After Corrections
Cluster ∆E So-Do So-To

(eV) Real Comp. Exp. Real Comp. Exp.
a1Σ SiC3 .2805 3.300 3.020 3.101 .648 .3675 .274
b1∆ SiC3 N/A 3.313 N/A N/A .661 N/A .460
a1Σ Si2C4 .186 2.750 2.564 2.652 .433 .247 .109
b1∆ Si2C4 N/A 2.764 N/A 2.738 .447 N/A .195

The ∆E column shows the non-dynamic correlation correction from comparing SCF real
and complex orbitals. The calculation for SiC3 was performed with the aug-cc-pVTZ basis
set and the calculation for Si2C4 was performed with the aug-cc-pVDZ basis set. The rest
of the columns compare experimental values with the computed values before and after
the complex orbital correction. The b1∆ state is estimated using TDDFT instead of a
complex orbital correction. Finally, the experimental value for the b1∆ state of SiC3 is
actually an estimate from a MCQDPT/aug-cc-pVDZ calculation.

dynamic correlation that an implementation of complex orbital DFT would provide,

and the results of this correction can be seen in Table 4. Because the experiments

measured the vertical transition energies from the anion ground state, these numbers

would move in the direction of experiment upon optimization.

Of course, this was not the only method I used to make up for the problems as-

sociated with a single determinant, but it was the only one that gave good agreement

with the energy. I changed the initial guess by populating different orbitals, allowed

spatial symmetry between α and β orbitals to be broken, and a number of other

things, but only the complex orbital correction seemed to work well. Furthermore, a

complex orbital scheme would automatically generate the second determinant where

needed, but behave just like regular DFT in the absence of degeneracy, so it is a

correction than could be applied universally without affecting systems that do not

require it. To be sure of this, I even tested the procedure with the ground state of

SiC2 and found that the real and complex SCF answers are equivalent.

An additional peak in the photoelectron spectrum of Si2C4 was detected by

Lineberger et. al.[17], and this state may correspond to a 1∆ state that was generated

by my TDDFT calculations. Due to the multideterminant character of this state as
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Table 5 Results for X 3Π SiC
Source Bond Length

(Å)
Frequency
(cm−1)

B3LYP/aug-cc-pVDZ 1.7347 954.53
B3LYP/aug-cc-pVTZ 1.7197 976.58
Brazier (FTIR) 1.72 965
Butenhoff (LIF) 1.718 965.2

Table 6 Results for A 3Σ− SiC
Source ∆E (eV) Bond Length

(Å)
Frequency
(cm−1)

B3LYP/aug-cc-pVDZ 0.292 1.8186 866.76
B3LYP/aug-cc-pVTZ 0.353 1.8054 892.14
Brazier (FTIR) .461 1.8136 861
Grutter (Neon) .469 N/A N/A

well, I cannot be totally sure of the assignments. There is no linear combination

of degenerate 1∆ determinants that reduces to a single real determinant that I am

aware of, and this may mean that TDDFT must also be extended to complex orbitals

to accurately model this state. If that is the case, further work may improve the

results and determine which states correspond to the peaks in the photoelectron

spectrum.

Beside the low lying states of these longer chains, there have been a handful

of neutral and anion states of SiC examined, and the results of my calculation can

be seen in Tables 5 through 10 along with the experimental data. These numbers

give a good idea of just how accurate we can expect other calculations to be. The

only major discrepencies are with the singlet states and the B 3Σ− state. The singlet

states are hampered by a single real determinant as previously mentioned in other

molecules, and the B 3Σ− state has actually been problematic for a variety of high

level ab-initio calculations. However, in most other situations the DFT/TDDFT

energies are within .2 eV of experimental values or better.
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Table 7 Results for B 3Σ− SiC
Source ∆E (eV) Bond Length

(Å)
Frequency
(cm−1)

B3LYP/aug-cc-pVDZ 2.116 1.8743 1178.91
B3LYP/aug-cc-pVTZ 2.145 1.8658 1169.52
Larsson (CASSCF) 2.35 1.669 913
Grutter (Neon) 1.44 N/A 1178

Table 8 Results for C 3Π SiC
Source ∆E (eV) Bond Length

(Å)
Frequency
(cm−1)

B3LYP/aug-cc-pVDZ 2.585 1.9040 880.50
B3LYP/aug-cc-pVTZ 2.632 1.8900 892.16
Grutter (Neon) 2.84 N/A 600
Butenhoff (LIF) 2.83 1.919 615.7

Table 9 Results for a 1Σ SiC
Source Bond Length

(Å)
Frequency
(cm−1)

B3LYP/aug-cc-pVDZ 1.6601 1055.78
B3LYP/aug-cc-pVTZ 1.6463 1075.96
Larsson (CASSCF) 1.677 955

Table 10 Results for b 1Π SiC
Source Bond Length

Å
Frequency
(cm−1)

B3LYP/aug-cc-pVDZ 1.7518 1022.33
B3LYP/aug-cc-pVTZ 1.7405 1067.39
Bernath FTIR 1.731 N/A
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a) b) c)

d) e) f) g)

Figure 29 Geometries of Planar Molecules
Geometries of a) SiC2, b) Si2C, c) SiC3, d) SiC3, e) Si2C2, f) Si3C, and g) Si2C3.

4.2 Planar Molecules

While standard density functional methods have problems with some of the ex-

cited states mentioned in the previous section, the difficulties that lead to the failures

are no longer a factor in the planar molecules, where the π degeneracies disappear.

Because each neutral ground state is of a closed shell 1A1 character a single real

determinant can be expected to adequately describe each of these molecular systems

because there are no open shells.

The orbitals of each cluster can be qualitatively understood by valence bond

methods and symmetry orbitals.The orbitals of bent Si2C are just like those of the

linear counterpart, only distorted to match the bent symmetry. The orbitals of

SiC2 can be best described from symmetry arguments keeping in mind that the

C2 fragment maintains its orbital structure and the Si atom simply attaches where

symmetry allows. These two clusters have been studied in depth in other work,[43,

61] so I refer the interested reader to that work for more information. Instead, I

intend to focus in depth on some of the larger clusters where we can start to learn

more lessons about how silicon and carbon interact in more complicated structures.

67



Occupied:

10 11 12 13 14 15 16

Virtual:
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Figure 30 Valence Orbitals for Si-C Bonded Rhomboidal X 1A1 SiC3

Occupied:

18 19 20 21 22 23 24

Virtual:

25 26 27 28

Figure 31 Valence Orbitals for Rhomboidal X 1A1 Si3C
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Figure 32 Orbital Energy Comparison of Si-C Bonded Rhomboidal Isomers
Here we can see how the orbital energy spacing of the carbon dominated structure,
SiC3, is much larger than it’s silicon rich counterpart, Si3C. In many of the silicon
rich structures, multiple orbitals are near the HOMO, possibly leading to a more
involved optical spectrum.

I performed calculations on four rhomboidal clusters, and the comparison of

the bonding in these clusters can offer more insight into how silicon and carbon

interact with one another. These can be subdivided by the type of central bond,

either Si-C or C-C, and the results of such a division are quite informative. Once

this division is made, we are able to see the effect of replacing carbon atoms with

silicon atoms at locations other than the ends of a chain.

For example, let if we begin with the Si-C bonded rhomboidal isomer of SiC3

and replace the two carbon atoms on either side of the central Si-C bond with silicon

atoms, we get Si3C. The orbitals of these two structures, particularly the HOMO
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and LUMO, have the same symmetry and basic shape, but a closer look shows some

important differencs. For instance, the HOMO (orbital 16) of this isomer of SiC3

has more participation from the central carbon atom than the HOMO (orbital 24)

of Si3C. In fact, the silicon atoms in this particular orbital of Si3C could be seen as

a bonding orbital in a bent Si3 chain.

A similar case can be seen in the orbitals 14 and 22 of SiC3 and Si3C, re-

spectively. In these two orbitals, the bonding goes through the central carbon atom

instead of the central silicon atom. In this orbital, Si3C excludes the silicon atom,

while SiC3 allows it a great deal more participation. What this shows is that, for

this particular structure, replacing carbon atoms with silicon atoms seems to weaken

existing bonds between silicon and carbon atoms. In this case, the bond distance in-

creases from 1.905 Å to 1.971 Å. Furthermore, the comparison of these two structures

suggests that if more carbon is in the structure there will be multicenter bonding

orbitals, and the orbital energies will be further apart.

A scan over the other orbitals in this structure tells a similar story (only orbitals

12 and 13 of SiC3 need be transposed to match orbitals 20 and 21 for a comparisons

to be made). In general, the carbon rich structure has more participation from other

atoms in a given orbital. This can be rationalized from the tendency of carbon to

form double bonds and the silicon tendancy to form single bonds. For instance,

orbital 15 of SiC3 and 23 of Si3C are analogous to one another. However, there is

a great deal more carbon s participation in this orbital of SiC3 than in Si3C, where

the carbon atoms are excluded.

A question we can ask is, “can the lessons of these two clusters can be quickly

extended to the C-C bonded rhomboidal clusters, Si2C2 and SiC3?” It is easy to

spot the tight multicenter bonding in this isomer of SiC3, but linear combinations

of orbitals 18 and 20 of Si2C2 can give the same result, suggesting that the only

thing keeping multicenter bonding from occuring is the symmetry of the cluster.
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Figure 33 Valence Orbitals for C-C Bonded Rhomboidal X 1A1 SiC3

Occupied:

14 15 16 17 18 19

Virtual:

20 21 22 23 24

Figure 34 Valence Orbitals for Rhomboidal X 1A1 Si2C2
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Figure 35 Orbital Energy Comparison of C-C Bonded of Rhomboidal Isomers

Furthermore, this isomer of Si2C2 is very much unlike Si3C in that all of the atoms

participate in the orbitals.Essentially, while the Si-C bond may be weakened by

additional silicon atoms, the C-C bond does not seem to be. In fact, the C-C bond

length decreases from 1.486 to 1.441, indicating an even tighter bond. The tighter

bond can be rationalized from the fact that the extra carbon atom in SiC3 pulls some

of the electron density away from the central C-C bond, a problem that is removed

in Si2C2.

We can also compare the bonding of Si3C with Si3C2 to see how the C2 cluster

differs from atomic carbon in bonding with other silicon atoms. In this case, orbitals

analogous to Si3C orbitals that mostly excluded the carbon atomic orbitals receive

greater participation from the C2 submolecule. In fact, many of these orbitals can
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Figure 36 Valence Orbitals for Planar X 1A1 Si3C2

be created by adding Si atomic orbital functions of the appropriate symmetry to

orbitals of SiC2. This indicates that the C2 molecule is able to bond with silicon

more readily than a single carbon atom.

Now that we have an understanding of the bonding in these planar clusters, we

can turn our attention to the virtual orbitals and the excitations that involve them.

The first few virtual Kohn Sham orbitals almost always have dominant silicon px

orbital components. This can be rationalized from the fact that the silicon p orbitals

have a poor overlap with the carbon p orbitals, so they participate less in the lower

bonding orbitals. These bonding orbitals and the corresponding antibonding orbitals

do not not split as much, leaving silicon p orbitals near the HOMO and LUMO. This

means that the lowest singlet excited states of planar SiC clusters, usually in the

range of 1-2 eV, almost always return electron density to px orbitals of silicon atoms

at the edges of the structure. A look at the shifts in bond lengths also confirms that
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Table 11 SiC2 Theoretical and Experimental Results
State ∆E ν1 ν2 ν3 RSiC RCC f
X-1A1 0.000 1835.9 789.2 95.6 1.852 1.260 0.0000

0.000 1746.0 840.6 196.4 1.812 1.250 0.0000
A-1B2 2.559 1456.1 507.8 491.5 1.874 1.329 0.0163

2.497 1462 487 462 1.881 1.304 N/A

This table shows the calculated (above) and experimental (below)values for the A1B2-
X1A1 transition of SiC2, from B3LYP/aug-cc-pVTZ calculations and experimental
values from the original work done by Michalopoulos et. al. [43] and other data from
the NIST webbook.[47] The major component of this transition is an excitation from
orbital 13 to orbital 14 in Figure 37.

Occupied:

9 10 11 12 13

Virtual:

14 15 16 17

Figure 37 Valence Orbitals for Triangular X 1 Σ SiC2

the silicon atoms relax away from the structure in the low lying excited states that

I calculated.

The only experimental data available for the excited states of these clusters

is the long known A1B2-X
1A1 transition of SiC2. This transition was used by

Michalopoulos et. al. [43] to prove that SiC2 was a triangular molecule. In the

SimCn mapping paper, Dr. Duan found that the triangular ground state was not a

stable geometry at the B3LYP/aug-cc-pVDZ level of theory, so Table compares the

B3LYP/aug-cc-pVTZ level of theory with the values calculated by Michalopoulos et.

al.
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e) f)

Figure 38 Geometries of Cage Molecules

Although there is no experimental data for excited states of the planar clusters

other than SiC2, a recent work by Rintelman and Gordon gave the first triplet excited

states of three of the rhomboidal isomers. A comparison of my calculated values and

their MCQDPT/6-31G(d) results can be seen in Table 12. The agreement of these

calculations continues to affirm that the B3LYP functional is effective at describing

excited states of these clusters. The rest of the singlet states calculated can be found

in the appendix.

4.3 Three - Dimensional Structures

Finally, there are the cage structures. In these clusters, the HOMO LUMO gap

were expectedly too large for low lying states to cause any of the problems observed

in linear clusters. Calculations confirm that the ground states of these clusters are

again all of closed shell 1A1 character.

While the previous structures had fairly predictable and well behaved molecular

orbitals, I want to examine each of these clusters in depth. There are three reasons

for this. First, they were by far the most expensive calculations, but only rarely was

I able to get fully converged geometric data for the exited states. Thus the orbital

information, coupled with geometric shifts, may be the only thing said about these

excited states for some time. Second, it is in the excited states of these clusters that
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Table 12 Ab-Initio vs. B3LYP results for Rhomboidal Clusters
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

C-C Bonded SiC3

1A1 0.0 1405.7 1026.1 982.5 660.9 388.5 239.2
0.0 1504 1120 984 720 509 316

3B1 0.854 1557.5 979.1 834.1 524.9 389.8 143.0
0.945 1651 1255 747 502 395 271

Si-C Bonded SiC3

1A1 0.0 1595.3 1148.2 764.2 488.8 378.8 200.2
0.0 1603 1254 852 538 420 279

3B1 0.315 1366.0 1193.6 696.4 576.6 485.3 228.3
0.256 1380 1234 755 674 479 363

Si2C2

1Ag 0.0 1114.1 956.8 934.5 492.8 342.9 193.4
0.0 1066 1026 1013 543 424 224

3B2g 2.265 1486.6 1239.9 576.8 459.5 353.6 245.3
2.229 2689 1150 623 474 411 269

State ∆E R1 R2 R3 R4

C-C Bonded SiC3

1A1 0.292 1.862 2.944 1.486 1.442
1.83 1.50 1.43

3B1 1.100 1.955 2.937 1.520 1.367
1.95 1.53 1.35

Si-C Bonded SiC3

1A1 0.477 2.071 1.924 2.619 1.348
2.06 1.89 1.32

3B1 0.792 1.978 1.989 2.531 1.349
1.94 1.96 1.34

Si2C2

1Ag 0.000 3.422 1.856 1.441
0.000 3.33 1.82 1.48

3B2g 2.265 3.492 1.884 1.417
2.229 3.43 1.84 1.41

In this table, B3LYP/aug-cc-pVDZ (above) calculations for some of the rhomboidal
clusters are compared with MCQDPT/6-31G(d)//FORS(12,10/11)/6-31G(d)
(below) calculations completed by Rintelmand and Gordon. [53] There is generally
excellent agreement. Only one major discrepency appears, in the largest vibrational
mode of Si2C2. The B3LYP hessian for this cluster was calculated analytically, so I
suspect there may be a mistake in the Rintelman and Gordon paper.
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Figure 39 Valence Orbitals for C3v
1A1 Si4C

we may start to see some of the behaviors of the SiC surface or defects. Finally, there

are some orbital structures that are either unexpected or give more insight into the

interaction between silicon and carbon. I will start with Si4C.

Having the highest stoichiometric ratio of silicon to carbon in these clusters,

Si4C is also the smallest 3-D structure. This is not a coincidence, because it is the

tendency of silicon to maximize the number of single bonds that stabilizes these

clusters. I actually examined two isomers, one being the ground state of the anion

(C2v, letter “a” in Figure 38) and the other of the neutral (C3v, letter “b”). Just like

the similar Si5 cluster[51], both are trigonal bipyramidal, but they differ in where the

carbon atom is placed within the structure. Thus, this cluster can also teach some

useful lessons about the replacement of silicon atoms with carbon in the context of
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Figure 40 Valence Orbitals for C2v
1A1 Si4C

a three dimensional structure. Furthermore, the C3v and C2v forms are the neutral

and anion ground states, respectively.

The relative orbital energies of the two structures are dominated by contribu-

tions from the carbon atom. Recognizing that 24 and 25 are degenerate in the C3v

form, the first four valence orbitals for both structures, 22 through 25, are carbon

bonding orbitals. Each of these four orbitals bond the carbon to the silicon atoms

in accordance with symmetry. However, the next four orbitals, 26 through 29 are

anti-bonding orbitals between the carbon and the silicon atom s functions, following

the energy ordering of the carbon atomic orbitals. Thus, in bonding with the rest of

the structure, the carbon-based orbitals split into bonding and anti-bonding regimes

that do not overlap. Finally, orbitals 30 and 31 for both clusters involve p orbital

bonding between the silicon atoms. Similar to the most of the previous clusters we

have looked at, the virtual orbitals have more silicon p character than anything else,

and many of the same conclusions can be drawn.
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Figure 41 Valence Orbitals for C2v
1A1 Si4C2

As seen previously, excited states will return density to the silicon atoms,

lengthening their bonds as they move away from the center of the cluster. In the C3v

form, the first few excited singlet states that I was able to partially optimize ”breathe

out,” expanding mostly along the A1 mode, and a few have significant oscillator

strengths. Thus there may be future experimental detection of a transition in the

neighborhood of 2 eV in accordance with my calculations. Because the C2v form is

actually the most stable anion isomer, it is worth noting that there is at least one

low lying anion excited states that may further complicate the anion photoelectron

spectra beyond just the large changes to the C3v form. The interested reader may

consult the appendix for specific constants of interest.

Comparing the C2v forms of Si4C2 and Si4C allows us the opportunity to again

see what happens when a C2 fragment replaces a carbon atom, but this time in

a three dimensional structure. The same result as with Si3C2 appear. The C2

79



Occupied:

23 24 25 26 27 28 29

30 31 32 33 34

Virtual:

35 36 37

Figure 42 Valence Orbitals for Distorted C1v
1A1 Si4C2

fragment participates in more bonding with the silicon atoms, and makes even less

of an appearance in the virtual orbitals.

This trend in the virtual orbitals, where a prominent contribution from silicon

p orbitals appears frequently, can also be seen in the other isomer of Si4C2, where the

LUMO(orbital 35) and the orbital 36 are made from terminal silicon p orbitals, and

similar things can be said about these excited states as in previous clusters. There are

exceptions to this however, particularly in the case of Si3C4. This cluster has a higher

content of carbon than the previous cages, so that there are more bonding orbitals

that can be formed from carbon atomic orbitals. As a result, the first virtual orbital

(34) is actually an alternative bonding between the carbon atoms. Later orbitals

do exhibit the strong silicon p character, but a trend may likely appear in larger

clusters with a higher carbon content. The possible carbon bonds will tend to take

precedence energetically over the atomic orbitals of silicon. This would seem obvious

from the data seen previously, but it may be useful to see that as the relative amount

of carbon increases, there are more possible routes of bonding between those carbon
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Figure 43 Valence Orbitals for C2v
1A1 Si3C4

atoms that are not included in the electronic ground state. This may lead to some

insight on the differences between carbon and silicon terminated surfaces, as the

reader can likely envision different ways for the carbon atoms on a surface to bond.

Those other routes to bonding, if they comprised the low lying states of a carbon

terminated surface, would be dramatically different from the atomic excitations of

silicon. However, more calculations with larger clusters would be needed to begin to

tell how these differences map into the electronic structures of materials.

Si4C4 lends itself readily to some functional group analysis, because it is es-

sentially two SiC2 molecules hinged together by a silicon dimer. The orbitals can be

seen in Figure 44. Taking into account that orbitals 12 and 13 of the SiC2 cluster can
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Figure 44 Valence Orbitals for C2v
1A1 Si4C4

mix to generate the banana type CC bonds in Si4C4 orbital 36, only a few orbitals

need to be explained as anything more than SiC2 orbitals with some leaching from

the dimer. Orbitals 27, 28, 34, and 38 are derived from the hinge atoms’ s functions

with a small amount of mixing from the appropriate p functions to improve bonding.

Finally, in orbital 39 there is a significant contribution from silicon p functions.

The interesting symmetry of this molecule also gives some insight. One can

see that, with a relatively small amount of distortion, the structure of this molecule

can reverse the respective roles that the terminal or hinge silicon atoms play. The
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Table 13 Excitation Energies and Oscillator Strengths of Cage Structures
Molecule Symmetry ∆E f
Si4C4 C2v 1.671 0.0051
Si3C4 C2v 1.984 0.0104
Si4C2 C1v 1.321 0.0001
Si4C2 C2v 2.034 0.0005
Si4C C2v 1.177 0.0017
Si4C C3v 2.040 0.0002

only difference between the two pairs is the bonding of the carbon atoms nearby,

and yet their corresponding symmetry orbitals appear at radically different points

in the orbital energies.

Where an alternative bonding configuration between carbon atoms exists, the

LUMO tends to favor this electron structure over the silicon p structures. However,

this alternative CC bonding only takes precedence energetically over the Si p orbitals,

which always start to appear within the first two virtual orbitals.

As for assessing the accuracy of the calculations on these larger clusters, there

are few options. Photoluminescence spectroscopy performed by Dr. Brillson et. al.

of bulk SiC has detected surface based electronic transitions with transitions in the

neighborhood of 1 to 2 eV. Table 13 shows that nearly all of these clusters have

a first singlet excited state within this range. Furthermore, my calculations place

the first singlet excited state of Si4C4 at 1.671 eV, and one of the more important

photoluminescence peaks was detected at 1.65 eV for both C and Si faced 6H SiC.[64]

The calculated transition is allowed, and this is made more interesting since the

stoichiometric ratio of this cluster is the same as bulk silicon carbide. While, this is

certainly not conclusive, it does suggest the possibility that some of these clusters

may bond to the silicon carbide surface in ways that allow them to maintain their

electronic characteristics.
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5. Conclusions and Recommendations

5.1 Chapter Overview

Now that the results have been presented, I will discuss these results with

respect to experimental detection and future computational work. In particular, I

want to revisit the questions presented in the very first chapter.

5.2 Conclusions of Research

The first question was “Can we expect many more excited states of these clus-

ters in Photoelectron spectra?” The answer is that it depends. If Dr. Lineberger is

able to produce some of the longer carbon rich SimCn chains, then the even mem-

bered chains will have some low lying excited states. However, based on the 3 eV

laser used in previous photoelectron spectrum, the silicon rich clusters will not pro-

duce excited electronic states unless they are made to. There may be some possible

ways of doing this. If a UV lamp was used to excite the anions before they are

photodetached, it would increase the range of electronic states that the 3 eV could

leave the molecule in. The calculations I have done on the anion states should help

this possibility. Another, probably cleaner, solution would be to just use a higher

frequency laser, operating at 4-6 eV, to access these states.

The second question was “What will the spectrum look like of these excited

states?” If excited states are accessed the photoelecton spectrum may be similar

to the ground state’s spectrum. Most of the excited states have similar vibrational

frequencies as the ground states. The major difference between the spectra would

be from the geometrical differences. As mentioned, most of the excited states cause

the silicon atoms to relax away from the rest of the structure, so the normal modes

involving this motion would be excited in a transition between the ground and excited

states. Although an excited state photoelectron spectrum bypasses the ground state,
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we can assume that the differences between the excited state and the ground state

photoelecton spectrum would involve the same normal modes.

The third question was “Can any inferences be made about the excited states

of larger clusters?” The answer to this is yes. In terms of the linear clusters, there

was a clear trend in orbital energies that can be exploited. As the length of the

chain increases, the carbon atoms will dominate more and more until the spectrum

starts to approach that of long carbon chains. In larger three-dimensional structures,

it is likely that the excited states will continue to consist of non bonding silicon p

orbitals. Furthermore, based on the trends in the data I have calculated, the larger

cage structures will likely excite to non bonding orbitals of atomic silicon, unless

those structures are carbon rich.

The fourth question was “How accurate is DFT/TDDFT with respect to ex-

perimental results for excitation energies?” The answer, based on the available

experimental data, is that the energies come within .1 eV or better. Frequencies

are typically within 20 cm−1. Finally, geometries at the aug-cc-pVDZ level are usu-

ally within .01 Å or better. This of course is excluding the known problems with

multiconfigurational states, which I will now address.

5.3 Recommendations for Action

The fifth and final question had two parts, specifically: “Are there any major

shortfalls of TDDFT?” and “Can these shortfalls be corrected?” In answer to the

first half of the question, I have shown that DFT fails with the singlet states of the

even membered chains because of the multiconfigurational character of the states. As

for the second part of the question, the answer is yes. Although it was not rigorous, I

have shown that a single determinant, if orbitals are allowed to be complex, will likely

capture the non-dynamic correlation experienced in some of the linear molecules. If

this is indeed the case universally, SB-UKS should be considered as a cheaper and

less empirically derived alternative to Multi-Reference DFT. I would imagine that a
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normal Kohn Sham SCF procedure could be used to approach the correct complex

orbitals, after which a post-SCF SB-UKS scheme could be used to find the final,

complex orbitals and corresponding energy. This might be a significant step because

of the added difficulty in getting a complex determinant to converge. Such a scheme

would not slow down the calculation of systems that do not require complex orbitals,

but would automatically correct the systems that do.

Another question that remains to be seen is if there are any similar hurdles for

implementing TDDFT within a complex orbital framework, because this would be

the only way to capture the non-dynamic correlation of an excited state. It seems

that this may be the only way to get accurate results for longer and longer SiCn and

Cn chains, but I am unaware of any formal theoretical development of this, and it is

a question that should be looked into.

5.4 Recommendations for Future Research

The obvious next step is to use TDDFT with larger and larger clusters to

eventually approach the electronic behavoir of bulk SiC around defects and the

surface. Predictions from such calculations would allow us to know, based on the

electronic spectrum, exactly what types of bonds were forming on the surface, or

what defects were prominent. Furthermore, such calculations could lead to a better

understanding of dopants and the types of electron/hole traps they may form.

Another intersting area of research would be to see how the electronic spectrum

of these clusters would change upon bonding to the SiC surface, to see if the sur-

face anomalies of SiC can be described with something simpler than full SIMOMM

treatment. That would also be the quickest way to determine if any of these clusters

are in fact native to the SiC surface.

I believe that this research and the work that can now follow it will one day

give us a full understanding of how the surface of SiC behaves. That understanding
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will one day allow us to effectively create SiC devices that can be used in aerospace

applications.
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Appendix A. Numerical Results

This appendix contains the numerical results of the calculations I completed at the

B3LYP/aug-cc-pVDZ level of theory. It is ordered in a similar manner to the or-

ganization of the results chapter, starting with linear chains and ending with the

cage structures. A comparison of the ground states of each spin manifold is given

first, followed by the excited states of each spin manifold. The tables list the elec-

tronic state where it was determined by Gaussian 03, the relative energies (∆E, eV),

the vibrational frequencies (νn, cm−1), geometric parameters (rn, Å), and oscillator

strengths (f, dimensionless). Because of the large number of calculations, this data

has been extracted directly from the Gaussian output files. Negative vibrational

frequencies correspond to transition states, and in certain cases very large values for

vibrational frequencies correspond to failed numerical Hessians.

Table 14 Ground States of Linear SiC2 Spin Manifolds
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4

1Σ 0.000 1914.8 782.8 -47.2 -47.2
3–? 2.007 1859.9 619.5 253.9 139.2

Geometric Summary
State ∆E R1 R2 R3

1Σ 0.000 1.710 3.002 1.292
3–? 2.007 1.810 3.063 1.253

Optical Summary
State ∆E f
1Σ 0.000 0.0000
3–? 2.007 0.0000
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Table 15 Singlet States of Linear SiC2

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4

1Σ 0.000 1914.8 782.8 -47.2 -47.2
1-? 2.573 1970.9 632.9 267.3 83.1
1-? 2.573 1971.2 632.0 263.1 67.7
1-? 2.799 1405.4 1072.1 562.9 441.0
1-? 3.014 1667.4 600.7 256.0 256.0
1-? 3.014 N/A N/A N/A N/A

Geometric Summary
State ∆E R1 R2 R3

1Σ 0.000 1.710 3.002 1.292
1-? 2.573 1.831 3.061 1.230
1-? 2.573 1.831 3.061 1.230
1-? 2.799 1.861 3.179 1.317
1-? 3.014 1.859 3.176 1.317
1-? 3.014 1.855 3.172 1.317

Optical Summary
State ∆E f
1Σ 0.000 0.0000
1-? 2.573 0.0139
1-? 2.573 0.0140
1-? 2.799 0.0108
1-? 3.014 0.0000
1-? 3.014 0.0000
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Table 16 Triplet States of Linear SiC2

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4

3–? 0.000 1859.9 619.5 253.9 139.2
3-? 0.009 1860.9 628.9 620.1 -581.4
3-? 0.551 1629.6 552.4 194.6 115.8
3-? 0.737 41073.2 40175.8 40152.2 32309.5
3-? 1.747 N/A N/A N/A N/A
3-? 1.747 1841.2 794.2 295.5 234.8
3-? 2.873 1986.2 675.9 251.5 241.0

Geometric Summary
State ∆E R1 R2 R3

3–? 0.000 1.810 3.063 1.253
3-? 0.009 1.809 3.063 1.253
3-? 0.551 1.857 3.174 1.317
3-? 0.737 1.874 3.189 1.315
3-? 1.747 1.697 2.966 1.268
3-? 1.747 1.697 2.965 1.268
3-? 2.873 1.777 3.013 1.236

Optical Summary
State ∆E f
3–? 0.000 0.0000
3-? 0.009 0.0000
3-? 0.551 0.0005
3-? 0.737 0.0012
3-? 1.747 0.0314
3-? 1.747 0.0314
3-? 2.873 0.0009
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Table 17 Ground States of Linear Si2C Spin Manifolds
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4

2–? 0.000 1132.3 541.4 215.4 125.0
1Σg 1.162 1370.2 574.2 27.6 27.6
3–? 3.690 1085.2 540.1 205.0 94.7
2Σu 10.390 1206.5 556.9 42.5 42.5

Geometric Summary
State ∆E R1 R2

2–? 0.000 3.464 1.732
1Σg 1.162 3.414 1.707
3–? 3.690 3.439 1.720
2Σu 10.390 3.409 1.704

Optical Summary
State ∆E f
2–? 0.000 0.0000
1Σg 1.162 0.0000
3–? 3.690 0.0000
2Σu 10.390 0.0000
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Table 18 Singlet States of Linear Si2C
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4

1Σg 0.000 1370.2 574.2 27.6 27.6
1-? 2.555 961.3 498.2 195.4 195.3
1-? 2.555 961.3 498.2 195.2 195.0
1-? 2.702 975.7 500.3 189.1 188.9
1-? 2.702 976.0 500.3 190.9 190.6
1-? 2.702 975.6 500.1 189.4 189.3
1-? 3.171 948.6 535.0 182.8 159.4

Geometric Summary
State ∆E R1 R2

1Σg 0.000 3.414 1.707
1-? 2.555 3.574 1.787
1-? 2.555 3.574 1.787
1-? 2.702 3.572 1.786
1-? 2.702 3.572 1.786
1-? 2.702 3.572 1.786
1-? 3.171 3.447 1.723

Optical Summary
State ∆E f
1Σg 0.000 0.0000
1-? 2.555 0.0000
1-? 2.555 0.0000
1-? 2.702 0.0000
1-? 2.702 0.0000
1-? 2.702 0.0000
1-? 3.171 0.0419
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Table 19 Triplet States of Linear Si2C
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4

3-? 0.000 921.7 505.2 210.4 107.9
3-? 0.173 912.0 518.9 204.4 124.2
3–? 0.310 1085.2 540.1 205.0 94.7
3-? 0.317 1087.3 540.8 532.8 -504.2
3-? 1.731 1337.2 585.5 182.3 176.7

Geometric Summary
State ∆E R1 R2

3-? 0.000 3.566 1.783
3-? 0.173 3.583 1.792
3–? 0.310 3.439 1.720
3-? 0.317 3.438 1.719
3-? 1.731 3.391 1.695

Optical Summary
State ∆E f
3-? 0.000 0.0000
3-? 0.173 0.0000
3–? 0.310 0.0000
3-? 0.317 0.0000
3-? 1.731 0.0161
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Table 20 Anion States of Linear Si2C
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4

2–? 0.000 1132.3 541.4 215.4 125.0
2-? 0.007 1133.8 542.2 495.8 -444.9
2-? 1.750 1393.5 534.2 75.5 -204.2
2-? 1.754 1385.8 555.5 74.2 -178.6
2-? 1.918 1056.9 412.2 280.6 154.5

Geometric Summary
State ∆E R1 R2

2–? 0.000 3.464 1.732
2-? 0.007 3.463 1.732
2-? 1.750 3.431 1.716
2-? 1.754 3.422 1.711
2-? 1.918 3.627 1.813

Optical Summary
State ∆E f
2–? 0.000 0.0000
2-? 0.007 0.0000
2-? 1.750 0.0000
2-? 1.754 0.0998
2-? 1.918 0.0811
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Table 21 Cation States of Linear Si2C
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4

2-? 0.000 1153.9 507.2 68.2 -36.3
2-? 0.000 1155.2 505.8 104.2 92.4
2Σu 0.324 1206.5 556.9 42.5 42.5
2-? 2.201 1182.4 242.7 242.6 -73.4
2-? 2.554 1081.8 722.7 175.5 174.9

Geometric Summary
State ∆E R1 R2

2-? 0.000 3.559 1.780
2-? 0.000 3.560 1.780
2Σu 0.324 3.409 1.704
2-? 2.201 3.505 1.752
2-? 2.554 3.505 1.752

Optical Summary
State ∆E f
2-? 0.000 0.0000
2-? 0.000 0.0000
2Σu 0.324 0.0000
2-? 2.201 0.0288
2-? 2.554 0.0202
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Table 22 Ground States of Linear SiC3 Spin Manifolds
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7

2–? 0.000 1945.8 1368.0 633.7 455.8 391.7 186.0
165.1

3Σ 2.649 1984.4 1323.7 611.6 351.4 351.4 138.8
138.8

?–? 3.306 2003.2 1326.5 605.7 430.6 251.4 164.5
105.6

2–? 11.713 2055.1 1197.6 541.8 308.1 203.8 121.2
82.1

Geometric Summary
State ∆E R1 R2 R3 R4 R5

2–? 0.000 1.711 3.045 1.334 2.624 1.290
3Σ 2.649 1.745 3.042 1.296 2.613 1.316
?–? 3.306 1.752 3.051 1.299 2.614 1.315
2–? 11.713 1.830 3.097 1.267 2.622 1.355

Optical Summary
State ∆E f
2–? 0.000 0.0000
3Σ 2.649 0.0000
?–? 3.306 0.0000
2–? 11.713 0.0000
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Table 23 Singlet States of Linear SiC3

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7

1-? 0.000 2193.3 1471.2 1192.7 675.7 367.2 -424.6
-1318.0

?–? 0.171 2003.2 1326.5 605.7 430.6 251.4 164.5
105.6

1-? 2.368 1836.2 1092.8 590.5 530.0 421.5 225.5
209.0

1-? 3.057 N/A N/A N/A N/A N/A N/A
N/A

1-? 3.149 1803.0 1173.4 661.4 521.7 382.9 321.9
228.1

Geometric Summary
State ∆E R1 R2 R3 R4 R5

1-? 0.000 1.686 3.009 1.323 2.574 1.251
?–? 0.171 1.752 3.051 1.299 2.614 1.315
1-? 2.368 1.900 3.169 1.269 2.621 1.352
1-? 3.057 1.625 2.960 1.335 2.624 1.288
1-? 3.149 1.770 3.135 1.365 2.687 1.321

Optical Summary
State ∆E f
1-? 0.000 0.0000
?–? 0.171 0.0000
1-? 2.368 0.0017
1-? 3.057 0.0136
1-? 3.149 0.0136
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Table 24 Triplet States of Linear SiC3

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7

3Σ 0.000 1984.4 1323.7 611.6 351.4 351.4 138.8
138.8

3-? 1.524 1986.2 1479.0 646.7 567.3 462.9 257.4
-111.8

3-? 1.524 1987.4 1480.0 647.1 575.5 451.0 174.2
152.4

3-? 1.905 1828.5 1093.9 536.0 506.6 313.4 250.9
157.6

3-? 1.907 N/A N/A N/A N/A N/A N/A
N/A

Geometric Summary
State ∆E R1 R2 R3 R4 R5

3Σ 0.000 1.745 3.042 1.296 2.613 1.316
3-? 1.524 1.704 3.040 1.336 2.580 1.244
3-? 1.524 1.704 3.039 1.336 2.579 1.244
3-? 1.905 1.943 3.199 1.256 2.627 1.370
3-? 1.907 1.934 3.193 1.260 2.634 1.374

Optical Summary
State ∆E f
3Σ 0.000 0.0000
3-? 1.524 0.0014
3-? 1.524 0.0012
3-? 1.905 0.0013
3-? 1.907 0.0000
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Table 25 Anionic States of Linear SiC3

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7

2–? 0.000 1945.8 1368.0 633.7 455.8 391.7 186.0
165.1

2-? 0.003 1944.4 1368.2 892.1 634.2 359.1 -199.9
-772.8

2-? 1.032 3860.1 1119.9 442.3 368.5 365.6 101.2
-152.1

2-? 1.571 1984.2 1234.4 510.2 387.7 334.2 148.2
56.1

2-? 1.649 2033.3 1433.3 631.1 376.1 213.9 -364.6
-375.3

Geometric Summary
State ∆E R1 R2 R3 R4 R5

2–? 0.000 1.711 3.045 1.334 2.624 1.290
2-? 0.003 1.710 3.045 1.334 2.625 1.290
2-? 1.032 1.884 3.173 1.290 2.616 1.326
2-? 1.571 1.844 3.134 1.290 2.621 1.331
2-? 1.649 1.665 3.044 1.379 2.616 1.237

Optical Summary
State ∆E f
2–? 0.000 0.0000
2-? 0.003 0.0000
2-? 1.032 0.0002
2-? 1.571 0.0000
2-? 1.649 0.0011
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Table 26 Cationic States of Linear SiC3

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7

2-? 0.000 2171.6 1387.0 958.1 605.6 249.1 -274.2
-1117.1

2-? 0.000 2788.6 1463.0 639.0 506.5 330.7 137.8
129.8

2–? 0.401 2055.1 1197.6 541.8 308.1 203.8 121.2
82.1

2-? 2.080 1979.6 1451.2 582.4 575.1 502.6 162.0
132.7

2-? 2.176 N/A N/A N/A N/A N/A N/A
N/A

Geometric Summary
State ∆E R1 R2 R3 R4 R5

2-? 0.000 1.776 3.053 1.277 2.571 1.294
2-? 0.000 1.775 3.052 1.277 2.571 1.294
2–? 0.401 1.830 3.097 1.267 2.622 1.355
2-? 2.080 1.785 3.106 1.321 2.558 1.237
2-? 2.176 2.275 3.646 1.371 2.850 1.479

Optical Summary
State ∆E f
2-? 0.000 0.0000
2-? 0.000 0.0000
2–? 0.401 0.0000
2-? 2.080 0.0015
2-? 2.176 0.0013
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Table 27 Ground States of Linear Si2C2 Spin Manifolds
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7

2–? 0.000 1704.2 955.5 484.6 442.4 383.4 154.5
136.2

3Σg 1.930 1840.5 883.2 469.9 354.3 354.3 122.2
122.2

?–? 2.478 1839.6 889.4 471.8 421.2 269.3 142.8
97.8

2–? 9.450 1978.0 762.2 440.6 322.2 235.7 114.6
92.9

Geometric Summary
State ∆E R1 R2 R3

2–? 0.000 1.729 3.040 1.311
3Σg 1.930 1.754 3.039 1.284
?–? 2.478 1.756 3.042 1.286
2–? 9.450 1.807 3.068 1.261

Optical Summary
State ∆E f
2–? 0.000 0.0000
3Σg 1.930 0.0000
?–? 2.478 0.0000
2–? 9.450 0.0000
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Table 28 Singlet States of Linear Si2C2

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7

?–? 0.000 1839.6 889.4 471.8 421.2 269.3 142.8
97.8

1-? 0.010 1839.9 898.9 890.7 472.3 299.7 -238.3
-793.6

1-? 1.456 1998.0 702.8 417.5 343.2 202.6 105.1
73.0

1-? 2.672 1786.1 767.7 420.4 256.7 247.9 97.0
93.9

1-? 2.812 1723.1 1064.9 524.7 305.0 -107.6 -230.6
-233.9

1-? 2.949 1366.2 775.3 520.8 498.6 422.2 272.9
235.1

1-? 3.552 1771.2 1167.0 614.0 592.4 536.6 169.5
159.5

Geometric Summary
State ∆E R1 R2 R3

?–? 0.000 1.756 3.042 1.286
1-? 0.010 1.755 3.042 1.286
1-? 1.456 1.839 3.095 1.256
1-? 2.672 1.823 3.103 1.280
1-? 2.812 1.694 3.015 1.321
1-? 2.949 1.756 3.131 1.375
1-? 3.552 1.679 2.982 1.303

Optical Summary
State ∆E f
?–? 0.000 0.0000
1-? 0.010 0.0000
1-? 1.456 0.0000
1-? 2.672 0.2670
1-? 2.812 0.1962
1-? 2.949 0.0004
1-? 3.552 0.0318
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Table 29 Triplet States of Linear Si2C2

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7

3Σg 0.000 1840.5 883.2 469.9 354.3 354.3 122.2
122.2

3-? 1.191 1983.6 640.5 370.4 270.3 269.3 93.7
92.7

3-? 1.191 1983.6 640.4 370.4 269.2 269.0 91.8
91.4

3-? 1.337 2020.0 643.3 387.7 268.8 268.4 92.3
92.2

3-? 2.550 N/A N/A N/A N/A N/A N/A
N/A

3-? 2.765 1728.0 1042.0 525.4 -136.0 -136.1 -187.3
-190.3

3-? 2.765 1710.1 935.1 502.2 462.9 404.3 177.2
-70.7

Geometric Summary
State ∆E R1 R2 R3

3Σg 0.000 1.754 3.039 1.284
3-? 1.191 1.873 3.118 1.245
3-? 1.191 1.873 3.118 1.245
3-? 1.337 1.867 3.113 1.246
3-? 2.550 1.835 3.126 1.290
3-? 2.765 1.703 3.011 1.308
3-? 2.765 1.703 3.012 1.309

Optical Summary
State ∆E f
3Σg 0.000 0.0000
3-? 1.191 0.0000
3-? 1.191 0.0000
3-? 1.337 0.0000
3-? 2.550 0.3037
3-? 2.765 0.1954
3-? 2.765 0.0000
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Table 30 Anionic States of Linear Si2C2

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7

2-? 0.000 N/A N/A N/A N/A N/A N/A
N/A

2–? 0.330 1704.2 955.5 484.6 442.4 383.4 154.5
136.2

2-? 0.333 936.3 919.8 453.8 341.3 -211.6 -220.3
-284.8

2-? 1.103 1759.5 712.9 349.5 345.6 306.6 114.2
110.9

2-? 1.588 N/A N/A N/A N/A N/A N/A
N/A

2-? 1.732 1828.5 772.2 410.3 371.0 309.0 124.4
104.8

2-? 2.026 1880.1 795.7 435.6 375.2 305.2 127.7
102.0

Geometric Summary
State ∆E R1 R2 R3

2-? 0.000 1.868 3.164 1.296
2–? 0.330 1.729 3.040 1.311
2-? 0.333 1.729 3.040 1.311
2-? 1.103 1.837 3.099 1.262
2-? 1.588 1.812 3.083 1.270
2-? 1.732 1.808 3.080 1.272
2-? 2.026 1.799 3.074 1.275

Optical Summary
State ∆E f
2-? 0.000 0.0000
2–? 0.330 0.0000
2-? 0.333 0.0001
2-? 1.103 0.0000
2-? 1.588 0.0006
2-? 1.732 0.0000
2-? 2.026 0.0000
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Table 31 Cationic States of Linear Si2C2

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7

2–? 0.000 1978.0 762.2 440.6 322.2 235.7 114.6
92.9

2-? 0.005 1978.1 763.8 737.5 441.2 239.9 -178.7
-664.1

2-? 1.613 2116.3 614.2 388.3 130.8 90.0 89.6
-93.9

2-? 1.934 1918.4 527.1 318.8 310.9 308.9 240.0
239.9

2-? 2.090 1844.1 782.0 474.6 388.7 384.9 131.4
128.8

2-? 2.265 1141.9 836.8 476.8 442.1 411.6 -203.6
-206.1

2-? 2.520 1919.1 1021.3 475.1 372.1 138.3 137.9
-182.2

Geometric Summary
State ∆E R1 R2 R3

2–? 0.000 1.807 3.068 1.261
2-? 0.005 1.807 3.068 1.261
2-? 1.613 1.907 3.145 1.238
2-? 1.934 1.900 3.148 1.248
2-? 2.090 1.741 3.019 1.278
2-? 2.265 1.786 3.184 1.398
2-? 2.520 1.741 3.003 1.263

Optical Summary
State ∆E f
2–? 0.000 0.0000
2-? 0.005 0.0000
2-? 1.613 0.1421
2-? 1.934 0.1413
2-? 2.090 0.0000
2-? 2.265 0.0912
2-? 2.520 0.0007
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Table 32 Singlet States of Linear SiC4

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9 ν10

1Σ 0.000 2180.7 1886.1 1175.4 571.8 429.1 429.1
149.9 149.9 83.9 83.9

1-? 2.092 1927.2 1789.7 1026.6 491.9 317.3 317.1
200.8 199.8 95.7 93.9

1-? 2.235 1929.2 1794.7 1028.8 495.5 318.9 318.9
191.9 191.7 95.7 87.8

1-? 2.235 1929.4 1794.9 1028.4 495.1 319.0 318.9
190.7 190.2 94.8 94.2

1-? 2.558 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A

Geometric Summary
State ∆E R1 R2 R3 R4 R5 R6

R7 R8

1Σ 0.000 1.711 2.991 1.280 2.587 3.874 1.307
2.594 1.287

1-? 2.092 1.808 3.078 1.269 2.594 3.898 1.324
2.629 1.304

1-? 2.235 1.807 3.076 1.269 2.594 3.898 1.325
2.629 1.304

1-? 2.235 1.807 3.076 1.269 2.595 3.898 1.325
2.629 1.304

1-? 2.558 1.795 3.035 1.240 2.621 3.825 1.381
2.585 1.204

Optical Summary
State ∆E f
1Σ 0.000 0.0000
1-? 2.092 0.0000
1-? 2.235 0.0000
1-? 2.235 0.0000
1-? 2.558 0.0020
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Table 33 Ground States of Linear Si2C3 Spin Manifolds
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9 ν10

2–? 0.000 1747.9 1498.8 798.5 544.9 475.7 448.4
272.7 220.4 97.3 87.2

1Σg 1.765 2043.8 1574.4 902.0 535.9 535.9 463.8
199.8 199.8 81.6 81.6

3–? 3.258 1738.5 1481.8 691.6 511.6 429.8 371.3
260.4 194.3 79.5 77.5

Geometric Summary
State ∆E R1 R2 R3 R4

2–? 0.000 1.718 3.022 1.303 2.607
1Σg 1.765 1.702 2.998 1.297 2.593
3–? 3.258 1.761 3.057 1.296 2.591

Optical Summary
State ∆E f
2–? 0.000 0.0000
1Σg 1.765 0.0000
3–? 3.258 0.0000
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Table 34 Singlet States of Linear Si2C3

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9 ν10

1Σg 0.000 2043.8 1574.4 902.0 535.9 535.9 463.8
199.8 199.8 81.6 81.6

1-? 1.835 1738.3 1483.4 711.9 451.5 451.3 433.5
232.5 231.8 85.6 84.2

1-? 1.974 1740.5 1486.9 721.4 454.9 454.8 433.5
228.1 227.9 85.7 84.2

1-? 1.974 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A

1-? 3.683 2129.7 1485.2 771.5 449.0 448.6 416.3
46.9 18.1 -67.4 -71.9

Geometric Summary
State ∆E R1 R2 R3 R4

1Σg 0.000 1.702 2.998 1.297 2.593
1-? 1.835 1.758 3.055 1.296 2.592
1-? 1.974 1.757 3.054 1.297 2.593
1-? 1.974 1.757 3.054 1.297 2.595
1-? 3.683 1.795 3.090 1.296 2.591

Optical Summary
State ∆E f
1Σg 0.000 0.0000
1-? 1.835 0.0000
1-? 1.974 0.0000
1-? 1.974 0.0000
1-? 3.683 0.0000
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Table 35 Triplet States of Linear Si2C3

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9 ν10

3–? 0.000 1738.5 1481.8 691.6 511.6 429.8 371.3
260.4 194.3 79.5 77.5

3-? 0.003 1739.5 1480.1 1234.0 718.5 692.0 428.8
320.9 -214.0 -516.7 -1445.3

3-? 0.326 1635.6 1469.8 664.2 436.1 434.8 427.0
224.1 222.8 83.1 83.0

3-? 1.615 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A

3-? 1.616 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A

Geometric Summary
State ∆E R1 R2 R3 R4

3–? 0.000 1.761 3.057 1.296 2.591
3-? 0.003 1.761 3.057 1.296 2.592
3-? 0.326 1.764 3.060 1.297 2.593
3-? 1.615 1.836 3.130 1.294 2.589
3-? 1.616 1.832 3.123 1.291 2.582

Optical Summary
State ∆E f
3–? 0.000 0.0000
3-? 0.003 0.0000
3-? 0.326 0.0000
3-? 1.615 0.0547
3-? 1.616 0.0367
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Table 36 Anionic States of Linear Si2C3

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9 ν10

2–? 0.000 1747.9 1498.8 798.5 544.9 475.7 448.4
272.7 220.4 97.3 87.2

2-? 0.005 1749.5 1498.8 946.0 799.3 567.2 448.4
256.7 -154.7 -419.4 -739.5

2-? 1.324 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A

2-? 1.517 1866.6 1447.7 727.1 464.2 432.3 415.0
258.6 211.6 86.6 86.3

2-? 1.782 1964.6 1523.8 827.1 542.5 470.6 439.1
215.2 84.6 47.4 -74.7

Geometric Summary
State ∆E R1 R2 R3 R4

2–? 0.000 1.718 3.022 1.303 2.607
2-? 0.005 1.718 3.022 1.303 2.607
2-? 1.324 1.780 3.079 1.299 2.598
2-? 1.517 1.766 3.067 1.301 2.602
2-? 1.782 1.735 3.035 1.301 2.601

Optical Summary
State ∆E f
2–? 0.000 0.0000
2-? 0.005 0.0000
2-? 1.324 0.0015
2-? 1.517 0.0000
2-? 1.782 0.0476
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Table 37 Ground States of Triangular SiC2 Spin Manifolds
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

2B1 0.000 1401.6 988.5 832.1 599.1 359.4 323.6
1A1 2.024 1405.7 1026.1 982.5 660.9 388.5 239.2
3B1 2.831 1557.5 979.1 834.1 524.9 389.8 143.0
2A1 10.701 1616.2 1281.0 820.1 551.7 400.2 289.9

Geometric Summary
State ∆E R1 R2 R3 R4

2B1 0.000 1.909 2.991 1.473 1.433
1A1 2.024 1.862 2.944 1.486 1.442
3B1 2.831 1.955 2.937 1.520 1.367
2A1 10.701 1.959 2.923 1.540 1.360

Optical Summary
State ∆E f
2B1 0.000 0.0000
1A1 2.024 0.0000
3B1 2.831 0.0000
2A1 10.701 0.0000
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Table 38 Singlet Excited States of Triangular SiC2

Vibrational Summary
State ∆E ν1 ν2 ν3

1A1 0.000 1835.9 789.2 95.6
1B1 2.527 1906.0 590.3 -298.5
1B2 2.559 1456.1 507.8 491.5
1A2 3.656 1468.4 470.4 229.2
1B2 4.071 N/A N/A N/A

Geometric Summary
State ∆E R1 R2

1A1 0.000 1.852 1.260
1B1 2.527 2.007 1.248
1B2 2.559 1.874 1.329
1A2 3.656 2.061 1.342
1B2 4.071 1.931 1.340

Optical Summary
State ∆E f
1A1 0.000 0.0000
1B1 2.527 0.0031
1B2 2.559 0.0163
1A2 3.656 0.0000
1B2 4.071 0.0143
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Table 39 Triplet Excited States of Triangular SiC2

Vibrational Summary
State ∆E ν1 ν2 ν3

3B2 0.000 1560.3 656.5 588.7
3A1 1.062 1358.1 725.7 487.6
3A2 1.069 1928.9 323.7 -490.0
3B1 1.635 1434.1 448.4 289.5
3B1 3.000 1340.3 671.3 654.6

Geometric Summary
State ∆E R1 R2

3B2 0.000 1.891 1.309
3A1 1.062 1.863 1.358
3A2 1.069 2.078 1.248
3B1 1.635 2.038 1.354
3B1 3.000 1.853 1.373

Optical Summary
State ∆E f
3B2 0.000 0.0000
3A1 1.062 0.0142
3A2 1.069 0.0063
3B1 1.635 0.0029
3B1 3.000 0.0006
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Table 40 Ground States of Bent Si2C Spin Manifolds
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

2B1 0.000 1401.6 988.5 832.1 599.1 359.4 323.6
1A1 2.024 1405.7 1026.1 982.5 660.9 388.5 239.2
3B1 2.831 1557.5 979.1 834.1 524.9 389.8 143.0
2A1 10.701 1616.2 1281.0 820.1 551.7 400.2 289.9

Geometric Summary
State ∆E R1 R2 R3 R4

2B1 0.000 1.909 2.991 1.473 1.433
1A1 2.024 1.862 2.944 1.486 1.442
3B1 2.831 1.955 2.937 1.520 1.367
2A1 10.701 1.959 2.923 1.540 1.360

Optical Summary
State ∆E f
2B1 0.000 0.0000
1A1 2.024 0.0000
3B1 2.831 0.0000
2A1 10.701 0.0000
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Table 41 Singlet Excited States of Bent Si2C
Vibrational Summary
State ∆E ν1 ν2 ν3

1A1 0.000 1291.4 728.1 65.5
1A2 2.558 961.4 498.2 195.1
1A2 2.705 734.7 453.0 298.1
1B2 2.705 977.5 501.1 188.0
1B1 2.801 1176.9 580.8 -133.0
1A1 3.176 N/A N/A N/A

Geometric Summary
State ∆E R1 R2

1A1 0.000 3.157 1.709
1A2 2.558 3.574 1.787
1A2 2.705 3.572 1.786
1B2 2.705 3.571 1.785
1B1 2.801 3.446 1.723
1A1 3.176 3.421 1.716

Optical Summary
State ∆E f
1A1 0.000 0.0000
1A2 2.558 0.0000
1A2 2.705 0.0315
1B2 2.705 0.0004
1B1 2.801 0.0356
1A1 3.176 0.0355
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Table 42 Triplet Excited States of Bent Si2C
Vibrational Summary
State ∆E ν1 ν2 ν3

3B2 0.000 N/A N/A N/A
3B1 0.137 1085.3 540.1 94.6
3B1 0.143 1085.6 540.0 532.4

Geometric Summary
State ∆E R1 R2

3B2 0.000 3.584 1.792
3B1 0.137 3.439 1.719
3B1 0.143 3.439 1.720

Optical Summary
State ∆E f
3B2 0.000 0.0008
3B1 0.137 0.0000
3B1 0.143 0.0001
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Table 43 Ground States of C-C Bonded Rhomboidal SiC3 Spin Manifolds
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

2B1 0.000 1401.6 988.5 832.1 599.1 359.4 323.6
1A1 2.024 1405.7 1026.1 982.5 660.9 388.5 239.2
3B1 2.831 1557.5 979.1 834.1 524.9 389.8 143.0
2A1 10.701 1616.2 1281.0 820.1 551.7 400.2 289.9

Geometric Summary
State ∆E R1 R2 R3 R4

2B1 0.000 1.909 2.991 1.473 1.433
1A1 2.024 1.862 2.944 1.486 1.442
3B1 2.831 1.955 2.937 1.520 1.367
2A1 10.701 1.959 2.923 1.540 1.360

Optical Summary
State ∆E f
2B1 0.000 0.0000
1A1 2.024 0.0000
3B1 2.831 0.0000
2A1 10.701 0.0000
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Table 44 Singlet States of C-C Bonded Rhomboidal SiC3

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

1A1 0.000 1405.7 1026.1 982.5 660.9 388.5 239.2
1B1 0.870 1547.8 1153.3 1054.8 901.8 556.3 348.9
1A2 1.751 2511.5 1400.7 870.1 827.5 636.3 142.5
1A2 1.799 2382.0 1061.9 884.2 554.7 527.9 258.3
1B2 2.988 N/A N/A N/A N/A N/A N/A
1A2 2.994 1559.1 838.5 776.5 475.0 279.4 -530.7
1B1 4.890 1378.3 1290.5 1040.1 543.3 402.6 -488.5

Geometric Summary
State ∆E R1 R2 R3 R4

1A1 0.000 1.862 2.944 1.486 1.442
1B1 0.870 1.982 2.953 1.504 1.349
1A2 1.751 1.897 2.593 1.959 1.377
1A2 1.799 1.820 2.775 1.766 1.476
1B2 2.988 2.144 3.094 1.576 1.353
1A2 2.994 2.049 3.242 1.363 1.476
1B1 4.890 1.928 3.066 1.423 1.459

Optical Summary
State ∆E f
1A1 0.000 0.0000
1B1 0.870 0.0024
1A2 1.751 0.0011
1A2 1.799 0.0003
1B2 2.988 0.0002
1A2 2.994 0.0022
1B1 4.890 0.0104
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Table 45 Triplet States of C-C Bonded Rhomboidal SiC3

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

3B1 0.000 1557.5 979.1 834.1 524.9 389.8 143.0
3B2 0.838 N/A N/A N/A N/A N/A N/A
3A2 1.930 1673.7 1580.8 725.0 -36.1 -194.8 -237.2
3B2 1.933 6002.3 -7212.7 -9944.9 -

10020.4
-
16509.3

N/A

3A1 1.957 1324.2 1033.5 579.6 464.5 365.4 -478.9
Geometric Summary
State ∆E R1 R2 R3 R4

3B1 0.000 1.955 2.937 1.520 1.367
3B2 0.838 1.923 2.638 1.920 1.367
3A2 1.930 2.205 3.160 1.583 1.357
3B2 1.933 2.052 3.249 1.359 1.478
3A1 1.957 1.853 2.951 1.466 1.448

Optical Summary
State ∆E f
3B1 0.000 0.0000
3B2 0.838 0.0012
3A2 1.930 0.0003
3B2 1.933 0.0040
3A1 1.957 0.0000
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Table 46 Doublet States of C-C Bonded Rhomboidal SiC3

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

2B1 0.000 1401.6 988.5 832.1 599.1 359.4 323.6
2B2 1.605 N/A N/A N/A N/A N/A N/A
2B1 1.834 1530.4 887.8 647.5 526.5 459.0 -799.9
2A2 2.017 1400.7 959.7 859.9 479.4 113.8 -384.1
2B1 2.557 1423.8 1001.6 1000.0 592.8 380.9 -190.7

Geometric Summary
State ∆E R1 R2 R3 R4

2B1 0.000 1.909 2.991 1.473 1.433
2B2 1.605 1.855 2.825 1.717 1.460
2B1 1.834 1.966 2.966 1.502 1.374
2A2 2.017 1.977 3.050 1.503 1.434
2B1 2.557 1.901 2.987 1.473 1.437

Optical Summary
State ∆E f
2B1 0.000 0.0000
2B2 1.605 0.0032
2B1 1.834 0.0057
2A2 2.017 0.0000
2B1 2.557 0.0210
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Table 47 Doublet States of C-C Bonded Rhomboidal SiC3

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

2A1 0.000 1616.2 1281.0 820.1 551.7 400.2 289.9
2B1 1.857 1652.1 1549.6 632.6 353.9 348.5 -627.9
2A1 1.983 1391.1 1108.5 1015.0 676.9 477.1 259.8
2B2 2.486 N/A N/A N/A N/A N/A N/A
2B1 2.712 1802.4 1507.3 1000.7 581.3 485.7 -331.9

Geometric Summary
State ∆E R1 R2 R3 R4

2A1 0.000 1.959 2.923 1.540 1.360
2B1 1.857 2.178 2.990 1.710 1.306
2A1 1.983 1.801 2.915 1.478 1.472
2B2 2.486 2.003 3.235 1.380 1.520
2B1 2.712 1.918 2.881 1.506 1.347

Optical Summary
State ∆E f
2A1 0.000 0.0000
2B1 1.857 0.0022
2A1 1.983 0.0243
2B2 2.486 0.0031
2B1 2.712 0.0034
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Table 48 Ground States of Si-C Bonded Rhomboidal SiC3 Spin Manifolds
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

2A2 0.000 1352.3 1097.5 845.9 499.8 429.0 -107.3
1A1 2.167 1595.3 1148.2 764.2 488.8 378.8 200.2
3B1 2.482 1366.0 1193.6 696.4 576.6 485.3 228.3
2B2 11.185 1626.5 1248.4 581.1 493.9 296.9 165.6

Geometric Summary
State ∆E R1 R2 R3 R4

2A2 0.000 2.023 1.861 2.650 1.366
1A1 2.167 2.071 1.924 2.619 1.348
3B1 2.482 1.978 1.989 2.531 1.349
2B2 11.185 2.074 2.141 2.490 1.335

Optical Summary
State ∆E f
2A2 0.000 0.0000
1A1 2.167 0.0000
3B1 2.482 0.0000
2B2 11.185 0.0000
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Table 49 Singlet States of Si-C Bonded Rhomboidal SiC3

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

1A1 0.000 1595.3 1148.2 764.2 488.8 378.8 200.2
1B1 1.133 1297.9 1203.0 675.4 560.4 523.5 -353.9
1A2 1.302 1737.1 1031.6 509.7 244.3 -767.1 -3026.5
1A2 1.702 2462.2 1292.6 798.5 610.1 437.1 125.2
1B2 2.489 N/A N/A N/A N/A N/A N/A
1B1 3.462 1348.8 1084.2 911.2 496.6 474.4 321.8
1A2 4.510 3280.9 2582.6 1994.4 1392.5 1249.1 -1545.6

Geometric Summary
State ∆E R1 R2 R3 R4

1A1 0.000 2.071 1.924 2.619 1.348
1B1 1.133 1.978 2.003 2.522 1.348
1A2 1.302 2.116 2.418 2.315 1.326
1A2 1.702 2.115 2.236 2.449 1.327
1B2 2.489 1.917 2.331 2.344 1.427
1B1 3.462 2.176 1.864 2.697 1.357
1A2 4.510 2.131 1.997 2.589 1.330

Optical Summary
State ∆E f
1A1 0.000 0.0000
1B1 1.133 0.0021
1A2 1.302 0.0000
1A2 1.702 0.0001
1B2 2.489 0.0084
1B1 3.462 0.0119
1A2 4.510 0.0251
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Table 50 Triplet States of Si-C Bonded Rhomboidal SiC3

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

3B1 0.000 1366.0 1193.6 696.4 576.6 485.3 228.3
3B2 1.293 N/A N/A N/A N/A N/A N/A
3A2 1.955 1469.3 1448.5 895.3 498.7 304.1 265.1
3B2 2.486 1282.6 1101.3 532.5 376.6 247.9 152.9
3B2 2.759 1034.4 992.6 729.7 487.6 363.8 -1165.5

Geometric Summary
State ∆E R1 R2 R3 R4

3B1 0.000 1.978 1.989 2.531 1.349
3B2 1.293 2.163 2.247 2.472 1.323
3A2 1.955 2.096 2.438 2.276 1.325
3B2 2.486 2.022 1.938 2.644 1.384
3B2 2.759 2.022 1.938 2.644 1.384

Optical Summary
State ∆E f
3B1 0.000 0.0000
3B2 1.293 0.0028
3A2 1.955 0.0000
3B2 2.486 0.0432
3B2 2.759 0.0682

124



Table 51 Doublet States of Si-C Bonded Rhomboidal SiC3

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

2A2 0.000 1352.3 1097.5 845.9 499.8 429.0 -107.3
2B2 0.807 1622.9 1191.9 706.2 453.1 150.7 -169.0
2A2 1.093 4368.3 1230.5 763.1 504.6 415.6 313.2
2A2 1.443 1222.3 1161.8 643.7 481.2 467.9 -939.1
2B1 1.585 1523.7 1137.8 796.1 613.9 601.8 470.2

Geometric Summary
State ∆E R1 R2 R3 R4

2A2 0.000 2.023 1.861 2.650 1.366
2B2 0.807 2.145 2.027 2.591 1.334
2A2 1.093 2.095 2.133 2.516 1.338
2A2 1.443 2.072 2.107 2.516 1.339
2B1 1.585 1.938 1.912 2.574 1.368

Optical Summary
State ∆E f
2A2 0.000 0.0000
2B2 0.807 0.0002
2A2 1.093 0.0000
2A2 1.443 0.0000
2B1 1.585 0.0059
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Table 52 Doublet States of Si-C Bonded Rhomboidal SiC3

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

2B2 0.000 1626.5 1248.4 581.1 493.9 296.9 165.6
2A1 0.896 1390.1 1109.0 1014.4 677.2 477.1 261.0
2A2 1.911 1482.7 1331.8 772.2 630.1 467.4 342.8
2B2 2.003 N/A N/A N/A N/A N/A N/A
2A2 2.436 2007.6 1202.8 772.4 711.1 514.5 425.9

Geometric Summary
State ∆E R1 R2 R3 R4

2B2 0.000 2.074 2.141 2.490 1.335
2A1 0.896 1.801 2.915 1.478 1.472
2A2 1.911 1.881 1.921 2.473 1.335
2B2 2.003 1.960 1.828 2.627 1.365
2A2 2.436 1.879 1.888 2.518 1.353

Optical Summary
State ∆E f
2B2 0.000 0.0000
2A1 0.896 0.0016
2A2 1.911 0.0007
2B2 2.003 0.0112
2A2 2.436 0.0000
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Table 53 Ground States of Rhomboidal Si2C2 Spin Manifolds
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

1Ag 0.000 1114.1 956.8 934.5 492.8 342.9 193.4
3B2g 2.265 1486.6 1239.9 576.8 459.5 353.6 245.3
2Ag 8.957 1204.8 658.9 462.6 344.4 192.3 -2058.1

Geometric Summary
State ∆E R1 R2 R3

1Ag 0.000 3.422 1.856 1.441
3B2g 2.265 3.492 1.884 1.417
2Ag 8.957 3.500 1.890 1.427

Optical Summary
State ∆E f
1Ag 0.000 0.0000
3B2g 2.265 0.0000
2Ag 8.957 0.0000
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Table 54 Singlet States of Rhomboidal Si2C2

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

1Ag 0.000 1114.1 956.8 934.5 492.8 342.9 193.4
1B1g 2.049 1545.8 1268.7 552.1 384.8 297.3 281.4
1B2g 2.308 2945.1 2914.2 516.5 308.6 -3316.5 -3817.7
1B2g 2.317 3929.7 3684.6 881.9 481.7 -2900.5 -2920.8
1B3u 3.306 967.5 849.0 570.3 491.2 472.9 304.5
1Au 3.452 1634.2 1107.1 753.7 330.8 233.8 -77.3

Geometric Summary
State ∆E R1 R2 R3

1Ag 0.000 3.422 1.856 1.441
1B1g 2.049 3.679 1.957 1.335
1B2g 2.308 3.501 1.891 1.431
1B2g 2.317 3.501 1.891 1.431
1B3u 3.306 3.340 1.842 1.554
1Au 3.452 3.808 2.014 1.309

Optical Summary
State ∆E f
1Ag 0.000 0.0000
1B1g 2.049 0.0000
1B2g 2.308 0.0000
1B2g 2.317 0.0000
1B3u 3.306 0.0502
1Au 3.452 0.0069
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Table 55 Triplet States of Rhomboidal Si2C2

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

3B2g 0.000 1486.6 1239.9 576.8 459.5 353.6 245.3
3B3g 0.706 10801.9 8010.8 7994.6 7197.7 5107.7 4316.8
3Au 1.504 8913.0 7067.1 6308.6 378.9 -7356.3 -7369.0

Geometric Summary
State ∆E R1 R2 R3

3B2g 0.000 3.492 1.884 1.417
3B3g 0.706 2.927 1.830 2.197
3Au 1.504 3.664 1.964 1.415

Optical Summary
State ∆E f
3B2g 0.000 0.0000
3B3g 0.706 0.0119
3Au 1.504 0.1005

129



Table 56 Ground States of Rhomboidal Si3C Spin Manifolds
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

2A2 0.000 923.6 654.9 480.0 285.5 258.2 220.3
1A1 1.536 1082.0 624.8 495.2 329.4 290.2 178.7
3B1 2.857 806.5 711.8 473.3 248.6 193.8 -149.6

Geometric Summary
State ∆E R1 R2 R3 R4

2A2 0.000 1.937 2.444 1.804 3.568
1A1 1.536 1.971 2.468 1.778 3.522
3B1 2.857 1.846 2.663 1.806 3.605

Optical Summary
State ∆E f
2A2 0.000 0.0000
1A1 1.536 0.0000
3B1 2.857 0.0000

130



Table 57 Singlet States of Rhomboidal Si3C
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

1A1 0.000 1082.0 624.8 495.2 329.4 290.2 178.7
1B1 1.627 842.3 708.4 479.9 253.8 199.7 -187.6
1A2 2.322 1292.4 766.2 454.4 316.9 308.6 248.9
1A2 2.792 965.0 613.6 421.5 405.2 107.0 -113.2
1B1 3.066 N/A N/A N/A N/A N/A N/A

Geometric Summary
State ∆E R1 R2 R3 R4

1A1 0.000 1.971 2.468 1.778 3.522
1B1 1.627 1.853 2.668 1.802 3.596
1A2 2.322 1.857 2.383 1.864 3.667
1A2 2.792 1.964 2.454 1.800 3.559
1B1 3.066 1.930 2.444 1.804 3.570

Optical Summary
State ∆E f
1A1 0.000 0.0000
1B1 1.627 0.0003
1A2 2.322 0.0000
1A2 2.792 0.0000
1B1 3.066 0.0269
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Table 58 Triplet States of Rhomboidal Si3C
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

3B1 0.000 806.5 711.8 473.3 248.6 193.8 -149.6
3B2 0.546 N/A N/A N/A N/A N/A N/A
3B2 1.278 1290.9 943.8 546.8 462.9 335.1 90.5
3B1 1.280 2067.8 2062.2 474.5 226.4 215.2 -311.3
3A1 1.346 864.8 698.3 505.5 429.5 276.8 276.1

Geometric Summary
State ∆E R1 R2 R3 R4

3B1 0.000 1.846 2.663 1.806 3.605
3B2 0.546 2.158 2.801 1.728 3.455
3B2 1.278 1.927 2.475 1.807 3.587
3B1 1.280 1.815 3.144 1.816 3.145
3A1 1.346 1.855 2.387 1.856 3.656

Optical Summary
State ∆E f
3B1 0.000 0.0000
3B2 0.546 0.0000
3B2 1.278 0.0001
3B1 1.280 0.0022
3A1 1.346 0.0028
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Table 59 Doublet States of Rhomboidal Si3C
−

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

2A2 0.000 923.6 654.9 480.0 285.5 258.2 220.3
2B2 0.701 N/A N/A N/A N/A N/A N/A
2A2 1.473 1014.4 700.6 499.6 450.4 191.4 -89.7
2B2 1.829 N/A N/A N/A N/A N/A N/A
2B2 1.829 1069.0 678.1 474.4 333.4 287.1 -113.4

Geometric Summary
State ∆E R1 R2 R3 R4

2A2 0.000 1.937 2.444 1.804 3.568
2B2 0.701 2.220 2.502 1.754 3.418
2A2 1.473 1.867 2.613 1.812 3.624
2B2 1.829 1.910 2.486 1.805 3.590
2B2 1.829 1.912 2.483 1.806 3.591

Optical Summary
State ∆E f
2A2 0.000 0.0000
2B2 0.701 0.0001
2A2 1.473 0.0000
2B2 1.829 0.0878
2B2 1.829 0.0827
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Table 60 Doublet States of Rhomboidal Si3C
+

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

2B2 0.000 N/A N/A N/A N/A N/A N/A
2A1 0.414 N/A N/A N/A N/A N/A N/A
2B1 0.495 N/A N/A N/A N/A N/A N/A
2A2 1.015 916.3 531.2 396.5 247.1 234.3 155.3

Geometric Summary
State ∆E R1 R2 R3 R4

2B2 0.000 1.888 2.433 1.833 3.627
2A1 0.414 1.982 2.550 1.762 3.514
2B1 0.495 1.927 3.390 1.990 3.454
2A2 1.015 2.112 2.621 1.857 3.681

Optical Summary
State ∆E f
2B2 0.000 0.0004
2A1 0.414 0.0043
2B1 0.495 0.0008
2A2 1.015 0.0000
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Table 61 Ground States of C3v Si4C Spin Manifolds
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9

2–? 0.000 N/A N/A N/A N/A N/A N/A
N/A N/A N/A

1A1 1.371 701.8 701.8 648.4 386.1 318.0 285.0
285.0 238.9 238.9

3–? 3.323 N/A N/A N/A N/A N/A N/A
N/A N/A N/A

Geometric Summary
State ∆E R1 R2 R3 R4

2–? 0.000 1.896 2.370 3.076 2.463
1A1 1.371 1.864 2.533 2.920 2.421
3–? 3.323 1.825 2.429 2.889 2.373

Optical Summary
State ∆E f
2–? 0.000 0.0000
1A1 1.371 0.0000
3–? 3.323 0.0000
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Table 62 Singlet Excited States of C3v Si4C
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9

1A1 0.000 701.8 701.8 648.4 386.1 318.0 285.0
285.0 238.9 238.9

1-? 2.040 519.2 418.4 404.7 274.1 181.4 101.3
61.8 -1164.7 -1165.7

1-? 2.257 N/A N/A N/A N/A N/A N/A
N/A N/A N/A

1-? 2.258 N/A N/A N/A N/A N/A N/A
N/A N/A N/A

1-? 2.522 N/A N/A N/A N/A N/A N/A
N/A N/A N/A

Geometric Summary
State ∆E R1 R2 R3 R4

1A1 0.000 1.864 2.533 2.920 2.421
1-? 2.040 1.859 2.266 3.126 2.563
1-? 2.257 1.988 2.298 3.268 2.521
1-? 2.258 1.849 2.296 3.132 2.631
1-? 2.522 1.888 2.545 2.980 2.466

Optical Summary
State ∆E f
1A1 0.000 0.0000
1-? 2.040 0.0002
1-? 2.257 0.0031
1-? 2.258 0.0196
1-? 2.522 0.0245
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Table 63 Doublet Excited States of C3v Si4C
−

Vibrational Summary
State ∆E
2-? 0.000
2–? 0.047
2-E 0.102
2-? 1.294
2-? 1.359

Geometric Summary
State ∆E R1 R2 R3 R4

2-? 0.000 1.871 2.375 3.023 2.437
2–? 0.047 1.896 2.370 3.076 2.463
2-E 0.102 1.913 2.150 3.179 2.442
2-? 1.294 1.870 2.057 3.180 2.502
2-? 1.359 1.874 2.113 3.171 2.507

Optical Summary
State ∆E f
2-? 0.000 0.0008
2–? 0.047 0.0000
2-E 0.102 0.0011
2-? 1.294 0.0042
2-? 1.359 0.0078
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Table 64 Ground States of C2v Si4C Spin Manifolds
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9

2A1 0.000 921.9 587.0 442.5 410.1 313.2 265.4
244.3 185.5 177.8

3B1 2.981 934.3 597.7 386.8 317.5 270.7 264.3
260.0 258.9 146.4

Geometric Summary
State ∆E R1 R2 R3 R4 R5

2A1 0.000 2.083 1.823 2.649 2.510 3.546
3B1 2.981 2.126 1.819 2.976 2.469 3.454

Optical Summary
State ∆E f
2A1 0.000 0.0000
3B1 2.981 0.0000
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Table 65 Singlet Excited States of C2v Si4C
Vibrational Summary
State ∆E
1B1 0.000
1B2 1.177
1B1 1.381
1B2 1.404

Geometric Summary
State ∆E R1 R2 R3 R4 R5

1B1 0.000 2.150 1.789 2.966 2.432 3.361
1B2 1.177 2.090 1.791 2.405 2.953 3.520
1B1 1.381 2.070 1.833 2.651 2.546 3.592
1B2 1.404 2.093 1.911 2.486 2.484 3.659

Optical Summary
State ∆E f
1B1 0.000 0.0003
1B2 1.177 0.0017
1B1 1.381 0.0002
1B2 1.404 0.0019
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Table 66 Triplet Excited States of C2v Si4C
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9

3B1 0.000 934.3 597.7 386.8 317.5 270.7 264.3
260.0 258.9 146.4

3B2 0.036 N/A N/A N/A N/A N/A N/A
N/A N/A N/A

3A2 1.019 N/A N/A N/A N/A N/A N/A
N/A N/A N/A

3B1 1.383 N/A N/A N/A N/A N/A N/A
N/A N/A N/A

3B2 1.394 N/A N/A N/A N/A N/A N/A
N/A N/A N/A

Geometric Summary
State ∆E R1 R2 R3 R4 R5

3B1 0.000 2.126 1.819 2.976 2.469 3.454
3B2 0.036 2.199 1.817 3.068 2.579 3.508
3A2 1.019 2.073 1.893 2.470 2.467 3.630
3B1 1.383 2.080 1.876 2.574 2.476 3.603
3B2 1.394 2.198 1.833 2.268 2.627 3.601

Optical Summary
State ∆E f
3B1 0.000 0.0000
3B2 0.036 0.0001
3A2 1.019 0.0000
3B1 1.383 0.0012
3B2 1.394 0.0045
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Table 67 Doublet Excited States of C2v Si4C
−

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9

2A1 0.000 921.9 587.0 442.5 410.1 313.2 265.4
244.3 185.5 177.8

2A2 0.420 N/A N/A N/A N/A N/A N/A
N/A N/A N/A

2B1 0.781 N/A N/A N/A N/A N/A N/A
N/A N/A N/A

2B2 1.522 N/A N/A N/A N/A N/A N/A
N/A N/A N/A

2A1 2.087 N/A N/A N/A N/A N/A N/A
N/A N/A N/A

Geometric Summary
State ∆E R1 R2 R3 R4 R5

2A1 0.000 2.083 1.823 2.649 2.510 3.546
2A2 0.420 2.268 1.775 2.325 2.674 3.501
2B1 0.781 2.400 1.818 2.695 2.419 3.257
2B2 1.522 2.173 1.876 2.372 2.473 3.566
2A1 2.087 2.143 1.861 2.486 2.480 3.559

Optical Summary
State ∆E f
2A1 0.000 0.0000
2A2 0.420 0.0004
2B1 0.781 0.0000
2B2 1.522 0.0039
2A1 2.087 0.0006
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Table 68 Ground States of C2v Si4C2 Spin Manifolds
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9 ν10 ν11

2B1 0.000 1605.4 654.9 540.9 468.1 364.9 331.7
308.2 188.2 176.8 169.9 138.2

1A1 1.008 1645.4 759.0 575.7 458.1 381.3 370.1
337.5 335.9 285.9 168.6 130.6

3B1 2.820 1493.2 697.9 573.6 407.2 394.8 302.0
251.4 245.6 215.9 215.9 142.7

Geometric Summary
State ∆E R1 R2 R3 R4 R5 R6

2B1 0.000 2.537 2.599 2.192 1.873 3.047 1.317
1A1 1.008 2.531 2.514 2.226 1.852 2.988 1.309
3B1 2.820 3.098 2.602 2.152 1.845 3.001 1.343

Optical Summary
State ∆E f
2B1 0.000 0.0000
1A1 1.008 0.0000
3B1 2.820 0.0000
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Table 69 Singlet States of C2v Si4C2

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9 ν10 ν11

1A1 0.000 1645.4 759.0 575.7 458.1 381.3 370.1
337.5 335.9 285.9 168.6 130.6

1B1 2.034 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

1A2 2.328 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

1A1 2.585 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

1B2 3.196 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

Geometric Summary
State ∆E R1 R2 R3 R4 R5 R6

R7

1A1 0.000 2.531 2.514 2.226 1.852 2.988 1.309
N/A

1B1 2.034 2.615 2.707 2.134 1.840 3.075 1.333
N/A

1A2 2.328 3.323 2.423 2.305 3.507 1.986 2.913
1.294

1A1 2.585 2.227 2.548 2.088 1.739 3.135 1.541
N/A

1B2 3.196 2.425 2.531 2.244 1.869 3.086 1.403
N/A

Optical Summary
State ∆E f
1A1 0.000 0.0000
1B1 2.034 0.0005
1A2 2.328 0.0000
1A1 2.585 0.0004
1B2 3.196 0.0003
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Table 70 Triplet States of C2v Si4C2

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9 ν10 ν11

3B1 0.000 1493.2 697.9 573.6 407.2 394.8 302.0
251.4 245.6 215.9 215.9 142.7

3B2 1.045 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

3B2 1.045 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

3A2 1.244 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

3B2 1.624 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

Geometric Summary
State ∆E R1 R2 R3 R4 R5 R6

3B1 0.000 3.098 2.602 2.152 1.845 3.001 1.343
3B2 1.045 2.632 2.511 2.387 1.904 2.978 1.278
3B2 1.045 2.652 2.562 2.304 1.919 3.013 1.273
3A2 1.244 2.568 2.612 2.195 1.831 3.102 1.423
3B2 1.624 2.475 3.013 2.296 1.821 3.112 1.321

Optical Summary
State ∆E f
3B1 0.000 0.0000
3B2 1.045 0.0008
3B2 1.045 0.0017
3A2 1.244 0.0000
3B2 1.624 0.0001
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Table 71 Doublet States of C2v Si4C2
−

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9 ν10 ν11

2B1 0.000 1605.4 654.9 540.9 468.1 364.9 331.7
308.2 188.2 176.8 169.9 138.2

2B1 0.236 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

2B1 0.682 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

2B1 0.981 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

2A1 1.569 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

Geometric Summary
State ∆E R1 R2 R3 R4 R5 R6

R7

2B1 0.000 2.537 2.599 2.192 1.873 3.047 1.317
N/A

2B1 0.236 2.265 2.900 2.190 1.899 3.248 1.409
N/A

2B1 0.682 2.720 2.406 2.487 3.832 1.940 2.945
1.281

2B1 0.981 2.458 2.519 2.255 1.852 2.995 1.314
N/A

2A1 1.569 2.567 2.577 2.356 1.834 2.998 1.331
N/A

Optical Summary
State ∆E f
2B1 0.000 0.0000
2B1 0.236 0.0002
2B1 0.682 0.0010
2B1 0.981 0.0034
2A1 1.569 0.0022
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Table 72 Ground States of Distorted Si4C2 Spin Manifolds
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9 ν10 ν11

2-A’ 0.000 1043.2 828.2 774.3 494.2 426.0 320.0
301.9 226.1 222.0 170.0 154.8

1-A’ 2.072 1055.3 855.7 732.7 529.9 418.3 317.8
274.6 237.2 204.8 65.0 -276.1

3-A’ 3.096 1066.5 773.5 764.8 470.1 363.8 289.2
255.1 226.7 210.6 144.6 119.9

Geometric Summary
State ∆E R1 R2 R3 R4 R5 R6

R7 R8 R9

2-A’ 0.000 2.691 2.523 3.654 1.844 2.733 2.586
2.154 1.887 1.512

1-A’ 2.072 3.038 2.558 3.586 1.790 2.810 2.553
2.180 1.885 1.544

3-A’ 3.096 2.981 2.492 3.726 1.856 2.818 3.115
2.133 1.870 1.509

Optical Summary
State ∆E f
2-A’ 0.000 0.0000
1-A’ 2.072 0.0000
3-A’ 3.096 0.0000
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Table 73 Singlet Excited States of Distorted Si4C2

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9 ν10 ν11

1-A’ 0.000 1055.3 855.7 732.7 529.9 418.3 317.8
274.6 237.2 204.8 65.0 -276.1

1-A’ 1.321 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

1-A” 1.552 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

1-A” 2.010 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

1-A’ 2.716 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

Geometric Summary
State ∆E R1 R2 R3 R4 R5 R6

R7 R8 R9

1-A’ 0.000 3.038 2.558 3.586 1.790 2.810 2.553
2.180 1.885 1.544

1-A’ 1.321 2.932 2.514 3.724 1.851 2.800 2.888
2.087 1.882 1.505

1-A” 1.552 2.522 2.668 3.754 1.895 2.700 2.705
2.184 1.895 1.466

1-A” 2.010 2.642 2.606 3.796 1.876 2.698 2.744
2.138 1.956 1.422

1-A’ 2.716 2.685 2.541 3.718 1.830 2.790 2.577
2.023 1.926 1.651

Optical Summary
State ∆E f
1-A’ 0.000 0.0000
1-A’ 1.321 0.0001
1-A” 1.552 0.0000
1-A” 2.010 0.0114
1-A’ 2.716 0.0016
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Table 74 Triplet Excited States of Distorted Si4C2

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9 ν10 ν11

3-A’ 0.000 1066.5 773.5 764.8 470.1 363.8 289.2
255.1 226.7 210.6 144.6 119.9

3-A” 0.450 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

3-A’ 0.524 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

3-A’ 1.283 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

3-A’ 1.472 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

Geometric Summary
State ∆E R1 R2 R3 R4 R5 R6

R7 R8 R9

3-A’ 0.000 2.981 2.492 3.726 1.856 2.818 3.115
2.133 1.870 1.509

3-A” 0.450 2.622 2.622 3.779 1.981 2.838 2.739
2.173 1.837 1.575

3-A’ 0.524 2.525 2.579 3.739 1.883 2.683 2.694
2.157 1.903 1.445

3-A’ 1.283 2.502 2.614 3.579 1.939 2.779 2.501
2.133 1.701 1.585

3-A’ 1.472 2.583 2.593 3.603 1.845 2.771 2.379
2.022 1.815 1.656

Optical Summary
State ∆E f
3-A’ 0.000 0.0000
3-A” 0.450 0.0000
3-A’ 0.524 0.0002
3-A’ 1.283 0.0012
3-A’ 1.472 0.0013
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Table 75 Doublet Excited States of Distorted Si4C2
−

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9 ν10 ν11

2-A’ 0.000 1043.2 828.2 774.3 494.2 426.0 320.0
301.9 226.1 222.0 170.0 154.8

2-A’ 1.575 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

2-A” 1.779 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

2-A’ 1.842 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

2-A’ 1.975 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

Geometric Summary
State ∆E R1 R2 R3 R4 R5 R6

R7 R8 R9

2-A’ 0.000 2.691 2.523 3.654 1.844 2.733 2.586
2.154 1.887 1.512

2-A’ 1.575 2.763 2.464 3.760 1.897 2.773 2.855
2.109 1.890 1.481

2-A” 1.779 2.630 2.661 3.876 1.932 2.716 2.784
2.141 1.973 1.387

2-A’ 1.842 2.853 2.576 3.764 1.876 2.838 2.846
2.137 1.906 1.591

2-A’ 1.975 2.515 2.624 3.853 1.979 2.735 2.712
2.095 1.906 1.417

Optical Summary
State ∆E f
2-A’ 0.000 0.0000
2-A’ 1.575 0.0005
2-A” 1.779 0.0090
2-A’ 1.842 0.0041
2-A’ 1.975 0.0002
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Table 76 Ground States of C2v Si4C4 Spin Manifolds
Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9 ν10 ν11

2B2 0.000 1353.5 1270.9 910.8 850.9 311.9 268.7
206.6 203.7 168.0 151.2 48.3

1A1 2.253 1322.9 1250.0 893.6 871.5 312.8 309.2
217.7 179.1 128.1 99.9 77.2

3A1 3.498 1387.5 1130.4 949.0 877.0 254.5 226.3
193.5 168.4 138.6 86.3 44.5

Geometric Summary
State ∆E R1 R2 R3 R4 R5 R6

R7 R8

2B2 0.000 3.705 3.866 1.900 3.003 1.854 2.740
1.398 3.076

1A1 2.253 3.737 3.141 1.897 2.832 1.844 2.723
1.406 3.065

3A1 3.498 3.727 3.702 1.905 2.955 1.864 2.895
1.379 3.207

Optical Summary
State ∆E f
2B2 0.000 0.0000
1A1 2.253 0.0000
3A1 3.498 0.0000
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Table 77 Singlet Excited States of C2v Si4C4

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9 ν10 ν11

1A1 0.000 1322.9 1250.0 893.6 871.5 312.8 309.2
217.7 179.1 128.1 99.9 77.2

1B2 1.671 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

1B1 1.712 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

1A1 1.744 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

1A2 2.058 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

Geometric Summary
State ∆E R1 R2 R3 R4 R5 R6

R7 R8

1A1 0.000 3.737 3.141 1.897 2.832 1.844 2.723
1.406 3.065

1B2 1.671 3.630 3.541 1.836 2.904 1.828 2.710
1.429 3.064

1B1 1.712 3.720 3.597 1.904 2.914 1.849 2.614
1.352 2.942

1A1 1.744 3.730 3.533 1.904 2.925 1.866 2.796
1.395 3.125

1A2 2.058 3.828 3.612 1.963 2.944 1.898 2.630
1.332 2.948

Optical Summary
State ∆E f
1A1 0.000 0.0000
1B2 1.671 0.0051
1B1 1.712 0.0004
1A1 1.744 0.0015
1A2 2.058 0.0000
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Table 78 Triplet Excited States of C2v Si4C4

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9 ν10 ν11

3B2 0.000 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

3A1 0.154 1387.5 1130.4 949.0 877.0 254.5 226.3
193.5 168.4 138.6 86.3 44.5

3B2 1.135 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

3B2 1.232 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

3A2 1.278 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

Geometric Summary
State ∆E R1 R2 R3 R4 R5 R6

R7 R8

3B2 0.000 3.755 3.581 1.933 2.938 1.857 2.885
1.367 3.193

3A1 0.154 3.727 3.702 1.905 2.955 1.864 2.895
1.379 3.207

3B2 1.135 3.831 3.369 1.937 2.899 1.908 2.885
1.381 3.199

3B2 1.232 3.777 3.554 1.937 2.949 1.868 2.811
1.392 3.137

3A2 1.278 3.730 3.607 2.005 3.075 1.731 2.890
1.508 3.260

Optical Summary
State ∆E f
3B2 0.000 0.0000
3A1 0.154 0.0000
3B2 1.135 0.0133
3B2 1.232 0.0182
3A2 1.278 0.0065
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Table 79 Doublet Excited States of C2v Si4C4
−

Vibrational Summary
State ∆E ν1 ν2 ν3 ν4 ν5 ν6

ν7 ν8 ν9 ν10 ν11

2B2 0.000 1353.5 1270.9 910.8 850.9 311.9 268.7
206.6 203.7 168.0 151.2 48.3

2B2 0.694 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

2B1 1.425 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

2B2 1.597 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

2A2 1.777 N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

Geometric Summary
State ∆E R1 R2 R3 R4 R5 R6

R7 R8

2B2 0.000 3.705 3.866 1.900 3.003 1.854 2.740
1.398 3.076

2B2 0.694 3.775 3.307 1.959 2.891 1.824 2.775
1.367 3.093

2B1 1.425 3.733 3.855 1.884 2.972 1.944 2.723
1.371 3.049

2B2 1.597 3.776 3.208 1.913 2.849 1.883 2.842
1.390 3.164

2A2 1.777 3.772 3.347 1.905 2.871 1.884 2.741
1.379 3.068

Optical Summary
State ∆E f
2B2 0.000 0.0000
2B2 0.694 0.0038
2B1 1.425 0.0000
2B2 1.597 0.0056
2A2 1.777 0.0000
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