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I. Statement of the Problem

With the increased demand for wireless technology, there is a growing need for fast and
accurate prediction models. Until recently propagation models were usually based on
approximate methods, especially if a relatively large number of predictions are required.
For example, radio-wave propagation in foliage has been modeled using an equivalent
lossy dielectric layer situated above the earth. For frequencies up to UHF, Sarabandi et
al. [3,4] have proposed a hybrid analytical and numerical approach that accounts for
multiple scattering among tree trunks and includes the effects of the forest ground plane.

For modern personal communication systems, the typical frequency range is from 800
MHz to 2 GHz. At these frequencies the tree trunks in a forest are electrically very large,
allowing high-frequency electromagnetic analysis methods. Several prediction models
based on analytical ray tracing and the uniform theory of diffraction (UTD) have been
reported in the literature. However, most of these models are designed for propagations in
an urban environment, which undergoes different propagation and scattering mechanisms
from those found in forests.

The ray models employ high-frequency approximations, and therefore it has only been
very recently that rigorous models have become sufficiently efficient computationally
such that they can be used for validation. A comparison between ray methods and
rigorous models, with application to in-forest propagation, is the principal contribution of
this correspondence. We have developed a multi-level fast-multiple algorithm (MLFMA)
for general conducting and dielectric targets in the presence of a half-space. With this
multi-target MLFMA, we may generate benchmark numerical results, with which we can
validate ray-tracing models.

I1. Scientific Progress and Accomplishments

Over the last several years the fast multipole model (FMM) has been employed to yield
marked improvements in the computational power of electromagnetic models. In
particular, the FMM has been applied to problems that previously have been solved via
techniques such as the method of moments (MoM). The MoM has been widely applied to
the solution of electric, magnetic and combined-field surface-integral equations (EFIE,
MFIE and CFIE, respectively). While the MoM is in principle applicable to targets of
arbitrary shape and size, computational resources typically limit the range of problems
for which it can be applied. In this context, if N unknowns are employed in the MoM
formulation, the MoM solution requires order N* memory (RAM) to store the matrix
equation, order N* computational complexity (CPU time) to fill the matrix, and order N°
or PN* CPU time to solve the matrix equation (N’ for an LU-decomposition solution and
PN? for a conjugate-gradient (CG) type solution, where P represents the number of CG
iterations). As the target size increases relative to wavelength, the commensurate increase
in N substantially restricts the utility of MoM solutions. By contrast, the FMM integral-



equation solution requires order N°? memory and order PN*? CPU time, while an
MLFMA requires respectively order N log N and PN log N. This implies that the FMM
and MLFMA formulations allow consideration of scattering from targets of electrical size
well beyond what is possible with the MoM.

The FMM and MLFMA have been applied to the analysis of scattering from electrically
large and complex targets. However, these models have previously been applied
primarily to scattering from free-space targets. In addition, there has been application of
the FMM to problems involving planar conducting structures in thin stratified layers,
through exploitation of an asymptotic form of the layered-medium Green’s function. The
FMM and MLFMA have also been extended to arbitrarily shaped conducting targets
above or below a half space. Further, the MLFMA has recently been extended to the case
of general dielectric targets in free space.

In the work pursued this past year, we combined algorithmic concepts considered
separately in previous work - namely the half-space problem and scattering from
dielectric targets - to develop an MLFMA for general dielectric targets above or below a
lossy half space. For the “near” MLFMA terms the complete dyadic half-space Green’s
function is evaluated rigorously via the complex-image technique, for electric and
magnetic current sources. An approximate asymptotic form of the Green’s function is
applied for the “far” MLFMA interactions, although we have demonstrated that this
approximate formulation yields highly accurate results, with computational efficiency.
Scattering from the dielectric target is treated using a traditional formulation employing
electric and magnetic surface currents, with a solution based on the widely used Rao,
Wilton, Glisson (RWG) basis functions.

II1. Technology Transfer

The MLFMA models developed under this program have been delivered to Dr. Anders
Sullivan at the Army Research Laboratory, Adelphi, MD.
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