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Outline

* Continuous and discontinuous dynamic recrystallization (DRX)
* DRX in a high purity base austenitic stainless steel
* DRX in a 718 grade nickel base superalloy. "Continuous nucleation"

e Conclusions




Continuous vs. discontinuous dynamic recrystallization

DDRX or "classical" DRX

CDRX or "rotation", "apparent",
"in situ" DRX,
or "extended dynamic recovery"

occurs by local (rapid) cycles of strain-

hardening — nucleation - growth of new
grains

occurs by progressive (slow) transformation
of subgrain boundaries (LAGB) into grain
boundaries (HAGB)

- dynamic recovery is weak

- dynamic recovery is strong (dislocation
rearrangement and annihilation)

- dislocation densities are inhomogeneous
(strong Ap)

- dislocation densities are homogeneous
(weak Ap)

- the rate of grain boundary migration
is high

- the rate of grain boundary migration
is low

low stacking fault energy materials:
Cu, y-iron and austenitic steels,
Ni-base superalloys, ...

high stacking fault energy materials:
Al, a-iron and ferritic steels, B-titanium,




True stress (MN/m?)

DDRX: transition from multiple peak (low Z) to single peak (high Z) DRX
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Stress (MPa)

CDRX: "Smooth" stress-strain curves Schematic representation of the CDRX
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DRX in a high purity base austenitic stainless steel
close to the A304 grade (18 %Cr, 12.2 %Ni, 15 ppm C, 10 ppm S, and 10 ppm N)
[Gavard, 2001]
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Microstructural changes — 850 °C, 1073 s7!
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Nucleation by
(initial) grain boundary bulging
and (growth) twinning
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Microstructural changes (cont'd)
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Evolutions of the twin boundary area fractions
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Flow Stress (MPa)

DRX in a 718 grade nickel base superalloy
(after solution treatment of ® Ni,Nb phase)
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Fragmentation of the initial microstructure
(torsion at 900 °C, =1072s"1,€=0.4)

nucleation by (initial) grain boundary bulging
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Microstructural changes — 980 °C, 1072 s~!
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Evolution of the twin boundary area fraction

Twin boundary fraction (%)
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Strain dependence of the subgrain boundary misorientation distributions

Misorientation (log scale)
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"Continuous nucleation" (A)




Conclusions

* Discontinuous DRX in low stacking fault energy metals occurs with variable kinetics,
e.g. much more slowly in 718 alloy than in 304 steel

* Nucleation of new grains takes place by three distinct mechanisms:
- (initial) grain boundary bulging,
- repeated (growth) twinning,
- and, in alloy 718, "continuous nucleation", similar to CDRX

* Slower grain boundary migration rates in alloy 718 may be attributed to
- smaller driving forces due to more efficient dynamic recovery,
- grain boundary mobility reduced by niobium solutes

* Respective contributions of CDRX and DDRX in nickel base superalloys could be
controlled by adjusting volume fractions of Nb or other addition elements




