Three-Dimensional Analysis of Crack in Centrally Perforated Photoelastic Cylinders under Internal Pressure

C. T. Liu
AFRL/PRSM
Edwards AFB CA 93524-7680, USA

C. W. Smith
ESM Dept.
Virginia Polytechnic Institute & State University
Blacksburg, VA 24061, USA

Distribution A: Approved for public release; distribution unlimited
Three-Dimensional Analysis of Crack in Centrally Perforated Photoelastic Cylinder under Internal Pressure

Authors: C Liu; C Smith

Abstract

The objectives of this study were to (1) Investigate the Effect of Crack Geometry and Location on the Crack Growth Behavior in Centrally Perforated Cylinders under Internal Pressure. (2) Determine the Safety Factor for a Two-Dimensional Analysis of a Deep Part-Through crack.
Objectives

- Investigate the Effect of Crack Geometry and Location on the Crack Growth Behavior in Centrally Perforated Cylinders under Internal Pressure.

- Determine the Safety Factor for a Two-Dimensional Analysis of a Deep Part-Through crack.
Specimen Geometries

Part-Through Crack

All dimensions in mm

Distribution A: Approved for public release; distribution unlimited
Specimen Dimensions and Crack Locations

* Path of crack to maximum depth

Distribution A: Approved for public release; distribution unlimited
Fringe Patterns Near Critical Loci at Fin Tip
Contour Plot of Stress σ_{yy} (No Crack)
Two-Dimensional Crack Growth Tests

A

B

Distribution A: Approved for public release; distribution unlimited
Two-Dimensional Crack Growth Tests

A
Crack initiated at the center of the fin

B
Crack initiated at the corner of the fin

Distribution A: Approved for public release; distribution unlimited
Photoelastic Fringe Patterns

Crack Turning Completed

Crack Turning Incomplete

Distribution A: Approved for public release; distribution unlimited
Typical Off-Axis Inclined Crack Which is Perpendicular to the Fin Surface

- D – camera view of the photograph
- S
- Section S - S

- FS – fin surface
- C – crack front
- Eliminating shear mode
- Starter crack
- Eliminating shear mode

magnification factor 3.68

Distribution A: Approved for public release; distribution unlimited
Typical Off-Axis Straight Crack Which is Parallel to the Fin Axis

Fin surface
C - crack front
D - camera view of the photograph

Magnification factor: 1.73

Distribution A: Approved for public release; distribution unlimited
Typical Symmetric Crack Which is Near the Fin Axis

\[a_o - initial \ crack \]
\[a - final \ crack \]

Distribution A: Approved for public release; distribution unlimited
Top and Edge Views of Crack

MDZ – Material Damage Zone
EVC – Edge View of Crack

Distribution A: Approved for public release; distribution unlimited
Fringe Patterns near the Tip of a Symmetric Crack

Center Slice ($t = 4.29 \text{ mm}$)

- $P_{eff} = 2.3 \times 10^{-2} \text{ MPa}$
- $c_1 = 175.30 \text{ mm}$
- $a_1 = 19.6 \text{ mm}$
- Data zone: \((r_{ave})_2 \cdot (r_{ave})_3 = 4.2635 - 0.4564 = 3.807 \text{ mm}\)
Summary of Mode I Stress Intensity Factor K and Normalized Mode I Stress Intensity Factor F

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>c</th>
<th>a/c</th>
<th>a/t</th>
<th>Psf</th>
<th>K</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 3A</td>
<td>15.38</td>
<td>30.74</td>
<td>0.50</td>
<td>0.41</td>
<td>.033</td>
<td>0.31</td>
<td>1.67</td>
</tr>
<tr>
<td>Test 5B</td>
<td>14.60</td>
<td>181.65</td>
<td>0.04</td>
<td>0.41</td>
<td>.041</td>
<td>0.74</td>
<td>2.49</td>
</tr>
</tbody>
</table>
Conclusions

- When the crack is perpendicular to the fine surface, a significant three-dimensional effect occurs during crack turning.
- When the crack is either parallel to or in the fin axis, there is no crack turning observed and the crack grows under normal mode only.
- During crack turning crack grows under normal and shear modes.
- For a same a/t ratio the Mode I stress intensity factor for the long crack is much higher than that of the part-through crack.
- The two-dimensional analysis of the deep part-through crack yields a safety factor of 1.49.
- The practice of using two-dimensional analysis to determine the criticality of a deep part-through crack is conservative.