14. ABSTRACT

The overarching goal of this research was to advance our understanding of "geologic clutter", acoustic anomalies created by natural sub-seafloor features such as infilled paleochannels, using the continental shelf off New Jersey as a natural laboratory. As part of the ONR Geoclutter initiative, the objectives of this project were as follows: (1) to identify modern Holocene sedimentary processes responsible for the morphology and sedimentological heterogeneity of the seafloor, and (2) to determine the physical basis for seismic discontinuities and associated stratigraphic surfaces in the shallow subbottom. To meet these objectives, coordinated geophysical and geological studies were performed to characterize the sedimentology and stratigraphy at priority Geoclutter sites on the continental shelf. The geological data collected in this study will be used to design signal-processing algorithms that distinguish natural features and man-made targets present at (and just below) the seafloor.

15. SUBJECT TERMS

Continental shelf, marine geology, sedimentation

REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE (DD-MM-YYYY) **2. REPORT TYPE** **3. DATES COVERED (From - To)**

4. TITLE AND SUBTITLE

Sedimentology of a Morphologically Complex Seafloor Environment, New Jersey Continental Shelf

5. REPORT NUMBER

N/A

6. AUTHOR(S)

Sommerfield, Christopher K.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Delaware
College of Marine Studies
700 Pilottown Rd.
Lewes, DE 19958

8. PERFORMING ORGANIZATION REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
Ballston Centre Tower One
800 North Quincy Street
Arlington, VA 22217-5660

10. SPONSOR/MONITOR’S ACRONYMS

ONR

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

N/A

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release: distribution is unlimited

13. SUPPLEMENTARY NOTES

None

14. ABSTRACT

The overarching goal of this research was to advance our understanding of "geologic clutter", acoustic anomalies created by natural sub-seafloor features such as infilled paleochannels, using the continental shelf off New Jersey as a natural laboratory. As part of the ONR Geoclutter initiative, the objectives of this project were as follows: (1) to identify modern Holocene sedimentary processes responsible for the morphology and sedimentological heterogeneity of the seafloor, and (2) to determine the physical basis for seismic discontinuities and associated stratigraphic surfaces in the shallow subbottom. To meet these objectives, coordinated geophysical and geological studies were performed to characterize the sedimentology and stratigraphy at priority Geoclutter sites on the continental shelf. The geological data collected in this study will be used to design signal-processing algorithms that distinguish natural features and man-made targets present at (and just below) the seafloor.

15. SUBJECT TERMS

Continental shelf, marine geology, sedimentation

16. SECURITY CLASSIFICATION OF:

- a. REPORT b. ABSTRACT c. THIS PAGE
 U U U

17. LIMITATION OF ABSTRACT

UU

18. NUMBER OF PAGES

4

19. NAME OF RESPONSIBLE PERSON

Dr. Christopher K. Sommerfield

20. TELEPHONE NUMBER (Include area code)

(302) 645-4255

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. 239.18
Sedimentology of a Morphologically Complex Seafloor Environment, New Jersey Continental Shelf

Final Report to the Office of Naval Research

Submitted by:

Dr. Christopher K. Sommerfield
College of Marine Studies, University of Delaware
Lewes, DE 19958-1298
Phone: (302) 645-4255 fax: (302) 645-4007 email:cs@udel.edu
Grant #: N00014-03-1-0032

LONG-TERM GOAL

The overarching goal of this research is to advance our understanding of "geologic clutter", acoustic anomalies created by natural sub-seafloor features such as infilled paleochannels, using the continental shelf off New Jersey as a natural laboratory.

OBJECTIVES

As part of the ONR Geoclutter initiative, the objectives of this project are as follows: (1) to identify modern–Holocene sedimentary processes responsible for the morphology and sedimentological heterogeneity of the seafloor; and (2) to determine the physical basis for seismic discontinuities and associated stratigraphic surfaces in the shallow subbottom. To meet these objectives, coordinated geophysical and geological studies have been performed to characterize the sedimentology and stratigraphy at priority Geoclutter sites on the continental shelf.

APPROACH

The research approach involved geological groundtruthing of two sonar datasets previously generated for the Geoclutter study area: (1) multibeam acoustic backscatter derived from Simrad EM1000 (95 kHz) multibeam bathymetry (Goff et al., 1999); and (2) chirp seismic stratigraphy using a system developed by Florida Atlantic University (1.5–15 kHz pulse bandwidth). To correlate acoustic backscatter and seabed sediment type, the sedimentology of short cores collected aboard the RV Cape Henlopen in 2001 (cruise CH01–17) was characterized by the PI (UDel Task 1/2). To determine the physical basis for subbottom seismic reflectors at selected Geoclutter sites, AHC-800 drillcores were recovered aboard the RV Knorr in 2002 (cruise KN-168) by a team of scientists from DOSECC, University of Texas Institute of Geophysics (UTIG), Skidaway Institute of Oceanography (SKIO), University of Delaware (UDel), and Georgia State University (GSU). Specifically, the PI conducted aboard-ship measurements of sediment physical properties on the drillcores using a GeoTek multisensor core logger (UDel Task 2/2).

WORK COMPLETED

Task 1 has been completed, and portion of the data have been incorporated in a manuscript submitted for publication (Goff et al., 2003). Task 2 has also been completed; sediment physical properties data
for three drillcores (4–13 m length) have been analyzed and used to develop synthetic seismograms for the cored sections. Details of the drilling effort are provided in a cruise report authored by C. Alexander and J. Austin. Preliminary results of the ongoing drillcore studies, which will continue during FY03–04, will be presented at the Fall 2003 AGU meeting in a series of papers coauthored by the collaborating investigators (see Publications).

RESULTS

Seabed Studies. In the Geoclutter study area the seabed is a heterogeneous mosaic of late Pleistocene fluvo-deltaic muds and medium-grained sands deposited subsequently during the Holocene. The Holocene sand sheet, continuous throughout the greater middle shelf, wedges-out at ~110 m leaving the Pleistocene muds exposed at the seafloor. These muds are over-consolidated (stiff), having been exposed throughout the Holocene. Acoustic backscatter in the area is negatively correlated with seabed porosity, and though this was expected, the broad range of porosities measured (0.35–0.55) was not. The spatial variation in porosity is largely due to the coexistence of sand and stiff mud; sand porosities ranged from 0.55 to 0.45, whereas the stiff muds were less porous at 0.35–0.45 (Goff et al., 2003). Another cause for spatial variability is internal sedimentary structures such as shell deposits and rip-up clasts, evidence of post-depositional erosion and resementation during the Holocene transgression (Duncan et al., 2000).

Correlation of seismic profiles and lithostratigraphy. Significant progress has been made in relating chirp seismic reflectors and sediment lithology via physical properties analysis of AHC-800 drillcores; seismic discontinuities within the channel fills have been convincingly correlated with sedimentary units at decimeter length scales. One important finding is that pronounced changes in acoustic impedance downsection are associated with depositional and erosional surfaces, contacts of strata with disparate sediment types and (or) consolidation states (Figure 1). The majority of these surfaces were created by shallow-marine processes as the channels backfilled during the Holocene transgression, the details of which are being investigated via C-14 geochronology (C. Alexander) and microfossil analysis (B. Christensen). Some of these surfaces span the channel cross-section, whereas others are discontinuous and of variable reflectivity. Intervals of high and extremely variable acoustic impedance are produced by thick beds of shell fragments, material originally transported within the channel environment. Other changes in impedance occur across surfaces separating strata of nearly identical sediment type, yet differing in consolidation state. Such boundaries were most likely produced by a hiatus or erosion in the paleoenvironment. In sum, these results reveal that the small-scale seismic reflectors (decimeters to several meters thick) are produced by highly heterogeneous sedimentary strata with physical characteristics related to the depositional and post-depositional processes.

IMPACT/APPLICATIONS

The goal of the Geoclutter Phase II was to characterize seafloor geology at a number of selected sites through analysis of multibeam and chirp sonar datasets, sediment sampling, and studies of sediment physical properties from drillcores. When modeled by acousticians, the geological data will be used to design signal-processing algorithms that distinguish natural features and man-made targets present at (and just below) the seafloor. In addition, new insights on the nature of infilled paleochannels on the continental shelf have resulted from this work, knowledge with potential applications to shallow-marine environments worldwide.
TRANSITIONS

No specific products have stemmed from this research to date.

RELATED PROJECTS

The geological/geophysical component of the ONR GeoClutter program is composed of several coordinated subprojects, each with a particular emphasis. UTIG is the lead group on multibeam backscatter groundtruthing (Goff), as well as the analysis of chirp stratigraphy (Austin, Fulthorpe, Goff, and Gulick). J. Austin (UTIG) and C. Alexander (SKIO) were the co-chief scientists on the drilling cruise, and D. Nielson (DOSECC) coordinated the drilling operation itself. The PI was responsible for operating the GeoTek logger aboard ship and subsequently for reducing the physical properties data. Detailed sedimentological and chronological studies of the drillcores by C. Alexander and B. Christensen (GSU) are underway.

REFERENCES

PUBLICATIONS

Figure 1. Example of correlated seismic and sediment physical properties data for Geoclutter drillcore Site 2. (Top) Chirp profile showing a buried channel with internal seismic reflectors of variable amplitude. The 13-m section cored during cruise KN-168 is shown (black rectangle). (Bottom) Downcore physical properties and photograph for the core section corresponding to a prominent seismic discontinuity near the channel base (white rectangle). The discontinuity is created by a contrast in acoustic impedance (density x velocity) across a stratal surface formed by the contact of shell-gravel-sand (high impedance) and clayey silt (low impedance). Seismic profile courtesy of UTIG.