New Techniques for Heterogeneous Integration for Sensing Systems

The Trustees of Columbia
University of the City of New
York, Office of Projects and
Grants, 254 Engineering
Terrace, new York 10027

Air Force Office of Scientific Research
801 North Randolph Street, room 731
Arlington, VA 22203

Approved for Public Release

During the two-year duration of this program, we accomplished or made significant progress in three objectives for specific integrated optical systems. The general technology focus was to develop practical methods for reducing the physical dimensions of optical circuits through manipulation of the device geometry and refractive-index profile and develop several new integrated optical devices on LiNbO₃ devices. Our research on LiNbO₃ has yielded a new low voltage E/O scanner, techniques for poling thin crystal ion slicing (CIS) LiNbO₃ films for integrated photonics applications, and several silicon-on-insulator-based integrated-optic components having new and important functionality.
New Techniques for Heterogeneous Integration for Optical Sensing Systems

Contract # F49620-02-1-0078

FINAL REPORT

For the period:
11/15/01 – 11/14/03

Submitted by:

The Trustees of Columbia University
Columbia University
Center for Integrated Science & Engineering
and
Microelectronics Sciences Laboratories

530 West 120th Street
New York, NY 10027

Submitted to:

Air Force Office of Scientific Research
801 N. Randolph St. Suite 732
Arlington, VA 22203-1977

Principal Investigator:

Prof. Richard M. Osgood, Jr.
Phone: 212-854-4462
Fax: 212-854-1909
e-mail: osgood@columbia.edu

Prepared December 2003

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited
1. Objectives

The objective of this program is to develop new optical devices for integrated optical or integrated optical/microwave RF systems.

2. View of Effort

During the one-year duration of this program, we accomplished or made significant progress in three objectives for specific integrated optical systems, with the general goal being RF/photonics for RF sensing. This work used our capabilities in computer-aided design of optical systems and in new methods of materials fabrication. The general technology focus was to develop practical methods for reducing the physical dimensions of optical circuits through manipulation of the device geometry and refractive-index profile and develop several new integrated optical devices on LiNbO$_3$ devices. Our research on LiNbO$_3$ has yielded a new low voltage E/O scanner and techniques for poling thin crystal ion slicing (CIS) LiNbO$_3$ films for integrated photonics applications. In addition we have realized several silicon-on-insulator-based integrated-optic components, with important new functionality. Several of our efforts have involved outside collaborations, including MIT, IBM, and MIT Lincoln Lab.

3. Accomplishments

a) Poling of Crystal Ion-Sliced (CIS) LiNbO$_3$

Previously, our group has actively pursued methods of incorporating our thin-film CIS technology into novel devices and has successfully introduced CIS into other device technologies; one such technology is periodically poled lithium niobate. We have recently showed that crystal-ion-sliced, periodically poled LiNbO$_3$ can form a low-cost route to on-chip optical wavelength converters. Our initial devices used commercial PPLN, which was then ion-sliced for use for on-chip mounting. We have now developed the capability for doing poling in house as a result of a multiyear collaboration with Gr82 at MIT Lincoln Lab.

The goal of our work here has been to develop poling techniques for CIS films. Thus our group entered into a collaboration with Gr82 of MIT's Lincoln Laboratories (headed by Dr. Antonio Sanchez) in order to develop poling techniques for ion-sliced material. Beginning in 2001, we conducted several extended visits to Lincoln Laboratories to perform experiments on our samples and understand which procedures were key. Based on this work, we have recently designed and built our own poling instrument at Columbia. With this technology, we have
learned how to pole complex micropatterns into lithium niobate bulk crystals, which may then be lifted off into thin-film form using our CIS process. This allows us to fabricate devices that utilize the benefits of both technologies simultaneously. In addition to our collaboration with Gr82, we have established a joint effort with Dr. Keith Nelson group at MIT on short-laser pulse acoustic excitation in thin single-crystal films. Our group has recently demonstrated guidance and control of short-pulse laser-initiated phonon-polaritons in both bulk and CIS film ferroelectric crystals. The work has interesting implications for future acoustic filters and signal processing chips. This research was presented at the Fall 2003 MRS meeting and will be published shortly.

b) Low-Voltage Electro-optical Scanner

![Beam deflection by a CIS film scanner vs. applied voltage](image)

The goal of this project is to demonstrate a low-voltage E/O scanner. The basic approach is to use a CIS LiNbO₃ slab waveguide along with vertical metal-electrode prisms. The advantage of the device is its >10 reduction in device voltage due to the thin CIS film; this makes a low-voltage E/O scanner possible.

We have fabricated such a low-voltage E/O scanner by using electric field poling and crystal-ion-slicing of LiNbO₃; a micrograph of a poled and sliced device is shown in Fig. 1. The device consists of cascaded E/O prisms defined by polarization inversion of prism-shaped domains in bulk z-cut LiNbO₃ wafer. The cascaded prism pattern was photolithographically defined in photoresist using direct laser writing and transferred to a Cr poling electrode (evaporated onto the LiNbO₃ sample) after exfoliation following wet etching. The area defined by the Cr electrode was domain inverted by applying a high-voltage pulse between +z and −z sample surfaces. Using our CIS technique, a 10-μm thick layer was sliced off from the surface of the poled bulk sample. Thermal evaporation and conductive epoxy are used to define top and bottom electrodes of the CIS-film device. Experimental data, such as shown in Fig. 2, demonstrate that an angular deflection of around ±1° is obtained for an applied voltage of 100V for the current CIS film scanner. This results agrees well with the theory and the voltage-dependent angular deflection is better than state of the art E/O scanners. A longer scanner is currently being fabricated and this device will enable a deflection of ~ ±5° for an applied voltage of 80V, as compared to 1000V needed for a bulk device of the same dimensions.

c) Novel Devices of Silicon on Insulator
This project has investigated and fabricated several new optical devices, which are made of silicon on insulator. This materials combination allows high-index-contrast waveguides for ultracompact PICs; it also allows integration with silicon electronic circuitry. To fabricate the devices we have used either e-beam or laser patterning. We have recently fabricated a series of passive devices at Cornell; these devices were then characterized and tested at Columbia.

High-Speed Thermo-optical Switch

We have designed and fabricated the first Mach-Zehnder interferometer thermo-optic switches using wafer-bonded thin-silicon-on-insulator materials system. The thermally switched devices use single-mode strip waveguides with dimensions, $0.26 \times 0.6 \ \mu m^2$, operating at a wavelength of $\lambda = 1.55 \ \mu m$. Useful device characteristics include a low switching power, 50 mW, and a fast rise time of $<3.5 \ \mu s$. These results demonstrate the potential of this high-index-contrast materials system for the design of fast and low power thermo-optic switches and as an active element in photonic integrated circuits. Performance of this device was recently expanded on by research in Mike Geis’s group at MIT Lincoln Lab.

![Fig. 1 Schematic of MZI thermo-optic switch](image)

![Fig. 2 TM mode simulation of silicon-based optical isolator and plot of nonreciprocal phase shift versus waveguide core thickness.](image)
Silicon-Based Optical Isolator

We have demonstrated the integration of a single-crystal magnetooptical film onto thin silicon-on-insulator (SOI) waveguides using direct-wafer bonding. Simulations and recent experiments show that the high confinement and asymmetric structure of SOI allows an enhancement of ~3X over the nonreciprocal phase shift achieved in previous designs; this value has been confirmed by our measurements. Our structure enables the realization of compact magnetooptic nonreciprocal devices, such as isolators, integrated on a silicon waveguiding platform.

Silicon Raman Optical Amplifier

The goal of this project is to demonstrate a low threshold diode-laser pumped Si-Raman optical amplifier on an SOI chip. We have recently demonstrated spontaneous forward and backward Raman emission at 1550 nm using a 1435 nm pump laser and ultrasmall, low-loss SOI strip waveguides. A group at IBM, led by Dr. Yurii Vlasov, fabricated the SOI waveguides, which have sub-micrometer waveguide core areas (0.1 μm²), excellent fiber to waveguide coupling via polymer inverse tapers (1 dB for a pair), and very low propagation losses (3.5 dB/cm for TE). We are currently characterizing the waveguides and have determined the Si waveguide material Raman coefficient and waveguide loss. We are currently beginning tests for stimulated Raman emission.

4. Personnel Supported:

a) Research personnel
 Jerry Dadap Jr.

b) Graduate students
 Juni Fujita – PhD, now at Dupont Photonics
 Tomo Izuhara – PhD, now at Dupont Photonics
 Richard Espinola
 Ryan Roth
 George Djukic

5. Publications:

- R. L. Espinola, T. Izuhara, M-C. Tsai, and R.M. Osgood, Jr. “Magnetooptical

6. Interactions/Transitions

a. Meetings, Conferences, Seminars

- McMaster Univ. Faculty of Engineering Symposium, McMaster University, Hamilton,

b. Interactions
This project included a significant joint collaboration with the Quantum Electronics Group at MIT Lincoln Laboratory and The IBM T.J. Watson Laboratory.