Naval Research Laboratory

Washington, DC 20375-5320

NRIL/MR/5540--04-8804

A Snapshot View of SANE

MARGERY Y. L1
AmrtaBH KHASHNOBISH
JupitH N. FroscHEr

Center for High Assurance Computer Systems
Information Technology Division

June 11, 2004

Approved for public release; distribution is unlimited. ‘ 2 0 0 4 0 9 0 3 0 9 0

' REPORT DOCUMENTATION PAGE O ADprOe s

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this coliection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
11 June 2004 Memorandum report July 2001-?7, 2004
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
5b. GRANT NUMBER
A Snapshot View of SANE
5c. PROGRAM ELEMENT NUMBER
602235N
6. AUTHOR(S) 5d. PROJECT NUMBER
55-8089-L-4

5¢. TASK NUMBER
Margery Y. Li, Amitabh Khashnobish, and Judith N. Froscher

5f. WORK UNIT NUMBER

558089
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER
Naval Research Laboratory, Code 5540
4555 Overlook Avenue, SW
Washington, DC 20375-5320 NRL/MR/5540--04-8304
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR / MONITOR’S ACRONYM(S)
Office of Naval Research CNO ONR
800 North Quincy Street Presidential Towers 11. SPONSOR / MONITOR’S REPORT
Arlington, VA 22217-5660 2511 South Jefferson Davis Highway NUMBER(S)

Arlington, VA 22202

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This paper provides a snapshot view of SANE (Security Assurance Navigation Environment). SANE is a tool for developing an assurance
argument map for a system to be certified in its operational environment. This paper briefly discusses the underlying methodology and concepts
behind assurance argument maps. Next, it presents SANE’s features and capabilities in greater detail. A tutorial on using SANE and future
enhancements are presented in the last two sections of the paper.

15. SUBJECT TERMS

Assurance; Common Criteria; Claim; Assumption; Evaluation; Certification; Evidence; IT Environment; Assurance Argument Map

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Margery Y. Li
a. REPORT b. ABSTRACT c. THIS PAGE UL 21 19b. TELEPHONE NUMBER (include area
code,
Unclassified Unclassified Unclassified) (202) 404-4920

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239,18

CONTENTS

1 INTRODUCTION ...oocoervmmmminiimmsmisismsmssssssssissssssssssssmsssssssssssssessssssisssssssrsssssssssisns e 1
2 UNDERLYING METHODOLOGY OF ASSURANCE ARGUMENT MAPS........ccoiivniinrennne, 2
2.1 The ASSUTANCE SIALEEY ..ecvevererrerrererrereesiriieereresessiresessseesrsssssesessssssestoresassanssassersassssssersessosesns 2
2.2 Assertions and ASSUITIPHONSc.cccerrereeriiirerersaesiererseesetsresasessassesseseessesssesssesesasessesatsstsrmesessasas 3
2.3 LAAMA NOLALON ..cutviriirieriinieerisies ettt bbb bens e e s a st s s sbenies 5
3 FEATURES AND CAPABILITIES OF SANEccosciiiinnniiinnieecsiseseesesissssssssesssssssosssenss 6
3.1 The Need for a Graphical TOOL..........cccoceviviniriiiiri e 6
3.2 Functional View Of SANEccoeiimiiiiniic st snssens 7
3.3 Implementation Detailscccecvircriienenre ittt ettt se s e 9
4 TUTORIAL ...ttt st st e et s et eb e st sb e e st b emssesas e b enemnsasaene 10
4.1 Systemn REQUITEIMENLSccceeeririreecrereerireiee e eseeite st st sereresaesees e se e assaesnesbes st aseserssnessessnenesss 10
4.2 INStAll SANE ...ttt e b s 10
4.3 SEATt SANE ... e s bbb 11
4.4 SANE VIBWS ..cviriereiriccnrnieieeerienesitisisrecesitoresesssssesesesestssaessossstsst snnesesstssosasesessessssssssoressessessssens 12
4.5 Change the Look and Feel and System Configuration in SANEcccccccvvnniiiiniciininisennns 13
4.6 Add/Delete Nodes in the SANE EdItorccococcomimimenininicnneniniietsinessisisesnens e 13
4.7 Modify a NOde AITDULEocccruirerieireiieteretsc ittt sese st eneenss et snssenins 14
4.8 Utilize the Integrated Dictionary for Claim Descriptioncccoceveveriernierninenensnoronsensenns 14
4.9 Support an Assumption/Evidence Using a Clailcoovvevininiiiercrenenneeiniecninnnincsisinssneens 15
4.10 Print an Assurance Argument Mapcccoceeieceniiionncnniiinen e 17
4.11 Save an Assurance Argument Mapcccveviinminiiiinminescsssssseess st 17
5 PLANNED ENHANCEMENTSccoceitrtiinnnretrisireestsrss et sanesssestsssssssesesssssesesesssesssssassessessssans 18
REFERENCE ..ottt ittt ss s e st st st n b s b b s b smsonsnesbsnenasasannnen 18

iii

A Snapshot View of SANE

1 Introduction

Comprehensive certification of an information system in its operational
environment challenges the most seasoned evaluators. In the early ‘90’s, the Naval
Research Laboratory introduced a comprehensive methodology for evaluating an
operational system within its environment based on the assurance strategy. The
assurance strategy or assurance map is a roadmap or an outline of a long, complicated
assurance argument, which includes many kinds of evidence (e.g., security models,
various system specifications, test results, covert channel analyses, vulnerability
assessments, personnel clearances, physical constraints, procedural policies, etc.) for
convincing the certifier and ultimately the accreditor that the risk of operating the system
is low when compared to the benefits of using the system.

Certification differs from product evaluation in a very fundamental way. A
vendor may expend significant resources in producing evidence to satisfy a given level of
assurance for a product and may spend years attaining that level with the expectation of
selling many copies of the product. On the other hand, a certification is a risk assessment
of a system in its operational environment. The costs for certification are line items of the
system acquisition cost. The system developer does not have the luxury of repeated
attempts to satisfy a criteria but must instead, identify the vulnerabilities in the system
and mitigate them with other cost effective mechanisms. Some of these mechanisms will
be restrictions about who can use the system and some will constrain the operational
environment of the system. Understanding how all these mechanisms collectively protect
sensitive information is a fundamental aspect of certification. It is important to note that
an evaluated product will only process sensitive data when it becomes a component of a
certified system. The NRL methodology attempts to provide a systematic,
comprehensive approach for making decisions about what mechanisms to use, how a
mechanism depends on others, how a vulnerability can weaken the protection posture of
the whole system, etc. and how changes to an already certified system impact the overall
security posture.

SANE (Security Assurance Navigation Environment) is a tool for developing an
assurance argument map for a system to be certified in its operational environment. The
assurance argument map is used as a roadmap for evaluating different security
components (IT and non-IT) of the system where mission-critical information may be
compromised. Using the assurance argument map during the certification process
facilitates identification of security risks. It can also suggest optimal countermeasures to
these risks. SANE provides a comprehensive set of tools to construct assurance argument
maps that help certifiers evaluate assurance components of a system and that enable
system designers and developers to make informed trade-offs about protection software.
Finally, it can be used as a communication medium between system developers and
certifiers when the latter are involved early in the development process.

Manuscript approved May 11, 2004.

In this paper, we give a snapshot view of SANE. Section 2 briefly discusses the
underlying methodology and concepts behind assurance argument maps. Users wanting
greater detail can refer to [1][2]. Section 3 presents SANE’s features and capabilities.
Section 4 provides a tutorial on using SANE. Section 5 concludes with a discussion of
planned future enhancements.

2 Underlying Methodology of Assurance Argument Maps

Ensuring that a given system meets its security requirements is not an easy task.
Traditional methods of evaluations and certifications provide a piecemeal approach to
risk assessment. Although these methods do provide ways of assessing a system in
specific environments with specific threat levels, they do not identify all the risks of
operating the system in its operational environment, nor do they offer trade-off functions
to mitigate such risks [3]. What is needed is a comprehensive approach that can provide
a means for reasoning about all the protection mechanisms needed for securing an
operational system and for understanding the dependencies among the mechanisms.
There is a desire to use the Common Criteria to evaluate an operational system [4].
However, the Common Criteria provides an approach for product evaluation in isolation
and not the totality of its operation within a system. The system certification process is a
superset of product evaluation, and is typically much more comprehensive. There are a
great many other risks and potential threats that arise when viewing a system in its
operational environment. The Common Criteria uses a textual representation
methodology similar to the NRL approach to record the security claims and the
vulnerabilities of each product in a Protection Profile; SANE provides a graphical
depiction of the same information.

Identifying the potential risks within the operational environment in which a
system operates involves assessing different security disciplines and the dependencies
among them. Evaluating the IT components, the software and the hardware, alone will
not suffice because they are not the only components that make up the operational
security environment as a whole. Other non-IT security disciplines, such as the people
that use the system, the physical environment in which the system resides and the
administrative measures that regulate the usage of the system must also be evaluated.
Incorporating non-IT security disciplines into the assessment process is crucial because
they can compensate for uncertainties or weaknesses and offer countermeasures, which
IT cannot provide. When all these security disciplines come into play, we must apply a
strategy that can evaluate each security discipline against its assurance criteria, analyze
the relationships and conflicts among the disciplines and compute risk factors based on
the information collected above. Once the risk analysis is generated, system developers
can compare it against the system requirements and make trade-off decisions to divert
and mitigate any potential risks within the system.

2.1 The Assurance Strategy

The strategy that we use to perform the risk analysis is called the assurance
strategy. It was introduced by Payne [3] who created the strategy framework by

extending the attributes of Informal Security Model proposed by Landwehr [5] and
Froscher [6]. The assurance strategy helps the system developers identify relationships
among various security disciplines by documenting the trade-off decisions based on a set
of assertions and assumptions that must be true for the system as a whole to be secure. It
starts out identifying the system’s information security (INFOSEC) policy. As illustrated
in Figure 1, the INFOSEC policy is derived from the organizational security policy and
from other objectives and constraints [3]. With the INFOSEC policy in place and the
operational requirements defined, the assurance strategy further categorizes the trusted
system’s security requirements into four primary security disciplines using DOD’s
Network Rating Methodology (NRM) [1] and constructs an assurance argument map that
consists of a set of assurance arguments derived from each security discipline.

Security Policy
Objectives
Organizational
Security Policy

Available Security
Technology

INFOSEC Operational
POLICY Requirements

TEMPEST COMPUSEC Security Requirements
Requirement Requirement Analysis
COMSEC Other
Requirement Regquirement
Personnel Security
Requirements Physical Security
Requirements

Figure 1 — INFOSEC Policy

Operations Concept
Definition

Administrative
Security
Requirements

2.2 Assertions and Assumptions

An assurance argument map is a representation of the assurance strategy. It
depicts an overall view of all the security requirements that must be met for a system to
be secure within its operational environment. The map is constructed using a set of
assurance arguments. Each assurance argument is a complex chain of reasoning that
justifies a claim made about a particular area of security discipline within a system. There
are four primary security disciplines defined by the NRM approach, a simplification of
the NRL certification methodology. They are Physical Security, Technological Security,
Operational Security and Personnel Security (Figure 2).

integrity Security
Cﬁﬁfféeﬂffﬂfffy\ Ava;fabfffty Concerns

SSewrlty
FPhysical Assurance Personnef
Argument
Strangth of background
locks, 1 investigations,
safes) . comprehension
scFs, 1echnological Operational assisﬁmem
tamper- | I performance
proofing, testing, Following appraisals,
guards, ... simulation, procedures,
inspections, policies
formal proof, guidelines, ... éﬁ%“‘a‘l"‘e
covert channel Techniques
analysis’

Figure 2 — NRM Security Assurance Arguments

A claim can be in the form of an assertion or an assumption. An example of a
Technological Security claim is

The safehost device in a host will return a unique authenticated check
indicating whether the host is safe or unsafe when a secure attention instruction is
performed.

This claim asserts that the safehost device will perform a check when it is asked
to. However, it does not assert that the safehost device has been installed correctly.
Therefore, to support this claim, an assumption must be made

The safehost device is properly installed.

From the computer security point of view, this assumption cannot be enforced by the
computer software and hardware. However, from the standpoint of operational security, it
is an assertion [3]. Clearly, security assumptions in one security discipline can be
mapped as security assertions in another security discipline; a gap in this mapping
indicates a vulnerability [7]. Using assertions and assumptions as claims in the assurance
argument map facilitates the accreditation process. But we need to find a way to present
different claims in an assurance argument map. For this purpose, a graphical language is
introduced into the framework. It is called the Language of Assurance Argument Maps
(LAAMA).

2.3 LAAMA Notation

LAAMA is a simplified version of the Composite Assurance Mapping Language

(CAML). CAML is the first generation graphical language used in building assurance
argument maps [2]. It is set of distinct graphical primitives that come in ten different
shapes. Each primitive represents a key component of the argument map. A textual
summary of each component is shown inside each primitive shape. Although CAML
offers many different primitive shapes, it has proven to be quite complex to use. Often
time, users have difficulty in associating each primitive shape with its semantics. Also, an
argument map with too many different shapes of primitives becomes harder for the user
to trace the argument logic. LAAMA is a refinement of CAML. It extracts the core
graphical components of CAML to form a language that is compact and easy to use. The
following are the primitive shapes in the LAAMA notation.

BB M- Claim nodes (AND, OR decomposition) {BLUE}. Claims can be refined
into (validated by) lower level sub-claims, assumptions and evidence. Claim
nodes with AND decomposition require all subnodes to be valid, while those with
OR decomposition require just one of their subnodes to be valid.

B - Assumption node {RED}. An assumption is set to an invalid state by default
and cannot be refined into lower level sub-claims. It can be validated by claims or
evidence from a different security discipline or from a separate argument tree.
Once validated, the color of the assumption will turn green indicating its validity.
Invalid assumptions that lack support from claims or evidence indicate
vulnerabilities to threats.

€ - Evidence node {PERIWINKLE}. Like an assumption, it cannot be refined
into lower level sub-claims. Its role is to support assumptions and claims.

With the LAAMA notation in place, each assurance map has the following properties

Claims must be proven for each discipline and can be refined into lower level
claims that demonstrate their validity.

Evidence that demonstrates the validity of a claim is linked to that claim.
Assumptions represent those claims about a system’s or a component’s
environment that need be true for the associated claim to be valid. Assumptions
themselves need to be independently validated.

Claims from one part of the map, a sub-map, can validate assumptions from
another. Invalidated assumptions represent vulnerabilities in the system

An argument map exhibits a set of tree-like behaviors. It starts with a set of high

level claims or assumptions, derived from the system’s security objectives, and works its
way down by decomposing and refining each claim. During the process of refinement, a
sub-map from one security discipline and/or a sub-map that represents a component may
be added to the map. This process continues for all defined security disciplines and
security components. This approach helps the system developers organize a set of

assurance arguments into a structured flow that is easy to follow and analyze. They can
use this map to look at each security discipline, study the relationships among them,
mitigate possible threats and vulnerabilities in the system with countermeasures and
make informed trade-off decisions. In addition, the map can be used as a communication
medium between the certifiers and system developers. Getting certifiers involved early
during the development phase is crucial. They can help identify erroneous and costly
decisions developers might make during the development process before it is too late.
The map also provides an understandable technical context for program managers and
approval authorities to make informed risk management decisions.

3 Features and Capabilities of SANE
3.1 The need for a graphical tool

The Assurance Argument Map methodology benefits greatly from the use of an
appropriate graphical tool. A well decomposed argument map can get large, unwieldy
and error-prone. There are many compelling arguments for the use of a graphical tool..

A graphical tool greatly eases navigating large complex trees

* A real-life argument map will span different security disciplines and even
different domains within each discipline, requiring different domain experts.
Development of such a map is a collaborative effort. A tool with client-
server components can greatly facilitate such collaboration

¢ A real-life argument map involving different domain experts can also
include sensitive information including vulnerabilities that should not be
disseminated widely. As such, a tool that supports access-controls and
enforces a need-to-know policy can facilitate collaborative efforts without
giving everyone access to everything.

e The process of developing a complex argument map can be lengthy, involve
various wrong turns, and possibly developer turnover. In such a scenario, a
tool that efficiently tracks the development trajectory can be useful, allowing
developers to get a sense of the development history, back-track out of
wrong development paths, branch out on alternative paths, merge such
alternative paths and provide general audit information to track tradeoff
decisions made.

e A graphical tool can make it easy to reuse previously analyzed and
decomposed argument-subtrees. Very often, there are common arguments
that get used over and over on different higher-level claims. A graphical tool,
accompanied by an argument repository can facilitate such reuse.

e A graphical tool can automate the process of verifying validity and the
enforcement of constraints. Verifying the validity of a given node can be
fairly involved, and it is often difficult for the developer of an argument to
quickly check whether a given node is valid. Also, a valid argument map
has to follow various constraints. A tool can make it easy to avoid violating
these constraints during the development process.

e The development of an argument map requires using a terminology database.
It is important to be exact and consistent with terms. The developer should
avoid using the same term with different semantics or use different terms to
convey the same meaning. An integrated dictionary tool can greatly aid the
developer in this respect, by keeping the definition of terms just a click away.

¢ The ultimate purpose of an argument map is to make a structured assurance
argument. However, presenting the raw (sometimes complex) argument
map overwhelms the assessor with too much data. A tool is needed that can
allow the presenter to selectively display information and markup the tree in
a more presentation-friendly fashion.

3.2 Functional view of SANE

The SANE frontend has at its core a tree editor. An assurance map is presented as a
tree, with nodes representing either claims, assumptions or evidence. The user can add,
modify or delete nodes subject to some basic structural constraints, i.e. only claims may
have subnodes. Each node, depending on its type, has various attributes that the user can
change, subject to access control restrictions (more about that later).

All actions within SANE are reversible, i.e. the user can undo and redo actions. All
actions within a session are undoable without limits. SANE maintains an execution log
of all transactions that occur within any given session.

The user environment within SANE has customization and ease-of-use features. All
system configuration settings are accessible from the GUI. All user actions can be placed
on the toolbar. Most user actions are accessible from a context-sensitive right-click
popup menu in addition to being available from the toolbar or menubar. Most menu
actions are accessible via keyboard shortcuts, a valuable plus for power-users.

The GUI allows the user to load and save an argument map to a remote repository,
in addition to allowing them to be saved to the local filesystem. In addition, while
loading from the repository, the user has easy access to all previous versions of the map
that have been committed to the repository during the development process. This makes
it easy to back out of some wrong turns taken during the development process.

SANE has access-control capability for argument maps. The purpose of access-
control is three-fold

¢ It enforces need-to-know for portions of the tree that cover sensitive information.

e It allows different domain experts to work on different portions of the assurance
map without stepping on each-others toes. It formalizes the areas of
responsibility.

e It allows for users with different roles to work on overlapping portions of the map.

Access control is implemented on a per-node basis. By default, a node within the tree
belongs to the user that created it. The user is then the owner of that node and all the

subnodes that she subsequently creates. When the owner decomposes a node into
subnodes that fall outside her area of expertise, she can delegate those nodes to the
appropriate domain expert. She does that by transferring ownership of those subnodes.

In addition to ownership, a node has an access control list of authorized users and
their role for that node. This list can only be modified by the owner. Each role has an
associated access-right for each attribute within the node. The access rights are
NOACCESS, READ and READ-WRITE. There are three predefined roles: Developer,
Certifier and ReadOnly. The owner is automatically a developer for that node. Certifiers
have read-write access to certifier-specific fields within the node and read-only access to
all other fields. Developer access is the complement of certifier access.

User identification is based on certificates (more on that later). Access-control
can only be enforced in the context of using the repository.

SANE comes with an integrated dictionary. The dictionary allows users to
precisely define terms used within the argument. All appearances of such terms are
automatically hyperlinked to their definition within the dictionary. Also, it is possible to
track all usages of a defined term within a particular argument tree.

SANE comes with version control facility, implemented on the server-side
repository. The server uses an underlying CVS engine.

SANE simplifies the process of delegation. When a developer starts to
decompose an argument, she will often come upon an area where she lacks expertise. At
this point, she can simply assign that subnode to the appropriate expert. In a
collaborative scenario, developer’s checking-out an argument tree using the GUI frontend
will quickly be able to identify the nodes that are their responsibility. They can then
either validate them or decompose them further, and in the process again delegate
subnodes to some other experts.

At any point in the decomposition of an argument, if the user comes across an
argument that she thinks might have been previously validated using the argument-map
approach, she can search the repository and import the requisite subtree. This greatly
facilitates Reusability.

A node is only valid if both its own decomposition and the entire subtree, down to
the last nodes, are valid. SANE automatically computes the validity of a node and
highlights invalid nodes. Assumptions are usually validated by claims in other trecs.
SANE makes it easy to create this link, and it computes the validity of the assumption by
computing the validity of the external linked claim.

SANE generates a postscript-based image of the tree, which is less compact but
more visually appealing. This also makes it easy to interface the generated charts with
other applications using the platform-neutral postscript format.

SANE has selective display capability, allowing the viewer to view the argument
map at any level of abstraction. Users can toggle the sub-tree view of any node within
the tree. Viewers can also zoom and pan over large trees.

SANE recognizes the user-id of the user. It then maps the id into a role for each
of the nodes. The role decides the level of access the user has to modify the argument
tree. The important roles are developer and certifier. These roles constrain the user in
important ways. The certifier can validate a node or tack on certifier comments. The
developer can change most other attributes of the node. The developer can also set
different access policy based on the role for the development team. This capability allows
different people to work in different area of expertise.

SANE allows the user to view the argument tree document in many different
ways. It has a form-view, postscript-view, xml-view and dot-view. Each of these views
exist on different tab-panes within the application.

SANE comes with extensive integrated context-sensitive help
3.3 Implementation details

SANE is implemented as a client-server application. Most of the important
functionalities of the application are implemented on the client-side as a GUL. The client
enables the user to perform the basic editing functions on the argument map. The more
advanced functionalities: collaboration (with associated access-control and need-to-know
requirements), version-control, reuse etc. require the server-side.

The client is implemented in Java using the swing library. It is thus cross-
platform. It utilizes several third-party components

o The rendering of the graph uses Graphviz, an open-source graphing utility.
e The postscript rendering is done using a free postscript rendering utility.

The server is implemented using Java. It utilizes CVS as a back-end to provide the
version-control capability. The server also does pre and post-filtering while servicing
client requests in order to enforce access-controls. After authenticating the client, the
server determines the clients role for each node within the argument-tree being served.
During a checkout, the server will remove all nodes to which the client lacks read access.
During a checkin, the server will filter out all nodes for which the client lacks write
access and retain the values from its original copy.

User identity and middleware: Communication between client and server utilizes
RMI over SSL. SANE uses the Java Cryptographic Extension (JCE) and certificates to
authenticate the user to the server. All invocations between client and server utilize RMI
running over SSL. Each client invocation is authenticated by server before proceeding. -

When a user launches the SANE client, the client will prompt the user for a password
to unlock its identity from the local key-store. The client will then use this identity for all
subsequent communication with the server. Additionally, the client also ships with the
certificate of the server. Thus all subsequent communication between client and server is
bi-directionally authenticated and encrypted.

Repository
A X
¥ 4 \
i A
Y] \
\
SANE SANE
User: Assessor User: Consultant
ASSURANCE Map ’ ASSURANCE Map

Figure 3 - Information Sharing and Hiding by SANE

4 Tutorial

4.1 System Requirements

The following are the minimum requirements for running SANE:

Operating Systems: Windows 2000, XP or Linux operating system
Hardware: Pentium-class personal computer

Memory: 32 megabytes of RAM or more

Java Runtime Environment: JRE Std. Ed. v1.4.0

4.2 Install SANE

There are two tarballs needed for the SANE installation. Besides its own system
libraries (which will come bundled in a tarball for download), SANE makes use of a
graphical tool, Graphviz, to render the argument map in the postscript view. It is open
source licensed software by AT & T Labs. To download Graphviz, please visit:

http://www.research.att.com/sw/tools/graphviz/download.html

After both tarballs are obtained, move the files into a designated directory before
extracting them. To extract the contents of the tarballs in a Windows environment, one

10

can use winzip or a default tool that comes with Windows. For those who use Linux,
open a command prompt, locate the designated directory and execute the following
command:

username/home/designated_directory: tar xvfz sane.tar.gz graphviz.tar.gz

Once both tarballs are decompressed, please read the README files for
installation instructions.

4.3 Start SANE

To start the tree editor (Figure 4) in the SANE application, open a command
prompt in Windows or Linux and locate the designated directory where SANE resides
and execute the following command:

Starting in Windows:
c:\designated_directory> cd scripts
c:\designated_directory\scripts> run

Starting in Linux:
username/home/designated_directory: cd scripts
username/home/designated_directory/scripts: ./run

wemieE

<

P o
I sHD is notfooled
F B safehost protocol is uncompromised ¥ ip:main Objective [Not Satisfied]

| Node Information |- Ouner [Certifier [

=

Claim Text

la safehost cannot successiully run a deceptive interpreter

Claim Description | Develaper Nofes |

When an external originator launches an agent to execute on a safehost the safehost
cannot run a successful deceptive interpreter on that agent.

o [— l Browss ” gt

13K :
formView [T PostScriptView | XML View | DOT View |

Figure 4 — SANE in Form View

11

4.4 SANE Views

SANE offers two different views of an argument map. By default, the Form View
will be displayed when the application starts (Figure 4). The Form View offers two
panels. The left panel displays the argument map in a hierarchical tree structure and the
right panel shows detailed information of the node that is being highlighted on the left
panel in various form fields.

The PostScript View displays the argument map in a more graphical view (Figure
5). But unlike the Form View, it is not intended to be used when building the argument
map. XML view and DOT view provide in-depth information on how the argument map
is constructed. XML (Extensible Markup Language) is used to store structured data in a
text format. Data stored in such format can be easily retrieved and modified. DOT is a
preprocessor used by Graphviz for drawing directed graphs. For those wanting more
information on DOT, please refer to [8]. Finally the Execution Log documents each
transaction the user made and allows her to backtrack.

Fila Edit Tools Help

Main Objective

Node_0

Node_3 Node_4

Node_5 i

[1oe% =] §-] eage: [1 w]™ B 4
{Form View | PostScriptView [FXML View | .DOT View | Execution Log |

Figure 5- SANE in PostScript View

12

4.5 Change the Look and Feel and System Configuration in SANE

SANE allows users to customize their own look and feel and modify the system
configuration. To customize the tool bar, go to the menu bar and click on Tools and then
Edit ToolBar. A toolbar editor will come up allowing users to pick and choose which

tools they want in the toolbar (Figure 6).

Available Current

[l Save As (= Open

Check In O New

Bl Check Out E save

B Print [+=] Undto

B Close Add >> ‘ (=] Redo

B0 exit €3 Add Assumption

(¥ Convert to Claim <<Bemave € Add Evidence

3 Convert to Evidence = I Add Claim

& Convert to Assumption Appty % Delete

« Toggle Aggregation Type L1 Dictionary

Edit ToolBar . Edit System Properties

= Preferences

EA Tutorial

& Contents

" About r Move Up [
’7 Move Dewn ’

Figure 6 — SANE Toolbar Editor

To modify the system configuration, click on Edit System Properties under Tools.
A system-property display will come up allowing users to make modification to it.

4.6 Add/Delete Nodes in the SANE Editor

According to the basic structure constraints, only claim nodes may have subnodes.
In addition, each claim node is a conjunction of its subnodes by default. This can be
changed to a disjunction using the Toggle Aggregation Type in the menu item. Typically,
disjunctions are used only at the abstract level (in the main objective) of an assurance
argument map whereas conjunctions are applied when doing claim refinement. This
makes sense since refinement means decomposing a claim into a set of subclaims. There
are three ways to add or delete a subnode to a claim.

e Use the icons on the tool bar

o Use the “Edit” menu on the menubar
e Use the context-sensitive right-click popup menu (Figure 7)

13

Fle Edt Tools Help

REO

BEoOEEIODO B
2 Moo §J e wormation T e cortr
‘gi&;e’s ID:Node_2 [Not Satisfied]
. Chalm Text ’
:::::nce . ; fNa{Se_z | J
£dd Assumption , mmm&i I{m@gmi

Cosrrert 1o Claim
Canvert to Bvidence
Convert to Assumption
Delete

Toggle Angregation Type

FormView [PostScriptView | XML View | DOTView | Executionlog |

Figure 7 — SANE Popup Menu
4.7 Modify a Node Attribute

Each node has a Node Information panel associated with it. The panel describes
all attributes of that node. All the fields in the panel can be changed except the node ID.
To modify an attribute, simply point the cursor of the mouse to the textfield of that
attribute and type. ‘

4.8 Utilize the Integrated Dictionary for Claim Description

The dictionary stores predefined terms within the argument. When the user
describes a claim within its claim description, all appearances of these terms are
hyperlinked to their definition in the dictionary (Figure 4). Each defined term appears in
red and is underlined. To define new terms, click on the dictionary icon on the menubar
to bring up the dictionary (Figure 8).

14

Keyword List © . HKeyword

SHD safehost protocol
Safehost
remote Definition
:::;t The communication protocol between the client and the SHD.
secure attention 1. Clientinitiates protocol by sending an agent to safehast containing a secure attention instruction
Trusted workstation
Isafehost protocol 2. agentruns on the safehost. Ater completing its execution, it computes a hash of the result and
unsafe executes g secure attention, and passes in the hash.
deceptive interpreter
safety-state 3. the safehost passes the hash on fo the SHD
secure at(ent_lon.mstructmn 4. the shd verifies that the host is safe and then signs a wellness certificate which includes the
safehost device infrastructure hashvalue. It returns this cedificate to the safehost
Safehost Device
5. the safehost passes the cedificate on to the agent
6. the agent returns the certificate and the obtained results back to the originator

@® Show All ’7 New I ’7 Apply '
2 Sl fntien ’7 Close J ‘ Delete J

Figure 8 - SANE INTEGRATED DICTIONARY

4.9 Support an Assumption/Evidence Using a Claim

A claim can be used to support an assumption or evidence. To support an
assumption, do the following:

e Highlight the assumption node on the left panel of the Form View.

o Click on the Browse button next to the textfield that labeled “URL of
Assumption” in the Node Information panel.

e A system file dialog will come up allowing the user to choose the target file
where the supporting claim is.

e Click on the name of that file to open and a new SANE editor will come up
displaying the argument map of the selected file.

e Right-click on the desired claim to bring up the popup menu. Notice that all other
menu items are grayed out except Set As Assumption Target (Figure 9). In
addition, the new editor has the title Pick Target By Right-Clicking on Node
located on the upper left hand corner. Setting the assumption target of the desired
claim will cause the new editor to close and set the correct url in the textfield of
the assumption node (Figure 10).

15

PICK TARCET 8y RUGHT-LLICIONG O NoDE

Main Objactive
= Claim © g
Clalm 1 4 metraim 2Rt Sofisfing
B ciair 2 :
i Cicin Tort

s Azine 3

Sl Aunptiog

LClalm Description fg‘i—}

Conswrt to Cliig
Comynrtin

Lot by Rysumptinn

Delete

Toggls facregation Type

Set &s Assumption Target

| FormView | PostSeriptView | XML View | DOTView | Executionlog |

Figure 9 — Set Assumption Target

file Edit Tools Help

i Otjctve v§ Node information [Owner [Certfier

-4 Q' %ﬁ?‘; s ID:Node_5 [Not Satisfied]
OGS _,
| e Assumption Name

& Node_6
% BB Node_2 [hia&e_s

BB Node_4

Assumption Description |- Developer Notes |

URL of Assumption

L

irihomeMargetp savedflesimbami#ciam 4] Browse | view |

Form View [ZPostScript View -| XML view | DOT View | ExecutionLog |

Figure 10 — An Assumption That Is Supported by a Claim

16

[

4.10 Print an Assurance Argument Map

To print an assurance argument map in SANE, click on the printer button on the
panel on the menu item and the print job will be sent to the user’s default printer.

4.11 Save an Assurance Argument Map

An assurance argument map will be saved in XML. It can be saved in the user’s
local file system or be checked in to a remote repository. To save it locally, simply click
the save button on the menu item and the system file dialog will come up. Select the
desired subdirectory in which the file will be saved. Enter the document name and save it
with a .xml extension. Once the assurance argument map is saved, the title of the SANE
editor will reflect its file name. Subsequent saves will not prompt for a file name.

To save it remotely, click on the check in button on the menu item and a Checkin
Form will appear (Figure 10). To retrieve from the remote server, click on the check out
button. The checkout form allows user to retrieve the argument map, as well as all
previous versions of it.

Server Address

|192.1BB.1 201 '

Tree Name

Comment

Figure 10 — SANE Checkin Form

17

5 Planned Enhancements

Enhancement will be made based on feedback from users using the tool.
Currently, SANE is being used to map an assurance argument for the Programmable
Embedded INFOSEC Product (PEIP) being developed by NRL under Navy funding. It is
also being used to develop an assurance argument for SAFEHOST, which is being
developed by NRL.

REFERENCE:

i

[1] NRM Authors Group, The Network Rating Model: A Methodology for Assessing
Network Security

http://www.radium.ncsc.mil/nrm/rev961031.html SECOND DRAFT, National Security
Agency, 31 October 1996, (accessed onl12 February 2003).

[2] J.S. Park, B. Montrose and J.N. Froscher, “Tools for Information Security Assurance
Arguments”, DARPA Information Survivability Conference & Exposition II, 2001.
DISCEX’01. Proceedings, Volumel, P. 287-296

[3] C.N. Payne, J.N.Froscher and C.E. Landwehr, “Toward A Comprehensive INFOSEC
Certification Methodology,” Proc. Sixteenth National Computer Security Conference,
Baltimore, MD, Sept., 1993. pp. 165-172.

[4] Common Criteria Implementation Board, Common Criteria for Information
Technology Security Evaluation, CCIB-98-026, August 1999.

[5] C. Landwehr, C. Heitmeyer, and J. McLean, “A security model for military message
systems,” ACM Transactions on computer System, vol.2, pp. 198-222, August 1984.

[6] J. Froscher and J. Carroll, “Security requirements of navy embedded computers,”
NRL Memorandum Report 5425, Naval Research Laboratory, September 1984.

o

[7]1 A.P. Moore, J.E. Klinker and D.M. Mihelcic, “How to Construct Formal Arguments
that Persuade Certifiers”, chapter in "Industrial Strength Formal Methods in Practice"
Springer Verlag London Limited, eds. M.G. Hinchey and J.P. Bowen, September 1999.

[8] Graphviz- open source graph drawing software.
http.//www.research.att.com/sw/tools/graphviz (accessed on 15 December 2003).

18

