Award Number: DAMD17-01-1-0291

TITLE: TGF-B Regulation of the Mammary Radiation Response

PRINCIPAL INVESTIGATOR: Maria Josefa Pajares, Ph.D.

CONTRACTING ORGANIZATION: Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, CA 94701

REPORT DATE: December 2003

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
TGF-B Regulation of the Mammary Radiation Response

Maria Josefa Pajares, Ph.D.

Ernest Orland Lawrence Berkeley
National Laboratory
Berkeley, CA 94701
E-Mail: mpajaresunav.es

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Transforming growth factor β1 (TGF-β1) orchestrates the response of different cell types to injury via regulation of proliferation, apoptosis and ECM composition. Previously we discovered that TGF β1 is rapidly activated in mammary gland following radiation. Because TGF-β1 is implicated in regulation of proliferation and apoptosis, we investigated whether the activation of TGF-β1 contributes to the cell fate decisions in response to radiation. We found that radiation-induced apoptosis and cycle cell arrest are absent in adult mammary epithelium and embryonic liver and epidermis when TGF-β1 is compromised. Since p53 abundance and activity is thought to dictate apoptotic cellular responses to radiation, we examined the p53 response. We found that both chronic and transient depletion of TGF-β1 compromise the p53 response. In order to study the mechanism by which TGF-β1 affects the p53 response we cultured mammary epithelial cells (MECs). This in vitro model present TGF-β1 dependent radiation response similar to that seen in vivo. Treatment of MECs with TGF-β1 restored both p53 response and caspase 3 cleavage in the heterozygote cultures. We propose that TGF-β1 is a key regulator of epithelial genomic integrity since its loss impairs activation of p53 resulting in reduced apoptosis and cell cycle arrest.
Table of Contents

Cover .. 1
SF 298 .. 2
Table of Contents .. 3
Introduction ... 4
Body ... 5
Key Research Accomplishments .. 10
Reportable Outcomes .. 11
Conclusions ... 11
References .. 12
Appendices ... 14
INTRODUCTION

Transforming growth factor β1 (TGF-β1) orchestrates the response of different cell types to injury via regulation of proliferation, apoptosis and ECM deposition and composition. TGF β1 is secreted as a latent complex consisting of TGF-β1 joined to the latency-associated peptide (LAP). Extracellular modifications result in the activation of TGF-β1. Previously we discovered that TGF β1 is rapidly activated in mouse mammary gland following radiation exposure. Radiation is one of the few exogenous stimuli known to cause latent TGF β1 activation. Because TGF-β1 is widely implicated in regulation of proliferation and apoptosis, we asked whether the activation of TGF-β1 contributes to the cell fate decisions in response to radiation. To do so, we used the Tgfβ1 knockout mouse model. Tgfβ1 -/- mice die of gross inflammation at 3 weeks of age, thus precluding analysis of mammary radiation responses. Tgfβ1 +/- mice however are viable even though there is a 70-90% reduction in TGF-β1 protein levels. These mice provide an experimental model of TGF-β1 depletion following ionizing radiation. We found that radiation-induced apoptosis in adult mammary epithelium is absent when TGF-β1 is compromised. Further Tgfβ1 knockout embryos lack both an apoptotic and growth arrest response to radiation. Since p53 abundance and action is thought to dictate apoptotic cellular responses to radiation, we examined the p53 response as a function of chronic depletion in the Tgfβ1 knockout mouse model and transient depletion by TGF-β1 neutralizing antibodies. Using p53 serine 18 phosphorylation (Ser-18P) as a marker of p53 stabilization in response to exogenous stress, we found that both chronic depletion and transient inhibition of TGF-β1 compromises the p53 response. Then we developed an in vitro model which allow us to study the mechanism by which TGF-β1 affects the p53 response. Mammary epithelial cells (MEC) derived from pregnant Tgfβ1 null heterozygote or wildtype mice were cultured and exposed to 5 Gy on day 2 in serum free media. These cells presented TGF-β1 dependent p53 radiation response similar to that seen in mammary gland of mice. Final consequences of this TGF-β1 dependent p53 response were the ones observed in vivo, apoptosis and cell cycle arrest. Treatment of MECs with TGF-β1 for 4 hours before irradiation restored both p53 response and caspase 3 cleavage in the heterozygote cultures. We propose that TGF-β1 is a key regulator of epithelial genomic integrity since its loss impairs activation of p53 resulting in reduced apoptosis and cell cycle arrest.
BODY

SPECIFIC AIMS

1. To test the hypothesis that TGF-3 is a key mediator of cellular responses to radiation

 a) To determine the potential role of TGF-3 in modulating cellular responses to radiation we irradiated Tgfβ1 +/-, +/- mammary epithelial cells (MECs) primary cultures and compare them respect to key cellular responses, cell cycle arrest and induction of apoptosis.

 b) To confirm the role of TGF-3 in cellular responses to radiation we added exogenous TGF-3 to Tgfβ1 +/- MECs in order to test if this addition would result in a response similar to that observed in the Tgfβ1 +/- cells.

2. To delineate individual and overlapping pathways of TGF-3 and p53 in cellular responses to radiation

 a) To determine the potential role of TGF-3 in modulating the p53-mediated DNA damage responses we looked at p53 phosphorylation (ser 18 and 20) and induction of downstream target genes including p21 and active caspase 3.

 b) To confirm a modulatory role of TGF-3 in p53 activation we tested if the addition of TGF-3 to the Tgfβ1 +/- MECs could restore the p53 response.

3. To dissect out overlapping pathways of TGF-3 and p53 in radiation responses of wholebody-irradiated mice

 a) To determine the role of TGF-3 in the modulation of radiation responses. We irradiated Tgfβ1 +/-, +/- mice and compare them respect to cellular responses, cell cycle arrest and induction of apoptosis.

 b) To delineate the role of TGF-3 in modulating the p53-mediated DNA damage response we compared the levels of p53 Ser 18 and p53 Ser 20
c) To confirm the modulatory role of TGF-β in p53 activation both chronic and transient TGFβ1 depletion was used to test if p53 phosphorylation is inhibited.

PROGRESS
Dr. Pajares returned to her home in Spain in December, 2003 for personal reasons. She has since assumed a position in the Department of Histology and Pathology at the School of Medicine in the University of Navarra (Pamplona, Spain). Since that time, the fellowship has been dormant. Although we have made progress on this project, we have not used the funding provided by this fellowship since an appropriate candidate was not available. In light of this history, we wish to relinquish this funding. The summary below is from last year's report.

This fellowship was transferred to Dr. Pajares in January 2002 because Dr. Mukherjee, the fellow who had been awarded the fellowship, left the laboratory for another position in 2001. In the meantime, Dr. Barcellos-Hoff had already begun the project under the auspices of a NASA funded proposal entitled “Interactions between tissue and cellular stress responses following charged particle exposure”, which was the source of the preliminary data in the original proposal. Dr. Pajares began as the laboratory was finishing what essentially amounts to the Specific Aim 3 in this proposal. She contributed to this by making mammary gland tissue extracts and analyzing p53 by immunoblotting, which earned her a co-authorship on the publication of these data in Cancer Research in October, 2002 [Ewan, 2002]. These data are summarized below, under Aim 3. She then focused on developing cell culture models and conducting experiments to test the hypotheses in Aim 1 and Aim 2. The abstract of these studies for the ERA of HOPE meeting in Orlando was selected for a platform presentation by Dr. Pajares. A second publication is under preparation, for which Dr. Pajares will be first author.

AIM 1

Mammary epithelial from Tgfβ heterozygote mice fail to undergo cell cycle arrest or apoptosis in response to irradiation.

In order to test the potential role of TGF-β in modulating cellular responses to radiation we developed primary mammary epithelial cells (MECs) cultures model. We generated MECs primary cultures from mammary glands of adult Tgfβ1 wildtype and heterozygote mice and irradiated them. Because the number of cells was limited, we used protein extraction and immunoblotting instead of cellular characterization assays (i.e. TUNEL and flow cytometry) as proposed in the first statement of work. The role of TGF-β in cell cycle regulation following irradiation was studied by determining the levels of p21 by western blot instead of flow cytometric analyses. Levels of p21, a protein related to cell cycle arrest, were increased in TGF-β wildtype MECs 4 hours after irradiation, TGF-β heterozygote cells, however, did not present as high increase as the one seen in the wildtype
ones (Fig 1). These results showed that TGF-β is regulating cell cycle arrest in response to irradiation. The apoptosis response was assayed by studying of the levels of active caspase 3 by western blot instead of TUNEL staining. Activation of caspase 3 is an early event in most of the apoptotic pathways. Active caspase 3 levels peaked by 4 hours postirradiation in TGF-β wildtype MEC, but were reduced in the heterozygote MEC (Fig 2). These findings mean that TGF-β is regulating induction of apoptosis as well as cell cycle arrest in irradiated primary mammary epithelial cells.

AIM 2

Rapid modifications of p53 that lead to its stability and activity are decreased in Tgfβ1 heterozygote MEC.

We observed that TGFβ1 mediated key cellular responses to irradiation in the MECs, so we tested our hypothesis that p53 and TGFβ1 mediated signaling pathways might intersect. In order to do that we studied the p53 activation status determined by protein modification, we used two different phosphorylation state-specific antibodies. Phosphorylation of both Ser-18 (Ser-15 in human) is strongly associated with the cellular response to radiation damage (e.g. apoptosis, cell cycle block) and contribute to stabilization and activation of p53 protein. Immunoblotting of cellular protein extracts showed that previous to irradiation, levels of p53 Ser 18-P (Fig 3) were low in extracts from both TGFβ1 wildtype and heterozygote cells but were significantly elevated within 1 hour of irradiation exposure. At 2 and 4 hours post irradiation, the levels of p53 Ser 18-P still remain detectable in both genotypes. Thus, TGFβ1 modulates the activation of p53, which in turn is known to mediate DNA damage responses in mammary epithelial cells.

In order to test whether in other types of cells the p53 radiation response is TGFβ1 dependent, we developed a mouse embryonic fibroblast (MEF) model. We compared the p53 response postirradiation of +/-, +/-, +/- MEFs cultures from embryos coming from Tgfβ1+/- mice. Neither Tgfβ1 null nor heterozygote irradiated MEF exhibit reduced Ser-18P compared to wildtype (Fig 4). Thus, TGFβ1 dependent p53 phosphorylation appears to be epithelial specific, which is further supported by our in vivo data reported below.

TGF-β treatment restores p53 phosphorylation and apoptotic response in Tgfβ1 heterozygote MEC.

We propose that TGF-β is a key regulator of epithelial genomic integrity since its loss impairs activation of p53, resulting in reduced apoptosis and cell cycle arrest. In order to confirm the modulatory role of TGF-β in p53 activation, we treated Tgfβ1 +/- MECs cultures with TGFβ1 for 4 hours before IR restored both the p53 response and the caspase-3 cleavage in the heterozygote MEC (Fig 5).
AIM 3

We tested the hypothesis that TGFβ1 modulates the type and degree of cellular damage responses in situ. The decision of a cell to undergo apoptosis in response to DNA damage is commonly attributed to the level of DNA damage and certain cellular competencies that are poorly understood in vivo. The data reported here reveal a surprising TGF-β dependence for cellular response to DNA damage. Upon finding that radiation-induced apoptosis was undetectable in Tgfβ1 +/- mammary gland, we examined the apoptotic response in embryonic tissues as a function of Tgfβ1 gene dosage. Radiation-induced apoptosis correlated with TGF-β abundance in both liver and epidermis. In addition, the IR-induced proliferative block was completely absent in irradiated Tgfβ1 null embryo tissues. Since both responses have been shown to be p53-dependent (1-3), we then examined the phosphorylation of Ser-18 associated with rapid p53 activation (4). Depletion of TGFβ1 abrogated p53 phosphorylation in mammary glands in both the chronically depleted knockout mice or following transient inhibition using TGFβ1 neutralizing antibodies.

TGFβ1 activation and activity are reduced in mammary glands of irradiated Tgfβ1 +/- mice.

We have confirmed that TGFβ1 protein levels of Tgfβ1 +/- adult mammary gland are reduced by more than 90% compared to wildtype (5). To determine whether IR-induced TGFβ1 activation was also compromised, we localized active TGFβ1 by immunostaining. Active TGFβ1 was greatly reduced in irradiated Tgfβ1 +/- mammary gland compared to wildtype tissue (Figure 6A). To confirm that depletion of TGFβ1 resulted in decreased TGFβ1 signaling, we examined the induction of Smad 2/3 nuclear translocation. A marked induction of nuclear Smad 2/3 immunostaining was observed 1 h in irradiated versus sham-irradiated wildtype mice (Figure 6B). The frequency of positively stained cells and the intensity of staining were reduced in irradiated Tgfβ1 +/- mammary epithelium, indicating that Tgfβ1 +/- mice are an appropriate model to study whether TGFβ1 depletion affects cell fate decisions.

Radiation-induced apoptosis is absent in Tgfβ1 +/- mammary epithelium.

Previous studies demonstrated that a dose of 5 Gy IR induces a 2-3 fold increase in apoptosis that peaks at 6 h in mammary gland of nulliparous animals (1, 2). During studies of mammary development, we observed that the background frequency of apoptosis is related to the stage of estrus cycle and that both proliferation and apoptosis peaks at estrus (5). To ensure comparable background frequency, the animals were irradiated in estrus. The apoptotic index increased 3-fold in mammary glands of C57BL/6/129Sv Tgfβ1 +/- mice 6 h following whole body exposure to a dose of 5 Gy (-radiation (Figure 7A). In contrast, mammary epithelial apoptosis was not significantly increased following irradiation of Tgfβ1 +/- mice and was in fact 1/8th the level of irradiated wildtype mice. Although physiological apoptosis in Tgfβ1 +/- mammary epithelium at estrus is half that of
wildtype mice, apoptosis is not generally depressed in Tgfβ1 +/- mammary epithelium since levels are similar to wildtype at puberty and is increased during pregnancy (5). In addition, radiation-induced apoptosis in lymph node and spleen was similar in Tgfβ1 +/- mice and wildtype mice (not shown). These data suggest that TGFβ1 affects cell fate decisions in response to DNA damage in a cell type-dependent manner.

Absence of TGFβ1 in embryonic tissues abrogates apoptotic and cell cycle inhibition in response to IR.

The radiation response of adult TGFβ1 null mice cannot be determined because Tgfβ1 +/- genotype mice commonly die in utero (6). However, several embryonic tissues exhibit both a robust apoptotic response and cell cycle inhibition shortly after irradiation in utero (3). Therefore 12.5 d pregnant Tgfβ1 +/- dams were irradiated whole body with a dose of 5 Gy and the embryos collected 6 h later. Apoptosis positive cells were counted in epidermis and liver (Figure 7 B,C). Apoptosis increased 2-3 fold in epidermis and liver in irradiated wildtype embryos. Radiation-induced apoptosis was significantly decreased in Tgfβ1 +/- embryos. Tgfβ1 +/- embryos lacked an apoptotic response.

In rapidly proliferating tissues, IR can also induce a transient cell cycle block. Antibodies to PCNA were used to define the frequency of cells in cycle in embryonic tissues following IR (Figure 7 D,E). Proliferation was reduced 2-3 fold following irradiation in liver and epidermis of both +/- and +/- embryos. The frequency of proliferating cells was unaffected in irradiated +/- embryos. Together, these data demonstrate that TGFβ1 abundance dictates cell fate decision in irradiated embryonic as well as adult epithelial tissues.

p53 stress response is activated in irradiated mammary gland.

Apoptosis is p53 dependent in irradiated mammary gland and embryos (1-3). However, a recent report suggested that mammary gland lacks a classic p53 IR induction as measured by nuclear immunoreactivity using the CM5 antibody (2). Since this antibody many be insensitive to p53 activation status determined by protein modification, in the current study we used a phosphorylation state-specific antibody. (Phosphorylation of Ser-18 (Ser-15 in human) is strongly associated with the cellular response to radiation damage (e.g. apoptosis, cell cycle block) and contributes to p53 protein stability (4). The phosphorylation of Ser-18 promotes dissociation of p53 from the MDM2 protein, which otherwise directs p53 proteolysis)) Immunoblotting of total mammary gland protein extracts showed that Ser-18P was undetectable in extracts from sham-irradiated tissue. Within 1 h of IR exposure Ser-18P was significantly elevated and remained detectable up to 24 h following IR (Figure 8A). Total p53 levels, detected using antibodies PAb122 or CM1, which are insensitive to phosphorylation status, were increased at 24 h post-IR, but unchanged during the period from 1-15 h (data not shown).

Since the mammary gland is comprised of many cell types, we used immunofluorescence to determine the cellular localization of p53 bearing Ser-18P (Figure 8B). Mammary epithelium from sham-irradiated mice showed minimal nuclear signal. The immunoreactivity of phospho-specific p53 Ser-18P antibodies was restricted to the nucleus and was punctate in irradiated mammary epithelial nuclei. Epithelial nuclear p53
Ser-18P immunostaining was significantly increased within an hour of radiation exposure and remained prominent up to 24 h after irradiation.

Chronic or transient TGFβ1 depletion inhibits p53 Ser-18 phosphorylation.

Immunoblots of p53 Ser-18P using total protein extracts from wildtype mice showed a massive induction of p53 phosphorylation 1 h post-IR (Figure 9A). Between 1 and 6 h, Ser-18P p53 levels decreased approximately 10-fold in wildtype mice, but were still elevated compared to sham. In contrast, Ser-18P detection was decreased at least 4-fold at both 1 h and 6 h compared to wildtype mice. Total p53 in wildtype and heterozygote mammary extracts measured by CM1 or CM5 were similar (data not shown), suggesting that phosphorylation, rather than abundance, was severely and persistently compromised. The immunolocalization of p53 Ser-18P in irradiated Tgfβ1 +/- mammary epithelium was also compared to that of wildtype mice (Figure 9B). Nuclear p53 Ser-18P immunofluorescence was significantly reduced at 1 h post-irradiation in the Tgfβ1 heterozygote compared to wild type mammary epithelium. The difference between irradiated wildtype and Tgfβ1 +/- mice was less pronounced at 6 h post-irradiation but was still attenuated in Tgfβ1 +/- mammary epithelial cells.

Chronic depletion in Tgfβ1 +/- mice could perturb aspects of cell physiology that modify the p53 radiation response. To test whether TGFβ1 directly affected the radiation response, pan-specific TGFβ1 neutralizing antibodies were administered i.p. 3 h before irradiation. Our previous studies had demonstrated the efficacy of this timing, route and antibody dose in blocking TGFβ1 mediated extracellular matrix remodeling (7). Immunoblotting showed that p53 Ser-18P after radiation exposure was reduced from neutralizing antibody treated mice compared to animals treated with control antibody (Figure 9C). p53 Ser-18P was reduced 5-fold at 1 h post-IR in animals receiving TGFβ neutralizing antibody compared to those receiving control antibody. This difference was less evident at 4 h post-irradiation. Likewise, nuclear localization of p53 Ser-18P determined by immunofluorescence staining was significantly reduced 1hr after IR when TGFβ1 was transiently depleted prior to irradiation (Figure 9D). As seen in the gene knockouts, TGFβ1 neutralizing antibody treatment did not alter levels of total p53, as detected using either CM1 or CM5 antibody (data not shown), indicating that TGFβ availability affected p53 post-translational modification rather than total protein abundance.

In light of the very promising results showing that inhibition of TGFβ1 prevents p53 radiation responses, we have decided to move forward with experiments to examine the mechanism by which TGFβ is affecting the p53 response. We have done previous experiments that show that TGF beta could be affecting ATM kinase, protein that phosphorylate p53 directly at Ser 18 and indirectly, through chk2, at Ser 20. We will determine if TGFβ is affecting the levels of ATM kinase, its activity or both.

KEY RESEARCH ACCOMPLISHMENTS
• TGFβ1 activation and activity are reduced in mammary glands of irradiated Tgfβ1 +/- mice respect the wildtype ones.

• Radiation-induced apoptosis is absent in Tgfβ1 +/- mammary epithelium.

• Absence of TGFβ1 in embryonic tissues abrogates apoptotic and cell cycle inhibition in response to IR.

• Radiation induces p53 Ser 18 phosphorylation mammary gland.

• Radiation-induced p53 Ser-18 phosphorylation is decreased in the mammary gland of chronically or transiently TGFβ1 depleted mice.

• Primary mammary epithelial cells represent good in vitro model to study the mechanism by which TGFβ1 affects the p53 response. p53 and apoptotic responses are reduced in Tgfβ1 +/- MECs.

• Levels of p21 are reduced in the Tgfβ1 heterozygote cells.

• Addition of exogenous TGFβ1 restores p53 and apoptotic response.

• Neither Tgfβ1 +/- nor +/- mouse embryonic fibroblast (MEFs) exhibit differences in the levels of p53 Ser 18P compared to wildtype ones.

REPORTABLE OUTCOMES

3) Abstract titled “Transforming growth factor-β1 regulates radiation induced apoptosis and p53 response” for a poster presented at the Era of Hope meeting that took place in Orlando (Florida) in September 25-30, 2002.

CONCLUSIONS
Using the Tgfβ1 null heterozygote model we have determined that TGF-β1 dictates epithelial cell fate in response to DNA damage. After IR, there is a rapid and persistent increase in p53 Ser-18P in the mammary gland epithelium. The phosphorylation of p53 at Ser-18 is reduced when TGF-β1 levels are compromised, either chronically or transiently. Primary mammary epithelial cells present a TGF-β1 dependent p53 response post-irradiation. Levels of p53 Ser 18-P were decreased in the TGF- β1 heterozygote MECs respect to the wild type MEC. Apoptosis and cell cycle arrest were also compromised. In contrast, mouse embryonic fibroblast TGF- β1 null and heterozygote cells do not show reduced p53 Ser 18 compared to wild type. Addition of TGF- β1 to heterozygote mammary epithelial cells restores p53 and apoptotic responses.

REFERENCES

APPENDICES

Appendix I: Figure legends and figures

APPENDIX I

FIGURE LEGENDS

Figure 1: TGF-β_1 blocks cell cycle in response to radiation. Primary mammary epithelial cells derived from pregnant Tgf-β_1 null heterozygote mice (HT) or wildtype mice (WT) were cultured and exposed to irradiation (IR) (5 Gy) on day 2 in serum free media. Immunoblots show that p21 protein increased in the wildtype mammary epithelial cells 4 hours after IR. p21 was significantly reduced 4h after IR in TGF-β_1 +/- cells compared to the wildtype ones.

Figure 2: Irradiated TGF-β_1 +/- primary mammary epithelial cells show reduced levels of caspase 3 cleavage. Western blot of cell extract from wild type or TGF-β_1 heterozygote primary mammary epithelial cells, sham and 4 h after IR (5 Gy). Antibodies to 17 KD fragment of caspase 3 were used in Western blotting of extract of TGF-β_1 +/- and +/- primary mammary epithelial cells as an index of apoptosis. Activation of caspase 3 through cleavage occurs in most of the apoptotic pathways. 17 KD Caspase 3 protein was highly increased in wildtype cells 4 hours following irradiation, however the increase is not so pronounced in the heterozygote cultures.

Figure 3: The p53 response is reduced in TGF-β_1 +/- primary mammary epithelial cells. Antibodies to p53 Ser-18P were used in Western blotting of protein extract of TGF-β_1 +/- and +/- primary mammary epithelial cells. Levels of p53 Ser 18P were really low in the sham-irradiated cells from both wildtype and heterozygote genotype. Within 1 hour following irradiation, p53 Ser 18P was significantly increased, decreasing after the first hour postIR. 2 and 4 hours after IR we still observed higher levels of p53 Ser 18 in the wild type cells than in the heterozygote ones.
Figure 4: TGF-β1 -/- and +/- mouse embryonic fibroblast do not show a reduced p53 response following irradiation. TGF-β1 +/-, +/-, and -/- mouse embryonic fibroblast (MEF) were cultured in a sera free media and irradiated (5 Gy). Western blot of protein extract 1 hour postIR showed that p53 Ser-18P increase within one hour of irradiation but the levels of this protein were not reduced in the irradiated TGF-β1 +/- and -/- MEFs as in mammary epithelial cells.

Figure 5: Addition of exogenous TGF-β1 restores p53 and apoptotic response. TGF-β1 at a dose of 500 pg/ml was added to the TGF-β1 +/- 4 hours before IR. (A) The levels of p53 Ser-18P were measured by immunoblot in the TGF-β1 +/- cells 1 hour after IR and compared with the non-treated TGF-β1 +/-, TGF-β1 treated cells presented similar levels of p53 Ser 18, 1hour, 2 and 4h postIR than the wild type ones. (B) TGF β1 treated TGF-β1 heterozygotes cells presented higher levels of 17 KD fragment of caspase 3 than the non treated ones, these levels were similar to the TGF-β1 wild type cells.

Figure 6: Irradiated TGF-β1 +/- mammary gland shows reduced levels of active TGF-β1 and Smad 2/3, TGF-β1 +/- and +/- mice were irradiated whole body to a dose of 5 Gy and sacrificed 1 h later. (A) False color digital micrographs of dual immunofluorescence of antigen-purified TGFβ1 antibody (red) and LAP antibody (green) visualized simultaneously with DAPI stained nuclei (blue). Comparison of mammary gland tissue from irradiated TGF-β1 +/- and +/- mice indicates that TGF-β1 immunoreactivity (yellow-orange) is greater in TGF-β1 +/- mice, while TGF-β1 +/- mice show predominant LAP immunoreactivity (green). The prominent localization of TGFβ1 in the irradiated wildtype mice reflects radiation-induced activation (5). Note that all cells stain with antibodies to LAP prior to radiation exposure (7). (B) False color digital micrographs of Smad 2/3 antibody (green) localized simultaneously with DAPI stained nuclei (blue). Comparison of mammary gland cryosections from sham (a, c) or irradiated (b, d) TGF-β1 +/- (a, b) and +/- (c, d) mice indicates that IR induced significant Smad2/3 immunoreactivity. Immunofluorescence intensity was markedly reduced in irradiated TGF-β1 +/- mice.

Figure 7: TGF-β1 gene dosage correlates with reduced apoptosis and cell cycle block in response to radiation. (A) The frequency of apoptotic nuclei detected using TUNEL reaction was determined in the mammary epithelium of TGF-β1 +/- and +/- mice (mean ± SEM; n= 3 animals). Sham-irradiated (black) and whole-body irradiated (gray) wildtype were significantly different (t-test; P=0.02). The irradiated TGF-β1 heterozygote mice were not significantly different from sham-irradiated heterozygote mice, but were significantly different from irradiated wild type (t-test; P=0.006). Pregnant NIH/OlaIfsd TGF-β1 +/- dams were irradiated whole body (5 Gy) on day 12.5 of gestation. Embryos irradiated in utero were collected 6 h after irradiation. Apoptotic nuclei were detected using the TUNEL reaction in liver (B) and epidermis (C) from TGF-β1 +/-, +/- and -/- embryos. Apoptosis was decreased in control TGF-β1 +/- and -/- embryo tissues.
Significantly increased apoptosis was absent from both liver and epidermis of irradiated TGF-\(\beta\)I +/- and +/- embryos. The frequency of cycling cells was detected using PCNA antibodies in sham-irradiated (black) and irradiated (gray) embryos. Radiation induced cell cycle block was evidenced by a 2-3 fold reduction of PCNA positive cells following irradiation in utero in the liver (D) and epidermis (E) from TGF-\(\beta\)I +/- and +/- embryos. The frequency of PCNA positive cells was not significantly different between sham and IR embryos of +/- genotype, indicating abrogation of radiation-induced cell cycle block.

Figure 8: p53 Ser-18P is induced in irradiated mammary epithelial cells. (A) Antibodies to Ser-18P p53 were used in Western blotting of total tissue protein extracts of irradiated Balb/c mammary tissue. No signal was evident in sham-irradiated tissue. A single band was detected at 1 h and was present up to 24 h following radiation exposure by Western. (B) False color images of immunofluorescence localization of p53 Ser-18 phosphorylation detected using secondary antibodies labeled with Alexa 488 (appears green/turquoise). Nuclei were counterstained with DAPI (blue). Immunofluorescence was absent from controls in which the primary antibody was deleted (a) and discernable in only a few epithelial cells in sham irradiated tissue (b). Prominent nuclear immunoreactivity was evident throughout the epithelium from 1 h (c), 4 h (d), 15 h (e) and 24 h(g) after radiation exposure.

Figure 9: Decreased radiation-induced p53 Ser-18 P following irradiation and chronic or transient TGF-\(\beta\)I depletion. (A) Western blot of tissue extracts from wildtype or Tgf\(\beta\)I heterozygote mice sham and 1-6 h post-IR. p53 Ser-18 phosphorylation was significantly reduced in Tgf\(\beta\)I +/- mice 1-6 h after IR. (B) p53 Ser-18P was localized as indicated in Figure 3 using cryosections of C57BL/6/129Sv TGF-\(\beta\)I +/- mouse (a, b, c) or TGF-\(\beta\)I +/- mice (d, e, f) subjected to sham exposure (a, d) or irradiated with 5 Gy, 1 h (b, e) or 6 h (c, f) before sacrifice. Nuclear localization of p53 Ser-18P 1 h post-IR was significantly reduced in TGF-\(\beta\)I +/- animals compared to wildtype animals. By 6 hr, p53 Ser-18P was decreased in both genotypes. (C) Western blot of tissue extracts from Balb/c adult female mice injected i.p. with an irrelevant IgG antibody as a control (C) or TGF-\(\beta\)I neutralizing (N) antibody prior to irradiation. p53 Ser-18P was significantly reduced 1 h after IR when TGF-\(\beta\)I neutralizing antibodies were administered before irradiation. (D) Nuclear immunolocalization of p53 Ser-18P was significantly reduced in animals treated with TGF-\(\beta\)I neutralizing antibody. Mice received control (a, b) or TGF-\(\beta\)I pan-isoform neutralizing monoclonal antibody (c, d) 3 h before sham exposure (a, c) or whole body irradiation with 5 Gy (b, d). p53 Ser-18P was localized in cryosections as indicated in Figure 8.
FIGURES

Figure 1

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th></th>
<th>HT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sham</td>
<td>IR</td>
<td>Sham</td>
<td>IR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>p21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>actin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th></th>
<th>HT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sham</td>
<td>IR</td>
<td>Sham</td>
<td>IR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Caspase 3 (17 Kd)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>actin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sham</td>
<td>1 hr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>p53 Ser 18-P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HET</td>
</tr>
<tr>
<td></td>
<td>WT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>actin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4

WT HET KO
sham IR sham IR sham IR

p53 Ser 18-P

actin

Figure 5

A

sham IR

1 hr 1 hr 2 hr 4 hr

WT HET WT HET WT HET WT

p53 Ser 18-P

actin

B

No TGF β TGF β

WT HET HET

Sham IR Sham IR Sham IR

Caspase 3
(17 KD)

actin
APPENDIX II

Radiation-Induced Apoptosis and p53 Response Depend on Transforming Growth Factor-β1 Levels

Kenneth B. Ewan¹, Rhonda L. Henshall-Powell¹, Shraddha A. Ravani¹, Maria Jose Pajares¹, Carlos Arteaga², Ray Warters³, Rosemary J. Akhurst⁴, Mary Helen Barcellos-Hoff*¹

¹ Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720
² Division of Medical Oncology, Vanderbilt University, Nashville, TN
³ Department of Radiology, University of Utah Medical Center, Salt Lake City, UT
⁴ Mt Zion Cancer Research Institute, University of California at San Francisco, San Francisco CA 94143-0875

Submitted: February 18, 2004

*Corresponding Author
Mary Helen Barcellos-Hoff, Ph.D.
Life Sciences Division
Bldg. 74-174, 1 Cyclotron Rd.
Lawrence Berkeley National Laboratory
Berkeley, CA 94720
(510) 486-6371; FAX (510) 486-6816
MHBbarcellos-hoff@lbl.gov

FIGURES: 5

PAGES:

KEYWORDS: mouse models, mammary gland, apoptosis, cancer, radiation, breast, cytokines

RUNNING TITLE: TGFβ1 mediates radiation responses

ABBREVIATIONS: TGFβ1, transforming growth factor β1; IR, ionizing radiation; LAP, latency associated peptide; Ser-18P, pS3 serine 18 phosphorylation; PCNA, proliferating cell nuclear antigen; DAPI, 4′,6-diamidino-2-phenylindole
ABSTRACT

Transforming growth factor-31 (TGF-31) orchestrates cell fate decisions in development, differentiation and disease. We previously showed that TGF-31 is rapidly activated in response to ionizing radiation. To test whether TGF-31 mediates cell fate decisions following radiation exposure, we irradiated Tgf31 null heterozygote mice in which levels of TGF-31 are reduced by 90%. In wildtype mice, mammary epithelial apoptosis was increased 3-fold 6 h following whole body radiation (5 Gy) exposure. This increase was absent from irradiated Tgf31 +/- mammary gland. To further examine the effect of gene dosage on cellular radiation responses, Tgf31 +/-, +/- and -/- embryos were irradiated in utero. Relative to wildtype embryos, apoptosis was significantly reduced from irradiated Tgf31 +/- embryos and was absent from Tgf31 -/- embryos, which also lacked a radiation-induced cell cycle block. Since apoptosis in these tissues is p53 dependent, we next examined the mammary p53 response. In wildtype mice, phosphorylation of Ser-18 p53, an early event stabilizing p53, was induced from 1-24 h following radiation and was localized to mammary epithelial nuclei. The level of phosphorylated Ser-18 p53 was markedly reduced in irradiated Tgf31 +/- mammary gland at 1 h post-irradiation compared to wildtype mice. To test whether transient, in contrast to chronic, depletion of TGF-31 was sufficient to compromise p53 response, neutralizing antibodies were administered shortly before irradiation, which also reduced p53 Ser-18 phosphorylation at 1 h post-irradiation. Thus, TGF-31 dictates cell fate decisions following DNA damage and these decisions correlate with changes in p53 phosphorylation.

Introduction

Transforming growth factor 31 (TGF-31) orchestrates the response of multiple cell types to injury via its broad regulation of proliferation, apoptosis and ECM deposition and composition [Roberts, 1988 #428]. Resistance to TGF-3 growth inhibitory effects is a common feature of human breast, ovarian, and gastrointestinal cancer cells and genetic mutations leading to loss of TGF-3 signaling predispose certain tissues to develop cancer [Massague, 2000 #2847].

The biological activity of secreted TGF-3 is constrained by its production as a latent complex consisting of TGF-31 non-covalently associated with its processed N-terminal pro-segment, called the latency-associated peptide (LAP). Post-translational modifications are critical regulatory events for TGF-31 function in vivo: release from LAP is a prerequisite for TGF-31 to bind to its cell surface receptors [Miyazono, 1991 #533]. This activation event acts as the switch to initiate tissue response to damage in several physiological processes including inflammation, wounding and angiogenesis [Kehrl, 1991 #2050; Wahl, 1994 #1696]. We discovered that TGF-31 is rapidly activated in mouse mammary gland following radiation exposure [Barcellos-Hoff, 1994, #577]. Radiation is one of the few exogenous stimuli known to cause latent TGF-31 activation in situ [Barcellos-Hoff, 1994, #577; Ehrhart, 1997 #1879]. Consistent with increased active TGF-31, treatment with TGF-3 neutralizing antibodies inhibit mammary gland extracellular matrix remodeling in irradiated mice [Ehrhart, 1997 #1879]. We have shown that latent
TGFβ1 activation can occur via free radical generation by radiation and other sources, thus endowing TGFβ1 with the ability to act as an extracellular sensor of oxidative stress [Barcellos-Hoff, 1996 #1871].

TGFβ's pleiotropic actions are well-suited to orchestrate cellular responses to radiation damage and to facilitate reestablishment of homeostasis by eliminating damaged cells or promoting repair. Because TGFβ is widely implicated in regulation of proliferation and apoptosis, we asked whether the activation of TGFβ contributes to the cell fate decisions in response to radiation. To do so, we used the Tgfβ1 knockout mouse model. Tgfβ1 -/- mice die of gross inflammation at 3 weeks of age, thus precluding analysis of mammary radiation responses [Letterio, 1994 #1867]. However, Tgfβ1 +/- mice are viable despite a 70-90% reduction in TGFβ protein levels [Tang, 1998 #2316]. These mice provide an experimental model of TGFβ depletion.

We found that radiation-induced apoptosis in adult mammary epithelium is absent when TGFβ is depleted. Further Tgfβ1 knockout embryos lack both an apoptotic and growth arrest response to radiation. Since p53 abundance and action is thought to dictate apoptotic cellular responses to radiation [Agarwal, 1998 #3415], we next examined the p53 response as a function of chronic depletion in the TGFβ1 knockout mouse model and transient depletion by TGFβ neutralizing antibodies. Using p53 serine 18 phosphorylation(Ser-18P) as a marker of p53 stabilization in response to exogenous stress, we found that both chronic depletion and transient inhibition of TGFβ1 compromises the p53 response. These data, together with our previous observations [Barcellos-Hoff, 1994 #577; Ehrhart,1997 #1879], suggest that TGFβ1 signaling, controlled via the extracellular activation of latent TGFβ1, is a critical mediator of cellular responses to radiation.

Materials and Methods
Adult 129Sv/C57BL/6 Tgfβ1 +/- or +/- mice were generously provided by Dr. Anita Roberts (National Cancer Institute, NIH). Genotyping was performed by PCR as described [Tang, 1998 #2316]. DNA was extracted using the GenomicPrep cell and tissue DNA isolation kit (Amersham Pharmacia, Piscataway NJ), according to the manufacturer's instructions. HotStarTaq (Qiagen, Valencia CA) Taq DNA polymerase was used and oligonucleotides were custom made by Operon (Alameda, CA). Pregnant NIH/OlaHsd Tgfβ1 +/- dams were irradiated on day 12.5 of gestation, timed from observation of the vaginal plug. Embryos were dissected from the uterus 6 h after irradiation. Placental and tail tissue was digested for genotyping with Proteinase K. In some experiments, adult BALB/c mice (B&K, Fremont, CA) were injected i.p. 3 h before irradiation with 0.5 μg of pan-specific TGFβ1 neutralizing antibody 2G7 purified IgG2b [Koli, 1997 #2223] or irrelevant immunoglobulin-matched antibody (Sigma Pharmaceuticals, St. Louis, MO). Unanesthetized adult mice were irradiated whole body with 60Co (-irradiation using a dose rate of 24 cGy/min to total dose of 5 Gy. Dosimetry was determined using a Victoreen ionization chamber prior to each experiment. Estrus was staged using cytological characteristics of vaginal smears at the time of irradiation and confirmed postmortem by uterine wet weight. Animals from each group were euthanized by CO2 inhalation and cervical dislocation at the indicated times in accordance with AAALAC guidelines and with institutional review and approval. The inguinal mammary glands were embedded for
histology immediately after dissection. Protein extracts were prepared from the 3rd and 5th glands that were flash-frozen in liquid nitrogen.

Immunofluorescence: Tissues or embryos were embedded in Tissue-Tek® compound (Sakura Finetek U.S.A., Inc., Torrance, CA), immediately frozen in a dry ice/ethanol bath, and stored at -80°C. 5μm cryosections were cut at -30°C onto gelatin-coated coverslips. Immunostaining to differentiate between active and latent TGFβ1 was conducted as previously described [Ehrhart, 1997 #1879]. Sections were fixed using 2% buffered paraformaldehyde followed by a 0.1 M glycine/PBS wash for the following antibodies: goat anti-latency associated peptide (LAP, R&D Systems, Minneapolis, MN), chicken anti-TGFβ1 antibodies (AF-101-NA, Lots # FS03 and # FS08, R&D Systems), Smad 2/3 (FL-425, Santa Cruz Biotechnology Inc), and proliferating cell nuclear antigen (PCNA) fluorescein-conjugated monoclonal antibodies (DAKO, Carpinteria, CA). For PCNA, paraformaldehyde was followed by 10 min in methanol at 4°C. Phospho-specific antibodies to p53 Ser-18P(Cell Signaling Technologies, Beverly, MA) were used with sections fixed with 80% methanol for 10 min at -20°C, followed by 3 minute fixation with 2% paraformaldehyde and quenching with 0.1 M glycine in phosphate-buffered saline. After fixation, non-specific sites were blocked before addition of primary antibodies were incubated with sections for 1 h at room temperature (p53 Ser-18P) or overnight at 4°C (LAP, TGFβ3, Smad 2/3) in a humidified chamber. Sections were washed in PBS containing 0.1% BSA, before incubating in secondary antibody conjugated to Alexa Fluor™ 488 (Molecular Probes, Eugene, OR) for 1 h in a dark humidified chamber, washed and counterstained with DAPI (4',6-Diamidino-2-Phenylindole, Sigma Pharmaceuticals, St. Louis, MO) and mounted in Vectashield (Vector Laboratories, Burlingame, CA).

Apoptotic index: ApopTag (Intergen, Purchase, NY) was used for TUNEL staining and the supplied protocol followed with modifications. Briefly, fresh frozen sections were fixed in 1% paraformaldehyde, then in a precooled 2:1 ethanol:acetic acid mixture. Sections were blocked with the supernatant of 0.5% casein in PBS. The TdT stock solution was used at a working strength of 30% for 1 hour at 37°C. The stop reaction and FITC anti-digoxigenin antibody steps were followed as written. Sections were counterstained with DAPI and mounted with Vectashield.

Image acquisition and analysis: Images were obtained using a 40x, 0.75 numerical aperture Zeiss Neofluar objective on a Zeiss Axiovert equipped with epi-fluorescence. A multiband pass dichroic mirror, barrier filter and differential wavelength filter wheel combination was used to selectively excite fluorochromes in sequence. Images were captured using a scientific-grade 12-bit charged coupled device (KAF-1400, 1317 x 1035, 6.8 μm square pixels) digital camera (Xillix, Vancouver, Canada). Images obtained from sections stained in parallel were captured with identical parameters and scaled using Scilimage (TNO Institute of Applied Physics, Delft, The Netherlands). False color images were compiled from gray-scale images of each fluorochrome.

TUNEL or PCNA positive cells were counted from at least four fields in each duplicate section from three mice or embryos. The frequency of apoptosis or proliferation was determined by counting the number of epithelial nuclei in each image. Nuclear counts in liver embryonic tissues were based on the total area of DAPI-stained nuclei divided by the mean area of 10 individually segmented nuclei. Statistical significance of differences
between genotypes was determined using the unpaired Student’s t-test (GraphPad PRISM™).

Protein extraction and immunoblotting: Tissue extracts were prepared as previously described [Shyamala, 1990 #2273]. Equal amounts of protein lysates were run on reducing SDS-PAGE, immunoblotted and detected using a Pierce SuperSignal system (Pierce, Rockford, IL). Blots were also stained for total protein and probed for β-actin to assess equal loading. Exposed films or protein stained blots were scanned and subjected to densitometric analysis.

Results

TGFβ1 is reduced in mammary glands of irradiated Tgfβ1 +/- mice.

In studies of mammary development, we determined that TGFβ1 protein levels are reduced by 90% in Tgfβ1 +/- adult mammary gland [Ewan, 2002 #3421]. To confirm that radiation-induced TGFβ1 activation was also compromised, we localized active TGFβ1 by immunostaining. Active TGFβ1 (indicated by red/orange fluorescence) was greatly reduced in irradiated Tgfβ1 +/- mammary gland compared to wildtype tissue (Figure 1A). To confirm that depletion of TGFβ1 resulted in decreased TGFβ1 signaling we then examined the induction of Smad 2/3 nuclear translocation in irradiated tissue. A marked induction of Smad 2/3 nuclear immunostaining was observed 1 h following radiation exposure in wildtype mice (Figure 1B). The frequency of positively stained cells and the intensity of staining was reduced in irradiated Tgfβ1 +/- mammary epithelium. Thus, Tgfβ1 +/- mice are an appropriate model to study whether TGFβ1 depletion affects cell fate decisions.

Radiation-induced apoptosis is absent in Tgfβ1 +/- mammary epithelium.

Mammary gland is a quiescent tissue unless stimulated to proliferate and differentiate by ovarian hormones during puberty or pregnancy. As in other quiescent tissues like liver, the frequency of radiation-induced apoptosis is low compared to lymphatic tissues or actively proliferating epithelium, however the magnitude of the response is similar. Previous studies demonstrated that radiation induces a 2-3 fold increase in apoptosis that peaks at 6 h in mammary gland of nulliparous animals [Meyn, 1996 #3413; Kuperwasser, 2000 #2868]. During studies of mammary development, we observed that the background frequency of apoptosis is related to the stage of estrus cycle and that both proliferation and apoptosis peaks at estrus [Ewan, 2002 #3421]. Thus for radiation studies, the animals were irradiated while in estrus.

The apoptotic index increased 3-fold in mammary glands of C57BL/6129Sv Tgfβ1 +/- mice 6 h following whole body exposure to a dose of 5 Gy (-radiation (Figure 2A). In contrast, mammary epithelial apoptosis was not significantly increased following irradiation of Tgfβ1 +/- mice and was in fact 1/8th the level of irradiated wildtype mice. At estrus, physiological apoptosis in Tgfβ1 +/- mammary epithelium is half that of wildtype mice [Ewan, 2002]. However, apoptosis is not generally depressed in Tgfβ1 +/- mammary epithelium since levels are similar to wildtype at puberty and even increased relative to wildtype during pregnancy. In addition, radiation-induced apoptosis in lymph node and spleen was similar in Tgfβ1 +/- mice and wildtype mice (not shown). These data suggest
that TGFβ1 affects cell fate decisions in response to DNA damage in a cell type-dependent manner.

Absence of TGFβ1 in embryonic tissues results in abrogation of apoptotic and cell cycle inhibition responses to IR.

It is not feasible to test the effect of TGFβ1 gene dosage following IR in adult mice since Tgfβ1 +/- genotype mice commonly die in utero from defective placental vascular development [Dickson, 1995 #2246] or soon after birth from rampant inflammation [Letterio, 1994 #1867]. However, several embryonic tissues undergo either a robust apoptotic response or cell cycle inhibition shortly after radiation [Komarov, 1999 #2662]. Therefore 12.5 d pregnant Tgfβ1 +/- dams were irradiated whole body with a dose of 5 Gy and the embryos collected 6 h later. TUNEL positive cells were counted in epidermis and liver (Figure 2 B,C). Apoptosis increased 2-3 fold in epidermis and liver in wildtype embryos following irradiation. Radiation-induced apoptosis was significantly decreased in Tgfβ1 heterozygote embryos, and was absent in the embryos with a Tgfβ1 null genotype.

In rapidly proliferating tissues, radiation can also induce a transient cell cycle block. Antibodies to PCNA were used to define the frequency of cells in cycle in embryonic tissues following IR (Figure 2 D,E). Proliferation was reduced 2-3 fold following irradiation in liver and epidermis of both wildtype and heterozygote embryos. However cell cycle blockade was absent in irradiated null genotype embryos. Together, these data demonstrate that TGFβ1 abundance influences the cell fate decision of irradiated cells in both adult and embryonic epithelial tissues.

p53 stress response is activated in irradiated mammary gland.

Apoptosis in the irradiated mammary gland is p53 dependent [Meyn, 1996 #3413; Kupferwasser, 2000 #2868]. However, a recent report suggested that mammary gland lacks a classic p53 response as measured by total nuclear immunoreactivity using the CM5 antibody [Kupferwasser, 2000 #2868]. Since this antibody many be insensitive to activation status, in the current study we used a phosphorylation state-specific antibody. Phosphorylation of Ser-18 (Ser-15 in human) is strongly associated with the cellular response to radiation damage (e.g. apoptosis, cell cycle block) and contributes to p53 protein stability [Chao, 2000 #3386]. The phosphorylation of Ser-18 promotes dissociation of p53 from the MDM2 protein [Shieh, 1997; Siliciano, 1997], which otherwise directs p53 proteolysis [Haupt, 1997; Kubbutat, 1997]. Immunoblotting of total mammary gland protein extracts showed that Ser-18P was undetectable in extracts from unirradiated tissue but was induced within 1 h of radiation exposure (Figure 3A). p53 Ser-18P was evident to 24 h following radiation exposure. Total p53 levels, detected using antibodies PAb122 or CM1, which are insensitive to phosphorylation status, were increased at 24 h post-IR, but unchanged during the period from 1-15 h (data not shown).

Since the mammary gland is comprised of many cell types, we used immunofluorescence to determine the cellular localization of p53 bearing Ser-18P (Figure 3B). Mammary epithelium from sham-irradiated mice showed minimal nuclear signal. The immunoreactivity of phospho-specific p53 Ser-18P antibodies was restricted to the nucleus and was punctate in irradiated mammary epithelial nuclei. Epithelial nuclear p53 Ser-18P immunostaining was significantly increased within an hour of radiation exposure
and remained prominent up to 24 h after irradiation, which suggests that the signal for phosphorylation persists in irradiated tissue.

Induction of p53 Ser-18P is decreased in irradiated Tgfε1 +/- mammary gland.

Immunoblots of p53 Ser-18P using total protein extracts from wildtype mice showed a massive induction of p53 phosphorylation 1 h post-IR (Figure 4A). The level then decreased more than 10-fold between 1 and 6 h, but was still elevated compared to sham. In comparison, the p53 Ser-18P levels in irradiated Tgfε1 +/- mice compared to wildtypes were reduced by at least 4-fold at both 1 h and 6 h, suggesting that phosphorylation was persistently compromised. The immunoreactivity of p53 Ser-18P in irradiated Tgfε1 +/- mice was compared to that of wildtype mice (Figure 4B). There was a significant reduction of nuclear p53 Ser-18P immunofluorescence at 1 h post-irradiation in the Tgfε1 heterozygote mammary epithelium compared to wild type mammary gland. The difference between irradiated wildtype and Tgfε1 +/- mice was less pronounced at 6 h post-irradiation because p53 Ser-18P immunoreactivity decreased from 1 h to 6 h in wildtype mice, mirroring the response observed with immunobloting, but was still attenuated in the Tgfε1 +/- mice.

Transient TGFε1 depletion inhibits p53 Ser-18 phosphorylation.

Chronic depletion of TGFε1 in the null heterozygote mice could perturb aspects of cell physiology that modify the p53 radiation response. To test whether TGFε1 directly affected the radiation response, pan-specific TGFε1 neutralizing antibodies were administered i.p. 3 h before irradiation. Our previous studies had demonstrated the efficacy of this timing, route and antibody dose in blocking TGFε1 mediated extracellular matrix remodeling [Ehrhart, 1997 #1879]. Similar to the results seen in the Tgfε1 +/- mice, nuclear localization of p53 Ser-18P determined by immunofluorescence staining was significantly reduced when TGFε1 was transiently depleted prior to irradiation (Figure 5A).

Immunoblots of total mammary gland protein extracts from neutralizing antibody treated mice indicate reduction of p53 Ser-18P after radiation exposure (Figure 5B). p53 Ser-18P was reduced 5-fold in extracts from animals receiving TGFε1 neutralizing antibody at 1 h post-IR compared to those receiving control antibody. At 4 h post-IR, the p53 Ser-18P level was reduced compared to 1 h post-IR and were similar in animals treated with either TGFε1 or non-specific antibodies. Both sham and irradiated mice, regardless of TGFε1 neutralizing antibody treatment exhibited similar levels of total p53, as detected using either CM1 or CM5 antibody (data not shown), indicating that TGFε1 affected p53 post-translational modification rather than absolute levels.

Discussion

The decision of a cell to undergo apoptosis in response to radiation is commonly attributed to the level of DNA damage and certain cellular competencies such as levels of pro- and anti-apoptotic proteins [Evans, 1993 #877]. The contribution of outside-in signaling from extracellular factors is poorly understood. The data reported here reveal a surprising dependence of intracellular cellular response to DNA damage on signaling from TGFε1 originating extracellularly. We found that classic cellular responses to ionizing radiation, i.e. apoptosis and cell cycle block, are significantly reduced as a result of TGFε1
depletion. The frequency of apoptosis in adult mammary epithelium and embryonic tissues was a function of gene dosage, while radiation-induced DNA synthesis block was absent only in Tgfβ1 null embryo tissues. Thus two classic cellular responses to radiation depend on the level of TGFβ1. Our studies suggest that one mechanism by which TGFβ1 affects the cell fate decision in response to damage is through modification of the p53 response. Using Ser-18P as a marker of p53 activation, we determined that either chronic TGFβ1 depletion using the knockout model or transient depletion using TGFβ1 neutralizing antibodies resulted in reduction of IR-induced p53 phosphorylation in the mammary epithelium.

p53 responses are an important mechanism of tumor suppression that is underscored by the high frequency of cancer in Li-Fraumini syndrome, in which p53 malfunctions, and by studies in p53 knockout mice [Donehower, 1995 #2726; Jerry, 2000 #2866]. Further, mutant p53 is commonly found in human tumors and cancer cells [Runnenbaum, 1991 #994; Gerwin, 1992 #2118; Thompson, 1992 #1562]. The p53 stress response pathway is integral to tumor suppression via its action as a primary mediator of growth arrest and apoptotic responses to DNA damage. Activation of p53 in damaged cells may induce cell cycle progression delays expressed through either the production of G1/S or G2/M phase transition blocks that provide time for DNA repair [Kastan, 1991 #2589; Agarwal, 1995]. Alternatively, certain cells undergo p53-mediated apoptosis [Fisher, 1994 #2608]. The factors that influence which response occurs include the type of cell, the level of damage, and cell cycle status [MacCallum, 1996 #2665; Hendry, 1997 #2649].

Our hypothesis that TGFβ1 modulates the type and degree of cellular damage responses in situ suggests a complex interaction between cellular and extracellular sensors of radiation damage. Similarities between p53 and TGFβ1 regulation indicate that they are both equipped to participate in damage control. Both are abundant in latent forms that restrain activity. Rapid activation of the p53 stress response is predominantly post-translational. Covalent p53 protein modifications affect p53 stability and activity, which include phosphorylation, dephosphorylation, acetylation and deacetylation [Appella, 2001 #3463]. These modifications can, in turn, affect p53's binding partners, localization, activity and degradation [Momand, 2000 #3408]. Since the latent complex is abundant in bound and circulating forms, and all cells have TGFβ receptors, biological activity is controlled by extracellular processing that releases TGFβ from LAP. This activity is further modulated by binding to extracellular proteins such as thrombospordin [Murphy-Ullrich, 2000 #3503]. Both p53 and TGFβ1 exhibit redox sensitivity that endows them with the capability of being rapidly activated [Hainaut, 1993 #854; Barcellos-Hoff, 1996 #1871]. Both regulate complex cellular decisions regarding fate in response to insult, both are induced by a variety of damage and specifically ionizing radiation, and both undergo auto-regulatory translational and transcriptional control that moderate later events. These common properties enable both p53 and TGFβ to perform rapidly in response to significant DNA damage. However, intracellular p53 dictates individual cell fate, while extracellular TGFβ orchestrates diverse multicellular fates.

p53 status can affect responses to TGFβ1 and vice versa [Teramoto, 1998 #2625; Raynal, 1994 #2871; Wyllie, 1991 #2636]. The rapid induction of Smad 2/3 immunoreactivity that we observed in irradiated mammary tissue, and the observation that TGFβ1 enhances the stress response following ultraviolet irradiation [Merryman, 1998
suggests that there may be an interaction between the TGF\(\beta\) signaling and damage response pathways. It will be informative to determine whether there is a direct or indirect interaction between components the TGF\(\beta\) signaling pathway (i.e. SMADs) and p53 that drives phosphorylation and thus stabilization of the p53 following IR.

Like IR [Barcellos-Hoff, 1994 #577], other DNA damaging agents induce TGF\(\beta\) activation, including PALA [Glick, 1996 #2117], cisplatin [Ohmori, 1998 #2674] and alkylating agents [Yamada, 2001 #3441]. Studies using keratinocytes from Tgf\(\beta\)l knockout mice also support a functional, rather than accessory, role for TGF\(\beta\) in damage response. PALA induced gene amplification was elevated more than 100-times in Tgf\(\beta\)l null keratinocytes compared to wildtype cells, while exogenous TGF\(\beta\)l to knockout cells reversed instability [Glick, 1996 #2117]. Similar to our observations in irradiated Tgf\(\beta\)l -/- embryos, Tgf\(\beta\)l null keratinocytes lack the typical PALA-induced, p53 dependent G1 arrest.

Altered responsiveness to TGF\(\beta\)l has been broadly implicated in breast cancer [Wakefield, 2000 #2718; Massague, 2000 #2847]. We, and others, have argued that conversion to TGF\(\beta\)l growth resistance during breast cancer progression is a critical juncture in the evolution of malignant behavior [Reiss, 1997 #2121; Stampfer, 1997 #2266; Chen, 2001 #3391; Xie, 2002 #3501]. Indeed, at later stages of carcinogenesis TGF\(\beta\) can stimulate tumor progression [Derynick, 2001]. The correlation we have observed between decreased TGF\(\beta\)l expression and reduced p53 response in irradiated tissues suggests that TGF \(\beta1\) should be considered as a key regulator of homeostasis following IR. Its early loss by whatever means could contribute to genome instability through reduced action of p53.

Acknowledgments
The authors thank Dr. Anita Roberts (NIH) for the generous gift of Tgf\(\beta\)l +/- mice and Drs. Paul Yaswen and Kunxin Luo (LBNL) for helpful discussions. Funding was provided by NASA program Biomedical Research and Countermeasures Ground Research in Radiation Health, grant number T6275-W to MHBH.
Figure Legends

Figure 1: Irradiated Tgfβ1 +/- mammary gland shows reduced levels of active TGFβ1 and Smad 2/3. Tgfβ1 +/- and +/- mice were irradiated whole body to a dose of 5 Gy and killed 1 h later. (A) False color digital micrographs of dual immunofluorescence of antigen-purified TGFβ1 antibody (red) and LAP antibody (green) visualized simultaneously with DAPI stained nuclei (blue). Comparison of mammary gland tissue from irradiated Tgfβ1 +/- and +/- mice indicates that TGFβ1 immunoreactivity (yellow-orange) is greater in Tgfβ1 +/- mice, while Tgfβ1 +/- mice show predominant LAP immunoreactivity (green). The prominent localization of TGFβ1 in the irradiated wildtype mice reflects radiation-induced activation [Ehrhart, 1997 #1879]. Note that all cells stain with LAP. (B) False color digital micrographs of Smad 2/3 antibody (green) localized simultaneously with DAPI stained nuclei (blue). Comparison of mammary gland cryosections from sham (a, c) or irradiated (b, d) Tgfβ1 +/- (a, b) and +/- (c, d) mice indicates that radiation induced Smad2/3 immunoreactivity. The frequency of positive cells and intensity was reduced in irradiated Tgfβ1 +/- mice.

Figure 2: Tgfβ1 gene dosage correlates with reduced apoptosis and cell cycle block in response to radiation. (A) The frequency of apoptotic nuclei detected using TUNEL reaction was determined in the mammary epithelium of Tgfβ1 +/- and +/- mice (mean ± SEM; n= 3 animals). Sham-irradiated (black) and whole-body irradiated (gray) wildtype were significantly different (t-test; P=0.02). The irradiated Tgfβ1 heterozygote mice were not significantly different from sham-irradiated heterozygote mice, but were significantly different from irradiated wild type (t-test; P=0.006). Pregnant NIH/OlaHsd Tgfβ1 +/- dams were irradiated whole body (5 Gy) on day 12.5 of gestation. Embryos irradiated in utero were collected 6 h after irradiation. Apoptotic nuclei were detected using the TUNEL reaction in liver (B) and epidermis (C) from Tgfβ1 +/-, +/- and ~/~ embryos. Apoptosis was decreased in control Tgfβ1 +/- and ~/~ embryos. Significantly increased apoptosis was absent from both liver and epidermis of irradiated Tgfβ1 +/- and ~/~ embryos. The frequency of cycling cells was detected using PCNA antibodies in sham-irradiated (black) and irradiated (gray) embryos. Radiation induced cell cycle block was evidenced by a 2-3 fold reduction of PCNA positive cells following irradiation in utero in the liver (D) and epidermis (E) from Tgfβ3 +/+ and +/- embryos. The frequency of PCNA positive cells was not significantly different between sham and IR embryos of ~/~ genotype, indicating abrogation of radiation-induced cell cycle block.

Figure 3: p53 Ser-18P is induced in irradiated mammary epithelial cells. (A) Antibodies to Ser-18P p53 were used in Western blotting of total tissue protein extracts of irradiated Balb/c mammary tissue. No signal was evident in sham-irradiated tissue. A single band was detected at 1 h and was present up to 24 h following radiation exposure by Western. (B) False color images of immunofluorescence localization of p53 Ser-18 phosphorylation detected using secondary antibodies labeled with Alexa 488 (appears green/turquoise). Nuclei were counterstained with DAPI (blue). Immunofluorescence was absent from controls in which the primary antibody was deleted (a) and discernable in only
a few epithelial cells in sham irradiated tissue (b). Prominent nuclear immunoreactivity was evident throughout the epithelium from 1 h (c), 4 h (d), 15 h (e) and 24 h(g) after radiation exposure.

Figure 4: Radiation-induced p53 Ser-18 P is decreased in irradiated Tgfe31 +/- mammary epithelium. (A) Western blot of tissue extracts from wildtype or heterozygote mice sham and 1-6 h post-IR. p53 Ser-18 phosphorylation was significantly reduced in Tgfe31 +/- mice 1-6 h after IR. (B) p53 Ser-18P was localized as indicated in Figure 3 using cryosections of C57BL/6/129Sv Tgfe31 +/- mice (a, b, c) or Tgfe31 +/- mice (d, e, f) subjected to sham exposure (a, d) or irradiated with 5 Gy, 1 h (b, e) or 6 h (c, f) before sacrifice. Nuclear localization of p53 Ser-18P 1 h post-IR was reduced in Tgfe31 +/- animals compared to wildtype animals. By 6 hr, p53 Ser-18P was decreased in both genotypes.

Figure 5: Radiation-induced p53 Ser-18P is decreased in mice treated with TGFβ1 neutralizing antibodies prior to radiation. (A) p53 Ser-18P was localized in tissue as indicated in Figure 3. Balb/c adult female mice were injected i.p. with an irrelevant IgG antibody as a control (a, b) or TGFβ pan-isoform neutralizing monoclonal antibody (c, d) 3 h before sham exposure (a, c) or irradiation with 5 Gy (b, d). Nuclear localization of p53 Ser-18P was reduced in animals treated with TGFβ neutralizing antibody. (B) Western blot of tissue extracts from animals that received control (C) or TGFβ1 neutralizing (N) antibody prior to irradiation. p53 Ser-18P was significantly reduced 1 h after IR when TGFβ1 neutralizing antibodies were administered before irradiation.