Acoustic Properties of Bubble Plumes

W. Kendall Melville

Supported by the
Chief of Naval Research
Grant N00014-93-1-0061

Final Report

September 2000

University of California, San Diego
Scripps Institution of Oceanography
Acoustic Properties of Bubble Plumes

W. Kendall Melville

University of California, San Diego
Marine Physical Laboratory
Scripps Institution of Oceanography
San Diego, California 92152

Office of Naval Research
Ballston Centre Tower One
800 North Quincy Street
Arlington, VA 22217-5660
Jeffrey Simmen, Code 321OA

Approved for public release; distribution is unlimited.

The scientific goal of this work was to better understand the process of air entrainment by breaking waves and its influence on the sound speed field in the surface layers of the ocean. The program had two principal components:

(a) The development and deployment of an autonomous sound speed profiling buoy, its deployment, and the analysis of the collected data.

(b) The development of models for the evolution of the bubble size distribution.

The initial development of the program focused on participation in the Acoustic Surface Reverberation Experiment (ASREX) in the N. Atlantic in the winter of 1993-94. Other components of the program included the analysis of ambient sound and environmental data collected during SWADE and NOBS, and the completion of doctoral thesis research and publications at MIT.
Acoustic Properties of Bubble Plumes

W. Kendall Melville

Supported by the
Chief of Naval Research
Grant N00014-93-1-0061
for the Period 10/1/92 - 12/31/98

Introduction

The scientific goal of this work was to better understand the process of air entrainment by breaking waves and its influence on the sound speed field in the surface layers of the ocean. The program had two principal components:

(a) The development and deployment of an autonomous sound speed profiling buoy, its deployment, and the analysis of the collected data.

(b) The development of models for the evolution of the bubble size distribution.

The initial development of the program focussed on participation in the Acoustic Surface Reverberation Experiment (ASREX) in the N. Atlantic in the winter of 1993-94. Other components of the program included the analysis of ambient sound and environmental data collected during SWADE and NOBS, and the completion of doctoral thesis research and publications at MIT.
Scientific Accomplishments

The relationship between low frequency sound speed and void fraction provided the basis for a narrow band sound velocimeter initially developed at MIT by Lamarre (1993) for use in a tethered configuration. It was extensively refined by Terrill & Melville (1997) for direct autonomous measurements of the low frequency sound speed fluctuations resulting from the bubbles injected by breaking surface waves during the Acoustic Surface Reverberation Experiment (ASREX). Here, low-frequency refers to frequencies below the resonant frequencies of the majority of the bubbles. For most oceanic bubble populations, this low frequency limit can be considered to be frequencies less than 5kHz because very few bubbles with resonant radii of 650 mm persist in the water column.

For the ASREX experiment, direct sound speed measurements at 3.3kHz, 5kHz, and 10kHz were performed over 1m horizontal path lengths at seven different depths ranging from 0.7m - 7m from a surface following buoy. The buoy was deployed in the North Atlantic over a winter season and exposed to a number of severe winter storms (typical storms had 7 m significant wave heights and average winds of 18 m/s). The 2Hz ping rate provided by the travel time technique allowed the direct observation of the sound speed fluctuations with sufficient temporal resolution to resolve individual bubble injection events.

Sound speed fluctuations due to the entrained air near the surface were typically several hundred meters per second; an order of magnitude greater than had been measured using remote backscatter techniques. Due to the wide range of oceanographic conditions that were sampled, we were able to not only characterize the average and rms sound speed fluctuations with the typical parameters characterizing the sea state (i.e. wind speed and wave height), but also the coupling between the entrained air and the steepness of the overlying surface wave field and dissipation of energy from the wave field was clearly shown.

Other significant results from our efforts in the ASREX experiment (summarized in Terrill & Melville (1997) and Terrill (1998)) were an accurate description of the depth dependence of the bubble field; the correlation of the bubble injection events with the group structure of the surface wave field; the characterization of the probability distribution of the sound speed fluctuations as a lognormal process, and an indication that dispersion may occur at the shallowest measurement depths at frequencies as low as 5kHz.
Related work by Felizardo (1993) showed that the traditional correlation of ambient noise in the ocean with the wind speed was equaled by correlations with certain parameters describing the wave field especially the wave slope and energy dissipation.

Publications Resulting from this Grant

Theses

Journal Articles

Conference Proceedings

ONR/MPL REPORT DISTRIBUTION

Office of Naval Research
Department of the Navy
Ballston Tower One
800 North Quincy Street
Arlington, VA 22217-5660
 Attn: Jeffrey Simmen, Code 321OA

Regional Director
ONR Detachment
San Diego Regional Office
4520 Executive Drive, Suite 300
San Diego, CA 92121-3019

Commanding Officer
Naval Research Laboratory
4555 Overlook Avenue, S.W.
Attn: Code 2627
Washington, D.C. 20375-5320

Defense Technical Information Center
8725 John J. Kingman Road
Suite 0944
Ft. Belvoir, VA 22060-6218