


Dynamic Cracking and Energy
Absorption in Laminates Containing
Through-Thickness Reinforcement
Final Report for 03/01/01–11/30/03
Contract No. DAAD19-01-C0083

Copy #_____________

SC71188.FR

February 2004

Prepared for:

U.S. Army Research Office
ATTN: AMSRL–RP–RI
P.O. Box 12211
Research Triangle Park, NC 27709-2211

Prepared by:

B.N. Cox and S. Narayanaswamy
Rockwell Scientific
1049 Camino Dos Rios
Thousand Oaks CA 91360



 
SC71188 

 
Table of Contents 

Section Page 
 
1. INTRODUCTION ......................................................................................................... 1 
 
2. STATEMENT OF PROBLEM STUDIED ................................................................. 1 
 
3. SUMMARY OF IMPORTANT RESULTS ................................................................ 2 
 
4. LIST OF PUBLICATIONS PREPARED UNDER THIS CONTRACT .................. 7 

 
5. LIST OF PARTICIPATING SCIENTIFIC PERSONNEL....................................... 9 
 
      APPENDIX (Publications marked in Section 4) .........................................................  

 
1. Delamination Dynamics in Through-Thickness Reinforced Laminates  
    with application to DCB Specimen.............................................................................. 
  
2. Stick, Slip and Reverse Slip Characteristics during Dynamic Fiber Pullout .............. 
  
3. Inertial effects in the Pullout Mechanism during Dynamic Loading of a Bridged Crack   

 
      4. Computation of Dynamic Crack Energy Release Rate for Orthotropic Systems.........  
  

5.  The Physics of Dynamic Fiber Push-In Opposed by Friction .................................... 
  

      6. Modern Topics and Challenges in Dynamic Fracture  
 



 
SC71188 

 
1. INTRODUCTION 
 
This is the final report for our contract No. DAAD19-01-C-0083 “Dynamic Cracking and Energy 
Absorption in Laminates Containing Through-Thickness reinforcement” covering the period 
March 1, 2001 through November 30, 2003.  We summarize major basic research results in the 
delamination resistance of through thickness reinforced structures under dynamic loading 
conditions.  Leveraging collaborations at Los Alamos National Lab (with Dr. Irene Beyerlein), at 
E Tech (with Prof. Ares Rosakis) and at Northwestern U (with Prof. Roberta Massabo) will be 
described.  
 
 
2. STATEMENT OF PROBLEM STUDIED 
 
The central theoretical problem studied was the fracture problem of dynamic delamination cracking 
in the presence of large scale bridging (LSB) and the micromechanical problem of how through-
thickness reinforcement responds to dynamic mixed mode crack displacement. The design rules for 
optimization of the structure will be based on insight developed through fundamental understanding 
of dynamic delamination in the presence of through-thickness reinforcement. To achieve this goal, 
research included: 
I. Identifying fracture mechanisms especially those relating to dynamic deformation of through-

thickness reinforcement in the neighbourhood of a delamination crack. 
II. Formulating efficient solutions to the problem of a delamination crack propagating dynamically 

though laminated specimens under conditions of LSB. 
III. Analysing the dynamic constitutive law for through-thickness reinforcement acting as bridging 

entities in the wake of a dynamic delamination crack. 
IV. Mapping the solution domain for the dynamic LSB problem. 
 

 
3. SUMMARY OF IMPORTANT RESULTS 
 
Highlights of our accomplishments are as follows: 
 
(i) Using beam theory dynamic mode I crack propagation in through-thickness reinforced 

laminate structures was studied. In particular, steady state dynamic crack growth for a 
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Double Cantilever Beam (DCB) loaded with a flying wedge was examined [1,3].  This 

analysis provides guidelines for design of experiments to probe the efficacy of bridging 

on improving the dynamic fracture toughness of through thickness reinforced structures. 

 

(ii) Steady state crack propagation characteristics in through thickness reinforced laminate 

structures was mapped out in terms of controllable loading and material parameters 

including the crack velocity and the properties of the through-thickness reinforcement. 

For small crack velocities, the through-thickness reinforcement considerably enhances 

the delamination resistance of the structure.  At higher velocities, the kinetic energy term 

dominates the overall energetics and the relative effect of the reinforcement on increasing 

the delamination resistance is insignificant. The model suggests a simple fracture test for 

estimating the properties of the through-thickness reinforcement under dynamic loading 

conditions.  

 

(iii) The character of the displacement profile for mode I cracking behavior of a symmetric 

laminate containing a large bridging zone shows features similar to those in the 

analogous static loading problem [5], including the possibility of oscillations extending 

far into the crack wake.  However, the details of the functional form of the profile, 

including the existence of oscillations, depend on the crack velocity. 

 

(iv) Even for moderately large crack velocities, kinetic energy dominates the fracture process 

and the relative effect of both the bridging contribution of the reinforcement and the 

intrinsic fracture toughness of the laminate are small.  For small to moderate crack 

velocities, the steady state cracking characteristics are very strongly influenced by the 

bridging mechanism, which significantly enhances the delamination resistance of the 

structure. This is reflected both in the equilibrium force required to drive the wedge as 

well as in the wedge-crack tip separation distance.  This regime is of the most practical 

significance, since low crack velocities will be favored for other loading configurations, 

such as normal impact on the laminate, to avoid the penalty of imparting high kinetic 

energy to the material.  In crack propagation solutions where the crack tip is not 
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constrained to travel at a given velocity, here the velocity of the wedge, it will seek an 

energetically favourable velocity.  Through-thickness reinforcement might thus be 

regarded as removing easy, low velocity fracture paths under certain dynamic conditions. 

 
(v) Inertial effects in the mechanism of fibre pullout (or push-in) in composites was 

examined, with emphasis on how the rate of propagation of stress waves along the fibre, 

and thence the pullout dynamics, are governed by friction and the propagation of 

companion waves excited in the matrix [2,4]. With a simple shear lag model, the effect of 

uniform frictional coupling between the fibre and the matrix is accounted for in a 

straightforward way. Analytical solutions are derived when the pullout load increases 

linearly in time.   

 

(vi)  We find in the pullout problem that the process zone of activated material is generally 

divided into two or three domains along the axis of the fibre.  Within these domains, slip 

in the sense implied by the load, slip in the opposite sense (reverse slip), and stick may be 

observed.  The attainable combinations define three regimes of behavior, which are 

realized for different material parameter values.  The elastodynamic problem was also 

solved more accurately using finite element methods, with friction represented by an 

interfacial cohesive zone.  The predictions of the shear lag theory are broadly confirmed.  

 

(vii) Numerical results encourage the use of the shear lag approximation in dynamic pullout 

problems, where quantities that have been averaged in the direction normal to the fibre 

axis are of interest.  The shear lag approximation appears to be at least as viable for 

dynamic problems as it has proven for static problems.   Good agreement in the load-

displacement relation, for example, is found.  Agreement in the predicted length of the 

process zone is obtained as long as the process zone length is 2 – 4 times the fibre radius.  

Since the evolution of domains of slip, stick, and reverse slip can become very 

complicated for general loading histories, an analytical approach could be particularly 

valuable. 
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 (viii) With the aid of the dynamic pullout law derived above, simple criteria were determined 

for significant inertial effects in representative crack propagation problems. Also fast 

numerical solutions were formulated for general loading cases and hence have a scheme 

to compute the bridging law for fairly general conditions [12].  This will be required to 

solve large-scale bridging, dynamic crack problems to self-consistency (bridging 

tractions unknown a priori).  The history dependent bridging law thus computed will 

form the basic ingredient in the computation of the structural response of the composite 

under dynamic loading conditions. 

 

(ix) The dynamic crack energy release rate as a function of the local crack tip velocity has 

been computed for a material possessing orthotropic symmetry under general mixed 

mode loading conditions. The dynamic energy release rate varies as as 

, and where v is the crack speed and v

])[( 1−− vvO r

rvv → r is the Rayleigh wave speed.  We find that 

the variation in the dynamic crack energy relase rate for orthotropic materials can be 

rationalized in terms of the orthotropy parameters λ and ρ, just as in the static case.  This 

computation of the dynamic energy release rate is necessary to calculate the energetics of 

crack growth for standard engineering specimens [13]. 

 

(x) An approximate formula for the static weight function that describes the crack tip stress 

intensity factor due to a pair of point loads on the fracture surface of an orthotropic 

delamination specimen has been postulated and validated numerically [7].  This weight 

function enables accurate solution of mode I delamination problems in the presence of 

large scale bridging over all crack length regimes, since it avoids the errors of beam 

theory in describing the singular crack tip fields.  However, comparison of results for 

large scale bridging problems with a Dugdale (uniform traction) bridging law shows that 

a beam theory model with appropriate crack tip corrections (available in the literature) 

may be acceptably accurate.  The weight functions will be used to formulate integral 

equation solutions,  which will be to ensure that accurate results are always available at 

least as a reference in future work.  Extension to mode II loading and dynamic weight 

functions is under way. 
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(xi).  Upon passing of the crack tip, a debond crack propagates along the length of the fibre 

away from the fracture plane.  Propagation of the debond crack is governed by the 

fracture energy associated with the separation of the matrix and the fibre at the debond 

crack tip and the work done against friction in displacing the debonded fibre along its 

axis.  In many composites, the debond energy is small and pullout is dominated by 

friction over a wide range of pullout displacements.  However, to deal with cases where 

this assumption is not true, we developed a theoretical framework that incorporates the 

debond energy in the pullout model. Although, simple extensions of shear lag models are 

available to deal with debond energy contribution  for the quasistatic loading case, the 

corresponding formalism for the dynamic case appears much more complicated [15]. 

 

(xii) A subcontract was issued to Etech, Inc. for experiments to gain understanding of the 

mechanics of fibre push-in (analogous to pullout) under dynamic loading [14].  The first 

experiments have already been completed (Owen and Rosakis) and the key strain field 

and velocity data successfully recorded.  Dynamic photoelasticity was used to reveal the 

nature of the stress fields associated with the dynamic sliding process. The role of impact 

speed (loading rate) was investigated at a constant static pre-load. At a short distance 

behind the propagating front, kinks in the fringes form in angled bands. These bands 

intersect the top and bottom interfaces and reveal the region of sliding propagating along 

the interface. From a sequence of images, the speed of propagation of sliding was 

measured and from analysis of the fringes, estimates of the loading rate and the stresses 

along the interface were made.  A numerical FEM cohesive model has been proposed to 

understand the experimentally observed deformation profiles [12].   

 

(xiii) The elastic interaction of multiple delaminations in laminated structures subject to out of 

plane loading has been investigated [16].  The study has shown that there are significant 

short and long range interaction effects between cracks in a structure with multiple 

delaminations.  These interaction effects can be shielding or amplification of the energy 

release rate of a crack and strongly depend on geometry of the system.  Additional 

 5 



 
SC71188 

effects, such as friction in the regions of the crack face contact and the effect of cohesive 

and bridging mecahnis acting along the cracks are under investigation.   

 

(xiv) As part of our objective of fostering multi-disciplinary interactions with the rest of the 

community, we organized a focused workshop on the fundamentals of dynamic cracking, 

as a joint effort with Dr. Huajian Gao of the Max Planck Institute, Germany, Professor 

Dietmar Gross of Darmstadt University, Germany, and Professor Daniel Rittel of 

Technion University, Israel.  The workshop was held from July 14 – 18, 2003 at the Max 

Planck Institute’s Ringberg Castle, in Bavaria.  Our objective in the workshop was to 

entertain vigorous discussions of recent, significant advances in our understanding of the 

fundamentals of dynamic fracture at various scales; and to look for better definition of 

future research objectives.  We reviewed recent, significant advances in our 

understanding and to discuss future research objectives [17].  We feel that this field is 

very ripe for the establishment of new directions to take advantage of greatly increased 

fundamental knowledge and the workshop was an excellent vehicle for identifying such 

directions.   
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ABSTRACT 
 

Bridged crack models using beam theory formulations have proved to be effective in modeling 

quasi-static delamination crack growth under large scale bridging conditions in through-

thickness reinforced structures.  In this paper, beam theory is used to study dynamic mode I 

crack propagation in through-thickness reinforced laminate structures. In particular, steady state 

dynamic crack growth for a Double Cantilever Beam (DCB) loaded with a flying wedge is 

examined. The steady state crack propagation characteristics are mapped out in terms of 

controllable loading and material parameters including the crack velocity and the properties of 

the through-thickness reinforcement. For small crack velocities, the through-thickness 

reinforcement considerably enhances the delamination resistance of the structure.  At higher 

velocities, the kinetic energy term dominates the overall energetics and the relative effect of the 

reinforcement on increasing the delamination resistance is insignificant. The model suggests a 

simple fracture test for estimating the properties of the through-thickness reinforcement under 

dynamic loading conditions.  

 

KEYWORDS 

Dynamic, Delamination, Crack, Bridging, DCB, Stitching, Energy Release Rate 
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1. Introduction 
 

Through-thickness reinforcement of various kinds, including stitched or woven continuous fiber 

tows and metallic or fibrous short rods, has been developed to address the delamination problem 

in structural composite laminates.  Substantial experimental evidence shows that through-

thickness reinforcement dramatically alters the delamination characteristics for the better under 

both static and dynamic loading conditions (see [1] for review). For static loading, a fundamental 

theory based on observations of essential mechanisms is now mostly in place [2-18].  The 

mechanics of crack bridging by the through-thickness tows has been mapped out, with governing 

length scales and material parameters identified [4,10,7,14,16-18]. With the correct fracture 

mechanics, a practical engineering approach to deducing the constitutive relations for through-

thickness reinforcement from engineering tests has been demonstrated, which is a major step 

towards certifiable test procedures and design standards [13].   

 

Interesting large-scale bridging effects arise in through-thickness reinforced delamination cracks 

under static mixed mode loading conditions [8,11].  For instance, in a mixed mode bending 

specimen, which can be thought of as a combination of double cantilever beam (DCB) and end 

notched flexure (ENF) specimens, the crack commences growth in mixed mode, but may after 

some growth reach a configuration for which the mode I energy release rate vanishes. When this 

happens, subsequent growth must be in pure mode II.  Crack profile calculations and 

experimental observations show that fracture surface contact occurs both at the crack tip and 

possibly at other points along the crack wake.  Models of the fracture problem in which 

interpenetration of the fracture surfaces are not barred (a modelling fiction) predict a smoothly 

oscillating crack opening profile.  The oscillations can be regarded as analogous to those found 

in the deflection of a point-loaded beam on an elastic foundation, which is a classical engineering 

problem (e.g., [18]). The characteristic length of the oscillations depends on the traction relation 

and can be smaller than or comparable to the bridged zone length in cases of practical interest 

[8,11].  

 

Since large bridging zones have such a strong influence on the character of delamination in static 

cases, the question naturally arises of what their effect may be in dynamic delamination, with 
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particular attention to demarcating the classes of oscillating and non-oscillating solutions that 

may exist and identifying regimes where bridging effects are weak and strong in a given 

material.  The influence of cohesive/bridging mechanisms on the dynamic fracture process has 

been investigated previously (see [20-28] among the others). The model in [28], in particular, 

analyses dynamic crack propagation in a composite material characterised by two distinct 

toughening mechanisms, similar to the composite laminates treated in this paper. The model, 

however, refers to an infinite medium and to steady-state propagation of the crack (leading to 

small scale bridging).  Here mode I dynamic delamination in the presence of large bridging 

zones, e.g., of through-thickness reinforcement, is studied by means of beam theory. 

 

Dynamic delamination without through-thickness reinforcement has already been studied quite 

extensively using beam theory (see, e.g., [29-34] among the earlier works).  Despite the 

simplifications imposed on the stress field, comparison with finite element calculations shows 

that the dominant dynamic features are still retained, while the problem remains tractable by 

analytical methods [34]. Beam models that are successful in at least some domain have been 

formulated with the two arms of the DCB specimen represented as either Euler-Bernoulli or 

Timoshenko beams with different boundary conditions at the crack tip or ahead of it [32-34].  

Kanninen's model [34] introduces an elastic foundation of shear and rotational springs that 

connect the two arms of the specimen ahead of the crack tip.  The crack grows by continuous 

removal of the springs from the notch tip.  While this device presages the fields of crack bridging 

to be studied here, Kanninen’s work is strictly limited to the regime where the total toughness or 

work of fracture of the system is a material constant, independent of crack length. More complex 

crack characteristics will be demonstrated here, under large scale bridging conditions. 

 

The paper examines dynamic delamination for through-thickness reinforced structures and 

identifies crack propagation characteristics for the mode I case. The bridging action of the 

through-thickness reinforcement is represented by a distribution of tractions acting along the 

fracture surfaces opposing their relative displacement. The tractions are coupled to the crack 

displacement by a bridging relation, which embodies the mechanism of load transfer from the 

reinforcement to the surrounding material. With the results of the analysis, the mechanics of 

crack growth for a through-thickness reinforced DCB specimen loaded by a flying wedge is 
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examined.  This specimen offers a relatively simple experiment for studying the role of through-

thickness reinforcement on dynamic crack propagation. A steady state situation can exist, i.e., 

one in which the configuration of the structure and the traction distribution are time invariant in a 

reference frame translating with the crack tip, when the crack tip is moving at a constant speed. 

(For a classical DCB specimen, with the load always applied at a fixed location, a steady state 

condition is not readily attained and unsteady crack growth would be more representative.  But 

for a DCB loaded by a flying wedge, where the point of contact moves along the specimen, the 

steady state is likely to be found more easily in experiments.)  The existence of steady state 

condition greatly simplifies the analysis. Non-steady state crack growth, including transient 

response to a newly applied load will be studied elsewhere. 

 

2.0 Beam Theories of a Double Cantilever Beam 

 

From Figure 1a, the equations of motion for the beam element in the crack wake of a DCB 

specimen are: 

 

2

2
),(

t
whtwp

x
Q

∂
∂=−

∂
∂ ρ  ,    (1a) 

 

2

2

t
IQ

x
M

∂
∂=−

∂
∂ φρ  ,   (1b) 

 

where w(x,t) is the transverse displacement of the neutral plane, which is also half the crack 

opening displacement, φ(x,t) is the clockwise rotation of the cross-section, t is time, Q is the 

shear force per unit width, M is the bending moment per unit width, 2h is the total thickness of 

the DCB specimen, ρ is the material density, I (= h3/12) is the moment of inertia of the beam 

element per unit width, and p(w,t) is the bridging traction corresponding to the opening mode. 

Since attention is focused on the mode I case, the bridging traction p can be assumed to depend 

only on time and the opening displacement w.  
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2.1 Timoshenko Beam 

 

For a Timoshenko beam, the constitutive equations are: 
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where the dimensionless shear coefficient κ = 5/6 for a rectangular cross-section, G is the shear 

modulus and E is Young’s modulus.  

 

The equations of motion together with the constitutive equations yield: 
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Under steady state cracking, f(x,t) = f(X) where X = x – v t  and v is the (constant) velocity of the 

crack tip. The above equations then reduce to: 
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where ρ/Ec2
l = . 

 

2.2 Euler-Bernoulli Beam 

 

For an Euler-Bernoulli beam, the shear deformation is considered to be negligible ( 0→γ ) and 

hence xwxw ∂−∂≈∂∂−= //γφ .  In addition, the rotational inertia is considered to be small and 

ignored. The only independent field quantity is the opening displacement w.  The constitutive 

equation (2b) becomes:  

 

2

2
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∂−=  ,   (5) 

 

and equation (1b) reduces to: 
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∂  .   (6) 

 

Combining Eqs. (1a), (5) and (6) yields: 
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Under steady state cracking 
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where X = x – v t and v is the (constant) velocity of the crack tip. 
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2.3 Displacement Characteristics for a Linear Bridging Relation 

 

Consider a rate independent linear bridging relation:  

 

wp)X,w(p 0 β+=  .   (9a) 

 

A softening linear relation (p0 > 0, β < 0) is known to be realistic for large displacements for 

short rods or z-pins under mode I static loading [35].  An initial hardening response, during 

which the rod is progressively debonded from the laminate, is confined to relatively small 

displacements.  Softening occurs after the whole rod has debonded, when the embedded length 

of the rod and therefore frictional resistance decrease to zero as the rod is pulled out of the 

laminate.  In contrast, mode I tests on stitched laminates indicate an approximately linear 

hardening relation (p0 > 0, β > 0), which peaks when the stitch breaks and then falls relatively 

rapidly to zero [36].  The difference from the case of rod pullout arises because of the mechanics 

of stitch deformation – larger displacements arise in the hardening phase for a stitch, because the 

stitch can be drawn down into the composite from the outer surface of the laminate before it 

breaks.  In steady state dynamic loading the bridging tractions could also depend on the crack 

velocity and the crack displacement gradient. This dependence is under investigation [37] and is 

not considered here.  The dimensionless quantity 

 

 EhS /12β=    (9b) 

 

is a convenient indicator of the stiffness of the bridging relation. For a hardening bridging 

relation S > 0 and for softening S < 0. 

 

In the results that follow, the length variables are non-dimensionalized by h, the laminate half 

thickness ( Whw ≡ and ξhX ≡ ).  For such a linear bridging relation the opening displacement 

in Equation 9 obeys: 
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The clockwise rotation φ  for the Timoshenko beam obeys: 
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The coefficients V, B, and P0 in Equation 10a are: 

 

For the Timoshenko beam: 
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For the Euler-Bernoulli (E-B) beam: 

222 12 lc/vV = ; 
E

hSB β122 == ; 
E

pP 02
0

12
= ;            (12) 

Table 1 shows representative values of these dimensionless groups and the material parameters 

they contain for stitched carbon epoxy laminates with unidirectional in-plane reinforcement or 

quasi-isotropic lay-ups. 
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Table 1.  Typical parameters for stitched carbon/epoxy composites.  

 

Parameter Typical values 

Longitudinal wave speed of laminate (cl)  

Elastic stiffness of laminate (E)  

Shear stiffness of laminate (G)  

Thickness of laminate (h)  

Through-thickness bridging stiffness (β) 

Through-thickness bridging parameter (p0) 

Critical crack opening displacement (wc) 

Inter-laminar fracture energy  (G0) 

2000 – 8000 m/sec 

50 – 150 Gpa 

5 – 10 Gpa 

2 – 15 mm (a) 

50 – 1000 MPa/mm  (a) 

0 – 20 MPa 

0.02 – 1.5 mm  (a,b) 

0.1 – 1.0 kJ / m2 

Wc 

)(/12 00 hEGG =  

222
0b 2 cc WBWPG +=∆  

κG/E 

S = 12β h/E 

0.01 – 0.1  (b) 

10−7 – 10−5 

0.0 – 10−3 

0.03 – 0. 

0.0025 – 1.2   

Euler-Bernoulli Beam                     EhB β12=  

                                        EpP 00 12=  

0.05 – 0.6 
 
0.0 – 0.1 

Timoshenko Beam          [ ]RvEhB ,12 ηβ ⋅=  

                                 [ ]R,vEpP η⋅= 00 12  

0.05 – 0.6 (c) 
 
0.0 – 0.1 (c) 

 (a) For a fixed area fraction of stitching, the critical displacement and the laminate thickness and the 
reciprocal of the stiffness parameter tend to be approximately proportional. 

 (b)  Critical displacements at the high end of the stated range are expected when the surface segments of a 
stitch are pulled down into the laminate (toward the fracture plane) by tension in the through-thickness 
segment [14]. 

 (c)  For a Timoshenko beam, the values of B and P0 are functions of V  (following Eq. (11), with the short 
notation η introduced here). The ranges shown in the table are those for V = 0, for which the expressions 
for B and P0 reduce to those for the Euler-Bernoulli beam.  For stitched laminates, β > 0 and therefore B is 
real. 

 

The general solution to equation 10 is: 

ξξ

ξξ
ξ
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In the limit 0v → , this reduces to the result for the static case obtained by Massabò and Cox 

[8].  Whether B and V are real or pure imaginary and which is larger in magnitude determine the 

qualitative nature of the displacement profile, especially the possibility of oscillations.  The 

possible cases are as follows.  The functions 
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and the two real parameters n1 and n2, which depend on V2 and B2, will appear in conditions for 

the solutions for the Timoshenko beam.  

 

• Case 1: B2 > 0, V2 < 0 and V4 > 4B2  => hyperbolic functions 

 

)n(SinhK)n(CoshK)n(SinhK)n(CoshK
B
P

)(W ξξξξξ 242312112

2
0 ++++−= , (15a) 

 

24 242
1 /BVVn −+=  and 24 242

2 /BVVn −−=   . (15b) 

 

For the Timoshenko beam, the conditions for this case reduce to 

 

02

2
>









−

lcE
GS νκ     and    21 ff >     (15c) 

 

The second of these conditions cannot be satisfied if S< 0 and therefore this case is obtained 

only in that part of the domain {S > 0, κG/E > v2/cL
2} in which f1 > f2. 

 

For the E-B beam, the conditions for Case 1 are never satisfied. 

 

• Case 2: B2 > 0, V2 > 0 and V4 > 4B2  => trigonometric functions 



 DYNAMIC DELAMINATION  

12/01/02 11 

 

)n(SinK)n(CosK)n(SinK)n(CosK
B
P

)(W 242312112

2
0 ξξξξξ ++++−= , (16a) 

 

24 242
1 /BVVn −+=  and 24 242

2 /BVVn −−=   . (16b) 

 

For the Timoshenko beam, the conditions for this case reduce to 

 

02

2
>











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−

lcE
GS νκ    and  21 ff >−     (16c) 

 

When S < 0, the second of these conditions is satisfied for all v/cL > κG/E.   

 

For the E-B beam, the conditions for this case reduce to 

 

 4

4

360
lc

vS ≤≤     (16d) 

 

• Case 3: B2 < 0 => sums of trigonometric and hyperbolic functions 

 

)n(SinhK)n(CoshK)n(SinK)n(CosK
B
P)(W ξξξξξ 242312112

2
0 ++++−= , (17a) 

 

24 242
1 /BVVn −+=  and 24 242

2 /BVVn −+−=   . (17b) 

 

For the Timoshenko beam, the conditions for this case reduce to 
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together with f1
2 > f22.  The latter condition is easily seen to be obeyed on the boundaries of 

the two domains {S < 0, κG/E > v2/cL
2} and {S > 0, κG/E < v2/cL

2}.  Furthermore, neither 

∂(f1
2 - f2

2)/∂S nor ∂(f1
2 - f2

2)/∂v possesses zeroes within either domain.  Therefore, the 

condition f1
2 > f2

2 must always hold in the domains within which Eq. (17c) is satisfied and 

need not be stated as a separate condition. 

 

For the E-B beam, the conditions for this case reduce to 

 

  0<S  .   (17d) 

 

Case 4: B2 > 0 and V4 < 4B2 ⇒ products of trigonometric and hyperbolic functions  

     

)n(Sin)n(SinhK)n(Cos)n(SinhK

)n(Sin)n(CoshK)n(Cos)n(CoshK
B
P)(W

ξξξξ

ξξξξξ

214213

2122112

2
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++−= ,  (18a) 

 

22 2
1 /VBn −=    and   22 2

2 /VBn +=  . (18b) 

 

For the Timoshenko beam, the conditions for this case reduce to 
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The second of these conditions can only be satisfied in the domain {S > 0, κG/E > v2/cL
2}, 

since the function f1
2 – f22 is positive on the boundaries of the domain {S < 0, κG/E < v2/cL

2} 

and neither ∂(f1
2 - f2

2)/∂S nor ∂(f1
2 - f2

2)/∂v possesses zeroes within this domain. 

 

For the E-B beam, the conditions for this case reduce to 
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   4

4

36
lc

vS ≥    .         (18d) 

 

The possible forms of the solution for the crack profile are summarized for the Timoshenko and 

Euler-Bernoulli beams in Figs. 2.a and 2.b where the boundaries of the different domains are 

controlled by the quantity κG/E. The curved boundary (drawn schematically) surrounding the 

domain labeled “TH” in Fig. 2a corresponds to the condition f1
2 = f22, i.e., 

 

( )
E

G
cv

cvEGEGcvEG
S

l

ll κκκκ 2

22

2222 12
1

22
−

−±−
=   (19) 

For negligible shear deformations (κG/E → ∞), Eq. (18c), which defines the domain TH, 

becomes 4422 )1/(36 ll cvcvS −≥  and the map of Fig. 2a becomes similar to that of Fig. 2b for 

an Euler-Bernoulli beam (where the domain TH is defined by Eq. (18d), 4436 lcvS ≥ ). The term 

)1( 22
lcv− in the modified Eq. (18c) accounts for the rotational inertia effects. 

 

Oscillations in the profile are possible when the solution contains trigonometric functions 

(domains T, TH and T+H in Figure 2).  This is always the case for the Euler-Bernoulli beam.  

For the Timoshenko beam, the conditions for the occurrence of oscillations depend on the crack 

velocity, the anisotropy of the beam, and the stiffness of the bridging mechanism, represented by 

S.  For typical material parameters, transitions from oscillating to non-oscillating solutions 

(region H in Fig. 2a) could be observed at attainable velocities.  For example, for stitched 

polymer composite laminates, S > 0 and the magnitude of S (0.0025 – 1.2) is typically less than 

4(12κG/E)2 (0.52 - 23), where κG/E is the anisotropy parameter (Table 1).  Therefore, 

parameters for a Timoshenko beam will lie near the boundary of region H in Fig. 2a for 

velocities v/cl < (κG/E)1/2 ≈ 0.2 – 0.4 and the boundary may well be crossed as the velocity 

changes.  

 

While oscillations appear to be the common case in the maps of Fig. 2, other conditions can 

intervene, especially a boundary condition corresponding to the rupture of the through-thickness 
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reinforcement.  Such rupture (failure of the bridging mechanism) will limit the length of the 

bridged zone, perhaps to a length that is less than the wavelength of the oscillations. 

 

Oscillations would imply the presence of regions of contact along the delamination surfaces in a 

simple specimen.  Oscillations following the functional forms derived here (with negative 

displacements) could be observed in a specimen in which the crack runs along a compliant layer 

of thickness small compared to the specimen thickness, h, but large compared to the amplitude of 

the crack displacement.  In the absence of a compliant layer, strong resistance to material 

interpenetration must modify the profile, but the possibility of multiple humps of positive 

opening displacement is suggested. 

 

In the limit case 0v → , the behavior of the Timoshenko beam reduces to that already derived 

for the static problem [8]. 

 

 

3. Wedge-Loaded Double Cantilever Beam 

 

The arbitrary constants K1, K2, K3, and K4 that appear in the displacement profile function, Eq. 

13, are defined in any problem through boundary and continuity conditions.  When the constants 

are known, all other characteristics of the fracture problem can be determined, such as the critical 

load for crack propagation, the length of the bridging zone when the bridging ligaments have 

finite strength, and various contributions to the energy of fracture. 

 

Here the problem of a double cantilever beam (DCB) specimen loaded dynamically by a flying 

wedge is studied.  Solutions are sought where the wedge and the crack translate together at 

constant velocity, v, with a time-invariant crack configuration (steady state configuration).  This 

special case offers considerable insight into the dynamic fracture process and also offers a 

relatively simple experimental approach for future study (Fig. 1b).  The beam arms are modeled 

as Euler Bernoulli beams, so that both shear deformation and rotational inertia are ignored. 

Therefore, the constants V2, B2, and P0
2 referred to hereafter are those presented in Eq. 12, so that 

V, B2 = S, and P0 are real and have simple interpretations as the normalized velocity, bridging 
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stiffness, and bridging traction at zero displacement, respectively. Without loss of generality, V > 

0, while P0 > 0 for physical reasons, and the sign of B2 = S may be positive or negative.  The 

beam arms are assumed to be built-in at the crack tip so that the influence of the elasticity of the 

material ahead of the crack tip is neglected. This assumption is expected not to modify the 

characteristics of fracture provided the beam arms are long enough. The beams are assumed to be 

axially inextensible. 

 

In Fig. 1b, 2α is the wedge angle, l is the distance between the wedge and the crack tip and a0 is 

the length of the bridging zone. In non-dimensional form, Lhl ≡ , and 00 Aha ≡ .  The wedge 

angle is assumed to be small and hence small deflection beam theory should be sufficient to 

model the problem.  Due to symmetry, only the top half of the DCB specimen needs to be 

considered. The bridging constituent is assumed to possess the linear bridging relationship of 

Eqn. 9. 

 

3.1 Deflection Profile 

 

The deflection profile of the cantilever beam due to the wedge loading is governed by Eq. 10a 

for the bridged portion of the crack. For the unbridged portion, the deflection profile ( uu Whw ≡ ) 

is obtained by setting B = P0 = 0 in Eq.10a.  Therefore: 
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The relevant boundary conditions are: 

 

0)0( ==ξW       ,   (21a) 

0)0(' ==ξW       ,   (21b) 
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αξ −=−= )(' LWu       ,   (21c) 

)L(W
2

)L(W '''
u

''
u −=−=−= ξµξ     ,   (21d) 

 

where µ  is the coefficient of friction between the wedge and the beam arm and the derivative is 

with respect to ξ .  Equations 21a and 21b express the boundary conditions associated with the 

crack tip, and equations 21c and 21d express the boundary conditions at the contact point 

between the wedge and the DCB specimen. Using a simplified approach, the net effect of friction 

between the wedge and the beam has been represented by a force parallel to the wedge surface 

acting at the contact point and linked through µ  to the reaction force of the wedge on the beam. 

The frictional force gives rise to a bending moment at the contact point which is zero in the 

absence of friction ( 0=µ ). 

 

The deflection profiles should also satisfy the continuity conditions at the end of the bridging 

zone ( 0A−=ξ ).  The continuity conditions are: 

 

)()( 00 AWAW u −==−= ξξ ,  )()( 0
'

0
' AWAW u −==−= ξξ ,     

)()( 0
''

0
'' AWAW u −==−= ξξ , )()( 0

'''
0

''' AWAW u −==−= ξξ .        (22) 

 

The governing equation (20), which has the general solution Eq. (13) in the domain –A0 < ξ ≤ 0, 

together with the boundary conditions (21) and the continuity conditions (22) determine the 

deflection profile of the beam.  The problem is closed by setting three further conditions to 

determine A0, L, and the equilibrium value, F, of the force per unit width acting on the wedge.   

 

3.2 Determination of A0, L and F 

 

At the end of the bridging zone, the crack displacement must be the critical crack opening 

displacement, cc Whw ≡ , for failure of the bridging ligament: 
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 cWAW =−= )( 0ξ  .   (23) 

 

The existence of the critical displacement and its attainment within the domain –L < ξ < 0 are 

necessary conditions for a steady state solution to exist.  

 

The curvature at the crack tip (or the bending moment per unit width M) is related to the energy 

released at the crack tip by application of the dynamic J integral  (see [38]): 
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For crack propagation 0Tip GG = , where 0G  is the critical inter-laminar energy release rate (or 

the intrinsic toughness of the laminate without through-thickness reinforcement) and thus 

 

 
hE
G

G)(W '' 0
0

12
0 ===ξ    ,   (25) 

 

where )hE(/G12G 00 =  is the normalised interlaminar fracture energy.  Finally, from the 

requirement of force balance for the wedge, the normalised force )Eh(/F12F = , required for 

driving the wedge is: 

 

 )L(W)(
hE
FF '''

u −=+== ξαµ212   .   (26) 

 

Equations 23, 25 and 26 determine A0, L and F. 
 

3.3 Crack Energetics 

 

The energy release rate, TotalG  determined through the total energy balance is:  



 DYNAMIC DELAMINATION  

12/01/02 18 

 

 







∂
∂

−
∂

∂
−

∂
∂

−
∂

∂
=

a
U

a
U

a
U

a
U

G dksext
Total   ,  (27) 

 

where Uext is the work done by the applied load, Us is the strain energy, Uk is the kinetic energy, 

Ud is the dissipated energy and a is the crack length. The energy terms Uext, Us , Uk and Ud are 

defined per unit width of the beam. For steady state crack extension, these quantities are: 
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where  m  is the mass in the wake behind the wedge, vn is velocity normal to the beam axis, F is 

the equilibrium force required to drive the wedge at the constant velocity v, and Q is the 

transverse shear force in the beam.  Equation (28b) accounts for the strain energy released by the 

material as it slides up the wedge beyond the contact point. This term is not zero in the presence 

of friction because of the discontinuity in the bending moment and the consequent discontinuity 

in the strain energy density at the contact point. In the absence of friction, the strain energy 

density in the unbridged region is a quadratic function of ξ which vanishes at ξ = -L, since Mξ=-L 

= 0 and the shear deformations are neglected, and therefore aU s ∂∂  is zero.  The equality 

between Q and F in Eq. (28d) follows by balancing forces on the wedge.   

 

The available energy for crack extension is therefore,  
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Here the second term, which introduces a non-linear dependence on F, results from the 

consideration of the energy associated with relief of the bending moment at the load point, as 

described in the previous paragraph.  Since its magnitude relative to the first term varies as F/Eh, 

it is always small, but it is necessary to obtain complete consistency.  In the absence of crack 

bridging, 0TipTotal GGG == . However, with crack bridging, 0GGG 0Totalb ≠−=∆ . The 

energy difference, ∆Gb, is the extra work done in fracturing the bridging ligaments. For the 

steady state configuration and bridging tractions that do not depend explicitly on time (or rate), 

application of the dynamic J-integral yields: 

 

∫+=∆+=
cw

bTotal dwwpGGGG
0

00 )(2  ,  (30) 

 

where )w(p  is the bridging relation.  The result of Eq. (30) holds only if unloading does not 

occur in the bridging mechanism, i.e., if, for an increasing or hardening bridging relation (∂p/∂w 

> 0), w is a monotonically increasing function of -ξ.  This restriction can come into play in cases 

of interest. 

 

Equations 29 and 30 imply that the equilibrium wedge force that sustains the steady state 

configuration is: 
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In terms of the normalized parameters of the linear relation (Eq. (12)) the force is: 
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which in the case of no friction, µ = 0, becomes: 

 

( )b0
22 GGVF ∆++= α   ,  (31c) 

 

where 222
0b 2 cc WBWPG +=∆ for the linear bridging relation examined here.  As expected, 

equations (31a,b,c) show that the force required for driving the wedge at a constant velocity does 

not depend on the details of the bridging traction relation but only on the area beneath the curve 

∆Gb. Moreover, the force F increases as the square of the velocity, reflecting the contribution of 

the kinetic energy of the beam arms. 

 

The equilibrium force F can alternatively be determined by considering force equilibrium on the 

wedge, but this requires knowledge of the shear force at ξ = -L and therefore of the displacement 

profile, W (equation 26).  The availability of the simpler energy-based result of Eq. (31) is a 

characteristic of the DCB geometry, the loading configuration (see also [39]), and the fact that 

the bridging tractions have been assumed to depend on the opening displacement only.  If the 

bridging traction relation is explicitly time or rate dependent, as it will be in general dynamic 

cases (e.g., [37]), then Eq. (31) is inapplicable and the profile must be computed to solve for any 

aspect of the fracture process.  The only dependence of the force, F, upon the wedge velocity in 

Eq. (31) is the quadratic term, F ∝  v2, which can be traced to the kinetic energy (i.e., the 

proportion of the total work done that must go to accelerating the beam arms).   For a bridging 

relation that is time or rate dependent, more complicated relations between force and velocity 

will arise. 

 

Figure 3 shows the variation of the equilibrium force, F, normalized by its value in the absence 

of bridging, Fu (Eq. (31b) with  bG∆ = 0), as a function of the normalized crack 

velocity, 0/ GVα or EhGcv l /)/( 0α .  The different curves correspond to different values of 
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the ratio ∆Gb/G0 and the normalized friction coefficient. The two set of curves (dashed and solid) 

define limit bounds for all possible solutions since they correspond to minimum and maximum 

values attainable in typical laminates. As the crack velocity increases, the normalized force 

decreases rapidly and approaches unity.  Since the kinetic energy contribution to the equilibrium 

force increases with increasing velocity while other contributions do not increase, the 

equilibrium forces in the presence and absence of bridging must become asymptotically 

indistinguishable. Thus bridging has an important effect on crack dynamics only for small to 

moderate crack velocities. As ∆Gb/G0 increases at a fixed velocity, F increases, but the trends of 

Fig. 3 remain qualitatively unchanged.  The kinetic energy dominates and bridging effects are 

small for all cases shown whenever the normalized velocity parameter 0G/Vα  exceeds 10. 

For typical quasi-isotropic laminates of relatively low thickness, h ≈ 2-3 mm, and 2α = 10° this 

is true when v/cl  > 0.1. For thick laminates the limit velocity will be lower. 

 

Although energetics alone determine the equilibrium force for the DCB configuration (Eq. 31b), 

the bridging zone length A0 and distance between the wedge and the crack tip L can only be 

found by solving the transcendental Eqs. 23 and 25 (which is equivalent to obtaining the full 

crack profile). Before numerical solutions for A0 and L are presented, two limiting cases are 

identified, which provide a helpful framework for understanding the general case. 

 

3.4 Small Scale Bridging and High Velocity Limits 

 

If the crack is sufficiently long compared to the length of the bridging zone, the small scale 

bridging (SSB) limit can be approached, in which the profile of the unbridged portion of the 

crack becomes independent of the details of the profile in the bridging zone.  In a general crack 

geometry, such as a crack in an infinite body, and for a non-steady state crack problem, such as a 

crack whose length grows in time, the SSB limit is also characterized by the work done against 

the bridging ligaments, bG∆ , becoming independent of the crack length.  The crack exhibits the 

augmented apparent tip toughness, G0 + bG∆ .  Thus the effect of the bridging zone can be 

represented in the SSB limit as a point process concentrated at the crack tip, leading to the 

formulation commonly referred to as Linear Elastic Fracture Mechanics (LEFM).  In the case of 
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the DCB specimen and the steady-state crack configuration, the work done against the bridging 

ligaments is invariant with respect to the relative lengths of the bridging zone and the crack (Eq. 

27), and so this condition cannot be an indicator of the SSB limit, but one can still search for the 

SSB limit in the behavior of the crack profile.  Thus, in the SSB limit, defined as the limit in 

which the effect of bridging can be represented by a point process at the crack tip, the 

equilibrium length Lssb should take a value determined by solving the unbridged problem (see 

Appendix A): 

    

 
))LV(SinV)LV(Cos(

))LV(CosV)LV(Sin(
VG

ssbssb
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T

2
1

2
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α
−−

−
=    , (32a) 

 

where the normalised total crack energy release rate ( ) )(/12 b0b0 hEGGGGGT ∆+=∆+=  is: 

 

  222
00 2 ccT WBWPGG ++=      .  (32b) 

 

In the absence of friction at the load point (µ = 0), the equilibrium length, L, in the SSB limit 

becomes (Appendix A) 
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The second limiting case is the high velocity limit that arises when the energy required to 

accelerate the beam arms during crack propagation, 12/22VhEaU k α=∂∂ , dominates both the 

intrinsic fracture toughness, G0, and the work required to break the bridging ligaments, bG∆ .  

The crack profile in the high velocity limit becomes independent of G0 and the bridging 

parameters; it can be derived from the profile for the SSB limit by setting G0 = bG∆  = 0 

(Appendix A).  Thus, for example, the value of L in the high velocity limit, Lv, will be given by  
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with the correct branch of tan-1 being that for which  Lv → π/V when µ → 0. 

 

3.5  Characteristics of Steady-State Crack Propagation 

 

The following numerical examples refer exclusively to the case where bridging is characterized 

by a linear hardening bridging relation (β > 0 or S = B2 > 0).  

 

Figure 4 shows typical families of crack displacement profiles for four different crack speeds, 

including a nearly stationary crack (V = 0.001, which approaches the static limit), and values of 

the bridging parameters that might be representative of a stitched polymer laminate with a low 

intrinsic fracture toughness, G0.  The solid curves in both Figs. 4a and 4b are exact results, while 

the dashed curves in Fig. 4a and 4b show the approximations of SSB or the high velocity limit 

respectively.  For all crack velocities examined, BV 2<  or Ehcv l 322 β< ), Equation (18) 

predicts the crack opening displacement to be oscillatory with exponential decay.  In all cases, 

the equilibrium distance L is such that the profiles are monotonically increasing functions of 

distance from the crack tip, ξ, i.e., no oscillations are observed (see Section 3.6). 

 

The SSB limit provides profiles in rough agreement with the exact results at all velocities for the 

cases shown, but underestimates the equilibrium distance, L (Appendix A).  Furthermore, the 

approximation worsens as the crack velocity increases. For the equilibrium conditions imposed 

by the constraint of steady state propagation, the SSB limit becomes usefully accurate only when 

the critical displacement, Wc, is small. 

 

Figure 4b compares the exact profiles with estimates based on the high velocity limit (bridging 

and intrinsic toughness effects negligible – Appendix A).  The two sets of curves are widely 

different at vanishing velocity (the static limit), being separated by nearly two orders of 

magnitude in the value of L; but as the relative velocity rises to even moderately high values, 



 DYNAMIC DELAMINATION  

12/01/02 24 

e.g., V = 0.2 or v/cl = 0.06 in the case of Fig. 4b, the high velocity approximation approaches the 

exact results increasingly closely. 

 

Figure 5 shows further details of the variations in the steady-state wedge-crack tip separation, L.  

The solid curves show exact results, the dashed curves the SSB approximation of Eq. (29c) and 

the thick dashed curve the high velocity limit of Eq. (33).  In the figure L is normalised by its 

value, 0vu =L , for a unbridged crack with tip toughness, G0, in the static limit (V = 0), given by 

Eq. (A.6a), and is plotted as a function of the velocity for a range of values of the bridging 

stiffness parameter, B.  The values taken for the bridging parameters B, P0, and cW  are again 

representative of a stitched laminate with a moderate value of G0.  The figure shows that L 

decreases monotonically with increasing velocity and with increasing bridging stiffness, B.  

Since P0 and cW  are fixed in Fig. 5, increasing B leads to increasing the contribution to the 

toughness due to the bridging mechanisms, ∆Gb. The SSB approximation always under-predicts 

L, which can be expected from the equilibrium of moments – the distributed action of the 

bridging ligaments in the exact solution will offset a larger moment from the applied force and 

therefore imply a larger distance, L.  The high velocity limit is always approached by any of the 

other curves as V increases. The velocity at which L approaches the limit to within any specified 

fractional error rises with the value of B, because higher B implies higher work, ∆Gb, to fracture 

the bridging ligaments (with other bridging parameters held fixed) and therefore higher velocities 

to achieve dominance of the kinetic energy.  

 
Figure 6 shows the variation of the bridging zone length, A0, with velocity for the same cases as 

in Fig. 5; with A0 normalised by the zone length, 
0v

u
0 =

A , for an unbridged quasi-static crack (V 

= 0) in the limit that 0B →  and 00 →P .  This limit can be obtained by setting 

cWAW =−= )( 0ξ in the profile of an unbridged crack, Eq. (A.1).  The high velocity limit, i.e., 

in the absence of bridging or intrinsic toughness (Appendix A), is also shown by a dashed line.  

Consistently with the behaviour of L, A0 is a monotonically decreasing function for increasing 

velocity or bridging stiffness.  Once again, the high velocity limit is approached at a velocity 

whose value increases as B increases.  
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Calculations not reported in this paper have shown that increasing the wedge angle, α , or the 

interfacial friction, µ , at fixed velocity leads to larger values of L.  Increasing α also leads to a 

reduction of the zone length, A0 which, on the other hand, is relatively insensitive to µ.  

 

As the velocity increases, the ratio A0 / L always increases monotonically from a non-zero value 

for the static case.  This behavior, which is exemplified by Fig. 7a, follows directly from the 

numerical result that the opening displacement at the wedge loading point, W(-L), is a 

monotonically decreasing function of velocity (see Figure 4a).  A limit value of the crack 

velocity, which depends on material and geometrical parameters, corresponds to the condition A0 

/ L = 1, where the bridging ligaments remain intact over the whole interval between the crack tip 

and the point of contact with the wedge. The limit velocity increases on increasing the wedge 

angle and the coefficient of friction. No meaningful solutions to the steady state crack problem 

exist above the limit velocity. For the material parameters assumed in the figure and a wedge 

angle of 7.5°, for instance, the limit velocity is V = 0.235 or v/cl =   0.07. 

 

Figures 7b and 8 illustrate this behavior further.  Figure 7b shows the ratio A0/L as a function of 

the bridging stiffness parameter B.  The ratio A0/L increases, which favors the creation of a 

domain of forbidden velocities or the extension of an existing domain, as the critical 

displacement, Wc, or the bridging stiffness parameter, B, increases (Figs. 7a and 7b).  In Figure 8 

the maximum permissible value, max
cW , of Wc for steady state solutions to exist is plotted as a 

function of the bridging stiffness parameter, B, for fixed values of other bridging parameters. The 

parameter max
cW  is the value for cW  above which LA0 ≥ .  Stiffer bridging imposes more 

stringent upper bound on Wc, since it reduces the crack opening, W; higher values of P0 or the 

crack velocity also reduce max
cW . For low velocities, V = 0.1 – 0.2, max

cW  is well above the 

critical displacement of typical laminates (see Table 1) for all B considered and therefore steady 

state propagation is always possible. However, for V = 1, which roughly corresponds to the 

Rayleigh wave speed of a common quasi-isotropic laminate, and similarly for all V > 0.5, max
cW  

is in the range of feasible critical displacements (see Table 1). In summary, a bounding velocity 

will exist and lie at an experimentally accessible value for many cases of interest. 
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3.6  Oscillations in the crack displacement profile 

 

Another question of interest is the possibility of oscillations arising in the crack displacement 

profile for steady state solutions. In Euler-Bernoulli beams, equations (13), (16) and (18) predict 

a transition in the crack opening displacement from purely oscillatory to oscillatory with 

exponential decay on varying the crack velocity, with BV 2=  or Ehcv l 322 β=  the 

transition value. Therefore oscillations will arise in the crack profile if ξext < L, with ξext being the 

distance behind the crack tip at which the displacement function has a first extremum, 

0/W =∂∂ ξ . If  ξext < A0 the first extremum will be within the bridged zone and the solutions 

derived above will contain a physical inconsistency, in that the displacement at the end of the 

bridged zone, where stitch failure is presumed to occur at a critical opening, wc, will not be the 

maximum displacement.   

 

The condition for the onset of oscillations is illustrated in Fig. 9 for typical values of the material 

parameters.  The lower pair of curves in Fig. 9 shows typical variations in the bridging zone size, 

A0, as a function of Wc at fixed crack velocity, obtained by solving the system of equations (20-

23) and (25). The upper pair of curves shows the distance behind the crack tip, ξext, at which the 

displacement function has a first extremum, 0/W =∂∂ ξ , where W is the displacement function 

found for the bridging zone.   In each pair of curves, the solid line corresponds to B = 0.1 and the 

dashed line corresponds to B = 0.2.  The vertical line, max
cc WW = , shows the cutoff value for cW  

above which LA0 ≥ .  In the cases shown, the cutoff is reached before any oscillation 

(extremum) is found in the bridging zone. The limit configuration would be defined by the 

intersection of the upper and lower curves. This characteristic is common to all numerical 

solutions that have been surveyed.  Thus conditions for oscillations in the displacement profile 

are apparently not readily achieved in the steady state configuration for linear bridging.  
 
 
4. CONCLUSIONS 
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The dynamic mode I cracking behavior of a symmetric laminate containing possibly large 

bridging zones, constituted, for example, of through-thickness reinforcement, has been analyzed 

by beam theory.  The character of the displacement profile shows features similar to those in the 

analogous static loading problem, including the possibility of oscillations extending far into the 

crack wake.  However, the details of the functional form of the profile, including the existence of 

oscillations, depend not only on the sign and magnitude of the bridging stiffness parameter, but 

also on the crack velocity. 

 

Steady state solutions, i.e., crack configurations propagating invariantly at constant velocity, 

have been proven to exist for significant parameter domains for the particular problem of a 

Double Cantilever Beam (DCB) specimen loaded by a flying wedge.  The steady state crack 

propagation characteristics have been mapped out in terms of controllable loading and material 

parameters, including the wedge angle, the interlaminar fracture energy, and the properties of the 

through-thickness reinforcement.  Interesting trends include the following. 

 

For even moderately large crack velocities, typically 10G/V 0 >α , kinetic energy dominates 

the fracture process and the relative effect of both the bridging contribution of the reinforcement 

and the intrinsic fracture toughness of the laminate are small. In typical quasi-isotropic laminates 

reinforced by through-thickness stitching this occurs when v/cl > 0.1. Our calculations and the 

diagram of Figure 4b show that in this limit, the crack profile is well estimated by the high 

velocity limit (absence of bridging and intrinsic toughness). 

 

For small to moderate crack velocities, typically 5/ 0 <GVα , the steady state cracking 

characteristics are very strongly influenced by the bridging mechanism, which significantly 

enhances the delamination resistance of the structure. This is reflected both in the equilibrium 

force required to drive the wedge as well as in the wedge-crack tip separation distance, L.  This 

regime is of the most practical significance, since low crack velocities will be favored for other 

loading configurations, such as normal impact on the laminate, to avoid the penalty of imparting 

high kinetic energy to the material.  In crack propagation solutions where the crack tip is not 

constrained to travel at a given velocity, here the velocity of the wedge, it will seek an 
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energetically favourable velocity.  Through-thickness reinforcement might thus be regarded as 

removing easy, low velocity fracture paths under certain dynamic conditions. 

 

The steady state cracking configuration cannot be realized for all test and material parameters.  

In many cases, an upper bound to the admissible velocity exists, above which bridging ligament 

fracture, which is necessary for maintaining a zone of fixed length, will not occur before the 

wedge reaches the ligaments.  

 

Since the load-point displacement and the equilibrium length depend fairly strongly on the 

velocity, the wedge angle, and the bridging parameters, the possibility arises of using 

measurements of the load point displacement and the equilibrium length during systematic 

variations of the velocity and the wedge angle to explore the dynamic constitutive behaviour of 

the through-thickness reinforcement.  The simplicity of the wedge loaded DCB and the beam 

analysis makes this an attractive experimental approach. 
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Appendix A: Solutions for an unbridged crack and limiting configurations 

 

In the absence of bridging, the deflection profile satisfying the equilibrium equation and the 

boundary conditions presented in equation 18 is: 

 

( ) ( ) ( )





 −










+−++

++−

=
2/

2
2/

))((2)()2(

))(()()2(

2/4
)(

uu

uu
2

uu

u
u

VLCosVVLSin

LVSinVLSinV
LVCosVVLCosV

VLSinV
W

µ
ξξµ

ξµµξ

αξ     . (A.1) 

 

Solution of the system of transcendental equations below (the conditions in Eqns. 19 and 20) 

yields Lu and uF as dictated by equilibrium considerations and accounting for the energy flow 

into the crack tip region:  
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When 0=µ , we obtain: 
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As expected the above approach to calculating the force is identical to that obtained with the 

energy balance approach (Eq. 28b).  
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High velocity limit 

In the high velocity limit ∞→0GV  (which can be approximated for V < 1 since 0G  is 

typically ~ 10-5 or less), taking the appropriate branch of Tan-1 in Equations (A.1) and (A.2) 

yields: 
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When 0=µ  and when ∞→0GV , Equations (A.1) and (A.2) yield: 
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Quasi-static limit 

When 0→V , Equations (A.1) and (A.2) yield: 
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When 0=µ  and when 0→V , Equations (A.1) and (A.2) yield: 
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Small scale bridging limit 

The small scale bridging limit (SSB) is obtained from the equations above by substituting 

00T GGG ∆+=  for 0G . 
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Figure Captions 

 

1.  (a) Schematic of beam element in equilibrium. (b) Schematic of through-thickness 

reinforced DCB specimen loaded with a flying wedge where 2α is the wedge angle, l is 

the distance between the wedge and crack tip, a0 is the length of the bridging zone,  a is 

the total crack length, h  is the thickness of the beam arm, and v is velocity of the wedge. 

The co-ordinate system is chosen such that 0X = is the crack tip and lX −=  is the wedge-

beam contact point. 

 

2. Map of types of solution for the crack opening profile: T = trigonometric functions; H = 

hyperbolic functions; T + H = sums of trigonometric and hyperbolic functions; TH = 

product of hyperbolic and trigonometric functions.  (a) Timoshenko beam.  (b) Euler-

Bernoulli beam. 

 

3. Variation of the force applied to the wedge, F , normalized by the force applied to the 

wedge in the absence of bridging, uF , as a function of the normalized velocity parameter 

0G/Vα  for different values of the parameter 0b G/G∆ .  Also shown is the variation 

with the friction coefficient parameter, 2
0

2 4/ αµ G . 

 

 

4. Normalized deflection profile of the DCB arm for different values of the normalized 

velocity. (a) Comparison of the exact solutions (solid lines) with profiles obtained by SSB 

approximation (dashed lines) (b) Comparison of the exact solutions (solid lines) with 

profiles obtained by the high velocity approximation (dashed lines). When 0010.V = , the 

length 907=L .  

 

5. Variation of L, normalized by the unbridged quasi-static value, 0vu =L , as a function of the 

normalized crack velocity, V .  Comparison of the exact solution (solid lines) with 
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solution obtained by SSB approximation (dashed line) is shown. vL , the length in the high 

velocity limit, is also shown (the thick dashed line). 

 

6. Variation of the bridging zone length, A0, normalized by its value for a static unbridged 

crack, 
0v

u
0 =

A , as a function of the normalized crack velocity, V . Comparison of the 

exact solutions (solid lines) with the high velocity approximation (dashed line). 

 

7. Variation of the bridging zone length, 0A , normalized by L, as a function of the (a) 

normalized crack velocity, V  and (b) the bridging stiffness parameter B.  

 

8. Variation of max
cW , the maximum allowable value for cW , as a function of the bridging 

parameter B.  For all values of cW  greater than max
cW , steady state crack propagation is not 

possible since bridging ligaments remain intact in the wedge wake ( LA0 ≥ ). Curves 

correspond to different values of the crack velocity, V , and the bridging parameter 0P .  

 

9. Variation of the bridging zone length, 0A , and the maximum allowable bridging zone 

length, extξ , as a function of the bridging ligament failure condition, cW . The lower curve 

is the equilibrium value 0A . The upper curve corresponds to extξ  above which crack face 

oscillations will start to occur.  The vertical line is the maximum allowable value for cW , 

above which steady state crack propagation is not possible since bridging ligaments 

remain intact in the wedge wake ( LA0 ≥ ). 
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Abstract

Inertial e4ects in the mechanism of 'bre pullout (or push-in) are examined, with emphasis on
how the rate of propagation of stress waves along the 'bre, and thence the pullout dynamics,
are governed by friction and the propagation of companion waves excited in the matrix. With a
simple shear lag model (assuming zero debond energy at the 'bre/matrix interface), the e4ect of
uniform frictional coupling between the 'bre and the matrix is accounted for in a straightforward
way. Analytical solutions are derived when the pullout load increases linearly in time. The process
zone of activated material is generally divided into two or three domains along the axis of the
'bre. Within these domains, slip in the sense implied by the load, slip in the opposite sense
(reverse slip), and stick may be observed. The attainable combinations de'ne three regimes of
behavior, which are realized for di4erent material parameter values. The elastodynamic problem
is also solved more accurately using a plane stress 'nite element method, with friction represented
by an interfacial cohesive zone. The predictions of the shear lag theory are broadly con'rmed.
? 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Dynamics; Friction; Fibre-reinforced composite material; Finite elements

1. Introduction

The mechanics of pullout have been much studied and are well understood for static
loading. Simple analytical forms are available for p(�), the relationship between the
pullout load, p, and the displacement, �, of the 'bre’s end, when the frictional coupling
of the reinforcement to the matrix is uniform and slip extends over distances that
are large compared to the reinforcement diameter (Marshall et al., 1985; McCartney,
1989; Hutchinson and Jensen, 1990). In this limit, which is a common case in ceramic
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composites and textile polymeric composites, the shear lag model of load transfer
between the reinforcement and the matrix is accurate.
The success of shear lag models in matching numerical calculations and experiments

for static pullout, given appropriate restrictions, encourages the viewpoint that similarly
simple models might reveal some key aspects of pullout under dynamic loads. Prior
work on the problem of a dynamically loaded rod subject to uniform friction has re-
vealed some interesting characteristics of the e4ect of friction on the propagation of
stress waves (Nikitin and Tyurekhodgaev, 1990). For end-loading that rises continu-
ously from zero, the stress front propagates at velocities less than the bar wave speed
by a factor that depends on the loading rate. Only for step loading does the front prop-
agate at the bar wave speed. This strong e4ect of friction results in signi'cant sti4ening
of the response of the bar, measured as its end displacement for a given load, rela-
tive to the static loading case. On the other hand, when motion ceases following step
loading, the net 'bre displacement is exactly twice that expected for static loading to
the same load—in this case, dynamic e4ects lead to e4ective softening of the response
(Nikitin and Tyurekhodgaev, 1990). The front con'guration and front speed for this
simple bar problem can be explained by considering energy conservation and kinetic
constraints at the front.
When the 'bres are embedded in an elastic matrix, the problem is complicated by the

interaction between the stress waves in the 'bre and those excited in the matrix. The
front conditions must then be expected to exhibit new characteristics and consequently
the load–displacement relationship for the 'bre end must be a4ected. The role of the
matrix in dynamic pullout is the topic of this paper.
In a previous study (Cox et al., 2001; Sridhar et al., 2001) a shear lag model that was

directly analogous to that used successfully in static pullout problems (Hutchinson and
Jensen, 1990) was extended to high loading rates with loading boundary conditions that
were appropriate to the context of a bridged crack: the load was speci'ed as a far-'eld
condition within the body of the 'bre/matrix system, rather than at the 'bre end. Here
new solutions are derived using a shear lag formulation with conditions appropriate to
'bre pullout: the load is speci'ed as a condition on the 'bre end, with the far-'eld
being stress-free. This con'guration, as well as being interesting as a theoretical study,
is representative of laboratory experiments that might be used to study frictional e4ects
during pullout (Rosakis and Owen, 2003).
Friction is assumed here to be spatially uniform and independent of time or rate.

Generally, friction in 'bre pullout can be inJuenced by (1) Poisson’s e4ect, which
causes the 'bre to shrink radially when it is pulled and thereby lowers the normal
pressure at the interface; (2) initial residual compressive strains across the interface
(e.g., due to mismatching thermal shrinkage during cool-down from processing); (3)
interface roughness e4ects, which tend to increase the normal pressure at the interface
when the 'bre slides relative to the matrix (the interface being pushed apart by mis-
matching asperities); and (4) dynamic e4ects. The interplay of all these factors can be
complex. Poisson’s e4ect and roughness e4ects tend to cancel one another out; in one
material system, presumably by happy accident, the cancellation appears to be fairly
exact (Parthasarathy et al., 1994). In other, recent experiments where dynamic e4ects
were anticipated, the curious result appeared that, in the system studied, the friction



N. Sridhar et al. / J. Mech. Phys. Solids 51 (2003) 1215–1241 1217

remained unchanged for short times (∼ 1 �s) after a change of state, but changed over
longer times (Rosakis and Owen, 2003). Short times are relevant to the problem stud-
ied here. But in spite of these two interesting results, assuming uniform friction is a
simpli'cation. Generalization to non-uniform friction may a4ect the qualitative nature
of some aspects of solutions to dynamic problems and will need to be addressed in
due course.
The assumption of uniform friction should be distinguished from any assumption

that Poisson’s ratio is zero. In fact, shear lag results are derived here for general
isotropic elasticity in the 'bres and matrix. Assuming that friction is uniform speaks
to the physics of the friction process, which may be inJuenced by other phenomena,
as outlined above.
Provided friction is approximately uniform in a given system, the shear lag results

derived here are equally applicable to 'bre push-in, with appropriate changes of sign.
Fibre pullout and push-in experiments are widely used in static loading problems to
characterize friction and composite behaviour. A prime attraction of the methods is
the simplicity of both the phenomena involved and their (accurate) analysis by shear
lag approximations. Therefore, strong motivation exists for seeking extensions of these
experiments in the dynamic regime.
Some interesting new characteristics of stress wave propagation are discovered for

the particular case of a load that increases linearly in time. The regime of validity
of the shear lag approximation is then assessed by 'nite element calculations of a
'bre/matrix system in which friction is represented as a cohesive zone.

2. Shear lag approximation

The shear lag approximation in the axisymmetric problem of the pullout of a cylin-
drical 'bre may be stated as the assumption that the displacements and stresses in
any section normal to the z-axis (the axis of the 'bre) are characterized by LamKe-like
solutions, generalized to allow variations with z (Hutchinson and Jensen, 1990). Thus
all displacements are separable functions of z and the radial variable, r; and the de-
pendence on r has a known, simple form. For static loading, shear lag is an accurate
approximation as long as the slip distance, ls, is large compared to the 'bre diameter,
d. This is equivalent to requiring that the axial stress in the 'bre and the matrix should
vary slowly over distances comparable to the 'bre radius (Nairn, 1997). The shear lag
approximation is quite accurate in the static case over a wide range of 'bre/matrix
modulus ratios, and 'bre volume fractions (Freund, 1992; Nairn, 1997). In the analy-
sis that follows, the shear lag approximation is shown to work well for the dynamic
problem as well. The analytical solutions obtained with the shear lag assumption are
attractively simple and insightful and provide limits against which three-dimensional
(3D) numerical solutions can be compared.
For the static pullout problem, LamKe-like solutions have also been developed with

a non-zero debond energy included (energy required for separation of the 'bres and
the matrix) (Freund, 1992). Here, the debond energy is assumed to be zero ('bres and
matrix already chemically separated). In many materials, the work done against friction
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dominates and solutions in which the debond energy is included must then approach
those obtained here asymptotically. Models of the static behaviour of composites with
weak interfaces, especially ceramic composites, often ignore the debond energy suc-
cessfully. Dynamic analysis of materials in which the debond energy is not small could
be signi'cantly more complicated.

3. Micromechanics of dynamic pullout

When friction is the only active force of resistance, the dynamic pullout problem
is one of wave propagation along a 'bre in the presence of frictional retardation. For
simplicity of language, the presentation of shear lag results will be con'ned to an
axisymmetric problem. However, the plane problem of a plate-like 'bre and matrix
has identical form in the shear lag approximation, with an appropriate rede'nition of
the radius variable in terms of a thickness variable (Appendix A).
The pullout problem can be idealized as follows. A representative volume (Fig. 1)

consists of a cylindrical 'bre of radius Rf embedded in a matrix (z¿ 0). The matrix
is represented by a cylindrical shell whose thickness corresponds to a 'bre volume
fraction, f, with appropriate boundary conditions on its outer surface. Both media are
assumed to be isotropic, with Young’s moduli Ef and Em, Poisson’s ratios 
f and 
m,
and densities �f and �m (subscript m denoting matrix and f 'bre). The axial displace-
ment, strain, and stress of the 'bre and the matrix are denoted uf and um, 
f and 
m,
and �f and �m, respectively. Following the strategy of shear lag for axisymmetric prob-
lems, the wave problem can be reduced to equations in the spatial variable, z, only;
variations in any section transverse to the z-axis are solutions of the LamKe problem.
The 'bre is coupled to the matrix by the friction stress �f where

�f =



�0 (when u̇f − u̇m¡ 0);

�̃ (when u̇f − u̇m = 0);

−�0 (when u̇f − u̇m¿ 0):

(1a)

The friction stress is assumed to be uniform and constant where relative motion exists
and indeterminate, with the bound |�̃|¡�0, where there is no relative motion. With
such a friction law, the dynamic wave equations for the 'bre and the matrix subject
to the shear-lag approximation are (see Appendix A):

92uf
9z2 =− 2�f

Rf Êf
+
1
c2f

92uf
9t2 ('bre); (2a)

92um
9z2 =

2f
1− f

�f
Rf Êm

+
1
c2m

92um
9t2 (matrix); (2b)

where ci=
√
Êi=�i, Êi=Ei(1−
i)=((1+
i)(1−2
i)), i=m or f. The traction boundary

conditions at z = 0 are that the matrix is stress-free, while the 'bres sustain the axial



N. Sridhar et al. / J. Mech. Phys. Solids 51 (2003) 1215–1241 1219

m
at

ri
x

fi
be

r

m
at

ri
x

2Rf

matrix 
crack plane

traction free 
surface of matrix)t,0(fσ 

0

Z

Process
zone
boundary

Fig. 1. Schematic of the dynamic pullout problem in a composite near the fracture plane.

traction �f (0; t)=p(t). In a crack problem, shear tractions may arise along the vertical
boundaries of the representative volume (parallel to z), but these are neglected.
The following normalizations are introduced: Z = z=Rf , T = cf t=Rf , and U = u=Rf .

Combining Eqs. (1) and (2) yields

92Uf
9Z2 =

92Uf
9T 2 − �Sign(U̇m − U̇ f ); (3a)

92Um
9Z2 = C

2 92Um
9T 2 + ’�Sign(U̇m − U̇ f ); (3b)

where the dimensionless parameters include the wave speed ratio C, the modulus ratio
’, and the normalized interfacial friction stress �:

C2 =
c2f
c2m
=

Êf =�f
Êm=�m

; (4a)

’=
fEf

(1− f)Em
; (4b)

�=
2�0
Ef
: (4c)

4. Boundary �bre stress rising linearly in time

Finding solutions to Eqs. (3) and (4) for general loading histories is complicated
by the non-linearity inherent in the friction term. However, analytical results can be
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obtained for special cases, including that of a load rising linearly in time. Since a linear
loading history has some practical importance, solutions for this case will be described
here to explore various interesting characteristics of the dynamic pullout phenomenon
and for assessing the validity of the shear lag approximation. The solutions were found
by observing that the boundary conditions admitted only quadratic functions of position
and time; and seeking self-consistent patterns of motion (slip, stick, and reverse slip)
by heuristic arguments.
Let the linear loading function be

p(t) = �0t=t0; (5a)

where �0=t0 is constant. The following further normalized parameter is employed:

k =
�0cf t0
�0Rf

; (5b)

where k is the inverse loading rate.
Solutions to the linear loading problem are characterized by the existence of either

two or three domains of z, depending on the magnitudes of C and ’. Displacements
are continuous and smooth within each domain; but, since the friction stress can be
discontinuous at a domain boundary, the displacements need only be continuous, not
smooth, at domain boundaries.
The domains will be denoted [0; l1], [l1; l2], and, if a third domain exists, [l2; l3].

The domain boundaries move linearly in time, i.e., li = �icf t (i = 1, 2 or 3), where
the constants �i depend on the material and geometrical parameters. Thus the furthest
propagation of the stress disturbance lies at the front z = ltotal (where ltotal = l2 or l3
depending on the value of C and ’) where, for end loading of the 'bre, the additional
boundary condition holds, that u̇ f = u̇m = 0. The domain [0; ltotal], i.e., the entire of
domain of activated material, will be referred to as the process zone, rather than the
slip zone, since in some cases part of it will not be actively slipping.
The displacements are always piecewise quadratic functions of axial position, z. The

stresses are therefore linear in z. In exhibiting the solutions in the following, only the
displacements will be described in detail, for brevity.
Three di4erent regimes of physically distinct behavior can be identi'ed for di4erent

values of the dimensionless wave speed ratio C, as follows.

4.1. Regime I: pure slip (C¿CU )

In this regime, two domains are present (ltotal = l2). The regime is de'ned by the
wave speed ratio, C, exceeding an upper critical value, CU , which is speci'ed in
Section 4.4. The displacement solutions to the wave equation subject to the initial and
boundary conditions are

Uf (Z; T ) =
�(−Z + T�2)(Z(k + �2)− T (1− k�2))

2k(1 + �22)
(06Z6 �2T ); (6a)
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Fig. 2. Spatial variation of the particle velocity when (a) CU 6C (b) CL6C6CU and (c) 06C6CL.
This variation is shown for both the 'bre (solid lines) and the matrix (dashed lines) for ’=2:00, k =0:05,
� = 0:005 and when T = 0:1.

Um(Z; T ) =




�’

(
Z2(1 + �21C

2 − 2�1�2C2)
+T 2(�22 − 2�1�2 + �21�22C2)

)

2(1 + �21C2)(1− �22C2)
(06Z6 �1T );

�’
2(1− �22C2)

(Z − �2T )2 (�1T ¡Z6 �2T ):

(6b)

The front speeds �1 and �2 are given by

�1 =
1
C
; (7a)

�2 =
√
1 + k2 − k (7b)

and are independent of time.
The particle velocity variation is shown in Fig. 2a as a function of position for two

di4erent times. As time increases, the process zone grows and the particle velocity at
a given material point increases in both the 'bre and the matrix. The matrix particle
velocity is greater than the 'bre particle velocity (u̇m¿u̇ f ) over the entire process
zone; and hence both domains, [0; l1] and [l1; l2] are slip zones with �f = �0. At
'xed time, the particle velocity decreases linearly with position z, whereas the particle
velocity in the matrix is spatially uniform in the domain, [0; l1], but then decreases
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linearly to zero in the domain, [l1; l2]. The normalized front speed �1 depends only on
C and the normalized front speed �2 depends only on k (Eq. (7)). Both �1 and �2 are
independent of ’ and thus of the 'bre volume fraction.

4.2. Regime II: slip-stick (CL6C6CU )

The second limiting value, CL, is also speci'ed in Section 4.4. When the wave
speed ratio is bounded by CL6C6CU , there are again two domains (ltotal = l2) and
the displacement solutions to the wave equation subject to the prescribed initial and
boundary conditions are

Uf (Z; T ) =




�

(−Z2(2k + �1 + �2) + 2ZT (1 + �1�2)
+T 2(2k�1�2 − �1 − �2)

)

4k(1 + �1�2)
(06Z6 �1T );

�(�21 + 2k�1 − 1)(Z − �2T )2

4k(1 + �1�2)(�2 − �1)
(�1T ¡Z6 �2T );

(8a)

Um(Z; T )

=




�

(
Z2((�21+2k�1−1)(�2−�1)C2+2k’(1+�1�2))
+T 2((�21+2k�1−1)(�2−�1)−2k’�21(1+�1�2))

)

4k(1+�1�2)(1+�21C2)
(06Z6�1T );

�(�21+2k�1−1)(Z−�2T )2
4k(1+�1�2)(�2−�1) (�1T¡Z6�2T ):

(8b)

The process zone front speed �2 is

�2 =

√
1 + ’
C2 + ’

(9a)

while �1 is obtained by solving the cubic equation:

(�21 + 2k�1 − 1)(1 + C2�1�2) + 2k’(1 + �1�2)�1 = 0: (9b)

Analysis shows that �1 has only one real positive root which always lies in (0,1).
The spatial particle velocity variation is shown in Fig. 2b. The matrix particle velocity
in the domain [0; l1] is greater than the 'bre particle velocity (u̇m¿u̇ f ) for any z,
and hence slip is occurring. However in [l1; l2], the particle velocity is the same in the
'bre and the matrix and hence in this domain the 'bre and matrix stick. The interfacial
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friction stress in this stick zone is

�f = �̃= �0
(�21 + 2k�1 − 1)(1− C2)

2k(�1(1− C2) + (1− �21)
√
(C2 + ’)(1 + ’))

(10)

where �1 has been obtained by solving Eq. (9b). This expression for the friction stress
always satis'es |�f |¡ |�0|.

4.3. Regime III: slip-reverse slip C6CL

In this case, the wave speed ratio, C, obeys the bound C6CL and three domains
exist (ltotal = l3). The displacement solutions to the wave equation subject to the initial
and boundary conditions are

Uf (Z; T )=




�



Z2(2k(�1−2�3−1)−(1+�1)(1+�3))
−T 2(1+�3+2k�3+�1(1+�3−2k(�3+2)))
+2ZT (1+�1)(1+�3)




4k(1+�1)(1+�3)
(06Z6�1T );

�



Z2(1+�3−�21(1+�3)+2k(�21−1−2�1(1+�3)))
+T 2((�21−1)(1+�3)+4k�1+2k�3(�21+2�1−1))
+2ZT (�21+4k�1−1)(1+�3)




4k(�21−1)(1+�3)
(�1T¡Z6�2T );

�(Z−�3T )2
2k(1−�23)

(�2T¡Z6�3T )

(11a)

Um(Z; T ) =




�’


 Z2(1 + �21C

2 − 4�1�3C2 + 2�23C2)
+T 2(�23 − 4�1�3 + 2�21�23C2 + 2�21)




2(1− �21C2)(1 + �
2
3C2)

(06Z6 �1T );

�’(Z − �3T )


 Z(1− �21C

2 + 4�1�3C2)

+T (�3 − �21�3C
2 − 4�1)




2(�21C2 − 1)(�23C2 + 1)
(�1T ¡Z6 �3T ):

(11b)

The front speed �2 is

�2 = 1 (12a)
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while �1 and �3 are obtained by solving the cubic equations:

�3 − �21�3C
2 + 2�1(�23C

2 − 1) = 0; (12b)

(�1 − 1)
(�1 + 1)

+
1

(�3 + 1)
− ’(�23 − 4�1�3 + �21�23C2 + 2�21)

(1− �21C2)(1 + �
2
3C2)

=
(1− �1)
2k

: (12c)

The particle velocity varies with z as shown in Fig. 2c. The matrix particle velocity
over 06Z6 �1T is greater than the 'bre particle velocity (u̇m¿u̇ f ) whereas in the
region �1T6Z6 �3T the 'bre particle velocity is greater than the matrix particle
velocity (u̇ f ¿u̇m). As a consequence, the interfacial friction stress between the 'bre
and the matrix in the slip region is �f =�0 whereas in this second region it is �f =−�0.
This second region is termed the “reverse slip” region since the relative velocity of
the 'bre and the matrix has the opposite sense to that implied by the sense of the
load. The front speed of the slip region �1 and that of the reverse slip region �2 are
functions of C, ’, and k, and are obtained by solving Eq. (12).

4.4. Map of regimes of behavior

Regimes of pure slip, slip-stick and slip-reverse slip are determined by the material
and loading parameters C, ’, and k. For the transition from slip-stick to pure slip, the
friction stress within the stick zone (where u̇ f = u̇m) in the stick-slip problem should
reach the critical value of �= �0. Thus from Eq. (10)

(�21 + 2k�1 − 1)(1− C2U )

2k(�1(1− C2U ) + (1− �21)
√
(C2U + ’)(1 + ’))

= 1; (13)

where �1(CU ; ’; k) is obtained by solving Eq. (9b). Eq. (13) determines the critical
velocity ratio, CU . For a transition from the slip-stick regime to the slip-reverse slip
regime, the friction stress within the stick zone (where u̇ f = u̇m) in the slip-stick
problem should reach the critical value of �=−�0. Thus from Eq. (8):

(�21 + 2k�1 − 1)(1− C2L)

2k(�1(1− C2L) + (1− �21)
√
(C2L + ’)(1 + ’))

=−1; (14)

where �1(CL; ’; k) is obtained by solving Eq. (9b). Thus CL is determined.
Regimes of pure slip, slip-stick and slip-reverse slip are mapped in Fig. 3 in terms

of the normalized wave speed ratio, C, and the modulus ratio,  , for di4erent val-
ues of the inverse loading rate parameter, k. When C is large (the wave speed of
the 'bre is much larger than that of the matrix), pure slip is expected. In the limit
that ’ → 0 there are only two regimes: the pure slip and slip-stick regimes, de-
pending on the value of C. A 'nite value of ’ has to be exceeded in order for
the three di4erent regimes to be accessible for a speci'ed k. As k increases, the
pure slip regime and the slip-reverse slip regime shrink and the slip-stick regime
enlarges.
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Fig. 3. Regimes of pure slip, slip-stick and slip-reverse slip mapped in the space of the normalized wave
speed ratio C2 and the modulus ratio ’ for di4erent k, the speci'ed inverse loading rate.

4.5. The load–displacement relation

The relationship, p(�), between the pullout load, p, and the displacement, �, of the
'bre end is determined through

�=
1
Rf

∫ ltotal(t)

0
(
fzz − 
mzz) dz: (15)

Normalizing by the displacement, �s =p2=[2�(1+’)E2f ] for the static limit (Appendix
B), one obtains thence the following displacements for each of the three di4erent
solution regimes:
Pure slip (C¿CU ):

�
�s
= 2k(1 + ’)

(
√
1 + k2(2C2k − C + 2k’)− 2k2’− C(C − k + 2Ck2))

C((Ck − 1)− C
√
1 + k2)

: (16a)

Slip-stick (CL6C6CU ):

�
�s
=
2k(1+’)2

(C2+’)
�1(2+�21(C

2+’)(1−2k�2−�22)+�1�2(1+C2−2C2k�2−2k�2’))
�22(1+�1�2)(1+C2�1)

;

(16b)

where the front speeds �1 and �2 are obtained from Eq. (9).
Slip-reverse slip (C6CL):

�
�s
= 2k2(1 + ’)

(
1
k
+

4
1 + �1

− 2
1 + �3

− 2’(�
2
3 + �

2
1(C

2�23 + 2)− 4�1�3)
(1− C2�21)(1 + C2�

2
3)

− 2
)
; (16c)

where the front speeds �1 and �2 are obtained by solving Eqs. (12b) and (12c).
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Fig. 4. The normalized pullout displacement �=�s, where �s is the corresponding static value, as a function of
k for various values of C. The solid curves are when the solution falls in the pure slip regime and the dashed
lines are when the solution lies in the slip-stick regime. The normalized pullout displacement asymptotically
reaches 1 as k → ∞. Also shown is the contour line that demarcates pure slip from stick-slip.

The normalized pullout displacement, �=�s, as a function of k is exempli'ed by
Fig. 4 for the parameter value ’= 2:00. When C¿ 1, the map of Fig. 3 shows that,
for any value of ’, there are only two possible regimes: for small k, pure slip (solid
lines in Fig. 4); and for large k, slip-stick regime (dashed lines in Fig. 4). The static
limit, �=�s, is approached as k→∞. For rapid loading (small k), the dynamic response
is relatively sti4 (�¡�s); but for slow loading (intermediate and large values of k),
inertial e4ects lead to an increased 'bre-end displacement (�¿�s). When C¡ 1 (not
shown in Fig. 4), one always has �¡�s.
Since the pullout displacement is a non-smooth function of k when C¿ 1, the tran-

sition from pure slip to slip-stick behavior could possibly be identi'ed in experimental
load–displacement data for di4erent loading rates.
The prediction of 'bre end displacements being enhanced in certain conditions by

inertial e4ects is perhaps counterintuitive. Inspection of the solutions shows that it is
accompanied by an increase in the length of the process zone (more particularly, of
the domain in which slip occurs), with commensurate decrease in the stress gradients.
This suggests that, when the 'bre wave speed is relatively high, the inertia built up
in the 'bre enables the stress disturbance to propagate further before it is o4set by
frictional deceleration, than it would under static loading. An analogue of this e4ect is
known for step loading of a 'bre in a rigid matrix (Nikitin and Tyurekhodgaev, 1990;
Cox et al., 2001).

4.6. Prevalence of inertial e7ects

For C¡ 2, inspection of Fig. 4 suggests that the onset of inertial e4ects can be
correlated approximately with the rise of the curve �=�s vs. k towards �=�s = 1.
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Introducing a threshold value, kt , one can write that, as a rule of thumb, inertial e4ects
are strong when k ¡kt . For C¡ 2

kt = 0:5 (C¡ 2): (17a)

For C¿ 2, inertial e4ects might be said to begin when �=�s rises to 1.25 as k decreases
from large values; for this condition, the asymptotic analysis of Appendix B for large
k implies

kt = 2:5

(
C2 − 1

)
’

(1 + ’)2

√
1 + ’
C2 + ’

(C¿ 2): (17b)

It is not diTcult to meet these conditions experimentally.

5. Numerical con�rmation

Numerical calculations based on 'nite element methods (FEM) were carried out to
assess the accuracy of the shear lag approximation. Of particular interest are (1) the
result that the rate of propagation of the stress disturbance is generally not the bar
wave speed, but some lower speed that depends on the loading rate and the interfacial
frictional stress; and (2) the separation of the deformation into distinct domains, in-
cluding stick and reverse slip domains. Propagation at speeds lower than the bar wave
speed has already been predicted for the loading of a bar in a rigid matrix (Nikitin and
Tyurekhodgaev, 1990). However, the details of stress distributions in such a retarded
front have not been investigated previously. The curious e4ect of reverse slip due to
distributed friction is newly predicted.

5.1. Model formulation

The shear lag results were discussed for an axisymmetric system. However, because
of the simpli'ed representation of stress 'elds in the shear lag approximation, the shear
lag results apply equally to a laminar, plane system, with a trivial rede'nition of the
radius parameter, Rf , and the volume fraction, f, i.e., Rf = 2h and f = h=H , where h
and H are the half-thickness of 'bre layer and the total matrix/'bre model, as indicated
in Fig. 5 (see Appendix A). Furthermore, when axial displacements dominate, the 'eld
equations of the plane and axisymmetric problems in the limit in which thin shell
theory is valid become indistinguishable (Appendix A). Therefore, where the shear lag
approximation is proven valid by simulations for a plane geometry, it is consistent to
expect the validity to extend to the axisymmetric cases.
Therefore, con'rmation by numerical methods is sought with a plane stress model,

which was preferred here because it allowed a simpler treatment of interfacial friction
in the FEM code being used.1 Since the system is symmetric about x = 0, only the

1 ABAQUS (5.8) by Hibbit, Karlsson & Sorensen, Inc. The numerical model includes 6400 4-point bilinear
elements and 200 cohesive zone elements. The problem was solved using the direct-integration method.
Automatic incrementing was used and each increment took an average of about 2:5 s (CPU time) to converge.
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Fig. 5. Schematic of the FEM model and the cohesive law that describes the interfacial tractions during
sliding in the numerical simulations.

top half is modeled with the normal displacement and the shear traction set to zero on
this plane. The dimensions h and H were chosen to create a 'bre volume fraction of
0.4. Friction was mimicked by cohesive elements that link the matrix and 'bre along
the bi-material. The friction law employed is

�f =




�0 (when u̇m − u̇ f ¿!);

�0
(u̇m − u̇ f )

!
(when − !6 u̇m − u̇ f 6+ !);

−�0 (when u̇m − u̇ f ¡− !)

(18)

which is slightly di4erent from the friction law used in the shear lag analysis (Eq.
(1a)) in that the positive (+�0) and negative friction (−�0) regimes are linked by a
linear transition regime of 'nite slope. This is necessary to avoid numerical diTculties
associated with the jump discontinuity in Eq. (1a). (The diTculty of obtaining nu-
merical solutions is further motivation for developing analytical approximations.) The
parameter ! is chosen to be small, so that the e4ect on the solutions of not having a
step change in the friction is negligible in most cases, with exceptions that a4ect only
minor details of the solutions, as described below. In the region −!6 u̇m− u̇ f 6+!,
the interfacial friction stress |�f |6 �0.
In the numerical simulations, Poisson’s ratio for both 'bre and matrix are set to

zero. Under the assumption of uniform friction, the role of Poisson’s ratio in the shear
lag solutions is reduced to a scaling factor in certain elastic constants (Eq. (2) and
Appendix A). Therefore, no generality is lost by this assumption in the numerical work,
beyond that already lost by the restriction of uniform friction.

5.2. Character of the solutions

Pure slip: Fig. 6 shows particle velocities and shear stresses for a case that should lie
in the pure slip regime, according to the shear lag analysis (C2 =10; k=0:1; ’=1:11;
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� = 0:002—see Fig. 3). The velocity contours in Fig. 6a shows a clearly de'ned 2D
structure in the 'bre and matrix. In the matrix the leading contour indicates a straight
wave front inclined at an angle to the interface. The contours of higher magnitude
(0.06–0:18 m=s) appear to form a second straight front inclined at a smaller angle.
This second front is characterized by high contour gradients that indicate a strong
shock front. Far behind this zone the matrix velocity is fairly uniform, both in the
thickness direction and in the axial direction. The velocity contours in the 'bre are
relatively uniform across the thickness although slightly inclined near the interface.
Away from the wave front, the magnitude of the 'bre velocity increases linearly as
the distance to the wave front increases (not shown in Fig. 6a).
The angled front structures in the matrix are also evident in the shear stresses (Fig.

6b). The shear stress near the interface region remains 100 MPa, which is the speci'ed
interface friction strength, �0. Contours of lower shear stress (1–30 MPa) form the 'rst
wave front; larger shear stress contours (45–100 MPa) form the second front in a
highly concentrated in a narrow band. In the matrix far behind the wave fronts, the
shear stress does not reach a constant value independent of the vertical position x.
Instead, it oscillates in the x-direction owing to reJection by the matrix boundary. The
related transverse motion is neglected in the shear lag analysis.
The above observations are consistent with the literature on wave propagation near

interfaces. While stress waves within the body of the 'bre or the matrix do travel
at characteristic wave speeds determined by the material properties, the velocity of
propagation of the active frictional zone along the interface (also referred to as the trace
velocity, ctr (Eringen and Suhubi, 1975)), is not necessarily limited to the characteristic
wave speeds. Instead, the trace velocity is related to the longitudinal and shear wave
speeds in the 'bre/or matrix by the inclination angles of the wave fronts. In the case
analyzed, the longitudinal wave speed of the 'bre is much faster than that of the matrix
(cf =cm = C =

√
10). Therefore the trace velocity is much faster than the longitudinal

wave speed of matrix, yet slightly slower than the longitudinal wave speed of the 'bre:
the friction zone front moves supersonically with respect to the matrix but subsonically
with respect to the 'bre. Two shock fronts, one associated with the longitudinal wave
and the other associated with the shear wave, must exist in the matrix (Eringen and
Suhubi, 1975). The inclination angles of the shock fronts are

sin %d =
cm
ctr
=

1
C�tr

(longitudinal); (19a)

sin %s =
cm
/√

2

ctr
=
1
/√

2

C�tr
(shear); (19b)

where �tr = ctr=cf . For the matrix, the external loading comes from interfacial shear
stress caused by the friction. Therefore the shear shock front should be the stronger
and the longitudinal shock front the weaker. This is con'rmed in Fig. 6. 2 Furthermore,

2 The numerical scheme used in this study cannot represent the abrupt jump associated with a shock, but
the high gradients near the front of velocity pro'le are indicative of a shock-like 'eld.
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the calculated angles of inclination, 20◦ and 14◦, imply via Eq. (20) that �tr = 0:92.
This is very close to the shear lag prediction, as will be discussed below.
Recent experimental observations seem to support the notion that the trace velocity

is a function of the loading rate and the level of the interface friction stress (Rosakis
and Owen, 2003). The shear crack propagation velocity along bimaterial interfaces also
is a strong function of the loading rate (impact rate) (Needleman and Rosakis, 1999).
The problem studied here can be interpreted alternatively as a dynamic shear cracking
problem with zero fracture energy but a persistent wake frictional stress. Thus when the
'bre radius decreases, the nominal wave speed within the 'bre becomes increasingly
dominated by the interfacial trace velocity and hence dependent on the loading rate
and interfacial friction stress level.
Slip-stick: Fig. 7 shows the particle velocity and shear stress for parameters in

which shear lag predicts behavior in the slip-stick regime (C2 = 0:1; k =0:1; ’=0:44;
� = 0:002—see Fig. 3). In Fig. 7a, a wave front of high contour gradients may be
seen in the 'bre, preceded by a long zone of low gradient (diverging contours). This
unusual characteristic is associated with two distinct friction zones manifested by the
shear stress contours (Fig. 7b). The 'rst friction zone, in which the friction stress takes
the limit value, �0 = 100 MPa, is associated with slip between the matrix and 'bre
(Fig. 7a). The second zone, dominated by negative interfacial friction stresses of mag-
nitude less than �0, is a stick zone (particle velocity continuous across the interface—
Fig. 7a). 3 The negative sign of the interfacial friction clearly demonstrates that in this
zone, the 'bre is loaded by the matrix, despite the fact that it is the 'bre end that is
dynamically loaded.
No shock fronts are evident in the 'bre in either Fig. 7a or b, although the front

of the stick zone travels supersonically with respect to the 'bre. This is probably due
to the fact that the magnitude of the frictional stress decreases exponentially along the
axial direction in the stick zone, which is again a consequence of the 'nite slope of
the friction law used for the FEM simulations, Eq. (19). The shear lag model predicts
a constant frictional stress of a magnitude smaller than �0 in this region (68 MPa in
this particular case). Increasing the slope of the friction law would improve agreement
with the shear lag result, but the computational cost increases exponentially.
Slip-reverse slip: The normalized parameters used for this case study are C2=0:025;

k=0:1; ’=1:5; �=0:002. The velocity and shear stress contour plots for the numerical
simulation are not shown here because they are not too much di4erent from Fig. 7a
and b. Because of the nature of the friction law used in the simulations (Eq. (18)), the
shear stress at the interface is non-uniform in the stick zone in the slip-stick regime and
therefore there can be no sudden transition to slip-reverse slip, as there is in the shear
lag results. Numerical solutions in the anticipated slip-reverse slip regime therefore
show a continued presence of the stick zone and gross features that are quite similar
to solutions in the slip-stick regime. However, a reverse-slip zone, characterized by a
uniform negative interfacial friction stress of −�0 (−100 MPa), does exist within the

3 In the FEM results, “stick” is de'ned by the relative velocity between the 'bre and the matrix being
smaller than ! (Eq. (19).
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stick zone. This con'rms the shear lag prediction as well as might be expected given
the model formulation.

5.3. Con�rmation of shear lag predictions

Despite the very complex 2D wave propagation characteristics in Figs. 6 and 7, the
simple shear lag analysis does an excellent job of capturing the basic characteristics
in an average sense. To demonstrate this, consider averages over the spatial variable,
x, of the stress or particle velocity 'elds that are calculated in the FEM simulations.
Fig. 8a compares such averages of the longitudinal particle velocity with the corre-
sponding shear lag predictions, as functions of axial position at two di4erent times,
for the same case as Fig. 6. The general features of the pure-slip solution of the shear
lag model are con'rmed by the FEM results. The shear lag model also predicts quite
accurately both the front location and the slope of the velocity pro'les in the 'bre. 4

It also predicts the form of the velocity variation in the matrix, including the locations
of the domain boundaries, �1 and �2: predicted values are �1 = 0:32 and �2 = 0:91
by shear lag; and �1 = 0:32 and �2 = 0:93 by FEM. However, shear lag overestimates
the magnitude of matrix velocity (inset of Fig. 8a). This is not surprising because in
the shear lag model all the energy transmitted into the matrix is assumed to propagate
only in the longitudinal direction, while in the FEM model part of the energy goes into
the transverse direction as well. This error should decline as the 'bre volume fraction
rises.
Fig. 8b shows similar comparisons for the case of behavior in the slip-stick regime

(the case of Fig. 7). The shear lag results agree well with the FEM results within
the slip zone except that the velocity magnitude in the matrix is again over-predicted.
However, owing to the 'nite slope of the cohesive law used in the FEM calculations,
the numerical velocity pro'les in the stick zone are di4erent from the shear lag predic-
tion. As mentioned above, the 'nite slope leads to an exponentially decaying velocity
pro'le in the stick zone, while shear lag predicts a piecewise linear pro'le. The cal-
culated speeds of the domain boundaries are �1 = 0:82 and �2 = 1:63 by shear lag; and
�1 = 0:90 and �2 = 2:23 by FEM. In the slip-reverse slip regime, the calculated speeds
of the domain boundaries are �1 = 0:68 and �3 = 1:30 by shear lag; and �1 = 0:77 and
�3 = 1:47 by FEM; agreement is again reasonable.

5.4. Range of validity of the shear lag approximation

The question of when the shear lag approximation is accurate can be addressed in
a practical way by looking at the predicted 'bre end velocity, U̇ f (0; T ), as a function
of the applied stress, �f (0; T )=Ef . (For linear loading, the applied stress may also be
regarded as a measure of time.) The results predicted by FEM and shear lag are plotted
in Fig. 9a for the same case studies of Figs. 6 and 7 (pure slip and slip-stick). Evidently

4 The small deviation from linearity in the FEM results near wave fronts (inset of Fig. 8a) is caused by
the 'nite slope used in the cohesive law, which leads to an exponentially decaying velocity pro'le instead
of a linear one.
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Fig. 9. The variation of the 'bre end point velocity, −U̇ f (0; T ), as a function of the (a) applied boundary
stress, �f (0; T )=Ef and (b) the process zone length, L=l2(t)=Rf , for results obtained with shear lag (SL) and
FEM. The variation is shown for two di4erent sets of parameters, representative of pure slip and stick-slip
conditions.
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shear lag does an excellent job in both cases: for example, the slopes predicted by
shear lag is �2 = 0:91 for the pure slip case and (�1 + �2 − 2k�1�2)=(1 + �1�2) =
0:93 for the slip-stick case. The slip-stick velocity is always slightly higher than the
corresponding pure slip velocity under the same inverse loading rate, k, and interface
frictional strength, �, due to the contribution of the stick zone. For predicting the load
displacement history, shear lag appears to be useful from the onset of linear loading,
regardless of whether the length of the process zone has exceeded the 'bre radius.
If the length of the process zone is of interest, then conditions for the accuracy

shear lag may be more restrictive. The shear lag and FEM predictions of the end
displacement vs. the process zone length, L= l2=Rf =�2T , are shown in Fig. 9b for the
same case studies of Figs. 6 and 7 (pure slip and slip-stick). For the pure slip case,
shear lag predicts a linear relationship between U̇ f and L, with slope −�=2k. The FEM
results show that a constant slope that is almost identical to the shear lag prediction is
established when L exceeds about 3. For the slip-stick case, shear lag again predicts a
linear relation between U̇f (0; T ) and L, with slope �(�1+�2−2k�1�2)=(2k�2(1+�1�2)).
The FEM analysis predicts that a linear relationship is established when L is larger than
4. However, due to the 'nite slope in the friction law, FEM predicts a more extensive
stick zone (see above) and therefore a larger value of �2 (2.23) than that obtained with
shear lag (1.63). From the pure slip case, where the e4ects of the friction law in the
FEM simulations are minor, one infers that shear lag predicts the process zone length
fairly accurately provided that it is greater than about 3–4 times the 'bre radius.

6. Discussion

6.1. Nature of interfacial friction

The correct characterization of frictional sliding of a 'bre embedded in a matrix re-
mains an open issue. Several theoretical studies have examined the dynamics of sliding
of two surfaces when the interfacial response is moderated by di4erent friction behav-
ior. Kosterin and Kragel’skii (1960) analyzed the stability of a one-degree-of-freedom
elastic system and concluded that steady sliding is unstable when the rate of change of
the friction stress with respect to velocity is negative. Rice and Ruina (1983) inves-
tigated steady frictional sliding when the interfacial shear stress has a fading memory
of the velocity history and found under certain conditions instabilities in sliding oc-
cur. Adams (1995, 1998) investigated sliding of two di4erent elastic half-spaces, and
showed that this con'guration is dynamically unstable due to the destabilization of the
frictional slip waves. He also demonstrated that the stick-slip motion due to interfacial
slip waves allows the bodies to slide with an apparent coeTcient of friction, which
is less than the speci'ed interfacial coeTcient of friction. For the simple friction law
used in this study, a conclusion similar to that of Adams (1995, 1998) is reached in
that stick-slip behavior can occur even under monotonic loading conditions. Further,
the shear lag analysis points out that for a range of material and loading parameters,
slip-reverse slip zones can also be established for a nominally tensile applied load on
the 'bre end.
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6.2. More general loading histories

Inspection of the solutions to the wave equations shows that, as long as the loading
history is piecewise linear, but not necessarily continuous, satisfaction of displacement
continuity at the boundaries of domains that might arise is possible only if the dis-
placements are quadratic functions of position and time. Thus if any loading history
is represented by a piecewise linear approximation, some con'guration of quadratic
domains should exist as the solution. However, consideration of even quite simple
loading functions, such as a bilinear function or a step function, shows that the do-
main pattern can become quite complicated, with domains of slip, stick, and reverse
slip appearing and disappearing. Systematic prediction of the time evolution of the
domains is challenging. Furthermore, since the domain patterns found in some simple
trial cases appear to fragment as time passes (unlike the linear-loading case presented
here, where they remain 'xed in time), the suspicion arises that the response may be
chaotic—small changes in the loading history may lead to unpredictable, large changes
in the domain pattern at future times.

6.3. Relation to crack bridging by �bres

In static loading, the problems of 'bre pullout (or push-in) and the bridging of
a mode I matrix crack by 'bres coupled to the matrix by friction are very closely
related algebraically. Apart from a factor that distinguishes the 'bre end displacement
in the 'bre pullout problem from the crack opening displacement in the crack bridging
problem, which arises from energy considerations, the constitutive laws in the two
cases are identical for similar physical models (Marshall et al., 1985; McCartney, 1989;
Hutchinson and Jensen, 1990). In dynamic loading, in contrast, the two problems work
out quite di4erently. The crack bridging problem is de'ned by a loading condition
applied to the end of the process zone by the moving composite, with that composite
motion determined by the far-'eld conditions of the propagating crack (Cox et al.,
2001). The pullout problem is de'ned by a stress (or displacement) condition on the
'bre end. In static loading, this leads to the same solutions. In dynamic loading, the
evolution of wave motion is not the same. In particular, for linear loading in time, the
solution to the bridged crack problem exhibits no stick or reverse slip domains (Cox
et al., 2001). Furthermore, di4erent conditions for the onset of strong inertial e4ects
arise. The conditions obtained in (Cox et al., 2001) (Eqs. (16) and (18) in that work),
amount to the following in the current notation:

kt = 2
C
’

(large ’); (20a)

kt = 2
C
’3

(small ’): (20b)

which have little similarity to Eq. (17).
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7. Conclusions

The 'bre pullout problem is examined when the inertia of the 'bre and the matrix are
taken into account. Frictional sliding between the 'bre and the matrix is described by
a constant interfacial friction stress, the sign of which depends on the relative particle
velocity of the 'bre and the matrix. Analytical solutions are derived when the pullout
load increases linearly in time.
Three regimes of behavior are distinguished, corresponding to di4erent parameter

values, in which the relative motions of the 'bres and the matrix di4er in two or three
domains. The parameters include the ratio of the 'bre and matrix wave speeds, the 'bre
and matrix moduli, and the loading rate. A map of the regimes has been determined
analytically.
Numerical results encourage the use of the shear lag approximation in dynamic

pullout problems, where quantities that have been averaged in the direction normal to
the 'bre axis are of interest. The shear lag approximation appears to be at least as
viable for dynamic problems as it has proven for static problems. Good agreement in
the load–displacement relation, for example, is found from the onset of linear loading.
Agreement in the predicted length of the process zone is obtained as long as the
process zone length is 2–4 times the 'bre radius. Since the evolution of domains of
slip, stick, and reverse slip can become very complicated for general loading histories,
an analytical approach could be particularly valuable.
Because of the simple treatment of friction and Poisson’s e4ect, all results here are

equally applicable to 'bre push-in, with appropriate changes of signs.
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Appendix A. Elastodynamic equations

A.1. Axisymmetric problem

The elastodynamic equation that the 'bre satis'es is (Gra4, 1991):

9Nf
9z =

�f
Êf

92uf
9t2 − 2�f

Rf
; (A.1)

where

Nf =
2
R2f

∫ Rf

0
�f r dr

=
Ef (1− 
f )

(1 + 
f )(1− 2
f )
(
9uf
9z +

2
f
R2f

∫ Rf

0

(
9wf
9r +

wf
r

)
r dr
)

(A.2)
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and where uf , and wf , are the 'bre displacements in the longitudinal, and radial di-
rections; Rf is the 'bre radius and the areal fraction of the 'bre cross sectional area;
�f is the interfacial friction stress; and Ef , 
f , and �f are Young’s modulus, Poisson’s
ratio, and the density of the 'bre, respectively. In problems in which the 'bre slides
relative to the matrix, the coupling between the radial displacement and the longitudi-
nal displacement is weak, because the radial displacement, wf , will be much smaller
than the axial displacement, uf , over the zone of sliding. In the limit wf =uf → 0, Eq.
(A.1) simpli'es to Eq. (2a). The radial and axial displacements can also be decoupled
by assuming Poisson’s ratio is zero, but this condition is unnecessary when wf =uf is
small. The limit that wf =uf is small is included in this paper as one of the de'ning
assumptions of the shear lag approximation. Similar assumptions for the matrix, i.e.,
wm=um small, result in Eq. (2b).

A.2. Plane problem

The shear lag model for the plane or plate con'guration is

92uf
9z2 + 
f

9wf
9y =

�f
Êf

92um
9t2 − �f

hÊf
; (A.4a)

92um
9z2 + 
m

9wm
9y =

�f
Êm

92um
9t2 +

f
(1− f)

�f
hÊm

; (A.4b)

where f= h=H , h and H are the half-thickness of 'bre layer and the total matrix/'bre
model, as indicated in Fig. 7, and where uf and wf , are the displacements in the z and x
directions respectively; Ê=E=(1−
2) for plane stress and Ê=E(1−
)=((1+
)(1−2
))
for plane strain. In the limit w=u → 0, Eq. (A.4) simpli'es to Eq. (2b) with a trivial
rede'nition of the radius parameter, Rf = 2h.
Thus the shear lag models for axisymmetric and plane problems are both represented

by Eq. (2).

Appendix B. Static limit

The manner in which the dynamic solutions approach the static limit is interesting.
In the limit, k ≡ �0cf t0=(�0Rf )→ ∞, corresponding to very slow loading, the solution
to the dynamic problem always lies in the slip-stick regime. Retaining the leading order
term when k → ∞ yields front speeds of

�1 =
1

2k(1 + ’)
− (1− C2)’

4k2(1 + ’)2
√
(1 + ’)(C2 + ’)

+)
(
1
k3

)
; (B.1a)

�2 =

√
1 + ’
C2 + ’

(B.1b)
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and the displacement 'elds are

Uf (Z; T ) =




�

(
−Z

2

2
+
p
Ef
Z − p

Ef

T’
2(1 + ’)

√
1 + ’
C2 + ’

)
(06Z6 �1T );

�’
(1 + ’)


−Z2

4k

√
C2 + ’
1 + ’

+
ZT
2k

− T 2

4k

√
1 + ’
C2 + ’


 (�1T ¡Z6 �2T );

(B.2a)

Um(Z; T ) =




�’

(
Z2

2
− p
Ef

T
2(1 + ’)

√
1 + ’
C2 + ’

)
(06Z6 �1T );

�’
(1 + ’)


−Z2

4k

√
C2 + ’
1 + ’

+
ZT
2k

− T 2

4k

√
1 + ’
C2 + ’


 (�1T ¡Z6 �2T ):

(B.2b)

where p(t) = �0t=t0 is the boundary load. The friction stress within the slip zone is
�f = �0 and the friction stress within the stick zone for large k is

�f = �̃= �0
(C2 − 1)’

2k(1 + ’)3=2
√
C2 + ’

; (B.3)

where the friction stress always satis'es |�f |¡ |�0| and the boundary load p(t)=�0t=t0.
For 06Z6 �1T , the 'rst two terms in (B.2a) and the 'rst term in (B.2b) can be

recognized as the displacements for the static case (e.g., appendix of Adams, 1995),
for loading to the boundary load p(t) = �0t=t0. As the static limit is approached,
the stick zone (�1T ¡Z6 �2T ) remains non-zero in length, but the stress gradient
along it becomes vanishingly small. The front in the static limit can be identi'ed with
the limiting position of the boundary between the slip and stick domains in the dy-
namic case, �1cf t. The pullout displacement � of the 'bre end, to leading order in k,
is

�
�s
= 1− 1

2k
(1− C2)’
(1 + ’)2

√
1 + ’
C2 + ’

+)
(
1
k2

)
; (B.4)

where �s = p2(t)=(4�0Ef (1 + ’)) is its value in the static limit

Appendix C. Rigid matrix limit

In the limit of 'bre pullout from a rigid matrix (C → 0 and ’ → 0), the solution
is in the stick-slip regime. The friction stress is identically zero within the stick zone
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and thus

�f =

{
�0 (06Z6 �1T );

0 (�1T6Z6 �2T ):
(C.1)

The front speeds and the end-point displacement in this limit are

�1 =
√
1 + k2 − k; (C.2a)

�3 → 1
C
; (C.2b)

�
�s
= 2k(

√
1 + k2 − k): (C.2c)

These results are consistent with those presented in Refs. (Cox et al., 2001; Eringen
and Suhubi, 1975).
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ABSTRACT 
 
Inertial effects in the mechanism of fibre pullout during the dynamic propagation of a 
bridged crack are examined by reposing simple shear lag models of pullout as problems 
of dynamic wave propagation.  The only coupling considered between the fibres and the 
matrix is uniform, rate independent friction – no debond energy is included. Analytical 
solutions are found for the coupled waves propagating in the fibres and the matrix away 
from the fracture plane of the bridged crack as the bridging tractions increase with time.  
These solutions yield the time-dependent relationship between the crack opening 
displacement and the bridging traction.  Engineering criteria for inertial effects being 
significant are deduced by comparing the dynamic bridging traction law with its 
counterpart for static loading, which is recovered as a limit of the dynamic case.  The 
criteria are evaluated for two crack cases: the asymptotic limit of a long, fully bridged 
matrix crack propagating unstably through a fibrous composite under remote tension; and 
and a finite crack partially bridged by stitches or rods that delaminates a double cantilever 
beam under the impetus of a flying wedge.  In both cases, the rate of increase of the crack 
opening displacement appears to be sufficient for inertial effects to be pronounced in the 
bridging (pullout) mechanism.  Expected trends of the significance of inertial effects with 
material and geometrical parameters are identified. 
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1. Introduction 
 
The pullout mechanism is the fundamental source of toughening and fracture resistance 
in many composites.  In brittle matrix composites, reinforcing fibres that are weakly 
bonded to the matrix can survive the passage of matrix cracks, across which they then 
provide bridging tractions that shield the crack tip from the applied load. The main 
mechanism of load transfer from the fibres to the matrix is interfacial friction.  In 
polymeric laminates reinforced through the thickness by stitches or rods, analogous 
pullout phenomena are observed, but on the scale of fibre tows, which may be 1 mm in 
diameter, rather than on the scale of individual fibres (10 – 100 µm).  Scale 
considerations aside, the mechanics of pullout are very similar in the two cases.  Other 
systems in which bridging entities are coupled to a matrix by friction include so-called 
self-reinforced polycrystalline ceramics, in which elongated grains bridge cracks; and 
ceramic layered systems, in which fractured layers slide past one another during failure. 
 
For mode I cracks, which will be the topic of this paper, the shielding effect created by 
the pullout phenomenon can be summarised by a bridging traction law that relates the 
stress in the bridging entities at the fracture plane, T, to the crack opening displacement, 
2u.  To a very good approximation in many cases, the tractions in the bridging entities 
can be replaced by an equivalent continuous traction, p, that is to be applied to the entire 
bridged interval of the fracture surfaces (e.g., Cox and Marshall, 1994).  Predicting the 
traction law, p(u), becomes one of the central problems of crack bridging theory. 
 
The mechanics of pullout and the resulting traction law have been much studied and are 
well understood for static loading.  Simple analytical forms are available for p(u) when 
the frictional coupling of the reinforcement to the matrix is uniform and slip extends over 
distances that are large compared to the reinforcement diameter (Marshall, Cox, and 
Evans, 1985; McCartney, 1987).  In this limit, which is a common case in ceramic 
composites and textile polymeric composites, the shear lag model of load transfer 
between the reinforcement and the matrix is accurate.  Simple extensions of models of 
this class are also available to deal with small but nonzero levels of the work required to 
debond the reinforcement from the matrix prior to slip (Hutchinson and Jensen, 1990). 
 
Given the relationship, p(u), the characteristics of crack propagation can be computed by 
solving a bridged crack problem.  In composites in which the bridging mechanism is 
most effective, the zone of bridging can be comparable to the crack length and much 
larger than features such as notches (Bao and Suo, 1992; Cox and Marshall, 1994) or, in 
the case of delamination cracks, the laminate thickness (Jain and Mai, 1995; Massabò and 
Cox, 1999).  Crack propagation then does not follow Linear Elastic Fracture Mechanics, 
in the sense that there is no single material parameter such as toughness that correlates 
with the crack growth.  Instead, the bridged crack problem is one of large scale bridging 
and the characteristics of propagation show features peculiar to the form of the traction 
law, p(u) [Cox, 1991].  
 
This paper extends existing models of the mechanics of pullout to high loading rates.  An 
approach to evaluating a traction law that takes account of the inertia of the reinforcement 
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and the matrix is formulated as a direct extension of the elementary static loading model 
of McCartney (1987) and Marshall, Cox, and Evans (1985).  The chosen base model for 
static loading has proven consistent with experiments in many material systems and has 
been the foundation of major advances in understanding damage in composites.  The 
spirit of the present work is to seek equivalent insight into dynamic damage by 
incorporating the influence of inertia into the simplest credible model.  Thus not all 
aspects of the micromechanics of pullout that could be important in some cases will be 
addressed.  Instead, attention will be focused on identifying a characteristic time for the 
frictional pullout problem that will allow rapid assessment of when inertial effects will be 
important.  Although analytical solutions are not available for general loading histories, 
the characteristic time can be expressed analytically in terms of the material and 
geometrical parameters of the problem.  Immediate insight into the magnitude of inertial 
effects is implied. 
 
In this first study, the friction stress is assumed to be constant and spatially uniform.  The 
assumption of spatial uniformity has been very successful in accounting for data from 
static pullout tests in various material systems.  One must recognize, however, that this is 
a strong assumption for dynamic pullout problems, with possible consequences for the 
qualitative nature of solutions.  With direct experimental tests still pending, the following 
analysis presents useful results that at least establish limits for the particular case that the 
friction becomes spatially uniform. 
 
All considerations in this paper are restricted to mode I loading.  The derived dynamic 
traction law is used to analyse two illustrative cases.  One is the formation of a fully-
bridged, steady state (semi-infinite) crack, which is known by static considerations to 
propagate in an unstable manner (dynamically).  This case is representative of large scale 
bridging problems.  The other is the case of a dynamic crack with a bridging zone of 
fixed, limited length in a double cantilever beam specimen, which may propagate under 
either small or large scale bridging conditions.  For both cracks, inertial effects are likely 
to be significant for plausible crack parameters. 
 
2. Idealisation of the Bridged Crack problem 
 
The crack propagation and pullout problems are depicted schematically in Fig. 1a.   A 
matrix crack propagates on the plane z = 0 and is bridged by intact fibres in its wake.  
(For simplicity of expression, the term fibre from here on will be used to refer to bridging 
entities of any kind, including stitches, rods, and bridging grains.)  Upon the passing of 
the crack tip, a debond crack propagates along the length of each fibre away from the 
fracture plane.  Propagation of the debond crack is governed by the fracture energy 
associated with the separation of the matrix and the fibre at the debond crack tip and the 
work done against friction in displacing the debonded fibre along its axis.  In many 
composites, the debond energy is small and pullout is dominated by friction over much of 
the range of pullout displacements.  Therefore, in this first dynamic pull-out model the 
debond energy will be ignored. 
 



 INERTIAL EFFECTS IN PULLOUT 

RSC bnc/sn   11:56 AM 01/14/03 4 

The modeling assumptions to be used here for the dynamic crack propagation and pullout 
problems will in many respects be the same as those used in simple but successful models 
developed for the static problem.  As for static loading, the crack propagation problem 
can be idealised by replacing the process zone by elastic composite material down to the 
fracture plane and representing the phenomena within the process zone by bridging 
tractions applied continuously on the fracture surfaces (Fig. 1b).  The bridging tractions, 
p, are related to the axial stress, T, in the fibres at the fracture plane by p = fT, where f is 
the area fraction of the fibres on the plane z = 0.  For aligned continuous reinforcement, f 
is also the volume fraction of the fibres.  The total crack opening displacement, 2u, in the 
idealisation should be defined as the difference in the actual displacement evaluated 
across the process zone and the displacement that would be expected if the material in the 
process zone were elastic. 
 
In static models, the traction law, p(u), is derived by considering the micromechanics of 
the phenomena occurring within the process zone, which is to say the micromechanics of 
frictional sliding.  The micromechanical problem can be represented by a small volume 
of material, e.g., the material bounded by one of the dotted rectangles in Fig. 1a.  The 
traction boundary conditions for the representative volume are usually set as follows.  At 
z = 0, the matrix is traction-free, while the fibres sustain the axial traction T.  At z = ls, the 
strain in the fibres and the matrix must equal the average strain in the composite adjacent 
to the process zone (z > ls).  Shear tractions may arise along the vertical boundaries of the 
representative volume (parallel to z), but these are neglected. 
 
In the problem of a crack propagating under static loading, the traction at z = ls for the 
representative volume associated with a fixed volume of material is assumed to rise from 
zero when the material is immediately behind the crack tip to increasing values as the 
material passes further back into the wake (Marshall et al., 1985).  The tractions are not 
truly zero right at the crack tip, since the fibres are not stress-free, but assuming they are 
leads to reasonable results for the bridged crack problem as long as the fibres remain 
intact over sufficiently long distances into the crack wake.  Then shielding of the crack 
tip is dominated by the bridging tractions acting in the further crack wake, where the 
boundary conditions are correct. 
 
Further details of the micromechanical analysis of the static problem may be found in 
McCartney (1987) and the appendix to Marshall et al. (1985). 
 
In dynamic loading, similar steps are followed, but the boundary conditions at the 
boundary of the process zone involve displacement and displacement rates as well as 
stress or strain conditions. 
 
3. The Micromechanics of Dynamic Pullout 
 
When friction is the only active force of resistance, no debond crack tip or crack tip field 
exists to be considered.  The dynamic problem is one of waves propagating along a fibre 
and in the surrounding matrix, the two wave motions being coupled by friction. 
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The archetypal problem is illustrated in Fig. 2.  A representative volume consists of 
cylindrical fibres of radius R and volume fraction f embedded in a matrix (z ≥ 0). The 
fibre and the matrix have axial Young’s moduli Ef and Em and densities ρf and ρm 
respectively.  The axial displacement, strain, and stress of the fibre and the matrix are 
denoted uf and um, εf and εm, and σf and σm, respectively.  The axial displacements will be 
assumed to be the only nonzero displacement components induced by loading and to be 
uniform across any section of the fibre or the matrix.  Thus the displacement, strain, and 
stress in the fibre and the matrix are functions of z and t only.  These are the usual 
assumptions of shear lag theory with the simplest conditions of elasticity (Poisson’s 
effect omitted).  They are consistent with assuming that the friction forces are constant 
(unaffected by fibre contraction or dilation due to axial stresses). 
 
There is no initial bond between the fibres and the matrix.  The fibres are coupled to the 
matrix by friction tractions, τf, which are assigned the following properties.  If relative 
motion exists between the fibres and the matrix, then 
 
 τf = τ ( mf uu && < ) (1a) 
 
 τf = -τ ( mf uu && > ) (1b) 
 
where a dot indicates time differentiation, τ is a positive constant, and τf > 0 indicates 
friction tractions acting on the fibres in the positive z direction.  When the fibres and the 
matrix are not in relative motion, the friction tractions may support stress gradients in the 
fibres and the matrix, provided that the required magnitude of τf does not exceed τ.  Thus, 
by equilibrium considerations, 
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Here the possibility is included that the matrix and the fibres have the same non-zero 
velocity and may also be accelerating together, although solutions of such generality will 
not be exhibited in this paper.  With such a friction law, the dynamic wave equations 
describing those parts of the fibres and the matrix that are in relative motion may be 
written approximately as 
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where θ = 1 if mu& > fu& and θ = -1 otherwise; and cf and cm are the bar wave velocities in 
the fibres and the matrix, given by 
 

 
f

f
f ρ

Ec =  & 
m

m
m ρ

Ec =  . (2c) 

 
The approximation of using the bar wave velocities rather than the longitudinal wave 
velocities in the z direction in the wave equations is consistent with the simplified 
treatment of stresses and strains and the assumed uniformity of the friction stress. 
 
Boundary conditions in the dynamic case are as follows.  At the fracture plane, 
 
 uf(0, t) = 0 & σm(0, t) = 0 (z = 0). (3) 
 
At the boundary of the process zone (limit of relative fibre/matrix motion), 
 
 uf = um = uc (z = ls) (4) 
 
where uc is the displacement of the adjacent intact composite; and conditions also exist 
on stress or strain and particle velocities.  These further conditions depend on the nature 
of the loading history, which can be expressed as the function ε(t), where ε is the strain in 
the z direction in the intact composite adjacent to the process zone boundary.  The 
bridging traction, p, is related to ε by 
 
 p = εE    (5a) 
 
where the composite modulus, E, is given by 
 
 E = fEf  + (1 – f)Em . (5b) 
 
In the depiction of Fig. 1a, the process zone boundary will propagate away from the 
fracture plane as ε(t) rises.  In the case to be considered in this paper, ε(t) will be assumed 
to rise continuously and monotonically from zero.  Placing the origin of time, t = 0, at the 
onset of nonzero ε(t), the location of the zone boundary at time t may then be written1 
 
 ls = η(t)cmt  (6a) 
 
where the function η(t) depends on material and geometrical parameters and the form of 
ε(t) and will be shown to be bounded by 
 
 0 < η(t) ≤ 1 . (6b) 
 

                                                 
1 It is easy to show that all the ensuing results for linearly rising loading, ε = kt, are unchanged if η is 
defined instead by writing ls = η(t)cft; and thus do not depend on the relative magnitudes of cf and cm. 
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For the loading conditions considered, the additional boundary conditions at z = ls are: 
 
 cmf uuu &&& ==  (z = ls) (7a) 
 
and 
 
 εf = εm = ε(t) (z = ls). (7b) 
 
If the load history, ε(t), possesses discontinuities, e.g., a step load, then discontinuities in 
stress and particle velocity will also propagate at the boundary of the process zone (e.g., 
Achenbach, 1973; see also Appendix A).  
 
4. Composite Stress Rising Linearly in Time 
 
In the limit of infinite matrix stiffness, the problem stated above is equivalent to that of 
an isolated, end-loaded rod that is constrained by uniform friction acting on the domain 
of its surface that is in motion.  Fairly general solutions of this special problem were 
presented some time ago (Nikitin and Tyurekhodgaev, 1990; and much earlier papers 
cited therein).  A summary adapted to the present context is provided in Appendix A. 
This limit case gives some indication of what might be expected for general loading 
histories (Section 5 below), but it does not contain much of the essential physics of the 
composite problem.  When the matrix has finite stiffness, fewer analytical solutions can 
be found, because of the complicated evolution of the relative motion of the fibers and 
the matrix.  One tractable case of representative interest for dynamic bridged crack 
problems is that of a load or bridging traction that increases linearly in time.  Solutions of 
this problem are presented here and are used to assess inertial effects in two bridged 
crack problems in Section 6. 
 
A linearly increasing load might give insight, for example, into bridging effects in a 
specimen in which substantial bending arises, such as a standard double cantilever beam 
delamination specimen.  In such specimens, the crack profile is often approximately 
linear and the rate of increase of the bridging tractions at any point might also therefore 
be approximately linear if the crack propagates at approximately constant speed.  The 
bridging traction at a particular material point might be expected to rise from zero as the 
delamination crack first passes until a peak value is reached, perhaps corresponding to 
bridging fibre rupture.  Analytical results can be found for linearly increasing loads. 
 
Let 
 
 ε(t) = kt (8) 
 
where k is constant and all displacements and boundary tractions are zero for t < 0.  In 
this case, θ = 1 and the wave equations have the solutions 
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where η is independent of time and satisfies 
 
 αη3 + ½η2 + βαη - ½ = 0 (9c) 
 
with the dimensionless parameters α and β given by 
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Analysis shows that Eq. (9c) has only one real root, which always lies in (0,1). 
  
The particle velocities and the strains for 0 ≤ z ≤ ls are given by 
 
 [ ]kzu ηα21f +=&     (10a) 
 
 [ ] sm 21 klu ηα+=&     (10b) 
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Some important features of these results are as follows.  The matrix particle velocity is 
uniform and increases in proportion to ls.  The fibre velocity rises linearly through the 
process zone.  A strain concentration, εf/ε, propagates in the fibre behind the process zone 
front, while the matrix strain in the process zone is always less than ε.  The strain 
distributions and velocities beyond the process zone, z > ls, need not be specified, 
provided the composite strain ε obeys the condition Eq. (7) on the process zone 
boundary.   
 
The displacement, u, to be used in defining the traction law, p(u), is given by the common 
fibre and matrix displacement, u1 = uf(z = ls) = um(z = ls) at the boundary of the process 
zone minus the displacement expected if the process zone material were elastic: 
 
 u = u1 - εls 
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Equation (11) constitutes the traction law for the case of linearly rising loads. 
 
Further physical insight may be obtained by considering limiting loading rates.  The limit 
of very fast loading corresponds to k → ∞, whereupon α → 0 and η → 1, since the first 
and third terms in Eq. (9c) become negligible.  The disturbance then propagates at the bar 
wave speed in the matrix. 
 
Static loading is represented by the limit k → 0 or α → ∞, for which the first two terms 
of Eq. (9c) become small and one has the asymptotic solution 
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For this limit, substituting Eq. (12) into Eqs. (6a) and (11) yields 
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which coincide with the results obtained by McCartney (1987).2 
 
A criterion for inertial effects being significant can be deduced by comparing results for 
the dynamic and static cases.  Equations (10) and (13b) show that for loads that increase 
linearly with time, the form of the traction law is identical in the static and dynamic cases 
and 
 

 αβη2st)( =
u

u  .   (14) 

 
Thus the strength of the effects arising from inertia is measured by the degree to which 
the limit of Eq. (12) is not approached.  This can be conveniently summarised by 
comparing the product 2αβη to unity. 
 

                                                 
2 Marshall et al. (1985) derived expressions with different coefficients, but those of McCartney are to be 
preferred, since they correspond to a proper definition of the crack displacement and are consistent with 
conservation of energy. 
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Asymptotic results for large and small β offer further insight into the criterion of Eq. 
(14). 
 
Large ββββ.  Asymptotic analysis of Eq. (9c) shows that in the limit β → ∞, 2αβη → 

( ) ( ) ( ) 



 −+ 2242 αβαβαβ  (second, third, and fourth terms of Eq. (9c) dominant), which 

is a function of αβ and not of β separately; and Fig. 3a shows that this limit is approached 
quite closely for β > 1, which is expected, for example, for composites containing 
relatively stiff fibres (Ef > Em).  Fig. 3a also suggests that, as an engineering estimate, 
inertial effects are large when 
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Remembering that k-1 is the time constant of the loading, this condition can be rewritten 
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Small ββββ.  The limit of a relatively stiff matrix can be analysed by observing that α ∝  2

1

mE  
while β ∝  -1

mE ; and that Eq. (9c) in the limit Em → ∞ therefore yields the limiting 
solution η → (2α)-1/3 (first and last terms of Eq. (9c) dominant).  Thus 2αβη → 
(2αβ)2/3β1/3 when αβ → 0.  Figure 3b shows this approximation for three values of β ≤ 1.  
While the limit is approached only for αβ so small that 2αβη is also small, it can 
nevertheless be used as the basis for engineering estimates of the condition for significant 
inertial effects, i.e., the first significant departure of 2αβη from unity.  The construction 
of Fig. 3b suggests that inertial effects will be significant when αβ < 4(αβ)1, where (αβ)1 
is the value of the product αβ at which the equation (2αβ)2/3β1/3 = 1 is satisfied; i.e., 
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This leads to the criterion for significant inertial effects for composites with relatively 
stiff matrices that 
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The criteria of Eqs. (16) and (18) coincide when β = 1. 
 
Since 2αβη < 1 always, inertial effects increase the stiffness, dp/du, of the traction law 
for loads that increase linearly in time. 



 INERTIAL EFFECTS IN PULLOUT 

RSC bnc/sn   11:56 AM 01/14/03 11 

5. Fibre Pullout from a Rigid Matrix 
 
Analytical results have not been obtained for other loading histories for the composite 
problem. However, results for the pullout of a single fibre from a rigid matrix to which it 
is coupled by friction can be found for step loads as well as linearly increasing loads.  
While this limiting case omits much of the physics of the composite problem, its 
solutions offer some further insight into expected behaviour. 
 
The problem considered for a rigid matrix is as shown in Fig. 4.  The fibre is loaded on 
the fracture plane by tractions, T(t), which can be represented by the boundary condition, 
ε0(t), for the axial strain in the fibre at z = 0.  The response of the system that is of interest 
is wholly represented by the load point displacement, i.e., the displacement, u0(t), of the 
fibre at z = 0, since the matrix is rigid (motionless).  Specifying a boundary condition on 
the fracture plane, rather than at the end of the slip zone, as for the composite problem, is 
preferred here because it allows a simpler statement of the step loading case. 
 
Full solutions of this problem for step and linearly increasing loads are given in (Nikitin 
and Tyurekhodgaev, 1990) and Appendix A.  For the present discussion, the most 
interesting features are the following. 
 
While the load point displacement is reduced by inertial effects for linearly increasing 
loads, for a step load it is increased.  For a linearly increasing load, ε0 = kt, 
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at any time, where the characteristic time of the system, tr, is given by 
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with the subscript “r” referring to the matrix being rigid.  The ratio of Eq. (19) is plotted 
in Fig. 5.  It is always less than unity. For a step function load ε0(t) = ε0, a constant for t > 
0, all motion ceases when t = ε0tr.  At this point, u0 = 2 (st)

0u : in contrast to the case of 
continually increasing loading, inertial effects double the displacement expected from 
loading statically to the same applied load.    Correspondingly, the strain gradient left in 
the fibre following dynamic step loading is exactly half that found after static loading. 
 
One may now form a conjecture about the behaviour that should be expected in the 
composite problem (with a compliant matrix) if a linearly increasing load is followed by 
a period of constant loading.  If the composite strain has been increased linearly to some 
value ε at time t1, the matrix and fibre will both be moving at the boundary of the process 
zone with (positive) velocities given by Eqs. (10a) and (10b) evaluated at z = ls.  To 
achieve this state, the still-intact composite itself must be accelerating towards positive z, 
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maintaining the same velocity at z = ls.  If the composite strain is then fixed (no longer 
increasing), the composite will slow down and the matrix and fibre will begin to 
compress into the boundary of the process zone, under the influence of their inertia.  This 
gives rise to quite complex motions, but the end result will be that the matrix will have 
displaced further relative to the fibre at the crack plane and the effective crack 
displacement, u, will have increased from its value at t = t1.  Analogy with the problem of 
the fibre being pulled out of a rigid matrix suggests that u might finally be larger than if 
the composite strain increased to the same level statically.  However, this conjecture must 
be substantiated by numerical solutions. 
 
6. Implications for Dynamic Bridged Cracks 
 
Whether or not dynamic effects in the pullout process will be important in the problem of 
a propagating bridged crack will depend on the loading rate for the bridging element 
(fibre, stitch, or rod).  The fibre loading rate will depend on the crack propagation rate 
and the crack profile, which will depend on extrinsic factors such as the specimen shape  
and the loading configuration  Taking account of all of these factors in a dynamic fracture 
problem presents quite a challenging calculation.  However, the onset of significant 
dynamic effects can be evaluated without solving a dynamic fracture problem, but simply 
by considering the rate of change of displacements implied by static solutions when the 
applied load follows the time history of the dynamic case. 
 
The likely magnitude of inertial effects is analysed for two crack problems in the 
following.  To make use of the results of Section 4, the composite strain at the boundary 
of the process zone is assumed to rise linearly in time.  Of course, this may not be the 
case – the dynamic crack propagation problem must be solved with a self-consistently 
derived dynamic traction law before the form of the rate of increase can be known -  but 
in the cases considered it appears plausible. 
  
6.1 Steady-State, Fully-Bridged Crack – the ACK Limit 
 
Consider first a crack that would propagate under static conditions to the so-called ACK 
limit, in which a uniform applied stress comes into equilibrium with the bridging stresses 
provided by intact fibres in the far crack wake (Fig. 6).  The ACK limit can be attained, 
for example, by a matrix crack in a ceramic matrix composite in an infinite specimen 
loaded in remote tension (Aveston, Cooper, and Kelly, 1971; Cox and Marshall, 1994).  
The static applied stress, σACK, required to continue crack propagation in the ACK limit 
is invariant and the crack opening displacement in the far crack wake is uniform (Fig. 6).  
For a composite in which the bridging elements are coupled to the matrix by uniform 
friction, static analysis gives the following well-known results (e.g., McCartney, 1987; 
Appendix B in Massabò and Cox, 1999; Marshall and Cox, 1988).  The critical stress, 
σACK, is given by 
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where 
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and Gc is the critical crack tip energy release rate for the matrix crack.  The bridging 
stress approaches close to σACK at a characteristic distance, lACK, from the crack tip given 
by 
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where E  is an elastic constant that depends on the degree of anisotropy of the composite 
(defined, e.g., in Cox and Marshall, 1991).   If the composite strain on the boundary of 
the process zone in the wake of the ACK crack is assumed to rise linearly in time, as in 
Eq. (8), then 
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=      (24) 

 
where cd is the velocity of propagation of the delamination crack tip, which is assumed 
constant.  Using Eq. (9d), the product αβ, which determines the magnitude of inertial 
effects for a linearly rising load, is then 
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For the square root traction law, p ∝  u1/2, the friction stress, τ, the fibre radius, R, and the 
critical energy release rate for the matrix, Gc, do not appear in this expression, although 
they appear in lACK and σACK separately (Eqs. (21) and (23)). 
 
For composites satisfying β > 1, the criterion for significant inertial effects in the 
bridging mechanism is that αβ < 2 (Eq. (15)).  For elastically homogeneous composites, 

EE ≈  and αβ depends only on f and the ratio of the wave speed cm and the crack 
velocity cd.  For example, for f = 0.5, αβ will have a value less than 2 if cd ≥ (π/32)cm.  
The velocity of a crack propagating in the ACK configuration has not previously been 
calculated.  However, if the crack is fully bridged, as in an unnotched composite 
exhibiting multiple matrix cracking, crack growth is known to be unstable (e.g., Cox and 
Marshall, 1994), so that crack velocities satisfying cd ≥ (π/32)cm would appear to be 
feasible. 
 
For composites satisfying β < 1 (β ~ 0.1 would appear to be easily attainable), inertial 
effects will appear at crack velocities lower by a factor of β2 (Eq. (18)). 
Thus inertial effects are predicted to be significant for the ACK crack configuration for at 
least some common composites. 
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6.2 Wedge-Loaded Double Cantilever Beam 
 
The double cantilever beam (DCB) specimen loaded dynamically by a flying wedge 
offers a relatively simple experimental approach to the mode I dynamic delamination 
problem (Fig. 7).  The test is especially attractive for studying the bridging effects 
supplied by through-thickness reinforcement (e.g., stitches or rods) in laminates.  An 
estimate of the likely role of inertia in bridging by stitches or rods follows.  In the context 
of this paper, the “fibre” refers in this case to a stitch or rod and the “matrix” to the 
laminate. 
 
For an increasing bridging traction law, i.e., a law for which dp/du > 0, the crack surfaces 
at the crack tip are predicted to come into contact in the DCB specimen under static 
loading at a certain crack length (Massabò and Cox, 2000).  The crack will be arrested at 
this point, since the crack tip energy release rate must then vanish.  Furthermore, the 
crack surfaces remain in contact when the applied load is increased so that the crack 
remains arrested and failure eventually ensues by another mechanism.  An analogue of 
this interesting phenomenon of crack tip closure and crack arrest, which is a result of 
large scale bridging effects, might also be anticipated in dynamic loading (Beyerlein et 
al., 2000).  An interesting case therefore is to consider the rate of opening of a crack that 
has arrested and is being loaded further by the flying wedge. 
 
Simple analytical expressions for the opening displacements are available in the static 
case for a linear bridging law, p = β3u, and a composite with moderate levels of elastic 
anisotropy.  If l is suitably large in Fig. 7, then the bending moment at the notch root, x = 
0, will dominate over the shear load at x = 0.  In this case, the crack will arrest after 
propagating a distance a1 given by (Massabò and Cox, 2000) 
 

 a1 = b2
π  (26) 

 
where 
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with Ex′ = Ex/(1 - νxy νyx) (plane strain conditions assumed) and Id = 12/h3, with h the 
laminate half-thickness (see Fig. 7 for coordinates and dimensions).  Insight into the 
magnitude of dynamic effects in the bridging phenomenon can be gained by considering 
the rate at which the crack opens at the end of the bridging zone (x = 0 in Fig. 7) under 
the influence of the wedge load when the crack length is fixed at a = a1.  From the results 
of Massabò and Cox (2000), the load point displacement, δ, at the point where the wedge 
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contacts the specimen can be related for large l to the crack opening displacement, 0u) , at 
x = 0 (the last intact bridging element) by (see Appendix B)3 
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The composite strain at the boundary of the process zone at x = 0 is 
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while, for a wedge subtending an angle 2φ and moving at velocity vw, 
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If vw is constant, Eqs. (28 – 30) yield a linear rate of increase for ε, where, in the notation 
of Eq. (8), 
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and thence 
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Here cm refers to the bar wave speed in the laminate (“matrix”) in the through-thickness 
direction. The modulus E3 is that of the composite (with stitches or rods) in the through-
thickness direction, while Em is that of the laminate (without stitches or rods) in the same 
direction.  If f is small, which is the usual case, Em ≈ E3; and the factor ( )ff −1  ≈ f, with 
f = 0.05 a typical value.  Experimental data for typical stitched laminates show β3 ≈ 100 
MPa/mm (Massabò et al., 1998; Turrettini, 1996).  Taking xE ′  = 60 GPa and h = 6 mm, 
the factor hE 3xβ′  has the representative value 6 GPa.  The ratio hE 3xβτ ′ will have 
typical values ~ 10-3 – 10-2 (τ = 6 – 60 MPa).  With l = 20 mm, R = 1 mm, and φ = 20°, 
for example, Eq. (32) reduces to the particular numerical estimate 
 

                                                 
3 These estimates are based on results for a linear bridging law.  Equivalent results for a quadratic law, p ∝  
u1/2, which is expected for static loading of fibers coupled to the matrix by friction, have not been 
published.  However, the estimated times for reaching a given displacement and composite strain are likely 
to be of the same order of magnitude as for a linear law. 
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m 1.001.0
v
c

v
c ≤≤αβ  . (33) 

 
For composites for which β > 1 (including most stitched laminates), inertial effects will 
be significant (i.e., αβ < 2) provided vw > cm/200 (τ = 6 MPa) or vw > cm/20 (τ = 60 
MPa). 
 
Such wedge velocities are eminently attainable and inertial effects in the bridging law are 
likely to be significant in the wedge-loaded DCB test. 
 
7. Discussion 
 
7.1 Shear Lag Approximation 
 
The solutions presented here are based on the approximation that displacements are 
functions of z only.  For static loading, this is an accurate approximation as long as the 
slip distance is large compared to the fibre diameter (Hutchinson and Jensen, 1990).  The 
condition that the slip zone length should be much larger than the fibre diameter will be 
satisfied if the friction stress, τ, takes values typical in brittle matrix composites or 
polymer textile composites. 
 
For dynamic problems, the conditions under which solutions that depend on z only will 
be accurate have not yet been studied.  The solutions presented in this work will at least 
provide tentative limits against which three-dimensional numerical solutions can be 
compared. 
 
Whether the approximation that displacements depend on z alone is accurate will also 
depend on the presence of a nonzero debond energy (energy required for separation of the 
fibres and the matrix).  Here the debond energy was assumed to be zero (fibres and 
matrix already chemically separated).  Dynamic analysis of materials in which the 
debond energy is not small will be significantly more complicated. 
 
7.2 Nature of the Friction Stress 
 
Recent, unpublished experiments on the dynamic push-in of a thin plate (plane strain 
analogue of the push-in of a rod or fibre) have shown some interesting characteristics that 
suggest more complicated states of friction than those assumed here (Rosakis and Owen, 
2001).  In the push-in tests, dynamic strain field measurements revealed indirect evidence 
that the friction stress was not uniform, but consistent rather with dynamic stick-slip 
behavior.  The velocity of the advance of the stress disturbance in the thin plate exceeded 
the shear wave speed and was always less than the bar wave speed (i.e., was intersonic), 
consistent with the predictions of the present model.  However, the velocity appeared to 
take only two discrete values – the bar wave speed or s2c , where cs is the shear wave 
speed of the fibre.  This speed is associated by prior theoretical work with the condition 
for energy consistency of an intersonic shear delamination crack (Lambros and Rosakis, 
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1995; Liu et al., 1995).  The simple assumption of spatially uniform friction in the present 
model leads in contrast to a continuous spectrum of possible velocities. 
 
The friction characteristics during push-in tests are very likely related to Poisson’s effect, 
which leads under the sense of loading for the push-in case to predicted interpenetration 
of the contacting surfaces in the wake of the friction front.  The interpenetration vanishes 
for only one special velocity, s2c , which is close numerically to that observed in the 
new experiments.  One might infer that this velocity is selected in the push-in experiment 
to minimise the energy of the system by avoiding the strong friction that would be caused 
by a driving force for interpenetration.  In bridged cracks opening in mode I, the fibre (or 
reinforcement) is being pulled out of the matrix.  In this case, Poisson's effect will usually 
tend to separate the sliding surfaces; there may not be a selection mechanism for any 
particular velocity.  Further experiments will be of great interest.  
 
7.3 Other Physical Aspects of the Solutions 
 
For stitched laminates, one of the cases assessed in Section 5, the requirement that the 
slip or process zone, ls, be large compared to the fibre (stitch) diameter (typically 1 mm) 
implies that it will also be comparable to or greater than a typical laminate half-thickness, 
h (~ 6 mm).  When the value of ls predicted for an infinite body would exceed h, stress 
waves will reflect from the laminate surface, complicating the micromechanics of the 
process zone.  These effects are not studied here. 
 
A feature of the wave solutions for loads that increase monotonically from zero with time 
is that stress disturbances propagate away from the fracture plane at velocities other than 
either the matrix or fibre bar wave speed.  This is the case for both the composite problem 
(Section 4) and the problem of a fibre being pulled out of a rigid matrix (Nikitin and 
Tyurekhodgaev, 1990; Appendix A).  In the composite problem, the front velocity is 
always less than the matrix bar wave speed.  The possibility exists that the front velocity 
will exceed the bar wave speed in the fibres, but numerical checks show that this can 
happen only for very high (and unlikely) ratios of fibre to matrix density. 
 
No account has been attempted here of the conditions under which the strain at the 
boundary of the process zone, ε, can be expected to rise linearly in time, apart from the 
special case of a wedge loaded DCB specimen.  The relationship between ε and the far 
field conditions in a dynamically loaded body will generally be complicated and revealed 
only by computational solutions of the dynamic stress propagation problem for the whole 
body, including the process zone.  The particular problem of finding far field loading 
conditions that will result in ε(t) being linear in time is very challenging. 
 
8. Conclusions 
 
Some analytical results have been presented for the problem of bridging by the 
mechanism of fibre pullout when the inertia of the fibre and the matrix are taken into 
account.  Simple criteria have been specified for significant inertial effects in the bridging 
mechanism in representative mode I crack propagation problems.  Inertial effects in the 
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bridging mechanism will often be significant for a matrix crack propagating dynamically 
in the steady state ACK limit in a brittle matrix continuous fibre composite or 
delamination in laminates reinforced by through-thickness stitching or rods. 
 
Significant inertial effects are favoured by low fibre volume fraction, low friction stress, 
low matrix bar wave speed, and low fibre modulus; and high fibre diameter and high 
matrix modulus.  If the fibre modulus is high enough (relative to the matrix modulus), the 
criterion for inertial effects becomes independent of fibre modulus.  The matrix density 
enters the criterion only through the matrix bar wave speed.  The criterion is always 
independent of the fibre density. 
 
For pullout or bridging stresses that rise linearly in time, the instantaneous crack 
displacement is less in the presence of inertial effects than it would be under static 
loading to the same bridging stress.  However, solutions for pullout from a rigid matrix 
suggest that, if the bridging stress rises rapidly and is then held at a constant value, the 
crack displacement when all particle motion finally stops will be greater than it would 
have been under static loading to that stress level.  Thus regimes of both hardening and 
softening of the bridging traction law due to inertial effects can be expected in bridged 
crack problems. 
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Appendix A.  Fibre Pullout from a Rigid Matrix. 
 
Solutions are exhibited here to the problem described in Fig. 4 and related text.4  Since 
the matrix is rigid, it experiences no motion.  The motion of the fibre is governed by the 
wave equation of Eq. (2a).  The problem is defined by stating the value of the load 
applied to the end of the fibre at z = 0, rather than the matrix strain at the end of the 
process zone. 
 
Boundary Conditions for Front of Propagating Disturbance 
 
Let the location of the front limiting the extent of the stress disturbance caused by waves 
propagating along the fibre be written lr = ηcft, where the applied load is turned on at 
time t = 0.  (The subscript “r” is used for this problem as a mnemonic for “rigid” matrix.)  
The jump in the stress, ∆σf, and jump in particle velocity, fu&∆  (where tuu ∂∂≡ ff& ), 
across the front, i.e., from z > ηcft to z < ηcft, must satisfy the energy-conserving relation 
expected from integration of the impulse across the front, namely (see, e.g., Achenbach, 
1973) 
 

 
0f

f
f v

u
ρ
σ∆−=∆ &  (A.1) 

 
where v0 is the velocity of the front, v0 = cf ( ) tt ∂∂ η .  To ensure integrity of the fibre, the 
displacement must be continuous across the front, i.e., 
 
 ( ) 0,f =tzu  (z → -

rl ) . (A.2) 
 
Two front conditions may now be distinguished.  If a stress discontinuity exists at the 
front, 0f >∆σ , then kinematic considerations along with Eq. (A.1) necessitate that (see, 
e.g., Achenbach, 1973) 
 
 η = 1 ( 0f >∆σ ) (A.3a) 
 
or, equivalently,  v0 = cf.  If the stress is continuous across the front, i.e., σf = 0 at z = zf,  
then the velocity of the front remains indeterminate: 
 
 0 < η < 1 ( 0f =∆σ ) . (A.3b) 
Solutions obeying both Eqs. (A.3a) and (A.3b) will be demonstrated in the following. 

                                                 
4 See also (Nikitin and Tyurekhodgaev, 1990).  Dynamic solutions are developed here for the cases of 
particular interest to the delamination problem, with emphasis on the relationship between the dynamic 
results and the static limit.  Some minor errors in Nikitin and Tyurekhodgaev for the case of loading that is 
linear in time are corrected. 
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Step function Load 
 
Consider first a step function load such that 
 

  0f
0

f
f εE

z
uE

z
=

∂
∂

=
 for t > 0 . (A.4) 

 
Since a stress discontinuity is implied by a propagating step load, the front conditions 
given by Eqs. (A.1), (A.2), and (A.3a) are expected to apply.  The solution to the wave 
equation, Eq. (2a), that satisfies these boundary conditions is 
 

 ( ) ( )tcztcz
RE

u f0
22

f
2

f
f 2

−+−−= ετ   (A.5) 

 
with η = 1 (front velocity v0 = cf) always.  The particle velocity is thus 
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where 
 

 
f

f
r c

REt
τ

=   (A.6b) 

 
and is independent of z: within the sliding zone 0 < z < cft, the fibre moves with uniform 
velocity.  The particle acceleration is given by 
 

 
r

f2
f

f
2
f

2

t
cc

REt
u ==

∂
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which is uniform in time.  Motion stops when 
 
 t = ε0tr . (A.8) 
 
This is the characteristic time of the dynamic process for the case of a rigid matrix.  At t = 
ε0tr, the sliding zone has advanced a distance 
 

 0
f

0rfr ε
τ

ε REtcl ==  (t = ε0tr) (A.9) 

 
The strain along the rod has the distribution 
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 z
REz
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The load point displacement, u0, (i.e., the displacement at z = 0) evolves in time 
according to 
 

 
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t
ttcu
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When t = ε0tr, 
 

 2
0

f
0 2

ε
τ
REu −=  (t = ε0tr) (A.12) 

 
which is exactly twice the displacement, st)(

0u , developed under static loading (see 
below).  The final slip length, lr, is also twice the slip length for static loading; and the 
strain gradient, zu ∂∂ f , is half that developed under static loading. 
 
One important consequence of the last fact is that when motion is arrested at t = ε0tr, no 
further stress relaxation is required: the stress gradient at t = ε0tr is only half the 
maximum gradient that can be supported in the fibre by the friction tractions.  According 
to the constitutive behaviour assumed for the friction phenomenon, Eq. (1c), the fibre will 
remain motionless.  Therefore, the configuration predicted for t = ε0tr is the final 
configuration.  Since Eq. (A.10) predicts that σf(lr) = 0 at t = ε0tr, the front condition will 
switch at this instant to Eq. (A.3b): the condition of Eq. (A.1) leads to an indeterminate 
front velocity. 
 
When the fibre arrests at t = ε0tr, the particle acceleration in the slip zone falls 
instantaneously to zero from the constant value of Eq. (A.7).  At the same instant, the 
friction tractions along the slip zone fall from the uniform value, τ, which they had during 
the motion of the fibre, to τ/2, the value required to sustain the stress gradient in the fibre 
at the time of arrest.  This discontinuous change in the friction stress is a direct 
consequence of the constitutive behavior embodied in Eq. (1). 
 
For the step load case, Eq. (A.5) yields the following energy analysis.  The work done by 
the load at time t < ε0tr is given by 
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The kinetic energy in the moving fibre at time t is given by 
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The strain energy in the fibre at time t is given by 
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These energy dissipated in friction up to time t is given by 
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The energy terms are plotted in Fig. A.1.  The total work done at time t = ε0tr is exactly 
three times that done in static loading to ε0Ef (see below). 
 
Linearly Increasing Load 
 
Consider next the case of an applied strain that is given by the linear law 
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In this case, a physically meaningful solution is found only for the front condition given 
by ∆σf = 0 and Eq. (A.3b).  With these boundary conditions, Eq. (2a) has the solution 
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with 
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where tr is the characteristic time of Eq. (A.8).  Thus the particle velocity is given by 
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the acceleration by 
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the stress distribution by 
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and the load point displacement by 
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The static limit in this case can be found by taking the limit k → 0.  One finds 
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where the superscript “(st)” indicates the result obtained by static analysis for loading to 
the instantaneous value, σz(0,t), of the applied tractions (see below).  In the static limit, 
Eq. (A.24b) also shows that η → 0 (consistently with Eq. (A.24a)); while in the limit of 
very rapid loading (k → ∞), or vanishing friction (τ → 0), Eq. (A.24b) leads to η → 1, 
i.e., the front reverts to propagating at the bar wave velocity. 
 
Equations (A.23) and (A.24d) allow the dynamic load point displacement to be related 
very simply to the displacement expected for static loading to the same instantaneous 
applied load: 
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The same characteristic time, tr, identifies cases where dynamic effects are important in 
both the step and linear loading cases. 
 
The Static Problem 
 
Under static loading to stress σ0 = Efε0, force equilibrium leads to a linear stress gradient 
along the fibre 
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so that the slip length, where (st)

fσ = 0, is given by 
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The load point displacement can be found by integrating the strain along the fibre and is 
given by 
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The total work done by the load in the static problem is given by 
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where here u and σ denote the displacement and stress at z = 0 during loading. 
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Appendix B.  The Wedge-Loaded DCB Specimen with Large Scale Bridging. 
 
In a specimen in which shear deformation may be neglected (material anisotropy not too 
large) and in which a linear bridging law, p =β3u, acts on the bridged part of the crack 
(Fig. 7), analytical expressions can be found for the characteristics of crack propagation 
(Massabò and Cox, 2000). The crack displacement profile is given by 
 
 ( ) ( )bxcbxcebxcbxceu bxbx sincossincos 4321 +++= −    (B.1) 
 
where 
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and Id = h3/12, Ex′ = Ex/(1 - νyxνxy), and Ex and νyx and νxy are Young’s modulus and 
Poisson’s ratios for the laminate, respectively. The constants ci are determined by 
boundary conditions.  At the crack tip, u = 0 and the bending rotation φ = - du/dx = 0 
(shear deformation neglected); while at the notch root, x = 0, one can write generally that 
u = 0û  and φ = 0̂φ .   Observing that the bending moment, M̂  = M(x = 0), and shear force, 

Q̂  = Q(x = 0), at x = 0 are related by 
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     (B.3) 

 
where P is the load applied by the wedge and, for a beam with negligible shear 
deformation, Q = -(Ex′Id)d3u/dx3 and M = -(Ex′Id)d2u/dx2, one finds by solving for the 
coefficients cI in (B.1) that 
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and thence 
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If the loading arm length, l, is not short, then the deflection at the point of contact with 
the flying wedge, δ, will be much greater than u0 and therefore δ can be estimated as the 
deflection expected for a cantilever beam with built-in end condition at x = 0: 
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In the limit that lb is large, 
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Figure Captions 
 
1. (a) Schematic of a crack bridged by fibres, showing process zone where relative 

displacement exists between fibres and matrix.  (b) Idealisation of the bridged 
crack problem with process zone replaced by surface tractions acting on the 
fracture surfaces. 

 
2. Schematic of the dynamic pullout problem in a representative volume near the 

fracture plane. 
 
3. The product 2αβη, which indicates the relative importance of inertial effects in the 

bridging phenomenon.  (a) Numerical results for representative values of β.  (b) 
Numerical results for 2αβη compared with asymptotic limit for large Em (dashed 
curves).  The value of (αβ)1 is marked for β = 0.01 and is to be compared with the 
value of αβ at which 2αβη ≈ 0.9, which is taken as a representative cutoff for 
significant inertial effects. 

 
4. Fibre pullout from a rigid matrix. 
 
5. The ratio of dynamic and static load point displacements for a fibre pulled out of a 

rigid matrix by a load that rises linearly with time. 
 
6. A matrix crack propagating in the ACK limit. 
 
7. A double cantilever beam specimen loaded by a flying wedge. 
 
A.1 The distribution of energy as a function of time for a fibre pulled out of a rigid 

matrix by a step load. 
 
 
 



 INERTIAL EFFECTS IN PULLOUT 

RSC bnc/sn   11:56 AM 01/14/03 30 

 
 (a) 

 
 (b) 

 
 

Figure 1 
 

 
 

 Figure 2 
 



 INERTIAL EFFECTS IN PULLOUT 

RSC bnc/sn   11:56 AM 01/14/03 31 

 
 
 

(a) 
 

 
 

(b) 

 
 

Figure 3 
 

 



 INERTIAL EFFECTS IN PULLOUT 

RSC bnc/sn   11:56 AM 01/14/03 32 

 
 

Figure 4. 
 

 
 

Figure 5. 
 

 
 

Figure 6. 
 



 INERTIAL EFFECTS IN PULLOUT 

RSC bnc/sn   11:56 AM 01/14/03 33 

 
 

Figure 7. 
 
 

 
 

Figure A.1 
 



PP 01-?? 
 

 

 
 
 
 

 

Simple form for the Dynamic G – K 
relationship in Orthotropic Materials 

 
 
 

N. Sridhar and B. N. Cox  
Rockwell Science Center 
1049 Camino Dos Rios 
Thousand Oaks,  CA 91360 
U.S.A. 
 
and 
 

I. J. Beyerlein 
Los Alamos National Laboratory 
Los Alamos, New Mexico 
U.S.A. 

 

 
 

 
 

To be submitted as a “brief note” to J. Applied Mechanics 
February, 2001 

 
 
 

 



1. Introduction 
 
 This note presents explicit relations between the dynamic crack energy release rate 
and crack tip stress intensity factors in a form most amenable to computational work for a 
crack propagating along any principal axis in an orthotropic material.  The results 
presented in this form may be particularly useful for work on delamination cracks in 
laminated composites, which are orthotropic in many important applications. 
 
 Prior work in the literature that treats the problem of interest here include the analysis 
of a mode I crack in an orthotropic medium by Piva and Viola (1988); and the analysis of 
a mixed mode crack in a transversely isotropic medium by Wu (1989).  Yang and co-
workers (1991) presented results for a mixed mode crack in an orthotropic material, but 
in a form that is not best suited for immediate computation. By an adaptation of the Stroh 
method of analysis used by Wu, the results of Yang et al. are rendered here in a different 
form better suited to numerical evaluation.  The role of orthotropic anisotropy in 
determining the velocity dependence of Gd is then illustrated for delamination cracks in 
typical ceramic, metal and polymer matrix laminated composites.   
 
 
2. Results  
 
 The relation between the energy release rate and the crack tip stress intensity factor is 
central to fracture analysis.  It appears, for example, in the derivation of stress intensity 
factors from applications of the J-integral and in the derivation via energy arguments of 
integral equations for bridged cracks from weight functions.  Details of the latter for 
dynamic cracks with large scale bridging in the crack wake will appear elsewhere. 
 
 Freund (1972) showed that the dynamic crack energy release rate for an extending 
crack in an elastic body can be written as the modified J-integral, which leads to the G-k 
relationship in the following, convenient form:  
 

)t(kL)t(k
2
1G 1TD

d
−=      (1) 

 
where Gd is the dynamic crack energy release rate and k(t) is the instantaneous crack tip 
stress intensity factors (see Eq. 4.19 in Wu and references therein). The elements of the  



L-1 matrix are universal functions, in the sense that they are independent of the details of 
the applied loading or on the configuration of the body being analyzed.  We present 
results for the L-1 matrix when the material possesses orthotropic symmetry and when the 
crack is extending along one of the principal axis. In this case, the off-diagonal elements 
of the matrix are zero and the diagonal elements of the L-1 matrix is just dependent on the 
elastic properties of the orthotropic medium and the instantaneous value of the crack tip 
velocity. For an orthotropic material with the crack propagating along the 1 direction (and 
direction 3 being the plane strain direction), elements of the L-1 matrix are: 
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where Cij are coefficients of the stiffness matrix, ρ is the density of the  medium and v is 
the instantaneous velocity of the crack tip. The expressions for β are: 
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We can also define the generalized Rayleigh wave function R(v) as 
 

53
2
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and the Rayleigh wave speed (vr) is obtained by setting R(vr) = 0. 
 

In the next section, the diagonal elements L-1
1,1  and L-1

2,2  are plotted numerically for 
cracks propagating along different principal axes in various representative composites.  
The L-1

 matrix elements are functions of the elastic properties and the instantaneous crack 
velocity.  Each diagonal element approaches the corresponding static value as  and  
has the property of  as v , where v

0→v
])[( 1−− vvO r rv→ r is the Rayleigh wave speed. 

 
 
3.  Discussion 
 

In this section, we will present results for the the mode I and mode II contributions to 
the crack energy release rate, as represented by the L-1

1,1  and L-1
2,2  matrix elements, for 

various representative composites that possess orthotropic symmetry and where the crack 
is extending along one of the principal axis.  These results are presented graphically as a 
function of the orthotropy parameters and the instantaneous crack tip velocity.  The mode 
III contribution to the crack energy release rate is a simple expression (see Eq. 5) and 
hence will not be examined further.  
 



In the results presented below, the orientation is such that the principal axes of 
orthotropic symmetry are aligned with the coordinate axis, the crack lies in the 1-3 plane 
and the crack is propagating along the 1 direction (with direction 3 being the plane strain 
direction).  Table I shows the stiffness tensor for various representative composites, the 
corresponding orthotropy paramaters and the Rayleigh velocity (vr) normalized by the 
shear wave velocity (vs).  Also examined in Table I are cases where the crack is running 
along the different principal directions of orthotropic symmetry.  The orthotropy 
parameters λ and ρ as presented by Suo, et al. (1991) are: 
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and where  Sij  are the elements of the compliance tensor.  
 

 Figure 1 shows the variation of the normalized L-1
1,1 / [L-1

1,1]static , where [L-1
1,1]static  

is the value of L-1
1,1 when , as a function of the normalized crack velocity v/v0→v r , 

where vr is the Rayleigh wave speed.  This variation is shown for the different cases 
listed in Table I.  However, it is clear from the figure that the variation in the crack 
energy release rate can be rationalized in terms of the orthotropy parameters λ and ρ. For 
the same normalized crack speed, the normalized mode I contribution (L-1

1,1 / [L-1
1,1]static) to 

the dynamic crack energy release rate increases as λ monotonically increases and as 
ρ monotonically decreases. 

 
Figure 2 similarly shows the variation of the normalized L-1

2,2 / [L-1
2,2]static , where 

[L-1
2,2]static  is the value of L-1

2,2 when , as a function of the normalized crack velocity 
v/v

0→v
r, where vr is the Rayleigh wave speed. This variation is shown for the different cases 

listed in Table I. As in the mode I case, the variation in the crack energy release rate can 
be rationalized in terms of the orthotropy parameters λ and ρ. For the same normalized 
crack speed, the normalized mode II contribution (L-1

2,2 / [L-1
2,2]static) to the dynamic crack 

energy release rate increases as λ increases and as ρ decreases. However, as opposed to 
the mode I case, the variation on λ and ρ is much smaller.  In addition, we observe that 



although the energy release rate shows a monotonic dependence on λ,  the dependence on 
ρ, for small ρ, is not monotonic.  

 
 
4. Conclusions 
 

An analytical form for easy estimation of the dynamic crack energy release rate, in 
terms of the crack tip stress intensity factors, has been presented for cracks propagating 
along any of the principal axis in orthotropic material systems. The dynamic crack energy 
release rate depends on the magnitude of the two orthotropic parameters and the 
instantaneous crack tip velocity. The dynamic crack energy release rate 
is as , and where v])[( 1−− vvO r rvv → r is the Rayleigh wave speed.  The variation in 

the dynamic crack energy relase rate for orthotropic materials can be rationalized in terms 
of the two orthotropy parameters λ and ρ.  
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Figure Caption 
 
Figure 1: The variation of L-1

1,1 (Fig.1a) and L-1
2,2 (Fig.1b) normalized by their 

corresponding static values as a function of the crack tip velocity, normalized by the 
Rayleigh wave velocity,  is shown for different values of λ and ρ. 
 
 



Table I 
 
 

  C11 
GPa 

C22 
GPa 

C33 
GPa 

C44 
GPa 

C55 
GPa 

C66 
GPa 

C12 
GPa 

C13 
GPa 

C23 
GPa 

λ ρ vr/vs 
 

1a 150 12 12 5 30 30 5 5 5 0.08 0.58 0.838 
1b 12 150 12 30 5 30 5 5 5 12.5 0.58 0.593 

Carbon/Epoxy 
Unidirectional 
composite 1c 12 12 150 30 30 5 5 5 5 1.0 0.58 0.864 

2a 10 90 90 10 10 10 5 5 30 9.0 1.29 0.854 Carbon/Epoxy 
00/900 2b 90 10 90 10 10 10 5 30 5 0.11 1.29 0.946 

3a 10 60 60 10 30 30 5 5 20 6.0 0.19 0.512 Carbon/Epoxy 
Quasi-isotropic 3b 60 10 60 30 10 30 5 20 5 0.17 0.19 0.695 

4a 20 120 120 23 9 9 8 8 20 6.0 2.49 0.971 C-SiC ceramic 
matrix 
composite 

4b 120 20 120 9 23 9 8 20 8 0.17 2.49 0.982 

Representative 
Isotropic Comp. 

5 80 80 80 30 30 30 20 20 20 1.00 1.00 0.911 
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Figure 1: The variation of L-1

1,1  normalized by the corresponding static value as a 
function of the crack tip velocity, normalized by the Rayleigh wave velocity,  is shown 
for different values of λ and ρ. 
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Figure 2: The variation of L-1

2,2  normalized by the corresponding static value as a 
function of the crack tip velocity, normalized by the Rayleigh wave velocity,  is shown 
for different values of λ and ρ. 
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Abstract 

Inertial effects in the mechanism of fibre pullout (or push-in) are examined, with 

emphasis on how the rate of propagation of stress waves along the fibre, and thence the 

pullout dynamics, are governed by friction and the propagation of companion waves 

excited in the matrix.  Basic experiments have already been perfomed and the key strain 

field and velocity data successfully recorded.  Dynamic photoelasticity was used to reveal 

the nature of the stress fields associated with the dynamic sliding process.  A fundamental 

model has been proposed and numerically solved to gain a good understanding of the 

friction mediated push-in process. 
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1.0 INTRODUCTION  

 

The mechanics of pullout have been much studied and are well understood for static 

loading.  Simple analytical forms are available for p(δ), the relationship between the 

pullout load, p, and the displacement, δ, of the fibre’s end, when the frictional coupling of 

the reinforcement to the matrix is uniform and slip extends over distances that are large 

compared to the reinforcement diameter (Marshall et al.,1985; McCartney, 1989; 

Hutchinson and Jensen, 1990).  In this limit, which is a common case in ceramic 

composites and textile polymeric composites, the shear lag model of load transfer 

between the reinforcement and the matrix is accurate. 

 

The success of shear lag models in matching numerical calculations and experiments for 

static pullout, given appropriate restrictions, encourages the viewpoint that similarly 

simple models might reveal some key aspects of pullout under dynamic loads. Prior work 

on the problem of a dynamically loaded rod subject to uniform friction has revealed some 

interesting characteristics of the effect of friction on the propagation of stress waves 

(Nikitin and Tyurekhhodgaev, 1990). For end-loading that rises continuously from zero, 

the stress front propagates at velocities less than the bar wave speed by a factor that 

depends on the loading rate.  Only for step loading does the front propagate at the bar 

wave speed.  This strong effect of friction results in significant stiffening of the response 

of the bar, measured as its end displacement for a given load, relative to the static loading 

case.  On the other hand, when motion ceases following step loading, the net fibre 

displacement is exactly twice that expected for static loading to the same load – in this 
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case, dynamic effects lead to effective softening of the response (Nikitin and 

Tyurekhhodgaev, 1990). The front configuration and front speed for this simple bar 

problem can be explained by considering energy conservation and kinetic constraints at 

the front. 

 

When the fibres are embedded in an elastic matrix, the problem is complicated by the 

interaction between the stress waves in the fibre and those excited in the matrix.  The 

front conditions must then be expected to exhibit new characteristics and consequently 

the load-displacement relationship for the fibre end must be affected.  The role of the 

matrix in dynamic pullout is the topic of this paper. 

 

In a previous study (Cox, et al. 2001 and Sridhar, et al. 2001) a shear lag model that was 

directly analogous to that used successfully in static pullout problems (Hutchinson and 

Jensen, 1990) was extended to high loading rates with loading boundary conditions that 

were appropriate to the context of a bridged crack: the load was specified as a far-field 

condition within the body of the fibre/matrix system, rather than at the fibre end.  Here 

new solutions are derived using a shear lag formulation with conditions appropriate to 

fibre pullout: the load is specified as a condition on the fibre end, with the far-field being 

stress-free.  This configuration, as well as being interesting as a theoretical study, is 

representative of laboratory experiments that might be used to study frictional effects 

during pullout (Rosakis and Owen, 2002).  Some interesting new characteristics of stress 

wave propagation are discovered for the particular case of a load that increases linearly in 
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time.  The frictional pullout process is modeled by finite element calculations of a 

fibre/matrix system in which friction is represented as a cohesive zone.   

 

 

2. Model Description 

 

The numerical model (Figure 1) was scaled to 1/80 of the experimental model through 

proper normalization. The normalization procedure is given in Appendix 1. In addition, 

only half of the experimental specimen was modeled owing to its symmetry. Symmetry 

boundary conditions (U3 = 0; τ12 = 0) were imposed along the center of the homolite 

piece and the top surface of the steel piece. Infinite elements were used to prevent elastic 

waves bouncing back from the right end. 

 

Cohesive zone model was used to mimic the frictional interface between the homolite 

and steel piece (need a more detailed description of the CZM). Constant friction stress 

was assumed (despite the fact that a linear zone has to be introduced for the sake of 

numerical stability) 

 

A dynamic loading history was imposed on the left end of the homolite piece. The 

loading history is obtained from CalTech’s experimental measurement, which is shown in 

Figure 2. The interfacial frictional stress used was 40 MPa. 
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Figure 1 Numerical Model 
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Figure 2 Loading history: Loading rate =31.5 MPa/µs, rising time 6.0 µs, total time 
18.0 µs. 
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3. Results 

 

3.1 Characteristic Zones 

 

Figure 3 show the contour plots of (σ1-σ2) and τ12 in the homolite at an instant of t = 

9.822 µs. It is seen that there are three distinct zones associated with the wave 

propagation in the homolite. To the right most is the so-called head wave zone. This is 

the stick zone characterized by shear lag analysis, where the interface friction stress has 

an opposite sense compared to that in the zones following it. In this zone, the homolite is 

loaded by the steel piece and, the wave front travels at a speed larger than the wave speed 

of homolite (Cf), but smaller than that of the steel (Cm).  

 

Following the head wave zone is the linearly increasing shear stress zone. In this region, 

the interface friction stress gets increasingly large before it reaches the constant value 

given by the cohesive law. The existence of this zone is caused by the finite-sloped 

transition from negative to positive shear stress used in the CZ model. However, zones of 

this feature were indeed observed in experiments (Fig 7 in CalTech’s report). The 

interface friction stress causes the kinks in the contours of (σ1-σ2) that form in angled 

bands, which is confirmed by experimental observations.  

 

Immediately behind the linear friction zone is the constant friction zone, which is 

characterized by a sudden drop in contour density in the (σ1-σ2) contour plot. This region 

is characterized as “slip zone” in shear-lag analysis, where the relative particle velocity in 

the steel and homolite (at interface) exceeds the critical value for transition in CZ law. 

According to shear lag analysis, the wave front of this zone travels at a speed smaller 

than Cf. 

 

Behind the constant friction zone is a zone associated with the unloading part of the 

loading history. The contour lines in this region near the interface are quite chaotic, 

which is also seen in the experiments. This may be related to the local instabilities excited 
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by the unloading wave. Actually, in the numerical simulation, alternating contacting and 

separation zones exist in this region. Interestingly, experimentally obtained (σ1-σ2) 

fringes also showed this chaotic phenomena. 

 

σ1-σ2

τ12

linearly 
Increasing
friction

constant
friction

unloading
wave

Head 
wave

σ1-σ2

τ12

linearly 
Increasing
friction

constant
friction

unloading
wave

Head 
wave

 
 

 Figure 3 Contour plots of (σ1-σ2) and τ12 in the homolite at t = 9.822 µs 
 
 
3.2  Stress profiles and wave velocities 

 

Figure 4 shows the stress profiles in homolite at three different instants. Plotted in Figure 

4(a) are the axial stress profiles along the center line of the homolite. The wave velocity 

calculated from this plot is V ≈ Cf  (0.995 Cf), which agrees very well with elasto-

dynamics, and also agrees well with experimental measurement. However, note that for 

each curve, there is a change of slope at some distance behind the wave front. The slope 
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of these curves, according to elastodynamics, is V/0σ&−  (because )/()( 011 Vxtx −= σσ & ).  

Since the velocity V is constant, it follows that it is the loading rate that is decreasing 

with time. Also note that the peak load that is experienced at the centerline seems also 

dropping as the wave propagates. This is attributed to the dissipative frictional sliding 

process along the interface. 

 

Figure 4(b) shows the interface shear stress at the three instants. The shear stress 

increases near linearly until the constant friction stress assigned in the CZ law is reached. 

It shows an almost linearly increasing region followed by a constant shear stress region 

(with very small fluctuations around the assigned value). The wave velocity indicated by 

the interface τ12 curves is Vint = 0.87 Cf, which is markedly smaller than the wave 

velocity along the center (Shear lag prediction for this case is 0.68 Cf ). The constant 

shear stress region is followed by a region marked by the high frequency, violent 

fluctuations. This indicates that unloading wave begins.  

   

Figure 4(c) shows the axial stress at interface as a function of location. The wave velocity 

is 0.87 Cf, which is consistent with that measured from the interface shear stress wave. 

However, there is a region immediately after the wave front where the loading rate is 

very small, marked by the very small slope.  

 

The high-frequency oscillation associated with the unloading wave seems not related to 

numerically-induced oscillations like the Gibbs phenomenon, because the oscillation only 

happens at interface (Fig. 4b & c), while the axial stress measured at the center line of 

homolite is very smooth (Fig. 4a). This may be explained by some sort of local instability 

mechanism. 

 

 Since the stress waves at interface propagate at a different velocity compared to the 

waves travel along the center of the homolite. There must be some changing of 

configurations of contour patterns as functions of time. Figure 5 superimpose the contour 

plots on top of the stress profile plots so that any change in contour configuration can be 

directly related to the stress profiles.  Compare the zone configurations of the two time 
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instants, it is clear that the contour lines in the linearly increasing friction zone are 

scattering at larger time.  This is because the wave velocity of stick zone is larger than 

that of the stick zone. The scattering of (σ1-σ2) fringes in experiments was also seen. 

Another zone change is the shrinkage of the constant friction stress zone. This indicates 

that the unloading waves are faster than the interface loading wave in this zone. 
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Figure 4 Stress profiles in homolite at three different instant. (a) axial stress 
(σ11) along the center line of homolite; (b) shear stress (τ12) along the interface. 
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Figure 5  Contour plots imposed on top of stress profiles for two different time 
instants, t = 6.176 µs, and t = 12.52 µs. 

 
 

3.3  Issues about Identifying Slip Zone Experimentally 

 

In CalTech’s experiments, the slip zone was determined by finding abrupt slope changes 

of (σ1-σ2) along the interface (Figure 9 of CalTech report).  The value of (σ1-σ2) in the 

sliding zone, (σ1-σ2)sliding , may have some indication for evaluating the interface friction 

stress. Because 

22
221121 4)( sτσσσσ +−=− . 
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Further, the experiments showed that the (σ1-σ2)sliding measured is a decreasing function 

of lateral confinement stress. This is somewhat counter intuitive because usually the 

larger the lateral confinement level leads to larger friction stress at interface. Therefore, it 

is worthwhile to investigate further the stress state at interface. Figure 6 gives the stress 

components along the interface for two levels of interfacial friction stresses, sτ  = 20 MPa 

(Fig. 6a) and 40 MPa (Fig. 6b). Values of (σ1-σ2calculated from the three stress 

components are superimposed on the figures. It is very clear that there is a distinct change 

of slope in (σ1-σ2at the beginning of slip zone (constant friction zone). The magnitude of 

(σ1-σ2is approximately sτ2 . However, the magnitude of (σ1-σ2) continues to increase 

after the turning point – there is no explicit relation between of (σ1-σ2) and sτ beyond the 

turning point. 

 

Note that in Figure 6 the lateral confinement is not included, that is, the stress component 

σ22 is purely from the dynamic loading process. However, the lateral confinement stress 

can be added in Eqn (1) to reveal how it would affect the (σ1-σ2). Figure 7 gives the 

results of different lateral confinement levels, 0.5 MPa, 50.0 MPa, 100.0 MPa and 150.0 

MPa. It is seen that (σ1-σ2) at turning point decreases with the increase of lateral 

confinement stress. This may be used to explain the experimental observation (Figure 10 

in CalTech’s report)  
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Figure. 7 Influence of lateral confinement pressure on (σ1-σ2) 
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The numerical model was scaled to 1/80 (in size) of the experimental model. The 
equivalence of the numerical model and experimental model was guaranteed by 
enforcing the dimensionless groups in the numerical model to be identical with the 
corresponding experimental values.  There are multiple ways to achieve this. The one 
used in this study is 
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ABSTRACT 
The field of dynamic fracture has been enlivened over the last five years or so by a series 
of remarkable accomplishments in different fields – earthquake science, atomistic 
(classical and quantum) simulations, novel laboratory experiments, materials modeling, 
and continuum mechanics.  Important concepts have been discovered for the first time or 
elaborated in new ways to reveal wider significance.  Here the literature of this progress 
is summarized. 

Much of the value of the new work resides in the new questions it has raised, which 
suggest profitable areas for research in the next few years and beyond.  From the 
viewpoint of fundamental science, excitement is greatest in the struggle to probe the 
character of dynamic fracture at the atomic scale, using Newtonian or quantum 
mechanics as appropriate (a qualifier to be debated!).  But lively interest is also directed 
towards modeling and experimentation at macroscales, all the way up to the geological, 
where the science of fracture is pulled at once by fundamental issues, such as the curious 
effects of friction, and engineering challenges in applications, where dynamic effects are 
essential to proper design or certification or manufacture. 
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INTRODUCTION 

At some scale, all fracture is dynamic.  Our common experience in the macroscopic 
world may lead to the generalization that the dynamic nature of fracture is manifest only 
when the inertia of relatively large pieces of material is large enough that the correct 
balancing of the energy of fracture requires including kinetic energy.  Equivalently, we 
may say that dynamic (inertial) effects are important when the propagation of stress 
waves through the material is not very fast relative to the rate of advance of the crack tip.  
But even when these conditions for dynamic effects at the macroscopic scale are not met, 
still at the atomic scale, the most fundamental for understanding crack propagation, the 
inertia of individual atoms must be accounted for in depicting their separation from one 
another, even when the crack at the macroscopic scale appears to be advancing quasi-
statically.  Bond rupture (at least at temperatures above absolute zero!) is a dynamic 
process.  The inertia of the atoms involved enters the problem.  The dynamic fracture 
problem is the most fundamental in the science of fracture. 

The dynamic fracture literature has been sustained in a wide number of journals by 
several distinct scientific communities, who have been focused on different objectives.  
The communities have been divided partly by the scale of the systems they consider, 
which ranges from single atoms to earthquake fault lines, partly by the phenomena they 
have chosen to address, and partly by the balance of their leanings towards curiosity-
driven science or technology.  Some cross-referencing among the different bodies of 
work is found, but not as much as the inter-relationship between the ideas being explored 
would justify.  Here progress is reviewed in sections that reflect the major boundaries 
between the dynamic fracture communities, because this is a convenient categorization, 
but fixed points where analogous results or concepts appear re-scaled or otherwise re-
stated in different sections are repeatedly in evidence.  A rich prospect would seem to 
present itself for transferring concepts and methods from one field to another. 

Scientific progress has been rapid and fascinating.  The technological relevance of 
dynamic fracture to structures and systems that will sustain impact or ballistic threats 
remains very high.  The insertion of the new scientific and engineering concepts and 
methods into engineering design is therefore a very timely topic for new research.  

 

1. Dynamic Fracture at the Geological Scale 
Earthquake modeling is concerned with dynamic shear cracks under slow loading.  A 
stream of recent work by Rice and his colleagues has led to new understanding of the 
complex phenomoena of dynamic cracking under such conditions.  First, Ben-Zion and 
Rice (Ben-Zion and Rice, 1997) developed a dynamic simulation scheme of dynamic 
shear cracks under slow loading, which was further improved by Lapusta and colleagues 
(Lapusta et al., 2000).  Lapusta and Rice (Lapusta and Rice, 2003) went on to study 
nucleation of shear cracks and their early dynamic stages in the context of dynamic shear 
ruptures. They established that nucleation processes of large and small events are very 
similar.  Further, events at different scales interact: the irregular initial dynamic phases of 
large events are influenced by stress concentrations induced by initiation and arrest of 
small events. 
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Self-healing or pulse-like dynamic shear ruptures are also being actively investigated in 
the field.  In a pioneering paper, Heaton (Heaton, 1990) showed that some earthquake 
observations can be explained if the duration of the dynamic sliding at each point along 
the interface is short compared to the overall time of the dynamic event.  Since then many 
similar observations have been made. This mode of rupture propagation was called self-
healing or pulse-like, in contrast to the “crack-like” mode in which the duration of sliding 
at a point is comparable to the overall duration of the dynamic event. In parallel 
theoretical work, Zheng and Rice (Zheng and Rice, 1998) demonstrated conditions under 
which crack-like rupture modes are indeed replaced by pulse-like modes at velocity-
weakening interfaces. Adams (Adams, 1998) further demonstrated that the dynamic 
coupling in the frictional relationship between normal stress and shear displacement 
discontinuity (slip) leads to pulse-like slip on a generic bimaterial interface.  Andrews 
and Ben-Zion (Andrews and Ben-Zion, 1997) were the first to simulate a slip pulse on a 
dissimilar material interface with a constant coefficient of friction. They observed 
splitting of the pulse which was later shown, in a fundamental revelation concerning the 
nature of friction, to be the consequence of ill-posedness of the problem when formulated 
with constant friction.  Ranjith and Rice (Ranjith and Rice, 2001) took up this problem 
using stability analysis to demonstrate a wide range of parameters for which the problem 
of dynamic sliding with a constant coefficient of friction is ill-posed. They proposed a 
regularization procedure based on an experimentally based law in which the shear 
strength in response to an abrupt change in normal stress evolves continuously with time 
or slip toward the corresponding Coulomb strength.  Cochard and Rice (Cochard and 
Rice, 2000) proved the validity of the analytical results of Ranjith and Rice by numerical 
simulations of dynamic slip on dissimilar material interfaces. 

This important line of research has shown that rupture along a bi-material interface has 
remarkable dynamic properties that may be relevant to many problems, over broad ranges 
of scales, from geophysics to composite materials. The problem has the fascinating 
feature that it starts in a situation well-posed as a static continuum problem but evolves 
dynamically to a non-continuum state of slip pulses. Recent papers on this topic include, 
e.g., (Ben-Zion, 2001; Ben-Zion and Huang, 2002; Ranjith and Rice, 2001). 

The effects of non-linear rheology that extends beyond the elastic regime, which create 
some interesting and important characteristics in studies of general dynamic cracks (see 
below), are also beginning to attract attention in earthquake studies.  The work by 
Huajian Gao (Gao, 1996; Gao, 1997) on hyperelasticity and Phillipe Geubelle on damage 
covers some general aspects of this broad topic.  Related studies on the evolution of 
earthquakes and faults can be found in (Lyakhovsky et al., 1997; Lyakhovsky et al., 
2001) and (Ben-Zion and Lyakhovsky, 2002). 

 

2. Dynamic Fracture at the Atomic Scale  
A broad development that many participants of the workshop found particularly inspiring 
and at times simply beautiful is the bridge that has grown between continuum and atomic 
(or other discrete) descriptions of dynamic fracture.  Lectures that contributed to the 
impression that the bridge is real and present include those by Farid Abraham, Huajian 
Gao, Mike Marder, David Kessler, and Peter Gumbsch.  In his keynote lecture, Farid 
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Abraham gave a condensed overview of how the rapid advance of computer power 
during the few decades of his career has revolutionized the field.  In 1965, a typical 
problem addressed by computational physicists consisted of about 100 atoms. By the turn 
of 21st century, the system size has reached 1 billion atoms, roughly corresponding to a 
cubic crystal of 250 nm in edge length.  This size is certainly in the regime where a “hand 
shake” to continuum formulations becomes possible.  Abraham showed spectacular 
examples (Abraham et al., 2002) of his 1-billion-atom simulations of work hardening and 
supersonic fracture.  He predicted by 2007 that the state of the art will have reached a 
trillion atoms and simulations on the billion-atom level will become routine.  This puts 
the pace of development in the field into a nice perspective. 

Atomistic studies, largely represented by molecular dynamics simulations, have been 
used significantly in the past to provide fundamental understanding of underlying basic 
physical processes of dynamic fracture, rather than being predictive or specific to a 
particular material.  Examples are the method of lattice dynamics modeling, which 
originated with Leonid Slepyan and is advocated by Mike Marder and David Kessler 
(Marder and Gross, 1995; Slepyan, 1981); or Farid Abraham’s studies of simple model 
materials.  While Abraham et al. (Abraham et al., 1994) opened up the possibility of 
studying fracture through large-scale simulations of model materials, the question 
remains (especially in the minds of experimentalists!) of how much applicability such 
results have.  This is particularly an issue given the very complex microstructure on 
different length scales in real materials and – in contrast – the often very simple and ideal 
microstructure in simulations.  More studies are obviously needed to provide a more 
seamless bridge between atomistic approaches and continuum scale theory and 
experimentation (rather than “isolated” results that are possibly only valid in very specific 
cases).  This is a challenging task given the fact that fracture is a very complex process.  

However, there are some promising areas where the atomistic viewpoint has been 
successfully coupled to continuum scale theory or experiments. An example of such 
“handshaking” of experiment-theory-simulation is the intersonic fracture of mode II 
cracks, where experiments by Ares Rosakis (Rosakis et al., 1999) have stimulated recent 
MD simulations of Abraham and Gao (Abraham and Gao, 2000).  The MD simulations 
were able to match essential features of intersonic fracture that are observed in the 
experiments and also predicted by cohesive modeling (Needleman, 1999) and continuum 
elasticity (Gao et al., 2001). 

Atomistic studies are often associated exclusively with molecular dynamics simulations.  
During the workshop, Mike Marder and David Kessler pointed out that an alternative 
class of analytical methods developed by Slepyan (Slepyan, 1981; Slepyan, 2002), using 
a formulation where atoms remain associated with particular points on a lattice, can also 
and in much smaller computations reveal insight into atomic-scale dynamic fracture.  For 
example, Marder and Gross (Marder and Gross, 1995) made use of Slepyan’s technique 
to calculate a velocity gap and transverse instability during dynamic crack propagation. 
Hauch and colleagues (Hauch et al., 1999) attempted to compare theory and experiment 
for brittle fracture without phenomenological parameters.  Starting from the atomic point 
of view, Gao and colleagues (Gao et al., 2001) demonstrated existence of intersonic 
cracks under shear dominated conditions, while Gerde and Marder (Gerde and Marder, 
2001) demonstrated the existence of self-healing cracks under mixed-mode conditions.  

August 4, 2003 3 



 Modern Topics and Challenges in Dynamic Fracture   
  

Some open questions regarding atomistic modeling were raised during the workshop.  
How predictive are atomistic simulations of dynamic fracture?  How can we develop 
tools that model very complex fracture processes such as the collapse of a building?  A 
rather radical view articulated by Mike Marder is that atomistic simulations could 
eventually be developed into practical tools for engineers.  One thing that can be safely 
said is that atomistic modeling will play an increasingly important role in the next 
decades along with the rapid advance of computer power.  Molecular dynamics could 
potentially be an important part of multi-scale methods describing very complex 
processes.  An important issue is the development of multiscale methods such as 
continuum methods which incorporate atomistic information.  Examples are the VIB 
method by Gao, Klein, Huang and coworkers (Gao and Klein, 1998; Klein et al., 2001; 
Zhang et al., 2002) and the concurrent multiscale methods where some regions are 
treated by finite elements while others are treated by molecular dynamics, such as the At-
FE method (Kohlhoff et al., 1991), quasi-continuum method (Shenoy et al., 1998) and 
the MAAD method (Broughton et al., 1999).   

In some cases, model potentials and classical molecular dynamics fail to explain the 
observed dynamic fracture phenomena and quantum mechanics modeling appears to be 
required.  The lecture by Peter Gumbsch illustrated this point for cleavage fracture in 
silicon.  Pérez and P Gumbsch (Pérez and Gumbsch, 2000a; Pérez and Gumbsch, 2000b) 
showed that anisotropy in the preferred cleavage direction in silicon, which is 
experimentally well documented, can only be explained on the basis of quantum 
mechanical (density functional theory) calculations.  Gumbsch (Gumbsch, 2001) 
discussed some general aspects of atomistic modeling of fracture including bond 
breaking, lattice and bond trapping, and relevant energies.  He emphasized the 
importance of realistic descriptions of the atomic interaction for the atomistic modelling 
of fracture processes, showing that the quantum mechanical (DFT) results for the bond 
breaking process in silicon and the existence of directional anisotropy can only be 
reproduced with advanced tight binding methods (De Vita and Car, 1998) and not with 
simple potentials in a classical MD simulation. While the pseudopotential approximation 
used in the quantum calculations, which precludes relaxation of core electron states, may 
also be questioned when atomic separations undergo the large changes characteristic of 
fracture, nevertheless the warning is laid down: classical mechanics may be inherently 
inadequate for understanding the most fundamental aspects of fracture. 

Other experimental studies on single crystal silicon partly confirm theoretical ideas and 
partly confute modelers by pointing out further complexity.  Thus, addressing the 
existence of a velocity gap in silicon, Sherman et al. (Sherman and Be'ery, 2003) recently 
produced evidence of cracks propagating at very low velocities under controlled 
conditions in silicon.  However, further work from the same group discovered new 
mechanisms for the deflection of a crack from one cleavage system to another as a 
function of crack velocity and crystallographic orientation (Sherman and Be'ery, 2003).  
Shilo and colleagues demonstrated, both experimentally and by modeling, the potentially 
important interaction of a crack in silicon with microstructural defects (dislocations) and 
ramifications for the stability of the crack-front (Shilo et al., 2002). 
A method that aims between the quantum and classical formulations has been suggested 
by De Vita and Car (De Vita and Car, 1998), who developed a new method of 
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dynamically fitting empirical potentials in the region of interest to forces calculated from 
quantum methods. The computational approach includes refitting the forces after a short 
time interval to guarantee accurate match with the ab initio forces at particular epochs. 

Further work from the group of Peter Gumbsch (Rudhart et al., 2003) addressed dynamic 
fracture in quasi-crystals, a class of materials structurally between glass and crystal, and 
found distinct changes in fracture mode with temperature. The fracture modes in quasi-
crystals include brittle fracture, brittle fracture following "virtual" dislocation emission 
and at high temperature, glass-like breaking of bonds in front of the actual crack tip, and 
crack growth by linking of these microcracks. 

 

3. Dynamic Fracture at the Macroscopic Scale  

Fracture Roughness, Crack Front Waves, and Dissipation Mechanisms 
Measurements and modeling of fracture surface roughness in materials of different type, 
including ductile alloys and brittle glasses, and under dynamic and static loading, has led 
to new insight into the conditions for crack propagation.  First, remarkably similar self-
affine fracture surface morphology has been observed in fatigue fractures in metals and 
stress corrosion cracks in glasses (Daguier et al., 1997), a result that has stimulated a 
search for mechanisms that could be universal to such disparate cases.  A further clue on 
the trail came from molecular dynamics simulations, which showed that similar 
morphology can also arise in the fracture of glass in the dynamic regime (Nakano et al., 
1995).  Other simulations revealed that a dynamic crack in amorphous glass propagates 
by the nucleation and coalescence of cavities, much as a crack in a ductile metal (Celarie 
et al., 2003; van Brutzel et al., 2002).  Thus apparently similar roughness is found in 
static, stress corrosion, and dynamic cases; and theory hints at universality among very 
different material classes.  A separate and rather provocative theoretical study has further 
suggested that only dynamic conditions near the crack tip can account for the roughness; 
dynamic stress transfer affects the crack tip conditions significantly even in cracks that 
are propagating quasi-statically from the macroscopic view (Ramanathan et al., 1997). 

Simultaneously with these developments, basic mathematical tools were developed by 
Willis and colleagues for analyzing in-plane and out-of-plane perturbations of a 
propagating crack front and dynamic stress transfer during crack propagation (Willis and 
Movchan, 1995; Willis and Movchan, 1997).  These techniques have found immediate 
application in understanding various features of earthquake rupture and they have been 
used, in particular, to study crack front waves for generic dynamic cracks (Morrissey and 
Rice, 1998; Ramanathan and Fisher, 1997).  In the latter works, a localised perturbation 
of a propagating crack front has been shown to be able to propagate without decay along 
the crack front, resulting in a new kind of wave, called a crack front wave, which is a 
distinct mode from the classical longitudinal, shear, and Rayleigh wave modes.  The 
association was then suggested, that crack front waves may be responsible for the small-
scale, self-affine fracture surface roughness found experimentally and in simulations for 
so many different materials in both dynamic and (macroscopically) static loading 
(Bouchaud et al., 2002). 
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Attempts have been made at direct experimental verification of crack front waves, but the 
outcome remains subject to some controversy.  Fineberg and co-workers reported 
observations of solitary waves, which they inferred to be crack front waves (Sharon et al., 
2001).  However, K. Ravi-Chandar has claimed contrary experimental evidence, which 
seems to indicate that the solitary waves observed in the experiments of Fineberg may be 
due to an interaction between shear waves and the propagating crack front.  More 
experiments, and perhaps large-scale molecular dynamics simulations, are obviously 
needed to settle this fundamental point.  

Fracture surface roughness may also be the result of microcracking, which is an 
important dissipation mechanism for a broad class of materials (Ravi-Chandar and Yang, 
1997; Sharon et al., 1996; Washabaugh and Knauss, 1994).  Microcracks can roughen 
cracks by acting as nuclei for macroscopic crack branching; and they can lead by this and 
by other mechanisms to shielding and amplification effects.  When numerous 
microcracks appear as a cloud, they reduce the effective stiffness of the material 
surrounding the macroscopic crack tip so that the effective wave speed and therefore the 
crack speed through the damaged material are reduced (Gao, 1996) and the macroscopic 
fracture toughness increases.  Early studies of the effect of diffuse microcracks used 
spatial averaging to develop a phenomenological cohesive law that reduced the nonlinear 
material to a narrow band or line of displacement discontinuity.  The evolution of the 
damage zone was modeled (Dietmar, is this correct?  If not, what di you mean by 
“cohesive laws”?) Smearing out discrete microcracking by purely phenomenological 
cohesive laws, the evolution of such a damaged process zone during dynamic cracking 
was studied by Yang and Ravi-Chandar (Yang and Ravi-Chandar, 1996) and Johnson 
(Johnson, 1992).  More advanced studies by Gross and colleagues represent the 
microcracks individually, using a time domain boundary element method, which is 
particularly efficient for multiple crack problems in homogeneous materials (i.e., when 
heterogeneous elasticity is unimportant is this a correct restriction?).  Crack closure 
effects have been taken into account and crack branching and the interaction between 
macro and microcracks during crack growth have been investigated in detail (Rafiee et 
al., 2003; Rafiee et al., 2004; Seelig and Gross, 1997; Seelig and Gross, 1999).  These 
studies show that microcracking can explain the increase of fracture toughness with crack 
velocity and also predict an upper bound for the crack velocity please correct this – I was 
looking for something more explicit (without actually reading the papers!), which lies far 
below the Rayleigh wave speed.  These results agree well with theoretical and 
experimental findings of other authors (Hawong and Kobayashi, 1987; Ramulu and 
Kobayashi, 1985; Shukla et al., 1990).  Since boundary element methods facilitate the 
analysis of arbitrary crack paths and the formation of microcracks, crack branching, crack 
closure and friction, they are being adopted and further developed as an appropriate tool 
for other macroscopic problems, like including problems at the geophysical scale 
(Fedelinsky and M.H. Aliabadi, 1997; Tada and Yamashita, 1997).    

 

Question: I am not sure whether the problems of  dynamically loaded stationary cracks in 
layered materials and in piezoelectric materials should be touched. Furthermore, what 
about the (dynamic) problem of dislocation emission from crack tips: explanation of rate 
dependence of fracture toughness. In these fields a number of papers appeared during the 
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past 5 years.  B: this is an effort question of effort, among other things.  We can always 
add a statement that we are focusing on the Ringberg themes, which were not exhaustive.  
Otherwise, would you like to take it on, Dietmar!? 

Initiation and Propagation Criteria 
The question of the correct way of stating the condition for static crack propagation has 
lain unresolved at the heart of static fracture mechanics since its inception.  In many 
engineering applications, especially involving single cracks, conditions based on energy 
release rate or critical stress intensity factors have enjoyed great practical value.  
However, cases exist with quasi-static loading where an energy condition clearly predicts 
the wrong crack path; and cases are ubiquitous where a dominant stress singularity is a 
fundamentally unrealistic view of crack tip conditions.   Now, from the work on crack 
front waves and its possible dominance of fracture surface roughness, it would appear 
that the ultimate answer to the quasi-static fracture criterion may not be approachable by 
calculations of static behaviour alone but may lie in essentially dynamic phenomena. 

A problem that may turn out to be closely related to crack front waves and surface 
roughness is the so-called failure mode transition first identified in experimental work by 
Kalthoff (Kalthoff, 1988).  (Brian, I don't think this is related so much to the above 
issues, but rather a new type of failure mechanism that appears only for mode II loading, 
not for mode I, and that is closely related with thermoplastic coupling. I suspect this 
effect is quite general for materials that posess plastic deformation capability along with 
some tendency to shear localization) Depending on the impact velocity, a shear loaded 
crack may propagate either under local opening (mode I) conditions, by deflecting 
through a kink angle, or in mode II, along its initial direction, by forming an adiabatic 
shear band.  This transition, which has been observed for a variety of metallic alloys 
(Zhuo et al., 1996) and commercial polycarbonate (Ravi-Chandar, 1995; Rittel, 1998) Is 
this the correct paper of Dany’s? implies velocity dependence in the failure criterion. 
One criterion proposed is a simple rate dependent critical mode II fracture toughness 
(Kalthoff, Ringberg workshop).  But one would guess that the mode II toughness is likely 
to be affected by friction, which will be affected by fracture surface roughness; and so a 
possible connection to work on crack front stability and crack front waves is completed 
(here I agree). 

In an early, seminal work on initiation, using deeply notched, thin sheets of Homalite 
loaded in mode I by a clever electromagnetic method, Ravi-Chandar and Knauss (Ravi-
Chandar and Knauss, 1984) showed strong correlation between the onset of crack 
propagation and the crack tip stress intensity factor.  Thus for engineering applications, 
the idea of a dynamic initiation toughness arises, in analogy to the fracture toughness 
used in quasi-static fracture, where the critical toughness might be a material constant 
that could be measured in a simple standard experiment.  However, the definition of a 
standard experiment to measure dynamic toughness has not been straightforward.  Rittel 
et al. (Rittel et al., 1992) have proposed and developed some simple methods, but a 
crucial difficulty arises in determining the time of initiation. This issue relates to the 
three-dimensional nature of the fracture process: all measurements probe only the 
surfaces of the specimen, so that the moment of advance of a submerged crack tip, and 
thus the stress state at the crack tip at the critical instant, is difficult to know.  A second 
challenge arises: while ample evidence shows that initiation toughness depends on the 
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loading rate, there is no clear relationship between this trend and material type, so that 
predictive capability is still limited.  The resolution of this doubt must lie in experiments 
that reveal fracture micromechanisms operating in each specific material.  Some recent 
work indicates the power of such evidence in understanding engineering initiation data.  
For example, commercial polymethylmethacrylate (plexiglass) shows a large increase in 
initiation toughness with the loading rate (Rittel and Maigre, 1996), which is associated 
with a marked increase of the roughness of the fracture surface next to the fatigue pre-
crack front.  This suggests a transition in damage mechanism involving the possible 
creation of multiple microcracks under the passage of the first stress wave, to an extent 
that depends on loading rate.  Further supporting this idea, numerous non-propagating 
microcracks have been found in dynamically loaded cermets (porous ceramic matrix 
infiltrated with a metallic binder), which are absent in statically loaded material of 
markedly lower initiation toughness (Rittel et al., 2003).  But the details of how 
microcracks interact with the main crack in the stage of damage development that can be 
identified with engineering initiation remain unresolved. 

Cohesive Element Modeling – Links to Atomistics 
Perhaps the most important development in computational fracture mechanics in the last 
decade has been the introduction and refinement of the cohesive element methods 
(Camacho and Ortiz, 1996; Xu and Needleman, 1994).  Cohesive elements introduce the 
possibility of tractions surviving across fracture surfaces after the propagation of a crack 
and, furthermore, allow the crack to follow any path during a simulation, rather than 
being confined to a pre-determined path.  Some very appealing simulations have recently 
appeared of multiple crack development and other complex fracture habits, which could 
not be realized using prior methods in which the fracture paths had to be specified a priori 
(Camacho and Ortiz, 1996; Klein et al., 2001; Xu and Needleman, 1994). 

However, the newness of cohesive surface methods is evident in the fact that some 
intrinsic difficulties remain with the original formulations (Klein et al., 2001).  The 
problems include artificial softening of material properties as the size of cohesive 
elements decreases and mesh dependence in the direction of crack branching (at least at 
the first onset of a branch).  Similar problems have been observed by Falk et al. (Falk et 
al., 2001).  In response to these difficulties, a new class of finite element techniques with 
dynamic cohesive surfaces has been developed, which appear to relieve constraints on the 
admissible directions of new fracture surfaces (Zi and Belytschko, 2003).  The new 
elements may lead to significantly improved cohesive method simulations.  For some 
applications, the material itself may provide a length scale for direct application of 
cohesive methods, such as in the dynamic fragmentation of a granular material  ref to 
Geubelle (He has no paper yet. Work in progress?). 
An interesting degree of universality can be discerned in the computational approaches 
that have evolved in continuum fracture modeling and the older discipline of atomistic 
studies.  In some aspects, the cohesive surface modeling of dynamic fracture can be 
viewed as incorporating atomic interactions along discrete surfaces. 

In the future, it will be important to establish a deeper interaction between experiments 
and simulations performed at either the atomistic or continuum (cohesive element) scale.  
It should become an important objective of simulation groups to move beyond idealized 
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potentials, so that they can extract generally valid information from their simulations and 
contribute to understanding specific issues in dynamic fracture.  Particularly promising 
areas in which atomistic and cohesive element simulations could play an important role 
include crack front waves, dynamic crack branching, hyperelasticity, friction, and crack 
initiation. 

 

4. Experiments 
In spite of interesting advances in the realism of numerical simulations, the ultimate 
reference for newly suggested concepts in dynamic fracture remains, very firmly, 
experiments.  The challenge of obtaining highly resolved, detailed observations of cracks 
in the dynamic regime continues to be among the most severe in the fracture world 
(perhaps only rivaled by fracture experiments at very high temperatures).  Nevertheless, 
the dynamic fracture community has recently invented some noteworthy and clever new 
experiments, from which insight far beyond what was accessible by experiments 20 years 
ago is now being derived.  In these experiments, both materials and mechanics aspects of 
the dynamic fracture problem have been targeted. 

One can broadly distinguish two types of studies in modern experiments. The first 
concerns single crystals or amorphous polymers.  While they have practical relevance in 
their own right, e.g., cleavage of silicon wafers (see below) and dynamic failure of plastic 
components, these materials, because of the absence of heterogeneous morphology, may 
be considered model materials. The second deals with more complex bodies, either 
structural materials such as multi-phase alloys and composites, or natural systems, 
including biological materials and the earth’s crust. 

4.1 Experimental Methods 
Perhaps the most informative full-field experimental techniques for revealing the details 
of interactions between stress waves and propagating cracks are based on optical 
interference.  While the methods of caustics seems to be less used nowadays, optical 
interferometric techniques, such as dynamic photoelasticity and the coherent gradient 
sensor method (CGS) have gained increased popularity (Rosakis, 1993).  The latter 
especially has been developed into a powerful and convenient tool for recording 
displacement gradients and stress fields.  In an elastic material, the displacement gradient 
contours measured by CGS correspond to the stress difference, σ1 - σ2, where (x1, x2) are 
the in-plane coordinates.  Early work used photographic film and rotating mirrors, but 
now similarly high density information can be recorded with film replaced by 
programmable high speed digital cameras, with current systems yielding a total of about 
48 frames at rates in excess of 2.5 106 per second. (e.g., (Coker and Rosakis, 2001)). 
Brian this reference is not specific to high speed cameras. So whe should perhaps omit it 
for this specific issue.  Dany, I did find statements about rate of data acquisition in this 
paper.  Are there better references to quote about modern data speeds?  Please specify. 

Beyond imaging of displacement fields, much can be learned about dynamic fracture 
from thermal and optical emissions.  Temperature fields contain direct information about 
the thermodynamics of nonlinear processes, both at the crack tip and in the crack wake, 
especially, in the latter region, friction due to sliding crack contact.  Direct measurements 
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of temperature changes due to friction are now possible with high speed infra-red array 
imaging devices, although the pixel resolution remains very modest, due to delays in 
transferring the data from the device to storage (e.g., (Zehnder and Rosakis, 1991)). 
Despite the limited resolution of this device, the thermal structure of an adiabatic shear 
band could nevertheless be characterized for the first time, and as technology progresses, 
one can expect the development of high speed thermal cameras that will complement 
existing high speed optical cameras. Moreover, one may now think of coupling the high 
speed cameras to appropriate microscopic lenses to reveal unprecedented information 
about dynamic fracture phenomena at the microscale. At present, such a direct link to 
microstructure is still missing for all the phases of dynamic fracture, namely initiation, 
propagation, and arrest.  At the macroscale, inferences of temperature can be made in 
earthquake slip zones by examining the crystallographic phases found along the fault 
(Otsuki et al., 2003)). 

In laboratory tests, temperature measurements have occasionally led to surprising 
implications.  For example, thermoelastic coupling effects (changes of temperature with 
elastic strain) have commonly been assumed to be negligible, based on experience with 
smooth specimens.  However, recent work (Rittel, 1998) correct ref? has shown that this 
is not always the case: in brittle polymeric materials, the crack-tip temperature may drop 
significantly upon rapid loading.  Such a thermoelastic effect may be important in the 
ductile to brittle transition and deserves additional study and incorporation alongside 
plasticity effects in modeling the overall crack-tip thermodynamics. 

Light emission during fracture has also been the subject of numerous investigations, 
ranging from ice to metal through ceramics, carried out mostly by physicists (see e.g., 
(Yasuda et al., 2002)).  These fascinating results remain largely isolated from the 
mainstream of dynamic fracture experiments.  Nevertheless, the advent of sophisticated 
atomic scale simulations, including quantum calculations of changes in electronic state 
during dynamic fracture, opens the possibility of using light emission to test models of 
some of the most fundamental aspects of fracture.  

The quest for understanding mechanisms of dynamic fracture during earthquakes (the 
geological scale) has led to an exciting advance in laboratory experimental methods, with 
relevance to all scales.  Ares Rosakis and colleagues have demonstrated that some key 
features of earthquake dynamics, including intersonic rupture and rupture initiation under 
slip or velocity weakening friction laws, can be captured in the laboratory using PMMA 
plates held together by friction forces under compression. This is interesting because 
there is an enormous difference in length scales between seismic faults and laboratory 
materials. A “laboratory earthquake” is initiated along a set of pre-designed fault lines 
(material boundaries) by an electric spark that simulates a seismogenic source.  Pulsed 
slip ensues, similar to that in an earthquake slip event.  While the simulation in a small 
specimen of events occurring naturally on a geological scale is eye-catching, the same 
experimental technique may prove equally valuable in probing dynamic friction effects in 
structural materials, such as laminated composites.  The technique has the potential of 
being further developed into a unique experimental platform to test ideas and models of 
mode II and mixed mode cracking under various loading, environmental, and materials 
conditions.  An example demonstrated by Rosakis is the study of dynamic branching and 
transfer of slip along interacting fracture planes (fault lines or material interfaces), with 
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results comparable to seismic measurements and theoretical models developed by Rice 
and co-workers (Kame et al., 2003; Poliakov et al., 2002). 

Such novel laboratory experiments provide bridges not only between theory and 
observations but also between small and large-scale phenomena.  A coherent approach 
combining traditional seismic and fracture measurements and theoretical modeling with 
modern laboratory experimental tools and large-scale computer simulations may 
revolutionize the fields of seismology and dynamic structural design. 

4.2 Challenges for Experimenters 
Major experimental challenges remain, in both fundamental and engineering aspects of 
dynamic fracture.  One issue of continuing engineering importance is the problem of 
defining and characterizing a condition for crack initiation under dynamic conditions.  
For example, in many structures intended for long life, initiation of a single crack under a 
rare dynamic load, e.g., foreign object damage in an aircraft turbine blade, can be enough 
to reduce the fatigue life under normal duty cycling quite dramatically. 

In more recent work, Sharon and Fineberg (Sharon and Fineberg, 1996) produced a large 
body of experimental evidence related to the evolution of crack velocity and the nature of 
the micromechanisms that lead to crack branching.  Crack branching was also 
investigated by Ravi-Chandar and Yang (Ravi-Chandar and Yang, 1997), in terms of 
activation of secondary microcracks near the main crack-tip.  Yet, looking beyond such 
investigations, the role of the microstructure in the dynamic fracture process – its effect 
on crack branching, initiation, etc. – remains very much an open question. This problem 
is not totally new, having concerned pioneers in the field of quasi-static material fracture, 
such as the late A.S. Tetelman (Tetelman and McEvily Jr., 1967).  Yet, new tools, such as 
high speed optical and thermal cameras coupled to microscopes and sophisticated 
numerical codes will allow a re-examination of the structure-property relationship.  In the 
modern context, some new aspects of this overarching problem challenge experimenters.  
For example, dynamic delamination in composites poses difficult questions regarding 
multiple cracking, mixed mode propagation, and the effects of long zones of friction in 
the crack wake (see Section 7). 
 

Additional work on crack propagation in single crystals of sapphire has led to new 
appreciation of the complexity of the creation of fracture surface roughness in the context 
of nonlinear dynamics (Sherman and Be'ery, 1998) correct ref?.  These authors analyzed 
crack profiles in a sapphire single crystal and concluded that the governing equation of 
motion contains seven independent dynamical variables. 

Finally, natural materials, other than engineering alloys or polymers are also 
investigated for their dynamic fracture behavior. As an example, the dynamic ejection of 
magma that occurs during a volcanic eruption represents a challenge in both 
experimental and analytical terms. Here, one deals with the dynamic fracture of a highly 
viscous material that contains numerous bubbles. The rate of decompression will affect 
the nature of the volcanic eruption and the related damage. A series of experimental 
results can be found in Ichihara et al. (Ichihara et al., 2002), in which the failure process 
is analyzed using fluid mechanics concepts. For this example, dynamic fracture 
mechanics concepts should yield new insights into the phenomenon.  Indeed, first of all, 
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the experiments show a ductile to brittle transition of the failure mode with the 
(decompression) rate. Additional work is needed to characterize the failure 
micromechanisms of this complicated bubbly material, and their rate sensitivity. 
Ultimately, the fragmentation process can be analyzed using fragmentation models in 
which the (dynamic) fracture toughness of the material appears explicitly, thus 
establishing an additional link between mechanics and physics of fracture in 
geomaterials. I wonder about omitting this work, at the risk of offending Ichihara, 
because I don’t understand what it has to do with dynamic fracture.  Am I missing 
something? As you wish! This is dynamic fragmentation in fact and not f.m. oper-se. Yet, 
the dynamic fracture/fragmentation of a viscous material is stuill an open question with 
huge implications, as in the present case. OK, I’m being thick again.  Is there any 
dynamic fracture in Ichihara’s paper?  If not, then we would need a statement of what the 
physics was that she included and then an argument that one really ought instead to 
include dynamic fracture to be able to understand the magma problem.  (Once again I’m 
trying to avoid work!  Dany, do you want to re-write this?) 

 

5. Intersonic and Supersonic Fracture 
Intersonic fracture has attracted much attention in the last few years, mainly due to the 
Ares Rosakis’ experimental work (Rosakis et al., 1999) which has motivated the cohesive 
modeling (Needleman and Rosakis, 1999) Geubelle and Kubair 2001), and the molecular 
dynamics studies (Abraham and Gao, 2000; Gao et al., 2001).  The lecture by Yonggang 
Huang presented the fundamental solution of intersonic mode II cracks (Huang and Gao, 
2001). The fundamental solution has been used by the group of Wei Yang (Guo and 
Yang, 2003) to construct transient solutions of intersonic crack propagation.  

A comprehensive review of the historical development of studies on intersonic cracks can 
be found in Rosakis (Rosakis, 2002). In the past decade, scientists working at all length 
scales, from the atomistic, the continuum, all the way up to scale of geological ruptures, 
have undertaken joint efforts to study this unexplored area of fracture mechanics. Early  
contributions to the theoretical literature of dynamic subsonic and intersonic fracture 
highlights significant differences between tensile and shear cracks. Direct laboratory 
observations (Rosakis et al., 1999) have provided a framework for discussing the physics 
of intersonic shear rupture occurring in constitutively homogeneous (isotropic and 
anisotropic) as well as in inhomogeneous systems, all containing preferable crack paths 
or faults. Experiments, models, simulations and field evidence at all length scales have 
been used to discuss processes such as shock wave formation, large-scale frictional 
contact and sliding at the rupture faces, and maximum attainable rupture speeds. This 
topic is of particular interest to the exploration of intersonic fault rupture during shallow 
crustal earthquake events. 

Another important field that was tackled at the workshop was supersonic fracture, a 
phenomenon totally unexplained by the classical theories of fracture. Molecular 
dynamics simulations by the group around Abraham and Gao (Abraham et al., 2002; 
Buehler and Abraham, 2003) have shown the existence of intersonic mode I and 
supersonic mode II cracks.  This has motivated a recent continuum mechanics analysis of 
supersonic mode III cracks by Wei Yang (Guo and Yang, 2003).  Huajian Gao discussed 
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recent progress in theoretical understanding of hyperelasticity in dynamic fracture and 
showed that the phenomenon of supersonic crack propagation could only be understood 
by introducing a new length scale, called χ, which governs the process of energy 
transport near a crack tip.  The crack dynamics is completely dominated by material 
properties inside a zone surrounding the crack tip with characteristic size equal to χ.  
When the material inside this characteristic zone is stiffened due to hyperelastic 
properties, cracks propagate faster than the longitudinal wave speed.  The research group 
of Gao has used this concept to simulate the Broberg problem of crack propagation inside 
a stiff strip embedded in a soft elastic matrix.  The simulations, which confirmed the 
existence of an energy characteristic length, were reported during the workshop (Buehler 
and Abraham, 2003).  This study also has implications for dynamic crack propagation in 
composite materials.  If the characteristic size of the composite microstructure is larger 
than the energy characteristic length, χ, models that homogenize the materials into an 
effective continuum would be in significant error. During the workshop, fruitful 
interactions between Gao’s simulation groups and experimentalists, in particular Rosakis 
and Ravi-Chandar, led to ideas for the design of experiments to verify the energy 
characteristic length.  The ultimate goal would be to conduct experiments on supersonic 
cracks to test the predictions of the simulations and analysis. 

While much excitement rightly centers around the relatively new activity related to 
intersonic cracking, an old but interesting possibility remains to be incorporated in the 
modern work: interface crack propagation that is subsonic but exceeds the Rayleigh wave 
speed has been predicted for at least some combinations of elastic properties of the two 
joined materials (Goldstein, 1966). 

 

6. Friction 
Friction effects dominate many problems of dynamic fracture, but friction remains one of 
the least understood aspects of material behaviour. 

Most earthquakes propagate along existing fault lines. The dynamic slip process is 
complicated by the fact that fault zones contain many rock types, which exhibit distinct 
mechanisms during crack propagation.  The fault zone generally consists of layers of 
finely granulated rock, created by the fragmentation, melting, and recrystallization of 
rock during many prior slip events.  The fragments or grains within a fault line exhibit a 
range of sizes extending over one or two orders of magnitude (Chester et al., 1993; 
Otsuki et al., 2003; Wibberley and Shimamoto, 2003).  This suggests that dynamic slip 
might tend to fragment fault material in such a way that the total fraction of space 
occupied by the grains is maximized.  The grain pattern is reminiscent of the Sierpinski 
gasket, with smaller grains lying in the interstices of larger grains, in a pattern that recurs 
down through many length scales.  However, the fractal dimension of the grain pattern 
varies from one slip system to another, suggesting that melting and fragmentation occur 
at different rates depending on the rock composition in a particular fault.  The relation 
between material composition and the details of nonlinear mechanisms in fault zones, 
including fragmentation and the resulting distribution of particle sizes, remains obscure. 

An analogous situation exists in delamination cracking of many structural materials.  
Layers of rubble, which have at least superficial morphological similarity, but on much 
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smaller scales, to earthquake fault lines, are also pervasive in predominantly mode II 
cracks in brittle polymer or ceramic materials, especially delamination cracks 
propagating between plies in a laminated structure.  In such materials, the origins of the 
rubble can be traced to systems of microcracks that form in layers subjected to shear 
(Bradley and Cohen, 1985; Fleck, 1991; Xia and Hutchinson, 1994).  At large 
displacements, these microcrack systems coalesce to form entirely detached particles in a 
layer.  Since crack displacements far exceed the particle size in the further crack wake, 
one infers that shear tractions are transferred across the crack by a mechanism analogous 
to that acting in the rubble layer in an earthquake fault line, but with the characteristic 
length scales being four or more orders of magnitude smaller (Massabò and Cox, 1999; 
Rice, 1980a).  Under dynamic loading conditions, adiabatic heating of the rubble layer is, 
again in attractive analogy to the geological case, likely to cause some melting and 
therefore rate-dependence through dynamic viscosity. 

In both earthquake and structural simulations and models, the action of material along a 
slip line is represented as friction, i.e., a relationship between the shear traction 
supported, the prevailing compressive stress across the slip line, and the displacement 
discontinuity (and its rate, etc.).  Since the dynamics of friction at the scale of individual 
grains in a slip line is very complicated, simple Coulomb friction cannot be expected to 
be correct; both rate effects and non-linear proportionality will be the norm.  Non-
Coulombic friction can also be inferred directly from certain characteristics of dynamic 
mode II crack propagation.  Zheng and Rice have shown, for example, that self-healing 
or pulse-like crack propagation, which is the prevalent mode of earthquake motion, 
requires a velocity-weakening friction law (Zheng and Rice, 1998).  In a structural or 
laboratory context, Ranjith and Rice demonstrated that ill-posedness in generic dynamic 
sliding problems involving dissimilar materials can be regularized by assuming that 
friction responds slowly to an abrupt change in the compressive stress (Ranjith and Rice, 
2001).  Understanding the relation of these inferred characteristics to material processes 
remains a challenge. 

The constitutive behaviour of dry and cool granular material is a complicated problem of 
load transfer through random contacts that change in time.  The outcome is strongly 
affected by the state of hydrostatic compression, rate effects, and the magnitude of the 
shear displacements.  Work to date on this problem has been confined to large aggregates 
of powder (Anand, 1983; Nemat-Nasser, 2000) check Anand’s 1993 paper rather than the 
thin layers expected in the wake of a crack, with applications to ballistics, shear faulting 
in shock compression, etc. (Nesterenko, 2001).  In ballistic applications, constitutive 
modeling is often reduced to representing comminuted (fragmented) material trapped 
ahead of a penetrator as a viscous fluid, whose viscosity originates in friction at the 
contact points of individual particles.  In an engineering sense, such models have been at 
least partially successful in demonstrating the relation between armour design and 
ballistic performance.  However, such constitutive modeling is too crude to permit 
credible inferences about the role of material type and morphology in determining 
friction (viscous flow) effects in fracture.  Extension of the more complete models of 
granular mechanics to the conditions found in a dynamic crack remains to be made. 

The problem of predicting crack branching and bifurcation is also related to the 
phenomenon of fragmentation during dynamic wave propagation, which has received 
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some attention by approximate analytical methods.  In the simple case of fragmentation 
of a brittle homogeneous medium subject to uniaxial stress waves, Drugan derived a 
characteristic length, lmin, for the minimum elastic fragment size, which is related to the 
wave speed and a cohesive law that is similar to that used in the first cohesive element 
finite element methods (Drugan, 2001).  His length scale can be re-written within a factor 
of order unity as lmin = δ*E/2σmax, where δ* and σmax are the critical displacement and 
stress in the cohesive law and E is a reduced modulus.  This result is curiously similar in 
form to the characteristic bridging length scale, lch, introduced by Hillerborg, Rice and 
others to characterize the length of the bridging zone in a bridged static crack (Cox and 
Marshall, 1994; Hillerborg et al., 1976; Massabò and Cox, 1999; Rice, 1980b).  
However, Drugan’s length scale is independent of the shape of the cohesive law for 
displacements beyond the critical displacement.  The length scale, lch, is more often 
written in bridged crack work as lch = GE/σmax

2, where G is the fracture energy (total area 
under the cohesive law), and only takes the form lch = δ*E/2σmax in the special case of a 
Dugdale law (rectangular cohesive law, G = σmaxδ*).  Why information about the nature 
of the cohesive law beyond the critical displacement, δ*, should have no effect on the 
size of elastic fragments, as in Drugan’s length scale, is an issue for further consideration.  
Analytical models that deal with the entire domain of the cohesive traction/displacement 
law and form a link to computational work on cohesive elements (Section 3 above), in 
which the tail of the traction law has a strong effect, would be timely. 

The length scale characterizes the zone of stress relief on either side of an existing crack 
and is therefore a measure of the fragment size.  An analogue of this effect could account 
for regularly spaced branch cracks in dynamic fracture simulations (who showed these at 
Ringberg?).  A related length scale, perhaps involving the shear wave speed, may appear 
in the creation of arrays of cracks under dynamic mode II conditions.  While this simple 
concept provides insight into the first fracture of an elastic material under dynamic 
overload, little insight is yet available into the subsequent maturation of first crack 
systems into granulated material or the progression of large displacements through that 
material.  If earthquake fault lines are taken as indicators, high deformation will create a 
distribution of grain sizes ranging over several orders of magnitude – there is a tendency 
away from any single length scale and towards scale invariance.  Experiments of 
granulation effects in polymer and ceramic composites, especially for mode II 
delaminations, would be most revealing. 

The dominance of friction in various dynamic problems has been well illustrated in 
recent work.  In fiber pullout, for example, which is the main mechanism of toughening 
of brittle matrix composites, the presence of friction modifies the nature of the 
propagating stress wave in two fundamental ways (Cox et al., 2001; Nikitin and 
Tyurekhodgaev, 1990; Sridhar et al., 2003).  Under smoothly varying loading, the 
furthest propagation of the stress disturbance propagates not at the bar wave speed, but at 
a reduced speed which depends on the loading rate.  Second, when interactions between 
the loaded fiber and the matrix are taken into account, even simple time-linear loading 
results in quite complex possibilities of slip, stick, and reverse slip domains, propagating 
along the fiber matrix interface.   Which pattern of domains is observed depends on the 
loading rate and material parameters.  For loading that varies in time in a non-linear 
manner, the patterns of slip become extremely complicated.  This character forms a 

August 4, 2003 15 



 Modern Topics and Challenges in Dynamic Fracture   
  

strong contrast with the same problem in the static case, for which elementary solutions, 
which have been the basis of many engineering material designs, can be written down for 
arbitrary loading and unloading cycles. 

One result of particular significance for dynamic fracture in structures relates to laminates 
in which through-thickness reinforcement is present.  Through-thickness reinforcement is 
often introduced to increase delamination resistance, which it does very effectively.  
Importantly, experiments and theory have both shown that, for common through-
thickness reinforcement types, such as stitches and rods, mode I displacements tend to be 
suppressed more effectively than mode II displacements, for both static and dynamic 
loading (Massabò and Cox, 2001).  Consequently, a strong engineering principle is 
implied: that robust or damage tolerant laminated structures will tend to delaminate in 
mode II and therefore their failure habits will be dominated by friction.  This represents a 
major departure in emphasis from prior work, the great majority of which has studied 
mode I fracture (where friction is irrelevant).  The mode I case is increasingly appearing 
to be an academic ideal, with the important issues of engineering design depending on 
mode II behaviour. 

 

7. Problems in Materials Design and Engineering Certification 
A new class of materials, the functionally graded materials, has been the subject of recent 
dynamic fracture studies. These materials are designed especially such as to optimize a 
given property, such as fracture toughness. Both layered and continuously graded 
materials have been thoroughly investigated by Shukla and his group (Chalivendra et al., 
2002; Chalivendra et al., 2003; Parameswaran and Shukla, 1998; Parameswaran and 
Shukla, 1999), experimentally and analytically. An important result was that the square-
root singularity remains valid but the higher order terms are influenced by the grading of 
the material, in other words by its microstructure. Numerical simulations on such cracked 
materials under impact loading recently have been done by Sladek and colleagues 
(Sladek et al., 2004).  

 

8. Dynamic Fracture for Device Manufacture 
This paragraph was moved here from Dany’s experimental section Michael Marder 
reviewed a fascinating new application dynamic fracture in device manufacture.  In 
recent pioneering work, dynamic fracture was used to cleave a silicon single crystal along 
a plane along which a crack cannot normally propagate stably.  The crystal was doped by 
ion bombardment with impurities, which changed the atomic interactions along the 
desired plane of fracture and a smooth cleavage was then achieved by loading the crystal 
dynamically.  Here would appear to be an excellent show-case for the potential of 
atomistic or quantum simulations for exploring and optimizing a practical process. 

8. The Future – Unsolved Problems in Dynamic Fracture 
Research over the last five to ten years has brought forward numerous fundamental 
insights into the nature of dynamic fracture.  New theoretical and experimental methods, 
discoveries made in studies at all scales (from the atomic to the geological), and the 
(relatively recent) venture of dynamic fracture researchers into problems of real 
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structures, have all contributed to making the field rich in ideas, possibilities, and – most 
gratifyingly to the curious – unsolved problems that are fundamental in nature and wide-
ranging in relevance. 

What are the problems whose solution could change the way we conceive of dynamic 
fracture? 

 

1. 

With the preparation of The implications for understanding complex fracture processes at 
all scales are profound.  the field has been supported by a number of interested agencies 
in a somewhat fragmentary way, from earthquakes to quantum simulations, in work 
supported mainly by small grants from very diverse sources.  In spite of the relatively 
small scale of support and the (incorrect) opinion in uninterested agencies and researchers 
that dynamic fracture is a solved or marginal problem, the involved community has a 
very strong and active spirit.  A particularly rewarding result of the Ringberg Workshop 
was that, out of many diverse interests, such a strong sense of the universality of dynamic 
fracture arose that much hope was created for future advances by collective action. 

The importance of coordinated or collective action for the future must be emphasized.  
There is a palpable gap between the really interesting new fundamental work that is going 
on and the needs of engineers in materials design, system certification, and manufacture 
(yes, dynamic fracture as a manufacturing method!).  Because of this, the problems being 
taken up or the manner in which they are being posed are not necessarily those that would 
have the most benefit.  While value remains in research that is driven by curiosity alone, 
the field of dynamic fracture suggests great rewards can also be found by posing basic 
research problems to respond directly to applications needs. 
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	where v0 is the velocity of the front, v0 = cf�.  To ensure integrity of the fibre, the displacement must be continuous across the front, i.e.,
	(z ( �)	.	(A.2)
	Two front conditions may now be distinguished.  If a stress discontinuity exists at the front, �, then kinematic considerations along with Eq. (A.1) necessitate that (see, e.g., Achenbach, 1973)
	( = 1	(�)	(A.3a)
	or, equivalently,  v0 = cf.  If the stress is continuous across the front, i.e., (f = 0 at z = zf,
	then the velocity of the front remains indeterminate:
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