

AFRL-IF-RS-TR-2004-145

Final Technical Report
June 2004

PLAN AUTHORING BASED ON SKETCHES,
ADVICE AND TEMPLATES

SRI International

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J860

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-145 has been reviewed and is approved for publication

APPROVED: /s/

JAMES F. REILLY
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES W. CUSACK, Chief
Information Systems Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
JUNE 2004

3. REPORT TYPE AND DATES COVERED
Final Apr 00 – Dec 03

4. TITLE AND SUBTITLE
PLAN AUTHORING BASED ON SKETCHES, ADVICE AND TEMPLATES

6. AUTHOR(S)
Karen L. Myers, Peter A. Jarvis, Thomas J. Lee,
W. Mabry Tyson, and Michael J. Wolverton

5. FUNDING NUMBERS
C - F30602-00-C-0058
PE - 63760E
PR - ATEM
TA - P0
WU - 10

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SRI International
333 Ravenswood Avenue
Menlo Park California 94025-3493

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFSF
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-145

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: James F. Reilly/IFSF/(315) 330-3333/ James.Reilly@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Artificial intelligence (AI) planning technology provides powerful tools for solving problems that require the coordination
of actions in the pursuit of specified goals. To date, however, there has been limited success in transitioning this
technology to significant applications in the commercial, military, and space sectors. A major obstacle to technology
transfer lies with the lack of control available to potential users of planning systems. Al planning systems have
traditionally been designed to operate as black boxes that take a description of a domain and a set of goals and
automatically synthesize a plan for achieving the goals.
Many potential consumers of planning technology require more user-centric tools that are designed to augment human
skills rather than replace them. Both the military and space communities are showing tremendous interest in user-centric
planning technology that combines plan authoring and automated decision aids. The main focus of this project was the
development of the PASSAT system (Plan Authoring based on Sketches, Advice, and Templates), a mixed-initiative
framework for developing complex, hierarchical plans. With its combination of interactive and automated capabilities,
PASSAT enables a user to quickly develop plans that draw upon past experience encoded in templates but that are
customized to individual preferences and the demands of the current situation.

15. NUMBER OF PAGES
99

14. SUBJECT TERMS
Active Templates, Artificial Intelligence, PASSAT, Planning, Decision Aides

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

1. Introduction... 1

2. Plan Authoring within PASSAT .. 3

2.1. Overview of PASSAT ... 3

2.2. Technology Scope.. 3

2.3. PASSAT Example... 4

2.4. Plan Representation .. 6

2.5. Mixed-initiative Plan Development ... 7

2.6. Temporal Visualization.. 8

2.7. Usability Features ... 9

2.8. Modal Truth Criterion ... 9

2.9. Process Facilitation... 12
2.9.1. Agenda and Prioritization ... 12

2.9.2. Information Requirements .. 14

2.10. PASSAT System ... 15

3. Robust Plan Sketching.. 16

3.1. Overview.. 16

3.2. Interpreting Invalid Sketches... 16

3.3. Mixed-initiative Repair.. 17

3.4. Discussion ... 19

4. Policies.. 20

4.1. Overview.. 20

4.2. Domain Metatheory... 21

4.3. Types of Plan Policy .. 22
4.3.1. Role Policies ... 22

4.3.2. Aggregate Policies .. 22

4.4. Policy Validation ... 22

4.5. Summary.. 23

5. Qualitative Causal Reasoning .. 25

5.1. Background ... 25

5.2. Qualitative Reasoning about Plans ... 26

5.3. Plan Relations for Qualitative Reasoning ... 27
5.3.1. Causal Link Relation .. 27

5.3.2. Qualitative Relations... 27

5.4. Example ... 29

ii

5.5. Properties of the Model ... 33

5.6. Sources for Causal Relations .. 33

5.7. Summary.. 33

6. CODA: Coordination of Distributed Activities .. 35

6.1. CODA Approach ... 35

6.2. From Proof of Concept to Transition-Ready System... 37

6.2.1. Matching Modes ... 37

6.2.2. Distributed Architecture ... 38

6.2.3. Linkage to Operational SOFTools .. 38

6.2.4. Session Management .. 39

6.2.5. PAR Extensions .. 39

6.3. PAR Specification Tools .. 39

6.3.1. Forms-based PAR Authoring.. 40

6.3.2. PAR Libraries ... 40

6.3.3. Object-based PAR Specification Tool .. 41

6.4. CODA System .. 41

6.5. Future Work... 42

6.5.1. Impact Analysis .. 42

6.5.2. Generalized Notification Services .. 42

6.5.3. Resolution Services... 43

7. Conclusions.. 44

8. Bibliography .. 46

Appendix A. Publications... 48

8.1. A Mixed-initiative Framework for Robust Plan Sketching .. 49

8.2. PASSAT: A User-centric Planning Framework... 59

8.3. Toward a Theory of Qualitative Reasoning about Plans... 69

8.4. Active Coordination of Distributed Human Planners ... 85

List of Figures

Figure 1: PASSAT Interface during Plan Development 5
Figure 2: A Candidate Template for Task Refinement 6
Figure 3: Conflicting Exfiltration Actions 10
Figure 4: Example with Action Preconditions and Effects 10
Figure 5: Example of a Possible Threat 12
Figure 6: Sketch Exploration Tool 18
Figure 7: Evacuation Plan Fragment with Full Casual-Link Annotations 26
Figure 8: Casual Link Relation 27
Figure 9: Qualitative Plan Relations 28
Figure 10: Evacuation Plan with a Complete Set of Casual Link Relations 31
Figure 11: Evacuation Plan with Qualitative and Casual Link Relations 31
Figure 12: Evacuation Planning Operators 32
Figure 13: CODA Architecture 37
Figure 14: Object-Based PAR Specification Tool 41

 iii

1

1. Introduction

Artificial intelligence (AI) planning technology provides powerful tools for solving

problems that require the coordination of actions in the pursuit of specified goals. To

date, however, there has been limited success in transitioning this technology to

significant applications in the commercial, military, and space sectors. A major obstacle

to technology transfer lies with the lack of control available to potential users of planning

systems. AI planning systems have traditionally been designed to operate as black boxes:

they take a description of a domain and a set of goals and automatically synthesize a plan

for achieving the goals. Human planners, however, are generally reluctant to cede full

control to automated planning systems in this manner.

Many potential consumers of planning technology require more user-centric tools that

are designed to augment human skills rather than replace them. This observation has led,

in recent years, to the development of a number of plan-authoring frameworks. Plan-

authoring systems provide a set of plan editing and manipulation capabilities that support

users in developing plans. These systems introduce a degree of structure to the planning

process, yielding principled representations of plans with well-defined semantics. Plan-

authoring systems can include a range of planning aids that reason over this structure;

however, the role of such automated aids is to augment human planning skills by

facilitating human-driven plan development. Both the military and space communities are

showing tremendous interest in user-centric planning technology that combines plan

authoring and automated decision aids because of the potential to improve the quality and

process of plan development without incurring the high knowledge modeling costs and

loss of control associated with fully automated planning systems.

We pursued three lines of work on this project within the general theme of user-centric

planning technologies designed to augment human planning skills.

A. PASSAT

The main focus of the project was the development of the PASSAT system (Plan

Authoring based on Sketches, Advice, and Templates), a mixed-initiative framework

for developing complex, hierarchical plans. At its heart, PASSAT is a plan-authoring

system in which users construct and modify plans interactively. Users can draw upon

a library of templates, to the extent they desire, to assist with plan development.

Templates correspond to a form of hierarchical task network (HTN), and may encode

both parameterized standard operating procedures and cases corresponding to actual

or notional plans developed for related tasks.

To complement these interactive tools, PASSAT includes a range of automated and

mixed-initiative planning capabilities. Users can invoke an automated planning

mode based on standard HTN methods to expand open tasks within a plan. A mixed-

initiative plan sketch facility helps users refine outlines for plans to complete

solutions, by detecting problems and proposing possible fixes. Advice enables users

to define high-level policies for plan content that the system enforces during

interactive and automated plan development. PASSAT also includes process

facilitation mechanisms to aid the user in managing incomplete tasks during plan

development.

2

With its combination of interactive and automated capabilities, PASSAT enables a

user to quickly develop plans that draw upon past experience encoded in templates

but that are customized to his individual preferences and the demands of the current

situation.

B. CODA

PASSAT provides technology to support a single user in the development of a

complex plan. To complement that capability, we developed a framework for

supporting a team of human planners who must work together to create a common

global plan. In a jumpstart effort to this project (funded under DARPA Contract No.

F30602-97-C-0067), we developed an initial prototype system called CODA

(Coordination of Distributed Activities) that addresses the problem of multiplanner

coordination. On this contract, we generalized and extended this framework to

provide a transition-ready system for use within the Special Operations Forces (SOF)

community.

C. Qualitative Reasoning about Plans

One of the most important benefits from developing a structured representation of a

plan is the ability to perform causal analysis to determine the impact of changes on

the plan. The current standard for reasoning about plan causality focuses on linking

enabling effects of actions or initial world conditions with preconditions of

subsequent actions. This approach is ill-suited to interactive planning environments

in which users may be constructing ad hoc plans on the fly. For this reason, we

developed a qualitative approach to reasoning about plans that does not require the

full causal annotations dictated by traditional methods.

Our work on this project presents a substantial departure from most work in the artificial

intelligence community on planning systems through its emphasis on supporting a user in

the development of complex, real-world plans. We believe that continued work in this

area is essential to enable the development of technology that can assist human planners

faced with increasingly complex planning tasks.

The remainder of this report is organized as follows. Section 2 describes the core plan

authoring capabilities within PASSAT. Section 3 describes our work on robust plan

sketching, while Section 4 describes our work on policies. Section 5 describes our

framework for reasoning qualitatively about the effects of changes on a plan. Section 5.3

describes our framework for qualitative reasoning about plans. Section 6 summarizes our

work on CODA within the context of this contract. Finally, Section 7 presents our

conclusions for the project. Appendix A contains copies of the main technical

publications produced on this contract.

3

2. Plan Authoring within PASSAT

2.1. Overview of PASSAT

PASSAT is a plan-authoring system in which users construct and modify plans

interactively (Myers et al. 2002). Users can draw upon a library of templates, to the

extent they desire, to assist with plan development. Templates correspond to a form of

hierarchical task network (HTN) (Tate 1977; Erol et al. 1994), and may encode both

parameterized standard operating procedures and cases corresponding to actual or

notional plans developed for related tasks.

 To complement these interactive tools, PASSAT includes a range of automated and

mixed-initiative planning capabilities. Users can invoke an automated planning mode

based on standard HTN methods to expand open tasks within a plan. A mixed-initiative

plan sketch facility helps users refine outlines for plans to complete solutions, by

detecting problems and proposing possible fixes. Advice enables users to define high-

level policies for plan content that the system enforces during interactive and automated

plan development. PASSAT also includes process facilitation mechanisms to aid the

user in managing incomplete tasks during plan development. Such assistance is critical

in complex applications, as it helps the user stay focused without overlooking important

details.

Two key principles guided the design of PASSAT:

(a) Flexible, ‘out of the box’ planning: Traditional AI planning systems lock users

into the set of solutions implied by a domain’s predefined action models. Within

PASSAT, templates are viewed as guidelines for performing tasks; the human planner

is free to expand the set of solutions defined by the templates. In particular, a user can

override constraints, drop tasks, or insert additional tasks to match his personal

preferences or the demands of the current situation. This flexibility is critical for

domains in which correct and comprehensive collections of templates cannot be

provided.

(b) Controllable user-centric automation: Automated capabilities should complement

human planning skills and be readily directable by a human.

2.2. Technology Scope

PASSAT is generic, domain-independent technology but is tailored toward applications

for which (a) the complexity of the domain precludes full capture of all relevant planning

knowledge, and (b) human input is critical, but some amount of automation would

improve plan quality and reduce overall planning time. Special Operations Forces (SOF)

mission planning, the driving domain for the Active Templates program, has these

characteristics.

Standard operating procedures exist for many high- and mid-level activities in the SOF

domain, and are readily amenable to encoding within an HTN representation. For

4

example, a hostage rescue operation can be characterized as consisting of the high-level

objectives of performing reconnaissance in the areas around the rescue site, establishing a

safe haven to which to remove the hostages, undertaking the assault to rescue the

hostages, and transporting the hostages to the safe haven. Low-level operations follow

standard doctrine and can also be modeled in a relatively straightforward manner.
1

Intermediate strategy decisions pose a bigger challenge. For example, informed selection

of areas and methods for reconnaissance requires deep background knowledge of

reconnaissance operations, breadth of understanding of the current situation, and

significant experience. Capturing and modeling this type of strategic knowledge in full

presents a tremendous challenge.

SOF planning lies well beyond the range of current automated planning technologies;

moreover, fully automated solutions are unlikely ever to succeed because of the difficulty

in formulating strategic knowledge with sufficient fidelity. In contrast, a PASSAT-style

plan-authoring system provides a good technological match for the SOF planning

domain. Missions arise unexpectedly, resulting in a need to assemble high-quality plans

rapidly. Thus, the availability of tools to expedite plan development is important.

Because many types of SOF operations can be broadly characterized with predefined

templates, knowledge bases can be developed that capture certain portions of the

planning process. However, individual operations tend to be highly distinctive, making it

important to have tools that enable users to modify and customize plans to suit the needs

of a particular situation.

Many potential application domains for planning technology share these characteristics of

having partially formalizable domain knowledge and requiring significant user input to

produce high-quality, situation-specific plans. On the military side, examples include air

operations, disaster relief planning, and noncombatant evacuation operations. Space

applications include science mission planning and ground operations planning.

2.3. PASSAT Example

Figure 1 shows a snapshot of the PASSAT interface during a planning session. The large

frame on the left contains a hierarchical decomposition of the current partial plan. Items

next to folder icons are tasks that have been expanded; items next to star icons are tasks

that can be expanded further (either through automated template application or

interactively); and items next to document icons are tasks that match no templates. The

frame on the upper right shows the current agenda – the list of planning steps the user

must perform to address outstanding issues. The frame on the lower right shows the list

of information requirements – sources of information that have been identified by the

user or PASSAT's planning knowledge as relevant to various portions of the planning

process.

1 Many of our templates were derived directly from SOF field manuals.

5

Figure 1. PASSAT Interface during Plan Development

The human planner develops the plan by selecting a planning step from the agenda and

performing that step (many of these planning steps are accessible through the plan

display as well). If the planning step is to expand the PROVIDE-CSAR-COVERAGE

task, for example, the planner would be presented with several options: apply one of the

templates that matches the task (see Figure 2), enter an expansion manually, or create a

sketch for achieving the PROVIDE-CSAR-COVERAGE task and work with PASSAT to

refine that sketch. Performing this planning step may cause additional planning steps to

be added to the agenda (i.e., new tasks, variables, and constraints may have been

introduced into the plan) and new information requirements as well.

6

2.4. Plan Representation

PASSAT's representation of plans

and tasks is based on a fairly

standard HTN model (similar to that

of (Erol et al. 1994)), augmented

with a rich temporal representation

for tasks. Using PASSAT, a user

would describe the objective of the

plan in the form of one or more task

statements, each consisting of a task

operator and terms (variables,

instances, or functions applied to

terms).

Templates A template describes one

way that a task (i.e., the template’s

purpose) can be decomposed into

subtasks. A template consists of a

set of these subtasks, as well the

variables used in the template,

constraints on the applicability of the

template, and the effects of

successfully performing individual

tasks and the entire template.

Different templates may describe

different decompositions for the

same task.

 PASSAT’s template

representation supports two features

not found in the framework of (Erol

et al. 1994), namely, information

requirements (discussed in detail below) and enumeration tasks. Enumeration tasks

enable the specification of a set of tasks relative to a set of terms that satisfy a designed

predicate. For example, the enumeration task

?city.DISTANCE(?city,?hostage-locn)<20

 RECON(?city)

indicates that a RECON task should be performed for each city within the specified

distance. Other HTN frameworks (e.g., O-Plan (Currie and Tate, 1991) and SIPE-2

(Wilkins 1993)) provide similar mechanisms for enumerating subtasks relative to a

designated constraint.

Figure 2. A Candidate Template for Task

Refinement

7

Constraints Constraints consist of state predicates that denote hard or soft conditions,

perhaps due to physical laws or policy rules. PASSAT employs a three-valued logic for

constraints, grounded in the values TRUE, FALSE, and UNKNOWN.

Automated constraint checking is performed when constraints are created or modified in

the plan. Checking of ground constraints may return a status of UNKNOWN, if the

information is not specified in the world state; such constraints would need to be

validated explicitly by the user. Checking of nonground constraints occurs only when the

number of possible instantiations is less than a predefined threshold, with the system

testing whether the constraint is valid or invalid for each (i.e., establishing that the

constraint is necessarily true or false independent of the instantiation). Otherwise, the

system returns UNKNOWN and the constraint is rechecked when more variables are

instantiated.

Unlike in automated planning systems, a constraint with value other than TRUE does not

necessarily halt the process or cause backtracking. Instead, a violated constraint is called

to the attention of the user, who has the choice of ignoring the violation or changing the

step that triggered the violation.

Temporal Representation PASSAT supports the scheduling of tasks via constraints on

the earliest and latest possible times for the start and end points of tasks. Temporal

constraints typically refer to these end points but may also refer to upper and lower

bounds on those time points. Temporal constraints can also be expressed using Allen’s

interval relations (Allen 1984).

Domain Definition PASSAT utilizes a number of coordinated databases to define its

application domain. An ontology (based on the Generic Frame Protocol representation

(Karp et al. 1995)) defines the hierarchical organization of classes and instances and their

properties. State predicate and task statements are declared, specifying the number and

classes of their arguments. Functions are similarly declared, with the additional

declaration of the class of the function's value. Some predicates and functions are

computable (e.g., <, +, and Distance) while others are defined by their extent. The

world state is defined by a set of ground state predicates.

2.5. Mixed-initiative Plan Development

A user directs planning in PASSAT through a browser-based interface. PASSAT

provides two main modes of mixed-initiative plan development: interactive plan

refinement, and plan sketching. Here, we describe interactive plan refinement; plan

sketching is described in Section 3.

Interactive plan refinement in PASSAT involves three types of planning step: expand

task, instantiate variable, resolve constraint.

Expand Task For task expansion, the system offers the user the choice of applying a

predefined template, specifying a set of subtasks interactively, sketching a solution (see

below), or dropping the task.

8

When the user chooses a template to apply, the system unifies the task and the template's

purpose, making appropriate substitutions throughout the template. PASSAT adds the

subtasks and constraints of the template to the plan. PASSAT also extends its agenda to

include planning steps to expand the new subtasks, to check the new constraints, and to

instantiate any unbound variables from the template. The planning step for the parent

task is marked as completed and removed from the agenda.

PASSAT checks the status of all constraints created during task expansion. For a valid

constraint, the planning step to check it is removed from the agenda. For an invalid

constraint, the planning step is flagged.

Other planning steps may be affected by a task expansion. If the expansion results in the

assignment of a variable, the planning step for instantiating that variable is removed.

Also, the status of constraints that contain that variable might now be resolvable; the

system checks those constraints and updates the planning steps, if necessary.

Instantiate Variable To aid with variable instantiation, PASSAT presents to the user the

set of values that satisfy all relevant constraints; the user can select from this set, provide

an alternative value (hence, override a relevant constraint), or simply mark certain values

as unacceptable. When the variable is instantiated, any impacted constraints are

rechecked.

Resolve Constraint As noted above, PASSAT provides automated checking of

constraints as part of template application, with the agenda being used to track constraints

that the system was unable to validate. Resolve constraint steps enable a user to declare

that the system can disregard designated unsatisfied constraints in a given situation. A

user may wish to do so because (a) he has more recent information that would validate

the constraint, (b) he knows that the constraint is overly strong for the current situation,

or (c) he wants to explore a what-if scenario.

2.6. Temporal Visualization

The tree-oriented representation of the plan within PASSAT's browser-based interface

(e.g., see Figure 1) provides a good overview of the hierarchical structure of a plan. This

type of view is valuable for understanding the relationships among actions and high-level

objectives. It does not, however, provide insight into the temporal structure of the plan.

Because temporal information is critical to understanding and evaluating a plan, PASSAT

includes a capability to display a timeline-based view of a plan. This temporal

presentation of a PASSAT plan makes use of the SOFTools Temporal Plan Editor (TPE).

In particular, we developed a translator that maps a PASSAT plan (complete or partial)

into the internal plan representation used by the SOFTools TPE (i.e., the .sof

representation). Because the .sof language is weaker than that of PASSAT, the translated

plans provide only a subset of the content of a PASSAT plan. Still, there is sufficient

information to communicate the temporal nature of a PASSAT plan.

9

The translator exploits two data sources. First, there is a mapping of the primitive actions

and their arguments within the PASSAT domain model to SOFTools graphical

constructs. For example, a PASSAT `swim' action maps to a SOFTools Move arrow

with an accompanying swimmer icon. The drawings of places for the SOFTools timeline

are determined by exploiting type information for PASSAT actions. Second, template-

specific drawing routines define aggregated display capabilities. The template-level

mappings are not necessary, as each template can be reduced to its constituent actions.

However, such mappings can lead to improved layouts of a plan by providing specialized

directions on how to draw commonly occurring idioms.

2.7. Usability Features

We have incorporated several features into PASSAT to facilitate its use within real

applications.

Because the development of a plan may span several days or be interrupted by other

duties, PASSAT offers the ability to save a plan and to restart it later. As PASSAT is

further developed to support multiple planners working on a single plan, this facility will

allow parallel efforts to be coordinated in a shared plan repository.

A planner may sometimes develop a part of the plan and realize that the initial idea will

not work. The system currently allows the user to undo the steps in reverse order. In the

future, the user will be able to back out of earlier steps without necessarily losing later,

independent steps.

PASSAT is designed to reduce the chance of inadvertent errors. Strong typing for task,

function, and predicate definitions enables the checking of inputs for consistency. If a

processing error should occur in the system, the undo mechanism can provide recovery to

a safe checkpoint.

2.8. Modal Truth Criterion

One of the key benefits of automated planning technology is the ability to identify

harmful interactions among actions within a plan.

Figure 3 shows a simple example from the Special Operations Forces (SOF) domain of a

harmful interaction that involves actions that might arise during the planning of a boat

exfiltration. After the execution of the first action boat1 will be located at green-
beach. The pickup from red-beach clearly cannot be executed immediately after this

sailing action, as the boat will not be at red-beach. More formally, an effect of the first

action At(boat1 green-beach) conflicts with a precondition of the second action

At(boat-1 red-beach).

The example in Figure 3 is extremely simple, as it involves two successive actions. More

generally, however, interactions can occur among actions scattered throughout a plan.

The Modal Truth Criterion (MTC) is a well-understood algorithm designed to detect

action interference in partial-order plans (Tate 1977; Chapman 1987).

10

Figure 3. Conflicting Exfiltration Actions

We have implemented an MTC reasoning module in PASSAT to enable the planner to

detect harmful interactions between planned actions. Our implementation is based on the

standard algorithms developed by Tate (1977). It rests on top of an explicit representation

of the preconditions and effects of actions within templates.

Figure 4 shows the encoding of this knowledge for the simple exfiltration example. The

effects of the Sail action document that the boat has moved from its initial location at

the USS-E after the action is performed, and will be located at green-beach. The

preconditions of the pickup action require that the boat be located at red-beach.

Figure 4. Example with Action Preconditions and Effects

The MTC conflict detection procedure checks every action’s precondition in a plan to

determine if it is satisfied or violated by the effects of other actions. In our example, the

MTC reasoning module will determine that the At(boat1,red-beach) precondition of

the pickup action is violated by the At(boat1, green-beach) effect of the Sail
action.

Conflict detection is a computationally expensive task, as the system must identify for

each precondition the set of actions that could potentially support and interact which

occur in the closest temporal proximity to it. We have made this process as efficient as

Sail(boat1,USS-E,green-beach)

Pickup(yellow1,boat1,red-beach)

Pre: {At(boat1,USS-E)}

Effects:

{(not (At(boat1,USS-E))

 (At(boat1,green-beach)} Pre: {At(boat1,red-beach)}

Effects:

{(not

 (At(yellow1,red-beach))

Sail(boat1,USS-E,green-beach)

Pickup(yellow1,boat1,red-beach)

11

possible by recording a look-up table that enables quick determination of the actions in a

plan that are applicable in checking a given precondition.

Previous implementations of the MTC have centered on fully automated solutions where

the MTC conflict detection routine is run after each plan state modification
2
 (add action,

bind variable, etc.). Identified conflicts are added to the planner’s agenda as “flaws” that

the planner needs to resolve. This model is not well-suited to a mixed-initiative planning

environment since many of the conflicts that arise during plan authoring are temporary

and will be resolved by further plan edits (Peot and Smith, 1993). A user will quickly

become irritated with an agenda full of such transitory problems.

The challenge in a mixed-initiative framework is to identify only those conflicts that truly

warrant a user’s attention. Our approach takes into account the agenda of outstanding

planning tasks that PASSAT maintains (see Section 2.9). We identify two threat classes

for categorizing the conflicts identified by the MTC and use that categorization to control

the conflicts presented to the user. A definite threat is a conflict between action

preconditions and effects that cannot be resolved by the items currently on the plan

agenda. A possible threat is a conflict between action preconditions for which we can

identify at least one agenda item that might resolve it.

To illustrate, first consider the plan fragment in Figure 4. For this small plan, there would

be no outstanding agenda items because all variables are instantiated and the actions are

totally ordered. Thus there are no further steps to take in completing the plan that would

eliminate the problem. As such, the interaction between the two tasks would be a definite

threat. In contrast, consider the incomplete plan in Figure 5. Here, the variable ?boat
has not yet been instantiated; this type of process information is tracked by PASSAT’s

agenda. In this case, there is a possible threat in the case where ?boat is later bound to

boat1; the threat can be avoided, however, by making a different binding choice.

Within PASSAT, the user can actively browse potential threats. However, only definite

threats appear on the agenda. This approach eliminates the distractions that could arise

from overloading the user with many temporary problems that subsequent planning

activities would correct without additional intervention by the user.

Our solution makes the assumption that we have complete knowledge about the plan

agenda. This assumption does not hold in situations where a user is allowed to make

arbitrary edits to a plan. Such an environment would require an extension of our

definition of definite threats to include the notion of plan publication: a definite threat

could occur only in a published portion of the plan, as we would not expect future edits to

be made to those plan elements.

2 The frequency of “critic” invocation is an important issue in automated planners. Some systems, such as

SRI’s SIPE-2 planner (Wilkins 1993), employ a “lazy” strategy where plan critics are invoked only after

completion of a planning level. Doing so can delay the detection of problems but greatly reduces the

overall amount of time devoted to constraint checking.

Pre: {At(?boat,USS-E)}

12

Figure 5. Example of a Possible Threat

Our work presents a first step toward a practical approach for supporting MTC reasoning

within a mixed-initiative planner.. Further work is needed in the following important

areas:

Conflict resolution support. The key problem is the interactions between

resolution options and other constraints in a plan, as selecting a resolution to one

conflict may introduce new conflicts.

Preemptive conflict identification. We are currently using the MTC in a reactive

mode where we inform the user of the problems introduced into a plan after plan

modification options have been selected and applied. It would be useful to

provide a look-ahead function that could preemptively identify conflicts

associated with available options so that users could avoid introducing conflicts.

2.9. Process Facilitation

PASSAT facilitates the user's plan-authoring process by helping the user track

information that is important to the development of the plan. Process facilitation is

supported primarily by two capabilities:

A prioritized agenda of planning steps listing the decisions that the user must

make to address problems or incompleteness in the current plan.

A mechanism for identifying key information requirements implicit in the user's

partial plan, and for directing the user's attention to relevant plan elements when

new information arrives.

2.9.1. Agenda and Prioritization

PASSAT's agenda consists of the open planning steps facing the user given the current

state of planning. By ‘planning steps’, we mean decisions and actions that the user

makes in the process of developing the plan; these are distinguished from the activities

that are part of the plan itself. PASSAT currently supports three types of planning step –

expand task, instantiate variable, and resolve constraint – described earlier. The planning

Effects:

{(not (At(?boat,USS-E))

 (At(?boat,green-beach)}Pre: {At(boat1, red-beach)}

Effects:

{(not

 (At(yellow1,red-beach))

Sail(?boat,USS-E,green-beach)

Pickup(yellow1,boat1,red-beach)

13

steps PASSAT displays in its agenda can be filtered by the user along several

dimensions, including step type and completion status. The user can also sort the agenda

along several dimensions, including step type, creation time, and alphabetical order. The

filtering and sorting facilities can be especially useful for helping the user find a

particular step on the agenda.

In real domains, the development of a plan can involve hundreds or even thousands of

decisions. Correspondingly, PASSAT's agenda can grow quite long during the planning

process. The system provides some basic mechanisms to control agenda growth –

instantiating variables during template application, automatic calculation of constraints –

and to control information overload in the agenda display – the aforementioned agenda

filtering and sorting. However, even with these capabilities, the agenda can frequently

reach a size that is overwhelming to the user. In the face of a large number of planning

steps, we need a technique for keeping the human planner focused on the most important

ones.

To deal with this problem, we have developed mechanisms for prioritizing the planning

steps on the agenda, according to some notion of a step's importance to the planning

process. Our approach has been to offer a suite of prioritization tools, from which the

user may choose given the specific planning situation. PASSAT supports three

prioritization approaches:

Predefined Each subtask, variable, and constraint in a template may be tagged

with a qualitative priority (high, medium, or low), corresponding to the

importance of making a decision about that entity (expanding the task,

instantiating the variable, checking the constraint). Predefined priorities always

take precedence over PASSAT's other prioritization methods in ordering the

agenda display.

Commitment-based This approach prioritizes each planning step according to

the degree that a decision will constrain the rest of the planning process, giving

highest priority to the most constraining decisions. This criterion is especially

useful in collaborative planning situations, where it is important to make decisions

early when they will constrain the alternatives available to other planners. Our

technique measures commitment as the expected number of future decisions

eliminated by performing the step. We approximate this with a recursive formula

that performs a lookahead search through the plan space. While we use some

simple heuristics to reduce the size of the search, the current procedure is still

reasonably expensive relative to PASSAT's other update calculations. As a result,

the current implementation of commitment-based prioritization covers only tasks.

In future work, we will investigate techniques for approximating the commitment

level of a planning step more efficiently.

Experience-based In contrast to the commitment-based approach, which is an

attempt to identify what the planner should do next based on some theoretical

model of planning, the experience-based approach bases its prioritization on what

14

real human planners have done first in the past. The experience-based

prioritization technique stores preference histories of planning steps, and learns a

preference function for them using the online learning algorithm of (Cohen et al.

1998). Planning steps are indexed by the step type, the object name, and the ‘call

stack’ of templates that created the object.

Other possible methods for deriving a step's priority include

Urgency-based: prefer decisions that involve execution tasks that are scheduled to

start soon.

Backtracking-based: prefer decisions that are difficult to achieve. This is

effectively the prioritization criterion of the Fewest Alternatives First strategy and

related heuristics (Pollack et al. 1997) used in automated planning.

Depth-first: prefer steps that derive from the steps most recently performed by

the user. This approach assumes that the user wants to remain focused on one area

of the plan before moving to another.

Breadth-first: prefer steps that derive from the steps least recently performed by

the user.

2.9.2. Information Requirements

In real-world planning, the human planner often makes decisions based on criteria that

are too complex or vague to formalize in a predicate. These criteria are often based on

external sources of information (e.g., reports, meetings). For example, a SOF planner

may want to base his selection of a rendezvous point on an overall assessment of an

intelligence report from the relevant region, though it may be virtually impossible to

formalize the exact set of conditions the planner is looking for within that report. In a

plan-authoring system, we want to be able to capture these criteria and information

sources, and record the connection between them and the relevant elements of the plan.

PASSAT accomplishes this through the use of information requirements.

In addition to specifying the method for expanding a task, a template may also include

one or more information requirements. An information requirement specifies a

monitoring condition on an information source that may be useful for determining the

applicability of the template, for selecting variable instantiations, or for resolving the

template's constraints.

Currently, information requirements are used in PASSAT to make explicit to the user the

connection between plan elements (e.g., variables, constraints) and information sources.

When a planner activates an information requirement in a template, the system creates a

link between the information described in the information requirement and an element or

elements in the plan. When the information arrives, PASSAT calls the planner's attention

to the relevant plan element by creating a high-priority item on the agenda to revisit that

element. PASSAT's current method of detecting when information has arrived is to be

told explicitly by a user, but one could imagine more sophisticated automated sentinels

15

that would, for example, monitor data sources (e.g., Web pages, databases) for specific

updates.

For example, a user planning a SOF mission may make a tentative assignment to a

variable ?RENDEZ-POINT based on the sketchy information available to him. At the

same time, he may activate an information requirement representing an intelligence

report on the region in question and attach it to the variable ?RENDEZ-POINT. When the

intelligence report comes in, PASSAT will notify the planner by putting the Instantiate

Variable step for ?RENDEZ-POINT back on the active agenda, giving it a high priority,

and highlighting the element on the planner's agenda display.

2.10. PASSAT System

The PASSAT system can be run on either a Windows or Sun workstation platform. There

is an extensive user guide for the system that includes (a) instructions for downloading

and installing PASSAT, (b) a detailed overview of the PASSAT interface, and (c)

extended demonstrations of the core plan authoring and sketch processing capabilities.

The demonstrations make use of a hostage rescue domain that was developed on the

project. The domain consists of an extensive set of templates that encode standard

operating procedures related to hostage rescue, a background ontology of generic object

classes and instance information for a specific scenario, and a small library of predefined

advice.

16

3. Robust Plan Sketching

3.1. Overview

Automated hierarchical planning systems support a top-down model of planning focused

on the refinement of high-level objectives to executable actions. Human planners, in

contrast, often combine top-down planning with a bottom-up approach that identifies

specific tasks to be included in a final solution. Indeed, studies have shown that

designers tend to interleave decisions at various levels of abstraction, thus working

opportunistically at times rather than in a purely top-down fashion (Guindon 1990). For

example the planners of a hostage rescue may decide where and how they will establish a

safe haven and how hostages will be transported, without yet having selected an overall

rescue strategy. The selection of high-level strategy, in fact, can often be conditioned on

such lower-level decisions.

 Within PASSAT, we developed a framework that enables a user to sketch an outline

of a plan for a particular objective, with the system providing assistance in refining the

outline to a full solution (Myers et al. 2003). A sketch consists of a collection of tasks

that (1) may be only partially specified, and (2) may occur at various levels of abstraction

in the plan hierarchy.
3
 Within this framework, a human planner can combine

opportunistic and top-down plan refinement in a manner that best suits his individual

planning style.

We had previously developed an approach to plan sketching that required plan sketches

be valid, meaning that there be at least one legal completion of the sketch relative to

predefined planning knowledge (Myers 1997). Mismatches between human

conceptualizations of a domain and formalized planning knowledge, however, can lead to

situations where user sketches are uninterpretable. On this project, we addressed the

problem of plan sketch interpretation when the validity assumption no longer holds.

Below we summarize our main contributions in this area, namely, the definition of

concepts and algorithms for interpreting and repairing invalid plan sketches in a robust

manner, and the implementation of a framework for mixed-initiative sketch repair.

3.2. Interpreting Invalid Sketches

Our earlier work on plan sketching introduced a notion of plan sketch compliance, which

is based on the idea of embedding the tasks of a plan sketch within an overall solution to

the given planning problem. In particular, each sketch task must be unifiable with some

corresponding task in the hierarchical plan structure that constitutes the solution. Robust

plan sketching requires a less stringent condition that can account for both (a) user

misconceptions about the task domain (i.e., situations where the user has incorrect

models of when and how activities can be undertaken), and (b) background knowledge

3
Sketching often implies a graphical medium. While our model of sketching is compatible with graphical specification

of tasks, we considered only logical specifications.

17

that may be incorrect or incomplete. We focused on two types of problem within

sketches that derive from user misconceptions and faulty domain knowledge:

Type 1: violations of constraints from the templates used to interpret a plan sketch

Type 2: sketch tasks that do not map to any high-level goal (i.e., orphaned tasks)

To accommodate such problems, we defined the weaker notion of maximal compliance to

accommodate these problem types. In contrast to the original model of compliance,

maximal compliance captures the notion of embedding a maximal subset of the original

sketch within a plan refinement structure while minimizing constraint violations. In this

way, it characterizes the class of solutions to a planning problem that best reflect a given

sketch, subject to the constraints of the background knowledge.

Ideally, a robust sketch interpretation algorithm should aim to identify one or more plan

refinement structures that are maximally compliant. To this end, we defined an algorithm

(see (Myers et al. 2003) for details) that could be used to generate maximally compliant

solutions for a given sketch. However, domain complexity may preclude finding optimal

solutions in practice.

3.3. Mixed-initiative Repair

Our framework for sketch interpretation and repair could be operationalized as a fully

automated system. Doing so would require powerful heuristics to control search,

however, as the overall space of possible repairs will generally be prohibitively large.

Our interests lay more with user-centric planning aids, which led us to develop a mixed-

initiative realization of the robust sketch progressing algorithm within PASSAT.

When given a sketch, PASSAT generates possible expansions, which amount to least-

commitment plan structures that embed the sketch (or some subset of it) and all derived

consequences. The user may choose any of these expansions to continue planning; the

agenda will be updated to reflect the derived set of outstanding tasks. PASSAT guides the

human planner through the process of modifying a plan sketch to eliminate detected

problems. The role of the system is to identify sketch problems and possible repairs,

while the human acts as the decision maker in navigating through the space of options.

The framework is designed for iterative use, with a human planner incrementally refining

a sketch in response to detected problems until he has found a satisfactory solution.

Mixed-initiative systems require powerful and flexible interfaces to facilitate interactions

with a user. To support mixed-initiative sketch repair, we developed two interactive tools:

a sketch editor and a sketch space exploration aid.

Sketch Editor

Sketch specification involves defining the tasks that comprise a sketch and their

arguments. PASSAT provides an interactive editor to simplify this process. With this

editor, the user first selects a set of tasks to be included in the sketch, and then specifies

the arguments for those tasks. Allowed arguments consist of variables and all instances of

18

the corresponding type for that argument. This type of structured plan editor eliminates

the possibility of syntactic mistakes (e.g., undefined tasks or arguments, use of

inappropriate argument types) that can be a source of great frustration to a user. In doing

so, it allows the user to focus on the conceptual design for a sketch.

To help the user focus on semantically relevant choices, the sketch editor incorporates

context-sensitive presentation of the syntactically valid options to the user for both task

and argument selection.

Task selection: The editor exploits linkage among templates to limit task selection

for a sketch to tasks that could possibly appear in any expansion of the ‘objective’

currently under consideration. This filtering helps to eliminate many irrelevant

options, thus both reducing clutter from the task selection menu and preventing

the user from pursuing many fruitless avenues.

Argument selection: It is often the case that many candidate values for a task

argument fail to satisfy the preconditions of any templates that could be applied to

the task. Eliminating such values from consideration prevents exploration of

deadends. However, one design requirement for PASSAT was the flexibility to

let a user think ‘out of the box’. In particular, PASSAT’s constraint reasoning

allows certain constraints to be overridden at the user’s discretion. For this

reason, the possible values presented to the user are flagged to indicate whether or

not they satisfy all associated constraints.

Sketch Space Exploration Tool

The space of possible expansions for a given

sketch can be dauntingly large, especially

when interpretation is tolerant of the Types

1 and 2 faults defined above. To support a

user in navigating this large space, we have

developed a sketch space exploration tool

that aids a user in managing the sketch

refinement process (see Figure 6). The tool

is organized around a tree structure that

reflects the space of sketches and expansions

that a user has explored. The root of the tree

corresponds to the initial sketch; it contains

a descendant node for each expansion of the

sketch. Each revision of an expansion in turn

generates a descendant sketch node, from

which a recursive structure emerges.

 For a sketch node, the user can choose to

generate expansions all at once or

incrementally. For an expansion, a user can

view the template structure and the detected

Figure 6. Sketch Exploration Tool

19

problems. Expansions with minimal problems and minimal numbers of expected repairs

to address those problems are highlighted. (One repair could fix multiple problems; thus,

these values can differ for a given expansion.)

3.4. Discussion

Plan sketching provides a powerful mechanism for developing complex plans. Plan

sketching can help a user quickly outline the key aspects of the plan, capitalizing on the

system to fill in less important details around the sketch. In addition, it can serve as the

basis for an exploratory process that allows a user to consider a variety of options when

developing a plan.

For plan sketching technology to be useful in practice, it is imperative that it be robust

both to flaws in the sketch itself and to inadequacies in the underlying planning

knowledge used to interpret the sketch. Our work has defined an approach to robust plan

sketch interpretation that accommodates two categories of problem: violated applicability

conditions and extraneous actions. This approach has been embodied within a mixed-

initiative plan sketching framework in which a system identifies options for repair while

a user selects candidate interpretations and repairs.

We believe that our work presents substantial progress toward a practical sketch-

processing facility. However, there are still areas for future work. One key topic for

exploration is the design of summarization and comparison tools for sketches and

expansions, which would help a user better understand the structure of the sketch space.

A second area is to define techniques for generating qualitatively distinct expansions that

provide the user with some sense of the range of possible options for a given planning

problem. Finally, it would be useful to broaden the definition of a sketch to include

temporal information. Doing so would require extensions to the sketch interpretation

algorithms to match partial orders of tasks; currently, the matching is done separately for

individual sketch tasks.

20

4. Policies

4.1. Overview

When developing a plan, it is often necessary to take into account high-level guidance

that is distinct from the actual objectives to be attained. Examples of such guidance

include rules of engagement (e.g., There should be no helicopter-based infiltrations

within 1 mile of a school, hospital, or church), commander's intent (e.g., The infiltration

mission should involve no more than 2 Green units), or general strategic requirements

that an individual planner wants to impose on a given plan (e.g., Don’t use more than 3

landing zones). We use the term policy to refer to guidance of this type.

We developed a module within PASSAT to support the use of policies during mixed-

initiative plan development. Our accomplishments included the design of an appropriate

language for the representation of policies, and the development of an incremental

planning-time policy verification tool linked to PASSAT’s plan authoring capabilities.

Verification of policies involves monitoring the evolving plan content and user edits to

identify operations that would lead to violations. Violations could be triggered either

directly by a user modification (e.g., template application, variable instantiation) or

indirectly through system constraint propagation or sketch processing. Within PASSAT,

both actual and potential violations (for changes under consideration by the user) lead to

notification. In addition, the system agenda is updated to track any actual policy

violations. As with other forms of constraint violations within PASSAT, the user can

choose to accept such violations, thus making policies relaxable under user discretion.

Plan policies within PASSAT are similar in nature to the concept of advice for automated

planning systems that we developed in our previous work on the Advisable Planner

(Myers, 1996; Myers, 2000). In particular, both are a form of declarative guidance

designed to shape plan content. Advice within the Advisable Planner was designed to

influence the operation of a fully automated planning system. PASSAT policies, in

contrast, serve as guidance for both user and system activities (hence, the use of the term

policy rather than advice). This mixed-initiative model of planning led to a validation-

oriented model for policies, in contrast to the enforcement-oriented model within the

Advisable Planner.

Although our policy work in PASSAT leverages concepts from the Advisable Planner,

this differing treatment of the guidance required new control regimes for testing advice

that are sensitive to usability issues. We also introduced advances in the policy

framework that extend and improve the advice language from the Advisable Planner. One

key innovation was the articulation of aggregate policies, which reference the entire plan

structure rather than being limited to the local problem-solving context. A second

innovation was a generalized domain metatheory, which is used as the basis for

specifying policies.

21

The remainder of this section introduces our domain metatheory, summarizes the types of

plan policy developed within PASSAT, describes our policy validation techniques, and

summarizes the impact of the work.

4.2. Domain Metatheory

As with advice in the Advisable Planner, our language for representing policies builds on

three components: the underlying domain theory, a domain metatheory, and the

connectives of first-order logic.

A standard domain theory for an agent consists of four basic types of element: individuals

corresponding to real or abstract objects in the domain, relations that describe

characteristics of the world, tasks to be achieved, and templates that describe available

means for achieving tasks. A domain metatheory defines semantic properties for domain

theory objects. These properties can be used to express preferences among otherwise

equivalent options; they also enable description of activity at a level that abstracts from

the details of an agent’s internal representations. As discussed in (Myers 2000), a

metatheory can provide a powerful basis for supporting user communication. The main

concepts within our metatheory for plan policies are features and roles defined for agent

plans and goals (similar to those of (Myers 1996)).

A template feature designates an intrinsic characteristic of a template that distinguishes it

from other templates that could be applied to the same task. For example, among

templates for route determination, there may be one that is OPTIMAL but SLOW with a

second that is HEURISTIC but FAST; each of these attributes could be modeled as a feature.

Although the two templates are functionally equivalent, their intrinsic characteristics

differ significantly. Features provide the means to distinguish among such operationally

equivalent alternatives.

A template role describes a capacity in which a domain object is used within a template;

it maps to an individual variable within a template. For instance, a route determination

plan may contain variables location.1 and location.2, with the former corresponding to

the START and the latter the DESTINATION. Roles provide a semantic basis for describing

the use of individuals within templates that abstracts from the details of specific variable

names. Roles also provide the means to reference a collection of semantically linked

variables that span different templates (i.e., START roles may occur in multiple templates).

The metatheory within the Advisable Planner was limited to features and roles defined

for plan templates. Within PASSAT, we further support the definition of features and

roles for tasks. This extension simplifies the process of defining a metatheory for a

domain. In particular, roles and features can be specified ‘one time’ as part of task

definitions, rather than being repeated with each occurrence of the task within a planning

template. It turns out to be valuable, however, to retain the ability to specify roles and

features on templates; doing so enables the use of context-specific features and roles that

are specialized to the particular problem-solving strategy embodied within a given

template.

22

4.3. Types of Plan Policy

We support two types of policy within PASSAT: role and aggregate.

4.3.1. Role Policies

A role policy either prescribes or restricts the use of domain entities for filling certain

capacities in the plan. Role policies are characterized by the schema:

<Use/Don't Use> <objects> in <roles> for <context-activity>

In general, a role policy consists of one or more roles, a role-fill constraint, a context

activity, and a polarity indicating whether the policy is prescribing or prohibiting the role-

fill. For example:

 Only choose infiltration landing zones that are within 5 miles of the infiltration target

Here, the context activity is defined as tasks with feature Infiltration. The policy

dictates that the fillers for the roles Landing-Zone and Infiltration-target be

within 5 miles of each other.

4.3.2. Aggregate Policies

Aggregate policies are defined in terms of six values: role, role-constraint, attribute,

aggregation-function, test-relation, and test-value.

Aggregation is with respect to the set of fillers for role that satisfy the designated role-

constraint. An aggregation value is produced by first selecting the designated attribute

for each object (if one is specified) or the object itself (if no value is specified). The

aggregation-function is applied to this set to define an aggregation value. The policy

prescribes that this aggregation value must satisfy the test-relation relative to the defined

test-value.

For example, the aggregate policy “Use no more than 1 Green-Unit as an infiltration

team” would be defined as

Role: Infiltration-team

 Role-constraint: ((IS-TYPE INFILTRATION-TEAM GREEN-UNIT)

 Attribute: none

 Aggregation-function: SIZE

 Test-relation: <

 Test-value: 1

Aggregate policies are valuable for expressing restrictions that amount to a form of

global measure for a plan. Such measures often involve limits on resource usage, time

bounds, and plan size.

4.4. Policy Validation

Our approach to validation for role policies builds substantially on previous algorithms

from the Advisable Planner. However, our implementation was notably different because

23

of the need to accommodate mixed-initiative planning (in contrast, the Advisable

Planner’s focus is on providing guidance to direct a fully automated planner). In

particular, we introduced a ‘preprocessing phase’ that performs preliminary checking of

policies when the user is considering possible options for extending a plan (i.e., either

template application or variable instantiation). This proactive checking identifies

possible policy violations that might arise for each of the choices under consideration by

the user, thus enabling a user to avoid triggering a violation and then later having to take

steps to undo it.

Aggregate policies represent a technical innovation over our previous work. One key

technical challenge that they introduce is the requirement for a mechanism to efficiently

track global plan changes. We implemented an incremental mechanism for policy

verification that can track the status of aggregate policies by monitoring individual plan

changes as they occur, thus avoiding expensive global rechecking of aggregate policies

for the entire plan.

The use of task-based roles and features (as opposed to just template based) also required

modifications over the original Advisable Planner algorithms. In particular,

consideration of a particular template for application needs to take into account the new

subtasks and their metatheoretic properties when checking policies.

4.5. Summary

Plan policies provide a powerful mechanism for defining, tracking, and enforcing high-

level guidance that should shape the content and form of a plan. They provide the means

by which to readily incorporate both external constraints on the plan (e.g., commander’s

intent, rules of engagement) and to help an individual planner enforce his own high-level

design criteria.

Our contributions in this area consist of the definition of a powerful language for

expressing policies that are relevant to shaping plan content and the design of verification

techniques that are linked into the mixed-initiative plan authoring framework. Together,

these provide the basis for an effective policy framework.

We see three areas for future work on plan policies:

Role and aggregate policies represent two useful types of policy but others are

possible. For example, the Advisable Planner supports ‘method advice’, which

provides a way to express recommendations on types of templates to apply in

designated contexts (e.g., use a covert (rather than noncovert) operation). For a

particular domain, it would be useful to work with a set of experts to determine

what would constitute a comprehensive policy language that covered their full set

of requirements.

Our policy verification capability within PASSAT assumes that all policies are

defined at the start of a planning session. Ideally, users would be able to specify

policies throughout the planning process and have them checked relative to the

current plan.

24

We did not develop a tool for specifying policies as part of our work on this

project. Instead, users of PASSAT must select from a library of predefined

policies. Predefined policies make sense for applications where there would be a

limited set of higher-level constraints that may be imposed on the planning

process. In general, however, a user should have the ability to define situation-

specific policies as the need arises. Technologies such as Constable

(http://www.isi.edu/ikcap/constable/publications.html), another

Active Templates effort, provide suitable platforms on which to build this type of

policy specification tool.

25

5. Qualitative Causal Reasoning

Our work on qualitative causal reasoning focused on developing a practical, user-oriented

framework for reasoning about plans that does not require comprehensive background

models for possible actions. In particular, we sought to provide mechanisms for

answering the following important questions:

A. What role does a given action, constraint, or assumption play in a plan?

B. What impact would a given change have on a plan?

To this end, we defined a qualitative approach to reasoning about plan structure that

builds on (a) a set of qualitative and casual-link plan relations that characterize key

interactions among plan components, and (b) an accompanying calculus for reasoning

qualitatively about the effects of changes on a plan. As will be seen below, our qualitative

approach trades the precision of traditional causal link methods for simplicity and ease of

use.

Here, we describe the motivation for this work and the core relations within our model.

Full technical details can be found in (Myers 2003); Appendix A includes a copy of this

document.

5.1. Background

Automated planning algorithms embody a theory of causality grounded in the linking of

enabling effects of actions or initial world conditions with preconditions of subsequent

actions (Weld 1999). While the design and algorithmic foundations for this approach are

well understood, the approach has several limitations. First, the generation of causal plan

structures by automated planning systems requires comprehensive causal models that

describe for every action its preconditions (i.e., the conditions under which it could be

applied) and its postconditions (i.e., the conditions that result from execution of the

action). Second, the models must be completely correct in order to support the causal

reasoning required for plan generation. Even the smallest of errors or omissions can lead

to invalid plans, or the inability to generate any plan.

Because of these strict requirements, the standard approach to causal reasoning within AI

planning systems is ill suited to interactive planning environments in which users may be

constructing ad hoc plans containing actions that may not have extensive background

theories. Imposing the requirement that a human planner specify a full causal structure

for his plan would impose a tremendous documentation burden that most users are

unlikely to satisfy, due to both a lack of modeling expertise, and an unwillingness to

invest the time required to justify the low-level details of his choices.

To illustrate, consider the simple plan fragment in Figure 7, which is drawn from a

domain focused on noncombatant evacuation operation (NEO) missions. The figure

presents the three actions in the plan (in bold) along with a full causal annotation of the

type required for causal link reasoning within an AI planning system. These annotations

explicitly note any required preconditions above the action and postconditions below the

26

action. Actions and effects are represented in terms of an action/effect name followed by

a list of parameters of the form ?param-name = param-value, indicating the parameters

for the action/effect and their bindings. Arrows denote causal links from enabling

conditions to required preconditions.

Clearly, the fully annotated view of the plan contains much more information than would

be practical for a human planner to provide for plans that contain hundreds or thousands

of actions (which is typical of real-world domains such as military planning, crisis action

planning, and space mission planning). Although such information is necessary for an

automated planner, much of this information would be of little value to a human planner

because it is obvious from the plan structure (e.g., knowing that a LOAD operation

results in the cargo then being LOADED on the chosen vehicle is a form of bookkeeping

that is unlikely to interest the human planner). On the other hand, certain of these

relationships may be important to understanding key dependencies within the plan, or

could encode critical conditions whose monitoring is essential to ensure plan viability in

the face of unexpected changes.

Figure 7. Evacuation Plan Fragment with Full Casual-Link Annotations

5.2. Qualitative Reasoning about Plans

Are traditional causal-link models necessary for meaningful analysis of plans? We

believe the answer to be no. More specifically, we believe that much (but not all) of the

value of these complex causal models can be obtained through simpler qualitative models

that capture commonsense notions of intraplan relationships. The basic idea is to trade

the detail and precision of the formal causal models for an approach that is both easier to

formulate and to reason with. In particular, a human planner would be able to specify

such relations as part of the plan authoring process. This simpler approach would still

enable answers to the questions (A) and (B) above, although in qualitative rather than

purely logical terms. Furthermore, as we argue below, the models of causality embraced

by the AI planning community are unnecessarily narrow, because of their evolution from

Fly(?START=Base1 ?DEST=Embassy ?VEH=UH60-A)

LOAD(?VEH=UH60-A?CARGO=Evacuees)

Fly(?START=Embassy ?DEST=Camp1 ?VEH=UH60-A)

At(?PLACE=Embassy ?VEH=UH60-A)

At(?PLACE=Embassy ?OBJ=Evacuees)

At(?PLACE=Embassy ?VEH=UH60-A)

LOADED(?VEH=UH60-A?CARGO=Evacuees)

LOADED(?VEH=UH60-A?CARGO=Evacuees)

At(?PLACE=Camp1 ?VEH=UH60-A)

At(?PLACE=Camp1 ?OBJ=Evacuees)

At(?PLACE=Base1 ?VEH=UH60-A)

Fly(?START=Base1 ?DEST=Embassy ?VEH=UH60-A)

LOAD(?VEH=UH60-A?CARGO=Evacuees)

Fly(?START=Embassy ?DEST=Camp1 ?VEH=UH60-A)

At(?PLACE=Embassy ?VEH=UH60-A)

At(?PLACE=Embassy ?OBJ=Evacuees)

At(?PLACE=Embassy ?VEH=UH60-A)

LOADED(?VEH=UH60-A?CARGO=Evacuees)

LOADED(?VEH=UH60-A?CARGO=Evacuees)

At(?PLACE=Camp1 ?VEH=UH60-A)

At(?PLACE=Camp1 ?OBJ=Evacuees)

At(?PLACE=Base1 ?VEH=UH60-A)

27

the structures required for fully automated planning. In particular, they do not capture

notions of plan dependency that are important for mixed-initiative planning systems.

On this project, we developed a specific technical approach that supports this type of

qualitative plan reasoning. We defined a set of qualitative plan relations, as well as a

calculus for reasoning qualitatively about the effects of plan changes that considers both

qualitative and standard logical plan relations. By covering both types of relation, the

calculus can both capitalize on traditional logical models of causality when available, and

also produce meaningful results for partial, qualitative models of plan relations.

5.3. Plan Relations for Qualitative Reasoning

In this section, we present a candidate set of relations to support qualitative reasoning

about the effects of plan changes. Ideally, a system that reasons about causal effects

within plans should combine both causal link and qualitative information about plan

relationships. For this reason, our model contains relations of both types.

We adopt a model of plans that contains three types of element:

 Action (denoted by A): an activity that can be undertaken

 Effect (denoted by E): a condition (either to be achieved, the expected result of

executing an action, or a property of the initial world state)

 Parameter (denoted by P): an argument to an action or condition

We use the symbol Obj (i.e., plan object) to denote an arbitrary plan element from any of

the above types.

A plan relation is defined between a source object and a target object. We represent a

qualitative relation using the syntax:

Source-Obj Target-Obj

5.3.1. Causal Link Relation

The causal-link relation (Figure 8), the standard relation within most automated planning

systems, indicates that the target effect is dependent on the source effect.

 Causal-link: {Effect} { Effect }

Figure 8. Casual Link Relation

5.3.2. Qualitative Relations

Figure 9 summarizes our candidate set of qualitative relations. Broadly speaking, the

qualitative relations can be separated into two categories: temporal (QR1 – QR3) and

logical (QR4 – QR5).

28

QualR1. Precedes: {Action | Effect} {Action | Effect}

QualR2. Necessary-for: {Action | Effect} {Action | Effect}

QualR3. Supports: {Action | Effect} {Action | Effect}

QualR4. Parameter-dependence: {Parameter} {Parameter}

QualR5. Condition-dependence: {Effect} {Action | Effect | Parameter}

Figure 9. Qualitative Plan Relations

5.3.2.1. Qualitative Temporal Relations

The qualitative temporal relations capture the notion that a given action or effect in a plan

must precede some other action or effect, possibly due to some semantic relationship

between the elements. We consider three types of temporal relation: precedes,

necessary-for, and supports.

The precedes relation captures the notion that the specified source action or effect should

take place before the specified target action or effect, without providing any indication of

why. This type of relation can be used to capture a preference for performing activities in

some designated order when there is no necessary reason for that order. For example,

consider the actions of preparing an evacuation site and flying evacuees to the evacuation

site. Although it would be possible to perform those actions in parallel, a given planner

may have a preference for completing the preparation prior to the start of the airlift of the

evacuees, possibly to enable a delay of the airlift in the event of problems with the

preparation.

 The necessary-for and supports relations specialize the precedes relation to capture

semantic motivations for the ordering relationship. Necessary-for captures the notion that

a given action or effect must occur before a designated action or effect in order to enable

the target plan element. For example, it would be necessary-for evacuees to be marshaled

to an assembly point before they could be loaded onto an evacuation aircraft. In essence,

the necessary-for relation constitutes a qualitative counterpart of the quantitative causal-

link relation. Changes could impact plan objects linked by a necessary-for relationship in

two ways. First, delays to necessary activities will propagate. Second, failure of a task

that is necessary-for another task would likely jeopardize the latter.

The supports relation indicates that the source action or effect contributes to the target

action or effect in some way, but is not critical to its existence. For example, a CAP

mission may support a given evacuation activity, but not be essential to its undertaking

Hence, if the fighter involved with the CAP were redirected to support a different action,

the evacuation process should not be jeopardized. Source objects for supports relations

correspond to ‘redundant’ actions or effects that, while unnecessary, lead to improved

plan robustness or quality. Standard causal link models do not explicitly support such

redundant objects within a plan.

29

5.3.2.2. Qualitative Logical Relations

The qualitative logical relations QR4 and QR5 capture the idea that there is some sort of

dependency between the source and target elements such that a change to the source

could impact the target. However, the precise nature of that relationship is not captured

algebraically in terms of a deductive specification or mathematical formula. Such

situations arise frequently in planning situations, where many factors that are problematic

to formalize come into play when making choices. These factors could include

conditions that are too complex to codify (i.e., a form of the qualification problem) or

subjective preferences that vary among different human planners.

For example, the choice of assembly point in an evacuation plan will necessarily impact

the type of aircraft that can be used for transporting evacuees (e.g., a small helicopter

may be necessary for evacuation from an embassy, while a larger aircraft could be used at

a football stadium). However, there is no hard-and-fast rule for determining what type of

aircraft should be used for a particular location. Similarly, the security level of the

surrounding area may constrain the choice of assembly point, but generally will not

uniquely determine it.

Qualitative logical relations can be designated between plan parameters (QR4), or

between plan effects and any type of plan component (QR5). The relationship between

the choice of assembly location and transport aircraft in the example above corresponds

to a parameter-dependence relation, while the relationship between the security level and

choice of assembly point corresponds to a condition-dependence relation.

We note that the qualitative logical relations could be made ‘quantitative’ by associating

definite constraints with them. For the parameter-dependence relation, these constraints

would be in the form of a set of equations linking the two parameters. We introduce the

term parameter-constraint relation to refer to this specialization of the parameter-

dependence relation. A comparable condition-constraint relation could also be defined.

5.4. Example

To illustrate the use of the qualitative relations for planning, consider the plans in Figure

10 and Figure 11 for a simple evacuation operation. These plans are designed to achieve

the two goal conditions Prepared(Camp1) and At(Evacuees Camp1) based on the

operators in Figure 12. Each of the plans includes conditions from the initial state upon

which actions and effects in the plan depend, as well as the effects that constitute the

desired goal state. To simplify reference, each action in the plan is labeled with a unique

identifier (e.g., N1).

The plan in Figure 10 corresponds to a solution that an automated causal link planner

might produce for this problem. It includes a full causal link annotation that documents

how action precondition is supported by an earlier effect in the plan.

The plan in Figure 11 represents a solution that a human planner might construct using

some kind of plan authoring tool. It contains all of the actions in Figure 10 plus one

additional action: a Patrol action (N7) that provides additional security for the sector to

30

which the evacuees will be moved. According to the logic of the domain operators, this

action is redundant because it does not establish any effects that are required within the

plan. However, it is typical for human planners to build such redundancy into plans to

provide additional safeguards in the face of unexpected events.

The plan in Figure 11 also contains a candidate set of both quantitative and qualitative

relations that document what the user might view as the key dependencies within the

plan. The key differences between this hybrid set of plan relations and the causal link

relations in Figure 10 are as follows:

Causal-link relations in Figure 11 have been limited to dependencies on initial

state conditions that might be expected to change and hence may require

modifications to the plan (e.g., the security of key locations and the position of

the vehicle to be used for transporting the evacuees) and important intermediate

effects of action (e.g., the evacuees remain at the embassy until they are loaded

onto the transport vehicle). In particular, static initial conditions and unimportant

intermediate effects of actions have been omitted.

The hybrid annotation replaces certain of the quantitative causal-link relations

with qualitative necessary-for relations, indicating that it is essential for the

source activity to precede the target activity in the plan but not documenting the

effects that link the actions. From the user’s perspective, these effects are

obvious (e.g., the aircraft has to be loaded before it can be unloaded) and so

documenting them explicitly is of little value.

The qualitative annotations include a precedes relation from node N6 to node N4,

indicating a (noncausal) preference for ordering those two actions, although the

ordering is not necessary for the plan to succeed.

A condition-dependence relationship has been added from the predicate

#Evacuees(25) in the initial world state to the parameter ?PLACE in N1 where the

evacuees are to be assembled. This relation reflects the fact that the choice of

assembly location is dependent on the number of evacuees; should the number

change, the choice may need to be revisited.

31

Assemble(?GROUP=Evacuees

?PLACE=Embassy)

Fly(?START=Base1 ?DEST=Embassy ?VEH=UH60-A)

Load(?VEH=UH60-A ?OBJ=Evacuees ?PLACE=Embassy)

Fly(?START=Embassy ?DEST=Camp1 ?VEH=UH60-A)

Initial State

Evac-Area(Sector1)

In (Embassy Sector1)

Secure(Embassy)

At(UH60-A Base1)

#Evacuees (25)

Secure(Camp2)

Secure(Camp1)

At(?GROUP=Evacuees ?PLACE=Embassy)

At(?VEH=UH60-A ?PLACE=Embassy)

At(?OBJ=Evacuees ?PLACE=Embassy)

¬At(?VEH=UH60-A ?DEST=Base1)

At(?VEH=UH60-A ?DEST=Embassy)

LOADED(?VEH=UH60-A ?OBJ=Evacuees)

¬ At(?OBJ=Evacuees ?PLACE=Embassy)

At(?VEH=UH60-A ?DEST=Embassy)

¬At(?VEH=UH60-A ?DEST=Embassy)

At(?VEH=UH60-A ?DEST=Camp1)

Evac_Area(?SECTOR=Sector1)

In(?PLACE=Embassy ?SECTOR=Sector1)

Secure(?PLACE=Embassy)

At(?VEH=UH60-A ?PLACE=Base1)

N1
N2

N3

N4

Causal Link
Goal State

Prepared(Camp1)

At(Evacuees Camp1)

Unload(?VEH=UH60-A ?OBJ=Evacuees ?PLACE=Camp1)

At(?VEH=UH60-A ?PLACE=Camp1)

LOADED(?VEH=UH60-A ?OBJ=Evacuees)

LOADED(?VEH=UH60-A ?OBJ=Evacuees)

AT(?OBJ=Evacuees ?DEST=Camp1)

N5

Prepare(?PLACE=Camp1)

Secure(?PLACE=Camp1)

Prepared(?PLACE=Camp1)

N6

Figure 10. Evacuation Plan with a Complete Set of Casual Link Relations

Initial State

Evac-Area(Sector1)

In (Embassy Sector1)

Secure(Embassy)

At(UH60-A Base1)

#Evacuees (25)

Secure(Camp2)

Secure(Camp1)

Load(?VEH=UH60-A ?OBJ=Evacuees ?PLACE=Embassy)

N2

N3

Goal State

Prepared(Camp1)

At(Evacuees Camp1)

Unload(?VEH=UH60-A ?OBJ=Evacuees ?PLACE=Camp1)

N5

Prepare(?PLACE=Camp1)

Secure(?PLACE=Camp1)
N6

Precedes
Necessary-for
Supports

Parameter Dependence
Causal Link

Condition Dependence

Assemble(?GROUP=Evacuees

?PLACE=Embassy)

N1

Secure(?PLACE=Embassy)

At(?VEH=UH60-A ?PLACE=Base1)

Fly(?START=Base1 ?DEST=Embassy ?VEH=UH60-A)

Fly(?START=Embassy ?DEST=Camp1 ?VEH=UH60-A)

N4

Patrol(?SECTOR=Sector-5)

N7

At(?OBJ=Evacuees ?PLACE=Embassy)

At(?OBJ=Evacuees ?PLACE=Embassy)

Figure 11. Evacuation Plan with Qualitative and Casual Link Relations

32

A parameter-dependence relationship has been added from ?PLACE in N1 to

?Veh in N2 and a condition-dependence relation added from #Evacuees(25) in

the initial world state to ?Veh in N2. These relations show that the choice of

vehicle depends on both the number of evacuees and their assembly location.

There is a supports relation from N7 to N6 in the qualitative view, documenting

that the Patrol action is being performed in service of the Prepare action. No link

between these nodes is possible in the causal link view because there is no

enabling relationship between effects produced by N7 and required by N6. A

parameter-dependence relation has been added from the ?PLACE parameter in

N6 to the ?SECTOR variable in N7 indicating that the choice of patrol area

depends on the evacuation site. In this case, the relationship could be expressed

algebraically, i.e., by adding the annotation IN(?PLACE ?SECTOR) to the

parameter-dependence relation (thus resulting in a parameter-constraint relation).

Action: Assemble(?GROUP ?PLACE)

Preconditions: Secure(?PLACE), Evac-Area(?SECTOR), In(?PLACE ?SECTOR)

Effects: At(?GROUP ?PLACE)

Action: Fly (?START ?DEST ?VEH)

Preconditions: At(?VEH ?START)

Effects: At(?VEH ?DEST), ¬At(?VEH ?START)

Action: Load(?VEH ?OBJ ?PLACE)

Preconditions: At(?VEH ?PLACE), At(?OBJ ?PLACE)

Effects: Loaded(?VEH ?OBJ), ¬At(?OBJ ?PLACE)

Action: Unload(?VEH ?OBJ ?PLACE)

Preconditions: At(?VEH ?PLACE), Loaded(?VEH ?OBJ)

Effects: At(?OBJ ?PLACE), ¬Loaded(?VEH ?OBJ)

Action: Prepare(?PLACE)

Preconditions: Secure(?PLACE)

Effects: Prepared(?PLACE)

Action: Patrol(?PLACE)

Effects: Prepared (?PLACE)

Figure 12. Evacuation Planning Operators

33

5.5. Properties of the Model

The qualitative model trades the precision of exhaustive causal links for simplicity and

ease of use. Indeed, there is a natural abstraction from an exhaustive causal link structure

to ‘corresponding’ qualitative models that involves replacing every causal-link relation

with a precedes or necessary-for relation. We refer to a plan transformed in this manner

as a ‘qualitative abstraction’ of the original.

While the qualitative relations lose precision over the causal approach, they offer

several advantages. First, they are simpler and more intuitive to specify. This

characteristic makes them better suited for use in a mixed-initiative planning

environment. A second advantage relates to expressivity: there are relationships that can

be modeled in the qualitative framework that are not supported by POCL-style causal

links or parameter constraints. In particular, the supports relation enables the description

of a connection between plan objects that is not essential for plan correctness (as

described above). As well, the precedence relation allows the expression of ordering

information independent of causality. Furthermore, the condition-dependence and

parameter-dependence relations enable ill-defined connections between plan objects to

be expressed; this ability is useful when the precise logical or mathematical relationship

is not known or not easily formalizable, yet there is still a desire to document some

relationship between them.

5.6. Sources for Causal Relations

Our motive for investigating qualitative relations is to enable reasoning about plan

changes within a mixed-initiative planning environment that combines human and

automated planning skills. Within this context, several sources would contribute to the

set of causal relations defined within a given plan. First, a background set of templates

could capture both quantitative and qualitative causal relations for ‘standard operating

procedures’ that arise frequently in practice. Such relations would be included in the core

template definition by the author of the template. Second, the human planner that is

driving a specific planning task could contribute additional relations. Third, some

relations could be derived from a general-purpose background theory that describes

general properties of a domain. Finally, some sort of learning mechanism could be

applied to hypothesize qualitative relations from a user-authored plan, yielding a baseline

that a user could then modify appropriately (e.g., along the lines of (El Fattah and Dyer

2001)).

5.7. Summary

Our qualitative model trades the precision of POCL-style causal links for simplicity and

ease of use. In particular, qualitative reasoning about the effects of changes on plans has

several advantages over standard logical/deductive approaches. First, qualitative

reasoning does not require comprehensive and correct causal theories. However, while

qualitative inferences can be drawn from incomplete models, more complete models will

yield more informative results. Second, qualitative relations are simpler and more

34

intuitive to define, making it possible for users to annotate plans with qualitative relations

that reflect their specific needs and interests. In contrast, traditional deductive

approaches require sophisticated models that have proven to be difficult for users to

formulate. Third, qualitative models include relationships that do not require complete

formalization of concepts, making them relevant for situations where precise

dependencies among plan elements cannot be articulated.

One of the problems with the qualitative framework described above is that it is derived

from simple commonsense notions of plan relations and interactions. Future work in this

area should focus on defining a formal semantic model that relates the qualitative

relations to POCL-style plan annotations. Such a model would enable us to ground the

intuitions behind the qualitative relations in well-understood, clear structures.

35

6. CODA: Coordination of Distributed Activities

Effective coordination of distributed human planners requires timely communication of

relevant information to ensure overall coherence of activities and the compatibility of

assumptions. The CODA system (Coordination of Distributed Activities) provides

directed information dissemination as a way of improving coordination among distributed

human planners (Myers, Jarvis and Lee 2002).

An initial prototype CODA system was developed on a jump-start effort to this project

(supported by DARPA Contract No. F30602-97-C-0067). Our work on CODA for this

contract focused on the following enhancements to that original framework.

Extension of the preliminary CODA proof-of-concept system into a transitionable

system

Integration of CODA with appropriate tools from the Active Templates program

Development of a set of complementary interfaces for PAR specification

Publication of two technical papers describing the CODA framework

Following a brief overview of the CODA technical approach, details of the first three of

these areas are provided below.

Fred Bobbitt, Warren Knouff, and Kelly Snapp provided excellent feedback to us during

our CODA development efforts on this contract, especially with regard to user

requirements and interface design. We are grateful for their assistance.

6.1. CODA Approach

CODA targets applications where distributed human planners are assigned responsibility

for portions of a global shared plan. Their individual subplans, while somewhat

independent, are expected to have a medium degree of coupling through the need to

reflect coherent strategy, to coordinate actions, and to share limited resources.

Within CODA, an individual planner declares interest in different types of plan changes

that could impact his local plan development. These declarations, called plan awareness
requirements (or PARs), would be registered with all other planners who are contributing

components to the overall plan. Each individual user develops his plan with a CODA-

compatible plan authoring system, publishing the results to a central plan server when his

plan is mature enough to be reviewed by other planners. A user can initiate the checking

of the PARs that he has registered at any time, and will receive notification of matches to

plan components that have been published to the central plan server. CODA could be

linked to a range of manual, semi-automated, and fully automated planning tools. In this

project, it was connected to a specific plan editor, the SOFTools Temporal Planner (GTE,

2000), which supports the graphical editing of special operations plans.

CODA supports two classes of PARs.

36

1. Plan-state PARs describe conditions of a plan and are modeled in terms of a well-

formed formula in the plan query language. For example: There is an arrival to

staging base Gold scheduled for after 8 PM. Matching of a plan-state PAR

occurs when a modification results in a plan that satisfies the associated plan

query.

2. Plan transition PARs describe changes between two plan states. We distinguish

several categories, based on the nature of the underlying plan changes:

Instance Creation PARs are used to declare interest in the addition of an

object to a plan that satisfies stated conditions. For example: Addition of

decision points related to weather calls.

Instance Deletion PARs are used to declare interest in the removal of an

object from a plan that satisfies stated conditions. For example: Elimination

of a landing zone south of the embassy.

Instance Modification PARs are used to declare interest in the modification

of an object that satisfies stated conditions. For example: Changes to

movements by the 4
th

 platoon.

Attribute Modification PARs specialize Instance Modification PARs to

changes to a specific attribute of a plan object, possibly satisfying stated

change conditions. For example: Delays of > 1 hour in the expected time to

secure the church.

Aggregate Modification PARs can be used to declare interest in changes to

an intensionally defined collection of objects. The change may be to

membership in the collection, or to some aggregation value defined over the

collection. As an example: Decrease of > 2 in the number of fire-support

aircraft.

Figure 13 presents the CODA architecture. Within the context of a global plan,

individuals work independently to produce local plans for their assigned tasks. Plans are

developed using a structured plan editor, which supports a broad range of plan

manipulation capabilities. User interactions with the plan editor are tracked by an

observer module, which maintains a complete history of editing operations. As events

are logged, a semantically grounded representation of the local plan is built within

CODA. This internal representation can be annotated and used for reasoning,

independent of the plan editor GUI.

The matcher provides the main inferential capability within CODA, being responsible for

linking observed plan changes to declared PARs. The matching process may involve

reasoning with a background theory, whose role is to bridge the gap between low-level

plan edits and PARs expressed in high-level languages. When matches are detected,

notification is sent to the local planner who registered the matched plan awareness

requirement.

37

Figure 13. CODA Architecture

6.2. From Proof of Concept to Transition-Ready System

The CODA system developed on the jumpstart project (version 0.5) was designed as a

proof-of-concept system to demonstrate the potential of the PAR-based approach to

information dissemination among distributed planners. The initial system was limited in

scope, being focused primarily on demonstrating the declaration and matching of PARs.

One objective on this contract was to develop the CODA system into a mature system

that could be transitioned to the SOF community. Here, we summarize the tasks that we

performed to meet that objective.

6.2.1. Matching Modes

The original CODA system provided immediate notification of PAR matches. In

particular, PARs were checked after every plan edit operation, thus providing planners

with real-time notification of relevant plan changes. Immediate notification of this type

would be suitable for the end stages of planning (when plans are mostly stable and

changes are significant), or during execution.

For earlier stages of plan development, frequent and wide-ranging changes to plans

would be expected; real-time notification of matches during early plan development

would be counterproductive. For this reason, we developed a second mode of matching

called on-demand, for which matching information is provided only in response to an

explicit user request. Such requests produce summaries of matches for the current plan

relative to a designated ‘checkpoint’ plan. On-demand matching can support coordination

of distributed planners earlier in the planning process by enabling a given planner to

periodically check for changes by other planners that could impact his own efforts. The

checking process for on-demand matching need not consider the intervening plan

modifications, since the match semantics compare the original and current plans.

38

6.2.2. Distributed Architecture

Within the original proof-of-concept system, a single user played the role of both a local

planner engaged in planning and a remote planner who registers PARs. That initial

design was chosen to expedite development of a basic demonstration system but clearly

was not adequate. On this project, we implemented a distributed version of the system

that allows multiple users of CODA to coordinate on plan development across

geographically distributed areas.

Our distributed framework relies on two technologies developed outside of SRI. First, it

uses the Structured Data Model (SDM) from GDAIS (via the DB Proxy tool) to serve as

a centralized plan repository. Second, it employs the TIM router from ISX for

asynchronous message exchange among CODA modules.

Within this framework, individual planners ‘publish’ significant versions of their local

plans to the SDM, which are then accessible to all CODA agents. CODA agents read

plans from the SDM to initialize their ontologies of plan objects. Checking of PARs is

initiated under user control (i.e., CODA's real-time matching has been deactivated).

6.2.3. Linkage to Operational SOFTools

CODA Version 0.5 was linked to the research version of SOFTools (version 1.2d). In

particular, CODA relied on special hooks within that version of SOFTools to provide

notification of plan changes that could impact PAR matching.

In the final year of the Active Templates project, we migrated CODA from version 1.2d

of SOFTools (the research version) to the operational version being developed by GDAIS

(starting with version 2.0, currently with version 3.0).

CODA was designed originally around an ‘event-oriented’ model, in which individual

edits prosecuted by a user were tracked. This tracking would then enable reasoning to

detect changes that match user-specified PARs. This event-oriented approach enables

real-time notification of relevant plan changes, but requires modifications to the plan

development tool to track individual plan edits. Because of the operational focus of the

GDAIS team, we were unable to obtain the necessary hooks within SOFTools 3.0 to

support such event monitoring. For this reason, we migrated CODA to a ‘plan-oriented’

model, in which matching is done relative to incremental versions of published plans. As

part of this work, we developed an XML parser that reads .SOF versions of a plan and

stores them into CODA’s internal plan representation.

Our update to run with the operational version of SOFTools introduced a key limitation

into CODA. The nonresearch versions of the SOFTools systems include a number of

attributes for plan entities that are entered manually by a human planner as free text. We

had modified earlier versions of SOFTools to replace textual entries with selections from

a predefined ontology. This ontological grounding of attributes enables CODA to

perform more sophisticated reasoning about plans than is possible with unconstrained

text strings. Within our current version of CODA, we have opted to treat text fields

within the nonresearch SOFTools systems as ‘interpretable’, making the assumption that

39

user-supplied text corresponds to a predefined ontology element. This assumption

enables us to demonstrate the power of CODA within the limitations of the nonresearch

SOFTools systems, until such time as it incorporates anontology for plan terms.

However, it does render the system nonrobust with respect to inputs that are not defined

without our internal ontology.

6.2.4. Session Management

CODA supports a model of asynchronous collaboration, in which users can drop in or out

of a distributed planning session and still receive the benefits of CODA services. In

particular, the CODA module for a new user is initialized automatically to include the

currently registered PARs of all other active users. Other session-related capabilities

include notification of when users log on or off, and automatic deregistration of PARs on

logoff.

6.2.5. PAR Extensions

We extended the underlying PAR representation in two ways to meet the requirements of

real-world applications. First, we added priorities to PARs. Our priority model consists

of the levels of importance. One important use of priorities is to enable different types of

notification services based on PAR significance. Within the current CODA system, for

example, notifications are displayed in red, green, or blue, depending on the priority level

of the matched PAR. These priorities could also be associated with different

communication modalities (e.g., notifications of high-priority matches are sent by beeper,

while others are sent by email). Second, we added a notion of context to PARs organized

around individual operations plans, and missions. This contextualization enables an

operator, who may be engaged in planning for a number of operations simultaneously, to

localize his information updates to the specific planning contexts where they are relevant.

6.3. PAR Specification Tools

The initial CODA prototype relied exclusively on a programmatic interface for

specifying PARs. While adequate for internal use, this interface would be inappropriate

for operational personnel. On this contract, we developed a range of complementary

PAR specification tools to support various types of CODA users and their needs, namely

o a forms-based editor that covers the full range of the PAR language

o an object-based interface for quick specification of a limited range of PARs

o a library mechanism that supports user selection from predefined collections of

PARs

During a particular planning session, we would expect a planner to draw on libraries of

predefined PARs primarily to form the basis of his registered interests, augmenting them

as necessary with authored PARs tied to the current situation and plans.

We briefly describe each of these specification tools below.

40

6.3.1. Forms-based PAR Authoring

The forms-filling editor for creating PARs provides a sophisticated specification tool

aimed at advanced users. This tool was developed using Adaptive Forms (Frank and

Szekely 1998), a grammar-based framework from USC/ISI that supports the specification

of structured data through a form-filling interface that adapts in response to user inputs.

With this tool, users create PARs by filling in forms with an English-like syntax; as users

incrementally specify PARs, remaining options change in accord with the constraints of

the underlying grammar. An internal compiler transforms these high-level specifications

into the formal PAR structures required by CODA's matcher.

Creation of an Adaptive Forms application involves specifying a grammar that defines

the forms to be presented to the user. For CODA, we developed a grammar (and hence

an interface) to support the full range of expressiveness of our PAR representation

language (with minor exceptions).

In designing a specification tool of this type, the competing requirements of expressivity

and ease of use must be balanced. Sufficient expressivity is required to ensure coverage

of relevant cases; however, support for full expressivity can lead to complex and

unintuitive interfaces. To address this issue, CODA's PAR authoring tool provides two

sets of forms. First, a set of general forms provides the full expressive power of the PAR

language, including the ability to construct arbitrary expressions in first-order logic.

While powerful, these forms require more effort to complete; in addition, people

unaccustomed to formal languages require training to use them effectively.

For this reason, the tool also includes specializations of the general forms that capture

common idioms within the SOF planning domain. These specialized forms build in

values that users would have to specify in the general case, thus simplifying and

shortening the specification process. Parameters within the forms enable customization to

a given planning session. SOF planners, for example, are generally interested in delays

to activities. The SOF application of CODA includes (among others) the following

parameterized PAR idiom:

Delays to any actions of greater than

Delays to action

The first form supports declaration of interest in delays to actions that exceed a duration

to be supplied by the user. The second form supports declaration of interest in delays to a

user-specified action within a plan. Users can create PARs based on these specialized

forms simply by supplying the designated parameters.

6.3.2. PAR Libraries

The CODA library facility allows PARs to be defined ahead of time and grouped into

modules according to functionality or expected usage. For example, our SOF

demonstration system includes separate libraries for fire-support, maneuver, combat

search and rescue (CSAR), and so on. Predefinition makes sense for many applications,

41

as there will often be a general set of

changes that individual planners would

want to monitor. For example, a team

responsible for medical needs during an

evacuation would almost always be

interested in changes to the size of the force

and the expected number of evacuees.

PARs for these types of change can be

stored in a library focused on the needs of

medical planners.

6.3.3. Object-based PAR Specification

Tool

The object-based PAR specification tool

enables a user to quickly define simple

PARs. It organizes the specification

process around individual and classes of

SOFTools objects. The user begins by

selecting a class of such objects, and then

selecting either a generic object of that class

or a specific individual defined in some

current plan. For that selection, the user

specifies a mode of change in which he is

interested, one of modification, deletion,

delay, or creation (depending on the object

type). In addition, the user can specify a

scope for the change (in terms of the plan,

operation, or mission to consider), and a

PAR priority.

The object-based PAR specification tool,

shown in Figure 14, provides an effective mechanism for quickly creating a broad range

of simple but useful PARs. Its expressiveness, however, is limited. For example, while it

is easy to specify a PAR expressing interest in “any delay to the Secure Church

objective”, a specific delay length cannot be designated.

6.4. CODA System

The CODA system runs on PC hardware under the Microsoft Windows family of

operating systems (95, 98, 2000, NT, XP). There is an extensive user guide for the

system that includes (a) instructions for downloading and installation of CODA, (b) a

detailed overview of the CODA interface, (c) a quick-start guide to walk users through a

Figure 14. Object-based PAR

Specification Tool

42

simple demonstration of CODA, and (d) an extended demonstration designed to capture

intended use of CODA in a realistic SOF planning operation.

The demonstrations are grounded in a scenario developed by subject matter experts

within the DARPA program “Small Unit Operations: Situational Awareness System”.

The mission involves neutralizing an enemy force that has taken position in a small town,

and evacuating the town's civilian population. The basic maneuver plan includes the

infiltration of reconnaissance and assault forces, the assault, and the reconstitution and

exfiltration.

6.5. Future Work

We see several directions for extending our work on CODA.

6.5.1. Impact Analysis

Focused information dissemination provides one important tool for coordination. One

obvious next step for CODA would be to develop tools that could help a user understand

the ramifications within his local plan of matches to PARs.

That type of impact analysis requires the availability of a deep causal model for the plan.

For example, suppose that a planner makes the decision to change the assembly point for

an evacuation operation from the local embassy to a nearby football stadium. Such a

change could impact strategy (i.e., it may now be possible to use larger helicopters for the

evacuation), timing (i.e., the stadium may be further from the center of town), and

security requirements. Traditional AI planning techniques have assumed that a plan

includes sufficient causal information so that all consequences could be computed

directly when changes occur. However, plans authored by human operators are unlikely

to include that level of detail. Our work on qualitative causal reasoning (Section 5) could

be used to overcome this limitation.

6.5.2. Generalized Notification Services

CODA currently supports a simple mechanism for informing users of plan changes that

match their declared PARs, namely, the display of a notification message in the CODA

interface. It would be valuable to consider a suite of multimodal notification methods,

whose use could be customized to an individual planner. The methods could include

notification via email, phone, fax, or messaging to a personal digital assistant. This

broader range of notification schemes is imperative to support asynchronous models of

planning, given that a user may not be ‘online’ with his planning system when critical

changes are made of which he needs to be aware.

The notification services would build on a user profile that provides both contact

information and preferences for an individual user. Preferences could be based on criteria

such as priorities associated with PARs, user location, and the priority or ownership of

the modified plans. For example, a user might simply wish to receive an email message

with a summary of changes to contingency plans that triggered matches to PARs, but

prefer instant notification via a cell phone or PDA if some assets under his control are to

43

be reassigned. The phase of the planning cycle could also bear on the choice of contact

medium: for example, as H-Hour approaches, users might prefer to be paged in order to

maximize the time available to consider responses.

6.5.3. Resolution Services

The basic matching services within CODA enable awareness by a local planner of

changes that could impact his planning process. In situations where changes either

introduce opportunities for synergy among planners (e.g., shared use of a tanker) or raise

potential conflicts (e.g., the possibility of friendly fire incidents), human planners will

need to collaborate to determine appropriate adjustments to their plans to reconcile the

effects of the reported changes.

One version of CODA incorporated a ‘chat’ facility to enable users to communicate

informally to respond to plan changes. The use of this medium for resolving problems is

appropriate in certain circumstances (e.g., obvious modifications that are not expected to

trigger controversy). However, when changes are contentious or when there are users

who have gone offline, alternative communication methods are required to facilitate the

resolution process.

As a next step, it would be interesting to extended CODA to include a structured

proposal/counterproposal capability that could be used by human planners to negotiate

modifications to plans. This facility would be grounded in an ontology of plan change

proposals (e.g., delay an activity, use an alternative resource), with a user selecting one

or more such proposals and instantiating them for the current situation. Counterproposals

could be made by modifying earlier proposals, or suggesting completely new alternatives

in response to the original change event.

44

7. Conclusions

Challenging planning problems are an integral part of many commercial, military and

space endeavors. Given the number and complexity of these problems, there is a clear

need to develop technology to improve problem solving in these areas. The SOF domain,

the driving application domain for the Active Templates program, exemplifies a planning

task for which technology could play several important roles: simplifying and expediting

the planning process, enabling better solutions, and improving plan execution through

support for execution monitoring and plan revision.

To date, there has been limited success in transitioning AI technology into planning

applications. The root cause of the failure has been the misguided focus within the AI

planning community on developing fully automated systems that could replace human

decision makers. In particular, the problems to be solved in these domains far exceed the

technical capabilities of current planning technology. Furthermore, the knowledge bases

that would be required to capture even the basic factors that impact decision making for

these domains would be difficult to create and problematic to maintain. Finally, few

potential consumers of planning technology are interested in black-box solutions, as users

would like to be able to shape and influence the decision-making process by which

solutions are generated.

We believe that AI planning technology can and will make a difference in real-world

planning problems. However, the successful technologies will not be fully automated.

Rather, they will be user-centric technologies that provide assistance to the human

planner rather than attempting to replace him. Our work on this contract has focused on

these types of user-centric planning technologies, covering both the needs of an

individual planner and teams of distributed planners who must work collaboratively to

develop a shared plan.

The core of our work focused on the PASSAT plan-authoring system. With its

combination of interactive plan authoring, plan sketching, and advice, PASSAT enables a

user to quickly develop plans that draw upon past experience encoded in templates but

that are customized to his individual preferences and the current situation. The human

remains the key decision maker within PASSAT, but can invoke automation when

appropriate to aid with task expansion, constraint checking, and process management.

This style of mixed-initiative planning is essential for many domains, where the

generation of high-quality, trusted solutions requires substantial human insight and

judgment.

While there have been a number of mixed-initiative planning systems developed

previously, those efforts have required that the system be endowed with complete and

correct knowledge bases for the application domain. Within PASSAT, we sought to

relax this requirement. Users can override system knowledge of constraints, when

desired, during plan development. Similarly, our robust plan sketching capability can

identify differences between a user’s outline for a plan and what the planning knowledge

within the system supports as possible, as well as mechanisms to resolve those

45

differences. Our approach accommodates two categories of problem: violated

applicability conditions and extraneous actions.

This tolerance of incorrectness within the background models used by the planning

system constitutes a first step toward a much more flexible style of mixed-initiative

planning that can support ‘out of the box’ ideas by the user. Our work on qualitative

reasoning about plans moves even further in this direction, by supporting the ability to

reason about plans using a less formal characterization of the plan’s structure than is

required by current automated planning systems. In particular, our qualitative framework

supports a level of reasoning that is commensurate with the amount of casual structure

and degree of precision that a human planner is willing to provide. An approach of this

type will be essential for supporting human planners as they develop complex plans that

necessarily transcend predefined knowledge bases.

With the CODA framework, we developed a practical solution to the problem of

coordinating the activities of distributed human planners engaged with plan authoring

tools. By having human planners explicitly declare those aspects of the overall planning

process that interest them, CODA enables timely and focused distribution of information

that can expedite and improve the quality of coordinated problem solving. The use of a

rich, AI-based representation for describing plans, planning changes, and background

theories provides the key to this technology. We believe that the coordination

capabilities that CODA provides can improve significantly the effectiveness of a

planning team. As such, we were disappointed not to have the opportunity to transition

the CODA system into operational use by the SOF community. We believe that this

technology is ready for use in real-world planning problems, and will look to transition it

in the context of future DARPA programs.

46

8. Bibliography

Allen, J. F. “Towards a General Theory of Action and Time”. Artificial Intelligence 23,

1984.

Chapman. D. Planning for Conjunctive Goals, Artificial Intelligence, Volume 32, 1987.

Cohen, W. W., Schapire, R. E., and Singer, Y. “Learning to Order Things”. In M. I.

Jordan, M. J. Kearns, and S. A. Solla (Eds). Advances in Neural Information Processing

Systems, The MIT Press, 1988.

Currie, K., and Tate, A. “O-Plan: The Open Planning Architecture”. Artificial

Intelligence, 32(1), 1991.

 El Fattah, Y. and Dyer, D. “Causal Consistency for Plan Authoring and Execution: A

Preliminary Report”. Unpublished Manuscript, 2001.

Erol, K., Hendler, J., and Nau, D. (1994). Semantics for Hierarchical Task-Network

Planning. Technical Report CS-TR-3239, Computer Science Department, University of

Maryland.

Frank, M.R. and Szekely, P. “Adaptive Forms: An Interaction Paradigm for Entering

Structured Data”. In Proceedings of the ACM International Conference on Intelligent
User Interfaces, 1998.

GTE, SOFTools User Manual, 2000.

Guindon, R. “Designing the Design Process: Exploiting Opportunistic Thoughts”.

Human-Computer Interaction, 5(2), 1990.

Karp, P. D., Myers, K. L., and Gruber, T. “The Generic Frame Protocol”. In Proceedings

of the Fifteenth International Joint Conference on Artificial Intelligence, 1995.

Myers, K. L. “Strategic Advice for Hierarchical Planners”. In Principles of Knowledge

Representation and Reasoning: Proceedings of the 5th Intl. Conference (L.C. Aiello, J.

Doyle and S.C. Shapiro, eds.), Morgan Kaufmann Publishers, 1996.

Myers, K. L. “Abductive Completion of Plan Sketches”. In Proceedings of the 14th

National Conference on Artificial Intelligence, AAAI Press, 1997.

Myers, K. L. “Planning with Conflicting Advice”. In Proceedings of the Fifth

International Conference AI Planning and Scheduling (AIPS2000), AAAI Press, Menlo

Park, CA, 2000.

Myers, K.L., Jarvis, P.A., and Lee, T.J. “Active Coordination of Distributed Human

Planners”. In Proceedings of the Sixth International Conference on AI Planning Systems,

Toulouse, France, 2002.

Myers, K. L., Tyson, W. M., Wolverton, M. J., Jarvis, P. A., Lee, T. J., and desJardins,

M. “PASSAT: A User-centric Planning Framework”. In Proceedings of the 3rd

47

International NASA Workshop on Planning and Scheduling for Space, Houston, TX,

2002.

Myers, K. L., Jarvis, P. Tyson, W. M., and Wolverton, M. J. “A Mixed-initiative

Framework for Robust Plan Sketching”. In Proceedings of the 13th International

Conference on Automated Planning and Scheduling, Trento, Italy, 2003.

Peot. M. and Smith. D. “Threat-Removal Strategies for Partial-order Planning”. In

Proceedings of the Eleventh National Conference on Artificial Intelligence, Washington,

D.C., 1993.

Pollack, M. E., Joslin, D., and Paolucci, M. “Flaw Selection Strategies for Partial-Order

Planning”. Journal of Artificial Intelligence Research 6, 1997.

Tate, A. “Generating Project Networks”. In Proceedings of the Fifth International Joint

Conference on Artificial Intelligence, 1977.

Weld, D. “Recent Advances in AI Planning”, AI Magazine, 20(2), 93-123, 1999.

Wilkins, D. E. “Using the SIPE-2 Planning System”, Technical Report, Artificial

Intelligence Center, SRI International, Menlo Park, CA, 1993.

48

Appendix A. Publications

We produced the following technical papers and reports on the project.

(1) “A Mixed-initiative Framework for Robust Plan Sketching”, K.L. Myers, P. A.

Jarvis, W. M. Tyson, and M. J. Wolverton. In Proceedings of the Thirteenth

International Conference on Automated Planning and Scheduling (ICAPS’03),

Trento, Italy, 2003.

(2) “PASSAT: A User-centric Planning Framework”, K. L. Myers, W. M. Tyson, M.

J. Wolverton, P. A. Jarvis, T. J. Lee, M. desJardins. In Proceedings of the Third

International NASA Workshop on Planning and Scheduling for Space, 2002.

(3) “Toward a Theory of Qualitative Reasoning about Plans”, K. L. Myers,

Technical Report, SRI International, November, 2003.

(4) “Active Coordination of Distributed Human Planners”, K. L. Myers, P. A. Jarvis,

T. J. Lee. In Proceedings of the Sixth International Conference on Artificial

Intelligence Planning and Scheduling, AAAI Press, pages 63-71, Toulouse,

France, 2002.

(5) “CODA: Coordinating Human Planners”, K. L. Myers, P. A. Jarvis, T. J. Lee,

Proceedings of the European Conference on Planning, 2001.

(6) “User’s Guide for the CODA System”, K. L. Myers, P. A. Jarvis, T. J. Lee. SRI

Technical Report, 2003.

(7) “User’s Guide for the PASSAT System”, K.L. Myers, P. A. Jarvis, W. M. Tyson,

and M. J. Wolverton. SRI Technical Report, 2003.

Copies of (1) – (4) are included with this appendix. Documents (6) and (7) have been

delivered to the government in conjunction with this Final Technical Report.

49

A Mixed-initiative Framework for Robust Plan Sketching

Karen L. Myers Peter A. Jarvis W. Mabry Tyson Michael J. Wolverton

 Artificial Intelligence Center
SRI International

333 Ravenswood Avenue
Menlo Park, California 94025

{myers, jarvis, tyson, mjw}@ai.sri.com

Abstract

Sketching provides a natural and compact means for a user
to outline a plan for a high-level objective. Previous work
on plan sketching required that sketches be valid, meaning
that there be at least one legal completion of the sketch
relative to predefined planning knowledge. This paper
addresses the problem of plan sketch interpretation when
the validity assumption does not hold. We present a formal
framework for robust plan sketching that defines key
concepts and algorithms for interpreting and repairing plan
sketches with respect to two classes of problem: violated
applicability conditions and extraneous actions. We also
describe a mixed-initiative implementation of this
framework that supports a user and the system working
collaboratively to refine a plan sketch to a satisfactory
solution.

Introduction
Hierarchical planning systems support a top-down model
of planning focused on the refinement of high-level
objectives to executable actions. Human planners, in
contrast, often combine top-down planning with a bottom-
up approach that identifies specific tasks to be included in
a final solution. Indeed, studies have shown that designers
tend to interleave decisions at various levels of abstraction,
thus working opportunistically at times rather than in a
purely top-down fashion [Guindon 1990]. For example
the planners of a hostage rescue may decide where and
how they will establish a safe haven and how hostages will
be transported, without yet having selected an overall
rescue strategy. The selection of high-level strategy, in
fact, can often be conditioned on such lower-level
decisions.
 This paper presents an HTN-based plan development
framework grounded in the metaphor of sketching. Our
approach involves having a user sketch an outline of a plan
for a particular objective, with the system providing
assistance in refining the outline to a full solution. A
sketch consists of a collection of tasks that (1) may be only
partially specified, and (2) may occur at various levels of
abstraction in the plan hierarchy.1 Within this framework, a

 Copyright 2002, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.
1 Sketching often implies a graphical medium. While our model
of sketching is compatible with graphical specification of tasks,
we consider only logical specifications in this paper.

human planner can combine opportunistic and top-down
plan refinement in a manner that best suits his individual
planning style. The technical challenge for sketch
processing is to develop mechanisms for extending an
initial sketch to a complete solution for the user’s
objective.
 The concept of plan sketching has been considered
previously [Myers 1997]. That work, however, required
that plan sketches be valid, meaning that there be at least
one legal completion of the sketch relative to predefined
planning knowledge. Mismatches between human
conceptualizations of a domain and formalized planning
knowledge, however, can lead to situations where user
sketches are uninterpretable. This paper addresses the
problem of plan sketch interpretation when the validity
assumption no longer holds. In particular, we present a
formal framework for plan sketching that defines concepts
and algorithms for interpreting and repairing invalid plan
sketches in a robust manner.
 Our theory of sketch interpretation and repair could be
operationalized as a fully automated system. Instead, we
have chosen to define a mixed-initiative approach in which
the system guides a human planner through the process of
modifying a plan sketch to eliminate detected problems.
The role of the system in this framework is to identify
sketch problems and possible repairs, while the human acts
as the decision maker in navigating through the space of
options.
 We have implemented our robust plan sketching
framework as part of a broader human-centric planning
system called PASSAT (Plan-Authoring System based on
Sketches, Advice, and Templates) [Myers et al. 2002].
Within PASSAT, users draw upon a library of templates,
to the extent they desire, to assist with plan development.
Templates are a form of task network [Tate, 1977; Erol et
al. 1994], and may encode both parameterized standard
operating procedures and cases corresponding to actual or
notional plans developed for related tasks. PASSAT also
provides a rich set of interactive and automated planning
capabilities that complement the plan sketching capabilities
described in this paper.
 We begin the paper with a short overview of our
planning model. Next, we describe the core technical
components of the work, namely, a model of tolerant plan
sketch compliance, a set of repair mechanisms, and a
robust sketch processing algorithm. We then describe a
realization of the sketch processing algorithm within

 From: Procedings of the 2003 International Conference on Automated Planning and Scheduling (ICAPS’03).

50

PASSAT’s mixed-initiative planning framework, and
illustrate its use in a detailed example. That is followed by
a description of tools that we have built to facilitate plan
sketching (namely, an interactive sketch editor and a
sketch space exploration aid). Finally, we close with a
discussion of related work and conclusions.

Planning Model
We employ a hierarchical task network (HTN) model of
planning, based loosely on that of [Erol et al. 1994].
 The cornerstones of HTN planning are task networks
and templates (alternatively, operators or methods).
Informally, a task network is a partially ordered set of
tasks to be achieved, along with conditions on the world
state before and after tasks are executed. Templates
specify methods for reducing an individual task to some
set of subtasks, under appropriate conditions. HTN
planning consists of taking a description of an initial world
state, an initial task network, and a set of templates for task
refinement, and then searching for templates that can be
applied to reduce the initial task network to a set of
executable tasks.
 Formally, we define a task network <N,L,W>, where N
is a set of task nodes, L is a set of ordering constraints on
those nodes, and W is a set of world constraints. An HTN
planning problem is defined by <O, T0, W0>, where O is a
set of templates, T0 is an initial task network, and W0 is a
set of propositions describing the initial world state. A
template o is characterized by its purpose Purpose(o) (i.e.,
the tasks to which it can be applied), the preconditions for
applying the template Preconds(o), and the task network
Tasks(o) to which a task matching the purpose can be
reduced by applying the template. The tasks, constraints,
and goals in the task networks and templates are defined
using a first-order language with existential interpretation
of variables.
 Tasks can be either primitive or nonprimitive, with the
former having no possible refinements. A solution to an
HTN problem consists of a refinement of the original task
network to a network of primitive tasks for which all
constraints can be resolved. A solution is characterized by
a plan refinement structure <P,N,D>, where P is the set of
task networks produced, N is the set of nodes in any of the
task networks, and D defines a directed acyclic graph of
the refinement relations from a node to each of its
descendants.
 Each node in a plan refinement structure has attributes
defined by its associated task. Key attributes for sketch
interpretation include the task for the node Task(n), the
ancestor node Ances(n), the template that has been used to
refine that node Template(n), and the bindings for the
refinement Bindings(n). We use the notation pσ to denote
the application of bindings σ to object p (a template, term,
proposition). The notation σ1 ∪ σ2 denotes the composition
of bindings. With this notation, Task(n)Bindings(Ances(n))
denotes the instantiated task for node n.

Tolerant Plan Sketch Compliance
We begin by defining a plan sketch.

Definition 1 (Plan Sketch) A plan sketch is a set of tasks.

Note that the tasks within a plan sketch can be primitive or
nonprimitive, ground or nonground.
 The work in [Myers 1997] focused on the concept of
plan sketch compliance, namely, finding a plan refinement
structure that embeds an instantiation of the plan sketch.
Definition 2 formalizes this requirement.

Definition 2 (Plan Sketch Compliance) A plan
refinement structure H=<P,N,D> is compliant with a plan
sketch S iff there is a substitution β such that for every
sketch task A∈S, there is some node n∈N with σ
=Bindings (Ances(n)) such that Task(n)σ = A β.

 Robust plan sketching requires a less stringent condition
on solutions than that of compliance from Definition 2.
This weaker condition must account for both (a) user
misconceptions about the task domain (i.e., situations
where the user has incorrect models of when and how
activities can be undertaken), and (b) background
knowledge that may be incorrect or incomplete. In this
paper, we focus on two types of problem within sketches
that derive from user misconceptions and faulty domain
knowledge:

• Type 1: violations of constraints from the templates
used to interpret a plan sketch

• Type 2: sketch tasks that do not map to any high-
level goal (i.e., orphaned tasks).

 We define the weaker notion of maximal compliance to
accommodate these problem types. In contrast to the
concept of full compliance from Definition 2, maximal
compliance captures the notion of embedding a maximal
subset of the original sketch within a plan refinement
structure while minimizing constraint violations.
 The formal definition of maximal compliance builds on
the concept of conditional compliance. Conditional
compliance for a plan sketch allows a designated set of
constraints to be ignored. For a set of templates O, define
O/C to be the set of templates that is identical to O except
that all template preconditions that unify with constraints
in C have been removed.

Definition 3 (Conditional Compliance) A plan
refinement structure H for a problem <O, T0, W0> is
conditionally compliant with a sketch S and set of
conditions C iff H both is compliant for S and is a plan
refinement structure for the problem <O/C, T0, W0>.

Definition 4 (Maximal Compliance) Let H=<P,N,D> be
a plan refinement structure and S0 be a plan sketch. H is

51

maximally compliant with S0 iff H is conditionally
compliant with some sketch S⊂S0 and conditions C, and
there is no plan refinement structure H′ such that for some
conditions C′⊂C and sketch S′ where S⊂S′⊂S0 either:

• H′ is conditionally compliant with S′ and C, or
• H′ is conditionally compliant with S and C′.

Maximal compliance characterizes the class of solutions to
a planning problem that best reflect a given sketch, subject
to the constraints of the background knowledge. Ideally, a
robust sketch interpretation algorithm should aim to
identify one or more plan refinement structures that are
maximally compliant. However, domain complexity may
preclude finding such optimal solutions in practice.

Robust Sketch Interpretation
In this section, we define an algorithm for robust sketch
interpretation that is motivated by the notions of
conditional and maximal compliance. The algorithm builds
substantially on the ‘nonrobust’ algorithm of [Myers
1997]. We first provide a high-level summary of that
method, and then define a set of extensions and
modifications that enable robust sketch interpretation.

Summary of the Nonrobust Method
The nonrobust method consists of two steps: (a) an initial
abduction phase for linking sketch tasks to a high-level
goal, and (b) a subsequent refinement phase in which the
abduction results guide decision making to produce a full
plan that is compliant with the sketch.
 The abductive phase produces a collection of chains for
each sketch task, where a chain encodes an abstraction
path from a sketch task to a designated high-level objective
through the templates defined for the planning domain.

Definition 5 [Abductive Chains] The abductive chains
for a task A and objective G are the set of labeled linear
graphs

GTTTT n

O
n

O
n

nnnn =⎯→⎯⎯⎯⎯ →⎯⎯⎯ →⎯= −−
−−

12
],[

1
],[11A Λσσ

where each Oj is a template with purpose Tj-1 and a subtask
Qj such that σj is a most-general unifier of Qj and Tj

β for
β=∪n≥i>j σi.

We say a task A is orphaned for an objective G (or just
orphaned when the objective is clear) iff there are no
abductive chains linking A to G.
 The abductive chains are used to guide HTN refinement
in order to ensure that the resultant plan contains each of
the anchors in the specified sketch. Standard task
refinement involves selecting a template that applies to a
given task (i.e., the template’s purpose unifies with the task
and all template preconditions are satisfied). For sketch
processing, refinement must further restrict template
choices and extend variable substitutions so that the

resultant plan structure is consistent with at least one chain
for each sketch task. Consistency requires that there be a
path in the hierarchical plan structure from the top-level
objective to a leaf node for which the choice of template is
identical to that of the chain, and all variable substitutions
are consistent. An inability to identify a compatible set of
abductive chains for a refinement step indicates that the
current plan cannot be expanded to a complete plan that is
compliant with the original sketch; hence, further
exploration of that option is pointless.

Tolerating Sketch Problems
To accommodate the two classes of sketch problem
described above, we generalize and extend the nonrobust
algorithm in three ways. First, violated preconditions for
template application are ignored temporarily in both the
abduction and refinement phases, provided they are
deemed potentially fixable (discussed below). Second,
orphaned sketch tasks are ignored during the refinement
phase. Finally, a repair phase is added in which detected
problems are resolved.

Plan Sketch Repairs
We define four types of repair: drop constraint, drop task,
modify task, and replace task.

• DropConstraint(c) – ignore the constraint c.

• DropTask(T) – delete task T from the current

sketch.

• ModifyTask(T,i,v)) – change the ith argument of
sketch task T to be v

• ReplaceTask(T1,T2) – replace sketch task T1 with

task T2

When considering repairs performed by a human (as
opposed to automatically), these repair types can be
categorized according to what they say about user versus
system expertise. The drop constraint repair would be
invoked in situations where the user’s knowledge overrides
that of the system. In contrast, application of the other
repairs indicates a preference for the system’s knowledge
over that of the user (as reflected in his original sketch).
 To provide focus, we employ two criteria to limit the
applicability of repairs: (a) relevance of the repair, as
captured by a requirement for deductive linkage between
sketch tasks and violated constraints, and (b) prespecified
domain knowledge that identifies classes of constraints and
tasks to which the repairs apply.

Deductive Linkage Deductive linkage requires a logical
relationship between a sketch task A and a violated
constraint c through an abductive chain. Specifically,
some argument to a sketch task A is connected to some
argument in the violated constraint c via unification

52

constraints defined by the templates within the abductive
chain. This linkage introduces the potential (but not a
guarantee) that a change that involves the relevant sketch
task argument could eliminate the violation c. For
example, a sketch task that designates the use of a certain
class of helicopter for an airlift operation might lead to
violation of a constraint higher up in an abductive chain
related to lift capacity. Switching to a more powerful class
of helicopter could fix the problem.
 In the definitions below, we use the proposition

Links(Task(a1, … ,an), i, P(b1, … ,bm), Chain)

to indicate that within the abductive chain Chain, there is
deductive linkage from argument ai in Task(a1, … ,an) to bj
in some predicate P(b1, … ,bm), where P(b1, … ,bm) is a
precondition for a template used in the chain abstraction.

Domain Knowledge Prespecified domain knowledge is
used to restrict the classes of task and constraint to which
various types of repair apply. We consider three
categories.

A. Droppable Constraints. Droppable constraints

correspond to predicates with a ‘soft’ interpretation in
that they denote preferences or guidelines rather than
gating conditions. For example, a template for a
helicopter airlift may require wind speed below a
certain threshold; a planner may decide to drop that
constraint in the event that the current wind speed only
slightly exceeds the threshold and all other
requirements are satisfied.

B. Modifiable Task Arguments A task argument is

categorized as modifiable to indicate that changes to
that argument are allowed. For example, with the task
FLY(start, destination, flight) in a travel planning
domain, it would make sense to consider alternate
flights but not start or destination locations.

C. Replaceable Tasks A task is categorized as replaceable

to indicate that alternatives for that task can be
considered. 2

We represent these declarations as follows, using KB to
refer to the predefined knowledge base of the planning
system and xi and yj to denote variables. The statement

KB ╞ DroppablePredicate(P(x1, …,xm))

indicates that any predicate that unifies with P(x1, … xm) is
considered droppable for sketch repair; similarly

KB ╞ ChangeableTask(Task(x1, … ,xm),i)

2 More generally, the properties of droppability, modifiability,
and replaceability should be characterized as preference
orderings. We will address this issue in future work.

indicates that the ith argument of any task that unifies with
Task(x1, … ,xm) can be modified for sketch repair, and

KB ╞ ReplaceableTask(Task(x1, … ,xm), Task(y1, … ,yn))

indicates that any task that unifies with Task(x1, … ,xm) can
be replaced by a task that unifies with Task(y1, … ,yn).

We can now formally characterize the class of induced
repairs for a given sketch and its abductive chains. The
induced repairs constitute a minimal set of relevant repairs
to consider when repairing a sketch.

Definition 7 (Induced Repairs) The set of induced
repairs for a sketch S with abductive chains Chains
consists of

(a) DropConstraint(P(b1, …,bm)) for any unsatisfied
constraint P(b1, … bm) in Chains such that KB ╞
DroppablePredicate(P(x1, …,xm))

(b) DropTask(Task(a1, … ,an)) for any task Task(a1, …

,an)∈S that is either orphaned, or for which there is
some unsatisfied constraint P(b1, … bm) and some
C∈Chains such that Links(Task(a1, … ,an),k,P(b1, …
,bm),C), for some 1≤k≤n

(c) ModifyTask(T(a1, … ,an),i,v) for any task T(a1, …

,an) ∈S that is orphaned, or for which KB ╞
ChangeableTask(Task(x1, … ,xn),i) and there is some
C∈Chains and unsatisfied constraint P(b1, … bm)
such that Links(Task(a1, … ,an),i,P(b1, … ,bm),C)

(d) ReplaceTask(Task(a1, … ,an), Task′ (b1, … ,bm)) for

any task T(a1, … ,an) ∈S that is orphaned, or for
which KB ╞ ReplaceableTask (Task(x1, ... ,xn1),
Task′ (y1, … ,yn2)) and there is some unsatisfied
constraint P(b1, …,bm), and C∈Chains such that
Links(Task(a1, … ,an),k,P(b1, …,bm),Chain) for some
1≤k≤n

 For cases (b) through (d) in Definition 7, we say that the
repair covers the orphaned sketch task Task(a1, … ,an); for
cases (a) through (d), we say that the repair covers the
violated constraint P(b1, …,bm). The set of potentially
fixable constraint violations is defined to be the constraint
violations covered by the induced repairs.
 The induced repairs provide a means to focus the repair
process. Because the space of possible sketch changes can
be enormous (as discussed further below), this filtering is
essential for restricting the number of options considered.
 Within a mixed-initiative framework, one can envision
user modifications to a plan sketch that go beyond the
induced repairs. Such changes could reflect additional
user knowledge about the domain, or a change in strategy
from that embodied in the original sketch.

53

Sketch Repair Algorithm
Figure 1 presents our algorithm for robust sketch
processing.3 Processing a sketch S for a problem <O, T0,
W0> would involve a call to ProcessSketch(S,{},<O, T0,
W0>); the results returned (via Step 3a) would be a
modified sketch S*, a set of conditions C*, and a plan
refinement structure H* that is conditionally compliant
with S* and C* for <O, T0, W0> (see Definition 3).
 Steps 1 and 2 correspond to the abduction and
refinement phases of the nonrobust algorithms from
[Myers, 1997], although modified to ignore potentially
fixable constraint violations and orphaned sketch tasks.
Step 3 nondeterministically selects and applies induced
repairs to cover all detected problems, yielding a modified
sketch S′ and collection of dropped constraints C′. Step 4
recursively invokes the sketch processing algorithm for S′
and C′ to produce a plan refinement structure that is
conditionally compliant with the revised sketch (if one
exists) or to identify additional problems to repair.
 The algorithm as stated does not guarantee maximal
plan sketch compliance (see Definition 4), although it
could easily be restructured as an optimization process to
identify maximal solutions. As discussed further below, we
believe that optimization is an inappropriate goal because
of the potentially explosive size of the repair search space.

3 To simplify the presentation, the algorithm ignores the potential
for repairs that preempt each other (e.g., one repair changes an
argument of a sketch task while a second replaces the sketch task
with a different task).

Furthermore, our experience indicates that while users
prefer solutions that are close to a proposed sketch,
maximal compliance is generally not necessary.

Mixed-initiative Repair
The algorithm for sketch repair in Figure 1 does not
commit to a specific implementation design. One option is
to automate fully the algorithm, including the process of
selecting and applying repairs. In the general case, the
space of candidate sketch revisions to consider during each
call to ProcessSketch will be of size O(kv) where k is the
number of induced repairs for a violation and v is the
number of violations. While v could be expected to be a
relatively small number (say, in the range 5-10), k could be
quite large. In particular, modify task repairs could
encompass changes to any of a task’s arguments, and may
need to consider a broad range of possible values for each.
A fully automated approach to sketch repair would require
powerful heuristics to be effective for such a large space.
 Our interests lie with more user-centric planning aids,
which led us to develop a mixed-initiative realization of
the sketch progressing algorithm. In our framework, the
system identifies violations and possible repairs while the
user selects repairs and directs the overall search. The
framework is designed for iterative use, with a human
planner incrementally refining a sketch in response to
detected problems until finding a satisfactory solution.

Figure 1. Algorithm for Robust Sketch Processing

ProcessSketch(S, C, <O, T0, W0>)
• Step 1 [Abduction]: Generate abductive chains Chains(T) for each task T∈S while ignoring potentially fixable

constraint violations
o Set: Orphans ← {T∈S | Chains(T)={}}

• Step 2 [Refinement]: Generate a task refinement structure H that is
 consistent with at least one abductive chain for each T ∈ S – Orphans, and
 ignores potentially fixable constraint violations

If no such task refinement structure exists, then return failure.
o Set: V← the potentially fixable constraint violations for H

• Step 3 [Repair]:
• Step 3a: If V=Orphans={}, then return solution <H,S,C>.
• Step 3b: Else repair the sketch:

 S′ ← S
 C′ ← C
 Nondeterministically select a set of induced repairs {r1, … rm} to cover v ∈V and T∈Orphans

If no such set exists, then return failure.
 Perform the repairs as follows:

• If ri = DropConstraint(v): C′ ← C′ ∪ {v}
• If ri = DropTask(T): S′ ← S′ – {T}
• If ri = ReplaceTask(T1,T2): S′ ← {S′ – {T1}} ∪ {T2}
• If ri = ModifyTask(T(a1, …,an),i,d)):

 S′ ← S′ – {T(a1, …,an)} ∪ {T(a1, …,ai-1,d, ai+1, …,an)}
• Step 4 [Validation]: Invoke ProcessSketch(S′, C′ ,<O/C′, T0, W0>)

54

 One important characteristic of the algorithm from
Figure 1 for a mixed-initiative approach is the articulation
of a separate repair phase subsequent to the abduction and
refinement phases. Delaying repairs until after abduction
and refinement complete (as opposed to performing repairs
while chains or refinement structures are constructed)
means that a plan structure is available to ground the repair
process. This context is important for two reasons. First,
the user is not making a decision in a vacuum; rather, it is
possible to understand the potential impact of a repair on
the current plan. Second, interactions with the user are
limited to a single candidate solution, thus providing focus.
Work in the collaborative problem-solving community
views focus as an essential requirement for coherent user-
system interactions [Rich and Sidner, 1998]. The work of
[Allen and Ferguson, 2002] similarly builds on a
candidate solution (the ‘straw plan’) to guide mixed-
initiative planning.
 Our implementation differs slightly from the algorithm
of Figure 1 in that it does not generate a single complete
plan refinement structure in Step 2. Instead, it computes a
set of expansions, each of which amounts to a least-
commitment partial HTN structure that embeds the sketch
and all derived consequences. In particular, expansions do
not make commitments that are not required to connect
sketch tasks to the high-level goal. For example, a sketch
for a hostage rescue objective that contained only tasks
related to reconnaissance would yield expansions limited
to the reconnaissance subportion of the plan. This switch
to expansions was motivated primarily by our desire to
support a more user-centric planning process, where
strategic decision making is left to the user. It would be
straightforward to extend the approach to support
generation of complete plans for sketches using standard
HTN techniques.

Sketch Example
To illustrate the sketch-processing capabilities within
PASSAT, we consider an example from a special

operations domain that has motivated much of our work.
The example focuses on a hostage rescue scenario in
which a group of hostages is being held captive by
guerrillas in Mogadishu's town hall. Riyadh Airport has
been selected as the jumping-off location for the mission
while the hostages are to be evacuated to Riyadh Stadium.
The high-level task for this plan is represented as

 RESCUE-HOSTAGE(MOGADISHU-TOWN-HALL,
 RIYADH-AIRPORT,
 RIYADH-STADIUM)

 Figure 2 shows a sketch that consists of four tasks: (1) a
reconnaissance force (Yellow-Team-1) swimming from a
submarine (denoted by the variable ?SUBMARINE) at
Mogadishu Port to the port entrance, (2) inserting a combat
team (Green-ODA-1) at the town hall via a UH-60A
helicopter, (3) having the combat team storm the town hall,
and (4) positioning a security team at the evacuation site.
The labels above each task argument identify that
argument’s role in the task.
 Processing of this sketch by PASSAT yields three
expansions, with a range of three to four violated
constraints in each. The expansions interpret the role of the
sketch tasks somewhat differently; for example, one
expansion interprets the DROP task as part of the hostage
extraction effort while the others interpret it as part of a
reconnaissance operation.
 The user can select one of these expansions and explore
options for repairing its associated problems. Figure 3
summarizes the constraint violations (top) and the
hierarchical task/template structure (bottom) for one
expansion; sketch tasks are highlighted. This expansion
does not contain any orphaned tasks.

Figure 4 displays the window that is presented to the
user to repair the original sketch. The window summarizes
the repair options for each violation, which may consist of
dropping the constraint, changing a parameter for a
designated task, or making no repair. (Our interface does
not yet support replace task repairs.) Because the use of

Figure 2. Sample Plan Sketch for the Hostage Rescue Task

55

constraint dropping and task parameter changes is
restricted by predefined domain knowledge, only some of
these repairs may apply in each case.

To support the user in changing a task parameter, the
interface provides a drop-down list of candidate values.
This set consists of instances for the type associated with
that argument, with values that lead to violation of the
given constraint (in accord with the deductive linkage from
the sketch task to the constraint) explicitly marked as such.
 As one approach to repairing the chosen expansion, the
user could perform the following repairs:

• drop the constraint VC1
• modify the Helicopter argument of the DROP task

to be UH-60L-1 rather than UH-60A-1, given
that UH-60Ls have greater range (to address the
violated constraint VC2)

• drop the constraint VC3
• modify the Force-Composition argument of the

POSITION task to be SECURITY-PLATOON-1
(to address the violated constraint VC4)

 Given a set of repairs, PASSAT attempts to validate the
revised sketch by reinterpreting it while ignoring the
dropped constraints. In this case, the repairs resolve the
original problems but introduce a violation of the
constraint (COMBAT-EFFECTIVE SECURITY-PLATOON-
1). This new problem can be repaired by changing the
Force-Composition argument to be SECURITY-

PLATOON-2 (i.e., a platoon that has been certified ready
for combat). Processing of this revised sketch yields a
single expansion with no constraint violations.
 Figure 5 displays a snapshot of PASSAT’s interface
after sketch processing has completed. The large frame on
the left contains a hierarchical decomposition of the
current plan refinement structure, showing the insertion of
the final expansion for the Hostage-Rescue task. Items
next to folder icons are tasks that have been expanded;
items next to star icons are nonprimitive tasks that can be
expanded further; items next to document icons are
primitive tasks. Sketch tasks appear italicized and
highlighted in bold font. The frame on the upper right
shows the current agenda – the list of planning steps the
user must perform to address outstanding issues. PASSAT
maintains this agenda automatically to assist a user in
managing the planning process. Constraints that the user
chose to drop as part of the repair process appear
highlighted on the agenda. Planning tasks that remain to be
expanded are also added to the agenda. The frame on the
lower right shows the list of information requirements –
sources of information that have been identified by the
user or PASSAT's planning knowledge as relevant to the
planning process.

 At this stage, the user could continue developing the
current plan, by using any of PASSAT's capabilities for
interactive planning, or by providing a plan sketch for a
nonprimitive task.

Violated Constraints
VC1. (SITUATION-TYPE RIYADH-STADIUM HOSTILE)
VC2. (DISTANCE-< RIYADH-AIRPORT MOGADISHU-TOWN-HALL (RANGE UH-60A-1)
VC3. (> (SEA-TEMPERATURE MOGADISHU-PORT-ENTRANCE) 40)
VC4. (PLATOON-SIZED SECURITY-SQUAD-1)

Expansion Task Structure
Task: RESCUE-HOSTAGE(MOGADISHU-TOWN-HALL, RIYADH-AIRPORT, RIYADH-STADIUM)
Template: Hostage-Recovery-To-A-Potentially-Unstable-Area
 Task: ADVANCED-RECON(COUNTRY-OF(MOGADISHU-TOWN-HALL))
 Template: Advanced-Recon-Of-Target-Area
 Task: RECON-SEAPORTS(SOMALIA)
 Template: Recon-Seaports-In-Area
 Task: RECON(MOGADISHU-PORT)
 Template: Recon-With-Covert-Ground-Force
 Task: EXFILTRATE(YELLOW-TEAM-1, MOGADISHU-PORT, ?TO-LOC)
 Template: Swim-Exfiltrate-To-Submarine
 Task: SWIM(?SUBMARINE, YELLOW-TEAM-1, MOGADISHU-PORT, MOGADISHU-PORT-ENTRANCE)
 Task: RESCUE-AND-RECOVER(?FORWARD-POINT, MOGADISHU-TOWN-HALL, ?RECOVERY-LOCATION)
 Template: Rescue-And-Recover-Hostages
 Task: STORM(GREEN-ODA-1, MOGADISHU-TOWN-HALL)
 Task: INFILTRATE(GREEN-ODA-1, RIYADH-AIRPORT, MOGADISHU-TOWN-HALL)
 Template: Helicopter-Insertion-Rope
 Task: DROP(GREEN-ODA-1, UH-60A-1, MOGADISHU-TOWN-HALL)
 Task: PROVIDE-SECURITY(RIYADH-STADIUM)
 Template: Site-Defense-Large-Reaction-Force
 Task: POSITION(SECURITY-SQUAD-1, RIYADH-STADIUM)

Figure 3. Violated Constraints and Plan Structure for the Selected Expansion

56

Sketching Tools
Mixed-initiative systems require powerful and flexible
interfaces to facilitate interactions with a user. To support
mixed-initiative sketch repair, we developed two
interactive tools: a sketch editor and a sketch space
exploration aid.

Sketch Editor
Sketch specification involves defining the tasks that
comprise a sketch and their arguments. PASSAT provides
an interactive editor to simplify this process. With this
editor, the user first selects a set of tasks to be included in
the sketch, and then specifies the arguments for those
tasks. Allowed arguments consist of variables and all
instances of the corresponding type for that argument.
Figure 3 displays a final sketch created within the editor.
 To help the user focus on relevant choices, the sketch
editor incorporates context-sensitive presentation of
options to the user for both task and argument selection.

• Task selection: The editor exploits linkage among
templates to limit task selection for a sketch to tasks
that could possibly appear in any expansion of the
‘objective’ currently under consideration. This
filtering helps to eliminate many irrelevant options,
thus both reducing clutter from the task selection
menu and preventing the user from pursuing many
fruitless avenues.

• Argument selection: It is often the case that many

Figure 4. Candidate Repair Options

Figure 5. Plan with Sketch Expansion

57

candidate values for a task argument fail to satisfy
the preconditions of any templates that could be
applied to the task. Eliminating such values from
consideration prevents exploration of many dead-
ends. However, one design requirement for
PASSAT was the flexibility to let a user think ‘out
of the box’. In particular, PASSAT’s constraint
reasoning allows certain constraints to be
overridden at the user’s discretion. For this reason,
the possible values presented to the user are flagged
to indicate whether or not they satisfy all associated
constraints.

This type of structured plan editor eliminates the
possibility of syntactic mistakes (e.g., undefined tasks or
arguments, use of inappropriate argument types) that can
be a source of great frustration to a user. In doing so, it
allows the user to focus on the conceptual design for a
sketch.

Sketch Space Exploration Tool
 The space of possible expansions for a given sketch can
be dauntingly large, especially when interpretation is
tolerant of invalid sketches. To support a user in
navigating this large space, we have developed a sketch
space exploration tool that aids a user in managing the
sketch refinement process (see Figure 6). The tool is
organized around a tree structure that reflects the space of
sketches and expansions that a user has explored. The root
of the tree corresponds to the initial sketch; it contains a
descendant node for each expansion of the sketch. Each
revision of an expansion in turn generates a descendant
sketch node, from which a recursive structure emerges.

 For a sketch node, the user can choose to generate
expansions all at once or incrementally. For an expansion,
a user can view the template structure and the detected
problems. Expansions with minimal problems and
minimal numbers of expected repairs to address those
problems are highlighted. (One repair could fix multiple
problems, thus these values can differ for a given
expansion.) Eventually, the exploration tool will contain
mechanisms to summarize and compare expansions and
sketches.

Related Work
 The NuSketch system [Forbus eta al. 2001] provides a
framework for creating graphical sketches of plans
(specifically, for military courses of action) via a drawing
metaphor. As with our work, these sketches are intended to
provide outlines rather than complete plans, but in a
pictorial rather than logical language. NuSketch is focused
on interpretation of visual inputs and the adequacy of
mechanisms for specifying sketches visually, in contrast to
our emphasis on interpreting sketches relative to a
knowledge base of plan templates and helping a user refine
a sketch to a satisfactory solution.
 Qu and Beale’s work on cooperative response
generation provides a mixed-initiative framework for
constraint-based variable assignment problems [Qu and
Beale 1999]. Users can perform ‘repairs’ by changing
selections or dropping constraints. The system detects
violations and can assist the user by proposing new values
and summarizing possible solutions. While similar to our
mixed-initiative sketch repair, this work does not
incorporate any notion of plans. The authors note that,
while there has been much work on cooperative response
generation, most of it does not consider interactions among
choices.
 Our work on sketch interpretation shares with plan
recognition techniques the objective of finding a plan that
‘covers’ a set of specified tasks (see [Carberry, 2001] for a
comprehensive overview of the field of plan recognition).
These two lines of work differ, however, in several
respects. One difference is that the plan recognition work
is grounded in the assumption that there is a single
intended plan to be determined; in contrast, our work
supports the more general notion of identifying a range of
possible interpretations for a given sketch. A second
fundamental difference relates to the starting point: plan
recognition techniques assume a complete, ordered set of
tasks for a plan, while our model of a plan sketch consists
of a partial and unordered set of tasks. In particular, plan
recognition work does not consider the problem of
extending a partial plan to a complete solution. Finally,
most plan recognition work has been done in the context of
STRIPS models of planning, in contrast to our focus on
HTN models (although see [Gertner and Webber, 1996]
for another HTN-based approach).
 Most plan recognition work has assumed that observed
actions (the analog of our sketch tasks) are part of a valid

Figure 6. Sketch Space Exploration Tool

58

plan for an undetermined goal. However, there have been
some notable attempts to address the problem of
recognition of faulty plans. Classifications of different
types of plan-based misconceptions are presented in
[Pollack 1986, Quilici et al. 1988, van Beek et al. 1993],
with a comprehensive and detailed list provided in
[Calistri-Yeh 1991]. The emphasis in that work is on
identifying user misconceptions, with no consideration
given to potential problems in the underlying domain
knowledge. Misconceptions can be broadly characterized
in terms of missing actions, violated/unsupported
preconditions, and unsupported actions. Within the
context of plan sketching, only violated preconditions and
unsupported actions make sense (since the plan is only
partially specified). Many of these papers also present
methods to detect misconceptions and (at times) suggest
potential fixes. [Calistri-Yeh 1991] incorporates a
probabilistic model of a user to identify ‘more likely’
explanations for observed actions. Such a model could be
useful within the context of our work to focus the user on
expansions and repairs with greater expected relevance.
 In the long term, we are interested in tools that support
user updates to background planning knowledge when
gaps or errors are detected. [Cohen and Spencer 1994]
present an ATMS-based method for incremental updates to
plan recognition structures when knowledge is added.

Conclusions
Plan sketching provides a powerful paradigm for user
specification of complex plans. Plan sketching can help a
user quickly outline the key aspects of the plan,
capitalizing on the system to fill in less important details
around the sketch. In addition, it can serve as the basis for
an exploratory process that allows a user to consider a
variety of options when developing a plan.
 Robustness is critical to ensuring that a plan sketching
tool is usable and helpful. Robustness requires the ability
to identify differences between a user’s outline for a plan
and what the planning knowledge within the system
supports as possible, as well as mechanisms to address
those problems.
 The work presented here has defined an approach to
robust plan sketch interpretation that accommodates two
categories of problem: violated applicability conditions
and extraneous actions. This approach has been embodied
within a mixed-initiative plan sketching framework in
which a system identifies options for repair while a user
selects candidate interpretations and repairs.
 Areas for further work include broadening a sketch to
include user constraints and temporal information, and
developing tools to improve user understanding of the
sketch space (specifically, summarization and comparison
tools for sketches and expansions).

Acknowledgments. This work was supported by DARPA
under Air Force Research Laboratory Contract F30602-00-
C-0058.

References

Allen, J. and Ferguson, G. (2002). Human-machine Collaborative
Planning. In Proceedings of the 3rd International NASA
Workshop on Planning and Scheduling for Space, Houston, TX.
Calistri-Yeh, R. (1991). Utilizing User Models to Handle
Ambiguity and Misconceptions in Robust Plan Recognition. User
Modeling and User-Adapted Interaction, 1(4).
Carberry, S. (2001). Techniques for Plan Recognition. User
Modeling and User-Adapted Interaction, 11(1-2).
Cohen, R. and Spencer, B. (1994). Specifying and Updating Plan
Libraries for Plan Recognition Tasks. In Proceedings of IEEE
Conference on Tools for AI.
Erol, K., Hendler, J., and Nau, D. (1994). Semantics for
Hierarchical Task-Network Planning. Technical Report CS-TR-
3239, Computer Science Department, University of Maryland.
Gertner, A. S. and Webber, B. L. (1996) A Bias towards
Relevance: Recognizing Plans where Goal Minimization Fails.
In Proceedings of the Thirteenth National Conference on
Artificial Intelligence.
Guindon, R. (1990). Designing the Design Process: Exploiting
Opportunistic Thoughts. Human-Computer Interaction, 5(2).
Forbus, K. D., Ferguson, R. W., and Usher, J. M. (2001).
Towards a Computational Model of Sketching. In Proceedings of
Intelligent User Interfaces, Sante Fe, New Mexico.
Myers, K. L. (1997). Abductive Completion of Plan Sketches. In
Proceedings of the Fourteenth National Conference on Artificial
Intelligence, AAAI Press.
Myers, K. L., Tyson, W. M., Wolverton, M. J., Jarvis, P. A., Lee,
T. J., and desJardins, M. (2002). PASSAT: A User-centric
Planning Framework. In Proceedings of the 3rd International
NASA Workshop on Planning and Scheduling for Space,
Houston, TX.
Pollack, M. (1986). A Model of Plan Inference that Distinguishes
between the Beliefs of Actors and Observer. In Proceedings of
the 24th Annual Meeting of the Association for Computational
Linguisitics, N.Y., N.Y.
Qu, Y. and Beale, S. (1999). A Constraint-Based Model for
Cooperative Response Generation in Information Dialogues. In
Proceedings of the Sixteenth National Conference on Artificial
Intelligence. AAAI Press.
Quilici, A., Dyer, M. G., and Flowers, M. (1988). Recognizing
and Responding to Plan-Oriented Misconceptions. Computational
Linguistics, 14(3).
Rich, C. and Sidner, C. L. (1998). COLLAGEN: A Collaboration
Manager for Software Interface Agents. User Modeling and
User-Adapted Interaction, 8(3-4).
Tate, A. (1977). Generating Project Networks. In Proceedings of
the Fifth International Joint Conference on Artificial Intelligence.
van Beek, P., Cohen, R., and Schmidt, K. (1993). From Plan
Critiquing to Clarification Dialogue for Cooperative Response
Generation. Computational Intelligence, 9(2).

59

PASSAT: A User-centric Planning Framework

Karen L. Myers1 W. Mabry Tyson1 Michael J. Wolverton1
Peter A. Jarvis1 Thomas J. Lee1 Marie desJardins2

1 Artificial Intelligence Center
SRI International

333 Ravenswood Avenue
Menlo Park, California 94025

{myers,tyson,mjw,jarvis,tomlee}@ai.sri.com

2 University of Maryland, Baltimore County
Dept. of CS and EE
1000 Hilltop Circle

Baltimore, MD 21250
mariedj@cs.umbc.edu

Abstract

We describe a plan-authoring system called PASSAT
(Plan-Authoring System based on Sketches, Advice, and
Templates) that combines interactive tools for constructing
plans with a suite of automated and mixed-initiative
capabilities designed to complement human planning skills.
PASSAT is organized around a library of predefined
templates that encode task networks describing standard
operating procedures and previous cases. Users can select
from these templates to apply during plan development,
with the system providing various forms of automated
assistance. A mixed-initiative plan sketch facility helps
users refine outlines for plans to complete solutions, by
detecting problems and proposing possible fixes. An advice
capability enables user specification of high-level
guidelines for plans that the system helps to enforce.
Finally, PASSAT includes process facilitation mechanisms
designed to help a user track and manage outstanding
planning tasks and information requirements, as a means of
improving the efficiency and effectiveness of the planning
process. PASSAT is designed for applications for which a
core of planning knowledge can be captured in predefined
action models but where significant user control of the
planning process is required.

Introduction
AI planning technology provides powerful tools for
solving problems that require the coordination of actions in
the pursuit of specified goals. To date, however, there has
been limited success in transitioning this technology to
significant applications in the commercial, military, or
space sectors. A major obstacle to technology transfer lies
with the lack of control available to potential users of
planning systems. AI planning systems have traditionally
been designed to operate as black boxes: they take a
description of a domain and a set of goals and
automatically synthesize a plan for achieving the goals.
Human planners, however, are generally reluctant to cede
full control to automated planning systems in this manner.
 Many potential consumers of planning technology
require more user-centric tools that are designed to
augment human skills rather than replace them. This
observation has led, in recent years, to the development of

a number of plan-authoring frameworks. Plan-authoring
systems provide a set of plan editing and manipulation
capabilities that support users in developing plans. These
systems introduce a degree of structure to the planning
process, yielding principled representations of plans with
well-defined semantics. Plan-authoring systems can
include a range of planning aids that reason over this
structure; however, the role of such automated aids is to
augment human planning skills by facilitating human-
driven plan development. Interest in plan-authoring
systems is strong within both the space and military
sectors, for their potential to improve the quality and
process of plan development without incurring the high
knowledge modeling costs and loss of control associated
with fully automated planning systems.
 This paper describes a plan-authoring system called
PASSAT (Plan-Authoring System based on Sketches,
Advice, and Templates) designed to support user-centric
planning. At its heart, PASSAT is a plan-authoring system
in which users construct and modify plans interactively.
Users can draw upon a library of templates, to the extent
they desire, to assist with plan development. Templates
correspond to a form of hierarchical task network (HTN)
[Tate, 1977], and may encode both parameterized standard
operating procedures and cases corresponding to actual or
notional plans developed for related tasks.
 To complement these interactive tools, PASSAT
includes a range of automated and mixed-initiative
planning capabilities. Users can invoke an automated
planning mode based on standard HTN methods to expand
any open task within a plan. A plan sketch facility enables
users to create outlines of plans that are then filled out
using templates designed for similar tasks. Advice within
PASSAT enables users to define high-level policies to be
satisfied by both plans and planning processes. Such
guidance can be useful both in directing automated
components within the system, and in tracking high-level
guidelines that a user wants satisfied but may inadvertently
violate through his interactive planning choices.
 PASSAT also includes process facilitation mechanisms
designed to aid the user in managing plan development.
These mechanisms help the user track open tasks and

 From: Proceedings of the 3rd International NASA Workshop on Planning and Scheduling for Space, 2002.

 60

outstanding information requirements for the current plan.
Such assistance is critical in complex applications, as it
helps the user stay focused without overlooking important
details.
 With its combination of interactive and automated
capabilities, PASSAT enables a user to quickly develop
plans that draw upon past experience encoded in templates
but are customized to his individual preferences and the
demands of the current situation. PASSAT has been under
development for about a year. This paper describes both
the current PASSAT system and the more comprehensive
plan-authoring system toward which we are working (with
all future work noted explicitly as such). We begin with a
more detailed discussion of PASSAT and an example of its
use, followed by a description of the representational
constructs within PASSAT, the user-centric planning
capabilities, and the process facilitation mechanisms. The
final section discusses related work.

PASSAT Overview
Plan development within PASSAT has been guided by two
key principles:

• Flexible, ‘out of the box’ planning: Traditional
AI planning systems lock users into a set of
solutions, namely, those implied by the
predefined action models that underlie plan
development. Within PASSAT, templates are
viewed as guidelines for performing tasks; the
human planner is free to expand the set of
solutions defined by the templates. In particular, a
user can override constraints, drop tasks, or insert
additional tasks in accord with his personal
preferences or the demands of the current
situation. Such flexibility is critical for domains
in which correct and comprehensive collections of
templates cannot be provided.

• Controllable user-centric automation: Automated
capabilities within PASSAT are designed both to
complement human planning skills and to be
readily directable by a human. Automation would
be invoked under user control only in contexts
where he feels that it would be beneficial.

Domain Characteristics
PASSAT is generic, domain-independent technology but is
tailored toward applications with the following
characteristics.

(a) The complexity of the domain precludes full capture

of all relevant planning knowledge. However, partial
planning models can be developed.

(b) Human input is critical, but some amount of

automation would both improve plan quality and
reduce overall planning time.

 Our motivating application domain, Special Operations
Forces (SOF) mission planning, has these characteristics.
Standard operating procedures exist for many high- and
mid-level activities in the SOF domain, and are readily
amenable to encoding within an HTN representation. For
example, a hostage rescue operation can be characterized
as consisting of the high-level objectives of performing
reconnaissance in the areas around the rescue site,
establishing a safe haven to which to remove the hostages,
undertaking the assault to rescue the hostages, and
transporting the hostages to the safe haven. Low-level
operations follow standard doctrine and can also be
modeled in a relatively straightforward manner.1
Intermediate strategy decisions pose a bigger challenge.
For example, informed selection of areas and methods for
reconnaissance requires deep background knowledge of
reconnaissance operations, breadth of understanding of
the current situation, and significant experience. Capturing
and modeling this type of strategic knowledge in full
presents a tremendous challenge.

SOF planning lies well beyond the range of current
automated planning technologies; moreover, fully
automated solutions are unlikely ever to succeed because
of the difficulty in formulating strategic knowledge with
sufficient fidelity. In contrast, a PASSAT-style plan-
authoring system provides a good technological match for
the SOF planning domain. Missions arise unexpectedly,
resulting in a need to assemble high-quality plans rapidly.
Thus, the availability of tools to expedite plan
development is important. Because many types of SOF
operations can be broadly characterized with predefined
templates, knowledge bases can be developed that capture
certain portions of the planning process. However,
individual operations tend to be highly distinctive, making
it important to have tools that enable users to modify and
customize plans to suit the needs of a particular situation.
 Many potential application domains for planning
technology share these characteristics of having partially
formalizable domain knowledge and requiring significant
user input to produce high-quality, situation-specific plans.
On the military side, examples include air operations,
disaster relief planning, and noncombatant evacuation
operations. Space applications include science mission
planning and ground operations planning.

PASSAT Example
Figure 1 shows a snapshot of the PASSAT interface during
a planning session. The large frame on the left contains a
hierarchical decomposition of the current partial plan.
Items next to folder icons are tasks that have been
expanded; items next to star icons are tasks that can be
expanded further (either through automated template
application or interactively); and items next to document
icons are tasks that match no templates. The frame on the

1 Many of our templates were derived directly from SOF
field manuals.

61

upper right shows the current agenda – the list of planning
steps the user must perform to address outstanding issues.
The frame on the lower right shows the list of information
requirements – sources of information that have been
identified by the user or PASSAT's planning knowledge as
relevant to various portions of the planning process.
 The human planner develops the plan by selecting a
planning step from the agenda and performing that step
(many of these planning steps are accessible through the
plan display as well). If the planning step is to expand the
PROVIDE-CSAR-COVERAGE task, for example, the
planner would be presented with several options: apply
one of the templates that matches the task (see Figure 2),
enter an expansion manually, or create a sketch for
achieving the PROVIDE-CSAR-COVERAGE task and
work with PASSAT to refine that sketch. Performing this
planning step may cause additional planning steps to be
added to the agenda (i.e., new tasks, variables, and
constraints may have been introduced into the plan) and
new information requirements as well.

Plan Representation
PASSAT's representation of plans and tasks is based on a
fairly standard HTN model (similar to that of [Erol et al.,
1994]), augmented with a rich temporal representation for
tasks. Using PASSAT, a user would describe the objective
of the plan in the form of one or more task statements,
each consisting of a task operator and terms (variables,
instances, or functions applied to terms).

Templates A template describes one way that a task (i.e.,
the template’s purpose) can be decomposed into subtasks.
A template consists of a set of these subtasks, as well the
variables used in the template, constraints on the
applicability of the template, and the effects of successfully
performing individual tasks and the entire template.
Different templates may describe different decompositions
for the same task.

Figure 1. PASSAT Interface during Plan Development

 62

 PASSAT’s template representation supports two
features not found in the framework of [Erol et al. 1994],
namely information requirements (discussed in detail
below) and enumeration tasks. Enumeration tasks enable
the specification of a set of tasks relative to a set of terms
that satisfy a designed predicate. For example, the
enumeration task

∀?city.DISTANCE(?city,?hostage-locn)<20
 ⇒ RECON(?city)

indicates that a RECON task should be performed for each
city within the specified distance. Other HTN frameworks
(e.g., O-Plan [Currie and Tate, 1991] and SIPE-2 [Wilkins
1993]) provide similar mechanisms for enumerating
subtasks relative to a designated constraint.

Constraints Constraints consist of state predicates that
denote hard or soft conditions, perhaps due to physical
laws or policy rules. PASSAT employs a three-valued
logic for constraints, grounded in the values TRUE,
FALSE, and UNKNOWN.
 Automated constraint checking is performed when
constraints are created or modified in the plan. Checking
of ground constraints may return a status of UNKNOWN, if
the information is not specified in the world state; such
constraints would need to be validated explicitly by the
user. Checking of nonground constraints occurs only
when the number of possible instantiations is less than a
predefined threshold, with the system testing whether the
constraint is valid or invalid for each (i.e., establishing that
the constraint is necessarily true or false independent of the
instantiation). Otherwise, the system returns UNKNOWN
and the constraint is rechecked when more variables are
instantiated.
 Unlike in automated planning systems, a constraint with
value other than TRUE does not necessarily halt the
process or cause backtracking. Instead, a violated
constraint is called to the attention of the user, who has the
choice of ignoring the violation or changing the step that
triggered the violation.

Temporal Representation PASSAT supports the
scheduling of tasks via constraints on the earliest and latest
possible times for the start and end points of tasks.
Temporal constraints typically refer to these end points but
may also refer to upper and lower bounds on those time
points. Temporal constraints can also be expressed using
Allen’s interval relations [(Allen, 1984)].1

Domain Definition PASSAT utilizes a number of
coordinated databases to define its application domain. An
ontology (based on the Generic Frame Protocol
representation [Karp et al., 1995]) defines the hierarchical
organization of classes and instances and their properties.
State predicate and task statements are declared,
specifying the number and classes of their arguments.
Functions are similarly declared, with the additional
declaration of the class of the function's value. Some
predicates and functions are computable (e.g., <, +, and
Distance) while others are defined by their extent. The
world state is defined by a set of ground state predicates.

User-centric Plan Development
PASSAT currently provides two main modes of plan
development: interactive plan refinement and plan
sketching. Future versions of PASSAT will also support
an advice module to guide plan development.

1 The temporal reasoning portion of the system is not yet
fully implemented.

Figure 2. A Candidate Template for Task Refinement

63

Interactive Plan Refinement
Interactive plan refinement in PASSAT involves three
types of planning step: expand task, instantiate variable,
and resolve constraint.

Expand Task When a task is to be expanded, the system
offers the user the choice of applying a predefined
template, specifying a set of subtasks interactively,
sketching a solution (see below), or dropping the task.
 When the user chooses a template to apply, the system
first unifies the task and the template's purpose, making
appropriate substitutions throughout the template.
PASSAT adds the (partially instantiated) subtasks and
constraints of the template to the plan. In addition, it
extends the agenda to include planning steps to expand the
new subtasks, to check the new constraints, and to
instantiate any unbound variables from the template. The
planning step for the parent task is marked as completed
and removed from the agenda. In the displayed plan, the
parent task is shown with its subtasks.
 As the system performs this step, it also checks the
status of all new constraints. If one is found to be valid,
the planning step to check it is marked as completed and
removed from the agenda. If it is found to be invalid, the
planning step is flagged.
 As the system expands a task, other planning steps may
be affected. If the unification results in the assignment of a
value to a variable, the planning step for instantiating that
variable is removed. The status of constraints that
contained that variable might now be resolvable; the
system checks those constraints and updates the planning
steps, if necessary.

Instantiate Variable The agenda contains a planning step
for each unbound variable within the current plan. When
the user is ready to instantiate a variable, PASSAT
provides the set of possible instantiations that satisfy all
relevant constraints; the user can select from this set,
provide an alternative value (hence, overriding a relevant
constraint), or simply mark some subset of the values as
unacceptable. When the variable is instantiated, any
impacted constraints are rechecked. A user can optionally
provide a justification (currently, a text string) for his
actions.

Resolve Constraint As noted above, PASSAT provides
automated checking of constraints as part of template
application, with the agenda being used to track constraints
that the system was unable to validate. Resolve constraint
steps enable a user to declare that the system can disregard
individual constraints with the status of FALSE or
UKNOWN in a given situation. Such declarations do not
have assertional import (i.e., they do not change the
system’s world model); rather, they enable relaxation of
constraints from the planning model embodied in the
domain templates. A user can declare that a given
constraint be ignored for a variety of reasons: (a) he has

more recent information that would validate the constraint,
(b) he knows that the constraint is overly strong for the
current situation, or (c) he wants to explore a what-if
scenario. PASSAT supports the user in providing a
justification (currently, a text string) for such constraint
relaxations.

Robust Plan Sketching
Hierarchical planning systems are designed to support top-
down development of plans, taking an initial high-level
objective and refining it to increasingly more concrete
levels. Human planners, in contrast, often combine
refinement-style planning with a more bottom-up approach
that identifies specific tasks to be included in a final
solution. For example, the planners of a hostage rescue
may know where and how they will establish a safe haven
without yet having decided on a particular high-level
rescue strategy.
 Within PASSAT, a user can sketch an outline of a plan,
with the system providing assistance in expanding the
sketch to a full-fledged solution for a particular objective.
A sketch consists of a collection of tasks that (1) may be
only partially specified, and (2) may occur at various levels
of abstraction in the plan hierarchy. When given a sketch,
PASSAT generates possible sketch expansions, which
correspond to least-commitment plan structures that embed
the sketch and all derived consequences. The user may
choose any of these expansions to continue planning; the
agenda will be updated to reflect the derived set of
outstanding tasks.
 The sketch processing capability within PASSAT builds
substantially on the algorithms of [Myers, 1997] but
provides robustness through an ability to recognize and
respond to invalid sketches. By invalid, we mean a sketch
for which there is no legal completion relative to the set of
defined templates. To provide robustness in the face of
invalid sketches, the sketch completion algorithm has been
extended to tolerate constraint violations that are classified
as potentially fixable according to prespecified domain
knowledge about constraints and tasks (discussed further
below). PASSAT guides the human planner through the
process of repairing fixable constraint violations within
expansions that he selects. Users can select from two types
of repair method: constraint drop and task modification.
 Constraint drop repair involves simply ignoring the
violated constraint; this type of repair is appropriate for
constraints with a ‘soft’ interpretation (i.e., they
correspond to preferences or guidelines rather than gating
conditions). For example, a template for a helicopter airlift
may require wind speed below a certain threshold; a
planner may decide to drop that constraint in the event that
the current wind speed only slightly exceeds the threshold
and all other requirements are satisfied. Constraint drop
repair can be applied only to constraints that have been
explicitly declared as ignorable for the sake of sketch
repairs.
 Task modification involves changing one or more
arguments of a sketch task that are deductively linked to a

 64

violated constraint. For instance, consider a sketch that
contains two tasks: the establishment of a safe haven at a
particular location, and a helicopter airlift to remove
rescued hostages to the safe haven. If the helicopter has
insufficient range to reach the safe haven, the user would
be given the options of selecting an air asset with
appropriate range characteristics, or choosing a closer
destination for the safe haven.1 Domain knowledge
restricts the set of arguments that can be modified in
service of sketch repair, as a means of limiting the number
of options to consider (both by the user and the system).
 The robust plan sketch capability within PASSAT is
designed to be used iteratively, with a human planner
repeatedly refining a sketch in response to detected
problems until a solution is found that meets his needs.

Sketch Example To illustrate the sketch-processing
capabilities within PASSAT, we consider an example from
a hostage rescue scenario in which a group of Americans is
being held captive by guerrillas in Mogadishu's town hall.
Riyadh Airport has been selected as the jumping-off
location for the mission while the hostages are to be
evacuated to Riyadh Stadium. The high-level task for this
plan is represented as

 RESCUE-HOSTAGE(MOGADISHU-TOWN-HALL,
 RIYADH-AIRPORT,
 RIYADH-STADIUM)

 PASSAT provides an interactive editor for specifying a
plan sketch. Figure 3 shows a completed sketch consisting
of four tasks: (1) having an infiltration team (Yellow-

1 A sketch could also be repaired by changing the type of a
task, rather than simply changing the task arguments (e.g.,
ground-based evacuation rather than an airlift). PASSAT
does not currently support this class of sketch repair.

Team-1) swim from a submarine (denoted by the variable
?SUBMARINE) located at the entrance to Mogadishu Port
to the port itself, (2) inserting a combat team (Green-ODA-
1) at the Town Hall via a UH-60A helicopter, (3) having
the combat team storm the Town Hall, and (4) positioning
a security team at the evacuation site. The labels above
each task argument identify that argument’s ‘role’ in the
task.
 Processing of this sketch by PASSAT yields six
expansions, with a range of three to four violated
constraints in each. The user can select one of these
expansions and explore options for repairing its associated
constraint violations. Figure 4 summarizes the constraint
violations and the hierarchical template structure for one of
the expansions.

Figure 5 displays the window that would be presented to
a user to assist in the repair of the original sketch. The
window summarizes the available repair options for each
violation, which may consist of dropping the constraint,
changing a parameter for a designated task, or making no
repair. Because the use of constraint dropping and task
parameter changes is restricted (by predefined domain
knowledge about their applicability), these repairs are not
necessarily applicable in each case.

To support the user in changing a task parameter, the
interface provides a drop-down list of candidate values.
This set consists of instances for the type associated with
that argument, filtered to remove values that lead to
violations of the given constraint (in accord with the
deductive linkage from the sketch task to the constraint).
This filtering is incomplete: the list may include values that
do not fix the detected problem, due to interactions with
constraints in other parts of the plan. Future versions of
PASSAT will incorporate additional checking to restrict
this set further.
 To repair the chosen expansion, the user could perform
the following repairs:

Figure 3. Sample Plan Sketch for the Hostage Rescue Task

65

• drop the constraint VC1
• modify the Helicopter argument of the DROP task

to be UH-60L-1 rather than UH-60A-1 to
address the constraint VC2 (i.e., the UH-60Ls
have greater range than the UH-60As)

• drop the constraint VC3
• modify the Force-Composition argument of the

POSITION task to be SECURITY-PLATOON-1
(to address the violated constraint VC4)

Given a set of repairs, PASSAT attempts to validate the
revised sketch. In this case, the repairs resolve the original
problems but introduce a violation of the constraint
(COMBAT-EFFECTIVE SECURITY-PLATOON-1).
This new problem can be repaired by changing the Force-
Composition argument to be SECURITY-PLATOON-2
(i.e., a platoon that has been certified ready for combat).
Processing of this revised sketch yields a single expansion
with no constraint violations. Figure 1 shows the insertion
of that expansion for the original Hostage-Rescue task,
with the sketch tasks highlighted in bold font. Constraints
that the user chose to drop appear highlighted on the
agenda, and are marked as completed but ignored. At this
stage, the user could continue planning with the sketch
result, using any of PASSAT's capabilities for interactive
planning (e.g., applying templates, instantiating variables),
or by providing a plan sketch for an unrefined objective.

Advice
In future work, we will extend PASSAT to enable a user to
guide and control automated template expansion through
the metaphor of advice [McCarthy, 1958]. Advice within
PASSAT will express user recommendations for
characteristics for the desired solution, thus limiting the set
of allowed operations (human or automated) in
constructing plans. Advice will be heuristic, capturing
conditions that the user would like satisfied, but that can be
relaxed if necessary.
 PASSAT will monitor evolving plan content to identify
violations of stated advice. Violations will lead to user
notification, as well as the posting of appropriate planning
task entries on the user's agenda. This work will build on
our previous work on giving strategic advice to fully
automated planners [Myers, 1996], with adaptations and
extensions as required for use within a plan-authoring
framework.

Figure 4. Violated Constraints and Plan Structure for the Selected Expansion

Figure 5. Sample Repair Options

Violated Constraints
VC1. (SITUATION-TYPE RIYADH-STADIUM HOSTILE)
VC2. (DISTANCE-< RIYADH-AIRPORT MOGADISHU-TOWN-HALL (RANGE UH-60A-1)
VC3. (> (SEA-TEMPORATURE MOGADISHU-PORT-ENTRANCE) 40)
VC4. (PLATOON-SIZED SECURITY-SQUAD-1)

 Expansion Template Structure
 - HOSTAGE-RECOVERY-TO-A-POTENTIALLY-UNSTABLE-AREA
 - ADVANCED-RECON-OF-TARGET-AREA
 - RECON-SEAPORTS-IN-AREA
 - RECON-WITH-COVERT-GROUND-FORCE
 - SWIM-INSERTION-FROM-SUBMARINE
 - RESCUE-AND-RECOVER-HOSTAGES
 - HELICOPTER-INSERTION-ROPE
 - SITE-DEFENSE-LARGE-REACTION-FORCE

 66

Usability Features
We have incorporated several features into PASSAT to
facilitate its use within real applications.
 Because the development of a plan may span several
days or be interrupted by other duties, PASSAT offers the
ability to save a plan and to restart it later. As PASSAT is
further developed to support multiple planners working on
a single plan, this facility will allow parallel efforts to be
coordinated in a shared plan repository.
 A planner may sometimes develop a part of the plan and
realize that the initial idea will not work. The system
currently allows the user to undo the steps in reverse order.
In the future, the user will be able to back out of earlier
steps without necessarily losing later, independent steps.
 PASSAT is designed to reduce the chance of inadvertent
errors. Strong typing for task, function, and predicate
definitions enables the checking of inputs for consistency.
If a processing error should occur in the system, the undo
mechanism can provide recovery to a safe checkpoint.

Process Facilitation
PASSAT facilitates the user's plan-authoring process by
helping the user track information that is important to the
development of the plan. Process facilitation is supported
primarily by two capabilities:

• A prioritized agenda of planning steps listing the
decisions that the user must make to address
problems or incompleteness in the current plan.

• A mechanism for identifying key information
requirements implicit in the user's partial plan,
and for directing the user's attention to relevant
plan elements when new information arrives.

Agenda and Prioritization
PASSAT's agenda consists of the open planning steps
facing the user given the current state of planning. By
‘planning steps’, we mean decisions and actions that the
user makes in the process of developing the plan; these are
distinguished from the activities that are part of the plan
itself. PASSAT currently supports three types of planning
step – expand task, instantiate variable, and resolve
constraint – described earlier. The planning steps PASSAT
displays in its agenda can be filtered by the user along
several dimensions, including step type and completion
status. The user can also sort the agenda along several
dimensions, including step type, creation time, and
alphabetical order. The filtering and sorting facilities can
be especially useful for helping the user find a particular
step on the agenda.
 In real domains, the development of a plan can involve
hundreds or even thousands of decisions.
Correspondingly, PASSAT's agenda can grow quite long
during the planning process. The system provides some
basic mechanisms to control agenda growth – instantiating

variables during template application, automatic
calculation of constraints – and to control information
overload in the agenda display – the aforementioned
agenda filtering and sorting. However, even with these
capabilities, the agenda can frequently reach a size that is
overwhelming to the user. In the face of a large number of
planning steps, we need a technique for keeping the human
planner focused on the most important ones.
 To deal with this problem, we have developed
mechanisms for prioritizing the planning steps on the
agenda, according to some notion of a step's importance to
the planning process. Our approach has been to offer a
suite of prioritization tools, from which the user may
choose given the specific planning situation. Currently,
PASSAT supports three prioritization approaches:

Predefined Each subtask, variable, and constraint in a
template may be tagged with a qualitative priority (high,
medium, or low), corresponding to the importance of
making a decision about that entity (expanding the task,
instantiating the variable, checking the constraint).
Predefined priorities always take precedence over
PASSAT's other prioritization methods in ordering the
agenda display.

Commitment-based This approach prioritizes each
planning step according to the degree that a decision will
constrain the rest of the planning process, giving highest
priority to the most constraining decisions. This criterion
is especially useful in collaborative planning situations,
where it is important to make decisions early when they
will constrain the alternatives available to other planners.
Our technique measures commitment as the expected
number of future decisions eliminated by performing the
step. We approximate this with a recursive formula that
performs a lookahead search through the plan space.
While we use some simple heuristics to reduce the size of
the search, the current procedure is still reasonably
expensive relative to PASSAT's other update calculations.
As a result, the current implementation of commitment-
based prioritization covers only tasks. In future work, we
will investigate techniques for approximating the
commitment level of a planning step more efficiently.

Experience-based In contrast to the commitment-based
approach, which is an attempt to identify what the planner
should do next based on some theoretical model of
planning, the experience-based approach bases its
prioritization on what real human planners have done first
in the past. The experience-based prioritization technique
stores preference histories of planning steps, and learns a
preference function for them using the online learning
algorithm of [Cohen et al., 1998]. Planning steps are
indexed by the step type, the object name, and the ‘call
stack’ of templates that created the object.

Other possible methods for deriving a step's priority
include

67

• Urgency-based: prefer decisions that involve
execution tasks that are scheduled to start soon.

• Backtracking-based: prefer decisions that are
difficult to achieve. This is effectively the
prioritization criterion of the Fewest Alternatives
First strategy and related heuristics [Pollack et al.,
1997] used in automated planning.

• Depth-first: prefer steps that derive from the
steps most recently performed by the user. This
approach assumes that the user wants to remain
focused on one area of the plan before moving to
another.

• Breadth-first: prefer steps that derive from the
steps least recently performed by the user.

Information Requirements
In real-world planning, the human planner often makes
decisions based on criteria that are too complex or vague to
formalize in a predicate. These criteria are often based on
external sources of information (e.g., reports, meetings).
For example, a SOF planner may want to base his selection
of a rendezvous point on an overall assessment of an
intelligence report from the relevant region, though it may
be virtually impossible to formalize the exact set of
conditions the planner is looking for within that report. In
a plan-authoring system, we want to be able to capture
these criteria and information sources, and record the
connection between them and the relevant elements of the
plan. PASSAT accomplishes this through the use of
information requirements.
 In addition to specifying the method for expanding a
task, a template may also include one or more information
requirements. An information requirement specifies a
monitoring condition on an information source that may be
useful for determining the applicability of the template, for
selecting variable instantiations, or for resolving the
template's constraints.
 Currently, information requirements are used in
PASSAT to make explicit to the user the connection
between plan elements (e.g., variables, constraints) and
information sources. When a planner activates an
information requirement in a template, the system creates a
link between the information described in the information
requirement and an element or elements in the plan. When
the information arrives, PASSAT calls the planner's
attention to the relevant plan element by creating a high-
priority item on the agenda to revisit that element.
PASSAT's current method of detecting when information
has arrived is to be told explicitly by a user, but one could
imagine more sophisticated automated sentinels that
would, for example, monitor data sources (e.g., Web
pages, databases) for specific updates.
 For example, a user planning a SOF mission may make
a tentative assignment to a variable ?RENDEZ-POINT
based on the sketchy information available to him. At the
same time, he may activate an information requirement
representing an intelligence report on the region in
question and attach it to the variable ?RENDEZ-POINT.

When the intelligence report comes in, PASSAT will
notify the planner by putting the Instantiate Variable step
for ?RENDEZ-POINT back on the active agenda, giving
it a high priority, and highlighting the element on the
planner's agenda display.

Related Work

In its effort to increase relevance to real problems, the field
of AI planning has recently produced a number of more
human-centric technologies that incorporate both
interactive and automated planning capabilities. Work in
this area has progressed on two fronts: (a) the
incorporation of more sophisticated reasoning into simple
plan specification tools, and (b) the addition of interactive
and mixed-initiative capabilities into existing automated
planning systems. The first category includes systems
such as the SOFTools Temporal Plan Editor, APGEN, and
INSPECT. Examples in the second category include O-
Plan, Heracles, and TRIPS.
 The SOFTools Temporal Plan Editor [GTE, 2000]
supports the graphical specification of a collection of
activities on a series of timelines; its automated capabilities
are limited to simple syntactic checking (e.g., action start
times precede end times). The APGEN system [Maldague
et al., 1997] provides a timeline-oriented interface for
creating mission sequences as well as automated validation
of predefined flight constraints. There is currently an effort
under way to link APGEN to the RAX-PS planner
[Jonsson et al., 2000] to enable the automated synthesis of
plans. The resulting system will facilitate user-driven
exploration of options, as automation enables candidate
plans to be generated rapidly. INSPECT [Valente et al.,
1999] provides an interactive planning environment in
which users can create plans by drawing on predefined
knowledge bases of planning operators. A knowledge-
based critic looks for problems in user-formulated plans,
both syntactic and (in limited cases) semantic.
 Within Heracles [Knoblock et al., 2001], a user can
construct plans by interactive selection and instantiation of
predefined HTN-style templates. Heracles provides
constraint reasoning that facilitates the planning process by
focusing users on choices that are guaranteed compatible
with earlier decisions. Plans must instantiate the
predefined templates, thus preventing users from exploring
‘out of the box’ solutions. The TRIPS system [Ferguson
and Allen, 1998] provides a dialog-based interface to a
temporal planner that enables users to interactively guide
the construction and execution of a plan through a
cooperative, mixed-initiative effort.
 O-Plan was developed initially as a fully automated
HTN planning system but has been modified to incorporate
interactive capabilities such as user support for operator
selection and variable instantiation [Drabble and Tate,
1995], and human-driven exploration of multiple courses
of action [Tate et al., 1998]. PASSAT lacks somem of the
automated planning capabilities within O-Plan (i.e., there
is no infrastructure to support automated search with

 68

backtracking), being focused instead on more human-
centric planning methods (interactive planning, sketching,
advisability). O-Plan contains a task agenda similar to that
in PASSAT, but no prioritization methods. Furthermore, it
does not include information requirements, or capabilities
related to sketching or advice.

Conclusions
Our long-term objective for PASSAT is to provide a
planning environment that covers the range from purely
interactive through mixed-initiative to user-controllable
automated planning capabilities. At all times, automation
would be readily controllable and understandable by a
human planner, enabling humans to determine when
automation is used, to control how automation applies, and
to validate or override any automated decisions.
 PASSAT currently provides a strong base of interactive,
template-based plan authoring and robust sketch-based
planning. Our main next steps on PASSAT are (a) to
increase the flexibility of the interactive planning, and (b)
to implement the advisability module for imposing high-
level constraints on a plan that can be validated
automatically.

Acknowledgments. This work was supported by DARPA
under Air Force Research Laboratory Contract F30602-00-
C-0058.

References
Allen, J. F. (1984). Towards a General Theory of Action and
Time. Artificial Intelligence 23.
Cohen, W. W., Schapire, R. E., and Singer, Y. (1998). Learning
to Order Things. In M. I. Jordan, M. J. Kearns, and S. A. Solla
(Eds). Advances in Neural Information Processing Systems, The
MIT Press.
Currie, K., and Tate, A. (1991). O-Plan: The open planning
architecture. Artificial Intelligence, 32(1).
Drabble, B., and Tate, A. (1995). O-Plan Mixed Initiative
Planning Capabilities and Protocols, Technical Report,
University of Edinburgh.
Erol, K., Hendler, J., and Nau, D. (1994). Semantics for
Hierarchical Task-Network Planning. Technical Report CS-TR-
3239, Computer Science Department, University of Maryland.
Ferguson, G., and Allen, J. (1998). TRIPS: Towards a Mixed-
Initiative Planning Assistant. In Proceedings of the AIPS
Workshop on Interactive and Collaborative Planning.
GTE. (2000). SOFTools User Manual.
Jonsson, A. K., Morris, P. H., Muscettola, N., Rajan, K., and
Smith, B. (2000). Planning in Interplanetary Space: Theory and
Practice. In Proceedings of the Fifth International Conference on
AI Planning Systems.
Karp, P. D., Myers, K. L., and Gruber, T. (1995). The Generic
Frame Protocol. In Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence.

Knoblock, C. A., Minton, S., Ambite, J. L., Muslea, M., Oh, J.,
and Frank, M. (2001). Mixed-initiative, Multi-source Information
Assistants. In Proceedings of the International World Wide Web
Conference.
Maldague, P., Ko, A. Y., Page, D. N., and Starbird, T. W. (1997).
APGEN: A Multi-Mission Semi-Automated Planning Tool. In
Proceedings of the 1st NASA Planning and Scheduling
Workshop.
McCarthy, J. (1958). Programs with Common Sense. Symposium
on the Mechanization of Thought Processes.
Myers, K. L. (1996). Strategic Advice for Hierarchical Planners,
pp. 112-123. In L. C., and S. C Aiello, J. Doyle. Shapiro (Eds):
Principles of Knowledge Representation and Reasoning:
Proceedings of the Fifth International Conference (KR '96),
Morgan Kaufmann Publishers.
Myers, K. L. (1997). Abductive Completion of Plan Sketches. In
Proceedings of the Fourteenth National Conference on Artificial
Intelligence, AAAI Press.
Pollack, M. E., Joslin, D., and Paolucci, M. (1997). Flaw
Selection Strategies for Partial-Order Planning. Journal of
Artificial Intelligence Research 6, 223-262.
Tate, A. (1977) Generating Project Networks, in Proceedings of
the Fifth International Joint Conference on Artificial Intelligence.
Tate, A., Dalton, J., and Levine, J. (1998). Generation of Multiple
Qualitatively Different Plans. In Proceedings of the Fourth
International Conference on AI Planning Systems, Pittsburgh,
PA.
Valente, A., Blythe, J., Gil, Y., and Swartout, W. (1999). On the
Role of Humans in Enterprise Control Systems: The Experience
of INSPECT. In Proceedings of the DARPA-JFACC
Symposium on Advances in Enterprise Control.
Wilkins, D. E. (1993). Using the SIPE-2 Planning System: A
Manual for Version 4.3, Artificial Intelligence Center, SRI
International, Menlo Park, CA.

69

Toward a Theory of Qualitative Reasoning about Plans

Karen L. Myers
AI Center

SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

myers@ai.sri.com

Abstract
Automated planning algorithms embody a theory of causality grounded in linking

enabling effects of actions or initial world conditions to preconditions of subsequent
actions. This model has several drawbacks when applied in the context of mixed-
initiative planning. First, it requires comprehensive causal models that describe for every
action its full set of preconditions and postconditions; in many application domains, such
models will not be available. Second, the causal link approach does not include several
forms of intraplan relations that a human may wish to document and reason with.

We present a qualitative approach to reasoning about plan structure that is designed
for mixed-initiative plan development. We define a set of plan relations that characterize
key interactions among plan components, and an accompanying calculus for reasoning
qualitatively about the effects of changes on a plan. We argue that such an approach is
better suited to mixed-initiative planning than is the standard causal link method.

70

1 Introduction
As the AI planning community turns increasingly to realistic problem domains to
motivate its work, there has been a growing recognition of the need for mixed-initiative
planning techniques. This need is driven by two concerns. First, full automation is
inappropriate for many application domains. In particular, most users want to be
involved in the planning process, both to influence the types of solution that are produced
and to develop an understanding of the process by which a solution was formulated.
Second, the cost of formulating the correct and comprehensive background theories
required by automated planners is prohibitive. These theories consist of causal models
that describe for every action its preconditions (i.e., the conditions under which it could
be applied) and its postconditions (i.e., the conditions that result from execution of the
action). Most planning knowledge bases to date provide only poor approximations to
realistic models of activity. Furthermore, formulation of even these simplified models
remains an art that requires highly trained specialists in AI planning and knowledge
representation. Mixed-initiative planning systems can reduce the knowledge requirements
by relying on the user to provide information when necessary.

Most work to date on mixed-initiative planning has assumed a comprehensive set of
background knowledge that can be used by the system to validate interactions with the
user (e.g., (Allen and Ferguson, 2002; Kim and Blythe, 2003)). We are interested in a
model of mixed-initiative planning that does not require complete reliance on predefined
knowledge bases. In particular, we view plan development as a cooperative problem-
solving process in which both the system and the user contribute knowledge during a
planning session.

One consequence of this collaborative model is that the system can no longer
guarantee generation of a standard causal link structure for the plan (Weld, 1999), as not
all required knowledge would be resident within the system’s knowledge base. Causal
structures enable proof of the ‘correctness’ of a plan, meaning that simulated execution of
the actions in the plan from the initial state yields a state that satisfies stated objectives.
Additionally, they provide the means to answer the following questions (Kambhampati
and Hendler, 1992), which are important for both automated and collaborative planning:

A. What role does a given action, constraint, or assumption play in a plan?
B. What impact would a given change have on a plan?

For these reasons, the planning community has been reluctant to move toward models
where causal structures are not a by-product of planning.

To obtain a full causal structure for a plan when background models are incomplete
or unavailable, a human planner would have to annotate plans. There are two problems
with such an approach. First, supplying a complete set of causal annotations would be a
time-consuming and laborious task. Second, the formulation of causal link justifications
for activities is a highly technical skill that is beyond most users.

We believe that much of the value of these complex causal models can be attained
through simpler, qualitative models that capture commonsense notions of intraplan
relationships. In this paper, we propose a user-centric model for causal structure that is

71

grounded in qualitative relationships among plan objects. The basic idea is to trade some
of the detail and precision of the formal causal models for a simpler approach that is
easier both to formulate and apply. This simpler approach would still enable answers to
questions (A) and (B) above, although in qualitative rather than quantitative terms.
Furthermore, as we argue below, the models of causality embraced by the AI planning
community are unnecessarily narrow because of their evolution from the structures
required for automated planning. In particular, they do not capture certain notions of plan
dependency that are important for mixed-initiative planning systems.

An interesting parallel can be drawn between plan development and other synthesis
tasks such as mechanical design. Commercial design systems support human design
activities by providing automation for low-level, tedious tasks. A designer will generally
not document every step/component within a design. Indeed, studies have shown that
humans are resistant to providing full rationale information as part of the design process,
due both to the substantial time commitment required and the changes in work style that
result (Carroll and Moran, 1991; Conklin and Yakemovic, 1991). However, designers
track key dependencies and requirements that they believe will be important in
understanding and maintaining a design downstream. We believe that this user-driven
approach should also be the objective for documenting causal structure within mixed-
initiative planning technology.

The remainder of the paper is organized as follows. Section 2 presents our qualitative
model of plan relations. Section 3 provides an example that contrasts the use of standard
causal link structures with our qualitative approach. Section 4 defines a calculus for
reasoning qualitatively about plan changes, while Section 5 introduces conditions of
coherence for a set of qualitative causal relations. Throughout, we draw on examples
from a simplified version of a noncombatant evacuation operation (NEO) domain that
was developed for use within the PASSAT mixed-initiative planning system (Myers et
al., 2002).

2 Qualitative Plan Model
Ideally, a system that reasons about plan structure should combine both causal links and
qualitative information about plan relationships. We define a candidate set of relations
to support qualitative reasoning about the effects of plan changes that contains relations
of both types.

2.1 Plan Elements
Our model of a plan contains three types of element:

Action: an activity that can be undertaken
Effect: a condition (either to be achieved, the expected result of executing an action,

or a property of the initial world state)
Parameter: an argument to an action or condition

We use the symbol Obj (i.e., plan object) to denote an arbitrary plan element from any of
the above types.

72

A plan relation is defined between a source object and a target object and is
represented using the syntax:

 Reln: Source-Obj Target-Obj

2.2 Causal Link Relation
The causal-link relation, which is the standard relation within most automated planning
systems, indicates that the source effect is a necessary condition for the target effect.

Causal-link: {Effect} { Effect }
Figure 1. Causal Link Relation

2.3 Qualitative Relations
Figure 2 summarizes our qualitative plan relations. Broadly speaking, the qualitative
relations can be separated into two categories: temporal (QR1 – QR3) and logical (QR4 –
QR5).

QR1 Precedes: {Action | Effect} {Action | Effect}
QR2 Necessary-for: {Action | Effect} {Action | Effect}
QR3 Supports: {Action | Effect} {Action | Effect}
QR4 Parameter-dependence: {Parameter} {Parameter}
QR5 Condition-dependence: {Effect} {Action | Effect | Parameter}

Figure 2. Qualitative Plan Relations

2.3.1 Qualitative Temporal Relations
The qualitative temporal relations capture the notion that a given action or effect in a plan
must precede some other action or effect. We consider three types: precedes, necessary-
for, and supports.

The precedes relation captures the notion that the specified source action or effect
should occur before the specified target action or effect, without providing any indication
of why. This type of relation can be used to capture a preference for performing
activities in some designated order when there is no necessary reason for that order. For
example, consider the actions of preparing an evacuation site and flying evacuees to the
evacuation site. Although it would be possible to perform those actions in parallel, a
given planner may have a preference for completing the preparation prior to the start of
the airlift of the evacuees, possibly to enable a delay of the airlift in the event of problems
with the preparation.

The necessary-for and supports relations specialize the precedes relation to capture
semantic motivations for the ordering relation. Necessary-for captures the notion that a
given action or effect must occur before a designated action or effect in order to enable
the target plan element. For example, it would be necessary-for evacuees to be marshaled
to an assembly point before they could be loaded onto an evacuation aircraft. In essence,
the necessary-for relation constitutes a qualitative abstraction of the causal-link relation.
Changes could impact plan objects linked by a necessary-for relation in two ways. First,

73

delays to necessary activities will propagate. Second, failure of a task that is necessary-
for another task would likely jeopardize the latter.

The supports relation indicates that the source action or effect contributes to the
target action or effect in some noncritical way,. For example, a patrol mission may
provide additional support to a given evacuation activity, without being essential to its
undertaking. Hence, if the aircraft performing the patrol were redirected to support a
different action, the evacuation process should not be jeopardized. Source objects for
supports relations correspond to ‘redundant’ actions or effects that, while unnecessary,
lead to improved plan robustness or quality. While such redundancy is considered good
practice in human-authored plans, causal link planners explicitly prohibit redundancy by
imposing conditions of minimality on a plan’s causal structure.

2.3.2 Qualitative Logical Relations
The qualitative logical relations QR4 and QR5 capture the idea that there is some form of
dependency between the source and target elements such that a change to the source
could impact the target. However, the nature of that relationship is not captured precisely
in terms of a deductive specification or mathematical formula. Such situations arise
frequently in planning situations, where many factors that influence decision-making are
problematic to formalize. These factors could include conditions that are too complex to
codify (i.e., a form of the qualification problem (McCarthy 1977)) or subjective
preferences that vary among human planners.

For example, the choice of assembly point in an evacuation plan will necessarily
impact the type of aircraft that can be used for transporting evacuees (e.g., a small
helicopter may be necessary for evacuation from an embassy, while a larger aircraft could
be used at a football stadium). However, there is no hard-and-fast rule for determining
what type of aircraft should be used for a particular location.

Qualitative logical relations can be designated between plan parameters (QR4), or
between plan effects and any type of plan component (QR5). The relationship between
the choice of assembly location and transport aircraft in the example above corresponds
to a parameter-dependence relation, while the relationship between the security level and
choice of assembly point corresponds to a condition-dependence relation.

We note that the qualitative logical relations could be made ‘quantitative’ by
associating definite constraints with them. For the parameter-dependence relation, these
constraints would be in the form of a set of equations linking the two parameters. We
introduce the term parameter-constraint relation to refer to this specialization of the
parameter-dependence relation. One of the most valuable forms of parameter-constraint
relation would be an equality constraint indicating that two planning variables must
necessarily be instantiated to the same value (such constraints are sometimes referred to
as codesignation constraints). A comparable condition-constraint relation could similarly
be defined.

2.4 Properties of the Model
The qualitative model trades the precision of exhaustive causal links for simplicity and
ease of specification. Indeed, there is a natural abstraction from an exhaustive causal link
structure to ‘corresponding’ qualitative models that involves replacing every causal-link

74

relation with a precedes or necessary-for relation. We refer to a plan transformed in this
manner as a qualitative abstraction of the original.

While the qualitative relations provide less precision than a full set of causal links,
they offer two key advantages. First, they are simpler and more intuitive to specify, thus
making them better suited for use in a mixed-initiative planning environment. Second,
there are relationships that can be modeled in the qualitative framework that are not
supported by causal links or logical constraints associated with operator preconditions.
In particular, the supports relation enables the description of a connection between plan
objects that is not essential for plan correctness (as described above). As well, the
precedence relation allows the expression of ordering information independent of
causality. Furthermore, the condition-dependence and parameter-dependence relations
enable ill-defined connections between plan objects to be expressed; this ability is useful
when the precise logical or mathematical relationship is either not known or not easily
formalizable, yet there is still a desire to document some relationship between them.

2.5 Sources
Our motivation for defining qualitative relations is to enable reasoning about plan
changes within a mixed-initiative planning environment that combines human and
automated planning skills. Within this context, several sources would contribute to the
set of causal relations for a given plan. First, background knowledge could capture both
causal link and qualitative causal relations for individual actions or within ‘standard
operating procedures’ that arise frequently in practice (i.e., in the style of hierarchical
task networks (Erol et al. 1994). Second, the human planner could contribute additional
relations. In the future, some sort of learning mechanism could be applied to hypothesize
qualitative relations from a user-authored plan, yielding a baseline that a user could then
modify (e.g., along the lines proposed by (El Fattah 2003)).

3 Example: Using the Qualitative Relations
To illustrate the use of the qualitative relations for planning, consider the plans in Figure
3 and Figure 4 for a simple evacuation operation. These plans are designed to achieve
the goal conditions Prepared(Camp1) and At(Evacuees Camp1) based on the operators
defined in Figure 5. Each of the plans includes conditions from the initial state upon
which actions and effects in the plan depend, as well as the effects that constitute the
desired goal state. To simplify reference, each action in the plan is labeled with a unique
identifier (e.g., N1).

The plan in Figure 3 corresponds to a solution that an automated causal link planner
might produce for this problem. It includes a full causal link annotation that matches
each action precondition to an earlier effect in the plan.

75

Assemble(?GROUP=Evacuees
?PLACE=Embassy)

Fly(?START=Base1 ?DEST=Embassy ?VEH=UH60-A)

Load(?VEH=UH60-A ?OBJ=Evacuees ?PLACE=Embassy)

Fly(?START=Embassy ?DEST=Camp1 ?VEH=UH60-A)

Initial State
Evac-Area(Sector1)
In (Embassy Sector1)
Secure(Embassy)
At(UH60-A Base1)
#Evacuees (25)
Secure(Camp2)
Secure(Camp1)

At(?GROUP=Evacuees ?PLACE=Embassy)

At(?VEH=UH60-A ?PLACE=Embassy)
At(?OBJ=Evacuees ?PLACE=Embassy)

¬At(?VEH=UH60-A ?DEST=Base1)
At(?VEH=UH60-A ?DEST=Embassy)

LOADED(?VEH=UH60-A ?OBJ=Evacuees)
¬ At(?OBJ=Evacuees ?PLACE=Embassy)

At(?VEH=UH60-A ?DEST=Embassy)

¬At(?VEH=UH60-A ?DEST=Embassy)
At(?VEH=UH60-A ?DEST=Camp1)

Evac_Area(?SECTOR=Sector1)
In(?PLACE=Embassy ?SECTOR=Sector1)

Secure(?PLACE=Embassy)

At(?VEH=UH60-A ?PLACE=Base1)
N1

N2

N3

N4

Causal Link
Goal State

Prepared(Camp1)
At(Evacuees Camp1)

Unload(?VEH=UH60-A ?OBJ=Evacuees ?PLACE=Camp1)

At(?VEH=UH60-A ?PLACE=Camp1)
LOADED(?VEH=UH60-A ?OBJ=Evacuees)

LOADED(?VEH=UH60-A ?OBJ=Evacuees)
AT(?OBJ=Evacuees ?DEST=Camp1)

N5
Prepare(?PLACE=Camp1)

Secure(?PLACE=Camp1)

Prepared(?PLACE=Camp1)

N6

Figure 3. Evacuation Plan with a Complete Set of Causal Link Relations

Initial State
Evac-Area(Sector1)
In (Embassy Sector1)
Secure(Embassy)
At(UH60-A Base1)
#Evacuees (25)
Secure(Camp2)
Secure(Camp1)

Load(?VEH=UH60-A ?OBJ=Evacuees ?PLACE=Embassy)

N2

N3

Goal State
Prepared(Camp1)

At(Evacuees Camp1)

Unload(?VEH=UH60-A ?OBJ=Evacuees ?PLACE=Camp1)

N5
Prepare(?PLACE=Camp1)

Secure(?PLACE=Camp1)
N6

Precedes
Necessary-for
Supports

Parameter Dependence
Causal Link

Condition Dependence

Assemble(?GROUP=Evacuees
?PLACE=Embassy)

N1

Secure(?PLACE=Embassy)

At(?VEH=UH60-A ?PLACE=Base1)

Fly(?START=Base1 ?DEST=Embassy ?VEH=UH60-A)

Fly(?START=Embassy ?DEST=Camp1 ?VEH=UH60-A)

N4

Patrol(?SECTOR=Sector-5)

N7

At(?OBJ=Evacuees ?PLACE=Embassy)

At(?OBJ=Evacuees ?PLACE=Embassy)

?SECTOR=
SECTOR-OF(?PLACE)

Figure 4. Evacuation Plan with Qualitative and Causal Link Relations

76

The plan in Figure 4 represents a solution that a human planner might construct using
some kind of plan authoring tool. It contains all of the actions in Figure 3 plus a Patrol
action (N7) that provides additional security for the sector to which the evacuees will be
moved. According to the logic of the domain operators, this action is redundant because
it does not establish any effects that are required within the plan. However, it is typical
for human planners to build such redundancy into plans to provide additional safeguards
in the face of unexpected events.

The plan in Figure 4 also contains a candidate set of both casual link and qualitative
relations that document what the user might view as the key dependencies within the
plan. The main differences between this hybrid set of plan relations and the causal link
relations in Figure 3 are as follows:

 Causal-link relations in Figure 4 are limited to dependencies on initial state

conditions that might be expected to change and hence may require modifications
to the plan (e.g., the security of key locations and the position of the vehicle to be
used for transporting the evacuees) and important intermediate effects of action
(e.g., the evacuees remain at the embassy until they are loaded onto the transport
vehicle). Static initial conditions and unimportant intermediate effects of actions
have been omitted.

 The hybrid annotation replaces certain of the causal-link relations with
qualitative necessary-for relations, indicating that it is essential for the source
activity to precede the target activity in the plan but without documenting the
effects that link the actions. From the user’s perspective, these effects are
obvious (e.g., the aircraft has to be loaded before it can be unloaded) and so
documenting them explicitly is of little value.

 The qualitative annotations include a precedes relation from node N6 to node N4,
indicating a (noncausal) preference for ordering those two actions. This ordering
is not necessary for the plan to succeed.

 A condition-dependence relation has been added from the predicate
#Evacuees(25) in the initial world state to the parameter ?PLACE in N1 where the
evacuees are to be assembled. This relation reflects the fact that the choice of
assembly location is dependent on the number of evacuees; should the number
change, the choice may need to be revisited.

 A parameter-dependence relation has been added from ?PLACE in N1 to ?Veh
in N2 and a condition-dependence relation added from #Evacuees(25) in the
initial world state to ?Veh in N2. These relations show that the choice of vehicle
depends on both the number of evacuees and their assembly location, although the
precise nature of the dependency is unknown.

 Figure 4 contains a supports relation from N7 to N6, documenting that the Patrol
action is being performed in service of the Prepare action. No comparable link
between these nodes is possible in the causal link view because there is no
enabling relationship between effects produced by N7 and required by N6. A
parameter-dependence relation has also been added from the ?PLACE parameter
in N6 to the ?SECTOR variable in N7 indicating that the choice of patrol area
depends on the evacuation site. In this case, the relationship could be expressed

77

algebraically by adding the constraint ?SECTOR=SECTOR-OF(?PLACE) to the
parameter-dependence relation, thus yielding a parameter-constraint relation.

Action: Assemble(?GROUP ?PLACE)
Preconditions: Secure(?PLACE), Evac-Area(?SECTOR), In(?PLACE ?SECTOR)
Effects: At(?GROUP ?PLACE)

Action: Fly (?START ?DEST ?VEH)
Preconditions: At(?VEH ?START)
Effects: At(?VEH ?DEST), ¬At(?VEH ?START)

Action: Load(?VEH ?OBJ ?PLACE)
Preconditions: At(?VEH ?PLACE), At(?OBJ ?PLACE)
Effects: Loaded(?VEH ?OBJ), ¬At(?OBJ ?PLACE)

Action: Unload(?VEH ?OBJ ?PLACE)
Preconditions: At(?VEH ?PLACE), Loaded(?VEH ?OBJ)
Effects: At(?OBJ ?PLACE), ¬Loaded(?VEH ?OBJ)

Action: Prepare(?PLACE)
Preconditions: Secure(?PLACE)
Effects: Prepared(?PLACE)

Action: Patrol(?PLACE)
Effects: Prepared (?PLACE)

Figure 5. Evacuation Planning Operators

4 Qualitative Calculus
The qualitative calculus determines the impact that different types of change can have on
a given plan. Here, we consider only changes to plan objects (parameters, actions,
effects). More generally, changes to qualitative and casual link relations should also be
considered.

4.1 Impact of Core Plan Changes
We consider the space of changes to plan elements listed in Figure 6. Each entry in the
figure lists a type of plan change along with the class of plan elements to which the
change applies.1

1 Within our framework, the addition of a plan object on its own does not impact qualitative effects, as the
new object will not (yet) be linked to any other plan object. Since this version of our framework does not
consider changes to plan relations, we ignore plan object addition.

78

Change-Parameter: {Parameter}
Cancel: {Action | Effect}
Delay: {Action | Effect}
Move-forward: {Action | Effect}
Change-Truth-Value: {Effect}

Figure 6. Plan Changes

Plan changes can have a range of effects on plan elements linked by qualitative and
casual-link relations. Our qualitative model considers a set that includes temporal,
correctness, and minimality effects. In terms of temporal effects, delay indicates that a
plan element may be moved further back in time, while move-up indicates that a plan
element may be moved forward in time. In terms of correctness, disable indicates that
the plan element is no longer ‘supported’ within the plan. In terms of minimality, obviate
indicates that the plan element may no longer be needed in the plan (e.g., it no longer
plays a role within the plan). The effect affect indicates that there may be some impact
but that no additional conclusions about the nature of the impact can be determined.

In general, qualitative reasoning will enable inference of potential rather than
definite impact on a plan. For this reason, we can categorize qualitative effects according
to the two modalities of necessity and possibility, indicating whether the effect
necessarily occurs or only may occur. Because of the loss of precision inherent to the
qualitative models, it is generally difficult to establish necessary effects. However,
consideration of explicit quantitative information (see Section 4.2) does allow inference
of necessary effects in some cases.

Plan changes can have impacts that flow along both ‘directions’ of a plan relation.
In particular, changing the source element in a plan relation could impact the target
element (i.e., the forward direction) while changing the target element could impact the
source element (i.e., the backward direction).

Below, we consider the direct impact of each type of change on objects related by
the qualitative relations QR1 – QR5, as well as the causal-link and parameter-constraint
relations. Figure 7 summarizes the results.

4.1.1 Cancel
The cancel operation deletes an action or effect from a plan. Equivalently, it can be
interpreted as having an action that fails at execution time or an effect that is violated. A
cancel operation can impact only necessary-for and causal-link relations in the forward
direction. In the event that the Source-Obj of a necessary-for or causal-link relation is
canceled, the Target-Obj would have a necessary enabling effect violated and hence
would be disabled. Cancellation of the Target-Obj could potentially obviate the need for
the Source-Obj for necessary-for, supports, and causal-link relations. However, that
would be the case only if the Source-Obj was not also the source for a necessary-for,
supports, condition-dependence, or causal-link relation for a different plan element.

4.1.2 Change-Parameter
The change-parameter operation modifies an argument to an action or effect in a plan.
Such a change can impact elements related by parameter-dependence or parameter-
constraint relations. In the case where the source is changed and the target is an

79

unbound parameter (similarly, the target is changed and the source is an unbound
parameter), there will be no qualitative impact. Hence, we consider only instantiated
parameters here and in Figure 7.

For the parameter-dependence relation, a change to Source-Obj could necessitate a
change to Target-Obj, although the precise nature of the change would not be
determinable without additional information. Thus, the impact of a change in the forward
direction is listed as affect in Figure 6. In contrast, the Source-Obj is independent of the
value of Target-Obj, so changes to the latter will not affect the former. To illustrate,
consider a parameter-dependence relation from the number of evacuees in a NEO
operation (Source-Obj) to the choice of assembly site (Target-Obj). In the event that there
is an increase in the number of evacuees, a planner may need to reconsider the chosen
assembly site (since it may not be large enough to accommodate the enlarged set of
people). However, changing the assembly site would not involve any reconsideration of
the number of evacuees involved (since that number is beyond the control of the planner).

The impact on a parameter-constraint relation is similar in the forward direction but
differs somewhat in the backward direction. In particular, the parameter-constraint
relation is necessarily ‘bidirectional’, being grounded in an actual algebraic constraint.
For this reason, changes to the Target-Obj of such a relation would yield a possible
change in the Source-Obj; thus, the qualitative impact of such a change would be affect.
To illustrate, consider a parameter-constraint relation between the parameters ?X and ?R
defined by the equation ?X=π*?R2. In this case, changing ?X or ?R will clearly impact
the value of the other.

FORWARD IMPACT Delay Move-up Cancel Change Param Change TV
Precedes delay * * * *
Necessary-for delay * disable * *
Supports delay * * * *
Parameter-dependence * * * affect *
Condition-dependence * * * * disable
Causal-link delay * disable * disable
Parameter-constraint * * * affect *

BACKWARD IMPACT Delay Move-up Cancel Change Param Change TV
Precedes * move-up * * *
Necessary-for * move-up obviate * *
Supports * move-up obviate * *
Parameter-dependence * * * * *
Condition-dependence * * * * obviate
Causal-link * move-up obviate * obviate
Parameter-constraint * * * affect *

Figure 7. Summary of Direct Qualitative Effects for Forward and Backward Impact

80

4.1.3 Change-Truth-Value
The change-truth-value operation involves modifying the truth-value of a designated
effect, either from true to false or false to true. Such changes could potentially impact
plan elements linked by a condition-dependence relation. In the forward direction,
change to the source effect of such a relation threatens the viability of the target object,
hence the qualitative impact is disable. Change to the target element could eliminate the
need for the source effect in the event, specifically when the target element is an effect
and the change establishes the truth of the effect. In this case, the source object may no
longer be required in the plan, provided that no other plan element depends on it (i.e., the
effect is the source object for some other qualitative relation). For this reason, the
qualitative effect is listed as obviate.

The same qualitative effects apply for the causal-link relation, as causal links are
a specialization of the condition-dependence relation.

4.1.4 Delay
A delay operation impacts the three temporal qualitative relations precedes, necessary-
for, and supports, while exhibiting similar behavior for the qualitative relation causal-
link. We consider the impact of a delay operation with the assumption that each plan
element has an explicit representation of timing information for the occurrence of that
plan element. Such information could be in the form of a timepoint for instantaneous
actions, or a time window for actions with duration.

Simple qualitative effects can be established for delay operations without
considering anything beyond the individual qualitative relation. Target-Obj will possibly
be delayed when Source-Obj is delayed (and necessarily when the time for Target-Source
is greater or equal to the time assigned to Target-Obj). A delay to Target-Obj will have
no impact on Source-Obj.

4.1.5 Move-Up
The effects of the move-up operation are the inverses of those of the Delay operation.
Specifically, a move-up operation will impact only the temporal qualitative relations
(precedes, necessary-for, supports) and the causal-link relation, and only in the backward
direction. The qualitative impact will be a possible move-up of the source-object in such
relations.

4.2 Calculus Specializations
By specializing information about qualitative relations, additional inferences can be
drawn regarding the impact of plan changes. In particular, the availability of quantitative
information regarding the constraints linking parameters can lead to more detailed
modeling of effects.

To illustrate, consider the case where there is information available about temporal
slack within a plan. Consider a qualitative temporal relation Source-Obj Target-Obj
such that the constraint TIME(Target-Obj) - TIME(Source-Obj) < D defines a temporal
buffer between the times for the two plan elements. If the TIME assignments for both
plan elements are defined and a Delay operation is applied to Source-Obj such that the
constraint is violated, then necessarily the Target-Obj must be delayed. Similarly, if a

81

Move-Up operation is applied to Target-Obj such that the constraint is violated, then the
time of Source-Obj must also be moved forward in time.

4.3 Change Propagation
Figure 7 summarizes the direct qualitative effects that result from various types of plan
change. Such direct effects can be propagated across qualitative rules to establish the full
qualitative impact of a change on a given plan. Propagation involves repeatedly treating
each new effect as a ‘change’ and then determining what new direct effects are triggered
by those changes.
 One general concern with such propagation methods is that they can lead to
infinite reasoning cycles. That is not the case within our calculus. Firstly, the impact of
changes for the Delay, Move-up, Cancel, Change-TV operations are all directionally
focused, meaning that while they can trigger chains of effects, those chains will all be
either in the forward or the backward direction. If we limit ourselves to cases where
relations are acyclic (see the discussion on coherence for qualitative relations in Section 5
below), then the length of these chains is bounded by the length from the modified plan
object to the end or start (depending on direction) of the plan. While there may be
multiple chains for each change, the total number is bounded by the number of plan
nodes.
 The Change-Param operation is similarly directionally focused provided that there
are no parameter-constraint relations involved. The parameter-constraint relation,
however, can lead to effects that trigger reasoning that moves both forward and
backward. Because the impact of the changes is limited to a single effect – namely, affect
– it is clear that the propagation can be halted on any node for which that effect has
already been generated in response to a given plan change. Hence, the reasoning is
necessarily finite.

4.4 Example: Reasoning with Qualitative Effects
For the plan in Figure 4 with qualitative and causal link relations, we consider the
qualitative impact of three changes.

 Move up by one hour the start of the FLY action in N4.

There is a path of qualitative temporal relations from every action node in the plan
except N5 to N4. Thus, the propagation of direct qualitative effects of this change
yields a move-up effect for each node except N5.

 Revise the initial state predicate #Evacuees(25) to #Evacuees(50).

The direct qualitative effect of that change would be an affect inference for the
assembly site (i.e., ?PLACE in N1); as a result, the value for this parameter may
need to change. Propagation of this direct effect would further lead to an affect
inference for the choice of vehicle used to transport the evacuees (i.e., ?VEH in
node N2) by virtue of the parameter-dependence link from ?PLACE in N1to
?VEH in node N2.

82

 Eliminate N7 from the plan.

No additional effects result, as no other part of the plan critically depends on this
node.

Another interesting case to consider is changing the goals of the plan to be

Prepared(Camp2) and At(Evacuees Camp2). With the relations as stated in Figure 4, no
qualitative effects would be deduced. Clearly, however, the ideal would be to determine
that the ?PLACE locations in nodes N5 and N6 should both change to Camp2, and further
impacts then assessed.

Standard causal links support this type of reasoning, as they directly connect the
changed parameters to the impacted variables. This behavior could be attained within the
qualitative framework provided that the user added parameter-dependence relations, or
parameter-constraint relations with explicit equality constraints among such
codesignating parameters. Realistically, however, it is unlikely that users will want to
document their plans at that level of detail.

One simple solution to this problem is to augment the qualitative reasoning
calculus with a mechanism that responds to the changing of a parameter value from v1 to
v2 by marking all other occurrences of v1 in the plan (as well as in the goal or initiial
conditions linked to any portion of the plan) as having a possible effect affect as a result
of the change. In this example, the mechanism would then identify the ?PLACE
parameters in nodes N5 and N6 as having the effect affect, as well as the initial state
condition Secure(Camp1).

By modifying the ?PLACE parameters to be bound to Camp2, the user would in
turn trigger recalculation of the parameter ?SECTOR in node N7 via the parameter-
dependence relation with constraint ?SECTOR=SECTOR-OF(Camp2). The marking of
the initial state condition Secure(Camp1) as having the effect affect would notify the user
of the need to ensure the revised condition Secure(Camp2). Because that condition is
already true in the initial world state, no further actions are needed to address the goal
changes.

5 Coherence of Qualitative Plans
Causal link structures provide a formal basis for determining the validity of a plan, by
showing that the actions in the plan lead to a state where the goal conditions are satisfied,
and that the preconditions of each action are enabled by effects of some earlier action or
the initial world state. Minimality conditions can also be established by showing that it is
not possible to remove any set of actions from the plan while continuing to satisfy the
correctness criteria. The causal links within a correct and mimimal plan can thus be
viewed as necessary and sufficient for the plan’s validity.

This model of validity does not make sense for plans whose causal structure is
documented in terms of a partial set of causal link and qualitative relations. First of all,
the user would supply only those relations that he believes are important, with others
remaining implicit in his internal model of the plan. Second, the plan cannot be proven
‘correct’ as there is no background model to underpin the validation. Third, the user may
have supplied additional relations that transcend the enablement conditions inherent to
causal link plan validation.

83

Instead, focus must shift to a weaker notion focused on ensuring that the relations are
consistent. To this end, we introduce the notion of coherence for a plan with qualitative
causal annotations.

Definition [Coherence Conditions]:
A set of actions A linked by qualitative relations Q is said to be coherent iff the following
two conditions hold.
 Temporal Acylicity: The subgraph formed by the Precedes, Supports, and

Necessary-for relations is acyclic.
 Modality Exclusivity: If there is a path of Supports relations linking plan elements

P1 and P2, then there is no path of Necessary-for relations linking P1 and P2.

The temporal acylicity condition ensures that the plan does not have temporal loops. The
modality consistency condition ensures that a relationship between plan elements is not
declared as being both necessary and nonnecessary.

6 Summary
Qualitative reasoning about the effects of changes on plans has several virtues over
standard logical/deductive approaches. First, qualitative reasoning does not require
comprehensive and correct causal theories. While qualitative inferences can be drawn
from incomplete models, however, more complete models will yield more informative
results. Second, qualitative relations are simpler and more intuitive to define, making it
possible for users to annotate plans with qualitative relations that reflect their specific
needs and interests. In contrast, traditional deductive approaches require sophisticated
models that have proven to be difficult for users to formulate. Third, qualitative models
include relationships that do not require complete formalization of concepts, making
them usable in situations where precise dependencies among plan elements cannot be
articulated.

One of the problems with the qualitative framework defined here is that it is
derived from simple commonsense notions of plan relations and interactions. It would be
valuable to define a formal semantic model that grounds the qualitative relations in
abstractions of causal-link plan structures. Such a model would enable us to show that the
calculus ‘does the right thing’, rather than simply matching intuitions as to what should
happen.

Acknowledgments This work was supported by DAPRA under Air Force Research
laboratory contract F30602-00-C-0058. The author would like to thank Peter Jarvis,
Mabry Tyson, and Michael Wolverton for their assistance in clarifying the technical ideas
in this work.

7 Bibliography
Allen, J. and Ferguson, G. (2002). “Human-Machine Collaborative Planning”. In Proceedings of
the Third International NASA Workshop on Planning and Scheduling for Space, Houston, TX.

Carroll, J. M. and Moran, T. P. (1991). Special issue on design rationale. Human-Computer
Interaction, 6(3-4).

84

Conklin, E. J. and Yakemovic, K. B. (1991). “A Process-oriented Approach to Design
Rationale”. Human-Computer Interaction, 6:357--391.

El Fattah, Y. (2003). “Heuristic Causal Modelling for Mixed Initiative Planning”. Submitted for
Publication.

Erol, K., Hendler, J., and Nau, D. (1994). Semantics for Hierarchical Task-Network Planning.
Technical Report CS-TR-3239, Computer Science Department, University of Maryland.

Kambhampati, S. and Hendler, J. (1992). “A Validation-structure Based Theory of Plan
Modification and Reuse”, Artificial Intellgience, 53(2), 193-258..

Kim, J. and Blythe, J. (2003). “Supporting Plan Authoring and Analysis”, In Proceedings of the
Seventh International Conference on Intelligent User Interfaces (IUI-2003).

McCarthy, J. Epistemological problems of Artificial Intelligence. (1977). In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI-77).

Myers, K. L., Tyson, W. M., Wolverton, M. J., Jarvis, P. A., Lee, T. J., and desJardins, M.
(2002). “PASSAT: A User-centric Planning Framework”. In Proceedings of the 3rd International
NASA Workshop on Planning and Scheduling for Space, Houston, TX.

Myers, K. L., Jarvis, P. Tyson, W. M., and Wolverton, M. J. “A Mixed-initiative Framework for
Robust Plan Sketching”. (2003). In Proceedings of the 13th International Conference on
Automated Planning and Scheduling, Trento, Italy.

Weld, D. (1999). “Recent Advances in AI Planning”, AI Magazine, 20(2), 93-123.

