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ABSTRACT 
 

 
Navy personnel use the REMUS unmanned underwater vehicle to search for 

submerged objects. Navigation inaccuracies lead to errors in predicting the location of 

objects and thus result in increased search times for EOD teams searching for the object 

post mission. This thesis explores contributions to navigation inaccuracy using Discrete 

Event Simulation to model the vehicle’s navigation system and operational performance. 

The DES generates data used, in turn, to build three models. First, the probability of 

detection is modeled by a logit regression. Second, given that detection has occurred, the 

mean location offset is modeled by a linear regression. Third, the distribution of errors is 

shown to follow an exponential distribution. These three models enable operators to 

explore the impact of various inputs prior to programming the vehicle, thus allowing 

them to choose the best combination of vehicle parameters that minimize the offset error 

between the reported and actual locations. 
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THESIS DISCLAIMER 

 
The reader is cautioned that computer programs developed in this research may 

not have been exercised for all cases of interest. While every effort has been made within 

the time available to ensure the programs are free of computational and logic errors, they 

cannot be considered validated. Any application of these programs without additional 

verification is at the risk of the user. 
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EXECUTIVE SUMMARY 

 
Naval vessels have always been susceptible to mine warfare. Whether the threat is 

real or simply perceived, the end result is the same: mine warfare disrupts the ability to 

project and maintain forces away from home waters. The United States Navy has placed 

a high priority on developing technology and tactics designed to counter the threat of 

mine warfare. One of the most promising is the REMUS unmanned underwater vehicle. 

The REMUS shows potential as a minefield survey tool, but an analysis of the effects of 

environmental conditions on its navigational accuracy, and thus its ability to effectively 

pinpoint the location of a submerged object, has not been adequately documented. 

This thesis undertakes such an analysis using Discrete Event Simulation (DES) to 

model the navigation system. DES is tool specifically suited for this type of analysis. 

Large amounts of data are not available from actual missions, and attempting to conduct 

enough missions to collect data is not feasible because of the amount of time required. 

There are simply too many variables to consider. DES allows for data collection in the 

absence of real data by building scenarios that mimic true operating conditions and using 

the generated data to analyze mission performance. In so far as the environmental 

conditions have been accurately implemented, the output provides insight into 

combinations of operating conditions to exploit, or avoid. 

The DES produced for this thesis uses the JAVA based Simkit package to 

simulate the navigation system in the REMUS. The model considers factors affecting 

accuracy, such as compass error, the effect of current, transducer drop error, transducer 

positioning effects and ping interval. Mines can be placed at specific locations or 

generated randomly. The vehicle can be programmed to proceed to as many waypoints as 

desired, thus allowing the vehicle to conduct a search pattern through an area of interest. 

The size and layout of the search area is limited only by factors which also limit the real 

vehicle’s performance, such as sound propagation in water. 

Three types of vehicles are considered in this thesis. First, a simple vehicle that 

navigates by Dead Reckoning is analyzed. The vehicle is simulated to move from one 

point to another and one mine is placed in its path. Second, a more complex vehicle that 

 xix



navigates using Long-Baseline (LBL) is analyzed. The vehicle is again simulated to 

move from one point to another with a single mine in its path. Third, the vehicle is 

simulated to move through an area of interest in a sweeping, “mow the lawn”, pattern 

which is populated by ten mines, each of which is randomly positioned. This third vehicle 

most accurately reflects the current technique for operating the real vehicle. 

The data from the first two versions of the simulation are used to generate insight 

into how factors influence the vehicle’s prediction performance. Data from the last 

version of the simulation are used to build three analytic models that the operator can use 

to improve performance. First, a logit regression model predicts the probability of 

detection of a mine given a combination of input parameters. This model allows operators 

to explore combinations of inputs in an attempt to maximize prediction power. Second, a 

linear regression model predicts the mine location error, given that detection has 

occurred. This model allows operators to explore inputs in an effort to reduce the 

prediction error. Finally, the distribution of errors from the second model is shown to 

follow an exponential distribution. The results of the third model serve to greatly simplify 

probability calculations by operators in the field. 

Analysis of the three versions of the simulation provides useful insights into 

vehicle performance. Current direction and speed influence accuracy in several ways. 

Higher current speeds cause the vehicle to be pushed off track, and current directions that 

are perpendicular to the vehicle’s track degrade detection probability more than aiding or 

opposing currents. Currents that tend to push the vehicle from behind result in the best 

performance, both in terms of detection probability and location error. Current also 

influences accuracy by causing the transducers to be displaced from their pre-

programmed location. Shorter ping intervals also improve performance mainly because 

position fixes are calculated more often. There is a trade-off, however, because a short 

ping interval reduces the effective range at which the vehicle can operate from the 

transducers and thus shrinks the effective search area. 

 This thesis provides an exploratory model for the REMUS vehicle’s navigation 

system that an operator can use to improve performance while searching an area of 

interest for mines or other objects. However, all results should be viewed as just what 

 xx



they are - insights. Simplifications are made in the model’s implementation of complex 

hydrodynamic effects. Every effort has been made to produce a model that accurately 

reflects the vehicle’s true performance, but users are cautioned that the output of the 

model should not be considered to be the only answer to the problem. 

 xxi
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I. INTRODUCTION  

A. MINE WARFARE  

Naval vessels have always been susceptible to mine warfare. Whether the threat is 

real or simply perceived, the end result is the same: mine warfare disrupts the ability to 

project and maintain forces away from home waters. The technology involved in 

construction and employment of mines has not changed appreciably in the past few 

decades. However, the United States Navy has placed a high priority on developing 

technology and tactics designed to counter the threat of mine warfare. Three US 

warships, USS SAMUEL B ROBERTS, USS PRINCETON and USS TRIPOLI, have 

been involved in encounters with mines since 1988 in the Persian Gulf. 

Mine warfare is affordable and available to any country willing to invest the time 

required to lay the mine-field. In March 2003, during the second Gulf War, Navy ships 

intercepted three tug boats in the vicinity of the Iraqi port of Umm Qasar loaded with 

over 130 mines intended for the harbor inner reaches [Eisman, 2003]. This incident 

underscores the relative ease with which a country could employ this rather primitive, yet 

effective, tactic. 

Mine warfare can be traced back in history as early as the American Revolution. 

David Bushnell invented a simple contact mine made from a watertight wooden keg 

filled with explosive powder. An illustration of the Bushnell mine is shown in Figure 1. 

 
Figure 1.   Bushnell Mine (From Mineman, Vol I, Ch I, 1994) 

 

Mine technology has advanced substantially since Bushnell’s early attempts. 

Mines may be laid in surf zones to thwart landing craft or in deep sea reaches to combat 

deep draft, capital ships. Some mines may be as crude as Bushnell’s early design and 
1 



activate primarily by contact. Others are more complex and are activated by influence, 

acoustics or other more advanced mechanisms. Figure 2 shows the variations presently in 

use. Mineman [Vol I, Ch I, 1994] lists the following advantages that mines have over 

other conventional weapons: 

• Mines lie in wait for the enemy with no reasonable threat of counter-

detection 

• Mines may win a conflict passively by causing the enemy to alter tactics 

• Mines may force ships to travel longer, less reliable routes to deliver 

troops and materials 

• Mines are cost effective due to their relatively primitive technology 

 
Figure 2.   Mine Types Used in Various Situations (From Nawara) 
 

Existing tools for mine detection and clearing include mine sweeping ships, 

trained animals, Explosive Ordnance Disposal (EOD) teams, helicopter squadrons and 

Unmanned Underwater Vehicles (UUV). Of these, the UUV is perhaps the most exciting 

and promising. Several variations of the UUV are in various stages of use and testing. 

The Naval Postgraduate School (NPS) in Monterey, CA currently possesses two capable 

machines: the ARIES and the Remote Environmental Measuring UnitS (REMUS). This 

thesis focuses on the REMUS. REMUS and vehicle will hereafter be used 

interchangeably. 
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B. REMUS BASICS 
The REMUS is built by Hydroid Technologies and is designed to collect 

hydrographic data in relatively shallow water. The overall system is comprised of the 

vehicle, various auxiliary equipment necessary to support its mission and software 

programs designed to conduct pre-mission planning and post-mission data analysis. 

During a mission the vehicle collects side-scan images that can be viewed, post-mission, 

and used to identify and locate objects (e.g. mines, obstacles) on the ocean floor. Other 

data are collected and saved that are important in assessing the accuracy of the ostensible 

location of the object. Theoretically, returning to the aforementioned object is an easy 

task for the EOD teams because the vehicle always “knows where it is,” but in reality the 

task is made more difficult due to inaccuracies in the navigation system that result in 

errors in the reported location of the objects. 

The vehicle is 7.5 inches in diameter, 40 inches in length and weighs about 70 lbs. 

It is equipped with internal batteries and is capable of diving to depths up to 100 meters 

for as long as 22 hours on one charge. The vehicle is equipped with side scan sonar for its 

search function. Navigation is accomplished primarily by the vehicle ranging with in-

stratum transponders. Secondary navigation is done by dead reckoning with an internal 

compass and Doppler velocity log. The navigation system is discussed in more detail in 

Chapter II. On-board computers store mission essential parameters and collect data for 

post-mission analysis. Data collected include salinity, temperature, depth, optical 

backscatter, side-scan sonar images and vehicle location information. The REMUS (in its 

transportation box) is pictured in Figure 3. 
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Figure 3.   The NPS REMUS UUV in Transportation Container (8/03) 

. 

C. OBJECTIVES AND RESEARCH QUESTIONS 
This research is concerned with the accuracy with which the vehicle estimates the 

location of an object. Greater uncertainty in the location results in more time for divers to 

clear an obstacle because of the increased search effort required. The amount of time a 

diver is allotted for the search effort is limited by several factors, including bottom time, 

the amount of air carried and diver fatigue. Decreasing the amount of time required to 

locate an object by shrinking the search area would save time, money and personnel. 

Many components of the navigation system contribute to uncertainty about the 

vehicle’s true location and thus the location of the contact. Deciding which components 

affect the error most severely and which might be influenced the most by human 

operators is the main area of interest for this thesis. Generating enough data from actual 

vehicle runs is prohibitive in terms of time. It would also be difficult to isolate individual 

components of the navigation system in an ocean environment. This thesis uses a 

Discrete Event Simulation (DES) model of the navigation that allows the analyst to 

explore how individual inputs contribute to position prediction error. This DES is 

implemented in SIMKIT and JAVA. A more extensive description of DES and 

SIMKIT may be found in Chapter II of this thesis. 

This thesis seeks to provide insight into three critical areas of vehicle operation. 

First, what operating conditions provide the best prediction of the probability of detection 

4 



of a mine like object? Second, given that detection has occurred, how can the predicted 

mean offset location error be minimized? And third, once a predicted mean error is 

determined how does the operator establish a probability that the mine is actually inside 

of a desired range. Insight into these three questions is provided by 1) building a model 

that predicts the probability of detection given certain input parameters, 2) building a 

separate model which predicts mean offset error given some input parameters and that 

detection has occurred, and 3) determining that the distribution of offset errors follows 

some known distribution that can be used to establish a probability that the mine is inside 

of the desired range. 

Predicting the offset distance with accuracy is important because operators are 

concerned with the area that may have to be searched to clear the mine after the vehicle 

has found it. Many factors determine how long a team may have to search an area, such 

as bottom time for divers or mission requirements, so using search area affords the 

decision maker the ability to estimate time to complete the mission. The insight gained 

from analyzing the effect of combinations of inputs on output accuracy can help 

operators choose the best configuration for the vehicle prior to putting it into the water. 

D. ORGANIZATION OF THESIS 

Chapter II provides background on the various components of navigational 

accuracy in the vehicle and provides a primer in event graphs and DES. Chapter III 

explains the methodology for the simulation development. Chapter IV discusses the 

inputs to the simulation and analyzes the output of the various runs. Chapter V 

summarizes findings and explores follow on research questions. 
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II. BACKGROUND 

A. REMUS NAVIGATION DETAILS 

The REMUS vehicle operates autonomously while performing its mission and 

thus navigation error is an important issue the operator must consider when analyzing the 

output from the mission. Understanding the vehicle’s navigation methods and the 

potential sources of error provides insight into the output from mission playback and 

assists operators in interpreting collected data. 

1. Methods of Navigation 

REMUS uses three methods for navigation during a mission. The method can be 

pre-programmed by the user and is not required to remain constant throughout the 

mission. Mission design parameters may dictate that different methods should be used 

due to the vehicle’s proximity to the transponders or by the ocean bottom composition, 

for example. REMUS may switch modes during the mission if it receives what are 

perceived to be bad fixes. The three methods, Dead Reckoning, Long Baseline, and 

Ultra-Short Baseline, are described below. 

a. Dead Reckoning 
If an acoustic fix is not available the vehicle navigates by Dead Reckoning 

(DR). DR position is computed using onboard speed and heading information. Speed 

information is calculated using propeller rpm input and Doppler acoustic signals. The 

Doppler acoustic signal may only be used if the vehicle is within 20 meters of the sea 

floor. Heading is computed using an onboard magnetic compass. DR position is 

computed by determining how far and in what direction the vehicle has traveled since the 

last update. This distance traveled is added to the last known position and the new 

position is updated in the computer. Precise DR navigation relies on accurate speed and 

heading information. 

b. Long Baseline 
With Long Baseline (LBL), the most common method of navigation, 

REMUS interrogates pre-positioned transponders and receives a return signal. The 

vehicle then triangulates its position based upon the length of time the signal takes to 

make the round trip. Many variables affect the speed of sound in water. REMUS collects 

7 



real time data on water temperature, salinity and depth to calculate the speed of sound 

and then calculates a distance based upon the time. Position is then fixed based on the 

triangulated range. LBL requires a minimum of two transponders. If a signal is not 

received from either one of the two transponders then the fix is assessed as “bad” and no 

position updates occur. The vehicle continues to navigate by Dead Reckoning between 

good. The vehicle may be set to interrogate at specified time intervals. The time interval 

affects the maximum range because a signal must depart and return prior to the next 

interrogation in order for the range to be accurate. Maximum range for the transponders 

is specified at 1500 meters, but ranges as long as 1700 meters have been observed to 

work in good water conditions. An example of the triangulation technique is illustrated in 

Figure 4. 

 
Figure 4.   Triangulation Illustration With Two Transponders 

 

Triangulation of position is achieved when the lengths of the three sides of 

a triangle are known. Figure 5 presents an application of the law of cosines to determine 

position [Stewart, 1999]. 
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λ
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Transducers 
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C

Figure 5.   Law of Cosines Example 
 

Distances A, B and C are known. The relationship between the sides and angle α is 

determined by Equation (1). 

A2 = C2 + B2 − 2CBcos(α)                                                  (1) 

Equation (1) is rearranged to solve for α as follows 

α = cos−1 A2 − C2 − B2

−2CB
 

 
 

 

 
                                                     (2) 

REMUS’s position relative to the transducer on the left is obtained by simple 

trigonometric identities as follows 

x = Bcos(α)
y = Bsin(α)

                                                            (3) 

c. Ultra-Short Baseline 
Ultra-Short Baseline (USBL) is used when the vehicle is finished with its 

primary mission and is preparing for recovery. The vehicle homes in on the signal from 

one of the transponders. This method is not used for navigation during field surveys and 

is not addressed further in this thesis. 
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2. Sources of Navigation Error 

a. Compass Error 
The compass onboard REMUS is the primary tool utilized during DR 

navigation. REMUS combines an ordinary magnetic compass with yaw-rate sensors to 

produce a fairly accurate heading input. The compass measures the absolute direction of 

the magnetic field to determine the vehicle’s heading. In a compass only the horizontal 

component of the measurement gives the direction of north, thus the vehicle must be able 

to remove the vertical component caused by gravitational pull. Therein lies the main 

component of compass error because this vertical component is not constant. It is affected 

by pitch and roll changes in the vehicle and inaccurate measurement of the vertical 

component results in incorrect interpretation of the horizontal component, leading to 

heading inaccuracies. However, over the long term the accelerations tend to cancel one 

another out. For example, for every roll to port there is a corresponding (and effectively 

equal) roll to starboard. The net effect tends to be that in the long run the acceleration 

errors are effectively zero and the magnetic heading is correct. In the short term, 

however, there can be heading errors as high as 3%, or up to 10.8 degrees to either side. 

The heading error is mitigated by use of a yaw-rate sensor. The yaw-rate 

sensor measures the rate at which the vehicle is turning. The rate is multiplied by the 

amount of time since the last measurement and the product is added to the last heading. 

The result is a fairly accurate heading. The sensor must have good heading information at 

the outset for this method to be successful. Additionally, small errors in measurement 

accumulate over time, thus the method is more accurate in the short term than the long 

term. 

Combining a magnetic compass that is fairly accurate over long distances 

with the yaw-rate sensor that is more accurate over short distances produces a heading 

input with more accuracy than either would have produced individually. The 

manufacturer claims that heading errors are reduced to ± 0.1%, or about 0.36 degrees. 

This claim is difficult to verify and is not consistent with data collected in support of this 

thesis. The vehicle can only be operated in ocean environments because of the 

configuration of the ballast. Measuring the heading error would require that the vehicle 

be in an environment free from other factors influencing heading, such as current. 
10 



b. Effect of Current 
The vehicle operates primarily in ocean environments where the effect of 

current can push REMUS off track or cause it to inaccurately assess its position on the 

planned track (Figure 6). The overall effect is to introduce error in the prediction of an 

object’s position. When the vehicle approaches from the same orientation on consecutive 

runs over a short period of time the error is predictable because the current does not 

change direction or strength appreciably over short time spans or short distances. Current 

is not constant, however, nor is it easily determined at a specific location for use by the 

vehicle. Currents are often reported in a location in the vicinity of some important 

navigation aid but generally not in a specific location as might be necessary in order to 

apply correction to the vehicle ahead of time, thus the vehicle’s position is subject to 

uncertainty due to the effects of current. 

 

Vehicle’s Actual Track 

Planned Track 

Current 

Figure 6.   Effect of Current on Planned Navigation Track 
 

c. Transducer Placement 
Of all the variables, the operator has the most control over transducer 

placement. The transducer is transported to the drop area and positioned at the surface 

using GPS. When the operator is satisfied that the location is correct the transducer is 

dropped and allowed to sink to the bottom. It is held in place by an anchor attached to a 

neutrally buoyant line. The transducer is allowed to float in the same stratum as the 

vehicle. See Figure 7 for an illustration of transducer and anchor setup. The position of 

the transducer is programmed into the onboard computer of the vehicle and the computer 
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uses the location to triangulate its position. Generally the position is programmed into the 

vehicle prior to making the drop, but there is no restriction that would prohibit inputting 

the position after the drop occurs. 

 

Transducer 

Float 

Anchor 

Tether Line 
Ocean Floor 

Ocean Surface 

Figure 7.   Typical Transponder Setup 
 

There are two sources of error in transducer placement. First, the operator 

may not be at the exact position for the drop as input into the vehicle’s computer. The 

accuracy of a handheld GPS unit is quantifiable and contributes to the misplacement of 

the transducer. This source of inaccuracy occurs as a one-time error for each transducer 

because of the assumption that once the device is dropped overboard it neither moves nor 

drags its anchor on the bottom. Secondly, the anchor and transducer do not drop straight 

down to the bottom. Current may affect the drop and the hydrodynamic effects acting on 

the device are unpredictable as it descends. 

d. Transducer Motion 

Once the transducer is placed on the ocean floor, it is affected by current 

and wave action surges, resulting in the most significant contributor to navigation error 

introduced by the transducers. The vehicle relies on accurate knowledge of transducer 

placement to triangulate its position. Under best case conditions a small displacement of 

the transducer results in a small error in position fix. However, these errors can be 

substantially magnified when the vehicle operates with a small angle between the 

baseline (an imaginary line joining the two transducers) and the vehicle’s track. This 
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phenomenon is the result of fairly straightforward geometry considerations. Consider 

Figure 8 and Figure 9 for a visual explanation of this with only one transponder out of 

position. The results when both transducers are out of position are similar but more 

exaggerated. 

Current has the effect of displacing the transducer from a vertical position 

off to one side with a fairly constant magnitude. The displacement is caused by 

hydrodynamic drag. Wave action tends to displace the transducer from side to side in a 

repeating manner. The overall effect is that the transducer is rarely in the position that the 

vehicle is programmed to utilize in its calculations. In the long run the effect of waves is 

mitigated by its alternating behavior, but in the short-term there can be substantial error. 

 

 

 

Transponder 
Position 

Range to 
Vehicle 

Actual

Calculated

Fix 
Location 

Calculated

Actual

Error

Actual

Baseline Perceived

Figure 8.   Possible Position Uncertainty for Large Angle 
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Figure 9.   Possible Position Uncertainty for Shallow Angle 
 

e. Vehicle Attitude 

The final consideration for position uncertainty involves the vehicle 

attitude relative to the location of the transducers. Consider first the distance from the 

vehicle to the transducer. As the distance increases the likelihood that the transponder 

“hears” the interrogation of REMUS or that REMUS “hears” the return ping degrades. 

The physics of sound propagation in water are similar to those in air and the amount of 

energy that the vehicle and transponder put into the water do not change, thus the 

intensity of the sound decreases as range increases. The second consideration is the 

vehicle’s relative aspect to the transponders. The vehicle is more likely to receive the 

transponders signal when it is pointing toward the transponder than when it is traveling 

away from the transponder due largely to the location and construction of the sensors in 

the vehicle’s nose. Recall that a good fix is obtained, and thus an update calculated and 

stored in the on-board computer, only if a response is received from both transponders. 

The vehicle will navigate by Dead Reckoning between good fixes. The longer the vehicle 

goes without a good fix the higher the position uncertainty. This is explained and 

demonstrated more completely in Chapter IV of this thesis. 

B. DISCRETE EVENT SIMULATION 
The vehicle simulation described in Chapter III of this thesis utilizes Discrete 

Event Simulation (DES). Introductory remarks are made here to assist in grasping the 

fundamentals of the simulation. For a more detailed treatment of DES refer to any 
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introductory level text, such as Law and Kelton’s Simulation Modeling and Analysis. The 

following general discussion is derived from Buss [2002] as well as Law and Kelton 

[2000]. 

1. State Variables and Event Lists 
DES is based upon state variables and events serving as two fundamental 

components working together. State variables define the state of a system at any 

particular moment in time. More than one state variable may exist in the model (as is 

often the case) and the choice of how to define the state variables is critical in collecting 

meaningful data from the output of the simulation. The time-varying values of the state 

variables, referred to as state trajectories, are studied to draw conclusions about the 

performance of the system being modeled. 

The state trajectories in a DES are piecewise constant; the value of a state variable 

does not change until some previously scheduled event occurs. Time does not progress 

during execution of an event, only during the period between execution of one event and 

another. Event execution is scheduled and processed by the event list. The event list 

stores future events and may be thought of as a “to-do” list for use by the program. An 

event notice is generated containing information about which event is scheduled to occur 

and at what time in the simulation it is scheduled to occur. This is perhaps the main 

distinction between discrete event modeling and time stepped modeling. In DES the time 

is advanced to the next scheduled event and that event is processed. In time stepped 

modeling the clock is advanced to the next time step (determined in advance) and if an 

event would have occurred during that time step it is then processed. It is not unlikely in 

time step simulation for the clock to “stop” several times before an event must be 

executed. In DES the clock only stops when an event is executed or the simulation stops. 

2. Discrete Event Algorithm 
It is helpful to view the process in the framework of the discrete event algorithm, 

borrowed from Law & Kelton [Law & Kelton, 2000]. In pseudo-code: 

While (Event List not empty) 

• Advance time to the next scheduled event 

• Perform state transition for the event 
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• Remove the event from the list 

• Schedule other event(s) (as required) 

By convention, a predetermined order is employed when an event occurs. First, 

all state changes associated with the current event are performed. Second, any future 

events resulting from the current state changes are scheduled. Finally, the completed 

event is removed from the event list. The newly scheduled events are set by the current 

event and may be conditional on some other condition or state within the model. As Buss 

points out, it is possible to perform the above steps in an arbitrary fashion, but the result 

is at best confusion and at worst an erroneous model. Buss states, “There is considerable 

benefit from adapting a convention such as [the one described here]” [Buss, 2001]. 

3. Event Graphs 
Event graphs provide a visual way to interpret the logic of the discrete event 

algorithm. The graphs have proven to be quite powerful in unraveling complicated 

systems and relationships within the systems. The basic idea behind event graphs is 

presented here. For more in-depth information the reader is encouraged to refer to 

Schruben’s Simulation Modeling with Event Graphs [Schruben, 1983]. The description in 

the following section comes from Buss’ paper. Basic Event Graph Modeling [Buss, 

2001], which summarizes Schruben’s work nicely. 

Every event graph consists of at least two basic entities; nodes and edges. A node 

represents an event, or state transition, and an edge represents the scheduling of some 

future event. Figure 10 demonstrates a simple event graph for illustrative purposes. 

 

(i) 

t
BA 

Figure 10.   A Basic Event Graph (From Buss, 2001) 
 

The interpretation of Figure 10 is as follows: The occurrence of event A causes 

event B to be scheduled following a delay of time t, providing that the boolean condition 
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(i) is met. Typically the time delay t will be some randomly generated number according 

to an underlying distribution with parameters set by the modeler. The Boolean condition 

(i) can be any prerequisite set by the modeler. For instance, consider the case of a single 

server queueing system. Event A may be the customer arrival event while event B could 

be the start service event for the customer. If the single server is busy then the customer 

must wait for service and event B will not be immediately scheduled. 

C. SIMKIT 
Simkit, developed by Buss at the Naval Postgraduate School (NPS), is designed 

with DES in mind. Simkit uses event graphs as its underlying methodology and is 

component based, meaning it adheres to the principle of object-oriented programming. 

What follows is a brief description of Simkit based on Buss’ Component Based 

Simulation Modeling with Simkit (2002). Simkit is platform independent, written in the 

JAVA™ programming language, and is an open source package controlled under GNU 

public license. It is available for free download at http://diana.gl.navy.mil/Simkit/ at the 

time of this writing. Understanding of the remaining part of this section requires a 

working knowledge of the JAVA™ programming language; however, the remaining 

section may be skipped without loss of understanding later in this thesis. 

1. The SimEntityBase 
The SimEntityBase class is, as the name implies, the base class for almost all 

objects used in a discrete event simulation utilizing Simkit. Virtually all the functionality 

required for basic discrete event simulation is incorporated into the SimEntityBase class.  

The modeler implements model specific behaviors into sub-classes where parameters, 

such as random number generator parameters or transponder location information, are 

mapped into a read-only property. State variables, such as vehicle location, are also 

mapped into a read/write property in the sub-classes. State variables must be available to 

be changed by the program for update purposes. 

Every event corresponds to a method with the same name except that a prefix ‘do’ 

is added (i.e. the event FixPosition becomes doFixPosition in the code). State transitions 

occur as changes to the corresponding instance variable in the code. In Simkit, a 

PropertyChangeEvent accompanies state transitions. This affords the analyst the 

opportunity to collect data from the simulation that might otherwise be lost.  
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2. Listener Patterns 
The listener pattern allows designers to connect components together to create 

larger models of potentially great complexity. Simkit is designed to enable these 

connections without embedding the new components in already written and proven code, 

a very powerful concept. Two types of listeners are utilized in Simkit, the 

SimEventListener and the PropertyChangeListener. 

a. SimEventListener 
The SimEventListener pattern is an extremely useful tool that allows the 

modeler to add or change features of the model without making significant changes to the 

base set of code. It is generally used when an event in one component of the model is 

used to spur a corresponding event in another component. The listening component must 

be registered as a listener with the originating component and the signature of the event 

in question must be identical. The design of Simkit allows a component to be a source 

and/or a listener. Figure 11 demonstrates how the SimEventListener can be utilized. 

 

(Source) 
 

RemusSensor 
Component 

(Listener) 
 

RangeFinder 
Component 

Figure 11.   SimEventListener Event Graph Configuration 
 

In Figure 11 the RemusSensor (discussed in Chapter III) is a source to the 

RangeFinder component. The lines connecting the two boxes represent the listening 

arrangement between the two components. Viewing the arrangement of lines as a 

notional stethoscope may help in understanding which component is listening to which. 

b. PropertyChangeListener 
Closely tied to the DES concepts of state and state transition, 

PropertyChangeListeners are key to efficiently collecting data from the model. Each 

PropertyChangeSource maintains a sort of list of all listeners that are interested in 

“hearing” when a state variable changes state. Again, Simkit was designed so that every 

SimEntity component may be either a source or listener for PropertyChanges. Notification 
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occurs when the component “fires” a PropertyChangeEvent. The source does not need to 

know what the listener intends to do with the information. In fact, it is not necessary for 

the listener to do anything with the information. The designer builds the components with 

a PropertyChange fired for every change in state with no thought needed for how the 

listening component may use that information. This allows subsequent users the 

flexibility to use existing code with no invasive modifications. 

3. RandomVariate Generation 
Generation of a reliable stream of random numbers is of interest to any modeler. 

Simkit provides a very robust set of RandomVariate objects. One problem facing any 

software designer is the impossibility of including every possible alternative to the end 

user. Simkit is designed to allow the user to generate new distributions as the need arises. 

An example of this occurred during the design of the first version of the REMUS model. 

A uniform circular distribution was desired for use in randomizing the effect of current 

on the vehicle. Simkit did not have a uniform circular distribution, but, with minimal 

effort on the author’s part, a new class was written to implement this distribution. 

Random number generation is beyond the scope of this work, and detailed information 

can be found in Law & Kelton [2000]. 

4. Conclusion 
Simkit enables the modeler to create flexible and reusable components without 

the need for invasive code writing. Once the underlying methodology is understood the 

process of building components is fairly simple and the modeler can quickly assemble 

complicated models. Simkit is ideally suited for the REMUS model precisely because of 

its flexibility and extensibility. More detailed descriptions of how different behaviors and 

processes of the REMUS vehicle were modeled are included in Chapter III. 
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III. SIMULATION DEVELOPMENT 

A. BACKGROUND 

The components making up the REMUS model represent the major pieces of the 

navigation system plus a few objects that “listen” for prompts so that they may collect 

data and otherwise conduct housekeeping functions. The full functionality of the model 

was not packaged into one large class, but was instead separated into classes based upon 

their use by the vehicle. 

The components will be introduced in the order they are used. The execution of 

the simulation is broken down into steps. Initially, a simple model is built which 

incorporates only factors affecting Dead Reckoning, such as compass error and the effect 

of current. A more complex model is introduced which incorporates factors related to the 

LBL navigation method. Finally, the complete model is exercised in a typical mission 

involving sweeping a set area for a randomly placed mine. Later models incorporate the 

initial components and add functionality. Names of components are used to reference the 

name of the JAVA™ class in the model (e.g. RemusMover is a class name in JAVA™). 

B. DEAD RECKONING MODEL 

Dead reckoning is the default navigation method for the vehicle when it is not 

receiving good fixes and thus plays a part in every version of the model. The event graph 

displayed in Figure 12 is a representation of the model used to analyze the vehicle’s 

navigation system while dead reckoning. The Dead Reckoning version models vehicle 

movement as uniform linear motion using the RemusMover class. A CookieCutterSensor 

models the vehicle’s side scan sonar capability and data are generated using the 

RangeFinder component. 
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Figure 12.   Event Graph for Dead Reckoning Model 
 
1. RemusMover 
The RemusMover component deals with how to monitor the vehicle’s perceived 

position vs. ground truth while detecting obstacles. As the vehicle transits it keeps track 

of its position (consider it an imagined position) in the operating space. During mission 

playback the position information is accessible to the user. The position is not the 

vehicle’s actual location, however. The effect of compass error and current act to push 

the vehicle off track and error is introduced. While collecting data from the model, it is 

useful to be able to ascertain the magnitude of the error. This is accomplished by keeping 

track of the vehicle’s actual position and its imagined location, or where it thinks it is. 

Movement is initiated by the StartMove event in the RemusMover class. All 

movement in this model is uniform linear motion, meaning that the vehicle is assumed to 

always travel from point to point in a straight line. This assumption is made in the interest 

of simplifying model implementation. Recall that in DES, time does not advance in 

regular intervals. Rather, time advances to the time of the next scheduled event on the 

event list. Changes in state (e.g. position, etc) are performed when the time reaches the 

next scheduled event. This presents a modest obstacle in the DES framework in that the 

position of the vehicle is constantly changing as it travels from point to point. 
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The obstacle is overcome by maintaining enough information about the vehicle so 

the position is not required to be kept explicitly, but rather can be maintained implicitly. 



The RemusMover maintains three explicit state variables, position when movement 

began, time movement started and velocity, which together can be used to calculate the 

vehicle’s position at any time between events. These variables are maintained for both the 

vehicle’s “real” position and its “imagined” position (e.g., where its onboard computer 

thinks it is). 

a. Uniform Linear Motion 
Uniform linear motion is fairly straightforward to implement. Assume the 

moving entity begins its move from some initial position xo at time to with velocity v. 

Note that these are the three explicitly maintained state variables mentioned earlier. The 

equation of the position of the entity at time t is given by 

vttxtx )()( 00 −+=                                                   (4) 

The quantity given by Equation 4 is not computed continuously or even at 

regular time intervals as in time stepped simulation. It is instead only computed as needed 

by the simulation. 

b. Mover Managers 

The RemusMover component only executes orders to move from one point 

to another. It does not store or manage any information about the points it may be 

expected to move to in the future. Only the most recently departed point and the point it 

is moving to are maintained. Functionality is added by having a component that will 

manage the various points and coordinate the vehicles path. The PathMoverManager 

class accomplishes this task. Points are passed to the manager in the form of waypoints in 

the order in which the vehicle is expected to transit. In this way more complicated paths 

can be programmed that more accurately reflect desired behaviors for REMUS. The 

PathMoverManager class is a part of Simkit and is not modified for this model. The 

PathMoverManager listens for an EndMove event from the RemusMover. The listener 

pattern is established in the constructor for the mover manager. When the EndMove event 

is heard the manager checks for another waypoint and, if one exists, issues orders to the 

RemusMover to move to the next waypoint. 
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c. The Movement Order 
When the manager directs the RemusMover to execute a move, several 

calculations occur that are critical to maintaining position information. The vehicle is 

ordered to move if the movement order is accompanied by an actual destination. This is 

represented by the conditional “has destination” on the scheduling edge between the 

StartMove and EndMove events of the RemusMover component of Figure 12. Time t to 

travel to destination y from initial location x with speed s is computed for the ideal 

condition where the vehicle knows its position with certainty as follows: 

s
xxyy

t
2

12
2

12 )()( −+−
=                                                (5) 

The time from Equation 5 is used to schedule the EndMove event for the RemusMover 

and is represented in Figure 12 by the moveTime parameter on the scheduling edge 

between the StartMove and EndMove events of the RemusMover component. The state 

variable for movement start time is set using the current simulation time. The amount of 

time required to move from initial to final location is used to calculate the movement for 

the “real” destination, as well. The main difference in the calculations lies in how the 

velocity is used. In the case of imaginary movement, velocity is used as supplied by the 

manager, but in the case of real movement, velocity is adjusted for compass error and the 

effect of current. 

d. Compass Error Implementation 
Compass error is passed to the RemusMover via the test program as a 

maximum percent error of 360o. Each time the mover is ordered to move by the manager 

the compass error is calculated and the real velocity of the vehicle is adjusted. Ideal 

velocity remains unchanged. The random error required by the model is produced in the 

test class so that the distribution parameters may be controlled more easily without access 

to the code for the RemusMover. Distribution parameters are discussed in more detail in 

Chapter IV. 

e. Current Implementation 
The effect of current is also implemented through an adjustment to the real 

velocity while leaving ideal velocity unchanged. The current adjustment is passed to the 

RemusMover class via the test class in the form of a vector consisting of x and y 
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components that are altered by adding some randomly generated noise. The adjustment is 

made at the time a movement order is passed to the RemusMover. The vector is produced 

in the test class, again allowing distribution parameters to be controlled more easily. 

Distribution parameters are discussed in more detail in Chapter IV. 

2. CookieCutterSensor 
The sensor for the model is assumed to be a simple cookie cutter sensor, meaning 

that as soon as the obstacle is inside the range of the sensor detection occurs with 

probability 1. The detection range is adjustable. The sensor is attached to the 

RemusMover and thus has the same movement characteristics as the RemusMover 

component. The problem then becomes how to calculate the time that the obstacle enters 

the range of the sensor, td. Because the sensor is moving in a uniform linear fashion, the 

equation of the sensor’s position also is given by Equation 4. Since detection occurs 

when the distance between sensor and target is exactly the sensor detection range R, the 

time of detection is the solution of  

Rvtx d =+0                                                         (6) 

Expanding Equation 6, td is given by the solution to 

2222 2 Rvtvxtx dd =++                                              (7) 

Since td is now expressed in Equation 7 as a quadratic the solution(s) are given by 
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Five possibilities for the value(s) of td exist [Buss, 2003]: 

• Both roots positive. The target will enter and exit the range. See case 1 in 

Figure 13 for an example. Point A represents the time of calculation. Point 

B is the time the target enters sensor range (smaller value) and point C is 

the time the target exits the sensor’s range (larger value). 

• One positive and one negative root. The target is already within the 

sensor’s range and the target will exit the range. See case 2 in Figure 13 
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for an example. Point D represents the time of calculation. Point E is the 

time the target exits the sensor’s range (the positive root). 

• Both roots negative. The target is outside the range of the sensor and the 

sensor is moving away from the target. See case 3 in Figure 13 for an 

example. Point F is the time of calculation. 

• No real roots. The target will never be inside the range of the sensor. See 

case 4 in Figure 13 for an example. The point G represents the time when 

the calculation occurs. 

• One positive root. The sensor will pass the target at exactly the range of 

the sensor (a tangent). 

 

G
Case 4

A B C
Case 1

R
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D

E
Case 3

Case 2

Figure 13.   Possibilities for Cookie-Cutter Detection (After Buss, 2003) 
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The detection and undetection events from CookieCutterSensor in Figure 12 are 

scheduled by another class called RemusSensorMediator. Detection events are scheduled 

when the mover reaches the Closest Point of Approach (CPA) with the target, and 

undetection events are scheduled to occur when the mover exits the sensor’s detection 

range. For clarification, detection is only scheduled if the target enters the sensor’s range 

of detection, and then detection is scheduled to occur when the target and mover are at 

CPA. This behavior is necessary to model the way an operator locates obstacles in the 



side-scan images during post-mission analysis. A property change is fired when a 

detection or undetection event is processed on the event list. These property changes can 

be used to gather statistics on the number of detections or times of detection, for example. 

3. RangeFinder 

The RangeFinder class gathers data on the error in target location by listening for 

a detection event in the CookieCutterSensor component. This is represented by the lines 

connecting the RangeFinder and CookieCutterSensor components in the event graph of 

Figure 12. The RangeFinder component has a detection event that is scheduled on the 

event list whenever the detection event of the CookieCutterSensor is scheduled. The 

detection event calculates the offset in predicted vs. actual target location and outputs the 

data to a text file designated by the user at run time. 

4. RemusRunDR 
RemusRunDR is the executable class that contains all the parameters and 

instructions for the dead reckoning data collection runs. In short, the components are 

instantiated, listening patterns are established, random variate parameters are set, 

experiment levels are established and replication loops are set up. More detail on the 

model inputs can be found in Chapter IV. 

C. TRANSDUCER MODEL 
The preferred method for navigation utilizes the transponders for triangulation of 

position. The vehicle still uses Dead Reckoning as its navigation method between fixes. 

Ideally the error in predicting obstacle location should be minimal using this improved 

navigation technique, and the magnitude of the error is indeed improved, but substantial 

errors still exist due to Transducer placement errors and movement of transducers after 

initial placement. The event graph for the model incorporating transducers is provided in 

Figure 14. Previously discussed conventions apply to this event graph. A new edge is 

introduced in the RemusMover component. The dashed line joining several events, such 

as the Fix and Intercept events, represents an interrupt action. The interrupt action 

removes the event on the head of the edge from the event list. More detail will be 

provided in the specific discussion of each event. 
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Figure 14.   Event Graph for Transducer Model 
 
1. Improved RemusMover 
Many details of the RemusMover component remain unchanged. The same 

location information and movement procedures are followed in the transducer model as 

were used in the Dead Reckoning model. Compass error and current effects are 

implemented in the same manner. The major alteration to the RemusMover component 

involves the implementation of position fixes using the transducers. This capability was 

not present in the first version of the RemusMover because it is not necessary to have 

transducers for Dead Reckoning navigation. 

a. The StartMove Event 
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The StartMove event must schedule the first Fix event if the vehicle isn’t 

paused and the simulation is using transducers for navigation. The Fix event is scheduled 

after a delay determined by the ping interval variable. A longer ping interval means more 



time will elapse between fixes and more error will accumulate between fixes. A shorter 

ping interval implies less error will accumulate, but that reduction in error comes at the 

expense of more computing time. Additionally, a shorter ping interval means that the 

vehicle cannot be operated as far away from the transducers because the vehicle would 

have to wait for too long for the return signal. The StartMove event also schedules the 

EndMove event providing that the vehicle actually has a destination assigned to it. 

b. The EndMove Event 

The EndMove event represents the end of the vehicle’s current leg. The 

vehicle will no longer be moving, or will be assigned a new destination, and thus no 

longer requires a Fix event to be scheduled. The execution of the EndMove event 

interrupts any scheduled Fix event. This behavior is a simplification of the vehicle’s 

actual method of obtaining fixes. In actuality the vehicle never stops attempting to fix its 

position, even while turning or maneuvering to the next waypoint. However, this 

simplification does not lead to a loss of generality. The time to execute a turn in the 

simulation is essentially zero and so the vehicle is fixing its position again immediately 

after the turn. The Intercept event is also interrupted by the execution of the EndMove 

event. 

c. The Fix Event 
Position fixes are developed and implemented in the Fix event. The Fix 

event is initially scheduled by the StartMove event, and is rescheduled when the Fix 

event is executed and certain conditions are met. The first logic gate determines whether 

a good signal was received from each of two transducers. As the distance between the 

vehicle and a transducer increases, the probability that a good signal is returned to the 

vehicle decreases. Appendix A contains the analysis conducted to determine the 

distribution of ranges. The Fix event determines if the range between the vehicle and 

each transducer is less than a number drawn from the exponential distribution. Both 

transducers must return good signals for the triangulation technique to work. The 

vehicle’s position is calculated and the imaginary position is updated if both signals are 

good. Note that while the imaginary position is updated it is not necessarily the same as 

the vehicle’s real position due to errors associated with the transducers. No position 
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update is entered if either one of the signals is not good. In either case the next Fix event 

is scheduled with a delay equal to the ping interval. 

The vehicle drives back toward the original track once a position fix is 

executed. The vehicle’s position is projected onto the original track and the vehicle alters 

course to intercept the track at a point two fix intervals farther down the track. An 

Intercept event is scheduled by the Fix event execution. Any prior Intercept events are 

interrupted by the Fix event, as well. Eventually the vehicle will be in a position where 

the ultimate destination is closer than the point calculated for intercept. In this case the 

vehicle is given orders to move to the final destination. All of these tasks are executed 

only if the vehicle is actually moving (determined by whether the vehicle’s movement 

state is “cruising”). 

d. The Intercept Event 
The vehicle could travel for any amount of time after a good fix prior to 

executing another good fix. In the interim the vehicle uses dead reckoning to navigate. A 

course alteration is executed if the vehicle reaches the track prior to the next fix occurring 

and the vehicle is ordered to move to the final destination. This behavior is handled by 

the Intercept event. 

2. Transducer 
The vehicle uses transducers to triangulate its position. Transducer behavior is 

implemented in the model by use of the Transducer component. Like the RemusMover 

component, the Transducer maintains a real and an imaginary location. The imaginary 

location is the spot where the vehicle thinks the transducer is located based upon pre-

programmed information. The real location reflects position uncertainty generated by 

drop error and the effect of current and wave action. 

Drop error accounts for uncertainties in operator use of GPS to position each 

transducer at the beginning of a run. In reality the operator positions the transducer at a 

location using a hand-held GPS unit and then drops it into the water so the anchor can 

rest on the bottom. Drop error is implemented in the Transducer component by adjusting 

the imaginary location by some amount and storing the new location as the real location. 

Once set, the drop may be altered at the beginning of each run by using a setter method 

provided in the code. 
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The effect of current on the transducer causes it to be offset from its imaginary 

location proportional to the intensity of the current and in the same direction as the 

current direction. Hydrodynamic theory is complicated and the detail possible in 

modeling this phenomenon exceeds the intent of this thesis, thus some simplifications are 

made1. The errors for transducer location are simplified to a bivariate normal distribution. 

The bivariate normal distribution is chosen for its ability to provide coverage in two 

dimensions and for the simplicity in adjusting the variance of the data in only one 

direction at a time. Refer to Figure 15 during the following discussion. 

 

Current Direction Real Location 
(Affected by current, waves)

Displaced Location 
(Affected by current) 

Ideal Location 
(Unaffected by current, waves) 

Figure 15.   Transducer Current and Wave Action Implementation 
 

Increasing current intensity tends to displace the transducer from its perfect 

vertical tending position in the same direction of current flow. The current direction is 

modeled by rotating the distribution so that the X axis is aligned with current direction. 

The current intensity is accounted for by shifting the mean of the X component of the 

bivariate normal more towards the positive side. Further increases in current intensity 

would shift the mean more, and reductions in current intensity serve to shift the mean 

less. Wave action is modeled by increasing the standard deviation of the X component of 
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1 More information on the hydrodynamic effects of wave action on moored, submerged objects can be 

found in Verret’s thesis, included in the list of references. 



the bivariate normal. Higher wave height tends to cause more movement in the transducer 

and the standard deviation is larger. A calm sea with no current would produce a bivariate 

normal with both X and Y means of 0.0 feet and both X and Y standard deviations of 1.0 

feet. 

The bivariate normal random variate is passed to the Transducer as an argument 

and the position uncertainty is generated when the real location of the Transducer is 

queried. In this manner it would be possible to have current effects and wave effects 

change throughout a run, but that level of detail is beyond the scope of this thesis. The 

current speed and direction and wave height is set prior to each run and remains 

unchanged throughout the run. 

3. CookieCutterSensor, RangeFinder 
The CookieCutterSensor and RangeFinder components remain unchanged from 

the dead reckoning model. 

4. RemusRunFinal 
RemusRunFinal is the executable class that contains all the parameters and 

instructions for the transponder navigation data collection runs. More detail on model 

inputs is included in Chapter IV. 
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IV. MODEL INPUTS AND ANALYSIS OF OUTPUT 

A. VERIFICATION AND VALIDATION INSIGHTS 

Chapter III discussed how the model components are constructed and linked 

together, but the usefulness of the output of any model is tied to the reasonableness of the 

assumptions made regarding model inputs and the implementation of those assumptions 

in the logic of the code. Reasonable assumptions are generated by communicating with 

subject matter experts and collecting data on the system to be modeled in an attempt to 

establish patterns that may be of use. The REMUS navigation system model is largely an 

exploratory model in that little useable data exists to help formulate assumptions. Most 

assumptions were formulated based upon collaboration with the system operators. 

1. Verification 
Bratley et al. define verification as “. . . checking that the simulation program 

operates in the way that the model implementer thinks it does . . .” [Bratley et al., 1983]. 

Basically, verification involves checking that the code is bug free and accurately reflects 

the system being modeled. Simkit provides a verbose mode for this purpose. When 

enabled, the verbose mode outputs the current event as well as the future event list and 

the current status of each Mover component. The programmer is thus able to step through 

the simulation one event at a time and ensure all components are performing as planned. 

The ability to check each event as it is executed is vital to ensuring that the more 

complex component interactions are being handled correctly by the DES algorithm. Each 

model version was checked in this fashion. Additionally, controlled scenarios were 

constructed and implemented to verify the logic. After each scenario was verified to 

execute properly, more complexity was added. Consider the following example of 

verification of the dead reckoning model. 

The most elementary event is simply having the vehicle move from one point to 

another with no effect of current or compass error present. The vehicle had no sensor and 

no obstacle was present to detect. Additional points were added and the vehicle was 

verified to move in different directions correctly. A sensor was added to the vehicle and 

an obstacle was added to the scenario. The model was checked for proper EnterRange, 
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Detection, Undetection and ExitRange events. Compass error was introduced without 

randomness and the model was exercised through the scenario again. Finally the model 

incorporated the effect of current and was again cycled through the scenario. Only then 

was the model deemed ready for use. Similar techniques were used to verify the more 

complex versions of the simulation as those versions were developed. 

2. Validation 
Validation is not as easy. Bratley et al. define validation as “. . . checking that the 

simulation model, correctly implemented, is a sufficiently close approximation to reality 

for the intended application . . .” [Bratley et al., 1983]. This model is proposed as an 

exploratory model, meaning the output is intended to provide insights into possible uses 

and setups for the REMUS vehicle that cannot be explored by use of the actual vehicle 

due to time and cost constraints. Validation of this model would be difficult, at best, and 

in light of the intended purpose validation is not required, nor even desired. The model is 

useful as long as it operates in a logical fashion and the output provided “makes sense”. 

“Face validation” is a term used by Bratley, and others, to describe the process of 

validating assumptions using discussions with subject matter experts. This technique was 

utilized extensively while developing this vehicle simulation. For example, the effect of 

waves and current on transducer position would be very complicated to implement in a 

DES, and an argument can be made that the gain in realism is small and not worth the 

level of effort required in an exploratory model. The simplifications made in the 

implementation of transducer position error were discussed with experts in the 

Mechanical Engineering department with the conclusion that significant value is not lost. 

Similar discussions were conducted with vehicle operators at the Naval Postgraduate 

School to ensure that the simulation represented true vehicle behavior as closely as 

possible. 

B. EXPERIMENTAL DESIGN 
Understanding how the model inputs are related is important in discerning the 

relationships between model output data. Improperly designed experiments can lead 

analysts to draw erroneous conclusions. This model will not explore every possible 

combination of input factors exhaustively. Doing so would require prohibitively large 

amounts of computing time for the more advanced versions. However, limiting the inputs 
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to a couple of levels in each case might prevent complex interactions from being 

discovered. This experiment makes use of Latin Hypercube Sampling (LHS) to produce 

inputs that are not exhaustive but are detailed enough to uncover more complex behaviors 

[Box, 1978]. 

1. Terminology 
The term design is used to denote a matrix whose columns correspond to input 

factors. An input factor is a specific model input parameter such as compass error or 

current direction, for example. The entries in the design matrix correspond to levels for 

each factor and each row of the design matrix represents a design point for the 

experiment. 

2. Desirable Properties of the Design Matrix 

In LHS each column of the design matrix is filled with different levels of a 

specific factor. The levels of the factor are evenly spaced and randomly sampled without 

replacement. Ideally the columns of the matrix would be orthogonal as evidenced by the 

pairwise correlation between columns being 0. In practice this is difficult, perhaps 

impossible, to achieve. Techniques exist to produce orthogonal design matrices but they 

tend to be restrictive in the sense that some levels may be excluded in order to achieve 

orthogonality. Unfortunately these conditions often cannot be known a priori [Kleijnen et 

al., 2004]. In light of this the objective becomes minimizing the pairwise correlation 

between columns. 

Implementing LHS in the REMUS model is fairly straightforward. What follows 

is a brief description of the techniques used. Specific information for each version of the 

model is included in the appropriate section including samples of actual data. The first 

task is to produce a matrix that fulfills the requirement that each column be filled 

randomly and without replacement. The pairwise correlation between columns is 

calculated and compared to a threshold to screen out undesirable matrices. A threshold 

value for correlation of 0.25 was used to screen matrices, partly to reduce the number of 

candidates which must be produced. In a typical run approximately 60 matrices are 

produced from 10,000 candidates. The resulting matrices are then combined to form one 

large matrix used for the experiment. For example, if ten matrices are combined, each 

with ten design points, then the experiment will have 100 total design points. The effect 
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of combining the good matrices into one large design matrix is to lower pairwise 

correlations between columns. Typical values were no greater than 0.05 using this 

technique. 

The remainder of this chapter is dedicated to developing three different simulation 

models. The models range in complexity from the relatively simple Dead Reckoning 

model to the most complex Area Sweep model. In each case the inputs to the model are 

discussed, the outputs from the model are described, and detailed analysis is conducted 

using output data. 

C. DEAD RECKONING MODEL INPUT/OUTPUT ANALYSIS 

Dead Reckoning is the most basic navigation method used by the REMUS 

vehicle. Data generated by the model are used to predict the probability of detection of an 

object given a combination of current speed and direction and to predict the mean 

location error given that detection has occurred. Simulation inputs and input assumptions 

are discussed first, followed by a description of output data format and content. A short 

introduction to the process of logit regression is provided to enhance understanding of the 

model parameters. Next, a logit model is built to predict the probability of detection given 

current direction and speed. Finally, a linear regression model is built to predict the offset 

error given that detection has occurred. Observations and conclusions on the Dead 

Reckoning model are presented to close this section out. 

1. Inputs 
Four factors are considered in this version of the model. They include maximum 

compass error, current direction, current magnitude and current noise. Of these four 

factors only compass error and current noise involve stochastic events. These are the 

factors that the operator has no control over when programming a mission. Current 

direction might be controlled by designing a mission to place the current in a desirable 

relationship with the vehicle, and similar results may be achieved with current speed by 

designing missions that take advantage of times when current intensity is small. Compass 

error and current noise cannot be realistically controlled by the operator. 

a. Compass Error 

Collecting data in an attempt to try to parameterize the actual compass 

error exhibited by an actual vehicle is cumbersome at best and nearly impossible at worst. 
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The main problem lies in the inability to separate the effect of compass error from that of 

current in the mission playback data. While historical current data are available the 

variance associated with observed currents typically is larger than the mean current value 

and thus is not useful in developing inputs for a simulation. Law and Kelton suggest that 

in the absence of data a heuristic approach can be employed to select an appropriate 

distribution [Law and Kelton, 1982]. The triangular distribution is proposed as an option. 

Intuition suggests that the error in compass heading is probably not equally likely to be 

3% as it is to be, say, 0.5%. The triangular distribution produces numbers more often in 

the middle of the interval than at the edges and this behavior is consistent with the 

expected performance of the compass. A maximum error value is chosen to parameterize 

the random variate used to produce errors. The error is passed to the RemusMover 

component prior to the simulation starting and used to calculate how far off course the 

vehicle will drive. The error value is passed as a percentage of 360o. For this model run 

the compass error factor is considered at eight different levels ranging from 0% to 3%. 

b. Current Direction, Magnitude and Noise 
Current direction is passed to the RemusMover with current magnitude and 

current noise in a package formed as a random vector consisting of x and y components. 

A new class named UniformCircularVector was written to implement this random vector 

component. Three arguments are passed to form this vector. The first two form the 

direction and magnitude of the desired current. The third establishes the maximum noise 

level. Refer to Figure 16 during the following explanation. The current direction and 

magnitude are passed to the RemusMover as an (x,y) vector as illustrated. The noise level 

is passed as a numerical value which represents the maximum noise level expected. The 

UniformCircularVector class produces a vector inside the circle centered at (xo,yo) with 

uniform density. This implementation provides for the ability to specify a prevailing 

current direction and magnitude and allows for some variation with a minimum number 

of parameters. Current direction, magnitude and noise are each considered at eight 

separate levels. Current direction varies at 45 degree intervals, current magnitude varied 

from 0 to 2 knots and current noise varies from 0 to 0.2 knots. 
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Figure 16.   Current Input Illustration 
 

c. Other Parameters 
The sensor detection range is set to 35 meters, or approximately 115 feet. 

This reflects the actual limitation of the side-scan sonar onboard the vehicle. The vehicle 

will start from the origin, (xo,yo) = (0,0) with orders to move to (xf,yf) = (1000,0). All 

dimensions are in feet. The vehicle has a speed of 5 knots. An obstacle is placed at 

(xm,ym) = (500,0). These dimensions were picked in an attempt to mimic actual 

employment of the vehicle. No transducer field was utilized for this model. 

d. Design Points 
Table 1 provides the first eight design points for the DR run. 100 matrices 

were produced and combined for a total of 800 design points in the DR run. Using this 

many design points may produce some repetition but the benefit in terms of space filling 

is useful. In general, each factor is equally spaced between the lowest and highest 

permissible value. An exception is made in the case of current direction. Note that the 

case when direction equals 000o is effectively equal to 360o and so the upper level of 

current direction is fixed at 315o to prevent inadvertent duplication. Pairwise correlations 

between the columns of the design matrix are given in Table 2. Combining the 100 

matrices has reduced the maximum pairwise correlation between columns of the 

complete design matrix to less than 0.02 in all cases. 
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Current Direction Current Speed Current Noise Max Compass Error 
180 0.8571 0.1071 0.0214 
135 0.0000 0.0714 0.0257 
225 0.5714 0.2500 0.0000 
270 0.2857 0.1429 0.0171 
45 1.1429 0.0357 0.0043 

315 1.7143 0.0000 0.0086 
0 1.4286 0.2143 0.0129 

90 2.0000 0.1786 0.0300 

Table 1. First Eight Design Points for DR Run 

 

 Current 
Direction Current Speed Current Noise 

Max 
Compass 

Error 
Current 

Direction 1.000 0.008 -0.005 0.005 

Current Speed 0.008 1.000 0.019 0.010 
Current Noise -0.005 0.019 1.000 -0.015 
Max Compass 

Error 0.005 0.010 -0.015 1.000 

Table 2. Design Matrix Pairwise Correlation for DR Run Number One 

 
2. Output Analysis 

The output data file for each run contains the following information (data file 

header in parenthesis): 

• Obstacle predicted x location (MineX) 

• Obstacle predicted y location (MineY) 

• Vehicle real final x location (VehX) 

• Vehicle real final y location (VehY) 

Also included for each repetition is the level used for the four factors (data file header in 

parenthesis): 

• Prevailing current direction (CurrentDirection) 

• Prevailing current speed (CurrentSpeed) 

• Maximum current noise (CurrentNoise) 

39 
• Maximum compass error (maxCompassError) 



Once the data are collected and imported into a data analysis program, the 

distance between predicted and actual obstacle locations is calculated (Offset) and a 

marker is assigned to reflect whether detection occurred on that run (denoted by a 

numerical value in the “MineX” position) or not (denoted by an “NA” in the “MineX” 

position). An example of the program raw output is provided in Table 3. 

 

Table 3. Subset of Output for DR Run One 

MineX MineY VehX VehY Current 
Direction 

Current 
Speed 

Current 
Noise 

Max 
Compass 

Error 
504.24 51.75 991.51 -103.75 270 0.8571 0.1429 0.0171 
495.75 78.66 1008.79 -162.84 270 0.8571 0.1429 0.0171 

NA NA 1023.06 -254.69 270 0.8571 0.1429 0.0171 
509.49 51.57 981.17 -102.3 270 0.8571 0.1429 0.0171 

NA NA 978.69 -251.24 270 0.8571 0.1429 0.0171 
491.78 106.4 1017.57 -227.36 270 0.8571 0.1429 0.0171 

NA NA 1004.79 -244.69 270 0.8571 0.1429 0.0171 
NA NA 1004.04 -257.01 270 0.8571 0.1429 0.0171 

498.41 62.76 1003.23 -127.98 270 0.8571 0.1429 0.0171 
492.33 40.09 1015.67 -81.96 270 0.8571 0.1429 0.0171 
503.71 81.51 992.42 -166.32 270 0.8571 0.1429 0.0171 

Runs without detection are expected because the vehicle will, under the right 

circumstances, travel on a path which never intersects the detection range of the sensor. 

a. Probability of Detection Given Current Speed and Direction 
Of primary interest is whether or not the vehicle will detect an object 

given a set of operating conditions which the operator has control over, such as the 

current direction and speed. As discussed previously, the operator has control over 

current direction and speed to the extent that the vehicle can be operated to take 

advantage of existing conditions. A linear regression is not appropriate for modeling the 

probability of detection because predicted probabilities could be less than 0 or greater 

than 1. Logit regression provides a more realistic model for probabilities than linear 

regression. The following brief discussion of logit regression is derived from Hamilton 

[Hamilton, 1992]. 
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The probability that a {0, 1} Y variable equals 1 is given by the expression 

P(Y = 1). Given that Y is a dichotomous variable, the probability that Y equals 0 is given 

by P(Y ≠ 1), which is equivalent to 1 – P(Y = 1). The odds favoring Y = 1 are 

O(Y =1) =
P(Y =1)

1− P(Y =1)
                                                   (9) 

Since probabilities lie in [0,1] it follows that the odds range from 0 to ∞. As an example, 

consider an event with a probability of 0.2. The odds that Y equals 1 are given by 

O(Y =1) =
P(Y =1)

1− P(Y =1)
=

0.2
1− 0.2

= 0.25                                     (10) 

These odds could be stated as 0.25 to 1 that Y equals 1, or similarly, 1 to 4 odds, which 

may be more familiar to most readers. The logit is obtained by taking the natural log of 

the odds as follows 

L = ln(O) = ln P
1− P

 
 
 

 
 
                                                 (11) 

Logits fall in the range (-∞,∞). Logit regression refers to a model with the logit as the 

dependent variable and the factors as the independent variables 

  L = β0 + β1X1 +L + βK−1XK−1                                        (12) 

Since the logit L is a linear function of the X variables, probabilities follow a non-linear, 

s-shaped distribution as shown in Figure 17. 
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An expression for the probability of an event occurring with some logit value is given by2 

Le
P ˆ

1

1ˆ
+

=                                                        (13) 

This expression is useful for graphing the probability of an event based upon some 

combination of the factors. As Hamilton points out, “. . . logit regression provides a more 

realistic model for probabilities than does linear regression” [Hamilton, 1982]. 

Skewed response variable distributions pose a problem for the logit 

regression. In the context of the DR model the occurrence of independent variables with a 

constant probability of detection regardless of the level of other factors can cause 

problems for the logit and add little predictive value to the model. If the points can be 

identified in advance then a claim can be made about the probability of detection without 

knowledge of any other factor level. Those points can then be discarded from the subset 

used to build the model. It is important to note that those data points are not discounted; 

they are simply not used to build the model. The information provided by those discarded 

points is valuable but no model is needed to predict the outcome at those points. 

An investigation of Table 4 uncovers several such points. Observe that in 

all cases a current direction of 0 leads to detection regardless of current speed, current 

noise or compass error. Similarly, the case when current speed is 0 always results in 

detection, and while it is not the case that detection always results when current speed is 

0.2857 the probability is very small that no detection will occur. The conclusion is that if 

current direction is 0 or current speed is less than 0.5714 knots detection will occur with 

probability 1. Eliminating these data from the model formulation in advance will enable a 

closer examination of the partial effects of the various remaining points. 

 

                                                 
2 Hamilton actually gives this expression with a negative sign in front of the L in the denominator. The 

sign reversal in Equation (10) results from the way that JMP outputs the regression information, namely all 
coefficients are presented with a sign reversal. 
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Table 4. Current Direction, Current Speed vs. Detect for DR Model 

No Detect 
Current Speed   

0 0.2857 0.5714 0.8571 1.1429 1.4286 1.7143 2 
0 0 0 0 0 0 0 0 0 

45 0 0 2 14 34 52 122 244 
90 0 1 13 38 420 681 1466 1799 

135 0 0 8 35 306 659 1269 1354 
180 0 0 0 0 1 4 18 19 
225 0 2 4 70 141 886 702 1565 
270 0 0 22 121 596 1124 1165 800 C

ur
re

nt
 D

ir
ec

tio
n 

315 0 0 1 0 37 76 168 443 
Detect 
Current Speed   

0 0.2857 0.5714 0.8571 1.1429 1.4286 1.7143 2 
0 800 1400 1400 1700 1200 1700 1100 700 

45 1200 1700 998 986 1866 948 978 856 
90 1500 999 1087 1162 680 119 34 1 

135 1500 1000 1192 965 1094 441 131 46 
180 1100 1300 1000 1500 999 1096 1782 1181 
225 1800 1098 1096 1430 559 514 98 35 
270 1100 1400 1478 1279 804 76 35 0 C

ur
re

nt
 D

ir
ec

tio
n 

315 1000 1100 1699 700 1263 1624 932 957 

The next important observation to make is that the event when current 

direction is 45 degrees is effectively the same as when current direction is 315 degrees in 

terms of the effect on the vehicle. In both cases the current is acting to push the vehicle 

off track either left or right and push the vehicle forward. Similarly, a current direction of 

135 degrees is effectively identical to a current direction of 225 degrees and 90 degrees is 

effectively identical to 270 degrees. The result of this observation is that the output data 

can be aggregated so that fewer variables must be fit. 

The logit model in its simplest form is obtained by regressing the four 

main effects on the logit. The summary for the DR model output is given in Table 5.3 

                                                 
3 This output summary, and others of similar format, were obtained from the JMP Statistical Discovery 

Software, a product of the SAS Institute Inc. 
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Table 5. DR Logit Model Summary Output 

In all regression models investigated in this thesis, a p-value of < 0.05 is 

considered statistically significant. The R-squared(U) value from the logit model does not 

have the exact meaning that it does in the linear regression models that follow in later 

sections. However, the R-squared(U) value does measure the proportion of uncertainty 

that can be accounted for by the model and thus can be used to gain insight into 

improvements brought about by introducing more complex behaviors into the model. In 

general, a higher proportion of uncertainty explained by the model is good and so larger 

R-squared(U) values are desirable. 

All of the coefficients are statistically significant in this first model, 

meaning that all four factors have some influence on the detection prediction. The 

coefficient magnitude can be misleading at first inspection until the range of the variable 

is taken into account. For instance, the coefficient for compass error is an order of 
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magnitude larger than the coefficients for some of the current offsets and the current 

noise coefficient. However, the range of data for compass error is only [-0.03, 0.03] thus 

the contribution by that variable is actually smaller than the other coefficients. The 

current offsets are modeled as categorical variables, meaning they either do or do not take 

on the indicated value. The base case, denoted by the intercept value in Table 5, occurs 

when current offset is 180 degrees, or pushing directly against the vehicle’s direction of 

motion. The coefficients make sense. For example, the positive value of the current speed 

coefficient implies that as speed goes up the odds of a detection fall and thus the 

probability of detection falls, as well. The coefficient for current direction of 90 degrees 

has taken on a positive value implying that detection is less likely to occur when the 

current is pushing the vehicle from the side, and this makes intuitive sense. 

Now consider the logit model which incorporates interactions between the 

main factors displayed in Table 6. This model results from performing a stepwise search 

with refinement and is the best fitting model for the Dead Reckoning data set. 
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Table 6. DR Logit Model with Interactions Summary Output 

Note that the R-squared(U) value has climbed to 0.6829 implying that 

more uncertainty is explained by this model. The trade-off is a sharp increase in the 

complexity of the model. There are many interactions to account for. Also note that even 

though the p-value for the noise:compassError term is above the threshold of 0.05 it is 

retained in the model. The interaction is retained because the model suffers without it and 

the p-value was very close to the threshold. Several other variations of the model were 

explored, including versions that took into account quadratic effects of speed and 

versions that employed data transformations such as the natural log of speed to try to fit  
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the data more completely but no attempt improved on the R-squared(U) obtained in this 

model. A contour plot of the predicted probabilities given current speed and current offset 

is presented in Figure 18. 

 
Figure 18.   Predicted Probability of Detect Given Current Speed, Current Offset for DR 

Model4 
 

As expected the probability of detection drops as current speed increases 

and probability drop-off occurs most rapidly when the current offset is approximately 90 

degrees, or when current is perpendicular to the vehicle track and acting to push the 

vehicle off track. Predicted probabilities are acceptable with current speeds as high as one 

knot under most current directions. It is obvious that operating the vehicle in low 

intensity currents is desirable, but if current intensity cannot be minimized then the 

vehicle should be operated with the current acting to push the vehicle from behind or 

from ahead. Deciding between these two alternatives is best explored by considering a 

model of the magnitude of location error given that detection has occurred. 

 
                                                 

4 This contour plot was derived using predictions from the applicable model. 
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b. Magnitude of Error Given Detection Occurs 
The same original output data are utilized for the magnitude of error 

model with one modification. Since this model seeks to predict mine location offset given 

that mine detection has occurred, all data entries corresponding to non-detection have 

been eliminated. Thus the subset of data used only considers repetitions in which 

detection has occurred. This leads to some interesting patterns in the data that must be 

considered before attempting to build the model. Consider the plot of the predicted 

MineX and MineY locations in Figure 19. 

 
Figure 19.   Plot of Predicted MineX and MineY for DR Run 

 

First, note that the upper and lower limit for the MineY prediction is 115 

feet. This corresponds to the maximum range of the cookie cutter sensor and represents a 

truncation point in data collection. Secondly, note that there are “stripes” in the plot. 

These stripes result from the way design points were constructed. The levels of design 

points were varied in discrete increments for simplification, but in reality the levels are 

continuous. Introducing more granularity in the model design points would result in more 

even space filling in the output data but would cost more in terms of computational 
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complexity. Finally, recall that the mine was placed at (X, Y) = (500, 0) for the DR 

model runs. The MineY distribution is effectively symmetric about the Y axis but the 

MineX distribution has a heavy right tail. See Table 7 for more detail. 

 
Table 7. Summary Statistics for DR Run Mine X and MineY 

Predicted MineX locations to the right of the mine’s actual location occur 

when the current acting on the vehicle has some component pushing against its direction 

of motion. More time elapses before the vehicle comes within range of the mine, thus 

more error develops and the predicted MineX value takes on larger values than is the case 

when current pushes the vehicle from behind. 

Of interest to the operator is how to predict the position location error 

given information about the current speed and the direction of current flow relative to the 

vehicle’s track. While the operator would nominally be interested in the compass error 

and current noise parameters it is unlikely that information would be available. The first 
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interesting model is thus the linear model implementing the two main effects, current 

offset and current speed. Table 8 summarizes this first model. 

 
Table 8. DR Linear Model Output Predicting Mean Location Offset w/ Main Effects 

Current offset is a categorical variable in this model. The base case, 

represented by the intercept condition, is when current direction is zero degrees relative 

to the vehicle, or pushing directly from behind. The current offset of 45 degrees was the 

only variable that was not statistically significant. All of the coefficients make sense. For 

example, the coefficient for current speed implies that as speed increases the predicted 

offset will also increase, and this make intuitive sense. Additionally, when current offset 

is at 180 degrees, or pushing directly from ahead, the predicted offset increases. This 

relationship is supported by the plots of MineX position from Table 7 which indicated 

that errors increased when current pushed from ahead. The adjusted R-squared value of 

0.87 indicates a large amount of the error involved in prediction is accounted for by the 

model. Overall this is not a bad first attempt, but a closer look at the plot of actual vs. 

predicted mean offset presented in Figure 20 uncovers a weakness in this model. Observe 

that the model tends to underestimate at low and high offsets and overestimate at mid-

range offsets. The shape of the plot suggests that some non-linear effect may be involved. 
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Figure 20.   Plot of Predicted vs. Actual Mean Offset for DR Linear Model with Main Effects 

 

Now consider the model which incorporates interactions between the main 

factors displayed as well as a quadratic effect with current speed presented in Table 9. 

This model results from performing a stepwise search with refinement and is the best 

fitting linear model for the Dead Reckoning data set. 
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Table 9. DR Linear Model Output Predicting Mean Location Offset w/ Interactions 

The adjusted R-squared of 0.98 is an improvement over the simple model 

and all coefficients are statistically significant. The coefficients for the current offset are 

less easily described in this model because of the complicated interaction effects and the 

quadratic speed effect. This model more accurately predicts the error than the first, more 

simple, version, as demonstrated in Figure 21. A small amount of underestimation is still 

evident at the extremes of the data set, but overall the fit is good. Figure 22 illustrates the 

predicted location offset as a function of current speed and current offset for the DR 

model. 
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Figure 21.   Plot of Predicted vs. Actual Mean Offset for DR Linear Model with Interactions 
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Figure 22.   Predicted Mean Offset given Current Speed, Current Offset for the DR Model5 

 

Predicted offset remains low at any current direction when the current 

speed is kept below 0.5 knots. As current speed increases it becomes more important to 

control the direction of current flow. One important consideration when interpreting 

Figure 22 is that the offsets in the data set were artificially truncated at 115 feet when 

current direction was perpendicular to the vehicle’s track due to the sensor’s range. This 

model does answer the key question raised by the logit model; namely, which direction of 

current flow is best for reducing predicted error offset values, zero or 180 degrees? 

Observe that the gradient at zero degrees is modest in terms of slope as current speed 

rises. The gradient at 180 degrees is much steeper and the predicted offsets can be very 

large for current speeds as low as one knot. 

 
                                                 

5 This contour plot was derived using predictions from the applicable model. 
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3. Conclusions for the Dead Reckoning Model 
Often the decision to operate the vehicle in the dead reckoning mode is not left to 

the operator. As previously mentioned the vehicle operates in the DR mode between fixes 

and the interval between fixes is random because of the uncertainty involved in 

interpreting the return signal from the transponder. Every effort should be made to 

operate the vehicle in low current speed conditions. Increasing current speed is the single 

biggest contributor to error offset in obstacle location. If the vehicle must be operated in 

moderate to high current conditions then attempts should be made to operate with the 

current pushing the vehicle from behind. Less time elapses when current is pushing from 

behind before the obstacle is detected and thus less error will develop in predicted 

obstacle location. 

D. TRANSDUCER MODEL INPUT/OUPUT ANALYSIS 
LBL is the most common method of vehicle navigation. The vehicle still relies on 

Dead Reckoning navigation between fixes, thus the conclusions and observations from 

the previous section are still applicable. Data generated by the model are used to build a 

logit model to predict the probability of detection given a combination of input factors 

and to build a linear regression model to predict the mean location error offset given that 

detection has occurred. Inputs to the model are considered first, followed by output data 

format and interpretation. The logit model which predicts detection probability is 

presented next, followed by a linear regression model which predicts mean offset error. 

Finally, some observations and conclusions on the transducer model are presented to 

close this section out. 

1. Inputs 
Implementation of the four factors from the dead reckoning model, namely 

current speed, current direction, current noise and maximum compass error, remains 

unchanged in the transducer model. New factors are discussed here. 

a. Transducer Drop Error 

Transducer drop error is dependent on GPS accuracy and operator 

proficiency. The operator positions the transducer over the drop zone using a GPS 

receiver. Errors develop due to bias and operator error and can reach values of 

approximately 3.5 meters, or 12 feet. According to recent data collected and analyzed by 
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the SPACEAF GPS Support Center, 95% of reported GPS positions are within 3 meters 

of actual. The median value is approximately 1.25 meters [Ref]. These data suggest that 

using a uniform density distribution may not be appropriate for modeling the drop error. 

A bivariate normal distribution, with equal X and Y standard deviation, models drop 

error more accurately and is a reasonable simplification of the actual distribution. 

The error is produced in the executable RemusRunTransducer class and 

the transducer offset is set at the beginning of each repetition. The drop error factor is 

varied by adjusting the standard deviation of the variate to produce a distribution with 

different spreads. The mean value of the error is considered in eight different levels from 

a minimum of 3 feet to a maximum of 12 feet. The minimum value corresponds to the 

best possible accuracy with no operator error. The maximum value takes into account 

some operator error in placement of the transducers. 

b. Current Effect on Transducer Position 

The Transducer components are passed a RandomVariate object used to 

generate the errors attributed to the effect of current and wave action on the transducer. 

Current tends to displace the transducer off its ideal location in the direction of current 

flow. The direction of current flow is accounted for by rotating the bivariate normal 

distribution so that the major axis (in this case the X-axis) is aligned with current 

direction. The current speed is accounted for by adjusting the mean of the X component 

of the variate. A current speed of zero implies a mean of zero and as current speed 

increases the mean of the X component increases in the positive direction. Current 

direction and speed factors remain unchanged from the dead reckoning model. 

c. Wave Action on Transducers 

The same bivariate normal object used for implementation of current 

effects on the transducer is also used to implement wave action effects. Wave action is 

considered as a function of sea state. Higher sea states tend to generate larger waves, and 

larger waves tend to displace the transducer from its ideal location with more 

forcefulness. Sea state is considered as a factor at five levels ranging from zero to four. 

Table 10 summarizes sea state number and related wave heights of interest for this 

model. The vehicle is not operated in sea states exceeding four. Increasing wave action is 

implemented by increasing the standard deviation of the X component of the bivariate 
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normal used for current effects. This produces more variance in the reported location of 

the Transducer component and corresponds to a larger ellipse of uncertainty for the 

component’s real location. 

Table 10. Sea State Table (from Ocean Technology Systems) 

Sea 

State 
Description 

Wind 

Description 

Wind 

Velocity 

(kts) 

Average 

Wave 

Height 

(ft) 

0 Sea like a mirror. Calm 0 0 

0 
Ripples with the appearance of scales are formed, but 

without foam crests. 
Light Air 2 0.05 

1 
Small wavelets still short but more pronounced; crests 

have a glassy appearance but do not break. 
Light Breeze 5 0.18 

2 
Large wavelets, crests begin to break. Foam of glassy 

appearance, perhaps scattered whitecaps. 
Gentle Breeze 8.5 – 10 

0.6 – 

0.88 

3 Small waves, becoming longer; fairly frequent whitecaps. 
Moderate 

Breeze 
12 – 16 

1.4 – 

2.9 

4 
Moderate waves, taking a more pronounced long form; 

many whitecaps are formed. Chance of some spray. 
Fresh Breeze 18 – 20 

3.8 – 

5.0 

 
d. Ping Interval 
Ping interval is passed to the RemusMover at the beginning of each run. 

Nominally a five second ping interval is utilized by operators because of a perceived 

tradeoff between navigation accuracy and computing time onboard the vehicle. It may be 

interesting to determine if reducing the interval improves accuracy significantly, or if 

increasing the interval degrades accuracy significantly. Ping interval is considered at 

eight levels between 2 seconds and 9 seconds. 

e Other Parameters 
Sensor detection range remains set at 115 feet. The vehicle will start from 

(xo,yo) = (0,0) with orders to move to (xf,yf) = (1000,0). All dimensions are in feet. The 

vehicle will travel at a speed of 5 knots. An obstacle is placed at (xm,ym) = (500,0). Two 
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Transducer objects are used for this model. The first one is placed at (xt1,yt1) = (0,-100) 

and the second is placed at (xt2,yt2) = (1000,-100). 

f. Design Points 

Table 11 provides the first eight design points for the transducer model. 50 

matrices were produced and combined for a total of 400 design points. The cutoff for 

pairwise correlation for each individual matrix was 0.40. The cutoff is bigger than that 

used in the DR model because more factors exist in the transducer model, and the 

increased complexity meant that in order to keep the total run times manageable fewer 

matrices were combined. 

Table 11. First Eight Design Points for Transducer Model 

Current 
Direction 

Current 
Speed 

Current 
Noise 

Max Compass 
Error Drop Error Ping 

Interval 
Sea 

State 
315 1.1429 0 0.0043 4.2857 7 1 
45 1.7143 0.1786 0.03 5.5714 4 2 
0 1.4286 0.0714 0.0086 10.7143 9 4 

180 0.5714 0.1429 0 8.1429 3 3 
225 2 0.1071 0.0171 12 2 0 
135 0.8571 0.2143 0.0129 3 8 1 
270 0 0.25 0.0214 9.4286 5 3 
90 0.2857 0.0357 0.0257 6.8571 6 0 

Pairwise correlations between columns in the design matrix are presented 

in Table 12. Note that the combination of multiple smaller matrices results in a maximum 

pair-wise correlation in the design matrix of less than 0.1. 

 Current 
Direction 

Current 
Speed 

Current 
Noise 

Max 
Compass 

Error 

Drop 
Error 

Ping 
Interval 

Sea 
State 

Current 
Direction 1       

Current 
Speed -0.0838 1      

Current 
Noise -0.0072 -0.0038 1     

Max 
Compass 

Error 
0.0203 0.0387 -0.0504 1    

Drop Error -0.0010 0.0281 0.0176 0.0053 1   
Ping Interval -0.0290 0.0229 0.0167 -0.0085 -0.0390 1  

Sea State 0.0452 -0.0452 0.0460 -0.0116 0.0067 0.0059 1 
Table 12. Design Matrix Pairwise Correlations for Transducer Model 
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2. Output Analysis 
Output from the transducer model is similar to the output from the dead reckoning 

model with the addition of levels for the three additional factors. 50 repetitions were 

conducted at each design point for a total of 20,000 observations. 

a. Probability of Detection Given Current Direction, Speed and Sea 
State 

Like the dead reckoning model there are combinations of current speed 

and direction that always produce detection regardless of the level of any other factor. 

Table 13 summarizes these points for the transducer model. 

No Detect 
Current Speed   

0 0.2857 0.5714 0.8571 1.1429 1.4286 1.7143 2 
0 0 0 0 0 0 0 0 0 

45 0 0 0 0 1 2 16 7 
90 0 0 0 3 24 84 110 197 
135 0 0 0 0 16 11 96 366 
180 0 0 0 0 0 0 0 0 
225 0 0 0 2 2 18 76 171 
270 0 0 0 1 18 122 227 342 C

ur
re

nt
 D

ir
ec

tio
n 

315 0 0 0 0 1 5 0 14 
Detect 

Current Speed   
0 0.2857 0.5714 0.8571 1.1429 1.4286 1.7143 2 

0 200 250 150 300 350 300 650 300 
45 200 400 300 200 349 248 434 343 
90 500 350 500 147 376 166 40 3 
135 150 350 200 450 334 139 254 134 
180 400 250 350 300 300 250 350 300 
225 250 300 400 498 248 332 124 79 
270 400 400 250 149 132 378 73 8 C

ur
re

nt
 D

ir
ec

tio
n 

315 400 200 350 450 349 445 50 236 

Table 13. Current Direction, Current Speed vs. Detect for Transducer Model 

 

Current speeds less than 0.8571 knots produce detection regardless of the 

level of any other factor, including current direction. Current directions of 0 and 180 

degrees also produce detection regardless of other factors. Observations with these traits 

are removed from the data set without adverse impact on the model. The conclusion is 

that current speeds of less than 0.8571 knots or current directions of 0 or 180 degrees 
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produce detection with probability 1. Recall that current directions are aggregated by 

relative direction with respect to the vehicle’s motion, as in the dead reckoning model. 

The logit model again provides prediction of probability given some 

combination of input factors. The logit is regressed on the 7 factors and the resulting 

model is provided in Table 14. Current offset is treated as a categorical variable in the 

model. The remaining factors are treated as continuous variables. Sea state could be 

considered as a categorical variable since there is no such thing as a sea state 1.5, for 

example, but simplicity is gained by treating it as a continuous variable. 

 
Table 14. Logit Main Effect Model for Transducer Run 

The first observation is that not all of the factors are statistically 

significant in this model. Sea state had a p-value greater than 0.05 and was thus dismissed 

from the model. This suggests, at least in this fairly straightforward model, that sea state 

did not play a significant role in predicting the probability of detection of an obstacle. 

The base current direction, given by the intercept term, is when current offset is 135 

degrees relative to the vehicle. The coefficients make sense in this model. The probability 

of detection should decrease as current speed increases and the positive coefficient for  
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current speed supports this expectation. The probability of detection should decrease as 

the interval between fixes increase and the positive coefficient for ping interval supports 

this expectation. 

The model has an R-squared(U) value of 0.55 indicating that the model 

does not explain a tremendous amount of uncertainty. This observation is not surprising 

given the relative simplicity of the main effect logit model. Table 15 presents the final 

logit model for the transducer model. This model results from performing a stepwise 

search with refinement and is the best fitting logit model for the transducer model data 

set. 

 
Table 15. Logit Interaction Effect Model for Transducer Run 
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This model includes the sea state, current noise and mean drop error 

factors even though the p-values are greater than 0.05 because the factors are included in 

interactions with other factors. All of the coefficients make sense in as much as they can 

be easily interpreted. The R-squared(U) has improved to 0.59, a small increase that 

implies a little more uncertainty is explained by this more complicated model. It should 



be noted that while the more complex model involving interactions explains more 

uncertainty it does so at the expense of ease of use. The simpler model using only main 

effects may be more useful to an operator due to the ease of use. Figure 23 illustrates the 

probability of detection given a combination of current speed and offset. 

 
Figure 23.   Predicted Probability of Detection Given Current Speed, Offset for Transducer 

Model6 
 

As expected, the steepest gradient occurs when the current offset is 90 

degrees, or directly across the vehicle’s path. Recall that the probability of detection is 1 

when current offset is either 0 or 180 degrees, and when current speed is less than 

approximately 0.85 knots. These numbers represent an improvement over the dead 

reckoning model. Higher current speeds are alright in the transducer model and a current 

offset of 180 degrees results in detection with probability 1. Clearly the vehicle should be 

                                                 
6 This contour plot was derived using predictions from the applicable model. 
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operated with current either opposing or aiding the vehicle path. Once again the question 

about which direction is best is addressed more effectively by modeling the mean offset 

as a function of the input factors which the operator has control over. 

b. Magnitude of Error Given Detection Occurs 

The mean offset is modeled under the assumption that detection has 

occurred, thus all entries in the transducer data set for non-detection are eliminated prior 

to building the model. 

 
Figure 24.   Plot of MineX and MineY Locations for Transducer Model 

 

Figure 24 reveals a density that is more centrally located than in the dead 

reckoning model. This suggests that accuracy in predicting location is improved in the 

transducer model. The distribution is still roughly symmetric around the y axis and is 

now roughly symmetric around the x axis. Table 16 illustrates this more clearly. 
63 



 
Table 16. Summary Statistics for Transducer Run MineX, MineY 

The key distinction to make when comparing Table 16 to Table 7 from the 

dead reckoning model is that both distributions have a lower proportion of points in the 

tails implying greater accuracy in predicting location. In particular, note the improvement 

in the 25% and 75% quantiles for the transducer model. In all instances there is a marked 

improvement in the value for the transducer model. Recall that the mine location was set 

at (xm,ym) = (500, 0). 

The operator has control over five of the seven factors. Current speed and 

offset are controlled by choosing when and where to operate the vehicle. Sea state may be 

similarly controlled, but only if the operator chooses not to operate the vehicle in high sea 

states. Transducer drop error may be controlled by attention to detail. Ping interval is 

controlled in advance by software implementation. The first model predicting location 
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offset models the mine offset against current speed, current offset, mean drop error, ping 

interval and sea state main effects. Refer to Table 17 for model results. 

 
Table 17. Transducer Linear Main Effect Model Predicting Location Offset 

Current offset is treated as a categorical variable in this model. Current 

offsets of 0, 90 and 135 degrees were not statistically significant and are omitted. The 

base case of current offset is 180 degrees and is represented by the intercept. All of the 

coefficients make sense. A higher current speed or larger drop error will increase the 
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location error.  The positive coefficient for ping interval indicates that an increase in ping 

interval causes an increase in prediction error. The adjusted R-squared value of 0.54 

indicates that not a lot of variance is explained by the model. The plot of predicted vs. 

actual offsets in Table 17 exhibits signs of heteroscedasticity since the variance is larger 

when the predicted offset is high. 

Now consider the offset prediction model incorporating interactions 

between main factors presented in Table 18. This model results from performing a 

stepwise search with refinement and is the best fitting linear model for the transducer data 

set. The adjusted R-squared has improved to 0.64 indicating that more variability is 

explained by this model. The residuals fit the prediction better than the main effect model 

in that there is no discernable pattern to them. All of the coefficients make sense. The 

most influential factor, other than current speed, is mean drop error. 
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Table 18. Transducer Linear Interaction Model Predicting Location Offset 

A contour plot of predicted offset for a given mean drop error and ping 

interval is presented in Figure 25. In general, increasing the ping interval tends to  
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increase the drop error for all drop errors. Larger drop errors tend to increase the 

predicted offset. This result comes from the integral role the transducers play in vehicle 

navigation. 

 
Figure 25.   Predicted Offset Given Mean Drop Error, Ping Interval for Transducer Model7 

 

                                                 
7 This contour plot was derived using predictions from the applicable model. 
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Figure 26.   Predicted Offset Given Mean Drop Error, Sea State for Transducer Model8 

 

Figure 26 presents predicted offset given mean drop error and sea state 

and illustrates the effect increasing sea state has on offset prediction. At higher sea states 

the vehicle has a more difficult time staying on track due to transducer sway and 

prediction accuracy suffers. 

3. Conclusions for the Transducer Model 
Operating the REMUS vehicle with transducers is clearly the desired mode of 

operation. Understanding the impact of factors under the operators control can improve 

prediction accuracy and thus reduce the amount of time necessary to locate the obstacle 

post mission. Ideally the vehicle should be operated in low current conditions with very 

little wave action and the operator should endeavor to place the transducers with 

rval would be set as low as possible determined by the maximum accuracy. Ping inte                                                 
8 This contour plot was derived using predictions from the applicable model. 
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maximum distance the vehicle is expected to operate from the transducers. Realistically 

these conditions are not always possible. 

If the current speed cannot be minimized the vehicle should be operated with the 

current acting directly from ahead or behind to maximize probability of detection. The 

maximum errors tend to occur in the plane perpendicular to vehicle motion so the vehicle 

should not be operated with current acting perpendicular to the vehicle’s track. Figures 25 

and 26 emphasize the importance of minimizing the mean drop error associated with the 

transducers. Mean drop error is perhaps the one factor most under the operator’s control 

and pains must be taken to accurately place each one. 

E. AREA SWEEP MODEL – “MOWING THE LAWN” 
The REMUS vehicle is not expected to be employed in a manner in which it is 

run across a field of interest one time with the expectation of finding an obstacle. 

Knowledge of mine location is rarely known beforehand. A more suitable employment of 

the vehicle is to “mow the lawn”. The idea is to make multiple parallel passes through in 

area to find a randomly located object.  

The implementation of this tactic is relatively straightforward with the REMUS 

simulation model. No modifications are required to the main components and no 

discussion of model development is required in Chapter III. The major alteration is to 

develop an executable class with multiple waypoints for the vehicle and a method of 

randomly placing mines in a field. Of interest to the operator is the probability that the 

prediction error is less than some threshold value determined by other factors, such as 

bottom time for divers or visibility concerns. 

1. Model Inputs 

a. Factors from the Transducer Model 

The seven input factors from the transducer model are utilized for the area 

sweep model. Sea state, current noise, compass error, ping interval, current speed and 

drop error are treated at a hypothetical “best” level for the area sweep model. Current 

direction is treated at varying levels. 

Sea state is established at 3 to account for small wave action in shallow 

water areas where the vehicle is most likely to operate. Current noise is established at 0.2 
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knots. Maximum compass error is set at 0.03% and ping interval is set at 5 seconds.  

Current speed is set at one knot and drop error mean is set at 5 feet. All of these levels 

represent conservative, middle of the road estimates for the parameters. Current direction 

is considered at eight different levels around the compass, as in the preceding models. 

b. Other Parameters 
Two transducers are used in the area sweep model. They are placed at 

(xt,yt) = (0, -100) and (1500, -100). These points represent the edges of the field being 

surveyed and reflect operating considerations currently employed. The vehicle will start 

at (xm,ym) = (0, 0) and survey a path similar to that represented in Figure 27. A mine will 

be randomly placed inside the field at the beginning of each run following a uniform 

distribution. Only the first detection is recorded for output. Sensor range remains 115 feet 

and the vehicle travels at a speed of 5 knots. The survey area is 1500 feet wide by 1000 

feet tall. The vehicle enters the survey area at (0, 0). 

 

REMUS Start 

Baseline Survey Area 

Transducers 

Figure 27.   Typical Survey Area Setup 
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2. Output Analysis 
Fifty mines are placed for each current direction. Fifty repetitions are conducted 

for each mine placement for a total of 20,000 observations. Output data includes the 

current direction, actual and predicted mine location and a flag denoting whether 

detection has occurred for each repetition. 

The logit model of Table 15 predicts a probability of detection of approximately 

0.899 for the given area sweep model parameters. The parameters for the area sweep 

model were aggregated due to the differing current directions used in this model. The 

observed probability of detect for an individual run, obtained by calculating the ratio of 

detections to runs for the data set, is approximately 0.93 with a 95% confidence interval 

of (0.930, 0.937). The standard deviation of the probability of detection is 0.25 for a 

single run. The logit model has performed well in predicting the detection probability for 

this experiment. Figure 28 presents a histogram of the offset predictions given that 

detection has occurred. The distribution of errors generally follows an Exponential 

distribution with a mean of approximately 33.6 feet with a 95% confidence interval of 

(33.1, 34.1) feet. The standard deviation of the errors is approximately 32.9 feet. The 

mean offset predicted by the transducer model of Table 18 is approximately 32.7 feet. 

This prediction is also pretty good. 
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Figure 28.   Histogram of Predicted Offset Errors for Area Sweep Model 

 

If the distribution of prediction errors can be established to be exponential with 

some mean value, then the probability that expected offset is less than some value X 

could be calculated in a fairly straightforward manner. Consider the QQ plot presented in 

Figure 29. 
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Figure 29.   QQ Plot of Predicted Mine Offset 

 

The dashed line has slope one and intercept zero. If the distribution of prediction 

errors is indeed exponential with mean 33.6 feet then all of the points would lie on the 

line. This trend is maintained for low and mid offset predictions but lapses somewhat in 

the tail. However, even in the tail the distribution does not stray too far off the line. 

Additionally, there are far fewer observations in the tail, as evidenced by the lower 

density of points in the graph. The claim that prediction errors are distributed 

exponentially with mean 33.6 feet is supported by the QQ plot of Figure 29 and the 

histogram of Figure 28. 

The implication of the exponential distribution of prediction offset is that 

determining a probability that prediction offset will be less than some value is easy. The 

probability that X is less than some value is given by 

F(x) =1− e−λx  for x ≥ 0                                                  (14) 

where λ equals the inverse of the mean. Additionally, the observed distribution of 

predicted mine offset has a lighter tail in the larger predicted offsets and thus the 

74 



exponential distribution will tend to conservatively predict offset distances. Operators in 

the field can readily apply this relationship. They can calculate the predicted mean offset 

given some combination of input factors using the model from Table 18 and then 

estimate the probability of the detection range given the mean offset. The generated 

ranges can be used to determine how much time is expected to be needed to search an 

area to relocate the mine for later clearing. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. ANALYTICAL CONCLUSIONS 

Recall that the purpose of the REMUS model is to be an exploratory model that 

provides insights into vehicle behavior which may be exploited by operators to improve 

performance. The model provides no exact, correct answer. Accuracy of the output of the 

model is closely coupled to the accuracy of the input parameter assumptions. 

Simplifications have been made in the model to allow for easier implementation in code. 

Improvement of input parameter quality should result in improved predictive ability in 

the model. Any analyst would be well advised to remember the old adage, “garbage in – 

garbage out”. Any output of this model should therefore be viewed with an eye toward 

gaining insight and not toward gaining the absolute answer. 

There are three steps involved for the operator in attempting to predict the 

probability of a certain offset value, corresponding to the three flavors of models 

produced from the REMUS simulation output. First, the operator should be interested in 

predicting the probability of detection given certain operating conditions. Low current 

speed and current directions opposing or aiding the vehicle should provide the most 

favorable conditions for mine location. Current directions that are perpendicular to the 

vehicle’s track should be avoided unless current speed can be maintained below about a 

half knot or so. Ping interval has a small effect on predicting probabilities. A lower ping 

interval is better for maximizing probability of detection; however, the ping interval is 

also determined by the expected operating distance from the transducers. Transducer 

mean drop error can be controlled to a certain extent by the operator and efforts must be 

made to minimize the error by accurately placing the transducer at the pre-determined 

drop point. 

Secondly, the operator should predict the mean value of the mine location offset 

given some combination of factors. Once again, current speed should be minimized in 

order to minimize expected prediction accuracy. Sea state begins to play a role in 

predicting accuracy. Current speed, current direction and sea state are variables over 

which the operator has control only so far as the operator can choose when and where to 
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deploy the vehicle. It is not hard to imagine situations in which the operator may have to 

operate the vehicle in less than ideal conditions. Efforts must be made to minimize 

transducer drop error and the lowest possible value for ping interval should be used to 

improve accuracy. 

Thirdly, once the expected mean offset is calculated the operator can determine 

the expected probability that the object’s actual location is within a certain distance from 

the predicted location using the exponential distribution CDF. The desired distance may 

be determined by water conditions, depth or even diver experience and is integral in 

clearing a minefield. 

In general, most of the error in the transducer model accumulates as a result of the 

vehicle dead reckoning between good fixes. The rest of the error comes from uncertainty 

associated with triangulation of the vehicle’s position. Recommendations for current 

speed, direction and ping interval are geared towards minimizing the error from dead 

reckoning. Recommendations for sea state and transducer drop error serve to minimize 

the triangulation error. 

B. RECOMMENDATIONS 
Both the Dead Reckoning and Transducer models indicate that operating the 

vehicle with lower current speed improves both the prediction probability of detecting a 

mine and the offset error given the mine is detected. If higher current speeds cannot be 

avoided, the Dead Reckoning model clearly illustrates that operating the vehicle with the 

current pushing the vehicle either directly from behind or ahead are the most 

advantageous for improving prediction probability and offset error. Therefore, operate the 

vehicle with current speeds as low as possible and with current pushing the vehicle from 

behind to minimize offset errors and maximize detection probability. 

The Transducer model indicates that a shorter ping interval is better for improving 

both prediction accuracy and offset error. A tradeoff is made when shorter ping intervals 

are selected because maximum allowable range between the vehicle and the transducers 

decreases as ping interval decreases. Therefore, use as short a ping interval as allowed by 

operating considerations and minimize transducer drop error to improve accuracy. 
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The Transducer model indicates that poor performance while placing transducers 

in the field will result in decreased performance when predicting detection probability 

and offset errors. Placement error cannot be eliminated due to errors in using GPS 

systems to locate the drop area, but operators can improve performance by paying 

attention to detail while positioning the transducers. Therefore, improve transducer 

placement error by placing a higher priority on accurately locating the drop area for the 

transducers. 

Comparison of results from the Dead Reckoning model and the Transducer model 

suggests that dead reckoning simply does not provide enough predictive power or 

accuracy to be relied upon as the primary navigation method for the vehicle. Detection 

probability improved when transducers were utilized, and experience in the field backs 

this up. The distribution of predicted offset errors from the Dead Reckoning model had 

heavier tails, and thus degraded performance, than offset errors from the Transducer 

model.  Therefore, operate the vehicle with transducers in the LBL navigation mode. 

The model has produced results that make sense intuitively, but little data exists to 

validate those results. Therefore, the model may be used to gain insight into the effect of 

combinations of inputs on prediction accuracy, but caution should be maintained about 

the output being the “right” answer. 

C. RECOMMENDATIONS FOR FOLLOW-ON WORK 

Three areas of potential research would provide significant benefit to the output of 

this model, specifically, and to operators of the REMUS vehicle, in general. 

1. Implementation of GPS Position Fixing in the Model 
The vehicle is expected to have the capability to obtain a GPS fix in the near 

future. The impact of this technology has been hypothesized but not fully explored. It is 

thought that GPS fixes would significantly improve the accuracy of the vehicle, and 

intuition supports this claim. Implementation of this technology into a model such as the 

REMUS model in this thesis would go a long way toward answering questions about how 

much improvement can be expected. One consideration is explained here. Even with GPS 

the vehicle cannot get continuous position fixes. GPS signals do not currently penetrate 

water and the antenna proposed for the vehicle is not expected to extend above the 

surface unless the vehicle changes depth to make it happen. The upside is that when a fix 
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is recorded the accuracy of the fix would be much greater than the fixes obtained from 

triangulation. Perhaps the vehicle could be programmed to analyze its side-scan images 

real-time to determine when a potential object is located and then proceed to the surface 

to get a fix, or the vehicle might simply attempt to get a fix at set time intervals as is 

currently the case with triangulation. Discrete Event Simulation is ideally suited for 

exploring potential behaviors. 

2. Vehicle Aspect Impact on Probability of Obtaining a Good Fix 

A lot of data was analyzed to come up with distribution parameters for the range 

check random variable in the RemusMover component, see Appendix A for details. Time 

was a factor, however, and not enough data was evaluated to determine if vehicle aspect 

had a statistically significant impact on the probability of obtaining a good signal from 

the transducer. More analysis is needed in this area because the vehicle alternately turns 

toward and away from each transducer depending on where the next waypoint is or how 

the course is adjusted to regain track when a fix is obtained. Several mission playback 

files exist for data collection. 

3. Developing a Graphical Interface for Operator Interaction 
Many of the parameters in the model can be adjusted external to the execution 

class by utilizing JAVA property files. This method of interaction is fairly 

straightforward if the operator has a rudimentary knowledge of programming, but the 

average operator of the vehicle in the fleet probably does not possess the technical 

knowledge required to effectively change the parameters. A graphical interface would 

enhance the operator’s ability to change parameters and observe the impact of the 

changes in a manner more easily interpreted than a large data output file processed by a 

commercial statistics package. 
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APPENDIX A. ANALYSIS OF PROBABILITY OF GOOD 
RETURN SIGNAL FROM TRANSDUCER 

Arriving at an estimate for the distribution of the probability that a return signal 

from a transducer would be heard by the vehicle was not an easy process. Modeling 

sound behavior in water is a complicated science and accurate modeling requires much 

more information than is typically available to the operator or an analyst. The vehicle 

keeps track of sound speed information in its onboard computer and is continuously 

calculating the speed of sound, but these calculations are only accurate for the area the 

vehicle is currently transiting, not for any remote areas. 

A significant amount of effort was expended in an attempt to quantify this error in 

order to increase the predictive accuracy of the resulting models. The first step involved 

gathering data and was the most time intensive step. The vehicle’s mission playback files 

are available for past missions. A screenshot is provided in Figure 30 below. Highlighted 

areas include the vehicle information area in red, the track information section in blue 

and the transducer information section in green. Of interest in the data collection efforts 

were the transducer information area and the vehicle track area. 

In order to collect meaningful data on transducer signal failure rates, the mission 

was played from start to finish and data were collected at every fix interval. This was 

very labor intensive and tedious. At each fix interval the playback was paused and the 

range information generated by the vehicle for each transducer was evaluated for 

accuracy. If a calculated range made sense then it was evaluated as good. An important 

distinction to be made is that the vehicle and the analyst did not always agree. There were 

instances where the vehicle assessed the signal as bad but the analyst assessed it as good 

based on other historical data, such as actual track reconstructed from known good fixes. 
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Figure 30.   REMUS Mission Playback Screenshot 

 

Figure 31 presents typical information available to the analyst following a good 

fix, as evaluated by the vehicle. Information includes calculated position in latitude and 

longitude, range from each transducer (DT1A and DT1B in this window) to the vehicle 

and other information which may be pertinent in other arenas. Each time the vehicle 

attempts to calculate a position fix a new window is generated and information must be 

evaluated. 
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Figure 31.   Transducer Information Available During Mission Playback – Good Fix 

 

Figure 32 presents another transducer information screen this time showing a bad 

fix as assessed by the vehicle. In this instance the range computed to transducer DT1A is 

valid but the signal from transducer DT1B was never received, denoted by “timeout” in 

the fail category and the “(no data)” in the spot for transducer DT1B. In this case the 

information from transducer DT1A was valid and useful. The data need not be valid to be 

useful, however. 
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Figure 32.   Transducer Information Screen Showing Bad Fix 

 

Figure 33 presents the mission playback as a historical overlay of vehicle position 

and locations of fixes, both bad and good. A good fix is denoted by the white arrow and a 

bad fix is denoted by a red arrow. A red arrow denotes a bad fix even though two signals 

were returned. The vehicle assessed the fixes as bad. Note that the vehicle track, denoted 

by the white dashed line, shifts as soon as a good fix is obtained and the vehicle adjusts 

course to regain track. Each arrow represents one fix. There are some bad fixes which 

result in no arrow being added, such as when a signal is not returned. 
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Figure 33.   Mission Playback Window Showing Vehicle Track with Fixes 

 

The range from the vehicle to either transducer was tracked by use of a coordinate 

system in an Excel spreadsheet. Fix information obtained from mission playback was 

compared to the expected values and assessed as being accurate or not. Comparing ranges 

at which the range calculations were accurate or not enabled an estimation of the 

distribution of the probability that a good signal was returned. 

An attempt was also made to determine if the vehicle’s relationship with the 

transducer had an impact on probability of a good return signal but no statistically 

significant relationship could be discerned. 

After analysis of data from three missions totaling over three hours in length, the 

distribution of ranges was approximated by a normal distribution with mean 1000 feet 

85 



and standard deviation 500 feet. These number were picked to fit the distribution and also 

for simplicity in model implementation. The errors were not exactly normal but were 

close enough to allow simplification. Once the distribution was approximated another run 

of length 1.5 hours was used to check the parameters of the distribution with favorable 

results. 

Mission playback files and the mission playback program are available from the 

Mechanical Engineering Department at the Naval Postgraduate School in Monterey, CA.  

A complete list of data collected in this effort is not included here due to the size of the 

file. 
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APPENDIX B. REMUS MOVER CODE 

package remus; 

import java.awt.geom.*; 

import simkit.*; 

import simkit.smdx.*; 

import java.text.*; 

import simkit.random.*; 

 

/* 

 * File: RemusMover.java 

 * Created: August 21, 2003, 1:06 PM 

 */ 

 

/** 

 * <p>This is the main component in the REMUS simulation model. A 

 * RemusMover maintains information about real and ideal locations 

 * separately. The real location is the location of the mover as 

 * affected by current, compass errors and other effects. The imaginary 

 * location is where the vehicle thinks it is based on Dead Reckoning 

 * techniques. If a RemusMover is using Transducers to fix position 

 * then the vehicle utilizes triangulation to establish location. The 

 * vehicle will attempt to regain the original track by steering for a 

 * point on the track that is two fix intervals ahead of the current 

 * location.</p> 

 * @author Tim Allen 

 * @version 1.0 

 */ 

public class RemusMover extends SimEntityBase implements Mover { 

   // class constants 

    

   /** 

    * Class constant corresponding to the origin of a standard x-y 

    * coordinate system, namely (x,y) = (0.0,0.0). 

    */ 

   protected static final Point2D ORIGIN = new Point2D.Double(); 
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   /** 

    * Class constant used to format double values in output information. 

    * The format is "0.000". 

    */ 

   protected static final DecimalFormat DF = new DecimalFormat("0.000"); 

    

   // class variables 

   // instance variables 

    

   /** 

    * This is the <CODE>RemusMover</CODE>'s maximum possible speed. 

    * The value is in knots. 

    */ 

   protected double maxSpeed; 

    

   /** 

    * The original location from which the <CODE>RemusMover</CODE> 

    * started the run. The mover knows its original location with 

    * certainty. 

    */ 

   protected Point2D originalLocation; 

    

   /** 

    * The location the mover thinks it was at the last time it stopped. 

    * Because of errors associated with navigation this position is not 

    * necessarily the same as the lastRealStopLocation. 

    */ 

   protected Point2D lastIdealStopLocation; 

    

   /** 

    * The location the mover was actually at the last tim it stopped. 

    */ 

   protected Point2D lastRealStopLocation; 

    

   /** 

    * A representation of the current the vehicle is exposed to. The x 
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    * and y components give the portions of current in the x and y 

    * direction. 

    */ 

   protected Point2D current; 

    

   /** 

    * The ideal velocity is the velocity the vehicle thinks it is 

    * making. 

    */ 

   protected Point2D idealVelocity; 

    

   /** 

    * The real velocity is the velocity that the vehicle is actually 

    * making. It takes into account the effects of current and compass 

    * error. 

    */ 

   protected Point2D realVelocity; 

    

   /** 

    * The destination the vehicle thinks it is moving towards. 

    */ 

   protected Point2D idealDestination; 

    

   /** 

    * The destination the vehicle is actually headed towards. 

    */ 

   protected Point2D realDestination; 

    

   /** 

    * The ultimate destination is the place the vehicle is supposed to 

    * go on this leg. 

    */ 

   protected Point2D ultimateDestination; 

    

   /** 

    * The position the vehicle started this leg from. Used to calculate 

    * track intercepts in the doFix method. 
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    */ 

   protected Point2D anchorLocation; 

    

   /** 

    * The sim time that the current move started. 

    */ 

   protected double startMoveTime; 

    

   /** 

    * Move time is the amount of time necessary to move to the 

    * destination at the given velocity. 

    */ 

   protected double moveTime; 

    

   /** 

    * Time in seconds between vehicle interogation of the transducers. 

    */ 

   protected double pingInterval; 

    

   /** 

    * True if the vehicle is using transducers, false otherwise. 

    */ 

   protected boolean usingTransducers; 

    

   /** 

    * Current movement status of the vehicle. 

    */ 

   protected MovementState movementState; 

    

   /** 

    * A double value which is interpreted as a percentage of the 

    * heading. 

    */ 

   protected double compassError; 

    

   /** 

    * Used to fix vehicle position. 
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    */ 

   protected Transducer transducerA; 

    

   /** 

    * Used to fix vehicle position. 

    */ 

   protected Transducer transducerB; 

    

   protected final Object[] param; 

    

   /** 

    * Used to generate a comparison value when determining if a signal 

    * from the transducer is heard by the vehicle. 

    */ 

   protected RandomVariate rvRangeCheck; 

    

   // class methods 

    

   /* 

    * This private helper method will adjust the given "vector" in a 

    * Point2D object by rotating the coordinates by a percentage of 

    * 2Pi, given by the double error. Divide by zero problems are 

    * handled by the Math class. Rotation follows math conventions, 

    * that is, a negative error will lower theta thus giving a heading 

    * error to the right. 

    */ 

   private static Point2D calculateCompassError(Point2D velocity, 

     double error) { 

      double xComp = velocity.getX(); 

      double yComp = velocity.getY(); 

      double hyp = Math.sqrt(xComp*xComp + yComp*yComp); 

      double theta = Math.atan2(yComp, xComp); 

      theta += error * 2 * Math.PI; 

      xComp = hyp * Math.cos(theta); 

      yComp = hyp * Math.sin(theta); 

       

      return new Point2D.Double(xComp, yComp); 
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   } 

    

   /** 

    * Helper method to format Point2D objects. 

    * @param point Point to be formatted. 

    * @param form Rule for format. 

    * @return Formatted Point. 

    */ 

   public static String formatPoint(Point2D point, DecimalFormat form) { 

      StringBuffer buf = new StringBuffer('['); 

      buf.append(form.format(point.getX())); 

      buf.append(','); 

      buf.append(' '); 

      buf.append(form.format(point.getY())); 

      buf.append(']'); 

       

      return buf.toString(); 

   } 

    

   /** 

    * Helper method to format Point2D objects. Uses class default 

    * format object. 

    * @param point Point to be formatted. 

    * @return formatted point. 

    */ 

   public static String formatPoint(Point2D point) { 

      return formatPoint(point, DF); 

   } 

    

   // constructor methods 

    

   /** 

    * Creates new instance of RemusMover with an initial location and 

    * max speed. Sets compassError to 0.0 by default. Sets current to 

    * (0.0, 0.0) by default. Movement state is set to stopped. Poisiton 

    * fixing is off by default. 

    * @param location The new instances initial location. 
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    * @param maxSpeed The new instances maximum speed. 

    */ 

   public RemusMover(Point2D location, double maxSpeed) { 

      setCompassError(0.0); 

      setName("Default"); 

      originalLocation = (Point2D) location.clone(); 

      anchorLocation = (Point2D) location.clone(); 

      this.maxSpeed = maxSpeed; 

      lastIdealStopLocation = (Point2D) originalLocation.clone(); 

      lastRealStopLocation = (Point2D) originalLocation.clone(); 

      idealVelocity = (Point2D) ORIGIN.clone(); 

      realVelocity = (Point2D) ORIGIN.clone(); 

      setCurrent((Point2D)ORIGIN.clone()); 

      setMovementState(MovementState.STOPPED); 

      transducerA = new Transducer("defaultA", 0.0, 0.0); 

      transducerB = new Transducer("defaultB", 0.0, 0.0); 

      setUsingTransducers(false); 

      param = new Object[] {this}; 

      rvRangeCheck = null; 

   } 

    

   /** 

    * Creates new instance of RemusMover and sets name. 

    * @param name 

    * @param location 

    * @param maxSpeed 

    */ 

   public RemusMover(String name, Point2D location, double maxSpeed) { 

      this(location, maxSpeed); 

      setName(name); 

   } 

    

   /** 

    * Creates new instance of RemusMover and takes argument for 

    * transducers. 

    * @param name 

    * @param location 
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    * @param maxSpeed 

    * @param a Transducer A 

    * @param b Transducer B 

    * @param ping The ping interval in seconds 

    * @param rv The <code>RandomVariate</code> object used for range check logic 

    * in the Fix method. 

    */ 

   public RemusMover(String name, Point2D location, double maxSpeed, 

      Transducer a, Transducer b, double ping, RandomVariate rv) { 

         this(name, location, maxSpeed); 

         transducerA = a; 

         transducerB = b; 

         setPingInterval(ping); 

         setUsingTransducers(true); 

         setRVRangeCheck(rv); 

} 

    

   // instance methods 

    

   /** 

    * Does nothing, yet. 

    */ 

   public void accelerate(Point2D acceleration) { 

   } 

    

   /** 

    * Does nothing, yet. 

    */ 

   public void accelerate(Point2D acceleration, double speed) { 

   } 

    

   /** 

    * When this event is executed the mover stops at current location 

    * and the movement state is set to paused. 

    * @param mover The Mover for which the event is scheduled. 

    */ 

   public void doEndMove(Moveable mover) { 
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      if (mover == this) { 

         anchorLocation = ultimateDestination; 

         stopHere(); 

         setMovementState(MovementState.STOPPED); 

         interrupt("Fix"); 

         interrupt("Intercept"); 

      } 

   } 

    

   /** 

    * When this event is executed the endMove event is scheduled as 

    * long as the idealLocation is not null. Movement state is set to 

    * cruising. 

    * @param mover The Mover that the event is scheduled for. 

    */ 

   public void doStartMove(Moveable mover) { 

      if (mover == this) { 

         if (idealDestination != null) { 

            waitDelay("EndMove", moveTime, param, 1.0); 

            /* Don't want to schedule a fix event unless the vehicle 

             * is using transducers and it is paused. If the fix event 

             * isn't scheduled here then it will never be scheduled 

             * again.*/ 

            if(isUsingTransducers() && movementState != MovementState.PAUSED) { 

               waitDelay("Fix", getPingInterval(), param); 

               ultimateDestination = idealDestination; 

            } 

         } 

         setMovementState(MovementState.CRUISING); 

      } 

   } 

    

   /** 

    * Not yet used. 

    * @return A new Point2D.Double set to (0.0, 0.0). 

    */ 

   public Point2D getAcceleration() { 
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      return new Point2D.Double(); 

   } 

    

   /** 

    * Returns the actual location of RemusMover as affected by current 

    * and compass errors. 

    * @return A clone of the actual location of the RemusMover for the 

    * current SimTime. 

    */ 

   public Point2D getLocation() { 

      if (isMoving()) { 

         return new Point2D.Double(lastRealStopLocation.getX() 

            + (Schedule.getSimTime() - startMoveTime) 

            * getVelocity().getX(), lastRealStopLocation.getY() 

            + (Schedule.getSimTime() - startMoveTime) 

            * getVelocity().getY()); 

      } 

      else { 

         return (Point2D) lastRealStopLocation.clone(); 

      } 

   } 

    

   /** 

    * Returns the ideal location of RemusMover unaffected by current 

    * and compass errors. 

    * @return A clone of the ideal location of the RemusMover for the 

    * current SimTime. 

    */ 

   public Point2D getIdealLocation() { 

      if (isMoving()) { 

         return new Point2D.Double(lastIdealStopLocation.getX() 

            + (Schedule.getSimTime() - startMoveTime) 

            * getIdealVelocity().getX(), lastIdealStopLocation.getY() 

            + (Schedule.getSimTime() - startMoveTime) 

            * getIdealVelocity().getY()); 

      } 

      else { 
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         return (Point2D) lastIdealStopLocation.clone(); 

      } 

   } 

    

   /** 

    * Sets the current to the value of newCurrent. The current is 

    * represented by a Point2D object. The X value corresponds to the 

    * component of current in the X direction in a two dimensional grid. 

    * The case is similar for Y. 

    * @param newCurrent 

    */ 

   public void setCurrent(Point2D newCurrent) { 

      current = (Point2D) newCurrent.clone(); 

   } 

    

   /** 

    * Returns the current for this instance. The current is represented 

    * by a Point2D object. The X value corresponds to the component of 

    * current in the X direction in a two dimensional grid. The case is 

    * similar for Y. 

    * @return current 

    */ 

   public Point2D getCurrent() { 

      return (Point2D) current.clone(); 

   } 

    

   /** 

    * Returns maximum possible speed. 

    * @return maxSpeed 

    */ 

   public double getMaxSpeed() { 

      return maxSpeed; 

   } 

    

   /** 

    * Returns movementState. See the MovementState class for 

    * description of the constants. 
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    * @return movementState 

    */ 

   public MovementState getMovementState() { 

      return movementState; 

   } 

    

   /** 

    * Returns the realVelocity of the RemusMover, including effects of 

    * current and gyro error. 

    * @return realVelocity 

    */ 

   public Point2D getVelocity() { 

      return (Point2D) realVelocity.clone(); 

   } 

    

   /** 

    * Returns the idealVelocity of the RemusMover. This is the velocity 

    * of the vehicle with no errors or effects of current. 

    * @return idealVelocity 

    */ 

   public Point2D getIdealVelocity() { 

      return (Point2D) idealVelocity.clone(); 

   } 

    

   /** 

    * Used to set the boolean usingTransducers, true if transducers are 

    * used, false otherwise. 

    * @param f True if transducers used, false otherwise. 

    */ 

   public void setUsingTransducers(boolean f) { 

      usingTransducers = f; 

   } 

    

   /** 

    * Returns true if fixing position with transducers, false otherwise. 

    * @return usingTransducers 

    */ 
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   public boolean isUsingTransducers() { 

      return usingTransducers; 

   } 

    

   /** 

    * Sets ping interval for transducers. 

    * @param ping A double value corresponding to ping interval, in 

    * seconds. 

    */ 

   public void setPingInterval(double ping) { 

      pingInterval = ping; 

   } 

    

   /** 

    * Returns ping interval in seconds. 

    * @return pingInterval 

    */ 

   public double getPingInterval() { 

      return pingInterval; 

   } 

    

   /** 

    * Sets the Random Variate object used to perform raneg checks in 

    * the Fix method. 

    * @param rv 

    */ 

   public void setRVRangeCheck(RandomVariate rv) { 

      this.rvRangeCheck = rv; 

   } 

    

   /** 

    * Access the Random Variate object used to perform range check 

    * functions. 

    * @return The RandomVector object used for checking if transducers 

    * are range for position fix. 

    */ 

   public RandomVariate getRVRangeCheck() { 
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      return rvRangeCheck; 

   } 

    

   /** 

    * Returns the status of moving. 

    * @return isMoving True if moving, false otherwise. 

    */ 

   public boolean isMoving() { 

      return Math.abs(idealVelocity.getX()) > 0.0 

         || Math.abs(idealVelocity.getY()) > 0.0; 

   } 

    

   /** 

    * Not yet implemented and no plans to. 

    * @param location 

    */ 

   public void magicMove(Point2D location) throws MagicMoveException { 

   } 

    

   /** 

    * Checks if requested velocity exceeds maxSpeed. Adjusts ideal 

    * velocity for current and assignes value as real velocity. 

    * Schedules the startMove event and sets movement state to STARTING. 

    * @param desiredVelocity 

    */ 

   public void move(Point2D desiredVelocity) { 

      double desiredSpeed = desiredVelocity.distance(ORIGIN); 

      if (desiredSpeed <= 0.0) { 

         return; 

      } 

      if ( desiredSpeed > maxSpeed) { 

         desiredVelocity = Math2D.scalarMultiply(maxSpeed / desiredSpeed, 

            desiredVelocity); 

      } 

      realDestination = null; 

      idealDestination = null; 

      lastRealStopLocation = getLocation(); 
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      lastIdealStopLocation = getIdealLocation(); 

      startMoveTime = Schedule.getSimTime(); 

      idealVelocity = desiredVelocity; 

      realVelocity = Math2D.add(calculateCompassError(desiredVelocity, 

         compassError), current); 

      waitDelay("StartMove", 0.0, param); 

      setMovementState(MovementState.STARTING); 

   } 

 

   /** 

    * Resets variables to original values. Specifically, resets 

    * locations to clones of original locations, velocities to zero, 

    * destinations to null and compassError to 0.0. 

    */ 

   public void reset() { 

      super.reset(); 

      setMovementState(MovementState.STOPPED); 

      lastIdealStopLocation = (Point2D) originalLocation.clone(); 

      lastRealStopLocation = (Point2D) originalLocation.clone(); 

      realVelocity  = new Point2D.Double(); 

      idealVelocity  = new Point2D.Double(); 

      startMoveTime = Schedule.getSimTime(); 

      idealDestination = null; 

      realDestination = null; 

      compassError = 0.0; 

   } 

    

   /** 

    * Additional moveTo that accepts destination. MaxSpeed is assumed. 

    * @param destination 

    */ 

   public void moveTo(Point2D destination) { 

      moveTo(destination, maxSpeed); 

   } 

    

   /** 

    * When executed checks to ensure a destination exists and 
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    * cruisingSpeed is greater than zero. Calculates new ideal and 

    * real destinations. Corrects real velocity for compass error and 

    * current effects. Schedules startMove event. 

    * @param destination Where the Mover is going 

    * @param cruisingSpeed Speed of motion, unless cruisingSpeed is 

    * greater than maxSpeed, in which case maxSpeed is used. 

    */ 

   public void moveTo(Point2D destination, double cruisingSpeed) { 

      if (destination == null || cruisingSpeed <= 0.0) { return; } 

      if (isMoving()){ 

         pause(); 

      } 

      cruisingSpeed = Math.min(cruisingSpeed, maxSpeed); 

      this.idealDestination = destination; 

      double distance = destination.distance(this.getIdealLocation()); 

      moveTime = distance / cruisingSpeed; 

      idealVelocity.setLocation((idealDestination.getX() 

         - lastIdealStopLocation.getX()) / moveTime, (idealDestination.getY() 

         - lastIdealStopLocation.getY())/moveTime); 

      realVelocity = Math2D.add(calculateCompassError(idealVelocity, 

         compassError), current); 

      double realX = lastRealStopLocation.getX() + realVelocity.getX() * moveTime; 

      double realY = lastRealStopLocation.getY() + realVelocity.getY() * moveTime; 

      realDestination = new Point2D.Double(realX, realY); 

      startMoveTime = Schedule.getSimTime(); 

      waitDelay("StartMove", 0.0, new Object[] { this }); 

   } 

    

   /** 

    * Formatting method. Returns object's name, original location and 

    * max speed 

    * @return A String containing output information. 

    */ 

   public String paramString() { 

      return this.getName() + " " + originalLocation + " " + maxSpeed; 

   } 
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   /** 

    * Stops the Mover's motion, sets movementState to PAUSED. 

    */ 

   public void pause() { 

      stopHere(); 

      setMovementState(MovementState.PAUSED); 

   } 

    

   /** 

    * Stops the Mover's motion, sets movementState to STOPPED. 

    */ 

   public void stop() { 

      stopHere(); 

      setMovementState(MovementState.STOPPED); 

   } 

    

   /** 

    * Sets movementState to state, executes firePropertyChange for 

    * movementState. 

    * @param state New movementState. 

    */ 

   protected void setMovementState(MovementState state) { 

      MovementState oldState = getMovementState(); 

      movementState = state; 

      firePropertyChange("movementState", oldState, movementState); 

   } 

    

   /** 

    * Sets compassError. Fires property change for compass error. 

    * @param error The compassError as a percentage of heading. 

    */ 

   public void setCompassError(double error) { 

      firePropertyChange("compassError", new Double(compassError), 

         new Double(error)); 

      compassError = error; 

   } 
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   /** 

    * Stops Mover's motion. Interupts the endMove event for this mover. 

    * Sets ideal and real locations. Resets velocities to zero. 

    */ 

   protected void stopHere() { 

      lastIdealStopLocation = getIdealLocation(); 

      lastRealStopLocation = getLocation(); 

      if (idealVelocity == null) { 

         idealVelocity = new Point2D.Double(); 

         realVelocity = new Point2D.Double(); 

      } 

      else { 

         realVelocity.setLocation(ORIGIN); 

         idealVelocity.setLocation(ORIGIN); 

      } 

      startMoveTime = Schedule.getSimTime(); 

      interrupt("EndMove", param); 

   } 

    

   /** 

    * Formatting method to output object information as a String. 

    * @return Real and ideal locations of Mover. 

    */ 

   public String toString() { 

      Point2D idealLoc = getIdealLocation(); 

      Point2D realLoc = getLocation(); 

      return this.getName() + " I (" + DF.format(idealLoc.getX()) 

         + "," + DF.format(idealLoc.getY()) +") [" 

         + DF.format(this.getIdealVelocity().getX()) + "," 

         + DF.format(this.getIdealVelocity().getY()) + "], R " + "(" 

         + DF.format(realLoc.getX()) + "," + DF.format(realLoc.getY()) 

         + ") [" + DF.format(this.getVelocity().getX()) + "," 

         + DF.format(this.getVelocity().getY()) + "]"; 

   } 

 

   /** 

    * Returns the difference between ideal and real locations for the 
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    * Mover at current time. 

    * @return The distance between real and ideal locations. 

    */ 

   public double getDistanceDifference() { 

      return getLocation().distance(getIdealLocation()); 

   } 

    

   /** 

    * Generates a comparison value and determines if return signal is 

    * heard by vehicle. If the vehicle i smoving a new position is 

    * calculated by triangulation and the position is updated. 

    * Previously scheduled intercept events are interrupted. New 

    * movement orders are issued to regain track and new intercept and 

    * fix events are scheduled. If no return signal is heard then only 

    * the next fix event is scheduled. If the vehicle is not moving 

    * then nothing happens. 

    *  

    * @param mover The Mover object the event is scheduled for. 

    */ 

   public void doFix(Moveable mover) { 

      double compareValue = rvRangeCheck.generate(); 

      double distA = getLocation().distance(transducerB.getLocation()); 

      double distB = getLocation().distance(transducerA.getLocation()); 

      if (distA < compareValue && distB < compareValue) { 

         double x = 0.0; 

         double y = 0.0; 

         double angleA = 0.0; 

         double distC = transducerA.getIdealLocation().distance( 

            transducerB.getIdealLocation()); 

         Point2D vecC = Math2D.subtract(transducerB.getLocation(), 

            transducerA.getLocation()); 

         Point2D unitVecC = Math2D.scalarMultiply(1.0 / Math2D.norm(vecC), vecC); 

         Point2D vecB = Math2D.subtract(getLocation(), transducerA.getLocation()); 

         Point2D unitVecB = Math2D.scalarMultiply(1.0 / Math2D.norm(vecB), vecB); 

         double check = (distB * distB + distC * distC - distA * distA) 

            / (2.0 * distB * distC); 

         if (check >= 1.0) { 
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            angleA = 0.0; 

         } else if (check <= -1.0) { 

            angleA = 180.0; 

         } else if (vecB.getY() > vecC.getY()) { 

            angleA = Math.acos(check); 

         } else { 

            angleA = -Math.acos(check); 

         } 

         double angleAprime = Math.atan2(vecC.getY(), vecC.getX()); 

         double angleTot = angleA + angleAprime; 

         x = transducerA.getLocation().getX() + distB * Math.cos(angleTot); 

         y = transducerA.getLocation().getY() + distB * Math.sin(angleTot); 

         Point2D vecA = Math2D.subtract(ultimateDestination, anchorLocation); 

         vecB = Math2D.subtract(new Point2D.Double(x, y), anchorLocation); 

         Point2D projAb = Math2D.add(anchorLocation, 

            Math2D.scalarMultiply(Math2D.innerProduct(vecA, vecB) 

            / Math2D.normSq(vecA), vecA)); 

         Point2D trackVel = Math2D.scalarMultiply(1.0 / Math2D.norm(vecA) 

            * maxSpeed, vecA); 

         Point2D desiredLocation = Math2D.add(projAb, 

         Math2D.scalarMultiply(2.0 * getPingInterval(), trackVel)); 

         if (movementState == MovementState.CRUISING) { 

            interrupt("Intercept"); 

            this.pause(); 

            lastIdealStopLocation.setLocation(x, y); 

            if (projAb.distance(desiredLocation) 

               < projAb.distance(ultimateDestination)) { 

                  moveTo(desiredLocation); 

            } 

            else { 

               moveTo(ultimateDestination); 

            } 

            waitDelay("Fix", getPingInterval(), param); 

            waitDelay("Intercept", 2.0 * getPingInterval()); 

         } 

      } 

      else { 
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         waitDelay("Fix", getPingInterval(), param); 

      } 

   } 

    

   /** 

    * Method performs actions for when the vehicle regains track again. 

    * Movement is paused and the vehicle is ordered to its ultimate 

    * destination. The Fix event is interrupted and the next Fix event 

    * is scheduled after a delay equal to the ping interval. 

    */ 

   public void doIntercept() { 

      this.pause(); 

      this.moveTo(ultimateDestination); 

      interrupt("Fix"); 

      waitDelay("Fix", getPingInterval(), param); 

   } 

} 
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APPENDIX C. TRANSDUCER CODE 

package remus; 

import simkit.*; 

import simkit.smdx.*; 

import simkit.random.*; 

import java.awt.geom.*; 

import java.text.DecimalFormat; 

 

/* 

 * File: Transducer.java 

 * Created: August 7, 2003, 4:19 PM 

 */ 

 

/** 

 * <p><code>Transducer</code> objects contain and provide position information. 

 * They are used by the REMUS vehicle to obtain a fix of position. 

 * <code>Transducer</code> objects are positioned in a coordinate field and then 

 * provide their position to other objects incorporating random error.</p> 

 * @author Tim Allen 

 */ 

public class Transducer extends SimEntityBase { 

   // class constants 

   // class variables 

    

   private static DecimalFormat f = new DecimalFormat("0.00"); 

    

   // instance variables 

    

   /** 

    * The <code>Transducer</code>'s real location. This is the <code> 

    * Transducer</code>'s ideal location offset by some error to reflect 

    * uncertainty in dropping placing the <code>Transducer</code>. 

    */ 

   protected Point2D realLocation; 
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   /** 

    * The <code>Transducer</code>'s ideal location. This is the location the 

    * vehicle thinks the <code>Transducer</code> is at. 

    */ 

   protected Point2D idealLocation; 

    

   /** 

    * A <code>RandomVector</code> object used to alter the <code>Transducer 

    * </code>'s real position when queried to reflect errors introduced by 

    * <code>Transducer</code> sway, current, etc. 

    */ 

   protected RandomVector rv; 

    

   // class methods 

   // constructor methods 

    

   /** 

    * Zero-parameter constructor. <code>Transducer</code> is placed at (0,0) and 

    * given name "default". The position location error is not used 

    * in this constructor. The <code>RandomVector</code> instance is initailized 

    * to null. 

    */ 

   public Transducer() { 

      this("default", 0.0, 0.0, null, null); 

   } 

    

   /** 

    * An instance of <code>Transducer</code> is created with name and location 

    * provided. The position uncertainty <code>RandomVector</code> is 

    * initialized to null. 

    * @param name 

    * @param point A <code>Point2D</code> object used as the <code>Transducer 

    * </code>'s location. 

    */ 

   public Transducer(String name, Point2D point) { 

      this(name, point.getX(), point.getY(), null, null); 

   } 
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   /** 

    * An instance of <code>Transducer</code> is created with name and location 

    * provided. The position uncertainty <code>RandomVector</code> is 

    * initialized to null. 

    * @param name 

    * @param x X location. 

    * @param y Y location. 

    */ 

   public Transducer(String name, double x, double y) { 

      this(name, x, y, null, null); 

   } 

    

   /** 

    * An instance of <code>Transducer</code> is created with name and location 

    * provided. The <code>Transducer</code>'s initial location is offset by the 

    * gps parameter. The <code>RandomVector</code> object is used to produce 

    * position uncertainty. 

    * @param name 

    * @param x X location. 

    * @param y Y location. 

    * @param gps A double array with two elements, one for x and one 

    * for y, used to offset the initial location for simulating drop 

    * errors. 

    * @param rv A <code>RandomVector</code> object used to produce position 

    * uncertainty when the <code>Transducer</code> is queried for its location. 

    */ 

   public Transducer(String name, double x, double y, double[] gps, RandomVector rv) { 

      idealLocation = new Point2D.Double(x, y); 

      setName(name); 

      if(gps != null) { 

         realLocation = new Point2D.Double(x + gps[0], y + gps[1]); 

      } 

      else { 

         realLocation = new Point2D.Double(x, y); 

      } 

      if(rv != null) { 
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         this.rv = rv; 

      } 

   } 

    

   /** 

    * An instance of <code>Transducer</code> is created with name and location 

    * provided. The <code>Transducer</code>'s initial location is offset by the 

    * gps parameter. The <code>RandomVector</code> object is used to produce 

    * position uncertainty. 

    * @param name 

    * @param loc A Point2D object representing the location. 

    * @param gps A double array with two elements, one for x and one 

    * for y, used to offset the initial location for simulating drop 

    * errors. 

    * @param rv A <code>RandomVector</code> object used to produce position 

    * uncertainty when the <code>Transducer</code> is queried for its location. 

    */ 

   public Transducer(String name, Point2D loc, double[] gps, RandomVector rv) { 

      this(name, loc.getX(), loc.getY(), gps, rv); 

   } 

    

   // instance methods 

    

   /** 

    * Returns the <code>Transducer</code> ideal location, or where the vehicle 

    * thinks th etransducer is. 

    * @return <code>Point2D</code> object representing the ideal location. 

    */ 

   public Point2D getIdealLocation() { 

      return idealLocation; 

   } 

    

   /** 

    * Returns the <code>Transducer</code> real position as affected by current 

    * and wave action and drop error. 

    * @return <code>Point2D</code> object representing <code>Transducer</code> 

    * real location. 
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    */ 

   public Point2D getLocation() { 

      if(rv != null) { 

         double[] xy = rv.generate(); 

         Point2D offset = new Point2D.Double(xy[0], xy[1]); 

         return Math2D.add(realLocation, offset); 

      } 

      return (Point2D)realLocation.clone(); 

   } 

    

   /** 

    * Set the <code>Transducer</code>'s real location. 

    * @param p p[0] is the x value, p[1] is the y value 

    */ 

   public void setLocation(double[] p) { 

      realLocation = Math2D.add(new Point2D.Double(p[0], p[1]), idealLocation); 

   } 

    

   /** 

    * Set the <code>RandomVector</code> object used to generate real locations. 

    * @param rv <code>RandomVector</code> object used for position generation 

    */ 

   public void setRV(RandomVector rv) { 

      this.rv = rv; 

   } 

    

   /** 

    * Formatting of <code>Transducer</code> - name, location info. 

    * @return String representation of object info. 

    */ 

   public String toString() { 

      return "Transducer " + getName() + " at location (" 

      + idealLocation.getX() + ", " + idealLocation.getY() + ")"; 

   } 

} 
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APPENDIX D. RANGE FINDER CODE 

package remus; 

import simkit.*; 

import simkit.smdx.*; 

import java.awt.geom.*; 

import java.text.*; 

 

/* 

 * File: RangeFinder.java 

 * Created: November 17, 2003, 10:45 AM 

 */ 

 

/** 

 * <p>A <code>RangeFinder</code> is used to monitor for the detection event 

 * and when that event is heard then mine location information is output in a 

 * format suitable for data analysis.</p> 

 *  

 * @author Tim Allen 

 */ 

public class RangeFinder extends SimEntityBase{ 

   // class constants 

   // class variables 

   // instance variables 

    

   /** 

    * Keeps a copy of the </code>RemusMover</code> in order to calculate the 

    * offset information. 

    */ 

   protected RemusMover searcher; 

    

   /** 

    * Keeps a copy of the <code>Mover</code> (the mine) in order to claculate 

    * offset information.   

    */ 

   protected Mover target; 
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   /** 

    * Keeps track of whether detection has occured since the last reset 

    * invocation. 

    */ 

   protected boolean detected; 

    

   /* 

    * Used internally for formatting output. 

    */ 

   private DecimalFormat f = new DecimalFormat("0.00"); 

    

   // class methods 

   // constructor methods 

    

   /** 

    * Creates instance of <code> RangeFinder</code> associated with searcher and 

    * target. Initially, detected set to false. 

    * @param searcher The <code>RemusMover</code> associated with this <code> 

    * RangeFinder</code> 

    * @param target The <code>Mover</code> associated with this <code> 

    * RangeFinder</code> 

    */ 

   public RangeFinder(RemusMover searcher, Mover target) { 

      this.searcher = searcher; 

      this.target = target; 

      detected = false; 

   } 

   // instance methods 

    

   /** 

    * Resets detected to false. 

    */ 

   public void reset() { 

      detected = false; 

   } 
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   /** 

    * If this is the first time an object is detected then an offset is 

    * calculated and output to the System.out stream. 

    * @param contact 

    */ 

   public void doDetection(Moveable contact) { 

      if(!detected) { 

         detected = true; 

         Point2D searcherLoc = searcher.getLocation(); 

         Point2D targetLoc = target.getLocation(); 

         Point2D offset = new Point2D.Double(targetLoc.getX() - searcherLoc.getX(), 

            targetLoc.getY() - searcherLoc.getY()); 

         System.out.print(f.format(searcher.getIdealLocation().getX() + offset.getX()) 

            + " " + f.format(searcher.getIdealLocation().getY() + offset.getY())); 

      } 

   } 

    

   /** 

    * Returns true if detection has occurred, false otherwise. 

    * @return detected 

    */ 

   public boolean getDetected() { 

      return detected; 

   } 

} 
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APPENDIX E. REMUS SENSOR MEDIATOR CODE 

package remus; 

import simkit.*; 

import simkit.smdx.*; 

import java.util.*; 

import java.awt.geom.*; 

 

/* 

 * File: RemusSensorMediator.java Created: February 22, 2004, 6:36 PM 

 */ 

 

/** 

 * <p>Mediator used by the <code>RemusMover</code> component to model detection 

 * when obstacle is at Closest Point of Approach (CPA) with vehicle. The CPA 

 * method most accurately approximates the method used by the human operator  

 * when looking at mission playback logs.</p> 

 *  

 * @author Tim Allen 

 */ 

public class RemusSensorMediator extends SimEntityBase implements SensorTargetMediator { 

 

   // class constants 

   // class variables 

   // instance variables 

 

   /** 

    * Used to keep track of contacts once they enter range. 

    */ 

   protected Map contacts; 

 

   // class methods 

   // constructor methods 

 

   /** 

    * Creates new RemusSensorMediator. 
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    */ 

   public RemusSensorMediator() { 

      contacts = new WeakHashMap(); 

   } 

 

   // instance methods 

 

   /** 

    * When this event is heard, schedule the detection for the sensor based on 

    * the detection algorithm - by calculating time of CPA. The sensor is passed 

    * an instance of a Contact, which is a doppleganger for the actual target. 

    * Note that the waitDelay() is invoked directly on the sensor. This makes 

    * the sensor the "source" of the SimEvent, and allows listeners to the 

    * sensor to be able to hear it. 

    *  

    * @param sensor The sensor whose range was entered 

    * @param target The target that entered the sensor's range 

    */ 

   public void doEnterRange(Sensor sensor, Mover target) { 

      if (this == SensorTargetMediatorFactory.getInstance().getMediatorFor( 

         sensor.getClass(), target.getClass())) { 

            Object contact = contacts.get(target); 

            if (contact == null) { 

               contact = new Contact(target); 

               contacts.put(target, contact); 

            } 

            double speed = Math2D.norm(sensor.getVelocity()); 

            double distance = sensor.getLocation().distance(target.getLocation()); 

            Point2D relativeDir = Math2D.subtract(target.getLocation(), 

               sensor.getLocation()); 

            Point2D realVel = sensor.getVelocity(); 

            double theta = Math.acos(Math2D.innerProduct(relativeDir, realVel) 

               / (Math2D.norm(relativeDir) * Math2D.norm(realVel))); 

            double rangeToDetect = distance * Math.cos(theta); 

            double timeToDetect = rangeToDetect / speed; 

            sensor.waitDelay("Detection", timeToDetect, new Object[] { contact}); 

      } 
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   } 

 

   /** 

    * When the range is exited, what happens in general depends on the 

    * undetection rule. In this case, simply schedule an undetection. Like the 

    * Detection event, the Undetection event is scheduled directly on the 

    * sensor, for the same reason. 

    *  

    * @param sensor The sensor whose range was exited 

    * @param target The target that exited the sensor's range 

    */ 

   public void doExitRange(Sensor sensor, Mover target) { 

      if (this == SensorTargetMediatorFactory.getMediator(sensor.getClass(), 

         target.getClass())) { 

            Object contact = contacts.get(target); 

            sensor.waitDelay("Undetection", 0.0, new Object[] { contact}); 

      } 

   } 

 

   /** 

    * Do nothing 

    *  

    * @param evt The heard PropertyChangeEvent 

    */ 

   public void propertyChange(java.beans.PropertyChangeEvent evt) { 

   } 

} 
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