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ABSTRACT 
 
 
 
Next-generation U.S. Navy destroyers, known as DD(X), will use electric drive 

motors to meet their propulsion needs instead of the traditional mechanical drives.  The 

use of electric drive motors in naval vessels has spurred the development of high power 

converters.  This thesis examines the feasibility of using an advanced control algorithm 

known as Sine-triangle Pulse Width Modulation (SPWM) in combination with a Cas-

caded Multi-Level Converter (CMLC) in order to meet the U.S. Navy’s strict require-

ments.  The SPWM control algorithm was designed in Simulink and experimentally 

tested on a CMLC previously constructed at the Naval Postgraduate School.  The control-

ler and converter successfully powered a quarter horsepower three-phase induction mo-

tor. 
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EXECUTIVE SUMMARY 
 
 

The United States Navy is becoming increasingly interested in the use of electric 

drive propulsion for their next generation of ships.  Past and present research projects 

such as the Integrated Power System (IPS) and the DD(X) program have led to positive 

results.  These positive results have encouraged the U.S. Navy to continue development 

of their electric drive technology.  In addition to research and development by the U.S. 

Navy, the commercial maritime industry realized the advantages of electric drive propul-

sion years ago and subsequently has already made the switch to the all-electric ship de-

sign.  This radical change in commercial ship design has led to a plethora of electric drive 

motors and auxiliary components. 

The basic concept behind the all-electric ship design is that all the power gener-

ated aboard the ship is produced in the form of electrical energy.  This design deviates 

from current naval design because both mechanical and electrical power is generated 

aboard the ship.  The mechanical power is used to propel the ship, while the electrical 

power is used to power all of the ship’s service loads.  In contrast the all-electric ship de-

sign will use electric drive motors in combination with high power converters to meet the 

ship’s propulsion and service needs. 

One of the major components necessary for the U.S. Navy to complete the transi-

tion to the all-electric ship is the high power converter used to operate the electric drive 

motor.  Unlike typical commercial converters, the converter used for naval applications 

must produce a high fidelity output current.  This high fidelity output current is necessary 

in order to meet the U.S. Navy’s strict acoustic performance standards. 

A promising converter topology known as the Cascaded Multi-Level Converter 

(CMLC) is capable of meeting the U.S. Navy’s power conversion needs.    The CMLC 

connects a multi-level converter to each end of a load.  Each multi-level converter devel-

ops a specified voltage, and their difference is the amount of voltage that is applied to the 

load.  Figure E-1 illustrates the schematic diagram of a three-phase CMLC capable of 

producing nine output voltage levels. 
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Figure E-1. Nine Level CMLC Schematic 

 

The CMLC in Figure E-1 uses a series of Insulated Gate Bipolar Transistors 

(IGBT) to act as switches.  With the proper switching sequence, a sinusoidal voltage and 

current output can be produced. 

The two most popular switching algorithms for the CMLC are Space Vector 

Modulation (SVM) and Sine-triangle Pulse Width Modulation (SPWM).  SVM allows for 

closed-loop control systems to be developed, but is also more complex in design and im-

plementation.  SPWM can only be used as an open-loop control system, however it has 

the advantage of being easier to design and implement. 

SPWM was chosen for the switching algorithm used to control the CMLC con-

structed at the Naval Postgraduate School (NPS) as part of a previous thesis.  SPWM uses 

a reference sine wave compared to a series of triangle waveforms.  This comparison es-
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sentially creates a digitized version of the reference sine wave.  The comparison of the 

reference waveform to the triangle waveforms can be seen in Figure E-2.  The digitized 

sine wave output can be seen in Figure E-3. 

 
Figure E-2. SPWM Comparison 

 

 
Figure E-3. Digitized Sine Wave 

 

The digitized waveform (green) in Figure E-3 is used to determine which switch 

configuration is necessary to create the desired output voltage level.  The algorithm was 

developed in Simulink and interfaced with the hardware using a Digital Signal Processor 

(DSP) card made by dSPACE. 

With the use of Simulink and dSPACE, Rapid Control Prototyping (RCP) and 

Hardware-In-the-Loop (HIL) simulation were possible.  The basic idea behind RCP is 

control algorithms can be developed and tested without the use of expensive and labor 
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intensive hardware development.  HIL simulation allows for the control algorithm to be 

interfaced with real hardware that would otherwise be difficult to simulate in a program 

such as Simulink. 

The control algorithm developed for this thesis was applied to the CMLC con-

structed at NPS.  In order to accommodate the DSP card interface, the CMLC was modi-

fied.  Modifications included a new layout, digital logic input terminals, and a delay cir-

cuit. 

After extensive hardware and software performance analysis, the converter was 

proven to operate according to theory and similar experimental results.  Figure E-4 illus-

trates the three-phase current waveforms produced using an induction motor load. 

 
Figure E-4. Three-Phase Current Waveforms 

 

As can be seen from Figure E-4, the output of the CMLC consists of three sinu-

soidal current waveforms that contain minimal distortion.  The goal of this thesis was to 

show that the CMLC is an ideal candidate for use as the high power converter in the new 

all-electric ship design. 
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I. INTRODUCTION 

A. NAVAL POWER REQUIREMENTS 
Currently the U. S. Navy is investigating electric drive propulsion for use aboard 

next-generation destroyers.  The change from mechanical drive propulsion to electric 

drive propulsion may seem like a new direction in naval ship construction; however, the 

concept has been implemented several times since the early twentieth century [1].  In 

fact, the first aircraft carrier to join the U. S. Fleet was propelled using electric drive [2].  

The switch from mechanical to electric drive has been done and undone several times due 

to the relative advantages of the two drive methods. 

In the early twentieth century, the limits imposed by the manufacturing and proc-

essing of steel and other materials used to make gears and various components for me-

chanical drive systems forced the U.S. Navy to turn to electric drive in order to meet its 

propulsion needs.  Years later, as the processing of metals was refined, the advantages 

again changed hands, and mechanical drive became the staple of U.S. Naval vessels.  Af-

ter several more switches between mechanical and electric drive, mechanical systems 

gained a considerable following, thus producing the fleet currently in service [1]. 

Once again the U.S. Navy stands at the crossroads of mechanical and electric 

drive propulsion.  The same technological revolution that brought about modern features 

such as sonar, radar, and computer navigation now promises new and exotic weapons 

such as lasers and rail guns.  In order to accommodate these new weapons systems, the 

generation and distribution of electrical power aboard ship must be dramatically im-

proved [3]. 

Electrical power consumption has grown significantly over the past few decades, 

thus stretching the ship’s resources to their limits.  This growth in power consumption is 

illustrated in Figure 1 by the increase in electrical power generation aboard U.S. Navy 

Destroyers from the late nineteenth century to the present. 
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Figure 1.   Electric Power Generating Capacity [From Ref. 4.] 

 

As can be seen from Figure 1, the electrical power generating capabilities of de-

stroyers has increased by nearly ten-fold since World War II.  This trend directly reflects 

the power consumption.  Since there is limited space aboard ship, a radical design change 

is required in order to meet the needs of future combat vessels. 

The solution to the limited ship’s resources comes from switching to electric drive 

and changing the power distribution system to take advantage of this switch [3].  Figure 2 

illustrates the current production and distribution of mechanical and electrical power 

aboard ships. 
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Figure 2.   Current Power Production and Distribution 

 

As shown in Figure 2, two separate systems are used to generate and distribute 

mechanical and electrical power.  The limitation of this production and distribution 

scheme is that the mechanical power generation cannot be used for electrical power pro-

duction and vice versa. 

In order to overcome this limitation, the Naval Surface Warfare Center (NSWC) 

in Philadelphia, PA has recently completed testing of a system known as the Integrated 

Power System (IPS).  IPS is a full-scale prototype of a proposed power generation and 

distribution system.  Figure 3 illustrates the design tested at IPS. 

 
Figure 3.   Future Power Production and Distribution 
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As shown in Figure 3, IPS uses two main turbine generators and two auxiliary tur-

bine generators to produce all the power aboard the ship [3].  Depending on the power 

demands of the ship, any combination of the four turbines can be used.  The different 

configurations can be seen in Figure 4.  The vertical scale is the power required by the 

ship in watts.  The horizontal scale is the speed of the ship in knots.  The curved line 

represents a typical profile of power versus speed for a destroyer.  The colored boxes de-

note the turbine generator configurations that will allow the ship to meet the requirements 

set forth by the power versus speed profile. 

 
Figure 4.   Turbine Generator Configurations for IPS [From Ref. 4.] 

 

The configurability of the turbine generators shown in Figure 4 has two main ad-

vantages.  First, this system improves the fuel efficiency of the ship.  It is important to 

note that the electric drive technology under investigation by the U.S. Navy is not more 

efficient than the mechanical drive systems currently in use.  However, the fuel efficiency 

is increased from closely matching the electric power production with the electric power 

consumption.  Additionally, the system was designed to be especially efficient for typical 

operation of U.S. Navy destroyers.  Since the average cruising speed of U.S. Navy de-

stroyers is between 12-14 knots, this system was designed to generate the required power 

for the propulsion and hotel loads using only the two auxiliary turbine generators.  Sec-

ond, it allows for all of the power produced to be distributed to any system aboard the 
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ship.  For example, when using a rail gun, the majority of the power produced would be 

devoted to the weapons system.  However, if the ship was not currently using any weap-

ons, the available power would be used for propulsion and hotel loads. 

The goal of IPS was to determine the feasibility of electric drive propulsion and 

rapidly reconfigurable power generation.  While the research was conducted at the Land 

Based Engineering Site (LBES), results of this initial trial will aid the design of the next-

generation U.S. Navy destroyers known as the DD(X).  Additionally, IPS investigated the 

practicability of using products developed by the commercial industry for use in military 

applications.  The following section will discuss commercial developments in electric 

drive propulsion. 

 

B. COMMERCIAL ELECTRIC DRIVE SYSTEMS 
The commercial maritime industry has made the switch to electric drive propul-

sion due to the numerous advantages of electric drive over mechanical drive.  The follow-

ing list illustrates the key features that the commercial industry requires of its power plant 

and propulsion systems. 

• Low Cost 
• High Fuel Efficiency 
• High Reliability 
• Low Maintenance 
• Compact Design 
• Passenger Comfort 
 

Electric drive is capable of exceeding mechanical drive in all of these categories 

with the use of podded propulsion [5].  Podded propulsion packages the motor and re-

quired auxiliary equipment into a compact design known as a pod.  Figure 5 shows an 

example of a commercially available pod. 
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Figure 5.   ALSTOM 20MW Azimuth Pod (Mermaid™) [From Ref. 5.] 

 

Podded propulsion, like the one shown in Figure 5, dramatically improves the ef-

ficiency of the propulsion motor by creating an optimum undisturbed flow of water to the 

propeller [5].  Additionally, this undisturbed water flow decreases noise and vibration, 

thus improving passenger comfort [5].  Podded propulsion also increases the payload ca-

pacity of the ship by removing the bulky engine from within the hull and placing it on the 

outside of the ship [5]. 

While podded propulsion certainly adds to the advantages of electric drive sys-

tems, electric drive in general has a few inherent advantages over mechanical drive.  Per-

haps most importantly of these inherent advantages is the reduction in the number of 

moving parts.  Moving parts typically have lower reliability and higher maintenance re-

quirements than non-moving parts.  Since electric drive systems require fewer moving 

parts, they typically have a higher reliability and lower maintenance requirements.  An-

other advantage is the configurability of power production and distribution previously 

discussed. 

In addition to podded propulsion, the commercial industry has made significant 

improvements to the motor drive assemblies used to power the pods.  Commercial mari-

time interest in high wattage power conversion has spurred a plethora of motor drive de-

signs.  Because these drives were developed by the commercial industry, cost played an 
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important role in their design and performance.  The following section will provide more 

details about the different converter topologies. 

 

C. SOLID STATE POWER CONVERSION 
Development of the different converter topologies is due for the most part to the 

commercial maritime industry.  However, solutions for the commercial industry will not 

necessarily work for military applications.  Because cost is a paramount concern for the 

commercial industry, the performance of commercial converters often suffers.  In addi-

tion to the high reliability and low maintenance that the commercial industry requires, the 

military also requires its converters to be compact (without the use of pods), battle hard-

ened, and high fidelity. 

With the use of podded propulsion, the commercial industry has been able to re-

duce the amount of equipment inhaul, therefore freeing more space for passengers or 

cargo.  Unfortunately, the U.S. Navy has decided not to pursue development into podded 

propulsion.  This means that in order to increase the amount of space inhaul, the design of 

the motor and motor drive assemblies must be made as compact as possible.  In addition 

to making the converters compact, the design must also be able to with stand extreme 

conditions. 

U.S. Naval vessels operate under some of the most severe conditions that any ship 

could ever operate.  All the forces of nature, such as temperature, corrosion, and waves, 

continually act to degrade the ship and its components.  In addition to all the natural 

forces naval vessels are exposed to, ships also face long operational commitments and the 

extreme conditions a ship is exposed to during a battle.  In order for components to sur-

vive battle conditions they must withstand a high degree of shock and vibration. 

One of the best ways for U.S. Naval vessels to gain an advantage in battle is to 

identify the enemy without allowing themselves to be identified.  Since propulsion mo-

tors add a lot of noise to the water, they can be used to identify ships.  Despite the fact 

that motors are often built using similar designs, slight differences in construction can 

lead to noticeable differences in the noise output of the motor.  When a motor is powered 

by a low fidelity current, torque pulsations are produced.  Torque pulsations cause the 



8 

motor to vibrate, thus producing an identifiable sound signature.  High fidelity converters 

can dramatically reduce the amount of torque pulsations by eliminating current harmon-

ics.  A detailed description of current harmonics will be covered in Chapter V. 

This section will introduce the different converter topologies available to convert 

DC power into AC power.  The advantages and disadvantages for each converter topol-

ogy must be weighed in order to select the optimal converter to meet the U.S. Navy’s re-

quirements. 

1. Synchro-Converter 
Synchro-Converters are used to drive a synchronous motor from an AC bus.  Two 

naturally commutated thyristor converters are joined by a DC link [6].  One converter 

acts as a rectifier, establishing the voltage on the DC link.  The second converter acts as 

an inverter, taking the DC link voltage and transforming it back into an AC voltage.  

While converter designs vary, typical input frequencies range from 30 to 200 Hz [6]. 

Since synchro-converters use thyristor-based converters, they are capable of han-

dling high power motor loads.  Additionally, thyristor-based converters are known to be 

extremely robust. 

The commercial industry has made the synchro-converter one of the most com-

monly used converter topologies.  For example, the podded motor in Figure 5 uses a syn-

chro-converter to drive the motor.  Unfortunately for the U.S. Navy, synchro-converters 

produce large current harmonics thus creating torque pulsations. 

2. Cycloconverter 
Cycloconverters are very similar to synchro-converters except they are designed 

to operate with induction motors as well as synchronous motors.  Cycloconverters do not 

require the establishment of a DC link; instead they operate directly off of the AC line-

frequency input.  Cycloconverters can typically produce output frequencies up to 30% of 

the input line-frequency [7]. 

Like the synchro-converter, cycloconverters are often constructed using thyristors, 

thus allowing the cycloconverter to be robust.  Cycloconverters are very practical for 

low-speed, large horsepower applications. 
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Unfortunately, cycloconverters produce large current harmonics.  Additionally, 

since the converter operates directly off the AC line-frequency input, instead of establish-

ing a DC link, considerable supply-side harmonics are created. 

3. Hybrid Converter 
Hybrid converters encompass a large class of relatively new designs.  Hybrid 

converters typically combine a six-step, low fidelity converter, with a high fidelity condi-

tioning inverter.  This combination allows for the majority of the work to be done by the 

low fidelity converter, while the conditioning inverter shapes the output into a sinusoidal 

waveform. 

The Naval Postgraduate School (NPS) is developing its own hybrid converter.  

This converter uses a bulk converter to develop a six-step voltage output.  A hysteresis 

controller then attempts to make up the difference between the square-wave output and a 

reference sine wave. 

Hybrid converters show great potential for being used in medium to high power 

applications in the future.  However, a significant amount of design and testing needs to 

be performed in order for a full scale hybrid converter to be considered for U.S. Naval 

applications. 

4. Pulse Width Modulation Converter 
The converter that was used at LBES in Philadelphia, PA for the IPS program was 

a Pulse Width Modulation (PWM) Converter.  The converter uses an array of H-bridges 

to create an AC voltage from a DC bus.  AC voltages are produced by switching between 

two DC voltages.  The H-bridges are controlled using PWM [3]. 

While the IPS prototype is considered a success in many areas, power quality was 

a concern.  Both supply side and load side harmonics were larger than predicted.  Reduc-

ing these harmonics is a goal for future testing of electric drive propulsion. 

5. Multi-level Converter 
H-bridge converters are actually a type of multi-level converter.  Multi-level con-

verters use a DC bus and capacitors to develop n number of voltages [8].  Switches are 

placed between one of the n voltage levels and the load.  With the use of a proper control 

algorithm, the converter will develop an n-level AC output.  More voltage levels means 
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that a controller can better approximate a reference sine wave.  Sinusoidal outputs are 

desired due to the low harmonic content.  Additionally, since the AC output is achieved 

using many small voltage changes, switching losses and motor stress are reduced. 

Multi-level converters are a viable alternative to the simple H-bridge converter 

used in IPS.  In fact, the current design for the DD(X) includes the use of a multi-level 

converter [4]. 

6. Cascaded Multi-level Converter 
The Cascaded Multi-level Converter (CMLC) is an improvement to the multi-

level converter.  To create a CMLC, two multi-level converters are connected to the two 

ends of a load.  One converter acts as a bulk converter, supplying the majority of the 

power to the load.  The second converter acts a conditioning converter, supplying har-

monic content to transform the square wave output of the bulk converter into a sinusoidal 

load voltage [9]. 

With the use of a CMLC, extremely high fidelity currents can be developed in the 

load.  This means that load harmonics are nearly eliminated, thus producing very quiet 

motors.  Additionally, the CMLC can be designed to be extremely robust.  The CMLC 

shows great promise for use by the U.S. Navy and therefore will be the focus of this the-

sis. 

 

D. THESIS GOAL 
The goal of this thesis was to demonstrate that a high fidelity load current can be 

produced by a CMLC when controlled by the proper algorithm.  Completed work and 

products from this thesis will augment the technical resources of the NPS Power Systems 

Laboratory and support future thesis projects directed by NAVSEA 05 resource sponsors. 
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E. THESIS OVERVIEW 
Chapter II describes the operation of a CMLC.  Chapter III describes popular al-

gorithms used to control CMLCs.  Chapter IV provides a detailed account of how the 

control strategy was implemented using the equipment available at NPS.  Chapter V 

gives the results of experiments run on the CMLC at NPS.  Chapter VI discusses the im-

plications of the research done in this thesis, as well as provides ideas for follow-on work 

at NPS.  Appendix A contains the pin configuration table that was used to connect the 

CMLC to the CP1103 I/O board. 
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II. OVERVIEW OF CASCADED MUTLI-LEVEL CONVERTERS 

A. PURPOSE 
This chapter provides a description of the different types of CMLCs available.  

Additionally, this chapter discusses the basic operation of the CMLC. 

 

B. DESCRIPTION OF A CASCADED MULTI-LEVEL CONVERTER 
The CMLC has become a popular converter for medium- to high-power applica-

tions.  CMLCs combine a high-power bulk converter with a low-power conditioning con-

verter [9].  The AC output is produced from a DC bus with the use of switches and ca-

pacitors.  The switch can be any fully controllable power electronic switching device.  A 

popular switch is the Insulated Gate Bipolar Transistor (IGBT).  IGBTs combine the fast 

switching and voltage control of the Metal-Oxide Semiconductor Field-Effect Transistor 

(MOSFET) with the high current, high power capability of the Bipolar Junction Transis-

tor (BJT).  The number of switches and capacitors required depends upon the specifica-

tions of the load.   

There are four major parameters that need to be taken into account when design-

ing a CMLC.  The first parameter is the number of phases required to power the load.  

The second parameter is the number of voltage levels to be obtained.  The third parameter 

is the switch configuration.  The final parameter is the ratio of the bulk converter’s input 

DC voltage to that of the conditioning converter. 

1. Number of Phases 
The number of phases required is dictated by the motor load.  Typically, motor 

loads operate using three phases; however, five, seven, or even fifteen phases are not at 

all uncommon.  In fact, IPS uses a fifteen-phase induction machine that is being powered 

as three separate five-phase systems.  Additionally, single-phase converters can be cre-

ated. 

As with many converter topologies, all the phases of the CMLC are identical in 

construction [7].  The only difference between the phases is the sequence in which the 

switches are fired.  In order for multi-phase systems to work properly, identical switches 
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on each phase must be fired at different times depending on the displacement angle.  The 

displacement angle is simply 360° divided by the number of phases in the system.  For 

example, a balanced three-phase system has a displacement angle of 120°. 

The design of single-phase systems differs slightly from that of multi-phase sys-

tems.  In both systems, a neutral point is required in order to achieve the different voltage 

levels.  In single-phase systems, the neutral points of the upper and lower converters must 

be connected.  This fact was discovered experimentally and will be explained in Chapter 

V.  In multi-phase systems, the neutral points of the upper and lower converters are not 

connected. 

2. Number of Voltage Levels 
The number of voltage levels determines how closely the converter output can 

approximate a sine wave.  By increasing the number of voltage levels, a sine wave can be 

better approximated [9].  As the output becomes more sinusoidal, the harmonic content of 

the phase current will decrease [9]. 

Two numbers are used to indicate the number of voltage levels for a CMLC.  The 

first number refers to the number of voltage levels that the bulk converter is capable of 

creating.  The second number refers to the number of voltage levels the conditioning con-

verter is capable of producing.  For example, a CMLC created by connecting two three-

level converters to the terminals of a load is referred to as a 3/3 CMLC.  It is important to 

note that the number of voltage levels for the bulk converter does not necessarily have to 

equal the number of voltage levels of the conditioning converter. 

The total number of voltage levels achievable is simply the product of the number 

of voltages levels for each converter.  For example, a 3/5 CMLC is capable of producing 

fifteen different voltage levels.  Certain voltage level combinations are common because 

of their ease of implementation; however, there is no standard number of voltage levels. 

3. Switch Configuration 
The switch configuration refers to how the source voltage is applied to each indi-

vidual switch.  The most popular configuration is known as Neutral-Point Clamped 

(NPC) [9].  NPC switches only have a fraction of the DC input voltage applied across it. 
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When using NPC switches, the voltage applied to each switch is reduced.  This 

means that for a given system, lower rated switches can be used.  On the other hand, for a 

given switch rating, the DC bus voltage of the system can be increased. 

4. Input DC Voltage Ratio 
The ratio of the input DC voltages of the bulk and conditioning converters can 

have a significant effect on the operation of the CMLC [9].  In order to understand the 

effect this ratio can have it is necessary to transform the phase voltages into the quadra-

ture-direct (q-d)  reference frame.  Reference frames are used to transform a nonlinear 

system into a linear system for a specific quiescent or operating point.  For more informa-

tion on the q-d reference frame please refer to Reference [10].  The first step of this trans-

formation is to represent the phase voltages in terms of the line-to-neutral point voltages 

of the converters: 

 
2 1 1

1 1 2 1
3

1 1 2

as a ax

bs b bx

cs c cx

v v v
v v v
v v v

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (2.1) 

The line-to-neutral point voltages in Equation 2.1 are now used to represent the phase 

voltages in the q-d reference frame by means of the following equations: 

 2 1 1
3 2 2qs as bs csv v v v⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 (2.2) 

and 

 ( )1
3ds cs bsv v v= − . (2.3) 

Equations 2.2 and 2.3 allow all possible combinations of the phase voltages to be 

represented in the q-d reference frame.  Once the transform is complete, it is interesting 

to look at a vector plot for all the combinations.  Figure 6 illustrates the effect of different 

voltage ratios on the performance of a 3/3 CMLC. 
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Figure 6.   3/3 CMLC Voltage Vector Plot [From Ref. 9.] 

 

The voltages dcV  and dcxV  in Figure 6 refer to the DC bus voltage of the bulk and 

conditioning converters, respectively.  Each point on the plots in Figure 6 represents a 

unique voltage output of the system.  The voltage output of the system depends upon the 

instantaneous configuration of the switches in both of the converters for all three phases 

[9].  As the number of switching states increases, a sine wave can be better approximated.  

From the four plots it can be seen that the most unique switching states occurs when the 

ratio of the bulk and conditioning converter input DC voltage is 3:1. 

 

C. OPERTION OF A CASCADED MULTI-LEVEL CONVERTER 
The CMLC constructed at NPS is a nine-level, three-phase, NPC CMLC.  Since 

this is the converter design that this thesis is based upon, it will be used in this section to 

explain the operation of a CMLC.   Figure 7 shows a schematic of the 3/3 CMLC con-

structed at NPS. 
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Figure 7.   3/3 CMLC Schematic Diagram 

 

As can be seen in Figure 7, the bulk converter consists of three sets of four 

switches.  Each set of switches can be controlled to produce one of three voltages.  The 
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conditioning converter’s construction is identical to that of the bulk converter.  The motor 

load is a quarter horsepower three-phase induction motor. 

The different voltage levels are achieved by turning certain pairs of switches on or 

off [9].  Table 1 shows all the possible switch configurations and their corresponding 

output for the “A” phase. 

 
Table 1. Switch Configurations and Outputs for Phase A 

 

The first eight columns in Table 1 represent the eight different switches located in 

the “A” phase of the CMLC in Figure 6 (S1-A through S2-A and S1x-A through S4x-A).  

A “1” in the column denotes that the switch has been fired, in other words, the switch is 

on.  A “0” in the column denotes that the switch has not been fired, in other words, the 

switch is off.  The “a” and “ax” columns express the output of the bulk and conditioning 

converters, respectively.  The final column indicates the voltage applied to the “A” phase 

of the motor, where “E” is simply the value of dcxV . 

A simple control algorithm can be used to demonstrate how the different voltage 

levels can be used to approximate a sine wave.  The algorithm steps through the different 

voltage levels in order to approximate the sine wave.  Figure 8 illustrates the voltage 

waveform created using this simple algorithm. 
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Figure 8.   Nine-Level Sine Wave Approximation 

 

The reference sine wave (green) can be seen in Figure 8.  Also, the nine-level step 

approximation (blue) can be seen in Figure 8.  If the number of voltage levels was de-

creased, then the approximation would not be as good.  If the number of voltage levels 

was increased, then the approximation would be better. 

For a given number of voltage levels, the approximation can be made better using 

more advanced control algorithms.  These control algorithms may take more effort to im-

plement, but the reduction in output current and voltage harmonics is significant.  The 

next chapter discusses two of the most popular advanced control algorithms. 

 

D. SUMMARY 

The CMLC is used to transform a DC bus voltage into an AC sinusoidal output 

voltage.  The CMLC accomplishes this task by connecting different DC input values to 

the load using a set of switches.  Load requirements dictate the design of the CMLC.  

Four major parameters must be taken in to account during this design process.  The four 

parameters are the number of phases, the number of voltage levels, the switch configura-

tion, and the DC input bus voltage ratio.  The following chapter discusses advanced con-

trol algorithms necessary to improve the operation of the CMLC. 
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III. CONTROL STRATEGIES FOR THE CASCADED MULTI-
LEVEL CONVERTER 

A. PURPOSE 

This chapter discusses the differences between open-loop and closed-loop control.  

Additionally, this chapter provides a detailed description of the two most popular control 

strategies used to operate CMLCs.  

 

B. OPEN-LOOP VERSUS CLOSED-LOOP CONTROL 
Open-loop and closed-loop refer to the feedback path of the control system.  For 

most applications closed-loop control is preferred.  However, open-loop control is often 

implemented initially to test the design of a system. 

1. Open-loop Control 
An open-loop control system is controlled solely and directly by one or more in-

put signals [7].  Figure 9 illustrates the basic concept behind an open-loop control system. 

 
Figure 9.   Open-loop Control System 

 

As can be seen in Figure 9, there is no path from the output, back to the input.  

This means that the input of the system is completely independent of the output.  Since 

the input is not affected by the output, there is no way to regulate the output to respond to 

changes in the system.  For example, an open-loop motor controller would not be able to 

regulate a constant shaft speed for transient load operations.  Therefore as the load 

changes, the shaft speed will either increase or decrease.   

The inability of the open-loop controller to maintain a specific output condition 

for a given system is typically why open-loop controllers are not implemented in practice.   
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2. Closed-loop Control 

A closed-loop control system is controlled by a combination of one or more input 

signals as well as one or more feedback signals [7].  Each system must be examined in 

order to determine the relevant input and feedback signals.  Figure 10 illustrates the basic 

concept of a closed-loop control system. 

 
Figure 10.   Closed-loop Control System 

 

In Figure 10, the feedback path leads from the output, through a block represent-

ing the feedback gain, to the input.  This feedback path provides a way for the output to 

affect the input.  Now that the output of the system can influence the input to the system, 

the output can be regulated to account for changes in the system.  For example, a closed-

loop motor controller would be able to maintain a constant output speed regardless of 

how the load is changed.  Depending on the feedback gain and other parameters, the out-

put speed may change for a short amount of time; however, eventually the speed will re-

turn to its previous value. 

When designed properly, closed-loop controllers add stability to a system, which 

an open-loop controller could never achieve.  Additionally, closed-loop controllers allow 

engineers to design highly complex integrated systems. 
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C. SINE-TRIANGLE PULSE WIDTH MODULATION 

PWM is the process of varying the duty cycle of a switch, or switches, while 

maintaining a constant switching frequency [11].  The duty cycle is simply the amount of 

time a switch is conducting versus the amount of time the switch is not conducting [11].  

Sine-triangle PWM (SPWM) refers to the manner in which the PWM signal is generated. 

For a 3/3 CMLC there are nine possible voltage levels that can be achieved by the 

converter.  In order to determine which of the nine levels the converter should be produc-

ing, eight triangle waveforms are used as a basis for comparison with a reference sine 

wave. Figure 11 illustrates a SPWM system with eight triangle waves and a 60-Hz refer-

ence sine wave. 

 
Figure 11.   Nine Level SPWM System 

 

The instantaneous value of the reference waveform is obtained at each sample 

point.  This value is then compared to each triangle waveform to determine how many 

triangle waveforms the sampled value is greater than.  The following example will clarify 

how the voltage level is obtained.  From Figure 11, it can be seen that the instantaneous 

value of the reference sine wave at 4 ms is approximately 8.  At this point the reference 

waveform has a larger magnitude than any triangle waveform; therefore the number of 

triangle waveforms the sample value is greater than is 8. 
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After making all the necessary comparisons a waveform similar to Figure 12 can 

be obtained. 

 
Figure 12.   SPWM Voltage Level Output 

 

The waveform in Figure 12 is essentially a digitized version of the reference sine 

wave.  This process is very similar to the methods used to digitize voice signals in com-

munications systems.  Once the digitized waveform is created, the signal is sent to a 

switch decoder to determine which combination of switches will be needed in order to 

obtain the correct output voltage. 

SPWM is a relatively simple way to produce a high fidelity output current from a 

given converter.  However, SPWM has the significant drawback of being an open-loop 

control strategy.  SPWM is considered mainly an open-loop control strategy because im-

plementing a closed-loop control strategy would require the reference waveforms to 

change dynamically.  To address this problem, a more complex algorithm known as 

Space Vector Modulation (SVM) has been developed. 
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D. SPACE VECTOR MODULATION 

The basic principle behind SVM is to represent all possible voltage outputs of a 

converter in the q-d reference frame, which was previously discussed in Chapter II Sec-

tion B.  Equations 2.1, 2.2, and 2.3 are used to transform the phase voltages into the q-d 

reference frame.  Figure 13 illustrates the voltage vector plot produced for a 3/3 CMLC 

where the input DC bus voltage ratio of the bulk to conditioning converter is 3:1. 

 
Figure 13.   3/3 CMLC Voltage Vector Plot 

 

Each point on the plot in Figure 13 represents a specific state of the converter.  A 

converter state consists of the position of all the switches for both the bulk and condition-

ing converters, as well as for all three phases.  A sinusoidal voltage is created by rotating 

a reference voltage vector around the plot [11].  The result is a “ring” of switching states 

that will be used to approximate the voltage vector.  Figure 14 illustrates the “ring” that is 

created by rotating the reference voltage vector around the plot. 
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Figure 14.   3/3 CMLC Voltage Vector Plot with Reference Vector “Ring” 

 

The reference voltage vector is approximated by selecting the three closest 

switching states of the converter [12].  Simple geometric relationships will determine the 

amount of time the converter should dwell in each state in order to accurately approxi-

mate the reference voltage vector.  Once the algorithm determines the switching state of 

the converter, a simple table can be used to determine which switch combinations are re-

quired to produce the proper output voltage. 

The main advantage of SVM over SPWM is that the reference voltage vector can 

be generated using a feedback loop, thus SVM can be made into a closed-loop control 

system [11].  Additionally, with careful analysis a switching pattern can be created to 

regulate the DC bus voltage of the conditioning converter using the positive power flow 

from the bulk converter [9].  This means that only one DC bus is required to power both 

the bulk and conditioning converters. 
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E. SUMMARY 

Open-loop control systems are often implemented initially during prototyping due 

to their relatively simple design.  Once the algorithm and hardware is tested, engineers 

often provide a feedback loop.  This feedback loop is used to regulate a desired output.  

For example, a feedback loop for a motor could be used to provide a constant output 

speed, regardless of the load conditions.  There are two algorithms most commonly used 

to control a CMLC, SPWM and SVM.  SPWM is a relatively simple algorithm that gives 

a desirable output current waveform.  However, due to the fact that SPWM is an open-

loop control strategy it is often only used in initial design prototyping.  SVM is the 

closed-loop solution for control of a CMLC.  Due to the ease of implementation, the 

SPWM control strategy was used as the basis of this thesis.  The following chapter dis-

cusses the implementation of the SPWM control strategy. 
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IV. IMPLEMENTATION OF CONTROL STRATEGY 

A. PURPOSE 
The purpose of this chapter is to discuss the specific details of implementing the 

strategy used to control the 3/3 CMLC constructed at NPS.  The algorithm was developed 

using a simulation software package.  Once the algorithm was tested, it was compiled 

onto a Digital Signal Processor (DSP) board and routed to the hardware. 

 

B. SIMULATION SOFTWARE 
The simulation software package used for the development and testing of the con-

troller for the 3/3 CMLC constructed at NPS is Matlab Simulink.  Simulink allows users 

to quickly and easily create a variety of different control systems for development and 

testing purposes. 

The controller design that was chosen for development is the SPWM.  Figure 15 

illustrates the top-level view of the SPWM controller in Simulink. 



30 

 
Figure 15.   Simulink Model of SPWM Controller 

 

The controller in Figure 15 consists of three reference signals, a set of triangle 

waveforms, three phase-legs, and three DSP interface ports. 

1. Reference Signal Generator  
The three reference signal generators in Figure 15 are labeled Reference A, Refer-

ence B, and Reference C.  The reference signal generators are identical except that the 

generated signals are 120˚ out-of-phase with each other.  The Simulink reference signal 
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generator can be expanded to show the internal components.  Figure 16 shows the ex-

panded view for phase “A.” 

 
Figure 16.   Reference Signal Generator (Phase A) 

 

The SPWM reference signal chosen for this converter is slightly different than 

previously discussed.  Instead of using a sine wave as the reference signal, the following 

signal is used: 

 ( ) ( ) ( )( )( )14 1 cos 2 60 cos 2 3 60
6

r t π π⎡ ⎤= + −⎢ ⎥⎣ ⎦
. (4.1) 

Equation 4.1 describes a sine wave with a DC offset and third harmonic injection.  

The DC offset is added to make indexing into the switch decoder table easier.  (The 

switch decoder table will be discussed later in this chapter.)  Third-harmonic injection is 

used to boost the power output of the converter by taking advantage of the balanced 

three-phase load [13].  Since all triplen harmonics are eliminated in a three-phase wye-

connected floating-neutral point system, the power output can be raised by adding these 

harmonics to the reference signal [13].  In this case only the third harmonic is added for 

simplicity.  Figure 17 illustrates the output of the reference signal generator for phase 

“A.” 
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Figure 17.   Phase A Reference Signal 

 

As can be see in Figure 17, the signal is essentially a flattened sine wave.  The 

reference signals for phase “B” and phase “C” are similar to that shown in Figure 17, the 

only difference being the 120˚ phase shifts. 

2. Triangle Waveform Generator 
Since all three phases require the same set of triangle waveforms, only one trian-

gle waveform generator is needed.  This block is labeled Triangle Waves in Figure 15.  

The triangle waveform generator consists of eight Simulink repeating sequence blocks.  

For each repeating sequence there are two matrix parameters required.  The first parame-

ter is the time values for the sequence.  The second parameter is the output values that 

correspond to the time values.  For example, a triangle waveform that has an upper bound 

of 1, a lower bound of 0, and a frequency of 10 Hz would have the following matrix pa-

rameters: [0 0.05 0.1] and [0 1 0]. 

The triangle waveform frequency determines the overall switching frequency of 

the converter.  For this thesis, a switching frequency of 3600 Hz was used.  The output of 

the triangle waveform generator and the reference signal generator make up the inputs to 

the phase-leg.  These input signals can be seen in Figure 18 for phase “A.” 
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Figure 18.   Phase-Leg A Input Signals 

 

The eight triangle waveforms are clearly visible in Figure 18.  These eight wave-

forms in addition to the reference signal will be used to create the PWM signal that is fed 

to the switch decoder table. 

3. Phase Leg 
The three phase-legs located in Figure 15 are labeled Phase A, Phase B, and 

Phase C.  All three phase-legs are constructed identically.  The purpose of the phase-leg 

is to generate the gating signals required to fire the switches in the 3/3 CMLC.  Figure 19 

is an expanded view of the phase-leg for phase “A.” 
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Figure 19.   Phase-Leg A Expanded View 

 

The phase-leg consists of three basic components.  The first block, labeled If, 

compares the reference signal with the eight triangle waveforms.  Each triangle wave-

form has an upper bound and a lower bound.  This block is used to determine which tri-

angle wave’s upper and lower bounds encompass the sampled reference signal value.  

Once this triangle waveform is identified, a state (number from zero to eight) is assigned 

using the Action Statements block.  The output labeled states is essentially a digitized 

representation of the original reference signal.  Figure 20 shows the output labeled states 

superimposed over the original reference signal. 
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Figure 20.   Digitized Reference Signal 

 

The digitized reference waveform (green) can be seen in Figure 20.  The original 

reference signal (blue) is superimposed over the digitized signal in order to illustrate the 

relationship between the two signals.  At this point it should be obvious to see that if the 

number of states, or voltage levels, were increased; the digitized waveform would more 

closely approximate the reference signal.  Additionally, the reference signal could be bet-

ter approximated by an increase in the switching frequency, which is simply the fre-

quency of the triangle waveforms. 

Now that the reference signal has been digitized, it can be sent into the switch de-

coder table, labeled Gate Decoder in Figure 19.  The switch decoder table is simply a 

module that determines which switches need to be fired in order to create the desired 

state (output voltage level).  Figure 21 shows the expanded view of the Gate Decoder. 

 
Figure 21.   Gate Decoder Expanded View 
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The key block in Figure 21 is the Direct Look-Up Table.  This look-up table is 

where the gating signals are stored for each switch on the 3/3 CMLC.  Without this table, 

the controller would not know what switches must be fired in order to create the desired 

output voltage based on the reference signal.  Table 2 displays the data that is stored in 

the look-up table. 

 
Table 2. Gate Decoder Look-Up Table 

 

The Gate Decoder is fed with the state signal from Figure 20 (green curve).  The 

output of the table is the contents of the entire row that corresponds to the state.  For ex-

ample, if the value of the state signal is 4, then the output of the table is the following ma-

trix: [0 1 1 0 0 1 1 0]. 

The ceiling function is then used to ensure sharp transitions between the output 

signals when the state changes.  This block was added after experimentation showed that 

these transitions sometimes ramped instead of being a perfect step transition.  The Data 

Type Conversion block in Figure 21 converts the table output values into Boolean logic 

values which are required by the DSP interface ports.  Finally, the Demux block is simply 

a demultiplexer which converts the matrix output of the table into eight separate gating 

signals. 

Figure 22 shows the switching sequence for all eight switches during one refer-

ence signal period. 
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Figure 22.   Switching Sequence for Eight Switch Phase-Leg  

over one Reference Signal Period 
 

The top four plots in Figure 22 represent the four switches associated with the 

bulk converter (S1–S4).  The bottom four plots in Figure 22 represent the four switches 

associated with the conditioning converter (S1x–S4x).  A “1” represents that a switch is 

conducting where as a “0” represents that a switch is not conducting.  It is interesting to 

note that the bulk converter switches transition much less frequently then those of the 

conditioning converter. 

4. DSP Interface Port 
The DSP interface port allows the DSP card to connect the actual converter hard-

ware with the software controller.  Three DSP interface ports can provide 24 different 

digital I/O lines.  Section C in this chapter will cover the DSP interface in more detail. 
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C. DIGITAL SIGNAL PROCESSOR INTERFACE 

The DSP interface chosen for this thesis was the DS1103 module produced by 

dSPACE.  The goal of dSPACE is to provide a transparent interface for Rapid Control 

Prototyping (RCP) and Hardware-In-the-Loop (HIL) simulation.  The basic concept be-

hind RCP is to allow new control designs to be implemented and tested on real-time 

hardware without the need of building full production hardware [14].  With the use of 

RCP, control algorithms can be refined quickly and easily.  Once testing is completed on 

the algorithm, the production hardware can be produced with confidence in its perform-

ance. 

Additionally, academic and research institutions benefit from the RCP concept.  

Once the initial investment is made to purchase the dSPACE hardware and software, very 

little money needs to be spent to make numerous control designs.  dSPACE has elimi-

nated the need to send off controller designs to expensive and time-consuming prototyp-

ing facilities. 

Prototyping a design is a quick and easy way to develop a robust control algo-

rithm.  However, in order to refine the control design, all of the hardware components 

need to be simulated.  Since this is often not the most practical solution, dSPACE has de-

veloped HIL simulation.  HIL simulation essentially means that some actual hardware 

will be connected to the simulation through the DSP interface [14].  This connection al-

lows for design and testing on actual hardware components, instead of testing in a purely 

computer simulated environment. 

With the use of RCP and HIL simulation, complex designs can be implemented 

quickly and cost effectively.  The dSPACE interface consists of three main components: 

the DSP card, the DSP I/O board, and the DSP software interface, which will be dis-

cussed in the following section. 

1. DSP Card 
The DS1103 Power PC (PPC) controller board is a single-board system and is 

shown in Figure 23.  The board is inserted into a standard Peripheral Component Inter-

connect (PCI) card slot of a computer tower. 
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Figure 23.   DS1103 PPC Controller Board [From Ref. 15.] 

 

The DS1103 card shown in Figure 23 is designed to meet all the requirements of a 

complex DSP design.  The card contains all the necessary components for the processor 

and I/O.   

2. DSP I/O Board 
The CP1103 I/O board was chosen to interface the hardware with the DSP card 

and is shown in Figure 24. 

 
Figure 24.   CP1103 I/O Board [From Ref. 16.] 

 

As can be seen from Figure 24, the CP1103 contains numerous input and output 

ports.  The interface port that was used to connect the DSP card to the 3/3 CMLC at NPS 

was the 50-pin digital I/O connector.  The pin configuration diagram can be found in Ap-

pendix A. 
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3. DSP Software Interface 
The DSP software can essentially be divided up into two components.  The first 

component is the Simulink interface.  Simulink uses a modular design.  In order to main-

tain the same functionality, dSPACE designed interface port modules for use in Simulink.  

These modules allow the standard Simulink blocks to interface with the hardware.  Addi-

tionally, a real-time compiler was added to Simulink in order to load the DSP card with 

the desired simulation. 

The second component is the Control Desk interface.  This software takes the 

compiled code from Simulink and loads it onto the DSP card.  Once the DSP card has 

been loaded, the simulation can be run in real time with HIL.  Additionally, the Control 

Desk program allows the user to view all the signals going into and out of the DSP card 

as well as change parameters in the simulation. 

 

D. SUMMARY 
Once the controller is designed in Simulink, the algorithm can be compiled onto 

the dSPACE card.  The card then sends the necessary control signals to any hardware.  

With the combination of dSPACE and Simulink, control algorithms can be designed and 

tested on real hardware quickly and cost effectively.  The next chapter will discuss the 

design, testing, and performance of the 3/3 CMLC at NPS operated using the Simulink 

and dSPACE control interface. 
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V. HARDWARE PERFORMANCE ANALYSIS 

A. PURPOSE 
This chapter provides a detailed description of the 3/3 CMLC constructed at NPS.  

Additionally, this chapter discusses the tests performed on the converter as well as an 

analysis of the results obtained. 

 

B. CONSTRUCTION OF THE CASCADED MULTI-LEVEL CONVERTER 
The 3/3 CMLC constructed at NPS was built by Robert Crowe.  Crowe’s thesis, 

Design, Construction and Testing of a Reduced-Scale Cascaded Multi-Level Converter, 

provides a detailed description of the design and construction process [17].  This section 

will focus on the changes made to the original design. 

The most noticeable change to the design is the new layout of the converter.  The 

converter layout was changed in order to match the schematic in Figure 7.  In the process 

of changing the layout, copper bus bars were created to connect all the switches to each 

other and also to the DC busses.  This change in design will allow higher voltages and 

currents to be fed through the converter.  Figure 25 illustrates the layout of the 3/3 CMLC 

with the new copper bus bars. 
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Figure 25.   3/3 CMLC Construction 

 

The converter consists of two identically constructed multi-level converters.  The 

converter on the left of Figure 25 was operated as the bulk converter; where as the one on 

the right was operated as the conditioning converter.  Figure 26 provides a close-up view 

of the individual converter construction. 



43 

 
Figure 26.   Close-up View of the Bulk Converter 

 

As can be seen in Figure 26, each converter consists of twelve switching modules 

(one module is highlighted and labeled “1”), two capacitors (labeled “2”), six diodes (la-

beled “3”), two DC bus bars (labeled 4 and 6), and the neutral point bus bar (labeled 5).  

The two capacitors are used to regulate the voltage on the DC bus and reduce voltage rip-

ple.  The six diodes are used to neutral-point clamp the switches as discussed in Chapter 

II Section B.  The DC input bus bars are used to provide power to the converter.  Finally, 

the switch modules are used to create the AC output of the converter. 

The switch modules are the most complicated portion of the whole converter.  

Each module consists of three main sections: the snubber card, the gate driver card, and 

the IGBT switch.  The snubber card and IGBT switch remained unmodified.  However, 

two design changes were made to the gate driver card.   
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The purpose of the gate driver is to provide a floating ground for each switch [17].  

The gate driver consists of two inputs and one output.  Figure 27 shows the original 

schematic diagram of the gate driver card. 

 
Figure 27.   Original Gate Driver Schematic Diagram [After Ref. 17.] 
 

The inputs and outputs of the gate driver are visible on the schematic in Figure 27.  

The first input, labeled Transistor Amplifier Input, provides a 20-kHz square wave to the 

primary side of a pulse transformer.  The pulse transformer is used to isolate the gate 

driver from the power supply.  The secondary of the pulse transformer is connected to a 

full-wave diode rectifier.  The input square wave amplitude is adjusted to provide 

DC15 V±  at the output of the rectifier.  This DC15 V±  is used to power the Opto-Coupler. 

The second input to the gate driver card is labeled Digital Logic Input.  This input 

is provided by the DSP card.  The logic signal is simply the gating signal developed by 

the SPWM controller.  This input is fed directly to the opto-coupler.  The opto-coupler is 

used to isolate the gate driver’s ground from the ground of the DSP card.  Originally, the 

digital logic input to the gate driver card was provided through a coaxial cable that con-

nected to a BNC connector mounted on the gate driver card.  In order to interface with 

the DSP I/O board, this connection was replaced by a two-wire terminal connector.  A 

twisted-pair wire was then used to connect the DSP I/O board to the terminal connection.  

All twenty-four switches had to be modified before the converter was ready for testing. 



45 

The output of the gate driver is the gate signal, labeled Gate Signal Output.  The 

gate signal is an amplified and isolated copy of the digital logic input signal.  The output 

signal feeds directly into the gate of the IGBT switch.  During testing it was discovered 

that the IGBTs would turn on faster than they could turn off.  This condition caused the 

positive and negative voltage rails to be shorted to the neutral point for a brief period of 

time.  There are two possible solutions to this problem.  In order to prevent two switches 

from conducting at the same time, either the turn-on time of the switches can be increased 

or a delay, known as blanking time, can be inserted.  The following sections will discuss 

these two options. 

1. Turn-on Time Increase 
The goal of this method is to increase the amount of time it takes the switch to 

turn on, while leaving the turn-off time unchanged.  When the turn-on time of a switch is 

increased, the switch is essentially slowed down.  The turn-on and turn-off speed of a 

switch is dictated by the following equation: 

 RCτ = , (5.1) 

where τ  is the time constant for the switch, R  is the resistance in the discharge path of 

the switch’s capacitance, and C  is the value of the capacitance in the circuit.  If the value 

of τ  is increased, then the switch will take a longer amount of time to turn on or turn off.  

If the value of τ  is decreased, then the switch will take a shorter amount of time to turn 

on or turn off [18]. 

The value of this time constant for the circuit shown in Figure 27 depends on outR  

and the capacitance of the gate-to-emitter junction in the IGBT.  Since it was discovered 

that the turn-on time was too fast, the time constant for the turn-on circuit must be in-

creased.  Figure 28 shows the modified circuit used to create this turn-on time increase. 
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Figure 28.   Modified Gate Driver Schematic Diagram 

 

Figure 28 highlights the additional circuitry that was added to the gate driver card.  

The additional circuitry consists of two resistors, two diodes, and a capacitor.  When the 

gate is being turned on and turned off, the value of the time constants are given by the 

following equations: 

 ( )4on on GER C Cτ = +  (5.2) 

and 

 ( )4off off GER C Cτ = + . (5.3) 

If the goal is to increase the turn-on time, then the value of onR  in Equation 5.2 

needs to be significantly larger than the value of offR  in Equation 5.3.  This method was 

implemented in the lab because of time constraints; however, adding blanking time 

would be a better solution as discussed below. 

2. Blanking Time 
Instead of changing the rate at which the switch is capable of turning on, the 

blanking time method inserts a brief delay into every switching period.  This delay has to 

be long enough to ensure that all the switches are off before the start of the next switch-

ing period.  Since every switch in the converter receives this delay, the output of the con-

verter will be unchanged.  Figure 29 shows the necessary additions needed to implement 

blanking time for the gate driver card. 
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Figure 29.   Proposed Gate Driver Schematic Diagram 

 

As can be seen in Figure 29, two variable resistors, two resistors, two diodes, an 

operational amplifier, a buffer, and a capacitor are added to the circuit.  This circuit oper-

ates similarly to the one discussed in the previous section; however, since the circuit is 

not connected to the gate of the IGBT, the switching speed of the IGBT is unaffected.  

This circuit simply adds a delay to the digital logic input signal.  This delay causes a brief 

logic value of zero to be sent to the gates of all the switches in the converter at the begin-

ning of every switching period.  Variable resistors were chosen for this application in or-

der to tune the value of the logic delay.  This delay should be made as small as possible 

for each switch.  Additionally, a buffer is added to the output of the dSPACE I/O board to 

ensure that the logic signal is powerful enough to drive the new delay circuit.  Finally, an 

operational amplifier is used as a comparator to meet the opto-coupler’s manufacturer 

input slope requirement.  Implementing the gate driver circuit in Figure 29 would be 

relevant material for a follow-on thesis. 

Once the digital logic input terminals and the turn-on time increase circuit were 

added to the gate driver card, testing of the SPWM control algorithm was started.   
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C. TESTING OF THE CASCADED MULTI-LEVEL CONVERTER 

Testing of the 3/3 CMLC and SPWM control algorithm was conducting in three 

distinct stages.  The three stages of testing were initial DSP testing, single-phase testing 

of the 3/3 CMLC, and three-phase testing of the 3/3 CMLC.  The following sections will 

discuss these three stages of testing. 

1. Initial DSP Testing 
Initial DSP testing was conducted in order to figure out how to integrate the 

Simulink code, DSP software and hardware, and the actual hardware in the lab.  The first 

test performed used a Simulink function generator module to send a signal to the digital 

I/O port.  This signal was confirmed using an oscilloscope.  Once the presence of the sig-

nal was confirmed, the gate of an IGBT was connected to the digital I/O port.  The oscil-

loscope was then used again to confirm that the IGBT was being fired properly.  The 

purpose of the initial testing was mainly to ensure that the DSP interface was setup cor-

rectly.  More extensive testing of the converter and controller were conducted during the 

second stage. 

2. Single-Phase Testing 

Of the three phases of testing, the single-phase tests were the most extensive and 

time consuming.  Each phase-leg was connected to a 58 Ω  resistor and a 42.5 mH  in-

ductor.  The three phase-legs of the converter were then tested independently to ensure 

proper operation.  Many minor problems were corrected.  These problems usually con-

sisted of replacing damaged or missing components.  One major problem encountered 

was the shorting of the DC busses due to improper switching.  This problem was resolved 

by modifying the gate driver card as previously discussed. 

Additionally, during the initial single-phase testing it was found that in order to 

develop an output across the load, the neutral points of the bulk and conditioning con-

verters needed to be connected.  This connection was later removed when three-phase 

testing was conducted.  Once proper operation was confirmed on the three phases operat-

ing independently, three-phase testing was conducted. 
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3. Three-Phase Testing 

Since the converter was designed to power a three-phase resistive-inductive load, 

this was the most interesting set of tests conducted.  Three-phase testing was conducting 

using incremental DC bus voltages.  Table 3 lists the voltage increments used during test-

ing. 

 
Table 3. Bulk and Conditioning Converter DC Bus Voltages 

 

As can be seen in Table 3, the DC bus voltages ( dcV  and dcxV ) started low and 

were raised incrementally until the load was being operated at its rated power.  Tests one 

through three were conducted using three 58 Ω  resistors and three 42.5 mH inductors 

placed in series.  Eventually the inductive load was reduced to 4.25 mH .  Tests four and 

five were conducted using a quarter horsepower three-phase induction motor.  Since the 

goal of this thesis was to test the operation of the converter while powering a three-phase 

motor, all the results were taken while the motor was being operated at rated power.  The 

following section explains the results obtained during the final three-phase test. 

 

D. PERFORMANCE ANALYSIS 
Performance analysis was conducted using a quarter horsepower three-phase in-

duction motor operated at rated power.  This section provides a detailed analysis of the 

converter’s performance under rated load conditions. 

Figure 30 illustrates the motor load setup used to test the 3/3 CMLC in the lab for 

the final performance analysis. 
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Figure 30.   Motor Load Setup 

 

In addition to the motor itself, Figure 30 illustrates the other equipment required 

to perform the test.  This equipment included a spectrum analyzer, four-channel oscillo-

scope, dynamometer (with power supply), and three Hall-Effect current probes (with 

power supplies).   

The spectrum analyzer was used to measure the harmonic content of the phase 

current.  Additionally, the Total Harmonic Distortion (THD) of the phase current can be 

measured using the spectrum analyzer.  This measurement is dictated by the following 

equation: 
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where ,s hI  refers to the magnitude of the hth current harmonic and ,1sI  refers to the mag-

nitude of the fundamental current [7].  The spectrum analyzer used in this thesis was ca-

pable of measuring the first twenty harmonics to produce the THD. 

The oscilloscope was used to graphically display the voltage and current wave-

forms.  Also, the oscilloscope was used to measure waveform parameters such as peak 

amplitude, frequency, and phase angle.  The dynamometer was used to provide the torque 

required to operate the induction motor at rated conditions.  Finally, the Hall-Effect cur-

rent probes were used to measure the three phase currents. 

The final performance analysis consisted of two separate stages of testing.  The 

following sections will discuss the phases of testing as well as the results obtained in each 

stage. 

1. Bulk Converter Testing 

The first stage of testing consisted of operating the 3/3 CMLC as a single multi-

level converter.  This operation means that the bulk converter input DC bus was powered, 

while the conditioning converter remained without power.  Figures 31 and 32 illustrate 

the results of this test. 
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Figure 31.   Phase Voltage and Current (Bulk Converter) 

 

Figure 31 shows the phase voltage (red) and phase current (blue) waveforms for a 

single phase of the converter.  The other phase voltage and current waveforms would 

look nearly identical.  The differences between the three sets of waveforms would be 

slight variations in converter performance as well as being 120˚ out-of-phase.   

Due to the use of a 1:500 voltage isolator and 1:1000 Hall-Effect current probe 

with a gain of 100, the actual scale for the voltage and current waveforms is 100 V/div 

and 1 A/div, respectively.  It is important to note the peak amplitudes of the voltage and 

current waveforms.  The peak amplitude for the voltage waveform is approximately 165 

V.  The peak amplitude for the current waveform is approximately 1.6 A.  It is shown 

later that the peak amplitudes remain relatively unchanged when the conditioning con-

verter is powered.  This is due to the fact that the bulk converter is providing most of the 

power to the load. 
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The voltage waveform in Figure 31 is essentially a step approximation of a sine 

wave.  The current waveform is a sine wave except with a high harmonic content.  Figure 

32 is a frequency-domain representation of the current waveform in Figure 31. 

 
Figure 32.   Frequency-Domain Representation of the Phase Current  

for Bulk Converter Operation only 
 

The frequency-domain representation of a perfectly sinusoidal current would be 

one spike located at the fundamental frequency and no other spikes [7].  In Figure 32, the 

high harmonic content of the current waveform can be seen.  The total harmonic distor-

tion for the first 20 harmonics was measured to be 8.8%.  Most notable of the harmonics 

are the 5th, 7th, 11th, and 13th.  All four of these harmonics have a magnitude within 40 dB 

of the fundamental frequency’s magnitude, with the highest being approximately 20 dB 

smaller than the fundamental frequency’s magnitude.  The goal of adding the condition-

ing converter is to remove the harmonic content of the phase current.  The following sec-

tion will discuss the results obtained from adding the conditioning converter. 
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2. Bulk and Conditioning Converter Testing 

The second stage of testing consisted of operating the 3/3 CMLC as a cascaded 

converter.  This means that both the bulk and conditioning converters were powered.  As 

previously stated, the goal of this test is to reduce the harmonic content of the phase cur-

rent.  Figures 33 and 34 illustrate the result of this test. 

 
Figure 33.   Phase Voltage and Current (Bulk and Conditioning) 

 

Figure 33 shows the phase voltage (red) and phase current (blue) waveforms for a 

single phase of the converter.  There is a significant difference between the waveforms in 

Figure 33 and the waveforms in Figure 31.  The voltage waveform originally appeared to 

be a stepped sine wave, but now it appears to be nearly sinusoidal.  The current waveform 

has had the harmonic content practically eliminated.  However, the peak amplitudes for 

both the voltage and current waveforms have remained relatively unchanged.  This leads 

to the conclusion that the bulk converter was in fact providing the majority of the power 
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to the motor load.  The elimination of the current harmonics can be seen in Figure 34, 

which is the frequency-domain representation of the phase current. 

 
Figure 34.   Frequency-Domain Representation of the Phase Current  

for Bulk and Conditioning Converter Operation 
 

As can be seen in Figure 34, the harmonic content of the phase current has been 

suppressed.  The four large harmonics that are clearly visible in Figure 32 have been sig-

nificantly reduced in magnitude.  All the harmonics for the entire spectrum are at least 40 

dB smaller in magnitude than the fundamental frequency’s magnitude.  The total har-

monic distortion of the first 20 harmonics was measured to be 1.3%. 

In addition to ensuring that the conditioning converter was removing the har-

monic content as designed, the three-phase performance of the cascaded converter was 

evaluated.  Figures 35 and 36 show the phase voltages and currents, respectively.   
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Figure 35.   Phase Voltages (Three-Phase) 

 

The phase voltages for the 3/3 CMLC should all be of the same amplitude and 

120˚ out-of-phase.  As can be seen in Figure 35, this relationship is clearly true.  A simi-

lar relationship exists for the phase current waveforms. 
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Figure 36.   Phase Currents (Three-Phase) 

 

As can be seen in Figure 36, the three phase currents have approximately the 

same amplitude and are in fact 120˚ out-of-phase with one and other.  This means that the 

motor load is in fact a balanced three-phase load and that there is no zero sequence cur-

rent.   

The results obtained by testing the cascaded converter match the expected out-

come.  The reduction in harmonic content is clearly visible in both the time and fre-

quency domains.  Since reducing the current harmonics was the overall goal of this the-

sis, the tests were considered a complete success. 
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E. SUMMARY 

Without the use of an advanced control algorithm, like the one developed for this 

thesis, the 3/3 CMLC constructed at NPS would never have been able to achieve such 

high fidelity current waveforms.  The final testing of this converter with the SPWM con-

trol algorithm is considered a success.  The overall THD was reduced from 8.8% to 1.3%.  

The following chapter will summarize the findings of this final performance analysis, 

provide some observations, and give suggestions for follow-on work. 
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VI. CONCLUSIONS 

A. SUMMARY OF FINDINGS 
The goal of this thesis was to develop an advanced control algorithm for a CMLC 

previously constructed in the Power Electronics Laboratory at NPS.  The control algo-

rithm chosen for this thesis was the SPWM algorithm.  A DSP was used to interface the 

hardware converter with the control algorithm developed in Simulink. 

After some design changes to the hardware portion of the converter, extensive 

testing was performed to ensure the algorithm worked properly.  The results obtained 

during the final performance analysis are consistent with both the theoretical expectations 

and results obtained in similar research projects in universities throughout the United 

States. 

The SPWM proved effective in reducing the THD of the output current when 

used to operate the bulk and conditioning converters.  This reduction in harmonics was 

the major objective of this thesis. 

This research will benefit future development of the all-electric ship designs al-

ready in various phases of construction and testing.  Most notably of these programs is 

the DD(X).  Since the DD(X) program uses a multi-level converter as the high power 

converter for the electric drive motor, this thesis can directly support development of a 

system to reduce the harmonic content of the phase currents. 

 

B. OBSERVATIONS 
The HIL design of the controller allowed for numerous changes to be made to the 

control algorithm developed for this thesis.  These changes were easy to make and the 

results of the changes could be measured within minutes.  The use of dSPACE and Simu-

link to build controllers for prototype converters should be encouraged since it is a quick 

and cost effective method for implementing controller designs. 

Additionally, the results obtained using this method of control design are accurate 

and reliable.  The lessons learned by interfacing hardware and software-simulations are 

invaluable.  Many computer simulations simplify the system in order to make the simula-
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tion development time reasonably fast.  This simplification process means that either 

components are left out because they are too difficult to simulate or that the operation of 

the components is simplified in order to make them easier to simulate.  With HIL simula-

tion, there are no simplifications made because the hardware is physically connected to 

the simulation software. 

The biggest problem encountered in this thesis was a flaw in the gate circuit de-

sign that allowed two or more switches to fire out of sequence, thus creating a bus short.  

While the problem was eventually corrected, this is an example of a situation that would 

be difficult to simulate because it relied on the response of actual hardware. 

 

C. FUTURE WORK 
The all-electric ship concept will be an integral part of future naval ship design.  

In order to remain a part of this revolution in ship technology, NPS should encourage fol-

low-on work to this and similar theses.  Possible areas for future research include: 

• Development of a SVM controller. 
• Comparison of SVM controller results with the results obtained in this thesis 

for the SPWM controller. 
• Implementing the new gate driver design proposed in this thesis. 
• Constructing a CMLC capable achieving more voltage levels. 
• Constructing a higher power CMLC. 
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APPENDIX A 

Appendix A contains the pin configuration table for the 50 pin digital I/O connec-

tor located on the CP1103 I/O board. 
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