Award Number: DAMD17-01-1-0280

TITLE: Identification of Widely Applicable Tumor-Associated Antigens for Breast Cancer Immunotherapy

PRINCIPAL INVESTIGATOR: Jining Bai, Ph.D.

CONTRACTING ORGANIZATION: The Johns Hopkins University School of Medicine
Baltimore, Maryland 21205

REPORT DATE: October 2003

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Identification of Widely Applicable Tumor-Associated Antigens for Breast Cancer Immunotherapy

Jining Bai, Ph.D.

The Johns Hopkins University School of Medicine
Baltimore, Maryland 21205
E-Mail: jnbai@jhmi.edu

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Approved for Public Release; Distribution Unlimited

This study is a feasibility study of a novel immunotherapeutic strategy for the treatment of breast cancer. The rationale is based upon recent findings that genes belonging to the pp32 family are differentially and alternatively expressed in most human breast cancers. In general, benign breast tissues express pp32, a tumor suppressor, whereas breast cancers express tumorigenic family members, including pp32r1 and pp32r2. Since pp32r1 and pp32r2 are expressed in nearly all breast cancers, but not in normal adult tissues, they may reasonable serve as targets for antigen-specific immunotherapy. The purpose of this study is to identify tumor-associated antigens (TAA) in pp32r1 and pp32r2, then test their suitability in vitro as immunotherapeutic targets in breast cancer. Currently, the animal study is underway. If successful, the results may translate into eventual clinical trials of peptide vaccines or adoptive T cell therapy.

TAA, Immunotherapy

Unclassified

Unclassified

Unlimited

NSN 7540-01-280-5500
Table of Contents

- Cover...1
- SF 298...2
- Table of Contents..3
- Introduction...4
- Body...4
- Key Research Accomplishments..............................6
- Reportable Outcomes..6
- Conclusions...6
- References..
- Appendices..7
Introduction:

In the IDEA proposal, we proposed a feasibility study of a novel immunotherapeutic strategy for the treatment of breast cancer. The rationale is based upon recent findings that genes belonging to the pp32 family (Figure 1) are differentially and alternatively expressed in most human breast cancers. In general, benign breast tissues express pp32, a tumor suppressor, whereas breast cancers express tumorigenic family members, including pp32r1 and pp32r2. Since pp32r1 and pp32r2 are expressed in nearly all breast cancers, but not in normal adult tissues, they may reasonably serve as targets for antigen-specific immunotherapy.

Body:

Statement of Works:

Task 1. Identify, synthesize and test candidate peptides that could potentially bind to HLA class I molecules based on the coding sequence of pp32r1 and pp32r2. (Month 1-6)

Task 2. Screen *in vitro* for candidate pp32r1 & pp32r2 peptides that fulfill the requirements for TAA. (Month 7-12)

Task 3. Evaluate the pp32r1/pp32r2- specific cytotoxicity against a broad range of natural targets (established or primary breast cancer cell lines) to determine range of applicability. (Month 13-20)

Task 4. Evaluate *in vivo* immunogenicity of pp32r1 and/or pp32r2-derived TAAs in human breast cancer animal models. (Month 21-36)

In the first year of this project, we successfully identified two candidate TAA epitopes, which are capable of triggering MHC Class I dependent CTL response *in vitro* against artificial target cells. In the second year of this project, we further evaluated the applicability of the above candidate TAA epitopes against nature target cells (Task #3). In addition, we currently proceed into the early stage of *in vivo* study (Task #4).

1) Task #1: Identify, synthesize and test candidate peptides that could potentially bind to HLA class I molecules based on the coding sequence of pp32r1 and pp32r2.

Using Bioinformatics and ImmunoGenetics tools, we analyzed the entire coding region of pp32, pp32r1 and pp32r2 genes for binding affinity with HLA-A*0201 molecule as well as the degradation pattern by proteasomal cleavages. The result of calculation shown (Table 1) that 19 motifs are potentially favorable of binding to HLA-A*0201 molecule with high affinity. To verify the prediction *in vitro*, HLA-A*0201+ TAP-deficient T2 hybridoma (ATCC) was pulsed with 50ug/ml of each peptide representing the motif (or control) and 5ug/ml of b2-microglobulin for 18hr at 37 C. HLA-A*0201 expression was then measured by flow cytometry using mAb BB7.2 (ATCC) followed by incubation with FITC-conjugated secondary antibody. Fluorescent index of HLA-A*0201 to each peptide can be determined as: (mean fluorescence with peptide - mean fluorescence without peptide) / (mean fluorescence without peptide). The result shown 10 out of 20 motifs is capable of binding to HLA-A*0201 in a concentration dependent manner (Table 1).
2) Task #2: Screen for candidate pp32r1 & pp32r2 peptides that fulfill the requirements for TAA. In order to be qualified as a TAA, a motif has to be able to meet several criteria in addition to the binding to HLA-A*0201. These requirements include (i) the antigen can be naturally processed by tumor cells, (ii) it permits expansion of antigen-specific CTL; (iii) it is presented in a MHC-restricted fashion. CTL assay was carried out to test if the motifs identified in Aim#1 fulfill the requirements for TAA.

In brief, Cr51-labeled target cells (T2 cells pulsed with peptide or cancer cell expressing pp32 family members) were incubated with various numbers of CTL effector cells for 4 hr. Cr51-release assays were performed in triplicate per condition using 5x10^5 labeled target cells per well in a 96-well plate. Percent specific lysis will be calculated from CPM of (experimental result - spontaneous release)/(maximum release - spontaneous release). The results, summarized in Table 2, indicate that 2 out of 10 motifs fulfilled the above requirement as TAA.

3) Task #3. Evaluate the applicability of the pp32r1/pp32r2- specific cytotoxicity against a broad range of natural targets.

To evaluate the applicability of the pp32r1/pp32r2- specific cytotoxicity against a broad range of natural targets, primary cultures of breast tumor that are both HLA-A*0201 positive and pp32r1 / pp32r2 positive was selected as target cells. The expression of HLA-A*0201 was verified by flow cytometry, whereas the expression of pp32r1 and/or pp32r2 was confirmed by subtype-specific RT-PCR. CTL assay was carried out to test if the motifs identified in Task #1 are applicable to HLA-A*0201 positive and pp32r1 / pp32r2 positive primary cultures. In brief, Cr51-labeled target cells were incubated with various numbers of CTL effector cells for 4 hr. Cr51-release assays were performed in triplicate per condition using 5x10^5 labeled target cells per well in a 96-well plate. Percent specific lysis will be calculated from CPM of (experimental result - spontaneous release)/(maximum release - spontaneous release). Unlike the artificial target cells used in Aim#2, the results shown no detectible pp32r1/pp32r2- specific cytotoxicity against primary cultures of breast tumor that are both HLA-A*0201 positive and pp32r1 / pp32r2 positive. A possible explanation might be the difference in expression/presentation of pp32r1 / pp32r2 between primary cells and artificial target cells.

Due to the high homology among pp32 family members (over 90% identity at amino acid level), none of the existing antibodies is subtype- specific. Therefore, the reliable method to screen pp32r1 and pp32r2 expression has been based on RT-PCR. Although this screen method is very effective to identify cells/tissue that express pp32r1 and pp32r2 at mRNA level, its result may not correlate with the expression of pp32r1 and pp32r2 at the protein level, which is crucial for evaluating pp32r1/pp32r2- specific cytotoxicity. As an alternative, current efforts are being made to establish subtype- specific antibodies so that a reliable method to test the expression of pp32r1 / pp32r2 at protein level will be available to re-evaluate the applicability of the pp32r1/pp32r2- specific cytotoxicity against natural target cells.

4) Specific Aim 4. Evaluate in vivo immunogenicity of pp32r1 and/or pp32r2-derived TAAs in human breast cancer animal models. This phase of study includes (i) evaluate whether the identified TAAs are capable of triggering the expansion of pp32r1/ pp32r2-specific CTL and antigen-specific CTL response in vivo, (ii) Study anti-tumor activity of pp32r1/pp32r2- specific CTLs in breast cancer xenograft model. We are currently in the process of testing and validifying animal models.
Key Research Accomplishments:

We have identified two peptide motifs from pp32 family members, which fulfill the requirement to be TAAs. This study provided bases for further feasibility study of pp32r1 and pp32r2 as target breast cancer immunotherapy.

Reportable Outcomes:

Conclusions:

We demonstrated *in vitro* that

(i) the oncogenic pp32 family members can be presented by HLA-A*0201,
(ii) the HLA-A*0201 cells bearing these motifs can be recognized and lyzed by pp32r1- or pp32r2- specific CTL in a MHC class I specific manner.
Figure 1. Alignment of pp32, pp32r1 & pp32r2 sequences.
Differences from the pp32 sequence are indicated underneath. The variant pp32r2 encodes a truncated protein (wavy lines indicate the truncated region).
<table>
<thead>
<tr>
<th>Peptide</th>
<th>BIMAS</th>
<th>LpRep</th>
<th>FPEITHI</th>
<th>T2 Stabilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>0202-01</td>
<td>3499.535</td>
<td>3.37</td>
<td>26</td>
<td>+</td>
</tr>
<tr>
<td>0202-02</td>
<td>1591.602</td>
<td>2.46</td>
<td>22</td>
<td>-</td>
</tr>
<tr>
<td>0202-03</td>
<td>805.719</td>
<td>2.76</td>
<td>27</td>
<td>+</td>
</tr>
<tr>
<td>0202-04</td>
<td>681.542</td>
<td>3.54</td>
<td>18</td>
<td>+</td>
</tr>
<tr>
<td>0202-05</td>
<td>636.316</td>
<td>4.19</td>
<td>25</td>
<td>+</td>
</tr>
<tr>
<td>0202-06</td>
<td>481.542</td>
<td>6.90</td>
<td>27</td>
<td>-</td>
</tr>
<tr>
<td>0202-07</td>
<td>445.216</td>
<td>3.13</td>
<td>26</td>
<td>+</td>
</tr>
<tr>
<td>0202-08</td>
<td>432.319</td>
<td>4.87</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td>0202-09</td>
<td>399.682</td>
<td>7.69</td>
<td>23</td>
<td>+</td>
</tr>
<tr>
<td>0202-10</td>
<td>379.216</td>
<td>5.81</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td>0202-11</td>
<td>301.331</td>
<td>3.12</td>
<td>27</td>
<td>+</td>
</tr>
<tr>
<td>0202-12</td>
<td>281.542</td>
<td>3.47</td>
<td>22</td>
<td>-</td>
</tr>
<tr>
<td>0202-13</td>
<td>264.498</td>
<td>6.72</td>
<td>24</td>
<td>+</td>
</tr>
<tr>
<td>0202-14</td>
<td>226.014</td>
<td>3.54</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>0202-15</td>
<td>212.775</td>
<td>6.43</td>
<td>19</td>
<td>+</td>
</tr>
<tr>
<td>0202-16</td>
<td>172.752</td>
<td>6.81</td>
<td>21</td>
<td>+</td>
</tr>
<tr>
<td>0202-17</td>
<td>148.896</td>
<td>5.87</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>0202-18</td>
<td>139.730</td>
<td>6.72</td>
<td>19</td>
<td>-</td>
</tr>
<tr>
<td>0202-19</td>
<td>105.719</td>
<td>7.99</td>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td>0202-20</td>
<td>103.362</td>
<td>6.79</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td>MGA1</td>
<td>734.189</td>
<td>4.86</td>
<td>26</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 1. Predicted HLA-A*0201 Binding Motifs and Their Ability to Bind T2 Cells.

Potential motifs was predicted by BIMAS, LpRep, FPEITHI.
The binding of Peptides to Human HLA-A2 was measured by T2 stabilization assay
Positive – calculated fluorescent index greater than 1.0.
Calculated fluorescent index = (Mean fluorescence with peptide - mean fluorescence without peptide)/(mean fluorescence without peptide)
<table>
<thead>
<tr>
<th>Peptide</th>
<th>CTL Lysis</th>
<th>Processing</th>
<th>MHC I Restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0202-01</td>
<td>+</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>0202-03</td>
<td>+++</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>0202-04</td>
<td>+</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>0202-05</td>
<td>+</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>0202-07</td>
<td>+++</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>0202-09</td>
<td>+</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>0202-11</td>
<td>-</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>0202-13</td>
<td>+</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>0202-15</td>
<td>-</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>0202-16</td>
<td>-</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>MGA1</td>
<td>+++</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ID9</td>
<td>-</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 2. Summary of CTL Assays for Motifs That are Capable of Binding to HLA-A*0201

Cytotoxicity Assay was carried out against Target cells:

* T2 Cell +/- peptides
+ MCF-7 (A2*, pp32r1*, pp32r2*)
 LNCAP (A2+, pp32r1+, pp32r2+)
MCF-7 (+/- anti-HLA-A2mAb)
Summary of Personnel Partially Supported by This Idea Award:

1) Jining Bai (PI)
2) Adetinuke Jagun/Tianzhi Mao (Technician)
CURRICULUM VITAE

Name: Jining Bai

Current Appointment: Assistant Professor
Department of Pathology
Johns Hopkins University School of Medicine

Addresses:

Office: Division of Molecular Pathology
Department of Pathology
Johns Hopkins School of Medicine
Room B-302
418 N. Bond Street
Baltimore, MD 21205
Phone: (410) 955-6920
Fax: (410) 502-5158
E-mail: jnbai@jhmi.edu

Home: 8 Warren Manor Ct.
Cockysville, MD 21030
Phone: (410) 666-8088

Education & Training:

1983-1988 B. Eng., Department of Engineering Physics,
Tsinghua University, Beijing, P. R. China

1990-1996 Ph.D. / Graduate studies, Department of Biophysics,
Johns Hopkins University Baltimore, MD

1996-1999 Post-doctoral Fellow, Division of Molecular Pathology
Department of Pathology, Johns Hopkins Medical Institutions,
Baltimore, MD
Professional Experiences:

<table>
<thead>
<tr>
<th>Year</th>
<th>Position / Title</th>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985-1986</td>
<td>Instructor, Computer programming</td>
<td>School of Professional Studies</td>
<td>Tsinghua University, Beijing, P. R. China</td>
</tr>
<tr>
<td>1986-1988</td>
<td>Research assistant, Institute of Material Sci. & Tech.</td>
<td>Tsinghua University, Beijing, P. R. China</td>
<td></td>
</tr>
<tr>
<td>1988-1990</td>
<td>Graduate studies, Department of Biol. Sci. & Tech.</td>
<td>Tsinghua University, Beijing, P. R. China</td>
<td></td>
</tr>
<tr>
<td>1989-1990</td>
<td>Teaching assistant, Biology Lab</td>
<td>Department of Biol. Sci.</td>
<td>Tsinghua University, Beijing, P. R. China</td>
</tr>
<tr>
<td>1991-1995</td>
<td>Pre-doctoral Fellow</td>
<td>Department of Embryology</td>
<td>Carnegie Institution of Washington, Baltimore, MD</td>
</tr>
<tr>
<td>1996-2000</td>
<td>Research Fellow, Division of Molecular Pathology</td>
<td>Department of Pathology</td>
<td>Johns Hopkins Medical Institutions, Baltimore, MD</td>
</tr>
<tr>
<td>2000-2001</td>
<td>Research Associate, Division of Molecular Pathology</td>
<td>Department of Pathology</td>
<td>Johns Hopkins Medical Institutions, Baltimore, MD</td>
</tr>
<tr>
<td>2001-2002</td>
<td>Instructor, Division of Molecular Pathology</td>
<td>Department of Pathology</td>
<td>Johns Hopkins Medical Institutions, Baltimore, MD</td>
</tr>
<tr>
<td>2002-</td>
<td>Assistant Professor</td>
<td>Department of Pathology</td>
<td>Johns Hopkins Medical Institutions, Baltimore, MD</td>
</tr>
</tbody>
</table>

Bibliography:

Refereed Publications

Bai J, Brody JR, Kadkol SS, Pasternack GR. Tumor suppression and potentiation by manipulation

Abstracts

Invention & Patents:

Grants & Contracts:

Current:

1) Idea Award DOD/CDMRP Principal Investigator
 Active
 Identification of Widely applicable Tumor-Associated Antigens for Breast Cancer ImmunoTherapy.
 (10/01-10/04) $100,000 (annual direct)

2) Pilot Award Breast Cancer SPORE/oncology Principal Investigator
 Active
 HOXB7, Widely Applicable Targets for Immunotherapy against Breast Cancer.
 (09/02-09/03) $40,000 (annual direct)

Honors & Awards:

Honored Student, Tsinghua University (1983-1988)
Outstanding College Graduate Award, National Education Commission of China (1988)
Winner of Natural Philosophy Competition, Tsinghua University (1990)
Travel Award, European Symposium in Signal Transduction (1991)
Carnegie Fellowship, Carnegie Institution of Washington (1990-1991)
Dean’s Fellowship, Johns Hopkins University (1990-1995)
Pathology Fellowship, Johns Hopkins Medical Institution (1996-1999)
National Research Award, Susan G. Komen Breast Cancer Foundation (1999-2001)
Concept Award, Congressionally Directed Medical Research (2000-2001)
Idea Award, Congressionally Directed Medical Research (2001-2004)

Invited Lectures:

 The 4th National Mission Conference for Breast Cancer
 Washington D.C.
 September, 2000

2) pp32 Gene Family, Potential Therapeutic Targets for Breast Cancer and Prostate Cancer.
 National Cancer Institute
Beijing, P.R. China
October, 2000

3) pp32 Gene Family at the Crossroad of Oncogenesis and Tumor Suppression.
The Cancer Congress 2000
Beijing, P.R. China, October, 2000