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Summary

Statement of the Problem

A current trend in the development of missiles is in the direction of more flexibility, higher ma-
neuverability, and higher speeds, all of which require a higher level of fidelity for calculations of
stability, loads, control, and guidance. Unfortunately, until now has been no integrated tool for
preliminary design that considers the related problems that need to be addressed to provide this
increase in fidelity. To this end, interdisciplinary basic research has been conducted that involves
structural analysis, dynamics, dynamic stability, aeroelastic stability, and trajectory analysis of
missiles, rockets, and projectiles.

Most Important Results

A computer code for the dynamic stability, structural dynamics and aeroelastic response of the
missile has been written using a geometrically-exact, mixed finite element method. The aerody-
namic modeling of the loading for the missile body and fins is based on slender-body theory and
thin-airfoil theory, respectively. Results agree with published results for dynamic stability and
show the development of limit cycle oscillations for disturbed flight near and above the critical
thrust. Parametric studies of the aeroelastic behavior of specific flexible missile configurations are
presented, including effects of flexibility on stability, limit-cycle amplitudes, and missile loads.
Results indicate little potential for affecting aeroelastic stability by means of composite couplings.
However, the results do yield a significant interaction between the thrust, which is a follower force,
and the aeroelastic stability. This observation led to additional research on the influence of engine
thrust on wing flutter.

1 Introduction

1.1 Background

Missile development design has seen growing emphasis of higher speeds, more demanding maneu-
vers, and higher flexibility to meet various mission requirements. For example, several U.S. Army
programs, such as extended range projectiles, the compact kinetic energy missile (CKEM) and the
ARROW system require increased maneuverability and flexibility, thus leading to an increase of
the relative importance of structural loads and deformation in the multidisciplinary problem.

Frequently missiles, rockets, and projectiles must deliver the last ounce of performance in order
to meet their design objectives. For example, projectile designers strive to maximize the payload
that the system delivers to a specified range; alternatively, they may strive for the maximum range
for a given payload. Since very small relative changes in total mass may mean large relative
changes in payload mass, even very small margins of gain are important. The extended range
projectile program calls for the increase of payload mass bythe use of composites in structural
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design. Defensive missiles, projectiles that are rocket powered in portions of their flight profiles
(such as the CKEM), and smart missiles may be designed to deliver precise hits with maximum
final kinetic energy or velocity in order to effectively knock out an incoming missile, tank, or
other enemy weapon. Greater sophistication in such areas asthe evasive maneuvering capability
of enemy weapon systems, for example, may require new generations of weapon system to deliver
higher speeds and sustain higher loads and skin temperatures.

It is important to recognize the potential nonlinearities which can arise in both missiles and
projectiles. One source of nonlinearities in missiles is a large axial force, so that even to get the
standard linear equations one must linearize about a nontrivial state. Additional nonlinearities in
both missiles and projectiles can arise due to free-play in threaded and snap joints. Also, fins on
missiles and projectiles have nonlinearities due to large deflections and free-play in the hinges.
Further nonlinear effects come about from matter shifting inside the casing. The need to account
for imperfections and free-play effects provides motivation to base the approach on exact nonlinear
kinematics.

Presently, missile conceptual designers specify the stiffness of the missile to structural design-
ers. This specification without feedback and iteration doesnot facilitate multidisciplinary design
optimization. Furthermore, even though the designs are driven by stiffness and not by strength, no
attempt has been made until now to take advantage of the elastic couplings afforded by use of com-
posites. Higher loads are likely to occur due to increased demands placed on modern equipment,
and there is a higher probability of the occurrence of staticand dynamic aeroelastic instabilities.
Nevertheless, present methodologies are incapable of coping with these problems. Designers must
wait until the prototype stage to see whether or not there aregoing to be aeroelastic problems in
the various flight regimes of the system. This approach is quite wasteful and inefficient.

The above observations also suggest coupling between the flight mechanics, guidance and
control of a missile and its structural dynamics and aeroelasticity. A strictly optimal trajectory may
induce higher internal loads and deformation, and aeroelastic phenomena can affect the originally
planned missile trajectory. Present methodologies do not allow the exploration of this coupling.
The stability problem due to thrust is strictly a dynamic stability issue, but aeroelastic phenomena
may influence it. Unlike conventional flight vehicles, however, the static and dynamic aeroelastic
instabilities may be coupled with flight dynamics modes. It is well known that a static criterion
of stability is not sufficient in systems loaded by follower force such as thrust. Thus, a statically
stable missile may be dynamically unstable. Structural deformation may affect the stability, and
use of elastic tailoring may allow the designer to avoid aeroelastic instabilities in the design space
early in the design effort.

Recent designs have emphasized the use of composite materials to keep the weight down.
As the duration of flight and flight velocity are increased, the rise in casing temperature due to
aerodynamic heating may become important. A significant rise in temperature may bring about a
degradation in the stiffness properties of the composite materials, particularly in the matrix. The
increased flexibility may enhance aeroelastic effects, creating non-negligible flexibility effects that
interfere with the control system’s ability to ensure that the missile or projectile reach precisely the
desired destination.
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Figure 1: Schematic of missile problem

With these trends in view, it seems imperative that modern analytical tools be created, so that
a far better understanding of the influence of missile designparameters and operating conditions
on their aeroelastic stability and loads can be obtained. Several issues introduced here will be dis-
cussed and their study conducted within one framework, in which the structural part is based on a
mixed variational formulation which is geometrically exact and based on finite elements and aero-
dynamic theories which vary according to the flight regime and missile geometry. The motivations
for specific aspects of the missile aeroelasticity study aredepicted in Fig. 1.

1.2 Literature Survey

In-flight missiles and projectiles experience various static, dynamic and aeroelastic stability issues
with or without thrusts. But those problems have not had sufficient attention and there were at
most a couple of published attempts to include the effects ofaeroelasticity on the trajectory. Also,
the flight mechanics of elastic missiles has seen little attention until recent years. Missiles and
projectiles are typical examples of structures that can be represented by beam models. Indeed,
several stability problems related to missiles have been solved mostly by linear beam analyses
(Euler-Bernoulli or Timoshenko beam analysis analytically or numerically). However, since those
approaches are basically linear, they could not assess the nonlinear features arising from the struc-
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tural dynamics or aeroelasticity. Integrated nonlinear tools that are capable of analysis of multidis-
ciplinary problems such as those mentioned above do not yet exist. In order to place the present
work in the right perspective, literature survey is undertaken and divided into several sections.

1.2.1 Stability Problem due to Thrust

Beal (1965) investigated the stability of a uniform free-free beam under controlled follower force.
For the case of a constant thrust without directional control system (Kθ = 0; tangential end thrust),
he obtained the coalescence branches and the first critical thrust of flutter associated with beam
bending. The Galerkin technique gave two zero eigenvalues for all values of thrust atKθ = 0.
Beal concluded from physical reasoning that one eigenvaluewas associated with a rigid-body
translation mode, and the other with a rigid-body rotation accompanied by translation. So the
system is unstable a priori, no matter whether the vibratorymodes are stable or not. But here the
critical thrust is defined concerning bending vibratory modes. Beal showed that for the constant
thrust with directional control, the critical thrust magnitude corresponds to a reduction of the lowest
frequency to zero. And finally for the case of pulsating thrusts, he concluded that the longitudinal
stiffness plays an important role by showing instabilitiesdue to the variations of the fundamental
longitudinal beam frequency.

Peters and Wu (1978) studied the lateral stability of a free flying column subjected to an axial
thrust with directional control. They concluded that underthe condition of no direction control of
the follower force, a pair of zero eigenvalues exist for all forces with an eigenfunction of rank 1
corresponding to rigid-body translation and an eigenfunction of rank 2 corresponding to the rigid-
body rotation. But the methods they employed are restrictedto models where the rotation sensor
is located at the end of the beam. The maximum stable thrust inthose models are dependent upon
sensor location. Wu (1976) investigated the relation between the critical load and eigencurves by
using a finite element method. He concluded that the magnitude and location of a concentrated
mass can improve the stability characteristics of a missile. Park and Mote (1985) studied a free-
free Euler-Bernoulli beam, transporting a concentrated mass with rotary and transverse inertia
under end thrust. The effects of axial location of mass and beam rotation sensor were investigated.
For the case of no directional control, flutter or divergencetype instability occurs, depending on the
magnitude and location of the concentrated mass. The location and the ratio of the concentrated
mass to the total beam mass were calculated for force to be maximized. With directional control
the instability first occurs with increasing force (called the primary instability). It can be either of
the flutter or divergence type depending upon the rotation sensor location. Kirillov and Seyranian
(1998) performed study on optimal distribution of mass and stiffness for a beam moving in space
under a tangential end force. Their results showed that stability characteristics of the moving beam
can be radically improved by using rational distributions of mass and stiffness. But the analysis
did not consider aerodynamics.

Park (1987) studied dynamic stability of a free-free Timoshenko beam under a controlled con-
stant follower force. Unlike the above analyses, the effects of rotary inertia and shear deformation
on the stability of the beam with a controlled follower forcewere investigated. In the case of
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no directional control, he concluded that the instability at the critical force is of the flutter type,
and the critical force increases as shear flexibility increases. With directional control, the primary
instability type is either flutter or divergence, dependingupon the rotation sensor location and
the magnitude of the sensor gain. From a practical point of view, the effect of rotary inertia was
negligible.

Because of difficulties in realizing follower forces such asthrust in the laboratory, there has
been little progress on finding flutter limit experimentally. Sugiyamaet al. (1995) experimen-
tally verified the effect of damping on the flutter of cantilevered column under rocket thrust and
experiment was conducted by the direct installation of a solid rocket motor to the tip end of the
columns.

Kim and Choo (1998) investigated a Timoshenko beam subjected to a pulsating follower force,
previously addressed only by Beal. The effects of axial location and translation inertia of the
concentrated mass are studied, and the relationship between critical forces and widths of instability
regions in the vicinity of 2ω1 (twice the first natural frequency of bending vibration) arealso
examined. They concluded that the variation of the instability region near 2ω1 is closely related to
the type of critical force.

It is well known that spinning has a stabilization effect against the directional change of the
spinning axis. In a rigid body the stabilization characteristics vary as the spinning speed is in-
creased. However, in case of flexible beam model, the stability region may vary due to the effects
of elastic modes. Yoon and Kim (2002) analyzed the dynamic stability of a spinning beam sub-
jected to a pulsating thrust. They concluded that the critical load of a free-free beam under constant
thrust was not affected by spinning motion, but as the spinning speed was increased, the instability
regions were reduced.

Leipholz and Piche (1984) studied the effect of weight and follower forces on the stability
of elastic rods using a two-term Galerkin approximation. Their study included pinned-pinned,
clamped-free, and free-free rods. They argued that the representation of the missile mass by as-
suming a point-mass model cannot lead to critical loads for divergence and flutter, and that such
a problem can be avoided by making the more general assumption that the mass per unit length is
strictly positive along the entire length of the rod. They showed that instability could be avoided
by careful choice of load direction.

1.2.2 Static and Dynamic Aeroelastic Instability

Linear flight mechanics of spinning projectiles dates back to early 20th century and was extended
after World War II; see, for example, Foweleret al. (1920), McShaneet al. (1953), and Nicolaides
(1953). Platus (1982) reformulated these results in missile-fixed coordinates for reentry vehicles.
Later, nonlinear flight mechanics was extensively addressed by Nicolaides (1959), Murphy (1963),
Clare (1971), Pepitone and Jacobson (1978), Murphy (1981),and Murphy (1989). Nonlinear flight
mechanics of flying missiles still holds an important place in identifying various in-flight problems.

Most material on missile aeroelasticity in the literature is concerned with missile fins than with
missile bodies, because missile fins are more flexible and movable and thereby more likely to be
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in a condition of flutter before the missile body. For more discussion, Vahdati and Imregun (1997),
Cayson and Berry (1990), Murrayet al. (1975), Bae and Lee (2004) deal with the aeroelastic issues
on missile fins.

For increasingly flexible missiles there is an increasinglyimportant coupling between so-called
flight dynamics phenomena and aeroelasticity. For example,Matejka (1970) conducted both ana-
lytical studies and wind tunnel tests of a two stage Terrier-Tomahawk 9 rocket vehicle. Aeroelastic
bending (or more specifically, the adverse movement of the system center of pressure due to ve-
hicle flexibility) explains an observed severe reduction instatic stability, rendering the rigid-body
static stability criteria insufficient. Both the results ofthe analytical procedure and the wind tunnel
tests verified that it was possible for the flexible flight vehicle to be in a condition of roll resonance
during powered flight, while highly stable flight is predicted based on rigid-body considerations
alone.

Moreover, Elyada (1989) studied the aeroelastic divergence of a rocket vehicle in closed form,
where roll resonance and trajectory errors can be predicted. Assuming that the accelerations as-
sociated with deformation are negligible compared to the ones connected with rigid-body motion,
general divergence analyses are considerably simplified. He showed that the short-period mode
angular frequency for the flexible missile is always less than that of the associated rigid vehicle.
Thus, in a vehicle designed to roll at a frequency smaller than its rigid short-period mode angular
frequency, failure to consider this may result in an unexpected roll resonance. In aerodynamically
misaligned vehicles, moderating nonlinear effects (or structural failures) occur at substantially
lower dynamic pressures.

There are two kinds of misalignment in missile. One is aerodynamic and the other is thrust.
Nakano (1968) conducted study on the bending load due to thrust misalignment. Body divergence,
regarded as a phenomenon where the aeroelastic equilibriumwithout stabilizing moment is lost,
was analyzed in terms of dynamic pressure and load factor. Heassumed steady-flow aerodynamics
and a straight beam for the missile body, showing the relationship between loads and misalignment
values. He concluded that in unguided missiles, the ratio offlight dynamic pressure over diver-
gence dynamic pressure should be kept far below than unity because of prediction uncertainty of
aeroelastic parameters or performances and load due to wind.

Crimi (1984) derived from Lagrange’s equations the linear equations of motion for a spinning,
aeroelastic missile; however, structural damping was not included in the formulation. He showed
that divergence and dynamic stability are functions of velocity, spin rate and bending stiffness, and
that aeroelastic effects cause degradation of vehicle static longitudinal stability as bending stiffness
is decreased. Platus (1992) derived a nonlinear equation ofmotion for slender, spinning missiles
using a Lagrangean approach that yields a nonlinear terms that produce nonlinear coupling be-
tween the elastic deflections and the rigid-body motions. But no attempt is made to assess the
relative importance of the nonlinear terms. He showed that missile flexibility on static stability
reduces the critical frequency for pitch-roll coupling, and viscous structural damping has a desta-
bilizing effect on stability at roll rates above the critical frequency for roll-pitch coupling. One
should be able to predict the spin and deflection history at any time in flight for a given projectile
under given flight conditions. Stearnset al. (1988) provides such results but details of the analysis
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and model are not available for verification or review. Legner et al. (1994) studied the primary ef-
fects of segmentation (which is used for enhancing the penetrating characteristics of the projectile)
and flexure on hypervelocity projectiles, but the details ofthat analysis are also unavailable. They
showed effect of the fundamental bending frequency on the angle of attack and the displacement
of the projectile tip and concluded that the most significanttip displacement corresponds to region
in time when the angle of attack is maximized, and that increase of bending frequency leads to an
increase of angle of attack. Livshitset al. (1996) studied dynamic aeroelastic analysis of free-flight
rockets, incorporating effects of follower forces together with imperfection factors (dynamic im-
balance, thrust misalignment and nonlinear fittings) excluding only gyroscopic effects, which are
typical for spin-stabilized types of rockets only. All the loads acting on the rocket were consid-
ered as follower forces, including the centrifugal forces coupled with the rocket bending. This is
not correct, as such forces are not dissipative as follower forces are. They showed the resonance
type of instability;i.e., when the spin rate crosses the rocket’s fundamental frequency in bending,
the rocket continues to accelerate in roll, developing growing angles of attack after the burnout.
They also demonstrated the importance of the imperfections, especially the dynamic imbalance
and thrust misalignment.

Even though structural dynamics of flying missiles is essential in getting structural design
requirements leading to high performance, it has not been dealt with much in the literature in
comparison with its importance. The range of missile stiffness should be known at the preliminary
design phase for optimum design in terms of maneuverabilityand stability. Maloneyet al. (1970)
made an extensive study of mechanical joints in common use and investigated their effects on
the flight modes and stiffness. They concluded that tacticalmissile joints play a major role in
dissipating vibratory energy and the energy dissipation comes from both sliding friction and gas
pumping.

Some evidence shows that long-finned missiles, such as some anti-tank kinetic energy projec-
tiles, have been forced to spin at rates close to their lowestelastic frequency and have therefore
been subject to large inelastic deformations. Special solutions showing spin lock-in at the lowest
elastic frequency were developed by Mikhail (1996) and Murphy and Mermagen (2000). Mikhail
showed examples of spin lock-in when fin damage produces a roll inducing moment sufficient to
cause a steady state spin greater than the lowest elastic frequency and the initial spin rate was zero.
However, Murphy and Mermagen (2000) insisted that results obtained by the former should be
dismissed due to incorrect expressions for the angular momentum. Murphy and Mermagen (2000)
approximated the elastic missile by three rigid bodies connected by two massless elastic beams
and showed that it is impossible to cause spin lock-in by rollinducing moment and zero initial
spin alone. It should be noted that the use of the three-body model is a major simplification of the
actual physical problem. Later they replaced the three-body model with a continuous elastic model
using differential equations in Murphy and Mermagen (2000)and obtained numerical results for
the natural frequencies, flexing waveforms and equilibriumspins for a specific missile.

Reis and Sundberg (1967) investigated the causes of large coning angle that a Nike-Tomahawk
sounding rocket experienced during flight. They assumed that Magnus forces, aeroelastic bending,
and/or lee-side boundary separation were probable reasons. Based on flight data they showed that
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aeroelastic bending was one of the causes. Cochran and Christensen (1979) studied the post-launch
effect of transverse bending of a spinning free-flight rocket during the guidance phase. They used
two different methods which are simple two-body model and sophisticated assumed-modes model.

1.2.3 Trajectory Optimization

The optimal trajectory is usually found by minimizing a performance index that contains con-
straints on state and control variables as well as a minimum time structure, and is based on a
point-mass model. The simplistic models that are often usedare unable to capture coupling be-
tween optimal trajectories and the stability and loads thatcan be provided by powerful simulation
programs using a full 3-D finite element method. Nasuti and Innocenti (1996) included maneu-
verability and agility considerations in the optimizationprocess, with a kinematic model and con-
straints obtained from dynamic limits. A maneuver envelopewas proposed that would allow the
incorporation of design parameters into agility optimization. The speed from propulsive consider-
ations, the load factor from structural limitations, and the turn rate from stall characteristics were
bounded for the maneuverability envelope; another constraint was an estimated upper bound on
turn rate in the post-stall condition function of the maximum propulsive control.

Muzumdar and Hull (1996) developed an optimal midcourse guidance law for a high-thrust,
bank-to-turn, short-range attack missile. The analyticalguidance law was obtained by making
approximations in the optimal control problem works for midcourse guidance but needs terminal
guidance to hit the target. The error compensation (EC) guidance law enables the missile to hit the
target without terminal guidance. The EC guidance law is obtained by replacing the approximation
terms by bounded controls, where the bounds are handled indirectly by adding penalty terms to
the performance index. The EC weights are determined by using the EC control in the trajectory
optimization problem and minimizing the flight time with respect to the weights.

Wanget al. (1993) developed an optimality-based feedback trajectoryshaping guidance law.
The guidance law is assumed to be in some feedback form. The optimal solution involves solving a
nonlinear two-point, boundary-value problem, which is formidable, expensive, and fragile (i.e. not
robust). A common practice is to parameterize the control and solve a suboptimal control problem
through parameter optimization. The approach combines thedesign of guidance parameters and
control gains into the optimization process. It was shown that this control law would achieve better
performance and be robust with respect to the initial condition perturbations although the open
loop control has the shortcoming that control is less responsive to the perturbations.

Hallman (1990) studied how the optimal solution is affectedby changes to design parameters
that are held fixed during the optimization, after determining an optimum trajectory design. This
area of study is called postoptimality or sensitivity analysis. As opposed to the conventional brute
force approach where repeated optimization problems are solved, sensitivity analysis allows an
efficient, accurate, and systematic methodology for studying perturbations about an optimal design.

Han and Balakrishnan (1999) investigated the use of an “adaptive critic” controller to steer an
agile missile to completely reverse its flight path angle in minimum time starting from given initial
and final Mach numbers and with a constraint on the minimum flight Mach number. This was

13



undertaken for optimal solutions that encompass perturbations to the assumed initial conditions
or a family of initial conditions. The neighboring optimal control allows pointwise solutions of
an optimal two-point, boundary-value problem to be used with a linearized approximation over a
range of initial conditions but can fail outside the regime in which linearization is valid. Dynamic
programming can handle a family of initial conditions for linear as well as nonlinear problems.
Both solution methods are computationally intensive, and the solution is not available in feedback
form. For implementation this becomes a drawback. Outside of dynamic programming, there is no
unified mathematical formalism under which a controller canbe designed for nonlinear systems.
They proposed a formulation that (1) solves a nonlinear control problem directly without any
approximation to the system model, (2) yields a control law in a feedback from as a function of
the current states, and (3) maintains the same structure regardless of the type or problem. Such a
formulation is afforded by the field of neural networks, specifically, the adaptive critic architecture.
They showed that this method provides optimal control to themissile from an envelope of initial
Mach numbers in minimum time. An added advantage in using these neurocontrollers is that they
provide minimum time solutions even when one changes the initial flight path angle from zero to
any nonzero (positive) value. Dynamic programming has beenthe main tool for such solutions.

Imado et al. (1990) studied optimal midcourse guidance laws for medium-range, air-to-air
missiles that employ different guidance modes depending onthe required missile velocity and
navigation time. This was done for two separate problems: (1) against a faraway or low-altitude
target where missile velocity is a prime factor, so that the midcourse guidance law that maximizes
the residual velocity is preferable; (2) against a near target where the time margin is most important
so that the midcourse guidance law that minimizes the interception time is preferable. After the
required missile residual velocity is analyzed against a conventional and an advanced target, four
types of midcourse guidance laws depending on objectives are presented, each with its merits and
demerits.

1.3 Present Approach

The aim of the current research is to investigate the effectsof follower forces on aeroelastic sta-
bility of missiles. Missile aerodynamics is quite complex,and analytical models cannot exactly
simulate the complex flow under various flight conditions. However, an aerodynamic model that is
representative of some typical flight conditions sufficientto see how aerodynamics interacts with
thrust. The structural model for the missile is based on the mixed variational formulation. It should
be noted that most missile flutter problems shown in the literature have only to do with missile fins.
In the present research, our efforts to understand missile body flutter have gone through some dif-
ficulty due to extremely limited literature; a rigorous validation thus appears to be impossible.
Furthermore, several authors have revealed there are two zero eigenvalues in planar deformation
problems for a free-free beam with a follower force. These zero eigenvalues rigid-body modes;
thus one can say, a priori, that free-free beams are neutrally stable in these two rigid-body modes.
This does not involve bending of the beam structure. Here thestability analysis is only concerned
with bending modes.
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The ideas embedded above along with all the works in the literature survey could be explored
within one framework which consists of structural formulation and aerodynamic model. The struc-
tural formulation is based on finite-element based nonlinear one-dimensional analysis. This finite
element analysis is very powerful in that it is geometrically exact and allows the use of very simple
shape functions. The most challenging part comes from the aerodynamics which is very depen-
dent on the missile geometry and flight conditions. The main idea concerning the present approach
to aerodynamic modeling is to buildrepresentative aerodynamic models that are suited to serve
the current research purposes with the sacrifice of some accuracy. Thus, analytical, closed-form
aerodynamic expressions or at least less computational methods such as the modified Newtonian
method or piston theory are preferred. Another thing to be said about missile aerodynamics expres-
sions is that differentiated variables should be expressedin other kinematic variables in keeping
with the lowest order of differentiations in the structuralformulation. The follower force caused
by missile thrust has its own instabilities without consideration of an aerodynamic model, and the
same observation applies also to aeroelastic instabilities without consideration of the effects of the
follower force. Therefore, the interactions of follower forces and aerodynamic forces make one
think of the possible stability boundaries suggested by Leipholz (1980) and Huseyin (1978).

2 Effect of Thrust on Missile Stability

Missile flight can be divided into two phases, powered flight and free flight without thrust. Dur-
ing powered flight, loads and dynamic stability are the main issues. Projectiles are under severe
stresses. Total mass varies from propellant consumption and aerodynamic center changes as well
due to possible bending deformation from considerable lifton both nose and tail and the variation
of aerodynamic coefficients. There is a certain velocity where the shifted location of the aerody-
namic center coincides with the location of the center of mass. But this situation can be avoided by
keeping the burnout velocity below that velocity. Such a variation trend that is depicted in Livshits
and Yaniv (1999) is introduced for clarification in Fig. 2 formovement of the missile center of
mass and aerodynamic center for both rigid- and flexible-body models as a function of velocity.

During powered flight, the missile reaches its maximum speed, the so-called burnout velocity.
After reaching the burnout velocity, the missile decelerates. Therefore, accelerating flight with
thrust, steady flight when the thrust magnitude is equal to drag, and ballistic flight without thrust
are of interest to current research efforts.

2.1 Structural Formulation

The structural part of the formulation comes from the mixed variational formulation based on the
exact intrinsic equations for dynamics of moving beams presented by Hodges (1990). Modifica-
tions of the original variational principle necessary for the present study are the inclusion of the
gravitational potential energy and appropriate energy variation for dealing with rigid-body dynam-
ics, the analysis of which is needed for the missile time-marching scheme. The frames presented
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here are the undeformed beam cross-sectional frame (theb basis), the deformed cross-sectional
frame (theB basis), and the inertial frame (thei basis). Here we follow the same rule for the
variable notation as shown by Hodges (1990), except that thesubscripto represents the missile
reference point for taking care of rigid-body motion. The variables with subscriptb and o are
measured in theb frame, except foruo, the basis for which is the inertial frame. The variational
formulation starts with extended Hamilton’s principle

∫ t2

t1

∫ l

0

[
δ(K − U) + δW

]
dx1 dt = δA (1)

wheret1 andt2 specify the time interval over which the solution is sought;K andU are the kinetic
and strain energy densities per unit length, respectively;andδA is the virtual action at the ends of
the beam and at the ends of the time interval. The contribution of all gravitational forces is handled
by means of its potential energy, which is written as

G =

∫ `

0

mgeT
3

[
uo + CT

o (rb + ub + CT ξB)
]
dx1 (2)

where the superscriptT indicates the transpose of a matrix,e3 = b0 0 1cT , rb is the position from
the missile body reference point,uo is the displacement of missile reference point in thei frame,
ub is the displacement of the points on missile reference line in theb frame,ξB is the mass offset
from the missile reference line,m is mass per unit length,Co is the rotation matrix fromi frame
to b frame, andC is the rotation matrix fromb frame toB frame. The kinematic relationships and
the expressions for the velocities and the generalized strains can be written as

vo = Cou̇o (3)

ω̃o = −ĊoC
T
o (4)

VB = C [vo + u̇b + ω̃o(rb + ub)] (5)

ΩB =

(
∆ −

eθ
2

1 + θT θ
4

)
θ̇ + Cωo (6)

γ = C(e1 + u′b) − e1 (7)

κ =

(
∆ −

eθ
2

1 + θT θ
4

)
θ′ (8)

where thẽ( ) operator converts a 3×1 column matrix, sayv = bv1 v2 v3c
T , to its 3×3 antisym-

metric dual matrix

ṽ =




0 −v3 v2

v3 0 −v1

−v2 v1 0


 (9)

e1 = b1 0 0cT , ˙( ) and( )′ are differentiations with respect to time andx1, respectively. The
orientation of theB frame with respect to theb frame is represented using Rodrigues parameters,
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which have been applied to nonlinear beam problems with success. The rotation matrix relating
theB frame to theb frame is written as

C =

(
1 − 1

4
θT θ
)
∆ − θ̃ + 1

2
θθT

1 + 1

4
θT θ

(10)

For the orientation of the missile body frame (i.e. theb frame), however, the regular use of the
Rodrigues parameters is insufficient because of their well-known singularity at a rotation angle of
180◦. Thus, the direction cosines ofb in i are used as rotational variables for the rigid-body motion
of the missile. The strain and force measures, along with velocity and momentum measures, are
related through the constitutive laws in the form

{
P
H

}
=

[
m∆ −mξ̃

mξ̃ I

]{
V
Ω

}

{
F
M

}
= [S]

{
γ
κ

} (11)

All the elastic virtual variations are the same as the expressions in Hodges (1990) except for
the virtual quantities related to rigid-body variables. Here the details of the rigid-body part are
described. After some manipulations, the virtual variations of rigid-body variablesvo andωo in
Eqs. (3) and (4) may be expressed as

δvo = ˙δqo + ω̃oδqo + ṽoδψo (12)

δωo = ˙δψo + ω̃oδψo (13)

whereδqo andδψo are virtual quantities defined in theb frame,i .e. δqo = Coδuo. Also, Eq. (2)
can be expressed as

δG =δqT
o Co

∫ `

0

mge3dx1 − δψT
o C̃oe3

∫ `

0

mg(rb + ub + CT ξB)dx1

+

∫ `

0

δq
T

BCCoe3mgdx1 +

∫ `

0

δψ
T

B ξ̃BCCoe3mgdx1

(14)

Adding the varying action and virtual work terms contributed by the rigid-body variables, one finds
that

δAo = (δqT
o P̂o + δψT

o Ĥo)

∣∣∣∣
t2

t1

(15)

δW o = δqT
o fo + δψT

o mo (16)
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wherefo andmo are column matrices containing the measure numbers of forceand moment vec-
tors acting on the reference point in theb frame; P̂o andĤo are linear and angular momenta of
reference point at the ends of specified time interval in theb frame. Additional terms of elastic
virtual quantities stemming from rigid-body variations are

δV T
B : δvT

o C
T + δωT

o (r̃b + ũb)C
T (17)

δΩT
B : δωT

o C
T (18)

For the variations of individual energies, and virtual workdone on the system, we have

δK = δvT
o Po + δωT

o Ho +

∫ l

0

(δV T
B PB + δΩT

BHB)dx1 (19)

δU = δG+

∫ l

0

(δγTFB + δκTMB)dx1 (20)

δW = δqT
o fo + δψT

o mo +

∫ l

0

(δq
T

BfB + δψ
T

BmB)dx1 (21)

where the unknowns areFB andMB, the sectional force and moment measures in theB basis,
respectively;PB andHB, the sectional linear and angular momentum measures in theB basis,
respectively;γ and κ, the force and moment strains, respectively;VB and ΩB, the linear and
angular velocity measures of the beam reference line in theB basis, respectively; andfB andmB,
the external force and moment, respectively.

The expressions for various virtual quantities such asδVB, δΩB, δγ, andδκ are substituted
into the energy equations. In the mixed variational formulation, the appropriate kinematical and
constitutive relations are enforced as additional constraints using Lagrange multipliers and are then
adjoined to Hamilton’s weak principle expressed in terms ofgiven energies.
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The modified weak form from the original mixed variational formulation including the rigid-
body part in the proper way then can be written as

∫ t2

t1

∫ `

0

{[
δq

′T

B − δq
T

Bκ̃− δψ
T

B(ẽ1 + γ̃)
]
FB +

(
δψ

′T

B − δψ
T

Bκ̃
)
MB

−

[
δ̇q

T

B − δq
T

BΩ̃B − δψ
T
ṼB + δvT

o C
T

+ δωT
o (r̃b + ũb)C

T

]
PB −

(
˙δψ

T

B − δψΩ̃B + δωT
o C

T

)
HB

+ δF
T [
e1 − CT (e1 + γ)

]
− δF

′T
ub

− δM
T

(
∆ +

1

2
θ̃ +

1

4
θθT

)
κ− δM

′T
θ

− δP
T [
vo + ω̃o(ro + ub) − CTVB

]
+ ˙δP

T

ub

− δH
T

(
∆ +

1

2
θ̃ +

1

4
θθT

)
(Cω − ΩB)

+ ˙δH
T

θ − δq
T

BfB − δψ
T

BmB

}
dx1dt

+

∫ t2

t1

(
δG∗ − δv∗

T

o Po − δω∗
T

o Ho − δqT
o fo − δψT

o mo

)
dt

= −

∫ `

0

(
δq

T

BP̂B + δψBĤB −δP
T
ûb − δH

T
θ̂

)∣∣∣∣
t2

t1

dx1

+

∫ t2

t1

(
δq

T
F̂ + δψ

T
M̂ −δF

T
û− δM

T
θ̂

)∣∣∣∣
`

0

dt−

(
δqT

o P̂o + δψT
o Ĥo

)∣∣∣∣
t2

t1

(22)

where algebraic expressions defining certain variables in terms of displacement and rotation vari-
ables are denoted by( )∗ and ˆ( ) represents discrete boundary values either at the ends of beam or
at the ends of time interval. In addition to the above formulation, Poisson equation (Ċo+ω̃oCo = 0)
of direction cosine matrix is adjoined using Lagrange multipliers, which is not included here for
the sake of brevity.

2.2 Aerodynamics

Available aerodynamics tools have been evaluated for computation of loads on missiles. Missile
loads are very dependent on the flight condition and missile geometry. Several technical methods
are extensively described in Mooreet al. (1998), Nielsen (1988), and Moore (2000). The validity
of slender-body theory, which is based on potential flow, hasbeen well established by compari-
son with experimental data in Allen and Perkins (1951) for a wide range of Mach numbers. An
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extended slender-body theory is discussed by Adams and Sears (1952). An unsteady version of
slender-body theory for aeroelasticity was presented in Bisplinghoff et al. (1955). For our pur-
poses, the aerodynamic loads on a missile body can be calculated with sufficient accuracy for the
sort of interdisciplinary tradeoff studies we anticipate doing by using slender-body theory aug-
mented by a viscous cross-flow theory; see Allen (1949). There are parts of the missile for which
these methods are not suitable, and for these other methods are used. For example, the loads on the
missile fins and tail are calculated by thin-airfoil theory in low-speed flight and by piston theory
Lighthill (1953) in hypersonic flight. With the combinationof the viscous cross-flow theory of
Allen (1949) and the potential flow slender-body theory in Bisplinghoffet al. (1955), we can take
into account the bending deformation and unsteadiness of the flow. The resulting equation then
reduces to

dN

dx
= − ρ∞

dS

dx

(
U2
∂λ

∂x
+ U

∂λ

∂t

)
+ ηcdd

ρ∞U
2

2
α2

− ρ∞S

(
U2
∂2λ

∂x2
+ 2U

∂2λ

∂x∂t
+
∂2λ

∂t2

) (23)

whereλ = ub + α(x − xo); N is the normal force column matrix;U andρ∞ are the freestream
velocity and air density, respectively;α is the angle of attack and sideslip angle column matrix at
the reference point;xo is the location of the reference point;η is the ratio of the drag coefficient
of a circular cylinder of finite length to that of a circular cylinder of infinite length;cd is the
drag coefficient of a circular cylinder andd is the missile diameter. Since the aerodynamic forces
involve higher derivatives, which do not allow one to use loworder shape functions, the weak form
including the aerodynamic forces in Eq. (23) needs to be integrated by parts to reduce the order of
differentiation. Unfortunately, even after this integration by parts, there are still some derivatives
of variables. Therefore, in accordance with the lowest order of differentiation for the variables in
the expressions for aerodynamic forces, kinematic expressions such as

u̇b = (∆ + θ̃)VB − vo − ω̃o(rb + ub) (24)

u′b = (∆ − θ̃)(e1 + γ) − e1 (25)

u̇′2 = eT
3 (ΩB − Cωo) (26)

u̇′3 = −eT
2 (ΩB − Cωo) (27)

U =
√
vT

o vo (28)

are used to reduce the order of the derivatives. So, for differentiatedλ,

∂λ
∂x

=





0
u′2 + β
u′3 + α





∂λ
∂t

=





0

u̇2 + β̇(x− x0)
u̇3 + α̇(x− x0)




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In order to completely determine the angle of attack and sideslip angle quantities in terms of
other kinematic quantities, we need to obtain the rotation matrix from the inertial frame to the wind
frame,CWI . From the frame definitions,




q1
q2
q3



 =




CWI

11

CWI
12

CWI
13



 =

∆

U
CT

o vo (29)

If θw is defined as a column matrix of Rodrigues parameters, we can obtain

θw = θw1e1 +
1

1 + q1
[2ẽ1 + θw1(∆ − e1e

T
1 )]CIWe1 (30)

as given by Hodges (1990). After a holonomic constraint,θw1=0 is imposed, we obtain

θw =
2

1 + q1





0
−q3
q2



 (31)

so that 


q̇1
q̇2
q̇3



 =

∆

U2
[{CT

o ω̃ovo + CT
o a}U −

CT
o vov

T
o a

U
] (32)

and

θ̇w =
2

(1 + q1)2




0
−q̇3(1 + q1) + q3q̇1
q̇2(1 + q1) − q2q̇1


 (33)

Thus, if one can get the one row components of rotation matrixCWI from Eq. (29), rotation matrix
CWI and angular velocity of wind frame with respect to inertial frame can be determined as follows

CWI =

(
1 − 1

4
θT

wθw

)
∆ − θ̃w + 1

2
θwθ

T
w

1 + 1

4
θT

wθw

(34)

ωWI =
(∆ − θ̃w

2
)

1 + θT
wθw

4

θ̇w (35)

SinceCbW = CoC
IW andĊIW = CIW ω̃WI , it then follows that

ĊbW = −ω̃oCoC
IW + CoC

IW ω̃WI (36)

Then, we can findα, β, α̇ and β̇ in terms of different variables. It should be noted that as the
definition ofλ implies, we still have local angles of attack varying along the missile even when
the rigid-body angle of attack at the reference point is zero. That leads to the idea that in simple
rectilinear flight, a missile can still experience aeroelastic deformation in various speed ranges.
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The above slender-body aerodynamics is thought to be relatively useful at the flight range below
Mach 5 since above 5, more advanced and complicated aerodynamics caused by aerodynamic
heating will be needed. Also, most full-scale missiles operates at below Mach 4, so the current
aerodynamics will be used in flight speed range between Mach 2and Mach 5.

Results according to above formulation are in good agreement with existing experimental data.
Fig. 4 represents the comparison between slender-body theory and experiments from Lordonet al.
(1990) for steady flow when the angle of attack is10◦. The average normal force and pitching
moment are in excellent agreement and the distributed forceshows sufficiently good agreement
for the purposes of our current research.

Drag is very dependent on the configuration and flight condition. Body, wings and tails all
make contributions to the drag, and the body drag is dominantespecially in the supersonic flight
regime. For the calculation of skin friction drag, a turbulent skin friction coefficient and laminar
skin friction coefficient should be obtained. For most flightconditions laminar flow prevails over
the extreme forward portion of the missile body, followed bycompletely turbulent flow over the
remaining portion of the missile Chin (1961). The difficultylies in determining the transition point
from laminar flow to turbulent flow. Since no theoretical methods are known to accurately deter-
mine the transition point, the point on the missile body where the Reynolds number reaches106

is generally taken from experience and test data Mooreet al. (1998). A reasonable assumption
for a missile body with normal roughness it to take the nose tangency point at the end of the nose
or forebody section as transition point Chin (1961). Fig. 3 shows a typical drag distribution over
missile body at supersonic flight. One engineering method for calculating skin-friction drag is to
compute skin friction for an equivalent flat plate of the samesurface area, length, and Reynolds
number as the original body. The axial force is then corrected for body shape by the use of a
three-dimensional shape factor. The method of Van Driest (1951) is used for mean skin friction
coefficient of compressible flow on a two-dimensional flat plate, and a modified Blasius theory
including compressibility effects, as discussed by Mooreet al. (1995), is used for laminar skin
friction drag. To get the wave drag over the range of Mach number from 2 – 5, the second-order
shock expansion method (see De Jarnetteet al. (1979)) or a modified Newton method is usually ap-
plied to the entire body. At the missile base, the pressure goes down below the freestream pressure
due to the external flow. This base drag is highly dependent onMach number and the presence
of a boat tail or flare. For the purposes of the current research, methods based on approximate,
closed-form solutions, or that at least require the least computational effort have been employed,
such as the modified Newtonian method and tangent cone method. Also, in case of spin stabilized
missiles, additional lift should be considered due to the effect of spin, which is called the Mag-
nus effect; see Jumperet al. (1991). All the available methods for missile aerodynamicsare well
documented in Moore (2000); Mendenhall (1991).

The rigid-body force and moment on the reference point due todistributed force are explained
in the appendix. The above discussed aerodynamics along with structural dynamics formulation
will lead to a complete solution for aeroelastic stability problems for various missiles and projec-
tiles. Some additional variables such as acceleration, angular velocity and linear velocity at the
final time of time interval, and direction cosine matrix willappear and they should be embed-
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Figure 3: Body drag distribution at supersonic flow

ded properly in the system equations. This combined aeroelastic formulation will yield iterative
solutions over time which affect both aerodynamic loads andstructural loads.

2.3 Solution Methodology

Now space-time finite elements are used to obtain the time history of the missile motion, which is
needed to investigate the nonlinear dynamics of the missilein flight. This kind of space-time finite
element approach is useful in finding the amplitude of the limit cycle oscillations and checking
the nonlinear system response. To use this space-time finiteelement, the formulation should be
converted into its weakest form in space as well as time. After integration by parts of the additional
energy expression due to rigid-body motion, the unknowns are neither differentiated with respect
time nor space from henceforth, so that constant shape functions may be used for them. Since
the weak form is linear in the virtual quantities and they maybe differentiated with respect to
both space and time, and linear/bilinear shape functions are used for them, and element numerical

24



0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

axial coordinate/diameter

n
o
rm

a
l 
fo

rc
e
 p

e
r 

u
n
it
 l
e
n
g
th

h

Slender body theory
Experiments

Figure 4: Comparison of slender-body theory with experiments
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quadrature is not needed. Thus,

δqB = δqis
(1 − ξ)(1 − τ) + δqif

(1 − ξ)τ

+ δqi+1s
ξ(1 − τ) + δqi+1f

ξτ u = ui

δψB = δψis
(1 − ξ)(1 − τ) + δψif

(1 − ξ)τ

+ δψi+1s
ξ(1 − τ) + δψi+1f

ξτ θ = θi

δF = δF i(1 − ξ) + δF i+1ξ F = Fi

δM = δM i(1 − ξ) + δM i+1ξ M = Mi

δP = δP is(1 − τ) + δP if τ P = Pi

δH = δH is(1 − τ) + δH if τ H = Hi

δqo = δqos(1 − τ) + δqofτ

δψo = δψos(1 − τ) + δψofτ

where subscriptss andf denote the variable values at the starting and final time of time interval.
After some manipulations it can be shown that some of the resulting discretized equations are
linear combinations of the others, leaving us free to discard the excess equations. For illustrative
purposes, we consider only the structural part for the time being. Then,

δqif P i =
P̂if + P̂is

2

δψif Hi =
Ĥif + Ĥis

2

δP if ui =
ûif + ûis

2

δH if θi =
θ̂if + θ̂is

2

δqn+1 F i =
F̂i + F̂i+1

2

δψn+1 M i =
M̂i + M̂i+1

2

δF n+1 ui =
ûi + ûi+1

2

δMn+1 θi =
θ̂i + θ̂i+1

2

δqof P o =
P̂of + P̂os

2

δψof Ho =
Ĥof + Ĥos

2
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By virtue of these relations, the number of unknowns corresponding to each virtual quantity is
reduced. Then, the total number of equations related to elastic variables;δqis, δψis, δP is, δHis,
δF i, δM i (i=1 to n), is 18n. The total number of equations defining rigid-body motion related
to δqos(3), δψos(3), δvo(3), δωo(3), is 12 if we do not consider direction cosine and acceleration
variables. Unknown variables arêFi, M̂i, P̂if , Ĥif , ûif , θ̂if , P̂of , Ĥof , v̂o, ω̂o after specifying
boundary conditions (̂Fn+1, M̂n+1 and û1, θ̂1) and initial conditions (̂Pis, Ĥis, ûis, θ̂is, P̂os, Ĥos)
for each element, therefore in total 18n +12. The above discussion shows that the total number of
equations and the total number of unknowns are equal.

With these system equations and unknown variables, if we just consider structural dynamics,
the mixed variational formulation takes the form

F (Xs, Xf , X) = 0 (37)

whereX is a column matrix of all structural variables andXs andXf are its initial and final values.
This nonlinear algebraic equation can be solved by Newton-Raphson. The Jacobian matrix of the
above set of nonlinear equations can be obtained analytically or numerically and is found to be
extremely sparse due to the formulation’s weakest form. This helps to obtain the high computa-
tional efficiency. So, if the initial conditions and boundary conditions are specified, the final values
after one time step can be found very efficiently using the damped Newton-Raphson method, and
time history is obtained by doing time marching iteration. The structural part of the above formu-
lation has been well validated against the stability subject to thrust. Fig. 5 shows more specific
time-marching scheme.

Apart from the above discussion, several issues on computational stability and efficiency should
be addressed. First, the kinematic quantities for initial conditions should satisfy certain kinemat-
ical relations since they are not independent. So if one variable is perturbed, other variables are
affected; that is, all the kinematic quantities which are related to it should have modified values.
This is an important aspect of the formulation, since it predominantly affects the sensitivity and
convergence of the solution for the time-marching scheme. Second, depending on the type of
problems proposed, some variables can be added or removed for computational efficiency. For ex-
ample, for rectilinear flight, direction cosine variables would not be needed. Missile aerodynamics
discussed will need additional variables and equations such as acceleration and direction cosines
and related equations.

2.4 Nonlinear Stability Analysis Without Aerodynamics

Based on the methodology set forth here, a computer code for investigation of the nonlinear dy-
namics of a missile has been developed. The various stability problems due to thrust which appear
in the literature can be examined in terms of their time history. First, for validation purpose of the
current work, the case without directional control considered by Beal (1965) is addressed. Since it
is known that the mass distribution also contributes to the critical load for thrust, constant mass will
be considered for a comparison purpose. When a small perturbation of the transverse deflection is
imposed at the initial time and the thrust level is below Beal’s critical value, the deflection indeed
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Figure 7: Time history below critical thrust

Figure 8: Time history well above critical thrust
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Figure 9: Baseline missile configuration

Table 1: Test case data, ballistic flight

Bending Stiffness: uniform 2×106N-m2

Altitude: 20 km
Density: 0.0889 kg/m3

Temperature: 216.7K

dies out in time. However, as expected, when the thrust levelis a little larger than the critical value,
the deflections grow until they reach an oscillatory motion with bounded amplitude, suggesting a
limit cycle. A typical result is shown in Fig. 6. Results for several cases show that limit cycles can
develop from disturbances with thrust values that are either just below the critical value suggested
by Beal (1965) (Fig. 7) or just above it. However, the motion is divergent well above the critical
value as shown in Fig. 8. This observation serves to partially validate the current approach.

2.5 Ballistic Flight

To see if there are any aeroelastic effects on the stability as a function of thrust or on accelerated
flight, Fig. 9 is used as a baseline missile configuration; seeBithell and Stoner (1982). Both
movable and fixed tail fins with a cruciform pattern have two sets of wedge-shaped panels. Around
the nose, the large missile body drag is applied. The fins and tail are both under the influence of
wave drag and skin friction drag. At the nozzle base, base drag and thrust are both applied. The
total drag force is distributed along the body. Here it should be noted that missile fins are not a
consideration for stability because we are interested in only missile body bending modes. The
loads on the fins are applied as concentrated forces. In reality, missile fin flutter is more common
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Figure 10: Stability for ballistic flight case
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Figure 11: Effect of reduced bending stiffness on stabilityin ballistic flight
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phenomena since fins are more flexible compared to the missilebody. But the purpose of this
research is to identify how bending of the missile body affects aeroelastic stability. Therefore,
this assumption will be maintained under the current research. The basic idea about how the
aeroelastic phenomena occur is that missile bending will change the local angle of attack on the
body and the changed local of attack will in turn give different aerodynamic loads on the missile,
which will further deform the missile. This iterative process of yielding new aerodynamic loads
and deforming the missile will result in stable or unstable flight depending on the various flight
conditions and missile characteristics.

When the thrust force is balanced with the total drag, the missile maintains equilibrium by fly-
ing at constant speed. But depending on whether the thrust force magnitude is bigger or smaller
than the total drag, the missile either accelerates or decelerates. First the aeroelastic stability of
missile flying at high supersonic velocity will be addressed. Once velocity is specified, the missile
drag is determined from unsteady aerodynamics for missiles. The initial flight condition satisfying
kinematic relations and initial deflection for bending are given to run this case. Fig. 10 shows the
bending response in rectilinear flight for the test case fromTable 1. The case represents decelera-
tion from steady-state flight. The responses showed that there was no aeroelastic instability for the
uniform bending stiffness in this test case. With a very small time interval, less than one second
was good enough to identify the decay. The velocity increasenoticeably affects the amplitudes of
the response after small lateral disturbances are given. The flexural stiffnesses are relatively large,
but the distributed drag forces appear to play the role of reducing the effective stiffness. To see the
effect of bending stiffness on aeroelastic stability in ballistic flight, the size of bending stiffness
was reduced to about 1/100 of the original value. Fig. 11 shows limit cycle at the same Mach
4.0. One can see the conspicuous effect of bending stiffnesson the aeroelastic stability at ballistic
flight.

Under the current formulation, the total mass of the missiledoes not change. Thus, the center
of mass location along the missile axis is assumed to be constant, and the center of pressure of
missile can be calculated from running the code. From Fig. 12one can see that this flexible missile
body model is statically stable. In reality the missile center of mass moves closer to missile nose
as the fuel is consumed. Therefore, the body will have a little larger static margin.

2.6 Aeroelastic Effects of Thrust

As shown in previous sections, thrust and aerodynamic forces themselves have a destabilizing
effect on the missile stability. Aeroelastic interactionsbetween structural load, aerodynamic load,
and inertial load are a continuous iterative process between each load. That is, the missile bending
brought on by aerodynamic normal forces will change the local angles of attack along the missile
body. Altered angles of attack will, in turn, change the aerodynamic forces on the missile body.
That will yield additional inertial loading over the missile body. And these inertial loading further
deforms the missile body. During this iteration, the missile will reach an equilibrium state where
all the forces are balanced.

Besides all this, thrust will also influence the results. It is natural to ask how thrust interacts
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with aerodynamics. To answer that question, in this sectionseveral parametric studies will be
presented. First, to see the aeroelastic effects of thrust,the flutter boundary is found for several
different bending stiffnesses. To locate flutter points, more than 2 seconds of time-marching was
needed. The reason for this is because, in the case of a limit cycle, the code had to be run iteratively
to find a decay. Once the decay is found by reducing the flight speed from high values at a thrust
level with a given bending stiffness, the flutter point is determined. Such a process is repeated with
a different thrust level for a complete curve.

Fig. 13 shows the stability boundary for two different bending stiffnesses at the same altitude.
Here T ∗ = log10(T/mg). According to these results, it seems that thrust is a littlebit more
influential than aerodynamic force near thrust equal to zero, i .e., ballistic flight. Also it can be
seen that when thrust is a dominant factor on stability, aerodynamic forces have less effect than
thrust. It appears that the curve close to the thrust abscissa has acceleration dominant stability and
the curve close to ballistic flight has deceleration dominant. From the limitation of the current
slender-body aerodynamics, some caution should be taken: It is meaningless to run a case at a
higher flight speed than Mach 5. Considering the realistic value for bending stiffnesses, at this
altitude, the dashed line results are more likely to occur. When obtaining each flutter point, limit
cycles appeared either a little below or above the flutter speed. That means there is a certain
mechanism, which is inherently nonlinear, to prevent from immediate structural failure. Fig. 14
shows bending deflection responses by changing thrust levelat Mach 3 for the bending stiffness
2×104N-m2. The solid line was obtained about thrust level outside the flutter curve and dashed
line about thrust level inside. Well above flutter speed and thrust level, the response becomes
unbounded within a very small time.

3 Conclusions and Recommendations

3.1 Conclusions from Present Work

The effects of follower forces on the aeroelastic behavior of flexible missiles have been investi-
gated. Follower forces on their own have been found to greatly affect the instability of flexible
structures. Indeed, the well known Beck’s problem, a cantilever beam excited by an axially com-
pressive force, is a commonly analyzed problem in the literature. However, free-free beams with
follower forces have not received as much attention. In aerospace structures, missile thrust is a
typical example of a follower force. A missile may become unstable under the action of thrust.
Also missiles can experience aeroelastic instabilities only caused by aerodynamics during flight.
The goal of this research was to investigate the interactionof follower forces with aeroelastic
loads for missiles. The missile body is modeled in terms of geometrically-exact, nonlinear, beam
finite elements. This methodology allows for use of simple shape functions and facilitates time-
marching and eigen-analyses. The original mixed variational formulation has been modified to
include rigid-body dynamics so that velocity or acceleration can be either specified or left as free
to vary.

The structural formulation has been transformed into its weakest form in space and time so that
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variables are not differentiated. It was shown that by removing redundant equations related to some
virtual quantities, the total number of system equations and unknowns was reduced a lot. Unless
this process is performed, one redundant equation has to be chosen and thrown out. In addition,
it gives the relations between interior values. Aerodynamics loads are based on unsteady slender-
body theory and several closed form aerodynamic theories. The aerodynamic loads include second
partial derivatives of certain unknowns, and thus to obtainthe weakest form requires integrations
by parts. After one time integration by parts, there are still variables with derivatives, which
are removed using inverse kinematical relations. The aeroelastic code is based on combining the
aerodynamics and structural formulations. Unlike most eigenanalyses, this time-marching scheme
is useful in finding solutions over time. However, if initialconditions are not exactly satisfied
among kinematical quantities, the convergence will exhibit sensitivity problems.

The present code has been validated against several cases, especially the critical load under
thrust without directional control. The response is divergent for values of thrust far above the
critical value given in several literature. However, near the critical value whether the thrust is high
or low, limit cycles were observed. As with general aircraft, velocity is an important aerodynamic
element related with missile aeroelastic instability. As the flight speed increases, the amplitude of
perturbed deflection does as well. This result indicates that the aerodynamics serve to decrease
the effective stiffness of the missile. Missile stiffness along with velocity greatly affects missile
stability. Rigid-body stability analysis does not necessarily guarantee the stability of highly flexible
structures like missiles with a high fineness ratio. With velocity increased, the center of pressure of
missile was shown to approach the center of mass. Depending on the missile and flight conditions,
it is possible that the flexible static margin would be negative. Thus, a designer would have to
find such a flexible static margin at the early design phase to avoid structural failure. The stability
boundaries were obtained for given bending stiffnesses. The response, at the point far outside the
stability boundary, was shown to be divergent but inside boundary, as expected, it was bounded or
convergent over time. It can be seen from the current resultsthat highly flexible missiles such as
ballistic missiles should be carefully designed to avoid aeroelastic instability.

Finally, while the current analysis is capable of analyzinganisotropic beams, our investigation
did not reveal any potential advantages for aeroelastic stability from use of the various types of
couplings (extension-twist, bending-twist, etc.).

3.2 Recommendations for Future Work

The structural and aerodynamic formulations have been combined to give a complete dynamic and
aeroelastic analysis of flying missiles. With some additions to this tool, investigations of a wide
variety of dynamic and aeroelastic stability phenomena canbe undertaken over a wide range of
steady flight conditions, including spin and thrust with present analysis. As one of the ways to
stabilize the directional control, spinning is used. When spinning speed increases, the stabilization
effect gets larger based on the rigid-body model. But in the flexible model, the stability region is
known to vary. The aeroelastic effects of spin are not well understood.

The work performed on the missile aeroelasticity with a follower force are related with a rec-
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tilinear flight with zero rigid-body angle of attack. The result verified the interaction of thrust and
aerodynamic force. Generally, missiles experience small angle of attack during powered flight and
high angle of attack during ballistic flight. A high angle-of-attack analysis would require a much
more refined aerodynamic theory.

The current formulation does not include mass variation effect. To see more clearly the dy-
namic response and stability issues during the powered flight, mass variation according to fuel
consumption will be needed. In addition, mass distributionalong with bending stiffness is known
to significantly change the critical load associated with a follower force. A lot of research on the
effect of concentrated mass and its location on the stability has been performed for the flexible
system subjected to a compressive follower force. However,there is currently no closed form or
analytical optimization method. Thus, it will be of interest to investigate the mass effect on stability
problems.

Finally, possible coupling between the flight mechanics (i.e., trajectory optimization, con-
straints, etc.) and the aeroelasticity (including internal loads and stability) has yet to be approached.
For example, turning ability can be quantified in terms of internal loads, and the applicability of the
corresponding simplistic constraint (the so-calledq-α constraint) imposed in trajectory optimiza-
tion can be examined in this broader context. The present analysis is not sufficiently computation-
ally efficient to undertake such a study at this time. However, with additional attention devoted to
efficiency and with faster computers in the future, such a study should become more feasible.

4 Miscellaneous Information

4.1 Publications Under this Grant

1. Hodges, D. H.; Patil, M. J.; and Chae, S.: “Effect of Thruston Bending-Torsion Flutter of
Wings,” Journal of Aircraft, vol. 39, no. 2, Mar.-Apr. 2002, pp. 371 – 376.

2. Chae, S.; and Hodges D. H.: “Dynamics and Aeroelastic Analysis of Missiles,”Proceedings
of the 44th Structures, Structural Dynamics, and Materials Conference, Norfolk, Virginia,
Apr. 7 – 10, 2003, Paper AIAA-2003-1968.

3. Chae, S.; and Hodges D. H.: “Dynamics and Aeroelastic Analysis of Missiles,” based on
paper number 2 and subsequent work, currently in preparation for submission to an archive
journal.
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4.3 Inventions

None.
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