AFRL-IF-RS-TR-2004-129

Final Technical Report
June 2004

DEVELOPMENT OF A FORMAL THEORY OF
AGENT-BASED COMPUTING FOR SYSTEM
EVALUATION AND SYSTEM-DESIGN GUIDANCE

University of Michigan

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K550

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2004-129 has been reviewed and is approved for publication

APPROVED: /sl
FRANK H. BORN
Project Engineer

FOR THE DIRECTOR: /sl
JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,

and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 2004 FINAL

3. REPORT TYPE AND DATES COVERED
Aug 00 — Sep 03

4. TITLE AND SUBTITLE

DEVELOPMENT OF A FORMAL THEORY OF AGENT-BASED COMPUTING
FOR SYSTEM EVALUATION AND SYSTEM-DESIGN GUIDANCE

6. AUTHOR(S)

Martha E. Pollack

5. FUNDING NUMBERS
G -F30602-00-2-0621

PE -62301E
PR -TASK
TA - 00
WU - 16

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Michigan
3003 South State Street
Ann Arbor M| 48109-1274

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFTB
525 Brooks Road
Rome NY 13441-4505

Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington VA 22203-1714

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

AFRLIF-RS-TR-2004-129

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Frank H. Born/IFTB/(315) 330-4726

Frank.Born@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

This report summarizes the research done on the DARPA-sponsored project on the Development of a Formal Theory of
Agent-Based Computing for System Evaluation and System-Design Guidance, as part of the TASK program. The work
was performed between September 2000 and September 2003, at the Atrtificial Intelligence Laboratory in the
Department of Electrical Engineering and Computer Science at the University of Michigan. During the course of the
project, significant advances have been made in the area of commitment strategies for autonomous agents, to enable
such agents to manage sets of plans with rich temporal constraints in dynamic, uncertain environments. Specifically,
we developed a set of computationally efficient techniques for both determining the consistency of sets of actions in
order to decide whether or not newly introduced actions are compatible with existing commitments, and for merging new
commitments into sets of existing ones. We also developed strategies for modifying a set of commitments in response
to a new, incompatible action. Finally, we applied these computational techniques to various applications of interest to
the TASK effort, including e-commerce, a “briefing agent”, and autonomous unmanned vehicles.

14. SUBJECT TERMS
Software Agents, commitment strategy, Temporal Planning, plan management

15. NUMBER OF PAGES

124

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION

OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED

19. SECURITY CLASSIFICATION

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

1. ProjeCt ODJECLIVESeeivieie ettt be et e reeeeenee s 1
2. RESEAICN RESUITSvecve ettt sttt et e e sreenteeneas 2
2.1 Commitment Management as Temporal Constraint-Satisfaction Processing 3
2.2 Efficient Processing of Disjunctive Temporal Problems...........ccccoiiiiiiiinciennn 3
2.3 Dispatch of Disjunctive Temporal Problems..........cccccceeveieeiiiie i 4
2.4 Formulation of Conditional Temporal Problems..........cccooiiiiiiiinicie 4
2.5 Dispatching Temporal Problems with Uncertainty...........c.ccoovveviiveivenesieseeseenn 4
2.6 APPHCALIONS ..ottt bttt b e nre s 5
2.7 Commitment MOAITICALION.oiiiieieieie e 5
3. Publications Supported by the Projectcooveiiiiiieiiie e 5
APPENDIX A Efficient Solution Techniques for Disjunctive Temporal Reasoning
PIODIBIMS ..ttt 7
APPENDIX B CTP: A New Constraint — Based Formulation for Conditional Temporal
o = V] oSSR 56
APPENDIX C Planning Technology for Intelligent Cognitive Orthotics...................... 87
APPENDIX D Assessing the Probability of Legal Execution of Plans with Temporal
UNCEITAINTY ...ttt ettt sb ettt et e e e st e sb e et e ene e s b e e nbeeneesreenbenreas 97
APPENDIX E Flexible Dispatch of Disjunctive Plans.............cccccvovvvieiiiiiniienr e 106
APPENDIX F A Scheme for Integrating E-Services in Establishing Virtual Enterprises
... 112

1. Project Objectives

In the 21% century, the fundamental paradigm of computing will shift to one of
intelligent, distributed agents, which are capable of efficiently processing asynchronous
input from humans and from other computational agents, and of producing timely output.
The intelligent distributed-agents paradigm will be especially valuable for a range of
military applications that involve the processing of massive amounts of heterogeneous
information, interrelated in complex ways, in time-critical situations. Such agent-based
systems have four key characteristics. First, they receive inputs asynchronously, with
additional input often arriving before the processing of previous inputs is complete.
Second, the outputs of these systems may not be immediate, and so commitments to
future events and reservations for future resources must be made. Third, there may be
multiple ways of processing any input, where the decision among these depends on the
commitments and reservations already made. Fourth, each system may be part of a larger
“community” of systems, so that issues of coordination, competition, and communication
come into play.

The goal of this project was to investigate the foundations of systems with these four
characteristics, aiming towards the objective of developing a predictive theories of agent-
system behavior that are useful both for designing agent systems and for predicting the
performance of agent systems that are inherently ill-suited for full-fledged realistic
testing (e.g, systems whose misperformance could have disastrous effects). In particular,
in this project we focused on one critical aspect of agent-based systems: commitment
strategies, which agent-based systems must employ to cope with asynchronous input,
deferred output, and the significant demands on the computational processing that
necessitate the careful management of computational resources. Commitments can be
viewed as guarantees that certain actions—computational or external—will be performed
by the individual agent, in a way that satisfies given execution constraints (These
constraints may, for example, specify time or duration of performance, or quality of
results produced).

To effectively manage a set of commitments, an agent must be able to perform the
following computations:
e determine whether a new option for action (a new processing request) requires the
abandonment or modification of any of its existing commitments;

o if it doesn’t, determine the most efficient way to add a commitment to the new
option;
. if it does, determine whether the set of prior commitments should be modified,

and what the minimal-impact modification is.
Our emphasis on this project has been on the first two computations: we developed a set
of computationally efficient techniques for both determining the consistency of sets of
actions in order to determine whether or not newly introduced actions are compatible
with existing commitments, and for merging new commitments into sets of existing ones.
We also did work on the third topic, developing techniques for deciding whether and how
to modify a set of commitments in response to a new, incompatible option in a way that
minimizes a weighted function of the changes on the existing options and the cost of the

resulting set of commitments. Additionally, we applied our algorithms to various
applications that were of interest (at various times) to the TASK effort, including e-
commerce, a “briefing agent”, and autonomous unmanned vehicles; we also leveraged
this work by using the algorithms developed in the current project in the development of
cognitive orthotic systems (which were supported by other projects).

2. Research Results

The principal results obtained during the project include the following (annotated with
the publication in which they are reported in more detail):

e Formulation of the problem of commitment management as one of temporal
constraint-satisfaction processing (CSP), and development of a general
framework for doing consistency checking and update using temporal CSPs
[5,6,10].

e Design, implementation, and experimental assessment of an efficient algorithm
for checking the consistency of and updating tasks represented as disjunctive
temporal problems, demonstrating speed-up of two orders of magnitude relative
to the previous state-of-the-art [1,10].

e Development of an algorithm for flexible dispatch of plans encoded as DTPs that
has a set of strong, provable properties [9,11,15].

e Formulation of a new temporal CSP representation, Conditional Temporal
Problems (CTPs) used to represent tasks that include contingent outcomes,

and development of algorithms for consistency-checking and update of
tasks encoded as CTPs [2,15].

e Discovery of an undetected incompleteness in previous formalizations of the
planning with contingencies, revealed by and corrected in the CTP formalism [2].

e Preliminary development of a strategy for dispatching plans encoded as simple
temporal networks with uncertainty (STP-u’s), even when they are not consistent

[4].

e Application of the consistency-checking and update algorithms to applications
that were of interest to the TASK effort, including e-commerce, a “briefing
agent”, and unmanned autonomous Vvehicles, as well as to cognitive orthotics
systems [3,6,7,8,12].

e Development of an effective algorithm for replanning in response to a task that is
not consistent with existing commitments, so as to maximize a weighted function
of the changes on the existing options and the cost of the resulting set of
commitments [13,14].

These main thrusts are very briefly described below.

2.1 Commitment Management as Temporal Constraint-Satisfaction
Processing

The first task for a commitment-management component of a system is to determine
whether or not a new option is potentially consistent with existing commitments, and if
so, what additional constraints need to be made to ensure the consistency. The problem
can be cast as one of temporal reasoning, in which the commitment set and the new
option are modeled as sets of temporally grounded constraints on future actions, and the
problem is to determine the consistency of the union of these sets. A side-effect of many
consistency-checking algorithms is the inference of additional constraints that are needed
to ensure consistency. A key question is when consistency-checking must be performed.
In general, there are four triggers: the introduction of a new action; a modification to the
existing commitments; the execution of an action; or the passing of a critical time
boundary (e.g., the latest start time for one alternative way of performing an existing
commitment). By modeling commitment management as a temporal constraint-
satisfaction problem, we are able both to take advantage of known efficiencies in CSP
processing, and to tailor the consistency-checking algorithm to the particular
representational requirements of a given agent task-set (e.g., whether it requires the
inclusion of disjunctive constraints; the modeling of causal uncertainty; and/or the
modeling of temporal uncertainty).

See references [5,6,10].

2.2 Efficient Processing of Disjunctive Temporal Problems

For many years, consistency checking of sets of temporal constraints was limited to
classes of constraints with restrictive expressiveness, particularly what are called Simple
Temporal Problems (STPs). Although such problems can be solved with polynomial-
time shortest-path algorithms, they include only atomic (non-disjunctive) constraints, and
thus are not suitable for modeling advanced agent-based systems. Not only does the
restriction to STPs preclude complex temporal constraints, but it also precludes least-
commitment approaches to conflict resolution, since expressing a constraint of the form
“Either do A before B or after C”, i.e., promote or demote, is not expressible in an STP.
To handle such constraints, one can employ a richer formalism: Disjunctive Temporal
Problems (DTPs). Checking the consistency of a DTP is an NP-hard problem, and
therefore heuristic techniques are pursued. We conducted a systematic analysis of
previous approaches to DTP-solving, and used that as the basis of a new algorithm, called
Epilitis, that is two orders of magnitude faster than previous DTP-solvers. Epilitis was
fully implemented and has been made available to the research community.

See references [1,10].

2.3 Dispatch of Disjunctive Temporal Problems

By definition, agent systems need not only to manage their commitments, but also to
execute them. The dispatch problem is the problem of deciding when to execute each
action to which the agent has committed. When the commitments have temporal
constraints, the dispatch problem may be non-trivial. As with consistency-checking,
most prior work on dispatch focused on STPs. We developed a dispatch algorithm that is
applicable to DTPs. We identified a set of properties that any dispatch algorithm must
possess—it must be correct, deadlock-free, maximally flexible, and useful—and we
proved that our algorithm has these properties.

See references [9,11,15].

2.4 Formulation of Conditional Temporal Problems

STPs and DTPs do not directly allow the encoding of actions that have uncertain
outcomes. Yet often agents must deal with precisely such actions. To facilitate this, we
developed a new formalism, called Conditional Temporal Problems (CTPs). CTPs are an
extension of the standard temporal constraint-satisfaction problem, which (1) include
observation nodes, and (2) attach labels to all nodes, indicating the situations in which the
action they represent will be performed. The extended framework thus supports the
modeling of conditional actions. We developed algorithms for consistency-checking
with CTPs: importantly, consistency checking in a CTP can be achieved even while
allowing for decisions about the precise timing of actions to be postponed until execution
time, thereby adding flexibility and making it possible to dynamically adjust the
commitments in response to observations made during execution. Our formulation of
CTPs also led to a discovery of a previously undetected incompleteness in the conditional
planning literature: it turns out that, even for plans without explicit quantitative temporal
constraints, prior approaches will sometimes deem a planning problem unsolvable when
in fact there is a solution to it. The use of the CTP formalism eliminates this problem.

See reference [2].

2.5 Dispatching Temporal Problems with Uncertainty

Where CTPs allow one to model causal uncertainty, an alternative formalism, STPU’s
(Simple Temporal Plans with Uncertainty) had been proposed in the literature to model
temporal uncertainty, and an algorithm for assessing the consistency of STPU’s had been
developed. However, the algorithm provided no guidance to the agent in the case in
which the STPU could not be guaranteed to succeed; yet, by definition, STPUs involve
uncertain relations, and it may be very likely that a given STPU will be successfully
executed even if this cannot be guaranteed. We thus addressed the question of what an
agent should do with such an STPU, developing a set of three alternative approaches, one
based on a binary search, one based on iterative tightening, and one based on an

approximation of linear optimization. These approaches can be used both to provide
lower bounds on the probability of successful execution, and to provide guidance to the
agent about when to execute the actions involved.

See reference [4].

2.6 Applications

To demonstrate the viability of the representations and algorithms we developed, we
applied them to work to various applications that were of interest to the TASK project,
including E-commerce, a “briefing agent”, and analyses of clusters of simulated
unmanned autonomous vehicles. We also leveraged the work done in the project by
using the results obtained here in work we did with the support of other contracts to
develop a cognitive orthotic system, which is a form of a plan-management agent used to
assist people with memory decline in carrying out their activities effectively. Although
this latter application is not within the scope of the current project, it is worth noting that
we were able to build heavily on the techniques developed here in designing that agent.

See references [3,6,7,8,12].

2.7 Commitment Modification

When an agent determines that a new option is not consistent with its existing
commitments, it needs to decide whether and when to modify those commitments to
allow adoption of the new option. We developed an approach to commitment
modification that builds on our previous work on cost-assessment in context.
Specifically, it formalizes the notion of modification cost—or amount of change in a set
of commitments—and provides a way for the agent to trade modification cost against
overall cost in context of the revised plan. This work is still in progress, and we expect to
publish our results within the next six months.

See references [13,14].

3. Publications Supported by the Project

Below are papers whose results were, at least in part, supported by the project.

1. Tsamardinos and M. E. Pollack, “Efficient Solution Techniques for Disjunctive
Temporal Reasoning Problems,” to appear in Artificial Intelligence, 2003.

2. |. Tsamardinos, T. Vidal, and M. E. Pollack, “CTP: A New Constraint-Based
Formalism for Conditional, Temporal Planning,” Constraints: An International
Journal, 8(4): 365-383, 2003.

10.

11.

12.

13.

14.

15.

M. E. Pollack, L. Brown, D. Colbry, C. E. McCarthy, C. Orosz, B. Peintner, S.
Ramakrishnan, and 1. Tsamardinos, “Autominder: An Intelligent Cognitive
Orthotic System for People with Memory Impairment,” Robotics and Autonomous
Systems, 44(3-4):273-282, 2003. [Not supported by this project, but illustrates an
application that leverages the work done in this project.]

I. Tsamardinos, M. E. Pollack, and S. Ramakrishnan, “Assessing the Probability of
Legal Execution of Plans with Temporal Uncertainty,” ICAPS Workshop on
Planning under Uncertainty and Incomplete Information, June 2003.

M. Beetz, M. Ghallab, J. Hertzberg, and M. E. Pollack, editors, Plan-Based Control
of Robotic Agents, LNCS/LNAI #2466, Springer-Verlag, 2002.

M. E. Pollack, C. E. McCarthy, S. Ramakrishnan, and I. Tsamardinos, “Execution-
Time Plan Management for a Cognitive Orthotic System,” in M. Beetz et al.,
editors, Plan-Based Control of Robotic Agents, 2002.

M. E. Pollack, “Planning Technology for Intelligent Cognitive Orthotics,” 6th
International Conference on Al Planning and Scheduling, Apr., 2002.

A. Berfield, P. Chrysanthis, I. Tsamardinos, M. E. Pollack, and S. Banerjee, “A
Scheme for Integrating e-Services in Establishing Virtual Enterprises,” 12th IEEE
International Workshop on Research Issuess in Data Engineering, Feb. 2002.

I. Tsamardinos, M. E. Pollack, and P. Ganchev, “Flexible Dispatch of Disjunctive
Plans,” in 6th European Conference on Planning, Oct. 2001.

I. Tsamardinos, ‘“Constraint-Based Temporal Reasoning Algorithms, with
Applications to Planning,” University of Pittsburgh Intelligent Systems Program
Ph.D. dissertation, Aug. 2001.

P. Ganchev, “Flexibility Measures of Sets of Plans,” University of Pittsburgh
Intelligent Systems Program M.S. Project Report, June, 2001.

M. E. Pollack and J. F. Horty, “An Information Dynamics Research Exploration
Framework: Briefing Agents,” DARPA/TASK Workshop, Santa Fe, NM, April,
2001.

J. F. Horty and M. E. Pollack, “Evaluating New Options in the Context of Existing
Plans,” Artificial Intelligence, 127(2):199-220, 2001. [Note: Much of the work on
this paper was completed prior to start of the current contract.]

J. Horty, and M. E. Pollack, “Minimal-Impact Replanning,” in progress.

M. E. Pollack and I. Tsamardinos, “Dispatching Temporal Plans,” in progress.

APPENDIX A

EFFICIENT SOLUTION TECHNIQUES FOR

DISJUNCTIVE TEMPORAL REASONING PROBLEMS

Toannis Tsamardinos Martha E. Pollack
Department of Biomedical Informatics Computer Science and Engineering
Vanderbilt University University of Michigan
Toannis.Tsamardinos@vanderbilt.edu pollackm@eecs.umich.edu
Abstract

Over the past few years, a new constraint-based formalism for temporal reasoning has been
developed to represent and reason about Disjunctive Temporal Problems (DTPs). The class of
DTPs is significantly more expressive than other problems previously studied in constraint-
based temporal reasoning. In this paper we present a new algorithm for DTP solving, called
Epilitis, which integrates strategies for efficient DTP solving from the previous literature, in-
cluding conflict-directed backjumping, removal of subsumed variables, and semantic branch-
ing, and further adds no-good recording as a central technique. We discuss the theoretical and
technical issues that arise in successfully integrating this range of strategies with one another
and with no-good recording in the context of DTP solving. Using an implementation of
Epilitis, we explore the effectiveness of various combinations of strategies for solving DTPs,
and based on this analysis we demonstrate that Epilitis can achieve a nearly two order-of-
magnitude speed-up over the previously published algorithms on benchmark problems in the
DTP literature.

1. Introduction

Expressive and efficient temporal reasoning is essential to a number of areas in Artificial In-
telligence (AI). Over the past few years, a new constraint-based formalism for temporal rea-
soning has been developed to represent and reason about Disjunctive Temporal Problems
(DTPs) [Stergiou and Koubarakis 1998; Armando, Castellini et al. 1999; Oddi and Cesta 2000].
The class of DTPs is significantly more expressive than other problems already studied in con-
straint-based temporal reasoning. It extends the well-known Simple Temporal Problem (STP)
[Dechter, Meiri et al. 1991] by allowing disjunctions and the Temporal Constraint Satisfaction
Problem (T'CSP) 7bid. by removing restrictions on the form of allowable disjunctions.

Formally, a Disjunctive Temporal Problem (DTP) is a pair <I/, C> where 7 is a set of
temporal variables and C'is a set of constraints among the variables. Every constraint C;. C is
of the form:

Cipv veen €

where in turn, each ¢; is of the form x—y=104;xy. Vandb. P . Constraint ¢;is called the
Jth disjunct of the ith constraint. A solution to a DTP is an assignment to each variable in [
such that all the constraints in C are satisfied. If a D'TP has at least one solution, it is consistent.
Notice that each constraint C; may involve more than two temporal variables, in which case it
is not a binary constraint. Only DTPs, and not STPs or TCSPs, allow difference constraints of
arbitrary arity.

The increased expressivity of DTPs makes them a suitable model for many planning and
scheduling problems. Plan generation, plan merging, job-shop scheduling, and even temporal
reasoning under certain forms of uncertainty can all be modeled as DTPs. As a motivating
example, consider a temporal plan with steps .4 and B that both represent actions requiring the
same unary resource, e.g., they both use the same printer. In this case, the executions of .4 and
B should not overlap. We can encode this fact as a DTP constraint by defining the DTP vari-
ables start(A), start(B), end(A), and end(B) associated with the instants of starting and ending .4
and B. The DTP constraint then is the following:

end(A)—start(B)=0. end(B)—start(4) =0
i.e. either A finishes before B starts or vice versa. It is easy to see how such constraints can
encode classical threat resolution in planning. Analysis of the DTP defining this plan can reveal
whether it is feasible: the DTP is consistent if and only if there is a way to execute the plan
such that the deadlines are all met, and the unary resource (the printer) is never used more than
once at the same time.

Threat-resolution constraints in planning, as just described, can also be encoded as binary
constraints between intervals. There are situations however when this is not possible and
higher arity constraints are required and thus cannot be expressed (in the general case) by any
other current formalism but the DTP. For example consider reasoning about the following
scenario: “if you can, stop by the post-office for 10-15 minutes, then take route .4 for 10-15
minutes, or else take route B for 10-15 minutes.” If we use PO to denote the fluent ‘in the
post-office’, then this scenario can be represented as the following constraints:

(10 = end (PO) — start(PO)=15. 10 =end(A) — start(B) =15 . end(PO) = start(A)) .
10 = end(B) — start(A) =15
In turn, this can be directly converted to DTP form.

The principal approach to DTP solving taken in the literature has been to convert the
original problem to one of selecting one disjunct, X, —x; = bﬁ from each constraint C;. C
and then checking that the set of selected disjuncts forms a consistent STP. Checking the con-
sistency of and finding a solution to an STP can be performed in polynomial time using short-
est-path algorithms [Dechter, Meiri et al. 1991]. The computational complexity in DTP solving
derives from fact that there are exponentially many sets of selected disjuncts that may need to
be considered; the challenge is to find ways to efficiently explore the space of disjunct combi-
nations. This has been done by casting the disjunct selection problem as a constraint satisfac-
tion processing (CSP) problem [Stergiou and Koubarakis 2000] [Oddi and Cesta 2000] or a
satisfiability (SAT) problem [Armando, Castellini et al. 1999].

! As is standard in the literature, in this paper we will make the assumption, without loss of generality, that the bounding values
b are integers.

In this paper, we present a new algorithm and heuristics for DTP solving, embodied in a
system we call Epilitis’, which integrates strategies for efficient D'TP solving from the previ-
ous literature, including conflict-directed backjumping, removal of subsumed variables, and
semantic branching, and further adds no-good recording [Schiex and Verfaillie 1994] as a cen-
tral technique. We discuss the theoretical and technical issues that arise in successfully integrat-
ing the previous strategies with one another and with no-good recording. Using an implemen-
tation of Epilitis, we explore the effectiveness of various combinations of strategies for solving
DTPs, and based on this analysis, we demonstrate that Epilitis achieves a neatly two-order-of-
magnitude speed-up over the previously published algorithms on benchmark problems from
the DTP literature. This result is based on speed comparisons because we demonstrate that
counting the number of forward-checks (also called consistency-checks), as is commonly done
in the literature, is not an accurately descriptive measure of performance.

The overall structure of the paper is as follows. In Section 2 we present necessary back-
ground information on the DTP and DTP solving. Section 3 explains all previous methods for
pruning the search for a DTP solution. Section 4 presents necessary background information
on no-good recording. Section 5 uses the background material presented to describe the
Epilitis system and the underlying algorithms we used. In Section 6 we present our experi-
ments with Epilitis. Section 7 reviews related work in the field. Section 8 concludes the paper
with an overall discussion and presentation of future work.

2. Solving Disjunctive Temporal Problems

2.1 The Basic Approach

We begin by reviewing a simpler class of temporal problems: the Simple Temporal Prob-
lems (STPs). An STP, like a DTP, is a pair <1/, C>, where 1" is again a set of temporal vari-
ables; for an STP, however, Cis a single constraint of the form x — y = b, where x;y . 1. Be-
cause an STP contains only binary constraints, it can be represented with a weighted graph
called a Simple Temporal Network (STN), in which an edge (j, x) with weight b, exists be-
tween two nodes #f there is a constraint {x —y=b,}. C. Polynomial-time algorithms can be
used to compute the all-pairs shortest path matrix, or distance array of the STN. We denote the
distance (shortest path) between two nodes x and y as 4. The concept of the distance is im-
portant because in a consistent STP, 4, is the largest number for which the constraint y — x =
d,, holds in every solution. In addition, an STP is consistent if and only if for every node x in
its associated STN, 4_.= 0, which means that there are no negative cycles [Dechter, Meiri et al.
1991].

A DTP can be viewed as encoding a collection of alternative STPs. To see this, recall that
each constraint in a DTP is a disjunction of (one or more) STP-style inequalities. Let ¢; be the
/" disjunct of the 7 constraint of the DTP. If we select one disjunct ¢; from each constraint C,
then the set of selected disjuncts forms an STP, which we will call a component STP of the given
DTP. It is easy see that a DTP D is consistent if and only if it contains at least one consistent

2 From the Greek word Emlvzrjc (solver).

component STP. Moreover, any solution to a consistent component STP of D is also a solu-
tion to D itself. Because only polynomial time is required both to check the consistency of an
STP, and, if consistent, extract a solution of it, in the remainder of this paper we will say that
the solution of a given D'I'P is any consistent component STP of it. When we need to refer to an actual
assignment of numbers to the time points in the DTP, we will call this an exact solution. A con-
sistent component STP represents a number of exact DTP solutions. This is particulatly im-
portant in planning since it provides execution flexibility. The consistent component STP can
then be executed as described in [Tsamardinos 1998].

Definition 1: A time assignment to the time-points of a DTP is called an exact solu-
tion of the DTP. A consistent component of a DTP is called a solution of the DTP.

Original CSP (the DTP) Meta-CSP
“Variables” X)R- One variable C; for each constraint C; of the
original DTP
(Time Points) (Variables)
Domains (-8 , +8) for all variables D@C)={eir, ..., e }
(Sets of Constraints)
“Constraints” X, =y,=b x, =y, =b, | Implicitly defined by the undetlying se-
LeGir. ot Ca mantics of the values in each domain.
(Disjunctions of Constraints)

Table 1: Correspondence between the DTP and the meta-CSP

All existing algorithms for DTP solving, including the one we present in this paper, work
by searching for a consistent component STP § from a given DTP D rather than attempting to
search directly for a consistent assignment to the nodes of D. The process of finding S can
itself be modeled as one of constraint satisfaction processing. Because the original DTP is it-
self also a CSP problem, we will refer to the problem of extracting a consistent component
STP as the meta-CSP problem. The meta-CSP contains one variable for each constraint C;in the
DTP. The domain of C; is the set of disjuncts in the original DTP constraint C;. The con-
straints in the meta-CSP are not given explicitly, but must be inferred: an assignment satisfies
the meta-CSP constraints 7ff the assignment corresponds to a component STP that is consis-
tent. For instance, if the variable C; is assigned the value x — y = 5 it would be inconsistent to
extend that assignment so that some other variable C, is assigned the value y — x = -6.

In this paper, we will refer to the variables of the DTP as #ime points and will reserve the
term variables for the meta-CSP. We will use the terms constraint and value interchangeably,
to refer to a single, non-disjunctive constraint ¢; such constraints (values) constitute the do-
mains of the meta-CSP variables. Finally, we will reserve term node to refer to the nodes of a
CSP tree search, which we will typically be performing for the meta-CSP—recall that we do
not perform direct CSP processing on the DTP. The relationship between the original CSP
(the DTP) and the meta-CSP (which aims to find a consistent component STP) is summarized
in Table 1.

A typical forward-checking CSP algorithm, shown in Figure 1 can be used to solve a
DTP—or more precisely, to solve its meta-CSP. The algorithm takes two parameters: .4, de-

10

Basic-DTP(4, U)

l. If U== stop and report 4 as a solution.
2. C. select-variable(U), U’. U-{C}
3. For each value ¢ of d(C) in some order
4. A=A. {C. ¢}

5. If forward-check(4’, U’)

6. Basic-DTP(4’, U’)
7. EndIf

8. un-forward(U")

9. EndFor

10. Return failure

forward-check(4, U)

1. For each variable C in U

12. For each value ¢ in d(C)

13. If not STP-consistency-check(4 . {C. c})
14. Remove ¢ from d(C)
15. Ifd(C) =—

16. return false
17. EndIf

18. EndIf

19. EndFor

20. Return true

Figure 1: The Basic DTP algorithm

noting the set of already assigned variables and their assigned values, and U, the set of as-yet
unassigned variables. The initial call to solve a DTP <], C> should be made with .4 = — and
U =C, and the initial current domains d(C) should be initialized to the original domains
D(C), i.e. to the set of constraints that constitute the disjuncts in C;in the DTP (see Table 1).

The function select-variable heuristically selects the next variable to which to make an as-
signment; the decision about how to make that selection is left unspecified in the generic algo-
rithm, but we discuss it further in Section 6.4. The function forward-check(4, U) performs
forward checking, i.e., it removes from the domains of the variables still in U all those values
that are inconsistent with the current assignment 4, returning fa/se if, as a result, one or more
variables in U has a domain reduced to —. Note that in DTP-solving, forward-check® oper-
ates by checking the consistency of an STP (specifically, a component STP of the DTP),
which, as mentioned above, requires only polynomial time. If forward-checking fails, then the
function un-forward restores the domains of the variables to those before the last call to for-
ward-check.

2.2 Improved Forward-Checking

A large portion of the computation in algorithm Basic-DTP is spent at line 13 in forward-
check, where each value of each variable is added to the set of constraints of the current as-

3 We only describe DTP solvers using forward-check because it has been proven very efficient in DTP literature and it is a
standard component of every DTP solver. In addition, not using forward-checking dramatically reduced efficiency in pre-
liminary experiments in our lab.

11

forward-check-with-FC(S, U)

12. For each variable C in U

13. For each value c : x —y =b,, ind(C)
14. If b,, + distance (y, x, S)

15. Remove ¢ from d(C)
16. Ifd(C) =—

17. return false
18. EndIf

19. EndIf

20. EndFor

21. Return true

Figure 2: Forward checking in STPs using the FC condition

signment .4 and checked for STP-consistency. STP-consistency checking takes time O(|V| %)
where |V| is the number of time-points; thus forward-check takes time O(v|V| %) on each node,
where » is the number of values to forward check. Fortunately, there is a computationally less
costly way of achieving forward checking of values, based on the following theorem:*

Theorem 1: A value ¢;: y —x = b, is inconsistent with a consistent STP .§ (that is, .S .
¢; 1s inconsistent) if and only if the following condition holds:

b, +d,(S)<0 (FC-condition)

where d}

X

(§) is the distance between nodes y and xin .

Theorem 1 (the proof is in Appendix A) indicates that to forward-check a particular value y
—x = b, against an assignment 4, we just need to check the FC-condition. In turn, this requires
calculating the distances 4, in STP § for all nodes x and y. One method for calculating all these
distances efficiently is to calculate the distance array; this is equivalent to running full path con-
sistency, which has time complexity time O(|V| %) . Once the distance array has been calculated,
the distance between any two nodes y and x can be recovered by matrix lookup in constant
time; hence the overall time required for each node is O(|V| ’ +1), where » is the number of
values to be forward checked. An alternative technique is to compute directional path consis-
tency [Chleq 1995] where only part of the shortest path array is cached, in a manner that per-
mits the uncached distances to be recovered in time at most O(|V|).

To modify the main algorithm in Figure 1 with improved forward checking, we only need
do two things. First, we replace the forward-checking routine with one that uses the FC-
condition, as shown in Figure 2. Second, we add one line to the main program (Basic-DTP);
specifically,

S’=maintain-consistency/(s, .§)
should be inserted between lines 4 and 5. Each time a new vatiable is assigned a value {C. ¢},
the constraint is propagated in § by maintain-consistency(s, .§), which can be implemented
with either full path consistency or with directional path consistency, as described above.

4This theorem was suggested, but not proved, in [Oddi and Cesta 2000] see Appendix A for its proof.

12

The comparison of overall complexity in each node does not yield an obvious “best” ap-
proach. As already noted, (i) the basic forward-check procedure requires O(v|V| %) time for
each node in the CSP search tree; (ii) computing full path consistency and checking the FC-
condition requires O(|V|3 + 2); and (iii) computing directional path consistency for FC-
checking requires O(|V| +y |V|). In addition, since assignment .4 is built incrementally by add-
ing constraints on each new node, we can use incremental versions of these previous tech-
niques to build S, namely incremental full path consistency (IFPC) [Mohr and Henderson 1986] and
incremental directional path consistency (IDPC) [Chleq 1995]. The incremental versions drop the
exponent in all the above complexities to quadratic and so (i) takes time O(V|V| %), (i) takes
time O(|V|2 + ») and (iii) O(|V| >+ v|V|). Thus, the worst-case comparison favors maintaining
full path consistency (i.e. the distance array)’. The average case comparison cannot easily be
resolved theoretically and further experiments are required to determine under which condi-
tions each method is the best. In our experiments, reported below in Section 6 we used
method (i), maintaining the distance array at every node.

3. Previous Pruning Techniques for DTP Solving

Once the DTP problem has been cast as one of solving a meta-CSP, a number of different
backtracking search techniques can be used to increase efficiency by eatly pruning of dead-end
branches. The idea in pruning techniques is to utilize the underlying semantics of the values of
the meta-CSP, namely the fact that they express constraints on some STP, to make inferences
regarding the infeasibility of certain regions of the search. In this section we describe three
methods previously considered in the literature: Conflict-Directed Backjumping (CDB)
(used in [Stergiou and Koubarakis 2000] Semantic Branching (SB) (used in [Oddi and Cesta
2000] and [Armando, Castellini et al. 1999]), and Removal of Subsumed Variables (RSV)
(used in [Armando, Castellini et al. 1999]). In the next section we will add No-good Re-
cording (NR) (also called no-good learning), and hence throughout both these sections we
will be particulatly concerned with the theoretical and technical issues that arise in successfully
integrating these pruning strategies with one another and with no-good recording.

3.1 Conflict-Directed Backjumping for DTPs

The simplest algorithms for solving CSP problems rely on chronological backtracking, in
which the failure of a partial assignment of values to variables results in backtracking to the
point in the search just before the most recent assignment of a value to a variable was made.
Previous work has shown that backtracking can be made more efficient by instead restarting
the search at a more carefully selected point: techniques developed for this include Dynamic
Backtracking [Ginsberg 1993], and Conflict Directed Backjumping (CDB) [Prosser 1993;
Chen and Beek 2001]. In these approaches, when a dead end is encountered, the search back-
tracks to the most recently assigned variable that is related to the failure. The variables that are
unrelated to the failure are backjumped over, since trying to assign different values for them
will result in the same dead end.

5This is because the worst-case bounds are tight.

13

€32
G e

(b)
Figure 3: The chronological backtracking algorithm on a DTP.

It is obvious that to implement CDB, it is necessary to be able to identify the culprit of the
failures, i.c., the variables that participate in the constraints that lead to failure. Stergiou and
Koubarakis [Stergiou and Koubarakis 2000] present a method for culprit identification in DTP
solving, which they call the dependency pointers scheme. This scheme is based on the fact that, dut-
ing DTP solving, whenever an assignment A is extended to A’=A4. {C. ¢}, forward checking
is performed. If a value ¢’ is removed from some domain, then the most recent value assign-
ment, {C. ¢}, must directly contribute to its removal. In the approach of Stergiou and Kouba-
rakis, a dependency pointer from ¢’ to ¢ is stored. If the algorithm subsequently needs to back-
track because the domain of some variable has been reduced to —, the algorithm checks the
dependency pointers for values that were removed from that variable’s domain, and follows
the one that points to the most recently assigned variable, thereby backjumping over any ir-
relevant variables.

Although the dependency pointer scheme achieves CDB, it does not integrate well with
semantic branching and no-good recording. We thus developed an alternative scheme for cal-
culating the culprit of a failure. Our technique returns the variables of the current assignment
that are involved in the failure; these can be used in a manner similar to dependency pointers,
to backjump to the most recent relevant variable. Additionally, however, the returned set of
variables can be used as justifications in no-good recording, as described in Section 4.

14

justification-value(c . y—x=05,5)
1. p = shotest-path(y, x, S)
2. Return vars(p . ¢}

Figure 4: Function justification-value

Our approach is straightforward, and builds directly on the fact that backtracking is re-
quired only when forward-check has reduced the domain of some variable to the empty set
by removing every value ¢ of that domain. This in turn implies that every ¢, that was in the do-
main is part of a negative cycle p, formed by constraints ¢, , ..., ¢,. We introduce the technique
with an example.

Example 1: Figure 3 illustrates the processing of the following DTP:

C e y—x=5}

Cideiw—y=5}. {opix—y=-10}. {e:5-y= 5}
Co: e iv—x=5}. {¢,:z—v=10}
Coideyiz—w=5}. {¢,:y—w=-10}

Cs: e iy—3=-20} . {¢e5,:x—3=-20}

In the figure, the top two boxes (a) represent a “snapshot” of the DTP solving process: the
left-hand side shows the meta-CSP search tree, and the right-hand side shows the STP entailed
by the current assignment. The bottom two boxes (b) show a snapshot later in the process. At
the time of Figure 3(a), assighments have been made to C,, C,, and C;. The assignments cho-
sen are indicated by the gray ovals while the white ovals indicate already explored nodes. Note
that values that have been ruled out by forward-checking are crossed out in the STP diagrams.
For instance, the assignment of ¢,, (y — x = 5) to C, rules out the possibility of assigning ¢,, (x —
y= -10) to C,, and so this value is crossed out in the right-hand part of Figure 3(a).

Figure 3(b) shows a later point in the processing, by which an assignment has also been
made to C, (specifically C,. ¢,,). At this point, forward-checking will eliminate both possible
values for C;, because they participate in negative cycles. These cycles are independent of the
assignment made to C;, which should thus be backjumped over. That is, ¢, and ¢;, are re-
moved from 4(C;) because they form the negative cycles (in the STP): p, = (¢, ¢, ¢5;) and p,
= (¢/15 €15 ¢ C55). The vatiables that participate in the failure then are vars(p,) . vars(p,) = {C,
,Co G} {C, G, C, Gy = {C,, G, C,, C; }, where vars(p) are the variables whose value
assignments are the constraints in p.

It is apparent that our technique requires the identification of a negative cycle for each re-
moved value by forward check. This can be implemented by maintaining a predecessor array®
[Cormen, Leiserson et al. 1990] when calculating the shortest path array. Entry <z/> of the
predecessor array contains nil when /=j; otherwise it is a predecessor of j on the shortest path
from 7. It should be updated by the function maintain-consistency, which can be done with-
out changing the time complexity of the function. When a value ¢: y — x = & completes a nega-
tive cycle (i.e. the FC-condition holds), we follow the predecessor array to retrieve the shortest
path p from y to x and return vars(p . (x, 7)), where (x,) is the edge from x to y. The pseudo-

6 Recall that the predecessor array stores a predecessor of j on the shortest path from / in all entries <i;> that are not on the
main diagonal.

15

C,:{e,:y—x=5} {e,:w—y= -10}
C,: e x—3=5}
Cii{eiy—3=15) . {egx—-v=10}
C,: ey :z2—v=5}. {cp:y—w=-10}
Cs: e iv—y=-20} . {¢,:3—x=-10}
Cy:{eyyiz—v=2} . {o,x—y=-10}

Figure 5: Example DTP for removal of subsumed variables and semantic branching.

code for implementing this approach is given in Figure 4: the function justification-value re-

turns the justification (i.e. the culprit set of variables) for the removal of value ¢y — x = b from

the domain of its variable, given an STP § that corresponds to the current assignment.

3.2 Removal of Subsumed Variables

The main idea of the heuristic that we will call Removal of Subsumed Variables (RSV) is
that if a disjunct ¢; of a variable C; is already satisfied by the current assignment 4, there is no

reason to try other values in the variable’s domain under assignment .4 because either (i) the

current assignment leads to a solution, and since ¢; is already satisfied under 4, C; is satisfied in

the solution, or (ii) there are no solutions under .4 and trying other values for C; will only re-

strict A even further, with no possibility of discovering a solution. We now proceed by

formalizing this idea’.

Definition 2: A value c; is subsumed by an STP § (equivalently by an assignment
A that implies) if and only if the constraint ¢; always holds in any exact solution of .
(Recall that an exact solution to a DTP D is an assignment of numbers to the time
points in D.) A variable C, is subsumed by an STP § if and only if there is a value ¢
in the domain of C, that is subsumed by S.

Theorem 2: A value ¢; : y — x = b is subsumed by an STP § if and only if 4,(8) = &
(Subsumption-Condition), where d_(S) is the distance between x and y in §.

Theorem 3: Let D=<]/, C> be a DTP, let .4 be an assignment on D (i.e. a compo-
nent STP), and let C, be a variable subsumed by 4. Then A is a solution of D if and
only if it is a solution of D’=<1/, C— C; >.

Corollary 1: Let A4 be a partial assignment during a DTP search, U be the unassigned
variables, and S#b be the set of subsumed variables in U. If .4 can be extended to a so-
lution over variables in U — Sub, it can be extended to a solution over variables in U.
In other words, we can remove the subsumed variables from the unassigned variables
during search. The solution to the reduced problem is a solution to the original one.

The proofs for the above theorems and corollaries are in Appendix A.

7RSV was first used by [Oddi and Cesta 2000] but without providing a proof.

16

Figure 6: The search tree showing the effects of the removal of subsumed variables.

Example 2: The ramifications of the above corollary are shown pictorially Figure 0,
which depicts a search without the use of RSV for a solution to the DTP in Figure 5.
The variables are considered in order (1-6). Initially, 4, = {C,. ¢, }. This is then ex-
tended to 4, = {C,. ¢,,C,. ¢,}. Without removing the subsumed variables, the
next assignment would be 4, = {C,. ¢,,C,. ¢,,C;. ¢,}. Notice though that
value ¢;, , and thus variable C; is subsumed by A, because together ¢,,: y —x =5 and ¢,
s x — g =5 imply that y-x=70, which subsumes the constraint ¢;, : y — ¢ = 75. Thus, by
Corollary 1 C; can safely be removed from the search underneath the subtree of A,.
Suppose, however, that it is not removed. Then the search will proceed as in Figure 6.
When the search of subtree T in figure fails, as it will in this particular example, the
search continues by trying the other value of C;and so A, = {C,. ¢,,C,. ¢,,C;

¢5,4. By Corollary 1, since A; has failed, .4, will fail too. By removing the subsumed
variable C; in this particular example, subtree T, and the node corresponding to A4, in
the figure would have been safely pruned.”

3.3 Semantic Branching

A third pruning method used in solving DTPs is semantic branching (8B), which has been
shown to be very effective [Armando, Castellini et al. 1999]. Like RS/, SB relies on the se-
mantics of the constraints in the DTP, i.e., on the fact that they encode numeric inequalities.
The basic idea of semantic branching is the following. Suppose that during search the as-
signment A . {C;. ¢} is expanded in every possible way but it leads to no solution. That
means that in any solution that is an extension of A, if there is any, the constraint ¢; does not
hold. Thus, the negation of this constraint has to hold in any such solution. In other words, if
¢; is the constraint x — y = b and we know ¢; does not hold, then in any solution that is an ex-
tension of assignment A, ¢=; has to be true, i.e. it must be the case that y — x < -b. Thus, when

8 The node corresponding to 45 would also have been pruned.

17

al
@
31
@

Figure 8: Semantic Branching example (a)

search “branches” after failing to extend A4 . {C;. ¢} to a solution, and tries a different
value for C; for the rest of the search under A, we can assume < holds.” The constraint «;
often tightens the STP that corresponds to the current assignment .4; explicitly adding this
constraint can lead to values in other variable domains being removed eatlier than they other-
wise would have been.

Notice that with SB the current assignment 4 at any point in processing no longer stands
in a one-to-one correspondence with an STP §. Instead S is the union of the values assigned to
variables in .4 and all the current semantic branching constraints.

Example 3: To see how SB prunes the search space, we compare the search space for
the DTP of Figure 5 without and then with semantic branching. Suppose the algo-
rithm has already assigned A4, = {C,. ¢,,C,. ¢,,C;. ¢} as shown in Figure 8.
(On the left is the search of the meta-CSP and on the right is the implied STP.) The x-

Figure 7: Semantic Branching Example (c)

crossed edges are the ones removed by forward checking while the filled nodes are the
ones that belong to the current assignment. In Figure 9 the assighment is extended to
A, ={C,. ¢,,C0 0, Cs ¢y, C,. ¢yy). This assignment fails because both val-

ues in D(C;) are removed.

9 The implementation of semantic branching is discussed in Sec. 6.6.

18

The search then continues by trying a different value for C, (Figure 7). Finally, the
search reaches a dead end again because both values in D(C,) are removed (Figure 10),
after which it will backtracks back to node C; and continue the search.

Had we used semantic branching however, when we branched to try the second
value of C4 we would have explicitly added the constraint <€41, as shown in boldface
in Figure 11. The constraint <€41 allows forward checking to eliminate value c61 im-
mediately, thus reaching a dead end. In this simple example, SB prunes only one node,
the one that assigns C5 . ¢51 (last node in left picture of Figure 10), but in general
SB can prune an arbitrarily large number of nodes.

As is noted in [Oddi and Cesta 2000], Semantic Branching is only useful when the disjuncts
in each constraint are not mutually exclusive. For example, in scheduling applications where

Figure 10: Semantic Branching example (d)

the constraints are typically of the form {4 < B or B < _A4}, when the first disjunct fails, SB
will add its negation A > B, having no pruning effect, since the next disjunct B <_4 is the same
constraint.

19

€y

Figure 11: Semantic Branching example (e)

4. No-good Recording

No-good recording (also called no-good learning) is a powerful pruning technique for solv-
ing general CSPs [Dechter 1990; Frost and Dechter 1994; Ginsberg and McAllester 1994,
Schiex and Verfaillie 1994; Schiex and Verfaillie 1994; Yokoo 1994; Dechter and Frost 1999]
and SAT problems [Roberto J. Bayardo and Schrag 1977]. In this section, we adapt this tech-
nique to DTP solving. Intuitively, a no-good is an assignment of the variables that cannot lead
to a solution, and is thus either an induced or explicit constraint of the CSP. It is important not
to confuse no-goods with semantic branching constraints. No-goods are constraints of the
meta-CSP, while SB constraints are constraints of the component STP associated with one
particular (possibly partial) assignment to the variables of the meta-CSP.

In our Epilitis algorithm we use no-goods for two purposes: (1) for pruning the search
space and (i) as heuristic information to estimate which variables constrain the remaining
search space the most. This section deals with the former, while Section 6.4 with the later.

We begin by defining no-goods in general, for an arbitrary CSP <1/, C>. In our definitions,
we will use Cy,. C'to denote the constraints in C that involve only the variables in X, where X

.

Definition 3: A no-good of CSP <1/, C> is a pair <A, >, where A is a set of for-
bidden assignments to a subset of [, and], called the no-good justification or culprit,
is a subset of 7 such that no solution of the CSP <1, C; >, given the specified do-
mains for the variables in [, contains the assignments in ..

Example 4: Consider a CSP where I = {4, b, ¢}, D(a) = D(b) = D(¢) = {1, 2}, with
the following constraints: C = {C, ={«fa. 1. b. 2)},C,={<fa. 2. ¢. 2)},C,
={eHb. 2. ¢c. 2},C,={Ha. 1. c. V) },Ci={a. 1. ¢. 2)}}. Each con-
straint C, trivially induces a no-good. For example, C, implies that <{ a. 1, 5. 2},
{a, b}> is a no-good. Now notice that if an assighment were to include @ . 7, con-
straint C, would preclude ¢ from taking value 1 and C; would preclude ¢ from taking
value 2. Since these are the only values in the original domain of ¢, we can infer the
new constraint {¢{a . 7)}. Thus, the pair <A, J>, where A={a . 1} is also a no-

20

good, for some justification J. What is the justification J? The constraints that imply
the no-good are C, and C: it is as a result of these two constraints that we cannot as-
sign « the value 7. Thus, the variables that “justify” the no-good are the variables of
these two constraints and so | = {4, ¢}. Then C, = {C,, C,, C;} and, as the definition
requires, A={a . 7}cannot be part of any solution to the CSP <1/, ;> Notice that
a no-good <A, J> does not only depend on the constraints C of the CSP, but also on
the domains of the variables. If the domain of ¢in this example contained more values
than 1 and 2 we could not have inferred that A={a. 7} is an induced constraint.

The above example illustrates a particular point: knowing a set of no-goods, we may be able
to infer other no-goods. The following two theorems present two methods for such infer-
ences.

Theorem 4: Let <A, [> be a no-good. Then <A. J, /> is also a no-good, where A .
17 denotes the assignment that results from projecting assignment .4 on the variables
of 17 (Theorem 3.2 in [Schiex and Verfaillie 1994]).

Intuitively, the theorem states that we can reduce the assignhment of a no-good, by only
considering the variables in the justification. For example, if <{a. 7,¢. 2}, {a, b}> is a no-
good, then <{a. 1,c. 2}. {a, b}, {a b}>=<{a. 1}, {a b}> is also a no-good.

Theorem 5: Let A be a (partial) assignment of the variables in [, » be an unassigned
variable in 1/, and {A4, , ..., A} be all the possible extensions of 4 along »,, using
every possible value of D(») . If <A,, [,>, ..., <A, ,],> are no-goods, then <A, . ;

/> is ano-good (Corollary 3.1 in [Schiex and Verfaillie 1994]).

Example 5: Theorem 5 is exactly what we used intuitively in Example 4 to infer that
<{a. 1}, {a ¢}> is a no-good. Let us illustrate now the same CSP and the same deri-
vation again in light of Theorem 5. If we let A = {a. 7}, we see that A, ={a. 1, ¢
1y and A, = {a. 1, ¢. 2} are all the possible extensions of .4 along variable c.
Trivially (see the discussion in Example 4), <{a. 7,¢. 1} ,{a ¢f>and <{a. 1, ¢
2}, {a, ¢}> are no-goods, or equivalently <A, {4, ¢}> and <A, , {4, ¢}> are no-
goods. By the theorem we infer that <A, {a, ¢}> is a no-good too.

4.1 Building, Recording, and Using No-Goods during Search

Suppose we design our search algorithm so that, given a partial assignhment .4, it explores all
extensions of 4, and always returns one of two results: a solution, or a justification J for the

10 The reader might wonder why we define a no-good as the pair <A, J>, where the justification] is the set of the variables
involved in the constraints that imply A, instead of having J to be the set of the actual constraints. Indeed, Schiex and
Verfaille [Schiex and Verfaillie 1994] record the involved constraints as the no-good justifications. For our current exam-
ple, the no-good would be <{a. 7}, {C;, C5}> instead of <{a. 7}, {4, ¢}>. Notice that C; = Cy, } is a superset of {Cy,
Cs}. In general, Definition 3 leads to less specific justifications than those discovered using the Schiex and Verfaillie
method. However, when employing no-goods for solving the Disjunctive Temporal Problem, it is more convenient to
encode and use as justifications sets of variables than sets of constraints, especially since in the DTP the constraints are
implicit). The two definitions of no-goods are equivalent for all purposes of this paper. For a more thorough discussion
on the subject see [Richards 1998].

21

failure of all the extensions of 4. In other words, we assume that invoking a search on the suc-
cessor A . {v. u} returns either a solution or the no-good <A . {». 3},]>. By
Theorem 5, if all successors of A fail returning <A. {v. .}, |,>, then we can infer the new
no-good <A, . J,>, which can be further reduced to the no-good <A..], . J,> by Theorem
4. This no-good has a smaller forbidding assignment than all the no-goods of the successors
and it can be returned recursively to the parent of the current node to explain why 4 failed to
be extended to a solution. Thus, if the leaves of the search return a no-good with a justification
for the failure, the internal nodes can infer and build smaller no-goods using the method just
described.

The preceding discussion shows how to propagate constraints from the leaf nodes through
internal nodes of the CSP. The remaining question is how to generate the no-goods at the
leaves. Building no-goods at the leaves is easy for standard CSPs: if the current assignment at
the leaf violates a constraint C, then the no-good <A, /> is returned, where 1", contains the
variables in [that appear in the constraints in C. If more than one constraint C'is violated, we
can arbitrarily select one to return'’.

In the meta-CSP of a DTP, the constraints among the CSP variables are implicit and have
to be inferred, and so it is not as straightforward to determine what justification to return when
a constraint is violated. We distinguish two cases for when assignment 4 violates a constraint
and correspondingly two ways to form a justification for the failure:

1. Ais a superset of A’ for some already recorded no-good <A, |>. In this case] is returned as the
justification.

2. A corresponds to an STP that is inconsistent. Suppose that p is the negative cycle in the in-
consistent STP. If there are no semantic branching constraints added, then this negative
cycle is formed entirely from value-variable assignments in 4. If vars(p) are the variables
whose value assignments are the STP constraints in p, the set zars(p) is the justification
that should be returned . For example, if assignment A={C, . ¢,,C,. ¢,,C;.
o5 4and p={¢,, ¢, }, then the justification | = {C,, C,} should be returned. However, if
semantic branching constraints are added, then they might also participate in the nega-
tive cycle p, e.g. if assignment A={C,. ¢,,C,. ¢,,C;. ¢ yand p={¢,, ¢, , v},
where » is a semantic branching constraint. In this case, the set of variables that consti-
tutes the culprit of the failure is vars(p) and all the variables that justify the addition of ».
Assuming that we have a way of obtaining the justification of the semantic branching
constraints, denoted by the function jus#(v) for a constraint #, the justification to be re-
turned should be is vars(p) . | just(v), where v, are all the semantic branching constraints
that participate in the negative cycle p. In order to implement function just(v) we need to
store the pairs <y, [> where » is a semantic branching constraint that holds in the cur-
rent assignment and | the justification of the most recent failure prior to the addition of
v (le. the failure that led to the addition of 2).

' In [Schiex and Verfaillie 1994] the idea of returning more than one justification per failure is explored, but this is outside the
scope of this paper.

22

Notice that case (1) requires that during search the current assignment .4 is checked
against all recorded no-goods to determine whether A4 . .4’ for some no-good <A’ J>. This
lookup operation imposes a significant overhead for using the recorded no-goods (see
[Tsamardinos 2001] for an efficient implementation of no-good lookup scheme). Recording
more no-goods provides better chances for pruning the search space; however, it increases the
time for the lookup operation. Thus, one needs to determine which no-goods to keep among
all possible no-goods discovered during search. The easiest scheme is to limit the size of the
no-goods recorded by a fixed constant £: a no-good assignment is recorded only if it contains
less than £ value-variable assignments (independent of the size of the justification set). In the
experiments we conducted we determined the best value for £ for the range of problems we
tested, as described in Section 6.4.

5. Integrating all Pruning Methods: The Epilitis Algorithm

We are now ready to describe our algorithm for DTP solving. Called Epilitis, the algorithm
combines all the pruning methods used in the previous literature on DTP solving—namely
Contflict Directed Backjumping, Removal of Subsumed Variables, and Semantic Branching—
and it adds in the no-good recording scheme of discussed in Section 4. The main difficulty in
designing the algorithm is that no-good recording, CDB and SB interact and special attention
is required to combine them. Here we present a high-level description of the algorithm shown
in Figure 12; complete details, sufficient for implementation, are provided in the Appendix A.

As in the previous approaches, Epilitis attacks a DTP by attempting to solve the associated
meta-CSP, searching for a consistent component STP. It takes three arguments:

A, the current assignment of values (of the form x-y <=0) to variables

U, the yet-to-be-assigned variables

S, the current induced STP, which is represented by a distance array, a precedence ar-
ray, and a set of pairs<z, />, such that » are the semantic branching constraints justified
by the meta-level constraints involving the variables in J.

When Epilitis is initially invoked to solve a DTP <I/,C>, A4 = —, U = (, the variable do-
mains are initialized as in the basic DTP algorithm of Figure 1, and the distance and predeces-
sor arrays are empty, as are the SB constraints."”

12 Recall that the distance array is the all-pairs shortest path matrix, and the predecessor atray stores a predecessor of j on the
shortest path from 7 in all entries <7,> that are not on the main diagonal.

23

Epilitis(4, U, S)

1. /* Removal of Subsumed Variables) */

2. For all variables x in U,

3. Remove x from U if for any value v in d(x) the Subsumption Condition holds in the
4. current STP S.

5. EndFor

6. If U=— then

7. Stop and report 4 as a solution

8. Else

9. Select a variable x in U

10. For all values v in the current domain of x, d(x)

11. forward-check v

12. If forward-check fails with justification Just,

13. record <A4. {x. v}. Just, Just> (No-good recording)

14. Else,

15. Try extending 4 by {x. v} (Recursively call Epilitis).

16. If the call returns with justification J; that does not involve x,

17. backjump and return J; (Conflict-Directed Backjumping)
18. EndIf

19. EndIf

20. If value v fails, add reverse(v) to S, EndIf (Semantic-Branching)

21. EndFor

22. If all values v (in the original domain of x, D(x)) have failed or been removed from D(x)
23. with justifications J;

24. record <4.. ;J;, . ;J>, return . ;J; (No-good recording)

25. EndIf

26. EndIf

Figure 12: High-level description of Epilitis algorithm.

On any (recursive) call, if U=— then A represents a solution to the DTP. If any variable in
U is subsumed by S, then it is removed from U. Next, a variable x in U is selected and an at-
tempt is made to extend .4 by making an assignment to x. Otherwise, each value », in d(x) is
considered in turn and A is extended to A’ =A4 . {x. 2.}, while constraint », is propagated
in . If forward-checking a value », reduces the domain of some variable to the empty set, then
a dead-end has been reached. At this point, Epilitis records the no-good <A. {x. v}. Just,
Just> where Just is the justification for the failure as discussed in 4.1. Otherwise, if forward-
checking does not lead to a dead-end, then Epilitis is recursively invoked.

If a dead-end has been reached for every possible extension of x among all », then we build
and record another no-good <A..], . J,> where], are the justifications for each 4. {x

v} failing.

CDB is implemented with the following scheme: If while recursively calling Epilitis with
assignment .4’ =A4. {x. 2} a failure occurs with justification], then there is no need to try
another value », if x does not appear in J: if x is not in the culprit of the failure, the same dead-
end will be encountered again for 4. {x. #,}. Thus, we can stop trying any remaining val-
ues in the domain of x, and backjump over x.

Finally, SB is implemented by propagating the reverse »=<¢#, in the current STP §, when
A. {x. u,} leads to failure. However, recall that in order to create the cortrect justifications

24

for building no-goods and performing CDB the pairs <, [> of the current set of semantic
branching constraints need to be maintained, where J is the justification for adding .

6. Experimental Results

6.1 Experimental Setup

We next describe the results from a series of experiments that we ran on Epilitis and the
solver of Armando, Castellini, and Giunchiglia called TSAT, publicly available at
http://www.mrg.dist.unige.it/ ~drwho/Tsat. (As described further below, TSAT has been
shown to be the most efficient DTP solver previously developed [Armando, Castellini et al.
1999].) The goal of the experiments was to assess the effectiveness of various combinations of
the pruning strategies described in the previous sections. As is customary in the DTP literature
[Stergiou and Koubarakis 1998; Armando, Castellini et al. 1999; Oddi and Cesta 2000; Stergiou
and Koubarakis 2000], experimental sets were produced using the random DTP generator im-
plemented by Stergiou, in which DTPs are instantiated according to the parameters <£, NN, 7,
I >, where £ is the number of disjuncts per constraint, N the number of DTP variables, 7 the
number of DTP constraints, and I a positive integer such that for all the disjuncts x—y =54, b

[0, L] with uniform probability. In the random DTP problems we used, we used the typical
settings in the literature where £ = 2, . = 100, and N . {10, 15, 20, 25, 30, 35}. Parameter £ is
chosen to be 2 because this is the case for constraints that typically appear in many planning
and scheduling (e.g. A<B or B<A). We also employ a derived parameter R, the ratio of con-
straints over variables, 7/N. For each setting of N, we varied R from 2 to 14, and we genet-
ated 50 random problems for each setting of N and R. (For example, we generated 50 prob-
lems for the case where N is 30 and R is 10; those problems have 30 variables and 300 con-
straints). The total number of experiment problems was 50 - 13 - 6 = 3900 (13 values for R, 6
values for IN). The domains of the variables are integers instead of reals so that semantic
branching can easily be implemented: the negation of the constraint x — y=bis y— x=-b—1".
This is again standard with the rest of the literature.

The output of Epilitis provides the following statistics for each DTP solved:

The Time it took to solve the problem.

The number of constraint checks CCs (i.e., the number times the algorithm
checked the FC-condition or the Subsumption-Condition).

The number of search Nodes generated.

The number of constraint propagations CProps (i.e., number of calls to maintain-
consistency).

13 There are specific reasons why we chose to implement «{x-y=b) as y-x=-b-1. First, if the variables are integer-valued and all
the bounds are integer valued, then obviously y-x<-b is equivalent to y-x=-b-1 which is stricter than y-x=-b-e. In addition,
both in TSAT and in the Oddi and Cesta’s work, this is the method that semantic branching has been implemented. Thus, it
would be unfair to compare Epilitis with TSAT using any other method. If the assumption of integer valued variables and
bounds does not hold, semantic branching can be implemented as y-x=<-b-e or even y-x=-b (which is not as strict as possi-
ble, but sound).

25

The number of no-goods checks NCs,(i.e. the number of times a no-good is
checked for retrieval).
The number of no-goods recorded NGs.

In the graphs and tables showing the results below, except where otherwise noted we pre-
sent the median of the above statistics over the series of the 50 experiments with the same pa-
rameters [N and R. Again, this is consistent with the literature on DTP solving.

The Epilitis algorithm was implemented in Allegro Common Lisp 5.0. Both Epilitis and the
ACG solver were ran on the same Intel Pentium III machine running Windows 2000, having
384MB memory and a clock speed of 1GHz. There is no time-out for the experiments run
using Epilitis, but we used the time-out of 1000 seconds provided as a default with the ACG
solver. This time-out limit is reasonable because it is an order of magnitude larger than the
maximum amount of time taken by Epilitis to solve any of the test problems. Note, moreover,
that by imposing a time-out limit on ACG but not on Epilitis, we are, if anything, providing an
advantage to ACG in the experimental compatison.

All of our experiments confirm the existence of a critical region for values R=5, 6, 7, §,
where the percentage of solvable problems is less than 10% and the median time to find a so-
lution or prove there is no solution to a DTP problem substantially exceeds the median time
taken when R<5 or R>8.

6.2 Pruning Power of Techniques

In the first set of experiments we investigated the pruning power of all the pruning meth-
ods and combinations thereof. This set of experiments answers the following questions: (i) can
all pruning methods be integrated efficiently? (ii) how do the pruning methods and their com-
binations compare quantitatively?

The pruning methods we tried are:

Removal of Subsumed Variables (RSV)
Conflict-Directed Backjumping (CDB)
Semantic Branching (SB)

No-good Recording (NG)

In Epilitis all of the above methods can be individually turned on and off, providing us with
the opportunity to try any combination we desire. The only limitation is that whenever NG is
on, CDB must also be turned on. We name our graphs and tables using the following conven-
tion: we list the options that were turned on separated by spaces or dashes. When we bound
the size of the no-goods, as explained in Section 4.1, we follow the name with the numerical
bound. For example, CDB-RSV-SB-NG-10 is Epilitis with CDB, RSV, SB, NG on and a
maximum size of no-goods set to 10, and CDB-RSV-SB-NG the same algorithm with no
bound on the size of no-goods. We use the term “Nothing” to identify “bare” Epilitis, with
no pruning techniques turned on.

For this set of experiments we used the following dynamic variable and value heuristics:
Select the variable according to the MRV (Minimmum Remaining 1 alues). Break the ties
by selecting the variable that contains the value that maximizes the number of pair-
wise inconsistencies with the values in the domains of the unassigned variables.

26

Select the value that minimizes the number of pairwise inconsistencies with the val-
ues in the domains of the unassigned variables.

This heuristic is typical in the CSP literature. The idea is that by choosing the variable with
the value that maximizes the pairwise inconsistencies, the branching factor of the search is re-
duced, since this is the variable that most constrains the search. On the other hand, when we
select a value we prefer the one that least constrains the search so that we increase the prob-
ability of finding a solution that contains this value.

cdb |cdb

cdb [sb |rsv

cdb sb |cdb |sb |rsv |sb
Ratio |nothing|rs cdb |rsv |ng 10jng sb rsv sb rsv |ng |ng10
2 0.02] 0.02| 0.02] 0.02] 0.03] 0.03] 0.02] 0.02] 0.02] 0.02| 0.03| 0.021

3 0.05 0.05[0.05[0.05] 0.06| 0.06| 0.05[0.05/ 0.05] 0.05 0.06] 0.06
4 0.14 0.13[0.13] 0.11] 0.14] 0.15 0.14] 0.12] 0.14] 0.11] 0.13] 0.13
5 1.91] 1.39] 1.05 0.811] 0.49| 0.551| 0.531] 0.51| 0.501) 0.451| 0.421| 0.431
6 4.1 333 2.8 2.39] 1.53] 1.46| 1.43] 1.34] 1.25 1.24] 1.04| 0.941
7
8
9

193] 1.74] 1.87] 15 1.07] 1.31] 1.05 1.01]0.981) 0.971] 1.02[0.851
1.15 1.11] 1.05/ 0.892] 0.781| 0.982) 0.671| 0.651| 0.661]| 0.621| 0.751] 0.701
0.711] 0.661| 0.671| 0.611| 0.621| 0.681] 0.551| 0.54{ 0.521| 0.53] 0.62| 0.571
10 0.671] 0.611] 0.631| 0.571 0.6 0.66| 0.55| 0.551| 0.541[0.511| 0.571] 0.531
11 0.56| 0.551| 0.521] 0.521| 0.541| 0.61]| 0.461| 0.441] 0.451| 0.441| 0.531] 0.511
12 0.491] 0.501) 0.481| 0.461| 0.491| 0.551] 0.451) 0.431| 0.43]| 0.431| 0.521] 0.48
13 0.461] 0.48) 0.461| 0.461| 0.461| 0.521] 0.45 0.44] 0.42| 0.411] 0.51] 0.48
14 0.441] 0.421 0.441] 0.43] 0.471] 0.541] 0.42] 0.41] 0.421] 0.411] 0.551] 0.491

Table 2: The ordering of the pruning methods according to Median Time when R=6, and

N=20.
cdb |[cdb
cdb [rsv sb
cdb cdb |[sb |sb sb rsv

Ratiojrsv _|cdb |rsv |ng 10sb |ng [sb rsv |rsv |ng_10|ng

2 |0.04 0.04] 0.05] 0.04] 0.04] 0.05 0.04{0.04| 0.04] 0.05 0.05
3 0.1 0.110.111] 0.12] 0.11] 0.12] 0.11] 0.1 0.1 0.11] 0.11
4 10.37[0.291] 0.31] 0.32] 0.361| 0.311] 0.311] 0.32] 0.251] 0.29] 0.281
5 [922] 43 241 1.06| 2.08/0.892] 1.5(1.69] 1.04| 0.811) 0.681
6 |40.8 27.5| 248/ 101 8.77] 8.72 798 7.7| 7.43 7.05 5.38
7
8
9

18.5| 16.3| 14.1] 8.56| 7.72| 7.66] 7.94|7.47| 6.94] 6.78 7.09
6.8 5.81] 5.02 4.1 3.37] 3.83] 3.36] 3.2 3.14] 2.74] 2.71
499 4.46] 445 351 3.3 3.56] 3.14] 3.1 2.89] 2.83] 2.36
10 | 3.46] 2.69] 245 2.08 2.01] 2.36] 1.94{1.97| 1.74 192 1.9
11 [248 2.21] 1.86 1.9 1.62| 217 1.57[1.42] 136 1.61] 1.52
12 | 244 23] 1.98] 1.71] 1.44| 1.86] 1.58/1.36] 1.36 1.53] 1.44
13 [1.84] 1.63] 1.44] 131 1.26] 148 1.2/1.13 1.11] 1.18 1.16
14 [168 1.3 1.25 1.38 1.18 1.51] 1.07[1.12 1 1.3] 1.22
Table 3: The ordering of the pruning methods according to Median Time when R=6, and N=25. In
Table 2, Table 3, and Table 4 we show the results for N=20, N=25, N=30 for various pruning

27

methods and their combinations. The results for N<20, not reported here, are similar. The
columns are listed in increased order of efficiency for Ratio=6; this is the peak of the critical
region. The tables are not complete, i.e., some pruning method combinations are missing, be-
cause they caused the algorithm to be too slow for the experiments to complete (e.g. “noth-
ing”, i.e. the no pruning methods version is not reported in Table 3). All times are reported in
seconds, as in all experiments in this paper. We selected size 10 for bounding the no-good size
because in other experiments (described subsequently), size 10 was determined to be optimal
size for the Epilitis with all pruning methods on. Although it would be desirable to have an
analytic technique for predicting the optimal size of no-goods, we do not know of a suitable
such account, and to date, all results on optimal no-good size have been determined experi-
mentaly.

As expected in Tables 2-4, “nothing” performs the worst, then RSV, then CDB, then SB,
NG, and NG-10 following closely together. It makes sense to compare the time of each algo-
rithm, since their underlying implementation is the same.

cdb sb
cdb sb rsv

Ratio |sb rsv cdb sb |sbrsv |ng_10
2 0.07 0.07 0.07 0.07 0.08
3 0.17 0.18 0.17 0.17 0.18
4 0.4 0.39] 0.371 0.36 0.39
5 10.3 7.42 7.12 8.25 4
6 149 142 140 138 79.8
7 74.6 70.5 69.7 782 48.8
8 29.4 26.6 25.9 31.5 21.1
9 13.9 12.6 12.4 14.1 11.1
10 9.73 9.15 8.92 10.3 7.72
11 6.73 6.28 6.09 6.69 4.93
12 4.47 464 442 4.61 4.12
13 4.32 4.31 3.77) 438 3.97
14 3.96 4.02 3.91 4.17 3.2

Table 4: The ordering of the pruning methods according to Median Time when R=6, and
N=30

Since the search space increases exponentially with the number of variables, the results be-
come more significant as N grows. Thus the differences among pruning methods is most ob-
vious in Table 4, which shows the results for N=30. The worst combination is the CDB-RSV:
we were not even able to complete this experiment for N=30. The best performance is the
CDB-SB-RSV-NG-10. When we did not bound the size of the no-goods, the performance of
the algorithm was seriously degraded for N=30 and this is why it is not included in the table.

We now compare the different pruning methods strictly according to their pruning power,
L.e. not including the computational overhead to implement them. Table 5 shows the statistic
Nodes,/ Nodesy, ;;,, where Nodes, is the median number of search nodes explored by the algo-
tithm in each column ¢ and Nodesy,,,, the search nodes explored by Epilitis with no pruning

28

methods. As we would expect, the more methods we add, the more we prune the search
space. In this case NG is the best single'* method, exploring only 27.31% of the whole search
space (i.e. when no pruning method is on) for R=6. NG is even better than the combination
of all three other methods CDB-SB-RSV, which explores 32.52% of the space. This result en-
courages us to look for even more efficient implementations of recording and retrieving no-
goods to reduce the overhead of the technique. Table 6 supports the same argument, showing
the effect of pruning methods on the search space explored for N=30, where the search space
is significantly larger than for N=20 (the value in Table 5). The statistic displayed is
Nodes,/ Nodes,; , whete Nodes, is the median number of search nodes explored by the algorithm
in each column ¢ and Nodesg, the search nodes explored by Epilitis with SB on. For example,
in the last column, for R=06, we see that the ratio is 38.99% meaning that the algorithm CDB-
RSV-SB-NG-10 explored only 38.99% of the space the algorithm SB explored on problems
for N=30 and R=6. The results show in an impressive way the pruning power of no-goods:
the last column, corresponding to the algorithm with the no-goods on, display a significant
reduction of the space searched.

cdb sb
Ra- cdb sb rsv cdb sb
tio [rsv cdb [cdb rsvisb sb rsv_[cdb sb |rsv ng_10 |ng ng_10 [rsv ng |

100.00{ 100.00| 100.00| 100.00 100.00{ 100.00| 100.00| 100.00| 100.00{ 100.00| 100.00
2 % % % % % % % % % % %
100.00{ 100.00| 100.00] 100.00 100.00{ 100.00; 100.00| 100.00| 100.00{ 100.00| 100.00
3 % % % % % % % % % % %
100.00{ 100.00 100.00(100.00

% %)| 98.91%| 97.83%| 97.83%| 97.83%| 97.83% % %| 97.83%|97.83%
76.00%|42.00%] 42.00%]| 30.40%| 30.40%| 27.73%|27.73%| 20.33%| 17.53%| 15.67%[15.13%
88.84%|67.36%| 63.64%]| 35.29%| 35.29%| 32.77%|32.52%| 31.12%| 27.31%|19.75%[19.75%
89.71%]| 79.22%]| 73.69%| 50.49%| 50.49%| 45.24%| 44.66%| 39.13%| 39.13%| 31.17%| 32.82%
100.00

N (O (oA

8 %| 84.01%| 77.07%| 54.72%|54.72%| 51.25%| 50.67%{ 52.99%| 53.95%(44.51%(44.12%

9 [91.20%]|84.00%]| 84.00%| 78.00%| 78.00%]| 72.00%]| 72.00%| 70.80%| 70.00%| 59.60%]| 59.60%

10 [95.24%]|81.43%| 78.10%| 77.62%| 77.62%| 69.05%| 69.05%| 68.10%]| 68.10%| 56.19%|56.19%

11 [98.57%]|81.43%| 81.43%| 77.14%| 77.14%| 67.86%| 67.86%| 71.43%]| 71.43%| 66.43%|66.43%
100.00

12 %] 96.12%| 96.12%[95.15%]| 95.15%| 86.41%| 86.41%|84.47%|84.47%| 78.64%| 78.64%
100.00

13 %)| 88.64%| 88.64%[92.05%]| 92.05%| 81.82%| 81.82%| 84.09%]| 84.09%]| 79.55%| 79.55%
100.00

14 %] 97.56%| 97.56%[95.12%]| 95.12%| 87.81%| 87.81%]| 82.93%| 82.93%| 82.93%|82.93%

Table 5: The statistic Median Nodes divided by Median Nodes of “Nothing” for N=20. The
pruning methods are sorted according to this statistic for R=6.

Summarizing the results of this section:
A rough partial ordering of the pruning methods is RSV < CDB < CDB-RSV < NG-
10 < SB < {CDB-SB, SB-RSV, CDB-SB-RSV} < CDB-SB-RSV-NG-10.

14 Recall, however, that when NG is on, CDB is also on, so the comparison is not entirely fair.

29

No-good learning needs to limit the size of the no-goods recorded because asymp-
totically the overhead of recording and looking-up all the possible no-goods greatly out-
weighs the benefits.

SB is the best single pruning method in terms of performance, i.e. displaying a good
trade-off between pruning power and implementation overhead.

NG is the best single pruning method in terms of pruning, even better than all the
other methods combined CDB-SB-RSV.

The Epilitis with options CDB-SB-RSV-NG-10 considerably improves performance
over all other methods combined CDB-SB-RSV.

cdb sb
cdb sb rsv ng
Ratio | sb rsv cdb sb rsv 10
2 100.00% | 100.00% | 100.00% | 100.00%
3 100.00% | 100.00% | 100.00% | 100.00%
4 89.31% | 89.94% 89.31% | 89.31%
5 92.96% | 71.37% 69.25% | 32.16%
6 100.00% | 94.93% 94.93% | 38.99%
7 100.00% | 97.13% 93.03% | 47.13%
8 100.00% | 89.59% 89.59% | 55.90%
9 100.00% | 86.26% 86.26% | 66.79%
10 100.00% | 93.37% 93.37% | 65.06%
11 100.00% | 85.98% 85.98% | 60.31%
12 100.00% | 92.95% 92.95% | 63.57%
13 100.00% | 95.23% 95.23% | 72.57%
14 100.00% | 96.97% 96.97% | 66.67%

Table 6: The statistic Median Nodes divided by Median Nodes of SB for N=30. The pruning
methods are sorted according to this statistic for R=6.

6.3 The Number of Forward-Checks is the Wrong Measure of Perform-
ance

Our first set of experiments were designed to compare the effectiveness of alternative
combinations of pruning strategies and it was straightforward to present the results of those
experiments since what we are concerned with is precisely the number of search nodes in the
meta-CSP that are pruned. In the third major experiment, which we present below in Section
6.5, we compare Epilitis running with the most effective combination of pruning heuristics, to
TSAT, the previous most effective DTP solver. It is less obvious what metrics to use in this
comparison. It is customary in the literature to compare DTP solvers and report their per-
formance using the number of forward-checks—more precisely the total number of values
that the algorithm forward-checked during search, also called consistency checks CCs”

15 In our implementation a consistency-check is essentially checking the FC-condition. We also felt that we should count as a
consistency-check determining whether the Subsumption-Condition holds, because both are similar operations having simi-
lar functions and take the same time. Not counting the Subsumption-Condition checks in CCs would favor all algorithms
with RSV on since those are the ones that perform this operation.

30

[Stergiou and Koubarakis 1998; Armando, Castellini et al. 1999; Oddi and Cesta 2000; Stergiou
and Koubarakis 2000]. Such comparisons make the implicit hypothesis that the number of
consistency checks is a machine and implementation independent measure of performance. In
this section we present both theoretical arguments and empirical evidence that this hypothesis
is false and CCs is the wrong measure of performance.

There are at least three reasons for rejecting CC counts as a performance metric. First, the
use of no-good recording in Epilitis gives an unfair advantage for a comparison based on CC
counts. This is because no-good recording requires significant overhead to record and retrieve
no-goods, and this overhead is not represented in the number of forward-checks.

Second, as discussed in Section 2.2, the time required for each consistency check depends
on the method used for maintaining consistency. For example, when the distance array of each
current STP is available, checking the FC-condition takes constant time, but when it is not,
more time might be required.

The third argument against the use of CC-counts as a metric is that there are techniques
that have been employed in previous DTP solvers that result in fewer values being forward
checked even though more time is spent exploring. For example, a technique used by Stergiou
and Koubarakis [Stergiou and Koubarakis 1998; Stergiou and Koubarakis 2000] and ACG
[Armando, Castellini et al. 1999] is what we will call Forward-Checking Switch-off (FC-Off). In
Appendix C, we provide an example that illustrates that that FC-Off can reduce the number of
forward-checks by increasing the number of search nodes explored and thus it may even de-
crease the performance of a DTP solving algorithm.

As a result of the three problems with using CC counts as a measure of performance, we
report actual computation times used in our comparison of TSAT and Epilitis. One draw-
back of such a comparison is that we cannot as easily draw conclusions about the pruning effi-
ciency of Epilitis’ additional pruning methods, such as RSV, CDB, and NG, since TSAT uses a
very inefficient method for consistency checks. Thus, the better performance of Epilitis might
be attributed only to the better consistency checking techniques it employs. We cannot totally
dismiss this hypothesis until a version of TSAT is re-implemented using better forward-checks
methods. However, our first set of experiments, which analyzed the pruning methods and
showed their effectiveness, make it unlikely that efficient consistency checking is solely respon-
sible for Epilitis’ performance advantage.

6.4 Heuristics and Optimal No-good Size Bound

Before presenting the actual comparison of Epilitis and TSAT, we need to pin down one
more detail, namely, the search heuristic used for selecting which variable/value combination
to select during each stage of the search. Interestingly, the use of no-good recording increases
the range of search heuristics available, because the heuristic itself can take into account the
no-good information. In turn, however, this means that the performance of the search heuris-
tic is intertwined with the size of the no-good recorded. Thus, we designed a factorial experi-
ment aimed at discovering the best combination of search heuristic (from amongst a set of
plausible heuristics) and bound on no-good size.

As heuristic information we considered four functions that estimate how much a value x
constrains the remaining search space. These are:

31

Median Time for N=30
1000
——ng-2-h1 —=—ng-6-h2 —&—ng-10-h2
—%—ng-14-h3 —x—ng-18-h2
100 -
[}
2
S 10
o
[}]
n
£
® 1
£
=
0.1
001 T T T T T T T T T T T T
2 3 4 5 6 7 8 9 10 11 12 13 14
Ratio

Figure 13: Comparison for the best overall algorithm for N=30.

E@ the number of remaining values that are pairwise inconsistent with x (i.e. calcu-
lated dynamically during search using the current domains).

ET: the number of values that are pairwise inconsistent with x determined szazzcally
before search begins.

E2: the number of the remaining values that are pairwise inconsistent with x plus
the number of no-goods x appears in.

E3: the number of the remaining values that are pairwise inconsistent with x. Ties
are broken by the number of no-goods x appears in.

As estimators of how much a variable » constrains the remaining search space we used the
maximum of the value estimator used over all remaining values in #’s domain.

In each of our heuristics we follow the principle of selecting the variable that most con-
strains the remaining search space, in an attempt to minimize the branching factor. Thus, a
variable with minimal current domain is chosen first (Minimum Remaining 1 alues heuristic) by
default. However, since all domains have maximum size two, it is often the case that there are
many ties, and these are then broken by using one of the above estimators E0-E3, giving rise
to the four heuristics HO-H3 respectively.

In contrast, as value selection principle we select the value that least constrains the search
space, in an effort to hit a solution faster. We again use the estimators above. For example, in
H?2 we would first select the variable » with the value that maximizes the number of pairwise
inconsistencies and participates in the most recorded no-goods, among all the variables with
least domain size. Then, we would select the value in »’s domain that minimizes this estimator

(E2.

32

Figure 13 presents the results. The x-axis shows the R, ratio of constraints to variables; this
is the critical parameter for the DTP-solving problems. The j-axis shows computation time
taken, in seconds; note that the scale is logarithmic. We name the curves as “NG x y”” to de-
note Epilitis with a// the pruning options on, where x is the limit on the size of no-goods, and y is
the search heuristic used. We show only the graph for N=30 since this is the largest size we
ran. For each no-good size the best heuristic is selected (e.g. for size 6 we determined the best
heuristic to be H2). Overall, the combination of HZ with size bound of 10 works best, al-
though H3with bound of 14 come very close. However, we suggest using H2with size bound
of 10 because it exhibits a better average case behavior.

To summarize the results of this section:

The recorded no-goods do not only prune the search space but can also be effectively
used as heuristic information.

Epilitis with CDB, SB, RSV, NG on, maximum no-good size 10, and heuristic H2 is
the best algorithm in the set of experiments we ran.

6.5 Comparing Epilitis to the previous state-of-the-art DTP solver

In Section 7 below we provide details of Epilitis’ three predecessors: one developed by
Stergiou and Koubarakis [Stergiou and Koubarakis 2000], one by Oddi and Cesta [Oddi and
Cesta 2000], and one by Armando, Castellini, and Giunchiglia (TSAT) [Armando, Castellini et
al. 1999]. Oddi and Cesta present an experimental comparison, noting that while their algo-
rithm consistently outperforms that of Stergiou and Koubarakis, it is at best competitive with
TSAT algorithm. Moreover, they show that TSAT is particularly good at the hardest prob-
lems, i.e., those in the critical region. As Oddi and Cesta note, “further work [on their system]
will be needed to cleatly outperform TSAT.” These are the problems that are most significant,
since problems outside of this range can already be solved very quickly. Given these results,
we view TSAT as the state-of-the-art predecessor to Epilitis, and conduct head-to-head ex-
periments with it. It is worth noting, however, that there is one class of problems for which
Oddi and Cesta’s approach outperforms that of TSAT: problems with small R values (R = 5).
On these problems, Oddi and Cesta’s system is about one order of magnitude faster than
TSAT. Although we have not conducted a head-to-head comparison of Epilitis with Oddi
and Cesta’s system on such problems, Epilitis is also about an order of magnitude faster than
TSAT, and thus it is reasonable to conclude that it is competitive with Oddi and Cesta’s sys-
tem for these (relatively easy) problems.

We now turn to the details of the final experiment, in which we compare CDB-SB-RSV-
NG-10-H2 with TSAT. Figure 14 shows the results for N=25 and N=30. As explained above,
we report overall computation time; as in Figure 13, the x-axis shows R, and the y-axis, which
is logarithmic, shows median computation time in seconds. Epilitis is faster by about two or-
ders of magnitude for the larger (N=30) problems. Also recall that TSAT has a time-out of
1000 seconds imposed, and so the real median time taken by their program might be signifi-
cantly more than is indicated here. For example, for N=30 and R=06 the median time is exactly
1000 seconds implying that the TSAT solver timed-out on more than half the problems.

33

We also ran the best version of Epilitis on problems of up to size N=35 (the largest size of
random DTP problems reported as so far) and we observed that the algorithm scales relatively
well. Figure 15 shows the performance of Epilitis on problems of different sizes. For the larger
problems where N=35 Epilitis has a median time performance of about 100 seconds, while
the corresponding TSAT performance is more than 1000 seconds for problems of size N=30.
The overall performance of TSAT is also shown in the same figure. As we can see TSAT re-
quires about one order of magnitude more time every time N is increased by 5. In contrast

Epilitis” performance does not degrade as fast.

Summarizing the results of this section:
Epilitis is almost two orders of magnitude faster than the previous state-of-the-art
DTP solver TSAT on standard benchmark problems.
Epilitis” performance scales comparatively well as the size of the problems increase.

34

Median Time for N=25

100
10
(2]
T
c
o
3
(7] 1A
£
[
=
=
0.1 1
—=&—ng-10-h2 —A— tsat-i2
001 T T T T T T T T T T T T
2 3 4 5 6 7 8 9 10 11 12 13 14
Ratio
Median Time for N=30
1000

100 -

10 -

0.1 1

Time in Seconds

—a—ng-10-h2 —a— tsat-i2

0.01 T 1T T 71T 1T 1T 1T T T 71
2 3 45 6 7 8 9 10 1112 13 14

Ratio

Figure 14: Comparison of Epilitis and ACG’s solver for N=25 and N=30.

35

Median Time for Epilitis

1000

——N=20 —8—N=25 ——N=30 —%—N=35

100

Time in Seconds
N =)

0.1 1

0.01 T T 1T T T 1T 1T T T T
2 3 4 5 6 7 8 9 10 11 12 13 14

Ratio

Median Time for TSAT

1000 A
100 1 //&

0.1 T T 1T T 71T 1T T 71T T 7
2 3 4 5 6 7 8 9 10 11 12 13 14

Ratio

Time in Seconds

Figure 15: The median time performance of Epilitis and TSAT.

36

6.6. Application Experience

The previous sections have described controlled experiments we performed using synthetic,
abstract test problems, to analyze the performance of the various pruning strategies developed
for DTP solving and to compare Epilitis with the previous state-of-the-art system. We also
have some experience using Epilitis in a large application, which we briefly describe here.

Autominder [Pollack 2002] is an intelligent cognitive orthotic system: a system designed to
help older adults with memory decline by providing them with adaptive, personalized remind-
ers about their daily activities. Autominder has three main components: a Plan Manager,
which stores a plan of it’s clients daily activities, and is responsible for updating it and identify-
ing potential conflicts in it; a Client Modeler, which uses information about the client’s observ-

able activities'®

to track the execution of the plan, inferring what activities the client has already
performed and what activities are pending; and a Personal Cognitive Orthotic, which reasons
about any disparities between what the client is supposed to do and what she is doing, and
makes decisions about when to issue reminders.

The relevant component for the current paper is the Plan Manager. It maintains a model of
the client’s daily plan encoded as a DTP. It then invokes Epilitis to update the plan in re-
sponse to four types of events:

(1) The addition of a new activity to the plan.

(2) The modification or deletion of an activity in the plan.

(3) The execution of an activity in the plan, as reported by the Client Modeler.

(4) The passage of a time boundary in the plan.

In each of these cases, the Plan Manager formulates a DTP: for instance, when a new ac-
tivity is added, the DTP consists of the constraints in the original client plan, the constraints in
the new activity, and a set of constraints generated to represent the resolution of any conflicts
between the two. Epilitis then attempts to solve the DTP, indicating whether or not it suc-
ceeded, and returning any newly required constraints. For instance, the addition of an activity
may result in added constraints on the time of performance of a previously added activity.

In general, the size of the plans managed by Autominder are small by the standards of the
planning community. (On the other hand, our focus is not on plan generation, but on a range
of other tasks, such as plan monitoring, update, and dispatch.) Generally the client plan has on
the order of 30 actions, meaning that there are 60 events (start and end points), and, with typi-
cally temporal constraints, the representation requires about 4 or 5 constraints per action, and
about 2 or 3 disjuncts per constraint. For problems of this scale, Epilitis neatly always pro-
duces solutions (or determines inconsistency) in less than a second, an amount of time that is
well within the bounds we require.

16 The current version of Autominder is deployed on a mobile robot, and uses on-board sensors to observe a client’s move-
ment about her home.

37

Technique SK ACG - 0oC Epilitis
Temporal Reasoning

Constraint Propa- | Maintain IDPC, N/A Maintain IFPC, Maintain IFPC,

gation SR 4R 4R

Forward- Find distance, check | Run an STP consis- | Lookup distance, Lookup distance,

Checking (time FC-Condition. Ac- tency checking check FC- check FC-

complexity is for
each value) 17

tual implementation
O(|V| 2); could be

done in O(|V|)

algorithm, Actual
implementation:

02"y, Could be
done in O(|V]3.

Condition, O(1)

Condition, O(1)

Value Sub-

Not in the original

Not in the original

Lookup distance,

Lookup distance,

sumption (time implementation. implementation. check Subsump- check Subsump-
complexity is for Could be done by Could be done by tion-Condition, tion-Condition,
each value) 18 finding distance, running an STP o) O(1)

then checking Sub- | consistency algo-

sumption-Con- cithm O (|V|).

dition, O(|V|)

Searching Methods
CDB Yes No No Yes
RSV No No Yes Yes
SB No Yes Yes Yes
FC-off Yes Yes No Yes
NG No No No Yes
IFC? No No Yes No
Heuristics

Variable MRV Max-Inc MRV See Section 6.3
Value The value with the The value with the No specific heu- See Section 6.3

time-points with the | most pairwise in- ristic

most appearances in
other values

consistencies (but it
might be negated)

Table 7: Comparison of all DTP solvers

17 The time complexity shown is for implementing forward checking with the best known algorithm: Given that in the SK
approach STP , the current STP is in directional path consistency, we can find the distance between a pair of nodes in time

O(|V|) and check the FC-Condition. As already mentioned, in the actual implementation, SK used a less efficient scheme

that takes quadratic time. In the ACG approach, we have to run an STP consistency checking algorithm, while in the actual
implementation ACG use Simplex.

18 Neither SK nor ACG use RSV, so these two cells do not refer to their actual implementation. Instead, this is the most effi-
cient way they could have implemented RSV had they desired to, given the way they perform temporal propagation.

19 IFC refers the to Incremental Forward Checking technique of [Oddi and Cesta 2000] in which a value » : x-y = by, is for-
ward-checked only if the distance dy, has changed since last forward checking took place. If it has not, then » satisfies the FC-
Condition for sure. We mention this technique for completeness. IFC does not reduce the search space and it can be used in
conjunction with any pruning technique.

38

7. Related Work

7.1 Previous DTP Solvers

There are two previous DTP-solvers that treat component-STP selection as CSP problems
and perform a search in the same meta-CSP as Epilitis: that of Stergiou and Koubarakis
[Stergiou and Koubarakis 1998; Stergiou and Koubarakis 2000] (hereafter SK) and of Oddi
and Cesta [Oddi and Cesta 2000] (hereafter OC). We can compare these approaches in terms
of the implementation of (1) maintain-consistency, (2) forward-check, (3) the variable or-
dering heuristic, (4) the value ordering heuristic, (5) and the techniques employed for the
search and for pruning the search space. An additional approach, which casts DTP-solving in
terms of SAT, is discussed in Section 7.1.2.

7.1.1 The CSP Approaches

In the SK approach, function forward-check is implemented by adding a value to the cur-
rent STP § and propagating using again the IDPC algorithm, identifying the inconsistency if
there is one, and then retracting the constraint using again IDPC so as to be ready to forward
check the next value. This requires two calls to IDPC with O(|V| % in the worst-case for each
value to be forward checked. There is of course a much faster algorithm: checking if the FC-
Condition holds. The FC-condition requires the distance between two time points, which
given that the SK approach maintains the current STP in directed path consistency form, can
be found in O(|V|) time in the worst case with the algorithm described at [Chleq 1995].

The variable ordering heuristic in SK is the Minimmum Remaining 1 alues (MRV) in which the
variable with the fewest remaining values in its domain is selected first. Ties among variables
are broken by choosing the variable that contains the time-points that appear the most in the
rest of the variables. Each variable may contain many disjuncts and each disjunct contains two
time-points, so we can choose the variable that contains the time-point with the maximum ap-
pearance in other vatiables/disjunctions or the variable with the largest sum of appearances of
its time-points in other vatiables/disjunctions. The SK paper does not discuss exactly how the
selection is performed. The value ordering heuristic is the same as the tiebreaker heuristic
above. The disjunct whose time-points appear in the most in other variables is selected first.
SK experimented with the anti-heuristic but with disappointing results.

For the approach of OC, the table summarizes well the design-choices made. The OC vari-
able ordering heuristic is the MRV with no other tie-breaking heuristics. There is no particular
value ordering heuristic.

7.1.2 The SAT Approach

The Armando, Castellini, and Giunchiglia (ACG) approach differs from the previous ones
in that it treats the component-STP selection not as a meta-CSP problem, but as a SAT prob-
lem instead. However, we can still use the above classification scheme to compare the ap-
proach: The ACG algorithm does not use maintain-consistency. Every time the algorithm

39

requires checking the consistency of a set of STP-like constraints they use a version of the
Simplex algorithm for linear programming. Simplex has exponential worst-case performance.

During a preprocessing step, ACG enhances the SAT formula with clauses (equivalently
variables in a CSP-based approach) that correspond to inconsistent pairs of literals (equiva-
lently values in a CSP-based approach). This provides additional guidance to an MRV-like cri-
terion for variable selection: they choose the clause that contains the literal with the greatest
number of occurrences in the clauses of minimal-length (which implies they will choose the
clause with the literal that participates in the most pairwise inconsistencies with other literals).
We will call this heuristic Max-Inc because essentially it picks the clause with the literal that
participates in most pairwise inconsistencies.

For variable ordering, they choose the literal that maximizes the number of pairwise incon-
sistencies in the previous step. Notice here however, that a SAT-based procedure can either
choose to branch on the literal ¢; or the literal <= . Instead, a CSP-based approach can only
branch on ¢, i.e. assign a value to a variable, and never the negation of the value to a variable.
From the ACG paper it is unclear which branch (i.e. the positive or the negative) is taken first
and how this choice is made.

Table 7 summarizes the above discussion and comparison between the different ap-
proaches. The DPT solving approaches are ordered chronologically according to the date of
appearance in the literature.

7.2 Other Temporal Reasoning formalisms

The focus of this paper has been on developing more efficient techniques for solving
DTPs. One question we must address is why we want to use DTPs, when there are other for-
malisms for temporal reasoning that are computationally more tractable. For example, as we
noted at the beginning of the paper, DTPs subsume both Simple Temporal Problems (STPs)
and Temporal Constraint Satisfaction Problems (TCSPs). STPs allow only non-disjunctive
constraints, while TCSPs allow constraints of the form ¢, ¢, where each ¢; is of the
form x — y = b with the restriction that x and y are the same in all ¢; . STPs can be solved in
polynomial time. Although the same is not true for TCSPs, they are still computationally more
tractable than DTPs, because all their constraints are binary, involving only two variables,
while the DTP constraints may be non-binary, and it is significantly easier to calculate path-
consistency in networks of binary constraints than in networks where the constraints are non-
binary [Bessiere and Regin 1997; Bessiere 1999; Bessiere, Mesequer et al. 1999)].

It turns out, however, that the limitations of TCSPs do result in weak expressive power: in
particular, we consider the most serious disadvantage of TCSPs to be their inability to express
the fact that two intervals should not overlap. This kind of constraint is essential in scheduling
and planning applications where it is often the case that some actions should not overlap, for
example if they utilize the same unary resource. As was illustrated in the example in the Intro-
duction, it is straightforward to encode such a restriction with a DTP constraint: if denote with
Ay (Ap) and By (Bp) the start (end) times of actions .4 and B, then the fact that they cannot
ovetlap can be written as the DTP constraint:

Ap—B=0. B,—A;=0.

40

This constraint involves four time-points .4 , By, A, and B, and so it cannot be represented
by a TCSP, but it is perfectly acceptable in a DTP. There are other, binary, representations
however, that allow such constraints to be represented. These include the Point-Interval-Algebra
(PIA) described in [Meiri 1991]. In PIA the variables can be either time-points or intervals; and
all relations are binary: interval-interval, point-point, interval-point. The constraints between
time-points can be metric TCSP constraints, while the rest of constraints are qualitative. Hav-
ing two more interval variables .4, and B, representing the intervals associated with the actions
can then encode the above situation by imposing the disjunctive constraint:
A, {before, after} B,

Although PIA can thus model prohibited ovetlaps, it cannot readily handle requirements of
temporal separation between actions. For example, suppose that .4 and B are two medical
treatment procedures applied to the same patient with the constraint that if .4 is applied first, B
can only be applied 3 days later, while if B is performed first then 4 can be performed 2 days
later. The constraint cannot be represented in PIA but written as the DTP constraint

Ap—B=-3. B,—A;=-2

Nevertheless, extensions of the PIA have appeared that allow constraints of this sort to be
represented while remaining within the realm of binary constraints [Cheng and Smith 1995;
Cheng and Smith 1995].

The above argument may suggest that we can avoid non-binary constraints if we employ
both intervals and time-points as our representational elements. However, there are other
types of constraints that are inherently non-binary such as conditional constraints of the form
“Uf constraintl then constraint2”, e.g. “if treatment 4 does not last enough, then perform treat-
ment B for at least ¢ days.” The constraint can be written as:

—(d =A,—Ay) = (e= B — By), or equivalently
(d >Ap—Ag). (e=B.-By
and these are only expressible with DTPs.

There are two other formalisms that are as expressive as DTPs, namely the Generalized
Temporal Network (GNC) described in [Staab 1998] and the Temporal Constraint Networks
(TCN) of Barber [Barber 2000]. The former is essentially a DTP-like formalism that allows
conjunctions of STP-like constraints in each disjunct. Because it is straightforward to convert a
constraint of this form into a standard DTP-constraint, the advantages of GNCs is not obvi-
ous. Barber’s TNCs are also as expressive as DTP. A TNC is a TCSP with the addition of
what Barber calls I-I.-Sets. I-L-Sets (Inconsistent-Label-Sets) are essentially no-goods: an I-I-
Set looks has the form <. ¢,
TCSP. A constraint @ . b, where @ and b are STP-like constraints of the form x — y = b, and w

,) denoting that the conjunction does not hold in the
— g = b, (involving two pairs of different variables) cannot be represented as a TCSP con-
straint, but it can be encoded as the I-L-Set <<= . <) (using De’Morgan’s rule for Boolean
Algebra). However, TCNs require that the disjuncts in an I-L-Set participate in some other
TCSP constraint. Thus, it is not enough to just add the above I-L-Set; we also have to add
TCSP constraints so that 2 and 4 appear in the underlying TCSP. For example, we can add the
TCSP constraints (¢. <w) and (b. <4$). By using this scheme, TNCs reach the expressiveness
of the DTP, albeit in a peculiar way. To solve TCNs, Barber in [Barber 2000] provides a path-1

41

consistency algorithm that in essence calculates the full set of all no-goods (whose number is
exponential to the number of disjuncts), but no experimental results are provided.

7.2 Scheduling algorithms

Another related area of work is that of Automated Scheduling. In particular, the Precedence
Constraint Posting (PCP) technique of Cheng and Smith [Cheng and Smith 1995; Cheng and
Smith 1995] bears certain similarities to DTP solving. Cheng and Smith apply PCP to typical
scheduling problems such as the Job-Shop Scheduling (JSSP) and the Hoist Scheduling Prob-
lem with very encouraging results. Cheng and Smith used a formalism based on the PIA in
[Meiri 1991] and employed domain-specific heuristics. What makes DTP and PCP solving
similar, and distinguishes them from most other automated scheduling techniques, is their use
of the meta-CSP approach. This contrasts with scheduling algorithms that formulate the prob-
lem as a CSP with variables that are the start times of the events, and directly solve that CSP.

Stergiou and Koubarakis [Stergiou and Koubarakis 2000] applied their DTP solver on JSSP
with somewhat disappointing results. However, it bears remembering that they were compar-
ing a fairly general-purpose temporal reasoning module (their DTP solver) against many highly
optimized algorithms that had been tuned specifically for job-shop scheduling problems. It is
also worth noting that, JSSP problems are typically optimization problems: it is often relatively
easy to find a solution, but very hard to find an optimal solution. In contrast, at least on the
random DTP problems we have tested, just finding one solution is inherently hard.

8. Discussion, Contributions, and Future Work

In this paper, we have focused on the development of efficient techniques for solving Dis-
junctive Temporal Problems (DTPs). DTPs are a class of constraint-based temporal reasoning
problems that appeared in the literature for the first time only in 1998 [Stergiou and Kouba-
rakis 1998]. Although DTPs are potentially very useful for a range of planning and scheduling
problems, solving them can be computationally quite costly. We therefore examined the strate-
gies that had been proposed in the previous literature for improving the efficiency of DTP-
solving, considered how to integrate these strategies with one another and with no-good learn-
ing, and conducted systematic experiments to determine what combination of strategies is
most effective.

Our experiments were conducted using a DTP-solving system that we implemented,
Epilitis. Epilitis is instrumented so that the user can “turn on” various pruning strategies. It is
publicly available™, and may be used as a testbed for further exploration of DTP solving. In
our own experiments, we were able to achieve a speed-up of almost two orders-of-magnitude
over the previous fastest algorithm, by combining a set of pruning strategies, adding no-good
learning with an experimentally determined size bound, and using a carefully analyzed search
heuristic.

One important result of our experiments was the discovery that no-good learning is par-
ticularly powerful in improving the efficiency of DTP-solving. We can explain this by noting

20 Contact the first author at ioannis.tsamardinos@vanderbilt.edu. Epilitis will also be available on the first authot’s web site in
the future.

42

that, in a DTP solver, forward-checking a value requires the propagation of the corresponding
STP-constraint in the current STP, which is a relatively costly (albeit polynomial) operation.
Thus, even though there is computational overhead associated with retrieving no-goods, this
overhead may be outweighed by the savings in forward-checking. In an ordinary (non-
temporal) CSP, forward-checking may be less expensive, and the benefits of no-good re-
cording might not be as great.

We have already demonstrated the practical usefulness of DTP-solving in general, and
Epilitis in particular, in two of our other research projects. In one of these, the Plan Manage-
ment Agent (PMA) [Pollack and Horty 1999], we are designing an intelligent calendar that
manages a user’s plan. In the other, the Autominder [T'samardinos, Vidal et al. 2002], we are
designing a cognitive orthotic system intended to manage and monitor the daily activities of an
eldetly user, providing him or her with appropriate, timely reminders. Epilitis plays a central
role in both systems, serving as the main engine for updating and modifying the modeled
plans.

There are many avenues for future work on this topic, and here we mention just a few.

Explore dynamic DTPs. Dynamic DTPs are sequences of DTPs that differ from suc-
cessive elements by a few constraints. Such sequences arise naturally in certain planning
problems in which new goals are periodically added to an existing set of goals. No-good
recording may be especially useful for dynamic DTPs, as it is possible that some of the
no-goods identified and recorded for the previous DTP will still hold for the next DTP
in the sequence, and thus can prune the search space. In one extreme case, if the no-
good <—, J> still holds in the next DTP, then the DTP is inconsistent and this is
proven without any search performed! In [Schiex and Verfaillie 1994] it is shown that
the method greatly improves the performance of CSP solvers on dynamic (non-
temporal) CSPs.

Consider replacing forward-checking as the underlying algorithm in Epilitis with a full
looking ahead approach, investigating the interactions between such an approach and
the various speed-up techniques discussed in this paper.

Investigate the use of random restart techniques [Gomez, Selman et al. 1998] to sup-
plement the efficiency-increasing strategies already described in this paper. It seems
plausible that there will be a synergistic influence between no-good recording and ran-
dom restarts. We also expect that certain scheduling techniques, such as profiling, could
be applied to DTP solving.

Use DTPs to model conditional plans. As mentioned in Section 7.1, we noted that the
n-ary constraints of DTPs can be used to model plans with conditional (if-then)
branches. In work already underway, we have analyzed the notion of consistency in
conditional temporal networks, and have shown that consistency checking in these
networks can be reduced to DTP-solving [Tsamardinos, Vidal et al. 2002].

Introduce temporal uncertainty. Even though DTPs are very expressive, subsuming a
large number of other temporal and scheduling problems, they have one key limitation:

43

P’

Figure 16: Proof of Theorem 1

they do not readily permit one to model events whose time of occurrence is not known
and is not under the control of a planning agent. The recently developed STPU formal-
ism does support modeling of such events, but only as extensions to STPs. It would be
very useful to develop techniques for combining STPU and DTPs.

Appendix A: Proofs of Theorems

Let us denote by 4_(§) the distance between time-points x and y in STP .S and by 4, (4)
the distance between time-points x and y in the STP induced by assignment 4.

Theorem 1: A value ¢ : y —x = bxy is inconsistent with a consistent STP .§ (that is,
¢zj is inconsistent) if and only if the following condition holds:

b, +d,(S)<0 (FC-condition)

Proof: Let p, be the shortest-path from y to x in § and thus the length of p is 4. If
the FC-condition holds, then the path p . (x) has length 4 + d, (§) and so it forms
a negative cycle making § inconsistent.”

Conversely, let us suppose that the FC-condition is false and prove that §* = § .
will be consistent. We will prove this claim by contradiction, i.e. we will assume FC
condition is false and S is inconsistent, and will derive a contradiction. If 5’ is incon-
sistent then there is a negative cycle, and because § was consistent before we added ¢,
that means that the negative cycle involves the new constraint ¢; . Let us assume the
negative cycle is ¢; . p’,, for some path p° . So b, + d” =b + lengthp’,) < 0 (1),
where d” is the distance between y and x in §” for some path p”, which is the shortest
path from y to x (Figure 16). Since the negative cycle is a simple cycle (no loops al-
lowed), then edge (x, y) is not a member of p”. Therefore, the shortest path p” from y
to x in §”is does not contain the new constraint ¢; and thus distance from y to x in §”
and S is the same: d, = 4" . By (1) above we get that b +d” = b +d _<0,ie FC-
condition holds, contrary to what we assumed.

Theorem 2: A value ¢; : y — x = b is subsumed by an STP § if and only if 4 (8) = &
(Subsumption-Condition), where d_(S) is the distance between x and y in §.

21 Let puy be a path (@, 1, . . ., 74,b) in a graph G, and let cbe a node in G. Then p,, . ¢ is the path (g, #y, . . ., me,b¢)in G.

44

Proof: “. ” Suppose that the Subsumption-Condition holds for value ¢; . By defini-
tion of the distance y — x = d,(§) holds in all exact STP solutions, so y —x=d_(5)= b
holds in all exact solutions, and ¢; holds in all exact solutions of §. “="" Conversely,
suppose the Subsumption-Condition does not hold, i.e. 4 < d_(S) holds. Then there is
some exact solution s of the STP for which y —x = d_(§) (as shown in [Dechter, Meiri
etal. 1991]). Thus, in s, b < y — x, i.e. ¢; does not hold in all of §’s exact solutions.

Lemma 1: Adding more constraints to an STP can only result in monotonic decrease
in the distances between nodes.

Proof: Immediate, by the fact that adding a constraint to an STP can only reduce the
solution set, and thus the distances have to be smaller or equal to the original STP.

Lemma 2: Adding a value e:{y — x = b} to an STP § when § subsumes ¢, does not
change the distance array of S (i.e. the resulting STP is equivalent to the one before the
addition).

Proof: Since ¢ is subsumed, by Theotem 2, d_(§) = d. Let p be a shortest path in the
distance array from x to _y, and so its weight is 4, (§). Let us suppose now that the dis-
tance array of S changes when ¢ is added. That means that the new constraint ¢ partici-
pates in at least one shortest path, let us say on the path from » to g that before the
addition had distance d,.(§). From shortest path properties we get:

G(5)=d,.(5) +d,(8) + d (S)=d.(5) +b+dS) (1)

After the addition, in the new STP §”=S". ¢, the new distance d,.(§) is:

a,.(5)=4,

wx

)+ b+d(5)=d.(S)+b+d(S) 2

Notice that d,.(S7) = d,.(5) and d_(§")= d.(S) because b is already participating in the
shortest path from » to g and therefore cannot participate on the shortest paths from
w to y or from x to g or a cycle would be present on the path from » to g (i.e. the

shortest paths would not be simple).

Since the distance array changed, the new shortest path has to be strictly smaller the
one than before ¢ was added (Lemma 1), i.e.

d(8) < d.(5) ()
(1) and (2) imply that 4,.(5) = 4,.(§’) which contradicts (3). Therefore our initial as-

sumption that the distance array will change is false.

Theorem 3: Let D=<]/, C> be a DTP, let .4 be an assignment on D (i.e. a compo-
nent STP), and let C, be a variable subsumed by 4. Then A is a solution of D if and
only if it is a solution of D’=<1/, C— C; >.

45

Proof: Since we assume that C, is a subsumed variable, then, there must be a value ¢: y
— x = b in the domain of C that is subsumed by 4. Suppose that .4 is a solution of D.
Then obviously, it is a solution of D'=<]/, C' — C> since D’ has one less variable
(DTP constraint). Conversely, suppose A is a solution of D’. Since ¢ is subsumed by
A, it holds in all of A’s exact solutions, and thus C; which is a disjunction involving ¢,
holds in all of A’s exact solutions. Thus, if .4 is a solution of the DTP constraint C —
C;, it also solves the DTP constraints C.

Corollary 1: Let .4 be a partial assignment during a DTP search, U be the unassigned
variables, and S#b be the set of subsumed variables in U. If A can be extended to a so-
lution over variables in U — Sub, it can be extended to a solution over variables in U.
In other words, we can remove the subsumed variables from the unassigned variables
during search. The solution to the reduced problem is a solution to the original

Proof: By Theorem 3 if A’ is an extension of A over the variables at U — Sub, and A’
is consistent, then A’ is also a solution to the original DTP.

46

1. Epilitis(4, U, S) /* A4 is the set of assigned CTP variables, U the set of unassigned variables, and S a distance and
predecessor array representing the current STP */
2* If U=— Then

3* A is a solution, Stop

4* Else

5* Let x be a variable in U, J ==, BJ = false

6.SB SBJ=— /* Set the semantic branching justification to empty */
7. RSV Ifthere is value v. d(x) subsumed by S Then

8. RSV Return Epilitis(4, U— {x }, S)

9. RSV EndIf

10* Foreachv. d(x)until BJ /* loop for all values in the current domain or until the BJ flag is true */
11* A =A. {x. v} /*addvalueto a(new) assignment */

12. S’ = maintain-consistency(v, S)

13. If §” is inconsistent Then

14. SB SBJ = justification-value(v, S”)

15. J=J. SBJ

16. GoTo 36

17. EndIf

18. FC-off If d(x) is singleton /* when FC-off omit forward checking when d(x) is singleton */
19. FC-off K=—

20. FC-off Else

21% K be forward-check(4’, U, S’)

22. EndIf

23% If K=— /* If we have not reach a dead end ... */

24* Let J-sons be Epilitis(4°, U — {x}, ") /* then recursively call Epilitis */
25*CDB Ifx. J-sons Then

26* J. J. J-sons

27*CDB Else /* If the current variable does not participate in the failure justification */
28*CDB J. J-sons, BJ=true /* then exit the loop */

29 CDB Endif

30.SB SBJ =J-sons

31* Else

32% J. J. K

33*NG record(project(4’, K), K)

34.SB SBJ =K

35% Endif

36. SB If v is not the last value in d(x) /* remember SB-constraints is the only global variable */
37.SB S=maintain-consistency(S, reverse(v)); SB-Constraints = SB-constraints . <re-
verse(v), SBJ>

38.SB If S is inconsistent

39.SB un-forward(x), FinishLoop

40. SB EndIf

41.SB EndIf

42% un-forward(x)

43%* EndFor
44%* If BJ = false Then

45% Foreachv. D(v)— d(v) /* add the justifications that removed the values */
/* from the current domain */

46%* J. J. Kkillers(v)

47* EndFor

48*NG record(project(4, J), J)

49* Endif

50. SB Remove all semantic branching constraints added in this invocation of Epilitis from SB-Constraints
51%* Return J
52* Endif

Figure 17: The Epilitis Algorithm

47

Appendix B: The Epilitis Algorithm in Detail

Epilitis, shown in Figure 17, is a generalization of the no-good recording algorithm in
[Schiex and Verfaillie 1994] (see Figure 4 7bid), and it just adds code to this algorithm. The /ines
common to both algorithms are annotated with an asterisk following the line number®. Epilitis would
still correctly solve DTP problems if only these lines are included. The only difference from
the plain no-good recording algorithm would be in forward checking. Epilitis’ forward check-
ing mechanism is similar to the one in Figure 2, which takes into consideration the fact that the
values of the meta-CSP express STP-like constraints. In other words, the algorithm in [Schiex
and Verfaillie 1994] (Figure 4), with a modified forward-checking function, is a no-good re-
cording DTP solver.

Having said that, two points must be explained regarding the workings of Epilitis: (i) the
additional (“un-starred”) lines in the algorithm and (2) the exact way forward checking is per-
formed. The former is the topic of the rest of this section, and the latter the topic of the next
one.

For the rest of the discussion let us assume that there is available a function forward-
check(A4, U, S) that given the assignment 4, removes from the variables U all the values in
their current domains that are inconsistent with 4. To check the FC-Condition efficiently we
provide to the function the distance array §' that corresponds to A. If a domain of a variable is
reduced to the empty set, then forward-check should return a justification K (also called the
valne Killers of the domain values; see also [Tsamardinos 2001] (Section 3.5) and [Schiex and
Verfaillie 1994]), which is a minimal set of variables in .4 such that the constraints among
them cause all the variables of the domain to be removed.

The annotations SB, FC-off, CDB, NG and RSV shown next to a line in the algorithm
indicate which of the corresponding techniques (semantic branching, FC-off, conflict directed
backjumping, no-good recording, and removal of subsumed variables, respectively) the line
serves. For example, to remove semantic branching from the algorithm, we could just remove
the lines annotated with SB.

The Removal of Subsumed Variables (RSV) in lines 7-9 is achieved by testing if, in the
next variable to assign, there is a value that is subsumed by the current STP S. The test can be
achieved by checking the Subsumption-Condition of Theorem 2. If the variable is subsumed,
then it is removed from the unassigned variables and Epilitis is recursively called.

Line 12 propagates the value/constraint of assignment {x . »} in the current STP S’ so
that the distances of the STP corresponding to the current assighment .4’ are available with a
simple table lookup. Recall that the distances are required to calculate both the FC-Condition
and the Subsumption-Condition. This technique of maintaining the distance array was de-
scribed in full in Section 2.2 and presented in the algorithm in Figure 2.

22 The additional lines 45-47 are not in the original paper [Schiex and Verfaillie 1994]. In direct communication with the first
author of the paper it was established that lines 45-47 are indeed required for the algorithm to be complete. The experimen-
tal results in that paper are not invalidated however because lines 45-47 were included in the implementation and wete only
missing from the pseudo-code description of the algorithm. Careful implementation of the Epilitis algorithm also revealed a
typo in the original publication of the algorithm. Line 33 appears originally as record(project(A, K), K) while it should be re-
cord(project(A’, K), K).

48

When only the basic forward checking DTP solving algorithm is used, no assignment {x .

v } will ever cause an inconsistency to the current STP because, if it did it would have been
removed by forward checking. However, when semantic branching is used, it becomes neces-
sary to check that the constraint {x . » } added by semantic branching does not cause an in-
consistency. This is the reason for the check at line 13. If we have indeed hit an inconsistency
the reason for it is accumulated in variable | (line 15), which is the justification to return in case
of a failure (line 50). Line 14, annotated with SB, is explained in the discussion of semantic
branching below.

Next the algorithm performs FC-off (lines 18-20). Very simply, if there is only one value in
the current domain of the current variable, we omit forward checking and assume that it suc-
ceeded by setting K = —. The ramifications of the omission were the subject of Section 6.3
above. Otherwise, we perform forward checking and store in K the value killers of the domain
that was reduced to the empty set or we store — to K if there is no such domain.

If we have not hit a dead-end, i.e. K== (line 23), then we recursively call Epilitis. If it re-
turns, then we have failed to extend the current assignment 4’ to a solution and the return
value is a justification of the failure, stored in the variable J-soms. If the current variable partici-
pates in this justification (line 25) then we accumulate the justifications in variable | and pro-
ceed (after line 36) trying new values for the current variable. If on the other hand, the current
variable has nothing to do with the failure, we jump to line 28, where BJ (from backjumping) is
set to #rue so that we exit the loop and avoid trying any other values of the current variable, and
finally return the same reason J-sons that caused the failure in the recursive call. On the other
hand, if forward check fails, it returns the value killers K that are accumulated in the overall
justification | (line 32). Line 33 records the no-good implied by the dead-end. Lines 23-35
(apart from the addition of lines 30 and 34) are exactly the same as in the non-temporal no-
good recording algorithm.

Perhaps the most complicated addition is the lines that achieve semantic branching. Inte-
grating SB with the rest of the pruning techniques has implications that also affect the details
of forward checking but for the moment we restrict the discussion only to the code that ap-
pears in Figure 17. When the current assignment 4 . {x. 2 } fails to extend to a solution,
the code reaches line 36. As already described in detail in Section 3.3, for the rest of the search
under assignment 4, we can assume that <+ does not hold. Thus, line 36 propagates the re-
verse of » in the current STP § (i.e. the STP that corresponds to assignment .4). The propaga-
tion might cause an inconsistency which would be identified at line 38 in which case there is
no reason to try a different value for variable x and we can exit the loop.

For reasons that we explained in Section 5, it is necessary to store the semantic branching
constraints that we propagate along with the justification for their addition. The store occurs at
line 37 where pairs <z, SBJ> are stored in the global variable SB-Constraints, where v is an STP-
like constraint and SBJ a justification (from semantic branching justification). There are three
different reasons why the current value » causes an inconsistency, and correspondingly, three
different lines where $SBJ is assigned a value. Value » might directly cause an inconsistency in
the current assignment .4 in which case SBJ is the justification discovered by function justifi-

49

cation-value (Figure 4)*’ and the assignment takes place at line 14. Alternatively, if after as-
signing value » forward check failed, then SBJ should be the value killers K that forward check
returned (line 34). Finally, if after assigning value » forward checked succeeded but the recur-
sive call to Epilitis failed, then SBJ is assigned the value J-sozs (line 30). In all three cases, we fail
toextend A. {x. »} toasolution and we store in SBJ the reason for the failure (i.e. the
culprit of the variables participating in the constraints that cause the inconsistency).

The rest of the Epilitis algorithm, as already mentioned, is exactly the same as the non-
temporal no-good recording algorithm in [Schiex and Verfaillie 1994].

Forward Checking and Justifications in Epilitis

Figure 17 presented the Epilitis algorithm, however, important details for its implementa-
tion were hidden in the forward-check and justification-value functions. We now proceed
to the discussion of these two functions.

Recall that we assumed that forward-check(A, U,) is a function that, given the assign-
ment 4, removes from the variables U all the values in their current domains that are inconsis-
tent with 4. The STP § containing the distance array that corresponds to 4 is passed to effi-
ciently check the FC-Condition. A very important feature of forward-check is that if a do-
main of a variable is reduced to the empty set, it should return a justification K (also called the
valne killers), which is a minimal set of variables in .4 whose constraints cause the variables of
the domain to be removed.

Forward-check should check if each remaining value » in some current domain of a vari-
able should be removed or not. A value » should be removed, if, as before, the FC-Condition
holds; is should also be removed if 4. {x. v} is a superset of some recorded no-good
<A, J>,ie.if A. A. {x. w»}. Thatachieves forward checking, but it does not solve the
problem of assembling and returning a justification in the case where a variable domain is re-
duced to the empty set. Let us suppose that justification-value(,) is responsible for return-
ing the justification of the removal of a single value » given the current STP §. Then, the over-
all justification for a variable domain being empty is the union of the justifications for remov-
ing each value originally in that domain.

2 Function justification-value has to be slightly modified from Figure 4 to work for Epilitis as we will see in the next section.

50

forward-check(4, S, U)

I. For each variable C in U

2. For each value c : x —y =b,, in d(C)

3. If b,, + distance (y, x, S) <0 (FC-Condition) or

4, A. {C. c}isasuperset of 4’, where <4’, no-good-J> is a recorded no-good
5. Remove ¢ from d(C)

6. Ifd(C) =—

7. K=—

8. For each value v in D(C)

9. K=K . justification-value(v, 4, S)
10. EndFor

11. return K

12. EndIf

13. EndIf

14. EndFor

15. Return —

Figure 18: Forward Checking for Epilitis

justification-value(c . y—x=5b, 4, S}
1.If4. {C. c}isasupersetof 4’, where <4’, J™> is a recorded no-good

2. Return J’

3. Else

4. p = shotest-path(y, x, S)

5. Return vars(p . ¢} . {J, where <v, J>. SB-Constraints andv. p}
6. EndIf

Figure 19: The function just-value for Epilitis

Now we can turn our attention to the implementation of the function justification-
value(s, A, §) which should return a set of variables from 4, i.e. a justification that explains
why A. {C. v} cannot be extended to a solution and thus why » has to be removed from
the current domain of C. Trivially, all the variables in A plus the variable C constitute a justifi-
cation for the removal of ». However, we can find smaller justifications that provide more op-
portunities for conflict directed backjumping and search pruning.

There ate two reasons why a value » might be removed. The first one is if 4. {C. 0} is
a superset of .4’ where <A, J> is a recorded no-good, and then the justification for removing
vis J**. The second reason is if » is removed because A . {C. v} corresponds to an incon-
sistent STP . Then, as explained in detail in Section 4, the variables that cause the inconsis-
tency are the ones that have values assigned to them that participate in a negative cycle in S.

As already mentioned in Section 5, when semantic branching is present, the current STP §
does not directly correspond to the current assignment .4, but instead is formed by all the con-
straints in A plus the semantic branching constraints added. Thus, in Epilitis, when the nega-
tive cycles are identified, the corresponding justification is not just the variables with values
that participate in the cycle, but also the variables (i.e. the justifications) that were responsible
for the addition of the semantic branching constraints that participate in the cycle. These justi-

24 See [Tsamardinos 2001] for a complete description of the algorithm for storing and retrieving no-goods used in Epilitis.

51

fications can be found in the SB-Constraints structure: whenever a semantic branching con-
straint is propagated the pair <<, SB/> is stored at SB-Constraints (line 37, Figure 17).

Appendix C: FC-Off Reduces the Number of Forward-Checks
but Increases Solving Time

With FC-off, when the current domain 4(C) of a variable C; has been reduced to a singleton
set {¢;}, forward checking is suspended and the constraint ¢; is assigned to C; without forward
checking. FC-off is illustrated in the following example:

Example 6: Consider the following DTP:

C i {e,:y—x=5}

C,i{ey i x—z=5}

Co: e iv—x=5}. {¢,:z—v=10}
C,ileyiy—3=-10} . {c,:x—y =-10}

Without FC-off, when the cutrent assighment becomes 4, = {C,. ¢}, forward checking
will remove variable ¢, from 4(C,). In the next step, when the current assignment is .4, = {C,

¢;1, Co. 6}, ¢y 1s also removed and thus d(C,) becomes empty and the search returns fail-
ure. In contrast, when FC-off is used, when the current assignmentis 4, = {C,. ¢,,} forward
checking is suspended and nothing is removed from any variable’s domain. Similarly, when the
current assignment becomes A4, = {C, . ¢,, C,. ¢,}, forward checking is still turned off,
and so still nothing is removed from any variable’s domain. Only when the non-singleton do-
main d(C;) is encountered, and the current assignment becomes A4; = {C,. ¢,,C,. ¢,,C

¢5,} is forward check called; at this point, it will recognize the failure. Notice that when FC-
off is not used, the algorithm forward checks a total of 5+3=8 values (i.e., it performs five
checks for A, —one for each of the other values—removing one of those values; and three
checks for A4,). However, it only expands two nodes. In contrast, with FC-gff; the algorithm
checks 2 values (performed only when the current assignment is .4;) and it expanded three
nodes.

The above example shows that a technique such as FC-off may or may not increase the
performance of a DTP solving algorithm. With FC-off there is less forward checking but
more nodes are expanded (Theorem 17 in [Stergiou and Koubarakis 2000]). Therefore, over-
all effect of the FC-off technique will depend on the relative time required to expand nodes
and to perform forward checking. There has not been a theoretical analysis of the conditions
under which FC-off improves performance, but our experiments, shown below, suggest that

FC-off frequently degrades performance even though it reduces the number of forward
checks™.

* In contrast, Stergiou and Koubarakis note “We have also measured the CPU times used by the algorithms we studied.
As expected, the CPU times are proportional to the number of consistency checks,” ([Stergiou and Koubarakis 2000], Sec. 6).
We hypothesize that this is because in their implementation each consistency-check was not a simple array lookup. Instead, it
involved one constraint propagation and one constraint retraction. Thus, the total time spent in forward-check greatly domi-
nates the time spent in maintain-consistency.

52

The arguments just given about the flaws in using CC counts as a metric of performance
are supported by our experiments, as illustrated in Table 8 and Table 9, which show how well
different combinations of pruning strategies worked in Epilitis. First consider Table 8, which
shows the results for N=30. The first column orders the algorithms in decreasing order ac-
cording to the median time taken in the critical region where R=06. The second column orders
the algorithms by using the median number of CCy, from highest to lowest. (So, in both col-
umns, combinations that are “better” are listed at the bottom on the column.) It is easy to see
that the median CCs favors the algorithms that use FC-off (denoted with an FC in their name)
and ranks them the best while in fact they are the worst in terms of median time performance.

N=30

Median-Time Median-CCs
SB-FC SB
CDB-SB-RSV-FC CDB-SB

SB SB-RSV
CDB-SB-RSV CDB-SB-RSV
CDB-SB SB-FC

SB-RSV CDB-SB-RSV-FC

Table 8: The ordering of performance for N=30,

R=6, from worst (top) to best performance.

Median-Time Median-CCs
Nothing Nothing
CDB-RSV-FC RSV

CDB-FC CDB

RSV CDB-RSV
CDB SB

CDB-RSV SB-RSV
CDB-SB-RSV-FC CDB-SB
SB-FC CDB-SB-RSV
SB CDB-FC
SB-RSV CDB-RSV-FC
CDB-SB SB-FC
CDB-SB-RSV CDB-SB-RSV-FC

Table 9: The ordering of performance for N=20, R=6, from worst (top) to best performance.

We repeated the same procedure as above for N=20, for which a greater number of ex-
periments of pruning combinations were available. The results are displayed in Table 9. Note
again that there is a large disparity between the ranking by CC count and the ranking by time.
For instance, using the CC metric, CDB-SB-RSV-FC is ranked the best, five positions higher
than it really is when we consider execution time.

53

References

[Armando, Castellini et al. 1999] Armando, A., C. Castellini and E. Giunchiglia (1999). SAT-based Proce-
dures for Temporal Reasoning. 5th European Conference on Planning (ECP-99).

[Barber 2000] Barber, F. (2000). "Reasoning on Interval and Point-based Disjunctive Metric Constraints in
Temporal Contexts." Journal of Artificial Intelligence Research 12: 35-86.

[Bessiere 1999] Bessiere, C. (1999). Non-binary constraints. Principles and Practice of Constraint Pro-
gramming (CP'99), Alexandria, Virginia, USA, Springer.

[Bessiere, Mesequer et al. 1999] Bessiere, C.. P. Mesequer, J. Larrosa and E. Freuder (1999). On forward-
checking for non-binary constraint satisfaction. CP'99, Alexandria, VA.

[Bessiere and Regin 1997] Bessiere, C. and J. C. Regin (1997). Arc consistency for general constraint net-
works: preliminary results. International Joint Conference on Artificial Ingelligence (IJICAI'97(),
Nagoya, Japan.

[Chen and Beek 2001] Chen, X. and P. v. Beek (2001). "Conflict-Directed Backjumping Revisited." Jour-
nal of Artificial Intelligence Research 14: 53-81.

[Cheng and Smith 1995] Cheng, C. and S. F. Smith (1995). Applying constraint satisfaction techniques to
Job-Shop Scheduling.Technical Report CMU-RI-TR-95-03 Pittsburgh, Carnegie Mellon Univer-
sity.

[Cheng and Smith 1995] Cheng, C. and S. F. Smith (1995). A constraint posting framework for scheduling
under complex constraints. Joint IEEE/INRIA conference on Emerging Technologies for Factory
Automation, Paris, France.

[Chleq 1995] Chleq, N. (1995). Efficient Algorithms for Networks of Quantitative Temporal Constraints.
Constraints'95.

[Cormen, Leiserson et al. 1990] Cormen, T. H., C. E. Leiserson and R. L. Rivest (1990). Introduction to
Algorithms. Cambridge, MA, MIT Press.

Dechter 1990] Dechter, R. (1990). "Enhancement schemes for constraint processing: backjumping, learn-
ing, and cutset decomposition." Artificial Intellience 41.

[Dechter and Frost 1999] Dechter, R. and D. Frost (1999). Backtracking algorithms for constraint satisfac-
tion problems.Technical Report, University of California at Irvine.

[Dechter, Meiri et al. 1991] Dechter, R., I. Meiri and J. Pearl (1991). "Temporal constraint networks." Arti-
ficial Intelligence 49: 61-95.

[Frost and Dechter 1994] Frost, D. and R. Dechter (1994). Dead-end driven learning. National Conference
in Artificial Intelligence (AAAI-94).

[Ginsberg 1993] Ginsberg, M. (1993). "Dynamic Backtracking." Journal of Artificial Intelligence Research.

Ginsberg and McAllester 1994] Ginsberg, M. and D. McAllester (1994). "GSAT and Dynamic Backtrack-

ing." Journal of Artificial Intelligence Research.
Gomez, Selman et al. 1998] Gomez, C. P., B. Selman and H. Kautz (1998). Boosting combinatorial search

through randomization. National Conference on Artificial Intelligence (AAAI'98), Madison, Win-

sonsin.
Meiri 1991] Meiri, 1. (1991). Combining qualitative and quantitative constraints in temporal reasoning.

National Conference in Artificial Intelligence (AAAI'91).

[Mohr and Henderson 1986] Mohr, R. and T. C. Henderson (1986). "Arc-consistency and path-consistency
revisited." Artificial Intelligence 28(225-233).

[Oddi and Cesta 2000] Oddi, A. and A. Cesta (2000). Incremental Forward Checking for the Disjunctive
Temporal Problem. European Conference on Artificial Intelligence.

[Pollack 2002] Pollack, M. E. (2002). Planning Technology for Intelligent Cognitive Orthotics. 6th Interna-

tional Conference on Al Planning and Scheduling.
Pollack and Horty 1999] Pollack, M. E. and J. F. Horty (1999). "There's More to Life than Making Plans:

Plan Management in Dynamic Environments." Al Magazine.

[Prosser 1993] Prosser, P. (1993). "Hybrid algorithms for the constraint satisfaction problem." Computa-
tional Intelligence 9.

[Richards 1998] Richards, E. T. (1998). Non-systematic Search and No-good Learning.Ph.D. Thesis IC
Parc. London, Imperial College.

54

[Roberto J. Bayardo and Schrag 1977] Roberto J. Bayardo and R. C. Schrag (1977). Using CSP Look-Back
Techniques to Solve Real-World SAT Instances. Fourtheeen National Conference on Artificial In-
telligence (AAAI'97).

Schiex and Verfaillie 1994] Schiex, T. and G. Verfaillie (1994). "Nogood Recording for Static and Dy-

namic Constraint Satisfaction Problems." International Journal of Artificial Intelligence Tools
3(2): 187 - 200.

Schiex and Verfaillie 1994] Schiex, T. and G. Verfaillie (1994). Stubbornness: a possible enhancement for

backjumping and no-good recording. European Conference in Artificial Intelligence (ECAI-94).

[Staab 1998] Staab, S. (1998). On Non-Binary Temporal Relations. European Conference on Artificial In-
telligence.

[Stergiou and Koubarakis 1998] Stergiou, K. and M. Koubarakis (1998). Backtracking Algorithms for Dis-
junctions of Temporal Constraints. 15th National Conference on Artificial Intelligence (AAAI-
98).

[Stergiou and Koubarakis 2000] Stergiou, K. and M. Koubarakis (2000). "Backtracking algorithms for dis-
junctions of temporal constaints." Artificial Intelligence 120(1): 81-117.

Tsamardinos 1998] Tsamardinos, I. (1998). Reformulating Temporal Plans for Efficient Execu-
tion.Masters Thesis. Pittsburgh, University of Pittsburgh.

[Tsamardinos 2001] Tsamardinos. I. (2001). Constraint-Based Temporal Reasoning Algorithms with Ap-

plications to Planning.Ph.D Thesis Computer Science Department. Pittsburgh, University of Pitts-

burgh.
[Tsamardinos, Vidal et al. 2002] Tsamardinos, 1., T. Vidal and M. E. Pollack (2002). "CTP: A New Con-

straint-Based Formalism for Conditional, Temporal Planning." Constraints (to appear).
[Yokoo 1994] Yokoo, M. (1994). Weak-commitment search for solving constraint satisfaction problems.
National Conference in Artificial Intelligence (AAAI-94).

55

APPENDIX B

CTP: A New Constraint-Based Formalism for Conditional,
Temporal Planning

Ioannis Tsamardinos (ioannis.tsamardinos@vanderbilt.edu)
Department of Biomedical Informatics, Vanderbilt University

Thierry Vidal (thierry@enit.fr)
Production Engineering Laboratory (LGP) - ENIT, France

Martha E. Pollack (pollackm@eecs.umich.edu)

Computer Science and Engineering, University of Michigan

Abstract. Temporal constraints pose a challenge for conditional planning, because
it is necessary for a conditional planner to determine whether a candidate plan will
satisty the specified temporal constraints. This can be difficult, because temporal
assignments that satisfy the constraints associated with one conditional branch may
fail to satisfy the constraints along a different branch. In this paper we address
this challenge by developing the Conditional Temporal Problem (CTP) formalism,
an extension of standard temporal constraint-satisfaction processing models used in
non-conditional temporal planning. Specifically, we augment temporal CSP frame-
works by (1) adding observation nodes, and (2) attaching labels to all nodes to
indicate the situation(s) in which each will be executed. Our extended framework
allows for the construction of conditional plans that are guaranteed to satisfy com-
plex temporal constraints. Importantly, this can be achieved even while allowing for
decisions about the precise timing of actions to be postponed until execution time,
thereby adding flexibility and making it possible to dynamically adapt the plan
in response to the observations made during execution. We also show that, even
for plans without explicit quantitative temporal constraints, our approach fixes a
problem in the earlier approaches to conditional planning, which resulted in their
being incomplete.

1. Introduction

Classical planning (Smith et al., 2000) assumes that a plan can be
generated off-line, prior to its execution, and that execution consists
in the straightforward activation of the steps in the plan, in an order
that is consistent with the plan’s temporal constraints. This assump-
tion is satisfied in domains in which the planning agent is omniscient,
and thus knows at plan time everything required about the possible
evolution of the world during execution. In many real-world domains,
this assumption is violated.

One way to handle this difficulty is to build the plan on-line, making
all decisions in a reactive fashion. However, the reactive approach has a
number of shortcomings; in particular, when there are real-time require-
ments to be satisfied, a reactive approach typically cannot guarantee

i‘w © 2002 Kluwer Academic Publishers. Printed in the Netherlands.

56

adamsp
Text Box

adamsp
Text Box

that they will be met (nor can it determine that they are unsatisfiable).
In addition, a reactive approach will fail to take preparatory steps that
might be required for the continuation of the plan in unexpected cir-
cumstances. Consequently, an alternative approach has been to develop
conditional planning capabilities (Peot and Smith, 1992; Pryor and
Collins, 1996; Onder and Pollack, 1999). In the conditional planning
approach, plans are generated prior to execution, but they include
both observation actions and conditional branches, which may or may
not be executed, depending on the execution-time result of certain
observations.

In addition to omniscience, classical planning also assumes instanta-
neous, atomic actions. However, modern planning systems (Muscettola
et al., 1998; Laborie and Ghallab, 1995) indicate the growing need to
represent and reason with metric temporal information and constraints.
Temporal constraints pose a challenge to conditional planning. In par-
ticular, it is necessary for a temporal conditional planner to determine
whether a candidate plan can possibly satisfy the specified temporal
constraints. This can be difficult, because temporal assignments that
satisfy the constraints associated with one conditional branch may fail
to satisfy the constraints along a different branch.

In this paper we address this challenge by developing the Condi-
tional Temporal Problem (CTP) formalism, an extension of stan-
dard temporal constraint-satisfaction processing models used in non-
conditional temporal planning. Specifically, we augment the previous
models by (1) adding observation nodes, which correspond to the time-
points at which observation actions end, and (2) attaching labels to all
other nodes in the network. A node’s label indicates the situation(s) in
which the event it denotes (the start or the end of a plan’s action) will
be executed.

As we will show, our extended framework allows for the off-line
construction of conditional plans that are guaranteed to satisfy complex
temporal constraints. Importantly, this can be achieved even while
allowing for the decisions about the precise timing of actions to be
postponed until execution time, in a least-commitment manner, thereby
adding flexibility and making it possible to adapt the plan dynamically,
during execution, in response to the observations made. We also show
that, even for plans without explicit quantitative temporal constraints,
our approach fixes a problem in the earlier approaches to conditional
planning, which resulted in their being incomplete.

In Section 2 we review the temporal constraint models that inspired
our conditional model, which itself is depicted in Section 3. Three levels
of consistency in conditional temporal problems are then defined in
Section 4. Each is developed, in turn, in the three subsequent sections,

57

adamsp
Text Box

adamsp
Text Box

adamsp
Text Box

which provide algorithms, discuss theoretical complexity issues, and
describe the usefulness of each form of consistency to planning. In
particular, in Section 8, we explain how the use of our approach in
conditional planning corrects a problem in the earlier approaches. We
conclude this article with a discussion of related and future work.

2. Background

A variety of planning systems (Laborie and Ghallab, 1995; Muscettola
et al., 1998), often referred to as temporal planners, use an underlying
constraint model to query and check the temporal aspects of a plan.
One of the most popular models is the Temporal Constraint Satisfac-
tion Problem (TCSP) and its graph-based counterpart, the Temporal
Constraint Network (TCN) (Dechter et al., 1991). A TCN is a con-
straint graph < V, E > where the nodes V represent time-points (i.e.
instantaneous events associated with the start or end of actions), while
the edges E represent binary constraints on the duration between two
time-points z;, z; € V of the form:

(llng—xigul)v...\/(lnij—xigun)

where [, ..., I, u1, ..., u,€ R are the lower and upper bounds of the
constraint. In other words the time from z; to z; must lie in one of the
intervals [l1,u1], [l2,u2], ...[ln, up]. For example, if z and y represent

the start and end time-points of action A then the constraint (5 <
y—x < 10) V (20 < y — 2 < 25) specifies that the duration of A is
between 5 and 10 time units (e.g. minutes) or between 20 and 25 time
units.

An interesting case is when only one interval [I, u] is allowed for each
edge. This is the Simple Temporal Problem (STP) restriction, whose
graph counterpart is the Simple Temporal Network (STN). Checking
the consistency of a TCN is known to be NP-complete, while in an
STN consistency can be determined in polynomial time, for instance
using a local path-consistency propagation algorithm (Mackworth and
Freuder, 1985).

On the other hand, TCSPs may be generalized by allowing non-
binary constraints. This is the Disjunctive Temporal Problem (DTP)
(Stergiou and Koubarakis, 2000), which formally is a constraint-satis-
faction problem < V,E > such that the constraints E are arbitrary
disjunctions of STP-like constraints, i.e. each member of E has the
form

(llé,’l,‘il—(l:jlSul)\/...\/(lné.’l:ik—mjkgun)

58

adamsp
Text Box

adamsp
Text Box

where again [y, ..., Iy, u, ..., up, € R. DTPs are thus conjunctions of
n-ary disjunctive constraints: A;(Vjc;;), where the ¢;; are of the form
I <z —1y < u. As such, they can represent any other formula that
we can construct with propositions ¢;; (e.g. ci1 = 012).1 The most
frequently used way to solve a DTP is to convert it to a problem of
selecting one disjunct, (I < z; — z; < uy) from each disjunctive con-
straint, such that the set of selected disjuncts forms a consistent STP.
The DTP is consistent if and only if at least one of such component
STP is consistent. Checking the consistency of a DTP is NP-hard,
and because DTPs include non-binary constraints, it is difficult to
use path-consistency on them to increase efficiency(Bessiere, 1999).
However, several recent papers have presented heuristic techniques that
significantly decrease the typical time needed to check DTP consistency
(Armando et al., 1999; Stergiou and Koubarakis, 2000; Oddi and Cesta,
2000; Tsamardinos, 2001).

Recently, STPs have also been extended to take into account tem-
poral uncertainty. In STPs (as in TCSPs and DTPs), the constraint
between any two time-points z and y specifies an interval that is con-
trollable: I.e. the execution agent can choose for (y — z) any of the
values within the allowed bounds given by the constraint. In realistic
planning applications however, the durations of some tasks or the time
of occurrence of some events may depend on external parameters, and
thus the actual value can only be observed by the agent at execution
time (e.g., (Muscettola et al., 1998)). Such contingent values may be
seen as being assigned by Nature while the other values are assigned
by the executing agent. A Simple Temporal Problem/Network with
Uncertainty (STPU/STNU) (Vidal and Fargier, 1999) is similar to
a STP/STN except that the edges are divided into contingent and
requirement edges. The finishing time-point of contingent intervals are
controlled by Nature and hence observed, while others are controlled
and hence ezecuted by the agent. We will refer to this model later in
the paper, as there is a strong relationship between consistency in an
STNU (called controllability in the STNU setting) and consistency as
we define it for CTPs.

3. Conditional Temporal Problems
We now introduce the Conditional Temporal Problem (CTP) formal-
ism. Both in this section and throughout the remainder of the paper, we

! Note that this is true despite the fact that DTPs do not include negated literals,
because —¢;; : Il < x —y < uw can always be rewritten as ¢ —y < [Vz —y > u,
approximated as close as desired by x —y <l —eVzr—y>u+e.

59

adamsp
Text Box

adamsp
Text Box

Snowbird ™.

Figure 1. The map for the CNLP plan.

will illustrate our approach with a simple example derived from the one
used in the original CNLP conditional-planning paper (Peot and Smith,
1992). The example models a plan for going skiing, either at Snowbird
or at Park City, starting from home, and traversing the roads (shown as
dashed lines) depicted in Figure 1. As in the CNLP paper, it is possible
that the road from point B to Snowbird and/or the road from point C
to Park City will be covered with snow and impassable. However, the
condition of those roads can only be observed from points B and C,
respectively. For the purposes of the current paper, we also introduce
two temporal constraints:

— If the agent skis at Snowbird, it should arrive after 1p.m., because
they offer great discounts in the afternoons.

— If the agent skis at Park City instead, it should arrive at point C'
no later than 11 a.m., because traffic is very heavy afterwards.

In our formalism, we will denote propositions with capital letters
from the beginning of the alphabet, e.g. A, B, C'. We will denote literals
as A, or = A, and conjunctions of literals as lists of literals, e.g. AB-C
denotes AA B A —C.

Definition 3.1. A label [is a conjunction of literals, e.g. | = ABC.

Definition 3.2. Two labels [y , [5 are inconsistent (denoted as Inc(ly
, I9)) iff 11 Aly is False. E.g. Iy = AB and I = =B—(C' are inconsistent.
Two labels 1,1y are consistent (denoted Con(ly,l3)) iff =Inc(I1,12)).
A label I; subsumes label [, (equivalently, [y is more specific than
ls), iff Iy = ly. E.g. if Iy = AB-C and Il = A-C| then [; subsumes [y
(denoted Sub(ly,12))

60

adamsp
Text Box

Definition 3.3. The set of all possible labels defined with respect to
a set of propositions P, is the label universe of P, P*.

We are now ready to formally define Conditional Temporal Prob-
lems, inspired by the definitions of the TCSP, STP and DTP.

Definition 3.4. A Conditional Temporal Problem (CTP) is a
tuple <V, E,L,OV,0O, P >, where:

P is a finite set of propositions A, B, C, ...

V is a set of nodes (interchangeably called variables, time-points, events)
{X7 Y7 Z7 st }

E is a set of constraints between nodes in V

L :V — P*isafunction attaching a label to each node, e.g. L(n) = AB
OV C V is the set of observation nodes

O : P — OV is a bijection associating a proposition with an observation

node. O(A) is the node that provides the truth-value for proposition
A.

CTPs can be interpreted as follows. When a value is assigned to a
time point in V, it indicates the time of occurrence of that event. In
planning problems, the time of occurrence is the time at which an action
is executed.? The times assigned to the nodes in a CTP must satisfy
the constraints in F. A major difference from other non-conditional
temporal problems is that a node v € V should only be executed
if its label’s value becomes True. At the time of their execution the
observation nodes provide the truth-value of propositions, which in
turn determine the truth-value of labels. Note that each proposition
has an implicit time point associated with it. Suppose that A is a fluent
whose value may change over time (for example battery-level-low),
and further suppose that the value of A needs to be observed at two
different times. Then the CTP will include two distinct propositions,
e.g. Ar, and Ar,, each associated by the function O to a different
observation node. Therefore for each proposition in P there exists a
unique observation node.

It is reasonable to assume that in any well-defined CTP there should
not be any constraint relating nodes with inconsistent labels, since those
nodes will never be executed under the same circumstances. Also, it
is reasonable to require that when we execute a node v, we have to
know the truth-value of its label L(v). This in turn implies that (i)
all nodes observing a proposition in L(v) are executed in all cases in
which v is executed, and (ii) they are executed before v. To ensure

2 If the action has temporal duration, the model includes two nodes for every

action: one that denotes the time at which execution of the action begins, and
another that denotes the time at which it ends.

61

adamsp
Text Box

adamsp
Text Box

these requirements for any node v for which A appears in L(v), we
can statically check that Sub(L(v),L(O(A)) and add the constraint
O(A) < v to the temporal problem definition.

We now define three types of CTPs, which differ in the types of
constraints they allow.

Definition 3.5. A Conditional Simple Temporal Problem (CSTP)
is a CTP where the constraints in E are STP-like constraints, i.e.
binary constraints (called edges) of the form (I <y —xz < u). We simi-
larly define Conditional Disjunctive Temporal Problems (CDTP) and
Conditional Temporal Constraint Satisfaction Problems (CTCSP), by
analogy to DTPs and TCSPs.

Example 3.1. Figure 2 shows a CSTP that encodes part of the ski-trip
example. (To keep the example small, we omit the part of the plan that
involves traveling from point C' to Park City.) The vertices V represent
three types of events:

— The start and end points of the go actions; (go x y) denotes
the action of going from location z to location y. A node labeled
(go x y)g, i.e. with subscript S, indicates the event of starting the
action (go x y); similarly (go x y)g denotes the event of ending
such an action (and arriving at y).

— The observation events; (obs (road x y)) denotes observing the
condition of the road from z to y, while located at x. For clarity of
presentation, we treat observation steps in our examples as if they
were instantaneous, although in general this is not a requirement.

— The special Start event, which is associated with a specific ar-
bitrary point in time: in our example, 12a.m. It is used to encode
absolute time constraints, for example, that if the agent goes to
Snowbird, he should not arrive there until 1p.m. (13 hours af-
ter Start). In the temporal-reasoning literature, the Start node is
usually denoted “TR,” for Temporal Reference point.

We will follow the convention that all non-annotated edges in the figures
are assumed to have bounds [0, co] and the labels of the unlabeled nodes
are True. There is exactly one observation action (obs (road b s)) that
provides the truth-value of A, namely whether the road from b to s
is open: thus, O(A) = (obs (road b s)). Notice that this node satisfies
the two conditions identified above: It is executed in every context in
which steps labeled with A or —A are executed (in fact, in this example,
it is always executed), and it is executed before any of the steps that
are labeled with A or =A (note the implicit [0, c0] constraint on the
outgoing arcs from it).

62

adamsp
Text Box

adamsp
Text Box

“A

A
[0,] ‘ (gobo)g H (gobc)e ‘
[2.2] —— 1y

‘ Start H (go home b)g H (go home b)EH (obs (road b s)) [, 1]

N (9o b s)g ’—A.{ (9o bs)

[-8,

[13,8]

Figure 2. The skiing plan as a Conditional Simple Temporal Problem. All non-an-
notated edges are assumed [0, co] and all non-annotated nodes are assumed labeled
True.

Definition 3.6. An execution scenario s is a label that partitions
the nodes in V' into two sets V; and Vo : Vi = {n € V' : Sub(s,L(n))}
and Vo = {n € V : Inc(s,L(n))}, i.e. the set of nodes that will be
executed because s implies their label is True, and the set of nodes
that will not be executed because s implies their label is False. An
execution scenario contains all the information (i.e. the value of all
necessary propositions) to decide which nodes to execute and which
not to execute. We will use SC to denote the set of scenarios for a
given CTP.

Theorem 3.1. Any complete truth-assignment to the propositions in
P is an execution scenario (we will call it a complete scenario). (See
Appendiz for proof).

Definition 3.7. A scenario projection of the CTP < V, E, L,
OV, O, P > of an execution scenario s, denoted as Pr(s), is the
temporal non-conditional problem < Vi, E; >, where Vi = {n € V :
Sub(s,L(n))} and By = {(vi,v2) € E : v1,v2 € V1}. This will be an
STP, DTP, or TCSP depending on the constraints in £. Put simply,
the scenario projection of an execution scenario s is the set of nodes of
the CTP that will be executed under s and all the constraints among
them.

Example 3.2. In our skiing example, there are only two possible exe-
cution scenarios: A and —A, where Pr(A) includes, intuitively, all the
nodes that are executed when the road to Snowbird is clear and the
agent skis there, and, similarly, Pr(—A) includes all the nodes that are
executed when the road to Snowbird is closed and the agent instead
heads towards Park City via point C. For a more interesting example,
consider the CSTP in Figure 3, which has nodes {TR, y, z, w, u, v,

63

adamsp
Text Box

adamsp
Text Box

Figure 3. The CTP of the Example 3.2.

q} with labels {True, A, =A, AB, A—B, ~AC, ~A-C}, respectively.
Suppose that TR = O(A) observes A, y = O(B) observes B, and
z = O(C) observes C. The CSTP thus has the typical structure of a
conditional plan in which TR is initially executed and A is observed; if it
is true y is executed, otherwise z is executed; and so on. The execution
scenarios AB, ABC and AB-C all refer to the same execution, i.e.
under each of them, the nodes TR,y, and w, but no other nodes, will
be executed.

Definition 3.8. Two execution scenarios are equivalent execution
scenarios if they induce the same partition on the set of nodes. The
“equivalent execution scenarios” relation induces an equivalence class
relation R. A class in R contains all scenarios that are equivalent.

Definition 3.9. A scenario is a minimum execution scenario if it
contains the minimum number of propositions compared to all other
scenarios in its “equivalent execution scenario” class.

In Example 3.2 above, scenarios ABC, AB—C', and AB all belong to
the same equivalence class, with AB being the minimum execution sce-
nario of the class. For this example, there are four minimum scenarios:

{AB, A=B,~AC,~A~C)}.

64

adamsp
Text Box

4. Notions of Consistency

CTPs have a different notion of consistency than their non-conditional
counterparts TCSPs, DTPs, STPs, and most other temporal reason-
ing problems. In the conditional case, consistency cannot be defined
simply as the existence of an assignment to the time-points (nodes)
that satisfies the constraints. This interpretation fails to take account
of the fact that in the CTP modeling a temporal plan, propositions are
usually only observed at execution time. We thus present three notions
of consistency, which differ from one another in the assumptions made
about when observation information is known.

In the first case, we require a notion of consistency that allows for
off-line scheduling, i.e. allows precise times for all events to be deter-
mined before execution begins. Here it is reasonable to assume that
the scheduling algorithm has no information about the outcome of the
observations. Therefore it should schedule the nodes in such a way that
the constraints are satisfied no matter how the observations turn out.
If such a schedule exists, then we will say that the CTP is Strongly
Consistent.

As a second case, consider an agent that plans for a number of
initial future states. Each initial state corresponds to a set of initial
truth-values of some propositions, i.e. an execution scenario. The spe-
cific scenario is unknown at planning time, but it will be known to
the execution agent prior to execution. Then, it is necessary for the
planning agent to verify that no matter which initial state turns out
True, the execution agent has a way to execute the plan. If this is
possible, the CTP is Weakly Consistent.

The third, most complicated and typical case, assumes that in-
formation about the outcome of observations becomes known during
execution. Unlike the first case, however, it allows the decisions about
the timing of events to be made dynamically at execution time. We
will call a CTP Dynamically Consistent if it can be executed so that
no matter what the outcome is for the upcoming observations, the
current partial solution (i.e. the assignment of values to time-points)
can be extended so that all constraints are satisfied.

These notions of consistency are similar to those developed for ST-
PUs, where consistency is defined in terms of controllability (Vidal and
Fargier, 1999). Essentially, a network is controllable if there is a strategy
for executing the timepoints under the agent’s control that satisfies
all requirements. Three primary levels of controllability had also been
identified. In Strong Controllability, there is a static control strategy
that is guaranteed to work in all situations. In Weak Controllability,
for all situations there is a “clairvoyant” strategy that works if all

65

adamsp
Text Box

adamsp
Text Box

adamsp
Text Box

uncertain durations are known when the network is executed. And in
Dynamic Controllability, it is assumed that each uncertain duration
becomes known (is observed) just after it has finished, and it requires
that an execution strategy depend only on the past outcomes. Strong
and Dynamic Controllability have been shown to be tractable (Vidal
and Fargier, 1999; Morris et al., 2001), while Weak Controllability is
conjectured to be co-NP-complete (Vidal and Fargier, 1999).

Definition 4.1. A schedule T'of a CTP <V, E, L, OV, O, P > is a
mapping V' — R, i.e. a time assignment to the nodes in V. We denote
with T'(v) the time assigned to node v.

Definition 4.2. An execution strategy St is a function from the set
of scenarios for a CTP to a schedule St : SC — T'. A viable execution
strategy is one such that S(s) is a solution to the projection Pr(s)
for each scenario s € SC.

Definition 4.3. Given a scenario s and a schedule T, for each node z in
the projection scenario of s, we can determine the set of all observations
performed before time T'(z), along with their outcomes. We will call
the set of the observation outcomes before time T'(x) the observation
history of z relative to scenario s and schedule T' and will denote it
as H(z,s,T).

Definition 4.4. ACTP <V, E,L,OV,0, P > is Weakly Consistent
if there exists a viable execution strategy for it, i.e. every projection
Pr(s) is consistent in the STP/DTP/TCSP sense.

Definition 4.5. A CTP < V,E,L,OV,0, P > is Strongly Consis-
tent if there is viable execution strategy St such that, for every pair
of scenarios s; and s9, and variable z executed in both scenarios,

[St(s1)](2) = [St(s2)](2)

Thus, an execution strategy that satisfies the definition of Strong
Consistency assigns a fixed time to each executable timepoint irre-
spective of the observation outcomes. The idea behind finding a single
schedule is similar to that of finding a conformant plan (Goldman and
Boddy, 1996).

Definition 4.6. A CTP < V, E, L, OV, O, P > is Dynamically
Consistent if there is a viable execution strategy St such that, for
every variable £ and pair of scenarios s; and s3,

Con(ss, H(x,51,St(s1)) V Con(sy, H(x, s2,St(s2)))
= [St(s1)](z) = [St(s2)](x)

66

adamsp
Text Box

adamsp
Text Box

In the definition above®, Con(sy, H(z,s1,S5t(s1))) means that the
set of observation outcomes uncovered before z in scenario s; forms a
label that is still consistent with scenario s, at the time at which x is
to be performed in sy. Thus, at time point z, the agent has not yet
distinguished between scenarios s; and so. Therefore it must assign
to x the same time in s; and so. The same arises in the opposite
case (z in scenario so while s; is still feasible). An execution strategy
that satisfies the above definition ensures that the scheduling decisions
that are taken (while executing) only use information available from
previous observations.

To compare the three notions of consistency, reconsider the CSTP of
Figure 2 as defined in Example 3.1. Is the network Strongly Consistent?
We can immediately see that, if A is True (i.e. the agent observes that
the road to Snowbird is open), then it must arrive and then imme-
diately leave point b no sooner than noon, i.e. (go home b)gp > 12,
given the constraints 13 < (go b s)g — Start < oo, 0 < (go b s)g —
(go home b)g < 0,and 1 < (go b s)g —(go b s)s < 1. That is, because
the agent must not arrive in Snowbird before 1p.m., there is no place
to wait at point b, and it takes an hour to get from b to Snowbird, it
must arrive at b no earlier than noon. An analogous argument let us
deduce that if A is False it must arrive at b no later than 10a.m., i.e.
(go home b)r < 10 Thus, there is no way to construct a schedule for
this network without knowing the truth-value of A. Hence, the CTP is
not Strongly Consistent.

However, it is Weakly Consistent. To prove this we just have to
provide a consistent schedule for each scenario. In this example there
are two execution scenarios s; = A and sy = —A, which means only the

® We point out that our consistency definitions and algorithms would still be valid
had we defined labels as any propositional formula on P*. We chose to restrict labels
to conjunctions for illustration purposes. Also, note that although they are sym-
metric, both disjuncts Con(s2, H(z,s1, St(s1)) and Con(s1, H(z, s2, St(s2))) are
required for the definition to cover only the set of plans that are actually executable.
Here is an example that shows that using only one of the disjuncts is not enough.
Consider the CTP with nodes z,y, z,w, L(z)=A, L(w)=-A, L(z)=L(y)=True, and
O(A) = y, and constraints x —y € [-5,5], z—y =5, w —y = 15, z — z = 10, and
w—x = 10. If A is True, only the schedule T1(z) = 0, T1(y) = 5, and T4 (2) = 10 and
all of its translations T4 +¢ are consistent. If A is False, only the schedule T>(y) = 0,
T>(z) = 5, and T>(w) = 15 and all of its translations are consistent. T} and T define
the execution strategy St with St(A) = T and St(—A) = T>. The CTP is obviously
not dynamically consistent since we need to know the value of A before execution in
order to decide whether we should follow T} or T, but A is known only after = has
been executed in T:. However, H(x,—A,T>) = —=A and so ~Con(A, H(z,—A,T»)).
If only this disjunct was used in the definition, the antecedent of the implication
would be False, and the constraint always satisfied and thus St would satisfy the
definition, falsely implying the CTP is dynamically consistent.

67

adamsp
Text Box

adamsp
Text Box

truth-value of A discriminates between possible scenarios. One consis-
tent schedule for s;, which we will call T}, assigns (go home b)g a time
of 10 a.m. (with all the other time points being directly derivable from
that, e.g., (go home b)g is assigned noon). A consistent schedule for
s9, Ty assigns (go home b)g a time of 8 a.m. The execution strategy
St, where St(s;) = Ty and St(s2) = T is viable. So, provided only
that the value for A is known before execution starts, the agent simply
needs to pick the corresponding schedule 77 or T5.

Is the network Dynamically Consistent? In the discussion above we
showed that T'((go home b)) must be greater than or equal to 12 if
A is observed True, and less than or equal to 10 if A is observed to
be False. In turn, this forces T'((go home b)g) to be greater than or
equal to 10 if A is True, and less than or equal to 8 if A is Fulse. If
we could observe A before starting out on the journey, i.e. before event
(go home b)g, then we could distinguish between the two scenarios,
determine which one we fall into, and schedule our departure from
home accordingly. However, the problem is set up such that being at
point b is a precondition for the observation action. Thus, there is no
way to perform the observation, and determine the value of A, “in time”
to schedule the departure. The example is not dynamically consistent.

Let us now state an obvious property of the three notions of consis-
tency, that is similar to the corresponding one in STPU:

Theorem 4.1. Strong Consistency = Dynamic Consistency = Weak
Consistency

5. Strong Consistency

We now present an important property of Strong Consistency for CTPs.

Theorem 5.1. A CTP < V,L,E,OV,0,P > is Strongly Consistent
if and only if the (non-conditional) temporal problem < V,E > is
consistent. (See Appendiz for proof).

The implication of the above theorem is that we can perform Strong
Consistency checking by using specialized algorithms for non-condi-
tional temporal problems such as IDCP (Chleq, 1995) for STPs, known
techniques (Schwalb and Dechter, 1997) for TCSPs, and Epilitis (Tsa-
mardinos, 2001) for DTPs.

68

adamsp
Text Box

adamsp
Text Box

adamsp
Text Box

adamsp
Text Box

5.1. USES OF THE STRONG CONSISTENCY CONCEPT FOR PLANNING

A plan that is represented as a strongly consistent CTP can be executed
according to a fixed schedule, in the sense that every action it includes
has an assigned, specific time. Not all of the actions will occur in every
scenario. Thus, the plan is contingent in the same sense as plans gener-
ated by CNLP (Peot and Smith, 1992): Certain actions may or may not
be executed, depending on the results of execution-time observations.
A contingent plan with a fixed schedule should be contrasted with
temporally contingent plan, in which the times at which actions are
performed also depends upon such observations. Plans with necessary
temporal contingencies will be dynamically consistent (as discussed in
Section 7) but not strongly consistent.

Thus, Strong Consistency is a restrictive type of consistency, mean-
ing that a CTP might not be Strongly Consistent but nonetheless can
be executed. Nevertheless, since we can employ existing algorithms and
systems for determining Strong Consistency it is possible to build a
temporal and conditional planner using those systems. Such a planner
performs a search in the plan space adding appropriate actions, obser-
vations and temporal constraints to resolve the conflicts (threats) in the
CNLP style. The consistency of the underlying temporal constraints in
the CTP representing the current plan can then be determined.

6. Weak Consistency

6.1. WEAK CONSISTENCY CHECKING

It is easy to design a brute force algorithm for checking Weak Consis-
tency. The task involves finding a solution to the temporal subproblem
Pr(s;) for every execution scenario s;. Thus, the two steps of the
algorithm are:

1. Find the set of execution scenarios SC.

2. Check the consistency of the non-conditional problem Pr(s),Vs €
SC.

Let us examine a specific example of the above, on the CSTP of Fig-
ure 2. The two projections Pr(A) and Pr(—A) and all the constraints
in these two projections are shown in Figure 4. Consistency can be
easily proven in each projection.

We can improve on this algorithm by noticing that Pr(s;) = Pr(s;)
for every two equivalent scenarios s; and s;. Thus, we only need to
select one scenario s; from each class in R of Definition 3.8 and check

69

adamsp
Text Box

adamsp
Text Box

A

A
[0, Q] ‘ (gobc)g H (gobc)
12, 2] — v
[st [(go homeb) [(go home b)]—] (obs roacib)

[2,2]
‘ Start H (go home b)g H (go home b)EH (obs(road b)) ‘ (1,1

N (gobs)g ’—A’< (gobs)e ‘

[-8,

[13,8]

Figure 4. The projected STPs of Figure 2 for all scenarios. Pr(—A) is shown in the
top part and Pr(A) in the bottom part.

the consistency of Pr(s;). It might even be desirable to select the min-
imum execution scenario as the representative of its class. Then the
first step of the algorithm is the problem of finding the set of minimum
execution scenarios. We solve this problem in (Tsamardinos, 2001)
where we present an algorithm that calculates this set without explicitly
enumerating all possible scenarios. We also prove the complexity result
that Weak CSTP Consistency is co-NP-Complete (see Theorem A.1 in
the Appendix).

Another way to improve the Weak Consistency checking algorithm
is to perform the second step of the algorithm incrementally. For exam-
ple, when solving the sequence of problems Pr(s1), Pr(sz2),... there is
often shared computation between problems Pr(s;) and Pr(s;;1). The
order of consideration of each Pr(s) highly influences the amount of
computation that can be shared. An algorithm that employs this idea
and calculates an appropriate order of incremental consistent checks for
the series of Pr(s;) is again presented in (Tsamardinos, 2001) (Chapter
6) for the CSTP case.

6.2. UseEs OF THE WEAK CONSISTENCY CONCEPT FOR PLANNING

If a plan is represented as a weakly consistent CTP that is not also
dynamically or strongly consistent, this means that there is always a
non-contingent plan for any set of observations, but to execute that
plan, we must know the observations at the start of execution.

We now suggest a possible use of Weak Consistency for planning
purposes, namely in planning architectures that are based on plan-
merging. Examples of such architectures are Workflow Management

70

adamsp
Text Box

adamsp
Text Box

Systems (Georgakopoulos et al., 1995), PRS (Myers, 1997), the Plan
Management Agent (Tsamardinos et al., 2000), and Autominder (Pol-
lack et al., 2002) to name a few. In these systems, there is a library
of plan (or workflow) schemata, and whenever a new goal arrives, a
plan from the plan library is selected and subsequently merged with
the system’s existing commitment structure, i.e. the set of (partially)
instantiated plans which it has already adopted. The plan to be merged
in the context will depend both upon the new goal to satisfy and the
current set of commitments. The conditions set by the latter form
a “scenario” for which there should exist a corresponding schedule,
which makes Weak Consistency relevant. The plan library may include
a number of different schemata that achieve a given goal G. A CTP
can be used to compactly represent all such schemata. For example, if
P, achieves goal G when A is True, and plan P achieves G when —A,
then we can build a CTP that simultaneously represents both P; and
P; by attaching appropriate labels A and —A on the temporal variables
in the plans. Now assume that P; and P, share a large part of their
structure and differ only in a few preparatory steps. It is easy to see
that the CTP representation can attach the label True to all common
steps and this way both display the shared structure and remove the
redundancy.

As a simple example consider the CTP shown in Figure 5(a), which
encodes the four non-conditional plans in Figure 5(b). (Imagine that
label A denotes “fuel tank empty” and label B denotes “load over 2000
1bs”). Not only is the CTP encoding more compact, but checking its
consistency using efficient Weak Consistent checking algorithms will be
faster, by definition, than individually checking the consistency of each
the non-conditional temporal plans.

7. Dynamic Consistency

7.1. DynaMIiCc CONSISTENCY CHECKING

We now turn to Dynamic Consistency. In order to distinguish between
the execution of the same node in different scenario projections, we use
N(z,s) to denote node z in Pr(s). Also, let us denote with Diff . (s1)
the set {N(v,s1)} of all nodes v in s; that provide observations with
outcomes that differ from the corresponding ones in ss.

To prove Dynamic Consistency of a CTP we need to identify a viable
execution strategy St satisfying the conditions of Definition 4.6. The
condition Con(sa, H(x, s1,St(s1))) is satisfied if and only if at the time
N (z, s1) is executed, there is no observation node N (v, s1) in Diff ., (s1)

71

adamsp
Text Box

adamsp
Text Box

B

A

Take-road-r,
put-gas Take-road-r, <

Take-road-r;

B
(A)

put-gas Take-road-r, Take-road-r,
(@)

Take-road-r, —* Take-road-r,
(b)

put-gas [—* Take-road-r, — Take-road-r;
(©)

Take-road-r, Take-road-r;
(d)

(B)

Figure 5. (A) A CTP encoding four different plan schemata. (B) The non-condi-
tional plan schemata represented by the CTP in (A).

that has been executed yet; otherwise, we could distinguish between
the two scenarios. This directly translates to the following equation for
Con(sq, H(z,s1,St(s1))):
Con(se, H(x,s1,St(s1))) & /\ N(z,s1) < N(v,s1)
N(v,51)€Diff 5, (s1)

and similarly for Con(si, H(z,s2, St(s2)). Thus, we can rewritte the
condition in Definition 4.6 as:

{ A N(z,s1) < N(v,s1)}
N(v,sl)EDiﬁS2(sl)

\/{ /\ N(z,s2) < N(v,s2)}

N(v,s2)€Diﬁsl(52)
= N(z,s1) = N(z,s2) (1)

On the left-hand side of the implication, we have simply replaced each
of the two Con conditions from Definition 4.6 with a conjunction over

72

adamsp
Text Box

adamsp
Text Box

DynConsistency (CTP Ctp)
1. DTP D :< V,C >=< U;V;,U; E; >,

where Pr(s;) =< V;, E; > are the projected scenarios.
2. For each pair of scenarios s1, So
3 For each node v that appears in both sy, s9
4. C =CADC(v,s1,52)
9. EndFor
6. EndFor
7. If D is consistent, return Dynamic-Consistent
8. Else return non-Dynamic-Consistent

Figure 6. The Dynamic Consistency algorithm

times of observation nodes; the right-hand side of the implication has
remained unchanged.

The main idea behind the consistency checking algorithm is to view
the above condition of the definition as a (disjunctive) constraint be-
tween nodes N(z,s): These together with the set of all nodes N(z,s)
for every node x and scenario s of the original CTP define a new
temporal problem, namely a DTP D. With this reformulation, an exe-
cution strategy St defines a schedule T of D and vice versa by setting
[St(s)|(z) = T(N(z,s)). The aim is to add appropriate constraints
to D so that a solution schedule of D will correspond to a Dynamic
execution strategy and vice versa. So, in addition to the constraints
resulting from Equation (1), we need to impose on the nodes of D all
the constraints in every projection Pr(s). Then, every solution to D
will satisfy both the constraints in each projection (thereby guarantee-
ing that the corresponding strategy will be viable), and the Dynamic
Consistency conditions. These ideas lead to the design of the algorithm
in Figure 6, where DC(x,s1,s2) (called a DC constraint) is used as a
shorthand of Equation (1) above.

Let us trace the algorithm on a specific example such as the CSTP of
Figure 2 where O(A) = (obs (road b s)). Line 1 of the algorithm creates
a DTP with all the nodes and edges in the two projections Pr(A)
and Pr(—A). The result is shown in Figure 7 (with some additional
constraints explained below). To simplify the equations we renamed
the nodes (go home b)g, (go home b)g, (obs (road b s), (go b s)g, and
(go b s)r as z,y,z,w, and v. We notice that Diff _4,(A) = {N(z,A)}
and Diff 4(~A) = {N(z,—A)} and so the DC for Start, DC(Start, A,
—A), is

N(Start, A) < N(z,A) V N(Start,—A) < N(z, A)

73

adamsp
Text Box

adamsp
Text Box

adamsp
Text Box

[13, 8]

Figure 7. The DTP created by the Dynamic Consistency algorithm, including
Pr(-A) (top part), Pr(A) (bottom part), and DC constraints between them.

= N(Start, A) = N(Start,—A).

Since Start is before z in both cases, N(Start,A) = N(Start,—A).
Similarly, we find that N(z, A) = N(z,—-A), N(y, A) = N(y,~A), and
N(z,A) = N(z,—A). For nodes w and v the antecedent of the DC
implication is always False (they occur after z in both scenarios) and
so the DC constraint is already satisfied. The result after adding all the
DC constraints in Line 4 of the algorithm is shown in Figure 7. The
resulting DTP is actually an STP and it is inconsistent, indicating that
the original CTP is not Dynamically Consistent.

Suppose instead that the constraints ordering z after y are dropped
and z can now be executed any time after Start. In particular, other
constraints permitting, it could be scheduled before z and y. Then, the
DC constraint for z specifies that either occurs before z in which case
N(z,A) = N(z,—A), or it occurs after z in both scenarios. Thus, the
DC constraints are disjunctive in general (recall that a = b is equivalent
to =a Vb). In case where z is allowed to be executed before z and y the
CTP is Dynamically Consistent. Semantically this corresponds to the
case where we observe whether the road from b to s is open before we
leave home. In that case, we can decide when to start the trip for each
different scenario.

Notice that in Equation (1) if the observation nodes in all scenarios
are constrained to be ordered with respect to each other, then the
conjunctions over all N(v,s;) € Diff; (si) can be substituted with the
single minimum of the order. Then Equation (1) becomes

N(z,s1) < N(n,s1)VN(z,s2) < N(m,s2) = N(z,s1) = N(z,s2) (2)

74

adamsp
Text Box

adamsp
Text Box

Figure 8. A CTP with two observation nodes unordered with respect to each other.

n and m being the nodes for which N(n,s1), N(m,s2) are minimum
in the order of the nodes in Diff (s1) and Diff; (s2) respectively.
In general, observation nodes that are constrained to be scheduled
after others in the sets Diff . (s1) and Diff ; (s2) are ruled out of the
conjunctions in Equation (1).

A more complicated example is shown in Figure 8 where two ob-
servation nodes O(A) = z and O(B) = y are unordered with each
other so Equation (1) cannot be simplified to the form of Equation
(2). Let us consider node x and scenarios sy = AB and sy = A-B.
Then, Diff,,(s1) = {N(y,s1)} while Diff, (s2) = {N(y,s2)}. Thus,
DC(x, s1, s2) is the constraint N (z, s1) < N(y,s2) V N(x,s2) < N(y, s2)
= N(z,s1) = N(z,sz2). If we decide to perform the observation for A
first, i.e. z < y, then DC(z, s1, s2) becomes N(z,s1) = N(z,s2). The
resulting STP is shown in Figure 9(a). In the other case (where we
defer the observation of A) we end up with the STP in Figure 9(b)
where there is no constraint between N(z,s;) and N(z,s2). Since the
observations are unordered, the DC constraints are disjunctive and
represent in a DTP both of these alternative STPs of (a) and (b).
The original CTP is Dynamically Consistent, if and only if one of these
alternatives is consistent.

It is important to note that we reduced the consistency checking
problem to a DTP because DTPs can represent n-ary disjunctive con-
straints. TCSPs and STPs do not allow this, and thus would not sat-
isfy our requirements. Constraints of this type are typical of Dynamic
Consistency in CTPs and make the problem intractable in general.

75

adamsp
Text Box

adamsp
Text Box

adamsp
Text Box

s;=AB
s;=<AB

s,=A<B

s, ~<A<B

Figure 9. The STP projections with DC constraints for each order of observations.
Directed edges are assumed [0, oo] and undirected edges denote [0, 0] constraints.

This contrasts with Dynamic Controllability in STPUs in which con-
straints can be reduced to simple STP constraints, hence allowing the
design of polynomial-time solution algorithms. Thus, DTP solving al-
gorithms such as Epilitis (Tsamardinos, 2001), which include a number
of highly effective heuristic pruning techniques, will have a direct effect
on Dynamic Consistency checking in CTPs.

Regarding the complexity of the DTP D, notice that D contains
O(|V]]SC]) variables, where V' is the set of variables in the CTP and
SC the set of (minimal) scenarios whose number is in the worst case
exponential to the number of propositions |P|. In the worst case the
constraints are disjunctive and, when put in Conjunctive Normal Form,
may create an exponential number of disjunctive clauses. Nevertheless,
some structural properties of the CTP help in reducing the complexity.

First, as we have noted above, when the observation nodes are or-
dered with respect to each other in every scenario, the DC constraints
are given by Equation (2) which is a great simplification over Equation
(1). Additionally, if each node is ordered with respect to every obser-

76

adamsp
Text Box

adamsp
Text Box

vation node in all scenarios, then the antecedent of each DC constraint
can be statically checked. In this case, the DC constraint either becomes
N(z,s1) = N(x,s2) or it is already satisfied. For instance a CSTP can
then be made equivalent to a larger STP, since no disjunctive con-
straints are added to the problem, which allows very efficient Dynamic
Consistency checking.

7.2. USES oF DyNAMIC CONSISTENCY CONCEPT FOR PLANNING

Dynamic Consistency checking can be used to build a temporal and
conditional planner. It is easy to see that by appropriately modifying
the CNLP algorithm (Peot and Smith, 1992) it is possible to allow the
simultaneous representation of and reasoning with quantitative tempo-
ral constraints and conditional branches. When a temporal constraint
x < y is added to the CTP representing the conditional plan (e.g. to
resolve a conflict), the Dynamic Consistency algorithm can determine
whether the resulting plan is executable. Moreover, this notion of “ex-
ecutable” goes beyond that of traditional planning system, because it
allows for observations to be made at execution time in plans in which
timing constraints depend on observation outcomes. Dynamic Consis-
tency checking can also support the merging of such richly expressive
plans at execution time, e.g. to handle new goals that arise during
execution (Tsamardinos, 2001)(Chapter 7).

In order to execute a Dynamically Consistent plan we can instead
execute the DTP D to which we reduced the problem. Notice that we
should execute only one node N(z, s;) for every scenario s; since they
semantically correspond to the same event and the same CTP node.
Of course, the algorithm guarantees that N(z,s;) = N(z,s;) in all
appropriate cases and avoids confusion. We can identify at least three
ways D can be executed: (i) We compute a solution to D and execute
that. This is the least flexible approach since it commits to a specific
schedule (solution) of D. (ii) We find and flexibly execute a consistent
component STP of D. Consistent components STPs are returned by
DTP solvers such as Epilitis (Tsamardinos, 2001) and can be flexibly
executed with algorithms such as in (Tsamardinos et al., 1998). (iii)
We flexibly execute the DTP directly, retaining all possible scheduling
flexibility, using the algorithm in (Tsamardinos et al., 2001).

Finally, we note that because typical conditional plans satisfy both
of the conditions mentioned at the end of the previous subsection, the
performance of the DC algorithm during plan construction and merging
is likely to be higher than in the general case. In addition, conditional
planners generate plans where the number of distinct execution sce-
narios is linear in the number of propositions. We suspect that in

77

adamsp
Text Box

adamsp
Text Box

this case the Dynamic Consistency algorithm we presented is actually
polynomial in the number of original CTP variables and propositions
(Tsamardinos, 2001)(Chapter 6). We intend to formalize these ideas on
performance improvements in our future work.

8. Improved Conditional Planning

In the previous section, we noted that by using a Dynamic Consistency
algorithm, one can extend traditional conditional planners to support
quantitative temporal constraints. It is essential to manage those con-
straints; if they are ignored, then the planner risks generating incorrect
plans. For instance, a CNLP-style planner would generate a conditional
plan for our skiing example if it simply ignored the two additional
temporal constraints (either arrive at Snowbird after 1 p.m., or else
arrive at point C' on the way to Park City before 11 a.m.). But such
a plan would be useless, because, as we have already seen, given the
temporal constraints the plan is dynamically inconsistent and there is
no way of executing it.

Of course, the traditional conditional planners (Peot and Smith,
1992; Pryor and Collins, 1996; Onder and Pollack, 1999) were not
designed to deal with quantitative temporal constraints. But they do
perform a limited form of temporal reasoning, in order to deal with
ordering constraints, and it turns out that even for plans with only
ordering constraints, there are clear advantages to using the dynamic
consistency approach.

CNLP propagates context information only along causal links and
conditioning links, but not along ordering constraints. We assume that
this choice was made so that if a step z with context True is promoted
after a step y of context A, then the context of x remains True and so z
can be reused to provide causal links to steps in other contexts, thereby
potentially reducing the amount of planning required and resulting in
smaller plans.

Nevertheless, this method might reject valid (i.e. executable) plans.
An example is shown in Figure 10(a). The bold edges correspond to
causal links, and the lighter edges denote ordering constraints added
by threat resolution. We suppose that step v clobbers both the causal
link ¢ — » and the causal link z — y; hence v has been promoted and
demoted respectively to resolve the conficts. We further suppose that
z clobbers the latter causal link and has been promoted after y.

When CNLP checks whether an ordering constraint exists between
a pair of nodes s and z, it essentially computes the transitive closure
and determines whether s < z holds. Since the context information is

78

adamsp
Text Box

adamsp
Text Box

adamsp
Text Box

Xy [z |
<A <A
(a)
A A
(s Lt

Figure 10. (a) A CNLP plan whose handling by CNLP reasoning falsely induces
that s is necessarily before z. (b) The two projections of the plan: z is allowed
before s in both.

ignored in this calculation, CNLP essentially calculates Strong Consis-
tency of the induced CTP. However, in Figure 10(b) the two projections
of the plan are shown, and it is easy to see that s and z are actually
unordered with respect to each other.

As already mentioned in Section 5, Strong Consistency is a restric-
tive type of consistency and plans that are executable (i.e. Dynamically
Consistent) might not be Strongly Consistent. Thus, CNLP is not com-
plete and it might reject valid plans, unlike what is conjectured in the
original CNLP paper. In the above example, if z is ordered before s
and this is the only valid plan, CNLP will reject it as inconsistent even
though it is Dynamically Consistent (assuming A is observed before
this portion of the plan).

79

adamsp
Text Box

9. Related Approaches and Conclusions

As far as we know only two approaches might be compared to our
work. The first paper by Schwalb et al. (Schwalb et al., 1994) separates
propositional and temporal reasoning, addressing expressive proposi-
tional and temporal constraints, to process deduction and hypothetical
reasoning on knowledge bases. The authors define a ” Conditional Tem-
poral Network” model, in which some constraints are dependent on a
condition and are only used if that condition is True. The aim is to make
queries in the base such as ”is formula F consistent with the current
constraints?”. Although such a model may be seen as a general logical
framework for doing conditional temporal reasoning, it is insufficient
for our purpose for two reasons. First, the approach is static and does
not deal with the dynamic aspects of plan execution: the time at which
a condition is known to be True or False is not consider, which for
planning purposes is crucial. Second, unlike Weak Consistency, which
determines whether all scenarios are consistent, they determine whether
there is at least one consistent scenario. This is sufficient when process-
ing queries on a knowledge base, when one interpretation is searched
for, but in our planning context that would only mean there exists one
unique scenario in which the plan will not fail.

The second and more interesting paper is that of Barber (Barber,
2000), which combines quantitative temporal constraints and alterna-
tive contexts in a kind of networks that we will call BarN4. Barber
defines a temporal problem where constraints (instead of nodes) are
annotated with a label (in his terminology a context). Consistency in
a BarN corresponds to Weak Consistency in a CTP.

A primary difference between BarNs and CTPs is thus that the
former is based on conditional constraints while the latter is based on
conditional events. In the Appendix (Theorem A.2) we show that we
can use the latter to represent the former and thus our formalism is at
least as general as Barber’s. Because contexts in BarNs are associated
with labels, not nodes, the translation from conditional planning is not
as clear as with CTPs, which very naturally associate an observation
with a node and attach appropriate labels to subsequent nodes. CTPs
can then readily check various forms of consistency, using the techniques
described earlier. In contrast, with a BarN representation, the planner
has to construct the context hierarchy itself given the observations.
Perhaps the most important ramification of this implicit treatment
of observations is that the notion of Dynamic Consistency cannot be

4 BarN denotes Barber Networks.

80

adamsp
Text Box

adamsp
Text Box

defined for BarNs. This is because the truth value of the contexts is
not associated with a particular time-point.

Unlike BarNs, our new Conditional Temporal Problem formalism
is geared towards planning and execution purposes. It is a constraint-
based formalism for temporal reasoning in the face of uncertain—or
contingent—events, and we have described its usefulness for conditional
planning. There are many avenues for future research, of which we
highlight a few. CTPs deal with temporal uncertainty arising from the
outcome of observations, while STPUs handle uncertainty regarding
the timing of uncontrollable events. Obviously, a hybrid model and
algorithms that handle both sources of uncertainty would be highly
desirable. We are also working on identifying minimal structural re-
quirements for CTPs that will enable polynomial-time Dynamic Con-
sistency algorithms. In parallel, we are also investigating efficient Weak
Consistency algorithms.

Acknowledgements

Work on this project by the first and third authors has been par-
tially supported by the United States Air Force Office of Scientific Re-
search (F49620-01-1-0066), by the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Office, Air Force Materiel
Command, USAF (F30602-00-2-0621), by the National Science Foun-
dation (IIS-0085796), and by Andrew Mellon Predoctoral Fellowship.
The views and conclusions herein are those of the authors and should
not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of AFOSR, DARPA, AFRL,
or the U.S. Government. We would also like the anonymous reviewers
for their constructive comments.

References

Armando, A., C. Castellini, and E. Giunchiglia: 1999, ‘Sat-Based Procedures for
Temporal Reasoning’. In: 5th European Conference on Planning (ECP-99).
Barber, F.: 2000, ‘Reasoning on Interval and Point-based Disjunctive Metric Con-
straints in Temporal Contexts’. Journal of Artificial Intelligence Research 12,
35-86.

Bessiere, C.: 1999, ‘Non-Binary Constraints’. In: Principles and Practice of
Constraint Programming (CP’99). Springer. Alexandria, Virginia, USA.

Chleq, N.: 1995, ‘Efficient Algorithms for Networks of Quantitative Temporal
Constraints’. In: Proceedings of the Workshop CONSTRAINTS’95. pp. 40-45.

Dechter, R., I. Meiri, and J. Pearl: 1991, ‘Temporal Constraint Networks’. Artificial
Intelligence 49, 61-95.

81

adamsp
Text Box

adamsp
Text Box

Georgakopoulos, D.; M. Hornick, and A. Sheth: 1995, ‘An Overview of Workflow
Management: From Process Modeling to Workflow Autonomation Infastructure’.
Distributed and Parallel Databases 3, 119-153.

Goldman, R. P. and M. S. Boddy: 1996, ‘Expressive planning and explicit
knowledge’. In: Proceedings of the 3rd International Conference on Artificial
Intelligence Planning Systems. pp. 110-117.

Laborie, P. and M. Ghallab: 1995, ‘Planning with Sharable Constraints’. In: Pro-
ceedings of the 14th International Joint Conference on A.I. (IJCAI-95). Montreal
(Canada).

Mackworth, A. and E. Freuder: 1985, ‘The complexity of some polynomial net-
work consistency algorithms for constraint satisfaction problems’. Artificial
Intelligence 25(1), 65-74.

Morris, P., N. Muscettola, and T. Vidal: 2001, ‘Dynamic Control Of Plans With
Temporal Uncertainty’. In: Proceedings of the 17th International Joint Confer-
ence on A.I. (IJCAI-01). Seattle (WA, USA), Morgan Kaufmann, San Francisco,
CA.

Muscettola, N., P. P. Nayak, B. Pell, and B. C. Williams: 1998, ‘Remote Agent:
To Boldly Go where No AI System has Gone Before’. Artificial Intellience 103,
5-47.

Myers, K. L.: 1997, ‘Procedural Reasoning System: User’s Guide’. Technical report,
SRI International.

0Oddi, A. and A. Cesta: 2000, ‘Incremental Forward Checking for the Disjunctive
Temporal Problem’. In: European Conference on Artificial Intelligence (ECAI-
2002).

Onder, N. and M. E. Pollack: 1999, ‘Conditional, Probabilistic Planning: A Unifying
Algorithm and Effective Search Control Mechanisms’. In: Proceedings of the 16th
National Conference on Artificial Intelligence. pp. 577-584.

Peot, M. and D. E. Smith: 1992, ‘Conditional Nonlinear Planning’. In: Proceedings of
the First International Conference on AI Planning Systems (AIPS-92). College
Park, MD, pp. 189-197.

Pollack, M. E.; C. McCarthy, S. Ramakrishnan, I. Tsamardinos, L. Brown, S. Car-
rion, D. Colbry, C. Orosz, and B. Peintner: 2002, ‘Autominder: A Planning,
Monitoring, and Reminding Assistive Agent’. In: 7th International Conference
on Intelligent Autonomous Systems.

Pryor, L. and G. Collins: 1996, ‘Planning for Contingencies: A Decision-Based
Approach’. Journal of Artificial Intelligence Research 4, 287-339.

Schwalb, E. and R. Dechter: 1997, ‘Processing Disjunctions in Temporal Constraint
Networks’. Artificial Intelligence 93, 29-61.

Schwalb, E.; K. Kask, and R. Dechter: 1994, ‘Temporal Reasoning with Constraints
on Fluents and Events’. In: Proceedings of the 12th National Conference on
Artificial Intelligence (AAAI-94), Vol. 2. Seattle, Washington, USA, pp. 1067-
1072, AAAT Press/MIT Press.

Smith, D., J. Frank, and A. J6nsson: 2000, ‘Bridging the gap between planning and
scheduling’. Knowledge Engineering Review 15(1).

Stergiou, K. and M. Koubarakis: 2000, ‘Backtracking algorithms for disjunctions of
temporal constraints’. Artificial Intelligence 120, 81-117.

Tsamardinos, I.: 2001, ‘Constrained-Based Temporal Reasoning Algorithms with
Applications to Planning’. Ph.D. thesis, University of Pittsburgh.

Tsamardinos, I., P. Morris, and N. Muscettola: 1998, ‘Fast Transformation of Tempo-
ral Plans for Efficient Execution’. In: Proceedings of the 15th National Conference
on Artificial Intelligence.

82

adamsp
Text Box

adamsp
Text Box

Tsamardinos, I., M. E. Pollack, and P. Ganchev: 2001, ‘Flexible Dispatch of
Disjunctive Plans’. In: 6th European Conference in Planning.

Tsamardinos, I., M. E. Pollack, and J. F. Horty: 2000, ‘Merging Plans with Quanti-
tative Temporal Constraints, Temporally Extended Actions, and Conditional
Branches’. In: Proceedings of the 5th International Conference on Artificial
Intelligence Planning and Scheduling.

Vidal, T. and H. Fargier: 1999, ‘Handling contingency in temporal constraint
networks: from consistency to controllabilities’. Journal of Experimental &
Theoretical Artificial Intelligence 11, 23-45.

Appendix

Theorem 3.1. Any complete assignment to the propositions in P is
an execution scenario.

Proof. Let s be a complete truth-assignment to the propositions in P, [
be a label and p;...p, be the propositions that appear in [(either
positive or negated). The set of p; will also appear in s since s is
complete. If any p; appears with different sign in s and [then s and
[are inconsistent. Otherwise, if all p; appear with the same sign in s
and [then s subsumes [. So, every node, no matter what its label is,
will either belong to V; or V5 in Definition 3.6. O

Theorem 5.1. A CTP < V,L,E,OV,0,P > is Strongly Consistent
if and only if the (non-conditional) temporal problem < V,E > is
consistent.

Proof. The theorem states that we can determine Strong Consistency
by ignoring the label and the observation information of the nodes in
the CTP and just calculate consistency as we would for an STP, TCSP,
or DTP depending on the kind of constraints in FE.

“«<” Suppose that the CTP is Strongly Consistent. Then we will
show that the temporal problem < V|, E > is also consistent. Let T' be
a schedule of all nodes, such that T'(z) = [St(s;)](z), where s; some
scenario where z is executed. T'(x) is a function because (i) = appears
in at least one scenario (or it can be removed from the CTP), and (ii) a
Strong execution strategy specifies a unique value to every [St(s;)](z)
for all scenarios s; where x appears. Because St is viable, T' satisfies
the constraints in all Pr(s;) =< V;, E; >, for every scenario s;. Since
T satisfies the constraints in every set F; it satisfies the constraints in
their union U;E; = E. Thus, T is a solution to < V, E > and so the
latter is consistent.

“=" Suppose that the temporal problem < V, E > is consistent; we
will prove that the CTP < V, E, L,OV, O, P > is Strongly Consistent.

83

adamsp
Text Box

adamsp
Text Box

Let T' be any solution of < V, E > (it has to have at least one since it
is consistent). For every s;, T is also a solution of Pr(s;) =< V;, E; >
(ignoring any irrelevant assignments 7'(z) where x does not appear in
Vi) since E; C E. The execution strategy St(s;) = T is viable (since
T is a solution to every Pr(s;) =< V;, E; >) and also [St(s;)](z) =
[St(s;)](x) = T'(z),Vz as the definition of Strong Consistency requires.

]

Theorem A.1. Weak CSTP Consistency checking is co-NP-complete.

Proof. We will prove the result by translating in polynomial time and
space a SAT problem to the co-problem of checking Weak Consistency,
the co-problem being finding a scenario s; such that Pr(s;) is incon-
sistent. Specifically, we will create a CSTP given a SAT problem such
that the SAT problem has a solution, if and only if there is a scenario
s; such that Pr(s;) is inconsistent.

Given the SAT problem with Boolean variables B = {z,...,y} and
clauses of the form C; = (zV...VyV —z...~w), i = 1... K we create
a CSTP < V,E,L,ON,O,P > as follows: The set of propositions is
P =B ={xz,...,y}. For each clause C; = (zV...VyV-zV...V-w) and
each variable appearance z or -z in C; we create a time-point X that
we include in V', with label L(X) = z or L(X) = —x respectively. Let
us denote with Clause(C;) the nodes of the CSTP that were included
because of C; . Since we are checking for Weak Consistency it does not
matter which nodes are observation nodes. The last thing to define are
the constraints between the nodes. There is an constraint between a
variable X € Clause(C;) to each variable Y with consistent label in
Clause(Ciy1ymodr): Y — X = —1 (we will drop the modK clause in
the rest of the proof for clarity; just remember that the nodes in the
last Clause(C;) are connected to the nodes in the first Clause(C)).
The translation is obviously linear in the number of SAT variables and
linear in the number of clauses of the SAT problem.

Figure 11 illustrates the proof concept. It presents an example, by
showing the resulting CSTP from the SAT problem (zVyV z) A (zV
-y Vz)A(—zV-yV-z)A(-yVz). The labels of each node appear
on its top right corner. Notice that there are three propositions in the
CSTP for the three SAT variables z,y,z that appear in the labels,
either as positive or negative literals, and eleven CSTP nodes one for
each appearance of a variable in any clause. The nodes in the CSTP
are arranged in columns corresponding to Clause(C;),i = 1...4 and
are named with the variable of the corresponding proposition and the
index i . The edges are connected from a node in Clause(C;) to all the
nodes in Clause(Cjy1). The order of appearance of clauses in the SAT
problem is arbitrary. Also recall that all the edges from a node X to

84

adamsp
Text Box

adamsp
Text Box

Figure 11. The CSTP resulting from translating a simple example TSAT problem.

a node Y correspond to the constraint ¥ — X = —1 not shown in the
figure for clarity. Notice also that there are no edges between nodes
with inconsistent labels, e.g. z and —z.

Let us assume that the SAT problem has a solution {z = True, ...,
y = True, z = False,. .., w = False}. Since this solution makes True at
least one variable in a clause, it will make True the label of at least one
CSTP time-point within Clause(C;) . We will call a time-point whose
label becomes True in Clause(C;) L; (there may be more than one).
Notice that each L; has to have an edge to L;;; because it cannot be
the case that L; has a label z and L;;; a label =2 by the way the
SAT solution is constructed (it never assigned x both True and False
at the same time). Thus the set {L;,i = 1... K} forms a negative cycle
(with weight (—1) x K). There must be at least one scenario s that
makes all the nodes in {L;,i = 1... K} True. Namely, let s be the
complete scenario that corresponds to the SAT solution (s is a scenario
by Theorem 3.1). In other words, Pr(s) is an inconsistent projected
STP. In the above example, the SAT solution {z = T'rue,y = False,z =
True} makes the labels of the CSTP nodes z1, 2, Y2, Y3, Y4, 21, 22 ,and
z4 True and all the rest Fulse. The former set forms at least one negative
cycle, e.g. {z1,z2,ys3,24}. This completes the proof that if the SAT
problem has a solution, the CSTP is not Weakly Consistent.

We will now prove the converse, namely that if the SAT problem has
no solution, then the CSTP is Weakly Consistent. Take any complete
assignment to the SAT variables. Any such assignment also corresponds
to a scenario of the CSTP (by Theorem 3.1). If SAT has no solution,
for every such assignment/complete scenario s there is at least one
clause C; that is not True, or in other words, all the SAT literals
of C; have to be Fualse too. Thus, all the time-points of Clause(C;)

85

adamsp
Text Box

adamsp
Text Box

are inconsistent (not executed) under scenario s. But, by the way the
CSTP is constructed, every cycle (negative or not) has to go through
all clauses. Since no time-point in Clause(C;) becomes True under s ,
there can be no negative cycle in Pr(s) for any scenario s.

The above argument shows that checking Weak CSTP Consistency
is co-NP-hard. Since checking if an STP is consistent is a polynomial
problem, co-Weak Consistency is also in co-NP and thus the problem

is co-NP-complete.
O

Theorem A.2. Every (conditional) constraint of the form Iy < z1 —
y1 <ur V...Vip <zp —yp < ug that should hold only when label | is
True, can be represented with only conditional events.

Proof. For any constraint that we want to represent of the form /; <
x—y < upVlp < s—t < ug with condition (label) [, we create the dummy
nodes w, z, u, v all having label [. We then insert constraints requiring
that the pairs of time-points {z,w}, {y, 2z}, {s,u}, and {t,v} co-occur
(e.g. 0 <z —w < 0), and we also add the (unconditional) constraint
h<w—-—2z<wu Vg <u—v < uyg. This way when [is True, nodes
w, z,u and v will be executed and, because they co-occur, the original
(conditional) constraint on nodes z,y, s and ¢ will be imposed. O

86

adamsp
Text Box

adamsp
Text Box

APPENDIX C

Planning Technology for Intelligent Cognitive Orthotics

Martha E. Pollack
Computer Science and Engineering
University of Michigan
Ann Arbor, Ml 48103
pollackm@eecs.umich.edu

Abstract

The aging of the world’s population poses a challenge and
an opportunity for the design of intelligent technology. This
paper focuses on one type of assistive technology, cogni-
tive orthotics, which can help people adapt to cognitive de-
clines and continue satisfactory performance of routine ac-
tivities, thereby potentially enabling them to remain in their
own homes longer. Existing cognitive orthotics mainly pro-
vide alarms for prescribed activities at fixed times that are
specified in advance. In contrast, we describe Automin-
der, a system we have designed that uses Al planning and
plan management technology to carefully model an individ-
ual’s daily plans, attend to and reason about the execution of
those plans, and make flexible and adaptive decisions about
when it is most appropriate to issue reminders. The pa-
per concentrates on one of Autominder’s three main compo-
nents, the Plan Manager; other papers in this volume describe
its other components (Colbry, Peintner, & Pollack 2002;
McCarthy & Pollack 2002).

Introduction

The world’s population is aging. The trend in the United
States is typical of many industrialized countries. Figures 1
- 3 present populations pyramids based on U.S. census data
from 2000, and projections for 2025 and 2050, respectively
(Census 2000). Within a population pyramid, each horizon-
tal bar represents the percentage of U.S. residents in a five-
year age cohort: the bottom bar represents people aged 0 to
5; the bar above that represents people aged 5 to 10; and so
on, up to the topmost bar, which represents people over the
age of 100. The population in each age cohort is further di-
vided into males, to the left of the midline, and females, to
the right. Historically, the shape of such graphs is pyramidal,
as there are more young people than older people.

As can be seen, in 2000, there is a significant bulge in
the 25-40 year old cohorts, representing the post-war baby
boom, but the basic shape remains pyramidal, with many
more people under the age of 60 than people over 60. But
by 2025, the pyramid has flattened out, with an increasing
proportion of people over 60, and the trend that continues in
the 2050 projection.

Copyright © 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

87

(NP-P2) o

1, 2000, Midlle Series.

Sewce: Natcral Projctons Pogram, Poudabin Dvwan U 8 Cenaes Suremu Wasmingion D€ 20233

Figure 1: Population Pyramid for the United States in 2000

(NP-P3) Projected Resident Population of the United States as of July 1, 2025, Middle Series.

.....

.....

Figure 2: Population Pyramid for the United States in 2025

(NP-P4) Projected Resident Population of the United States as of July 1, 2050, Middie Serios.

EEE

o
s
s

Figure 3: Population Pyramid for the United States in 2050

According to the United Nations Population Division, ev-
ery region of the world is undergoing a similar demographic
transition. In 2000, 606 million people, or approximately
10% of the world’s population, were over 60; by 2050, this
percentage is expected to double, to 2 billion people, or
21.4% of the population. Even more dramatic will be the
increase the percentage of people over 80, often called the
“oldest old”. Today there are 69 million people in this cat-
egory, constituting 1.1% of the world’s population. Projec-
tions show that by 2050 this percentage will nearly quadru-
ple, to 4%: there will be 379 million people over the age of
80. The oldest region of the world today is Europe, with a
median age of 37.5; this is projected to rise to 49.5 by 2050
(United Nations 2001).

The aging of the world’s population poses a challenge and
an opportunity to those of us who design technology. Older
adults face a range of challenges: physical, social, emo-
tional, and cognitive. It is important to remember that there
is not simply a growing absolute number of older adults, but
that older adults will constitute an increasingly large fraction
of the population. Thus, while it might be desirable to help
older adults meet their challenges by providing them with
human assistance, the reality is that there are not and will
not be enough younger people to provide all the support and
assistance needed. An important question then, is how assis-
tive technology can supplement human caregivers to further
enhance the lives of older adults.

Many types of assistive technology have been developed.
Devices ranging from the relatively commonplace, e.g., bet-
ter hearing aids, to the futuristic, e.g., intelligent wheelchairs
(YYanco 1998), can help older individuals meet physical chal-
lenges. Older adults can be supported socially and emotion-
ally through technology that helps alleviate the isolation that
is often a problem for them. For example, elder-friendly
email systems (Burd ND)and projects such as the the Dig-
ital Family Portrait (Mynatt et al. 2001), or the Dude’s
Magic box (Rowan & Mynatt ND) facilitate increased inter-
action between an older person and his or her family mem-
bers and friends. This paper focuses on technology that can

88

help older adults meet cognitive challenges they may face.
Specifically, it describes the use of automated planning tech-
nology to develop cognitive orthotics.

The next section provides a brief discussion of one type
of cognitive decline that may occur with aging—a decay in
prospective memory—and discusses the limitations of many
existing cognitive orthotic systems. Following that, the pa-
per introduces Autominder, a cognitive orthotic designed
and built at the University of Michigan using planning
and plan management techniques. A description of Au-
tominder’s architecture is followed by a focused discus-
sion of one of its three main components: the plan man-
ager. Only brief descriptions of the other main components
are given, because other papers in this proceedings provide
more details of them (Colbry, Peintner, & Pollack 2002;
McCarthy & Pollack 2002). The paper concludes by dis-
cussing other recent work on developing intelligent cogni-
tive orthotics, and then summarizing the current state of Au-
tominder and our plans for continued work.

Cognitive Orthotics

Cogntive functioning frequently changes with age: just as
the body ages, so does the mind (Stern & Carstensen 2001).
Cognitive changes may be due to normal aging, or may
be the result of diseases that occur with greater frequency
in older people. One of the most common causes of se-
vere cognitive impairment, Alzheimer’s Disease (A.D.), is
strongly correlated with age: approximately 10% of people
age 65 and older suffer from A.D., while 20% of those aged
70-84, and nearly 50% of those over 85 have A.D. (AcA
2000). However, at least as important are milder forms of
cognitive impairment that may be prior to and often distinct
from A.D. The Autominder system described in this paper is
aimed primarily at people with mild to moderate cognitive
impairment.

One effect of age-related cognitive decline may be de-
creased prospective memory, leading to forgetfulness about
routine daily activities, which the disability-research com-
munity call Activities of Daily Living (ADLs) and Instru-
mental Activities of Daily Living (IADLs). ADLs include
fundamental tasks such as eating, drinking, bathing, and
toileting, while IADLs include tasks such as managing
medicines, managing money, light housekeeping, arranging
transportation, preparing meals, and so on. Of course, older
individuals may have physical difficulties that impede their
ability to perform ADLs and IADLs, but the technology de-
scribed in this paper is aimed people whose primary impair-
ments are cognitive ones, which prevent them from remem-
bering to perform these activities.

When an older adult no longer consistently performs
ADLs and IADLs, he or she may not be able to remain at
home, but may need to move either to the home of a rel-
ative or to a facility-based setting such as an assisted care

1The Autominder system is currently deployed on a mobile
robot, and in the future it may be possible to piggyback on the
robot other functions that are intended to help meet physical chal-
lenges. For instance, the robot could serve as a delivery system:
fetching medicine, water, eyeglasses, mail, and so on.

home. It is generally accepted that for many people, post-
poning such a move as long as feasible is desirable, because
people frequently report a better quality of life while they re-
main in their own homes. Additionally, institutionalization
has an enormous financial cost, which must be born by the
individual, his or her family, and/or the government.

A number of cogntive orthotics have been proposed over
the years to help older adults adapt to cognitive declines
and continue satisfactory performance of routine activities.
Not all cognitive orthotics have been specifically targeted
to older individuals; some have instead been aimed at peo-
ple with cognitive impairments resulting from other causes,
e.g., brain damage resulting from stroke or injury. The idea
of using computer technology to enhance the performance
of cognitively disabled people dates back nearly forty years
(Englebart 1963). Early aids included talking clocks, calen-
dar systems, and similar devices that were not very techno-
logically sophisticated; yet many are still in use today. More
recent efforts at designing cognitive orthotics have enabled
reminders to be provided using the telephone (Friedman
1998), personal digital assistants (Dowds & Robinson 1996;
Jonsson & Svensk 1995) and pagers (Hersh & Treadgold
1994). Research has also aimed at improved modeling of
clients’ activities, notably in the work of Kirsch and Levine
(Kirsch et al. 1987), and in the PEAT system (Levinson
1997). However, with the exception of PEAT, which is dis-
cussed further in the Related Research section of this pa-
per, these systems generally function in a manner similar to
alarm clocks: they provide alarms for prescribed activities
at fixed times that are specified in advance by a client and/or
his or her caregiver. For example, the web page for a typical
cognitive orthotic, the “Schedule Assistant,” developed and
marketed by AbleLink Technologies, describes its capabili-
ties as follows:

To set up an appointment or reminder in Schedule As-
sistant, caregivers use a wizard approach to complete
the process of recording a message or reminder, select-
ing a picture prompt to accompany the message if de-
sired, and setting the time and day for it to play. The
system is then able to “wake itself up” to play the ap-
pointment message at the desired time(AbleLinkTech
2002).

Although significant attention has been given to the critical
issues of usability and interface design in existing systems,
less emphasis has been paid to the process of carefully mod-
eling the client’s plans, attending to and reasoning about
their execution, and deciding whether and when it is most
appropriate to issue reminders. Such reasoning is the focus
of the Autominder system, described in the next section.

Autominder

The Autominder cognitive orthotic is being developed as
part of the Initiative on Personal Robotic Assistants for the
Elderly, a multi-university, multi-disciplinary research ef-
fort conceived in 1998.2 The initial focus of the Initiative

2In addition to the University of Michigan, the initiative in-
cludes researchers at the University of Pittsburgh and Carnegie
Mellon University.

89

Figure 4: Pearl: A Mobile Robot Platform for the Automin-
der Cognitive Orthotic. Photo courtesy of Carnegie Mellon
University.

is to design an autonomous mobile robot that can “live”
in the home of an older individual, and provide him or
her with reminders about daily plans. To date, two pro-
totype robots have been designed and built by members
of the initiative at Carnegie Mellon. The more recent of
these robots, named Pearl, is depicted in Figure 4. Pearl
is built on a Nomadic Technologies Scout Il robot, with a
custom-designed and manufactured “head”, and includes a
differential drive system, two on-board Pentium PCs, wire-
less Ethernet, SICK laser range finders, sonar sensors, mi-
crophones for speech recognition, speakers for speech syn-
thesis, touch-sensitive graphical displays, and stereo cam-
era systems (Baltus et al. 2000; Montemerlo et al. 2002;
Pineau & Thrun 2002). Members of the Initiative also have
interests both in other ways in which mobile robots can
assist older people (e.g., telemedicine, data collection and
surveillance, and physically guiding people through their en-
vironments), and in other platforms for the cognitive orthotic
system (e.g., wearable devices and aware homes).

One of the main software components of Pearl is the cog-
nitive orthotic system Autominder, which is being developed
by members of the initiative at the University of Michigan.
Our goal is to develop a system that is flexible, adaptive,
and responsive—and is thus more effective than a glorified
alarm clock. To attain this goal, Autominder must main-
tain an accurate model of the client’s daily plan, monitor
its performance, and plan reminders accordingly. Consider,
for instance, a forgetful, elderly person with urinary incon-
tinence who is supposed to be reminded to use the toilet ev-
ery three hours, and whose next reminder is scheduled for

Activity Info

Plan
Updates Plan

Manager

“Client™,
"-.‘Hudel/
N
N

o o
¢ Client ™,

_?Ian} v

Personal
Cognitive
Orthodic

Preferences Reminders

Figure 5: Autominder Architecture

11:00. Suppose that, using its on-board sensors, our robot
Pearl observes the person enter the bathroom at 10:40, and
conveys this information to Autominder, which concludes
that toileting has occurred. In this case, a reminder should
not be issued at 11:00, as previously planned. Instead, the
client’s plan must be adjusted, so that the next scheduled
toileting occurs approximately three hours later, i.e., around
13:40. Flexibility is again essential, because a strict three-
hour interval may not be optimal. For instance if the client’s
favorite television program is aired from 13:30 to 14:00, it
might be better to issue the reminder at 13:25, and provide a
justfication that mentions the television program (e.g., “Mrs.
Smith, Why don’t you use the toilet now? That way | won’t
interrupt you during your show.”)

Autominder’s architecture is depicted in Figure 5. As
shown, Autominder has three main components: a Plan
Manager (PM), which stores the client’s plan of daily ac-
tivities in the Client Plan, and is responsible for updating it
and identifying any potential conflicts in it; a Client Modeler
(CM), which uses information about the client’s observable
activities to track the execution of the plan, storing its beliefs
about the execution status in the Client Model; and a Per-
sonal Cognitive Orthotic (PCO), which reasons about any
disparities between what the client is supposed to do and
what he or she is doing, and makes decisions about when to
issue reminders.

Plan Management in Autominder

In Autominder, as in most automated planning systems, we
model plans as 4-tuples, < S,0,L,B >, where S are
steps in the plans, and O, L, and B are temporal order-
ing constraints, causal links, and binding constraints over
those steps.® For this application, temporal constraints are
very important, and a rich class of such constraints much

%In the current version of Autominder, we work with a propo-
sitional representation, and thus omit binding constraints. On the
other hand, we have an extended class of links allowed: in addition

90

Client Sensor

Modeler ‘\Dm
W 7 .

be supported; specifically, we use the language of dis-
junctive temporal problems (DTPs) (Oddi & Cesta 2000;
Stergiou & Koubarakis 2000; Tsamardinos 2001; Tsamardi-
nos & Pollack 2002) which allows for both quantitative
(metric) and qualitative (ordering) constraints, as well as
conjunctive and disjunctive combinations of these. We have
also recently developed an approach to handling conditional
constraints (Tsamardinos, Vidal, & Pollack 2002), but we
have not yet implemented these in the Autominder PM.
Formally, each ordering constraint has the form

lb1§X17Y1§ub1\/...\/lbn§anYn§ubn

where the X; and Y; refer to the start or end points of steps
in the plan, and the lower and upper bounds (Ib; and ub;) are
real numbers. (Without loss of generality, we will assume
in this paper that they are integers.) Figure 6 shows how
such constraints can be used to express the time at which
a step starts or ends, the duration of a step, the amount of
time between steps, and so on, as well as expressing ranges
and/or disjunctions over such values. Throughout this pa-
per, the start of a step A will be denoted Ag and its end will
be denoted A . Note that to express a clock-time constraint,
e.g., TV watching beginning at 18:00, we use a temporal ref-
erence point (TR), a distinguished value representing some
fixed clock time. In the figure, as well as in the Autominder
system itself, the TR corresponds to midnight; the schedule
is updated each day.

Note also how the disjunctive constraints can be used to
express the fact that two steps cannot overlap. We illus-
trate this further in Figure 7, which shows a DTP network
representing the temporal constraints for a very small plan.
The nodes in the network represent the start and end points
of each step in the plan, plus the temporal reference point,
while the arcs represent the nondisjunctive constraints. The
one disjunctive constraint is used to enforce the fact that the
two steps in the plan cannot overlap. It should be clear from
this example that disjunctive constraints also can be used to
express alternative temporal means of resolving a conflict in
a plan, i.e., we can represent the possibility of promotion or
demotion in one constraint.

Plan Initialization

The PM in Autominder is initialized in advance of its use
with a specification of the client’s daily plan, which is con-
structed by the client’s caregiver, possibly in consultation
with the client him- or herself. Different daily plans might
be constructed, e.g., one for weekdays and one for week-
ends, with the appropriate plan loaded each morning, but
here we will assume that there is just one daily plan.

We currently have a rather minimal GUI for specifying
a daily plan.* It allows one to select pre-constructed plan
fragments for routine activities from a library, and to then in-
put specific temporal constraints on the steps in the selected
fragments. Thus, a caregiver might begin construction of a
typical daily plan by performing the following steps:

to traditional causal links, we also have implemented inconditions
and (simple) resource constraints.

“The same GUI can be used for modifying the plan once exe-
cution has begun.

“Toileting should begin between 11:00 and 11:15.”
660 < Toiletings — TR < 675

“Toileting takes between 1 and 3 minutes.”

1 < Toiletingr — Toiletings < 3

“Watching the TV news can begin at 18:00 or 23:00.”
1800 < WatchNewss — TR < 1802V

2300 < WatchNewss — TR < 2302

“The news takes exactly 30 minutes.”

30 < WatchNewsg — WatchNewsg < 30
“Medicine should be taken within 1 hour of
finishing breakfast.”

0 < TakeMedss — FEatBreak fastg < 60
“Toileting and watching the news cannot overlap.”
0 < WatchNewsg — Toiletingg < ooV

0 < Toiletings — WatchNewsg < 0o

Figure 6: Examples of the use of DTP Constraints

Sample Temporal Plan

*Eat breakfast, starting between 7:00 and 8:00; it will take 20 to 30
minutes.

*Bathe, which will take 30 to 40 minutes.
*Complete breakfast and bath by 8:30.
*Breakfast and bathing may not overlap temporally.

[0,510

Disjunction constraint:
0 < Eat, — Bath, V
0 < Bath; — Eat;

Figure 7: Temporal Network for a Sample Plan. Note the
disjunctive constraint that blocks the steps from overlapping.

91

e Select a pre-constructed plan fragment for breakfast,
which includes three steps—going to the kitchen, making
breakfast, and eating breakfast—as well as temporal con-
straints that order these, causal links that capture their de-
pendencies, and some default durations, e.g., that the eat-
ing step will take between 20 and 30 minutes.

e Specify that the first step in the breakfast plan must begin
by 7:00, and that the last step must be done by 8:30.

e Select a pre-constructed plan fragment for taking
medicine, which we will suppose has only one step-take
the medicine-with a default duration of 1 minute.

e Specify an interstep constraint to ensure that the medicine
taking occurs ate least two hours after finishing breakfast.

As each pre-constructed plan fragment or constraint is
added, the PM performs step merging (Tsamardinos, Pol-
lack, & Horty 2000; Yang 1997), that is, it checks to ensure
the consistency of the daily plan being constructed and re-
solves any conflicts. To do this, it uses the same techniques
for consistency checking that are used during plan execu-
tion; these techniques are described in the next subsection.

Although our current interface is sufficient for develop-
ment and testing purposes, it seems clear that further work
is required to develop more user-friendly interfaces to allow
caregivers to specify plans. Little work has been done on
this topic, but see (Miksch et al. 1998) for one example of
the kinds of interfaces that might be developed.

It is worth stressing that the PM is not a traditional plan-
generation system. For the kinds of routine activities that
we need to represent in our cognitive orthotic, there seems
to be little need to perform planning from scratch. Instead,
it is sufficient and more efficient to construct generic plan
fragments, and allow the PM to merge these fragments, a
process that involves adding new constraints, but not new
steps or causal links. In future versions of the system, we
may extend the PM to do full-fledged planning or replanning
when necessary.

Plan Update

The primary role of the PM is to update the client’s plan
as the day progresses, ensuring its continued consistency.
Update occurs in response to four types of events:

1. The addition of a new activity to the plan. The daily
plan created at initialization provides a starting point for
daily activities, but during the course of the day, the client
and/or his or her caregivers may want to make additions
to the plan: for instance, to attend a bridge game or a
newly scheduled doctor’s appointment. At this point, plan
merging must be performed to ensure that the overall plan
remains consistent. Suppose that the client plan initally
specifies taking medicine sometime between 14:00 and
15:00, and that the client then adds a bridge game out-
side the apartment, to begin at 14:30. The PM must up-
date the plan so that the medicine-taking step precedes
the client leaving for the bridge game. (We assume that
the medicine must be taken at home.) If, in addition, the
medicine-taking must occur at least two hours after each
meal, the added restriction on when the medicine will be

taken may also further restrict the time at which lunch
should be eaten.

2. The modification or deletion of an activity in the plan.
This is similar to the previous case: the bridge game might
be cancelled, or the doctor’s office may change the time
of the appointment.> The types of required changes are
like those needed when an activity is added. Note that
the PM will add or tighten constraints if needed, but will
not “roll back” (i.e., weaken) any constraints. Continuing
the example above, if the bridge game were cancelled, the
constraint that the medicine be taken between 14:00 and
14:30 would remain in the plan. More sophisticated plan
retraction is an area of future research.

3. The execution of an activity in the plan. The PM inter-
acts with another component of Autominder, the Client
Modeler (CM). The CM is tasked with monitoring plan
execution. It receives reports of the robot’s sensor read-
ings, for instance when the client moves from one room
to another, and uses that to infer the probability that par-
ticular steps in the client plan have been executed; it can
also issue questions to the client for confirmation about
whether a step has been executed. When the CM believes
with probability exceeding some threshold that a given
step has begun or ended, it passes this information on to
the PM. The PM can then update the client plan accord-
ingly. Suppose again that medicine-taking is supposed to
occur at least two hours after the completion of each meal.
Upon learning that breakfast has been completed at 7:45,
the PM can establish an earliest start time of 9:45 for tak-
ing the medicine.

4. The passage of a time boundary in the plan. Just as the
execution of a plan step may necessitate plan update, so
may the non-execution of a plan step. As a very simple
example, suppose that the client wants to watch the news
on television each day, either from 18:00-18:30 or from
23:00-23:30 p.m. At 18:00 (or a few minutes after), if
the client has not begun watching the news, then the PM
should update the plan to ensure that the 23:00-23:30 slot
is reserved for that purpose. (To keep the example sim-
ple, assume that the client always wants to watch from
the very beginning of the show.)

To perform plan update in each of these cases, the PM for-
mulates and solves a disjunctive temporal problem (DTP). A
DTP is a constraint-satisfaction problem < V,C' > where
the constrained variables V' represent time points—in this
case, points corresponding to the start and end of steps—
and the constraints C' are DTP-constraints, as defined earlier
(i.e., disjunctions over differences between time points). The
domains for the constrained variables are integers, which in
Autominder represent the distance in minutes of the time
points from the temporal reference point. For example, a
time of 480 might be assigned to the time point that rep-
resents the beginning of breakfast; this would correspond

SCurrently, we allow arbitrary changes to be made to the plan.
In subsequent versions of the system, we will need to implement
security mechanisms that, for instance, allow the user to make
changes to social engagements but not the medicine-taking actions.

92

Update-Plan-for-Addition(existing,new frag)
E = Convert-to-DTP(existing)
N = Convert-to-DTP(new frag)
C = Identify-conflicts(existing U new frag)
R=0
For each member c of C
R = R U a DTP-constraint representing
the alternative temporal resolutions of ¢
P=EUNUR
P’ = Solve-DTP(P)
Return(Convert-to-Plan-Representation(P”))

Figure 8: Algorithm for Update after a Plan Addition

to 8:00 (480 minutes after the temporal reference point of
midnight). In fact, we do not need to assign exact times to
most time points; instead we find solutions that correspond
to maximum allowable time intervals.

To see how this works, consider first the case of updating
the plan in response to a plan addition. Psuedo-code for this
case is given in Figure 8. The PM begins with the contents of
the Client Plan, existing, and a plan fragment representing
the new activities to be added to the plan, new frag. Both
existing and new frag are encoded as < S,0,L, B > 4-
tuples, and so the first step is to convert them to disjunctive
temporal problems, E and N, respectively. This is a triv-
ial process that is linear in the number of steps: it involves
simply extracting all the temporal constraints and encoding
them in a format that our DTP solving engine can handle.
Note that there is information lost in the DTP encoding:
specifically, the DTP does not encode causal links. Thus,
it is crucial that a temporal constraint be explicitly included
for each causal link. Additionally, it is necessary to iden-
tify all the threats in the union of existing and new frag,
a process that is quadratic in the total number of steps. For
each identified threat, the PM then constructs a DTP con-
straint that represents the alternative methods of resolution;
call the set of such threat-resolution constraints R. Finally,
a plan P that consists of the union of £, N and R is passed
to a DTP-solver, which checks for consistency, and returns
P augmented by a set of additional constraints that ensure
consistency. In particular, if there are any threats in the plan,
a resolution will be selected for each one. The last step in
the process is to convert the new set of DTP constraints back
to a plan tuple.

DTP solving, which is NP-complete, is the only com-
putationally expensive step in the process. In Automin-
der, we use the Epilitis DTP-solver (Tsamardinos 2001;
Tsamardinos & Pollack 2002). Epilitis integrates a number
of efficiency heuristics, and has been demonstrated to solve
benchmark problems two orders of magnitude faster than the
previous state-of-the art solvers. For our current Autominder
scenarios, which typically involve about 30 actions, Epilitis
nearly always produces solutions in less than one second, a
time that is well within the bounds we require.

Like prior DTP solvers (Oddi & Cesta 2000; Stergiou
& Koubarakis 2000; Armando, Castellini, & Giunchiglia

Update-Plan-for-M odification(existing, mods)
plan = Make the modifications in mods to existing
(i.e., remove and/or replace constraints)
M = Convert-to-DTP(plan)
C = Identify-conflicts(plan)
R=0
For each member ¢ of C
R = R U a DTP-constraint representing
the alternative temporal resolutions of ¢
P=MUR
P’ = Solve-DTP(P)
Return(Convert-to-Plan-Representation(P’))

Figure 9: Algorithm for Update after a Plan Modification

1999), Epilitis does not attempt to solve the DTP directly by
searching for an assignment of integers to the time points.
Instead, it solves a meta-CSP problem: it attempts to find
one disjunct from each disjunctive constraint such that the
set of all selected disjuncts forms a consistent Simple Tem-
poral Problem (STP) (Dechter, Meiri, & Pearl 1991). An
STPis like a DTP, except that the constraints must be atomic
inequalities; no disjunctions are allowed. The details are be-
yond the scope of the current paper (but see (Tsamardinos
2001; Tsamardinos & Pollack 2002)). The important point
here is that by using this approach, Epilitis can return an
entire STP, which provides interval rather than exact con-
straints on the time points in the plan. Consider again our
example of the plan that involves taking medicine between
14:00 and 15:00, which is amended with a plan to leave for
a bridge game at 14:30. Epilitis will return a DTP that con-
strains the the medicine to be taken sometime between 14:00
and 14:30; it does not have to assign a specific time (e.g.,
14:10) to that action.

The other three cases of plan update are similar. In re-
sponse to a plan modification, the PM again begins with the
current contents of the Client Plan, existing, but this time,
instead of a second plan to merge in, it has a set of con-
straints from existing that are to be removed or changed.
Thus, it makes the specified modifications to existing and
then converts it to a DTP, identifies conflicts, and performs
DTP solving as before. The pseudo-code for this is shown
in Figure 9.

The psuedo-code for the other two cases of plan update
is not shown, as they are similar to the previous ones. In
the third case of update, a step S has begun or finished
execution. In response, the PM shrinks the temporal con-
straint(s) associated with the start end, and/or duration of S
to a unit interval. For instance, if we know that breakfast
began at time 480, then the constraint associated with it be-
comes 480 < FEatBreakfasts — TR < 480. As long as
execution has occurred within the legal bounds, there is no
need to identify conflicts; instead, the resulting plan with the
reduced constraints is passed directly to the DTP solver so
that the new tighter constraints can be propagated.

In the fourth case, a time boundary has passed without
a step having begun or ended. At this point, the PM must

93

remove the now invalidated disjunct from a constraint, and
then attempt to solve the DTP anew. In our TV news exam-
ple, the plan would include a constraint

1800 < WatchNewsg — TR < 1802V

2300 < WatchNewss — TR < 2302

i.e., that watching the news must start either right about
18:00, or else about 23:00. If this step has not begun by
shortly after 18:00, the first disjunct is no longer viable.
Thus, the PM must remove it from the representation of the
plan, and attempt to resolve the DTP, using the remaining
disjunct. In the current example, there is an alternative dis-
junction to try. Sometimes, though, when an invalidated dis-
junct is removed, there may not remain any alternatives; in
that case an execution failure has occurred. As with other
cases of execution failure, e.g., missed deadlines, Automin-
der would record this fact, making it available to the care-
giver if appropriate.

The discussion of passed time boundaries brings to light
one point that was passed over earlier. In general, there may
be multiple solutions to a DTP, i.e., multiple consistent STPs
that can be extracted from the DTP. In the current version of
Autominder, the PM arbitrarily selects one of these (the first
one it finds). If subsequent execution is not consistent with
the STP selected, then the DTP will attempt to find an al-
ternative consistent solution. A more principled approach
would select solutions in an order that provides the greatest
execution flexibility. For example, the solution that involves
watching the 18:00 news leaves open the possibility of in-
stead watching the news at 23:00. If the first solution found
instead involved watching the later news show, then after
an execution failure there would be no way to recover, as it
would be too late to watch the 18:00 news. Unfortunately
selecting DTP solutions to maximize flexibility is a difficult
problem (Tsamardinos, Pollack, & Ganchev 2001).

Other Autominder Components

In addition to the PM, Autominder has two other princi-
pal components. The Client Modeler (CM) was mentioned
above in the discussion on updating the plan in response to
plan execution. As noted there, the job of the CM is to mon-
itor the execution of the plan, attempting to infer its status
from information obtained from the robot sensors and re-
questing confirmation from the client when appropriate. To
build the CM, we have been adapting Bayesian inference
mechanisms to handle the temporal demands of this appli-
cation; details can be found in (Colbry, Peintner, & Pollack
2002).

The remaining component of Autominder is the Personal
Cognitive Orthotic (PCO), which is responsible for mak-
ing the decision about what reminders to issue and when.
To do this, the PCO reasons about the client plan and the
client model, identifying any evolving discrepancies be-
tween them. It turns out to be relatively easy to generate a
legal reminder plan—such a plan simply includes a reminder
for every planned activity at the earliest possible time of its
execution. However, a reminder plan constructed this way is
likely to be a rather poor one when judged by the criteria we
use in Autominder, namely:

1. ensuring that the client is aware of activities he or she is
expected to perform,

2. increasing the likelihood that the client will perform at
least the essential activities (such as taking medicine),

3. avoiding annoying the client, and
4. avoiding making the client overly reliant on the system.

While the simple approach would lead to a reminder plan
that satisfies the first criteria, it is unlikely to satisfy the third
or fourth, and this in turn may have a negative impact on the
second criteria. Consequently, we employ the local search
techniques of the Planning by Rewriting algorithm (Ambite
& Knoblock 2001) to iteratively search for an improved re-
minder plan; for details of our approach, see (McCarthy &
Pollack 2002)

Related Research

Several existing cognitive orthotics systems were mentioned
earlier in this paper. The most notable of these from a plan-
based perspective is PEAT (Levinson 1997). This was the
first, and to the best of our knowledge, the only marketed
cognitive orthotic system that relies on automated planning
technology. PEAT, which is marketed primarily to patients
with traumatic brain injury, is deployed on a handheld de-
vice, and provides visible and audible clues about plan exe-
cution. Like Autominder, PEAT maintains a detailed model
of the client’s plan and tracks its execution, propagating tem-
poral constraints when the client inputs information specify-
ing that an action has been performed. Also, upon the addi-
tion of a new action, PEAT simulates the plan to uncover any
conflicts, using the PROPEL planning and execution system
(Levinson 1995) for this purpose. However, PEAT uses a
less expressive planning language than Autominder; it does
not attempt to infer the plan execution status; and it does not
perform principled reasoning about what reminders to issue
when, instead automatically providing a reminder for each
planned activity.

Within the past year or two, several new projects aimed
at designing intelligent cognitive orthotics have begun to
emerge. The MAPS project at the University of Colorado
is focusing on the HCI issues involved in building a hand-
held cognitive orthotic (Carmien 2002). The Independent
LifeStyle Assistant Project (ILSA) at Honeywell is another
recent related effort, which has some aims that overlap with
our own (Miller & Riley 2001). Yet another, even newer
project is the Assisted Cognition Project at the University
of Washington (Kautz et al. 2002). While Autominder is
being targeted mainly at people with milder forms of cogni-
tive impairment, the Washington project aims at developing
a cognitive orthotic system-an adaptive prompter—for peo-
ple with Alzheimer’s disease. The system will use ubiqui-
tous sensors to monitor the performance of routine tasks, and
provide prompts when a client gets “stuck”. For instance, a
sensor in the bathroom might notice that a person with A.D.
has picked up a toothbrush but then stopped; in response,
the adaptive prompter would provide guidance to the person
about putting toothpaste on the brush and using it to brush
his or her teeth. As can be seen, the adaptive prompter is

94

targeted at people with more severe cognitive decline than
what we imagine for a typical Autominder client.

Conclusions

The Autominder system as described in this paper has been
fully implemented in Java and Lisp on Wintel platforms; we
are also working on a Web-based interface for plan initial-
ization and update. The most recent version system has been
tested in the laboratory; an earlier version was integrated
with the robot software and included in a preliminary field
test conducted at the Longwood Retirement Community in
Oakmont, PA in June, 2001. The goals of that test were,
first, to ensure that the robot control software and the cog-
nitive orthotic would work together, and second, to get an
initial sense of the acceptability of such a system to older
individuals. On both accounts, the test was successful. Ad-
mittedly, the older adults who enrolled in the studies were
volunteers, and people likely to be intimidated or put off by
this type of technology would not have volunteered. How-
ever, the people who did participate were uniformly excited
about the system, as were the staff at Longwood, who made
a number of suggestions to us about how this type of tech-
nology could also be used to assist them in their caregiving
tasks. We intend to conduct interviews later this year with
caregivers and residents at Longwood in order to develop
more detailed models of the daily plans of several residents,
and then to field test a version of Autominder that encodes
those plans. These field tests will be more directly focused
on the performance of the cognitive orthotics software.

We have a number of plans for the continued develop-
ment of Autominder, some of which were already mentioned
in this paper. We have planned extensions to the individ-
ual reasoning modules, for example, adding the ability to
handle conditional constraints to the PM; supplementing the
PM with full-fledged planning capabilities to support replan-
ning; enabling the CM to learn the patterns of client activity
over time, in order to better interpret observed behavior; and
developing techniques for providing better justifications for
reminders issued by the PCO. We are also interested in the
deployment of the system on alternative hardware platforms.
Although there are many advantages to using a robot, in-
cluding the ability to piggyback on other capabilities, there
are clearly also reasons to explore handheld and/or wearable
devices and ubigitous sensors to support cognitive orthotics.
Finally, after our experiences with the staff at Longwood,
we are interested in exploring the use of systems like ours
within the facility-based setting. In that context, the system
would coordinate the daily plans not only of a single person,
but of multiple people, including both the residents and the
staff that takes care of them.

Acknowledgements

Primary financial support for this research comes from
an ITR grant from the National Science Foundation (I1S-
0085796). Some of the supporting technology was devel-
oped with funding from the the Air Force Office of Sci-
entific Research (F49620-01-1-0066) and the Defense Ad-
vanced Research Projects Agency and Air Force Research

Office, Air Force Materiel Command, USAF (F30602-00-2-
0621). The views and conclusions herein are those of the au-
thors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, of AFOSR or the U.S. Government.

I would like to thank all the members of the Nursebot
team, and especially my students, Laura Brown, Dirk Col-
bry, Colleen McCarthy, Cheryl Orosz, Bart Peintner, Sailesh
Ramakrishnan, and loannis Tsamardinos, who do all the
hard work, somehow turning my half-baked ideas into theo-
ries and working systems.

References

Able Link Tech. 2002. Ablelink technologies, http:
//www.ablelinktech.com. Quotation from product
descriptions subpage.

Ambite, J. L., and Knoblock, C. A. 2001. Planning
by rewriting. Journal of Artificial Intelligence Research
15:207-261.

AO0A. 2000. Factsheet on Alzheimer’s disease. U.S. Gov-
ernment Administration on Aging, http://www.aoa.
gov/factsheets/alz.html.

Armando, A.; Castellini, C.; and Giunchiglia, E. 1999.
SAT-based procedures for temporal reasoning. In 5th Eu-
ropean Conference on Planning.

Baltus, G.; Fox, D.; Gemperle, F.; Goetz, J.; Hirsch,
T.; Margaritis, D.; Montemerlo, M.; Pineau, J.; Roy, N.;
Schulte, J.; and Thrun, S. 2000. Towards personal service
robots for the elderly. In Workshop on Interactive Robots
and Entertainment.

Burd, L. N.D. I-mail. http://www.cs.colorado.
edu/~13d/clever/projects/i mail/index.
html.

Carmien, S. 2002. MAPS: PDA scaffolding
for independence for persons with cognitive impair-
ment. http://www.cs.colorado.edu/~13d/
clever/projects/maps/.

Census 2000. Census report 2000: National projections
program/National estimates program. Population Division,
U.S. Census Bureau, Washington, D.C. 20233.

Colbry, D.; Peintner, B.; and Pollack, M. E. 2002. Exe-
cution monitoring with quantitative temporal bayesian net-
works. In Proceedings of the 6th International Conference
on Al Planning and Scheduling.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61-95.

Dowds, M. M., and Robinson, K. 1996. Assistive technol-
ogy for memory impairment: Palmtop computers and TBI.
In Braintree Hospital Traumatic Brain Injury Neuroreha-
bilitation Conference.

Englebart, D. C. 1963. A conceptual framework for the
augmentation of man’s intellect. In Vistas in Information
Handling. Spartan Books. 1-13.

Friedman, R. H. 1998. Automated telephone conversation
to assess health behavior and deliver behavioral interven-
tions. Journal of Medical Systems 22:95-101.

95

Hersh, N. A., and Treadgold, L. 1994. Neuropage: The re-
habilitation of memory dysfunction by prosthetic memory
and cueing. NeuroRehabilitation 4:187-197.

Jonsson, B., and Svensk, A. 1995. Isaac: A personal digi-
tial assistant for the differently abled. In Proceedings of the
2nd TIDE Congress, 356-361.

Kautz, H.; Fox, D.; Borriello, G.; and Arnstein, L. 2002.
An overview of the assisted cognition project. In AAAI
Workshop on Automation as Caregiver. To appear.

Kirsch, N.; Levine, S. P.; Fallon-Kureger, M.; and Jaros,
L. A. 1987. The microcomputer as an "orthotic’ device for
patients with cognitive deficits. Journal of Head Trauma
Rehabilitation 2:77-86.

Levinson, R. 1995. A general programming language for
unified planning and control. Artificial Intelligence 76.

Levinson, R. 1997. PEAT-the planning and execution as-
sistant and trainer. Journal of Head Trauma Rehabilitation
769.

McCarthy, C. E., and Pollack, M. E. 2002. A plan-based
personalized cognitive orthotic. In Proceedings of the 6th
International Conference on Al Planning and Scheduling.

Miksch, S.; Kosara, R.; Shahar, Y.; and Johnson, P. 1998.
Asbruview: Visualization of time-oriented, skeletal plans.
In Proceedings of the 4th International Conference on Ar-
tificial Intelligence Planning Systems, 11-18.

Miller, C., and Riley, V. 2001. The independent lifestyle
assistant. In Proceedings of the XVIIth World Congress of
the International Association of Gerontology.

Montemerlo, M.; Pineau, J.; Roy, N.; and Thrun, S. 2002.
Experiences with a mobile robotic guide for the elderly.
In 18th National Conference on Artificial Intelligence. To
appear.

Mynatt, E. D.; Rowan, J.; Craighill, S.; and Jacobs, A.
2001. Digital family portraits: Providing peace of mind
of extended family members. In Proceedings of the ACM
Conference on Human Factors in Comuting Systems, 333—
340.

Oddi, A., and Cesta, A. 2000. Incremental forward check-
ing for the disjunctive temporal problem. In European
Conference on Artificial Intelligence.

Pineau, J., and Thrun, S. 2002. High-level robot behavior
control using POMDPs. In AAAI-02 Wobrkshop on Cogni-
tive Robotics. To appear.

Rowan, J., and Mynatt, E. D. N.D. Dude’s magic box and
grandma’s lap desk. http://www.cc.gatech.edu/
fce/ecl/projects/dude/index.html.
Stergiou, K., and Koubarakis, M. 2000. Backtracking al-
gorithms for disjunctions of temporal constraints. Artificial
Intelligence 120:81-117.

Stern, P. C., and Carstensen, L. L., eds. 2001. The Aging
Mind: Opportunities in Cognitive Research. Washington,
D.C.: National Academy Press.

Tsamardinos, I., and Pollack, M. E. 2002. Efficient solu-
tion techniques for disjunctive temporal problems. Under
review; available upon request from the authors.

Tsamardinos, I.; Pollack, M. E.; and Ganchev, P. 2001.
Flexible dispatch of disjunctive plans. In Proceedings of
the 6th European Conference on Planning, 417-422.

Tsamardinos, I.; Pollack, M. E.; and Horty, J. F. 2000.
Merging plans with quantitative temporal constraints, tem-
porally extended actions, and conditional branches. In Pro-
ceedings of the 5th International Conference on Artificial
Intelligence Planning and Scheduling.

Tsamardinos, |.; Vidal, T.; and Pollack, M. E. 2002. CTP:
A new constraint-based formalism for conditional, tempo-
ral planning. Constraints. To appear.

Tsamardinos, I. 2001. Constraint-Based Temporal Rea-
soning Algorithms with Applications to Planning. Ph.D.
Dissertation, University of Pittsburgh Intelligent Systems
Program, Pittsburgh, PA.

United Nations. 2001. World population prospects: The
2000 revision highlights. United Nations Population Di-
vision. http://www.un.org/esa/population/
publications/wpp2000/wpp2000h.pdf.

Yanco, H. A. 1998. Wheelesley, a robotic wheelchair
system. In Mittal, V. O.; Yanco, H. A.; Aronis, J.; and
Simpson, R., eds., Lecture Notes in Artificial Intelligence:
Assistive Technology and Artificial Intelligence. Springer-
Verlag. 256-268.

Yang, Q. 1997. Intelligent Planning: A Decomposition and
Abstraction Based Approach. New York: Springer.

96

APPENDIX D

Assessing the Probability of Legal Execution of Plans with Temporal Uncertainty

Ioannis Tsamardinos Martha E. Pollack Sailesh Ramakrishnan
Department of Biomedical Informatics Computer Science and Engineering QSS Group Inc.
Vanderbilt University University of Michigan NASA Ames Research Center

Nashville, TN 37232 USA
iocannis.tsamardinos@
vanderbilt.edu

Abstract

Temporal uncertainty is a feature of many real-world plan-
ning problems. One of the most successful formalisms for
dealing with temporal uncertainty is the Simple Temporal
Problem with uncertainty (STP-u). A very attractive fea-
ture of STP-u’s is that one can determine in polynomial
time whether a given STP-u is dynamically controllable, i.e.,
whether there is a guaranteed means of execution such that all
the constraints are respected, regardless of the exact timing
of the uncertain events. Unfortunately, if the STP-u is not dy-
namically controllable, limitations of the formalism prevent
further reasoning about the probability of legal execution. In
this paper, we present an alternative formalism, called Prob-
abilistic Simple Temporal Problems (PSTPs), which general-
izes STP-u to allow for such reasoning. We show that while
it is difficult to compute the exact probability of legal exe-
cution, there are methods for bounding the probability both
from above and below, and we sketch alternative candidate al-
gorithms for this purpose. Computing the probability of legal
execution allows a temporal planner to decide, when uncer-
tainty is present, whether to accept or reject candidate plans.
In addition, lower bound computation has an important side-
effect: it provides guidance as to how to execute an STP-u
even when it is not dynamically controllable.

Introduction

Many real-world planning problems involve temporal con-
straints, and a number of planning formalisms and algo-
rithms have been developed to deal with them. One of the
most well-known is the Simple Temporal Problem (STP)
formalism (Dechter, Meiri, & Pearl 1991), which allows the
representation of temporal constraints of the form X — Y <
d, where X and Y are the times of occurrence of two instan-
taneous events in the plan and d is a real number (or infinity).
For example, if X and Y denote the start and end points of
a single action, then the constraint specifies that the action
takes no more than d time units.

The STP formalism, along with generalizations of it, such
as the Disjunctive Temporal Problem (DTP) (Stergiou &
Koubarakis 2000; Tsamardinos 2001) have been very fruit-
ful, both for theoretical investigations of temporal planning
(Smith, Frank, & Jénsson 2000) and for practical deploy-
ment, notably in NASA’s Remote Agent (Muscettola et al.
1998). However, these formalisms do not allow any explicit
representation of uncertainty. Yet in most interesting, real-

Ann Arbor, M1 48109 USA
pollackm@eecs.umich.edu

Moffett Field, CA 94305 USA
sailesh@email.arc.nasa.gov

world domains, there are many types of uncertainty. One
type of uncertainty is associated with conditional execution
of actions that depend on observations and the status of the
world during execution. The Conditional Temporal Problem
(Tsamardinos, Vidal, & Pollack 2003) is an extension of the
STP that is able to encode and reason with quantitative tem-
poral constraints and conditional branches.

Another type of uncertainty, that this paper addresses,
is temporal uncertainty, i.e., uncertainty about the time at
which particular events will occur. Such events are said to
uncontrollable, to distinguish them from the events that are
under the control of the agent executing the plan. Often,
plans must include temporal constraints that involve uncon-
trollable events: for instance, it may be necessary to respond
to an alarm within two minutes of its going off. The time
of the alarm is not within the control of the execution agent,
but the time of the responsive event is.

In order to model uncontrollable events, an extended
formalism, called Simple Temporal Problems with Un-
certainty (STP-u) was developed (Vidal & Ghallab 1996;
Vidal & Fargier 1997; Morris, Muscettola, & Vidal 2001).
With STP-u’s, one can model plans that contain constraints
involving uncontrollable events. Notice that with such plans,
decisions about when to perform actions must often be de-
ferred until execution time. For instance, one cannot decide
in advance when to respond to an alarm: all one can do is
wait until the alarm goes off and then respond accordingly.

A very attractive feature of STP-u’s is that one can deter-
mine in polynomial time whether a given STP-u is dynami-
cally controllable, i.e., whether there is a guaranteed means
of execution such that all the constraints are respected, re-
gardless of the exact timing of the uncertain events!. Not all
STP-u’s are dynamically controllable. As a simple exam-
ple, consider an STP-u that includes a constraint requiring
an agent to respond to an uncontrollable alarm exactly two
minutes before it goes off. If the agent doesn’t control the
alarm—does not know when it will go off and does not have
any means of making it go off-then clearly the agent cannot
act in a way to satisfy this constraint.

A plan generation system can approach the task of plan-

"Here, and in the rest of the paper we assume the only source
of uncertainty in the plan is the temporal uncertainty of the uncon-
trollable events.

97

adamsp
Text Box

ning under temporal uncertainty by generating a plan for-
mulated as an STP-u and then checking to see whether it is
dynamically controllable. If it is, the planner can declare
success. Unfortunately, if it is not, limitations of the STP-u
formalism preclude further reasoning both about the prob-
ability of legal execution, and about strategies to maximize
that probability. Consequently, the planning system does not
know whether to adopt the plan or to search for an alternate,
and, if the former—if it does adopt the plan—it is unable to
formulate a effective means of executing it.

In this paper, we present a new formalism, called Prob-
abilistic Simple Temporal Problems (PSTPs), which gener-
alizes STP-u’s in a way that supports reasoning about the
probability that a plan with temporal uncertainty will be
legally executed. Although is is difficult to compute an exact
probability, we show that there are methods for bounding the
probability both from above and below. An upper bound can
be used to reject a current candidate plan which falls below
a given threshold, while a lower bound can be used to accept
a candidate plan.

The remainder of our paper is organized as follows. In
the Background section we review the background material
on STPs, STP-u’s, and dynamic controllability, and in the
next section we introduce the Probabilistic Simple Tempo-
ral Problems (PSTP) formalism. In the following two sec-
tions we describe the technique for computing the upper
bound and lower bound on the probability of correctly ex-
ecuting a PSTP, respectively. In particular, we explain how
the problem of computing the lower bound can be addressed
by first converting a PSTP to an STP-u and then tighten-
ing the bounds on that STP-u until it becomes dynamically
controllable. The following three sections then sketch some
approaches to this lower bound computation.

Finally, the Discussion section summarizes the main
ideas, open questions, and future directions. We note there
in particular that the lower bound computation has an impor-
tant side-effect: it results in the specification of an execution
strategy that maximizes the probability of satisfying all the
execution constraints. From another perspective this means
that it provides guidance as to how to execute an STP-u even
when it is not dynamically controllable.

Background

The formalism used to represent temporal information and
uncertainty is based on the Simple Temporal Problem (STP)
defined below:

Definition 1. Simple Temporal Problem, STP Solution,
Consistent STP. A Simple Temporal Problem (STP) is a
pair < V, E >, where

e V is a set of variables (also called nodes, events, or time-
points) taking real values representing the time of occur-
rence of instanteneous events.

e F a set of temporal constraints on the variables of the
formX —Y <b, X, Y € V,andb € RU {—00,00}.

A solution to an STP is an assignment to the variables that
satisfies the constraints. An STP is consistent if there exists
at least one solution.

98

STPs have been used to represent temporal plans by using
a variable for each action’s start and end point. For example,
if start(A) and end(A) are the events of starting and ending
action A, then the constraints 5 < end(A) — start(4) < 10
specify the duration of the action to be between 5 and 10
time units.

STP constraints are binary. In order to represent
unary constraints on absolute execution time, e.g., 100 <
start(A) < 200, a special variable called time reference
point T'R is defined and is assigned time zero; then, the con-
straint above can be written as 100 < start(A4)—T R < 200.

By using an all-pairs shortest path algorithm one can dis-
cover the distance from Y to X denoted as dy x and defined
as follows:

Definition 2. The distance from variable Y to variable X
denoted as dy x is the smallest number for which the equa-
tion X — Y < dy x holds in all STP solutions.

STPs can be executed with minimal on-line con-
straint propagation as discussed in (Muscettola, Morris,
& Tsamardinos 1998; Tsamardinos, Morris, & Muscettola
1988). An STP does not represent uncertainty information
about the occurence of events. All variables are assumed
to be under the direct control of the agent executing the
represented plan and so, if there exists a solution, then the
STP is executable in a way that satisfies its constraints. To
address this representational limitation, the Simple Tempo-
ral Problem with Uncertainty (STP-u) formalism was de-
veloped (Vidal & Ghallab 1996; Vidal & Fargier 1997;
Morris, Muscettola, & Vidal 2001).

An STP-u makes a distinction between controllable and
uncontrollable variables. Controllable variables are the ones
whose timing of execution is under the direct control of the
agent. Uncontrollable variables are the ones whose timing
of execution depends on Nature (i.e., exogenous factors).
The only information represented regarding the exact timing
of an uncontrollable X is that it will occur sometime within
the interval 1, u] after a controllable Y, called the parent of
X. Thus, the STP-u specifies that Nature will respect the
constraint [< X —Y < wu. These constraints involving
Nature are called contingent links and are distinct from the
constraints the plan has to respect to be legally executed,
called requirement links.

Definition 3. Simple Temporal Problem with Uncer-
tainty. A Simple Temporal Problem with Uncertainty STP-
uis atuple < Vo, E, Vi7, C >, where

e Vo and Vi are the set of controllable and uncontrollable
variables, respectively, taking real values.

e F is a set of constraints (requirement links) of the form
X-Y<bX,YEVoUVy,andb € RU {—0c0,00}.

e (' is aset of contingent links of the form [< X — Y < u,
YeVe, X €Vy,andl,u € R

Figure 4 shows an STP-u with two controllable variables
A, B and an uncontrollable variable C. The edge A — B in
the figure, annotated with the interval [p, g] graphically ex-
presses the constraints p < B—A < ¢,i.e., A—B < —pand
B— A < q. Similar constraints hold for the other edges. The

adamsp
Text Box

adamsp
Text Box

edge A — C'is a contingent link, i.e., a constraint Nature is
expected to observe.

Contingent constraints are always between a controllable
variable Y and an uncontrollable variable X. A contingent
link ! < end(A)—start(A) < umay be used for example to
specify that the expected duration of an action A4 is between
[and u time units; however, this duration is not something
that is determined by the agent.

An STP-u, like an STP, should be executed in such a way
that all its constraints are satisfied. However, as we illus-
trated in the introduction with the alarm example, the ex-
istence of uncontrollable events means that decisions about
the timing of controllable events may need to be deferred to
execution time.

Definition 4. Legal Execution, Execution Strategy. A le-
gal execution of a STP-u < Vg, K, Vy,C > is a schedule
(time assignment) of occurrences of the events (variables)
in Vo U Vi in a way that satisfies all the constraints in F.
An execution strategy is an algorithm that decides when
to execute the next controllable action given the execution
constraints and the observed history of the uncontrollable
events.

Definition 5. Dynamic Controllability. (Informal) An
STP-u < Vi, E, Vi, C > is dynamically controllable if
there exists an execution strategy that results in a legal exe-
cution regardless of when the uncontrollable variables in V77
occur (provided they occur within the bounds specified by
the contingent constraints in C').

For a formal definition of dynamic controllability, see
(Morris, Muscettola, & Vidal 2001), which also provides
a polynomial-time algorithm for checking whether a given
STP-u is dynamically controllable.

How does a domain expert model temporal uncertainty
when specifying the constraints for a planner? For any tem-
porally uncertain event A, the expert must specify some
bounds on the time of occurrence of A. In the STP-u for-
malism, this corresponds to setting the values of [and u in
a contingent link [< end(A) — start(A4) < u. The looser
these bounds are set to be, the more likely they are to be ob-
served by Nature, and hence, the more accurate the model
is; in the extreme case, if they are set to positive and neg-
ative infinity, then the expert is certain that the event will
occur within the specified bounds. On the other hand, as
the bounds get looser, the likelihood decreases that the STP-
u is dynamically controllable. And when the STP-u is not
dynamically controllable, the formalism provides no guid-
ance about when to perform the controllable events so as to
increase the probability of observing the constraints. Cur-
rently, there are no principled procedures for deciding the
bounds of the uncontrollables in a way that maximizes the
probability that Nature will respect them and that the result-
ing STP-u will be dynamically controllable.

In fact, because STP-u’s do not explcitly represent prob-
ability distributions of uncontrollable events, they lack the
information needed for such decisions. Probabilistic Simple
Temporal Problems (PSTPs), first presented in (Tsamardi-
nos 2002), are an extension of STP-u that includes such in-
formation in the temporal plan.

99

Probabilistic Simple Temporal Problems
We begin by defining PSTPs.

Definition 6. A Probabilistic Simple Temporal Problem
PSTP is a tuple < Vo, E, Viy, Par, P >, where:

e V¢ is the set of controllable variables with real values.

e V7 is a set of real random variables (uncontrollable vari-
ables).

e E a set of constraints of the form X — Y < b, X,Y €
Ve UV, andb € RU {—o0,00}.

e Par is a function Viy — Vo that specifies for each un-
controllable its controllable parent.

e P is a set of conditional probability density functions
(pdD) px (t) for each X € Vi providing the mass of prob-
ability of X occurring ¢ time units after Par(X).

Tt is worth noting that in PSTPs, each uncontrollable event
has a single parent, which must be a controllable event;
thus, function Par is well-defined. The probability func-
tions in P deserve further comment. P is a set of probabil-
ity distributions px (¢) summarizing expectations about the
occurrence of each uncontrollable event X . More precisely,
given px (t), the probability of X occurring 7" time units or
less after Par(X) has occurred is given by Px (1 < T') =

IT px(t)dt.

Implicit in our definitions is that the probability distribu-
tion of occurence of X with time does not depend on abso-
Tute time but on relative time from the moment the parent of
X is executed (px (t) is time invariant).

As an example, suppose that we want to model the fact
that an action A has duration normally distributed with
mean duration of half an hour (30") and 5’ standard de-
viation ¢. We define the beginning of the action as the
controllable Y = start(A), and the end of the action as
the uncontrollable X = end(A), for which px (t) follows
Normal(30, 5) (normal with half an hour mean and 5 min-
utes standard deviation). Then we can find out the prob-
ability that the action will finish within in 40 minutes af-
ter Y (i.e., after we started the action): P(t < 40) =
I px(t)dt = ®(20230) = 97.72%, where &(z) is the
integral of the Normal(0,1) at point z.2

Let us compare modelling action A in a PSTP with mod-
elling the same action in an STP-u. In an STP-u one has
to come up with reasonable bounds [and u and specify that
| < X —Y < wuisa contingent link to be included in the
plan. In comparison, in an PSTP the same constraint is rep-
resented by specifying that the parent of X is Y and that
X will occur ¢ time units after Y where ¢ follows a normal
probability distribution with mean 30’ and standard devia-
tion 5.

Given a PSTP, our goal is to assess the probability that
all its execution constraints F will be satisfied during execu-
tion. More specifically, we would like to calculate the prob-
ability of the plan being legally executed under an optimal
execution strategy. The reason for doing this is to provide

This integral cannot be solved analytically but is typically
computed numerically or provided in a table form.

adamsp
Text Box

guidance to the planning process: we want to know whether
the current plan is “good enough”, i.e., likely enough to suc-
ceed, or whether, instead, further effort should be put into
looking for a better plan.

(Tsamardinos 2002) shows how to find an optimal execu-
tion strategy for PSTPs under certain conditions. However,
the basic approach there is a static one, i.e., one that cor-
responds to strong controllability in STP-u’s. To compute
the equivalent of a dynamic execution strategy, it is neces-
sary to iterate the process of finding an optimal PSTP execu-
tion strategy whenever an observation of an uncontrollable
occurs. Computing the exact probability of success of this
overall dynamic strategy is difficult. However, we do know
how to compute bounds on the probability of success, and
that is what we focus on in the remainder of this paper. In
the next section, we show how to compute an upper bound
on the probability of success. This bound can be used by a
system to reject a plan, if it is too low. In the following sec-
tions, we describe how to compute a lower bound, by con-
verting a PSTP to an STP-u and then tighening the latter’s
bounds until it becomes dynamically controllable.

Bounding the Probability of Legal Execution
from Above

Suppose that an uncontrollable variable X with parent Y
occurs ¢ time units after YV, i.e., X — Y = ¢. If there is
no solution to the constraints in E that admits a value ¢ for
the difference X — Y then the probability of completing the
execution in a way that respects the constraints is zero.

As we mentioned earlier, the distance between Y and X
is the minimum number dy x for which X — YV < dyx
holds in all solutions. Similarly, Y — X < dxy holds in all
solutions. These inequalities together imply that —dxy <
X — Y < dyx in any legal execution. Therefore, with
probability px (¢) for ¢ outside the interval [-dxy,dyx] a
legal execution cannot be achieved. Equivalently, a legal
execution can be achieved with probability density at most
px (t) for t within the interval [-dxv,dy x].

Assuming all uncontrollable events are independent of
each other, and using Success to denote the event of a legal
execution occuring, then:

P(Success) < H

XeVy,Y=Par(z)

= 1

XEVU,Y:PH,T‘(X)

Px(t € [-dxy,dyx])

Px(—dxy <t<dyx)

The distances dxy can be determined with a polyno-
mial all-pairs shortest path algorithm. The calculation of
the probabilities in the product depends on the exact density
functions. As an example, if px (¢) is uniform in the inter-

val [a,b], then Px(—dxy <t < dyx) = W _
dyxl;-i'ZX_Y), assuming [—dxy,dyx] C [a,b].
As an example consider the PSTP in Figure 1. The dot-

ted edges represent temporal constraints. Specifically, each
edge A — B annotated with the interval [/, u] represents the

100

[5, 10]

[5, 15, uniform]
A

[8,10]

Figure 1: Example for calculating the upper bound.

X-Y=-1
Y
X-Y=1
3
1
1 3 X

Figure 2: The polytope defined by the constraints provides a
tighter upper bound.

two inequality constraints [< B — A < w. There are three
such constraints (six single inequality constraints):

1<Y-TE<1
8<Z-TR<10
—-1<Z7-X<2
We can rewrite these as:
—1<TR-Y < -1

8<Z-TR<10
2<X-7<1

By adding them up we infer that 5 < X — Y < 10. This in-
ferred constraint is depicted in the figure with the annotation
[5, 10] below the solid line. It is equivalent to calculating the
distances between X and Y: dxy = —5 and dy x = 10.

The solid link denotes the fact that X is an uncontrollable
variable with parent Y and the interval on top of this edge
shows the form of this dependency: X will occur some time
within the interval [5, 15] after ¥~ has been executed with
uniform distribution. For example ¥ may be the beginning
of an action with duration between 5 and 15 and X the end
of this action.

As calculated, there is a solution to the constraints only
if5 < X —Y < 10. Thus, with at most probability of
Px(5 <t < 10) = }2=2 = 3 the PSTP can be executed
successfully.

The upper bound calculated with the above method may
not be tight in general. We now discuss ideas why this is the

adamsp
Text Box

case and how to find tighter bounds. Consider a PSTP with
two uncontrollables X and Y that both occur with uniform
probability in [1, 3] after the time reference point TR. Let
us assume that the only constraints in this PSTP are —1 <
X—Yand X —-Y < 1.

Figure 2 shows the space of legal executions. The z-axis
is the time of occurence of X and similarly for Y. Since
TR = 0 the set of legal execution is the area of the rectan-
gle bounded by the lines X — Y = —land X - Y = 1.
Calculating the bounds with the method that we provided
yields: Px(—dx,7r < t < drpx)Py(—dyrr < t <
drryy) = Px(—00 <t < 00)Py(—00 <t <o0) =1

A tighter bound on the probability in this example would
be the area of the rectangle bounded by the two constraints.
In general, a tighter bound could be obtained by calculating
the mass of probability contained in the polytope defined by
the constraints.

The mass of probability of this polytope is still only an
upper bound on the probability of correct execution: even
though for every point in this polytope (i.e., execution) the
constraints are satisfied, that does not mean that an agent
will dynamically be able to construct this solution, unless it
is clairvoyant in the general case.

Bounding the Probability of Legal Execution
from Below

Let < Vo, E, Viy, Par, P > be a PSTP and suppose that we
are given intervals [l x, u x| for each uncontrollable variable
X with parent Y. The PSTP and the intervals can be seen as
corresponding to an STP-u with the same controllable and
uncontrollable variables, same constraints, and contingent
links [x < X —y < ux foreach uncontrollable variable.

If this STP-u is dynamically controllable then there ex-
ists an execution strategy for legally executing the STP-u
no matter when the uncontrollables occur within these inter-
vals. Thus, in all such cases where the uncontrollables oc-
cur within these bounds an agent can execute the plan with
probability one, provided it follows the execution strategy
returned by the STP-u controllability algorithm. The prob-
ability of all such cases is thus a lower bound on the proba-
bility of a legal execution. Thus:

P(Success) > H Px(lx <t <ux)
Xevy

Unlike the upper bound that we provided in the previ-
ous section, in the lower bound case the bounding intervals
[lx,ux] cannot be easily computed (because it is required
that the corresponding STP-u is controllable). The looser
these intervals the tighter the lower bound will be. To find
the tightest bound possible one needs to solve the following
optimization problem:

Definition 7. Lower Bound Problem.
Given PSTP < Vi, E, Vi, Par, P > :

Maximize [[x ¢y, Px(Ix <t <ux)
subject to:
< Ve, E, Vy,C > being dynamically controllable

101

where C is the set of contingent links
{Ix <X -Y <ux|X €V,Y = Par{X)}
and decision variables:
Ix,ux,foreach X € Vi,

Unfortunately, it is difficult to directly apply typical con-
straint optimization techniques such as gradient descent or
Newton’s Method on this problem. This is because such
methods require expressing the feasible set as the decision
variable vectors that satisfy a set of equality or inequality
constraints. In the lower bound problem the feasible region
is the set of decision variable vectors that satisfy the single
constraint that the corresponding STP-u is dynamically con-
trollable.

In the following two sections we sketch candidate algo-
rithms that approximate the optimal solution to the lower
bound problem. We then return to the formulation of the
problem as an optimization problem and suggest ways to
convert it to a form suitable for classical optimization tech-
niques in a way that approximates the problem we are trying
to solve.

Binary Search for Loosest Bounds

In our first algorithm, we perform binary search for the
bounds on the uncontrollable intervals that are as loose as
possible while still guaranteeing dynamic controllability.
The basic algorithm is as follows:

1. Given PSTP < Vi, E, V7, Par, P >, construct a corre-
sponding STP-u S < V4, E',V;,C > where V/, = Vg,
Vi, =Vu,E'=E,andC =lx < X — Par(X) < ux for
each X € Vyy, where [x and ux are initialized to include
most of the mass of probability of px. (For example, lx
might be the mean minus three standard deviations, while
ux might be the mean plus three standard deviations.)

2. Let € be a small threshold value, and let £ = 1.

3. While (S is not dynamically consistent) and (£ > ¢€)

4. Begin

5. If S is not dynamically controllable

6. F=F/2

7. Reduce all contingent edges in S by a factor of F
8. Else

9. F=3F/2

10. Increase all contingent edges in S by a factor of F
11. End If

12. End While

3. Return S.

Note that this algorithm assumes that the underlying STP-
u can eventually be made consistent by shrinking the bounds
on the uncontrollable events far enough: i.e., if the time
points of the uncontrollables could be pinned down, the net-
work would be executable. Also, we have made an arbitary
decision about the rate at which we modify the size of the in-
tervals, reducing them by a half when the network is not dy-
namically controllable, and increasing them by a half when
it is. To achieve faster convergence, we may want to vary
these values.

This basic algorithm can be improved in several ways.
First, when an STP-u is not dynamically uncontrollable, this

adamsp
Text Box

O—0O

Figure 3: Two uncontrollable events with different distribu-
tions.

may be due only to some, and not all, of the uncontrollable
events. It may be possible to identify which uncontrollable
events are to blame while running the STP-u controllabil-
ity algorithm and then to modify the above algorithm so
that only the edges incident upon culpable events are re-
duced. Second, the above algorithm does not take account
of the fact that the PSTP explicitly models the probability
distribution associated with each uncontrollable event. In-
stead, it reduces the time intervals associated with all events
equally. An improved appropriate extension would be to re-
duce the bounds proportionally to the probability mass as-
sociated with each interval. For example, if one contingent
interval has a distribution with very wide variance, while
another has a much steeper distribution with narrower vari-
ance, we would prefer to place tighter bounds on the first—
or, put otherwise, shrink the first interval more—than the sec-
ond, because that would result in less reduction in the overall
probability mass of the uncontrollable events modeled. (See
Figure 3.)

Iterative Tightening

The Binary Search approach employs the dynamical control-
lability algorithm as a black box. The Iterative Tightening
approach on the other hand modifies the dynamic controlla-
bility algorithm.

The Iterative Tightening first converts the PSTP to an
STP-u by calculating loose bounds for the uncontrollables
in a way that contain most (or all if possible) of the mass of
probability (exactly as the Binary Search algorithm). Then,
it runs a modified dynamic controllability algorithm: instead
of stopping as soon as it is discovered that the STP-u is not
controllable, the algorithm relaxes the problem (by tighten-
ing the bounds) and continues.

The dynamic controllability algorithm checks each triplet
of variables A, B and C, where C is uncontrollable (as
shown in Figure 4. The constraints (requirement links)
A — B and B — (C may be explicit or implicit con-
straints. The algorithm then imposes a set of additional con-
straints that ensure the existance of an execution strategy.
If the propagation of these constraints does not result in a
“squeeze” of the contingent link, the STP-u is controllable.

The Iterative Tightening algorithm employs the same
strategy. It selects a triangle of variables to work on and
imposes the constraints determined by the controllability al-
gorithm. However, if the propagation of these constraints
squeeze any other contingent link, instead of stopping, the
algorithm tightens the contingent link to these new bounds.
Obviously, this algorithm will not return an execution strat-

102

.\ [x,y] ’

N \ [u,v]

Contingent Link

i Requirement Link

Figure 4: Triangular Networks (Morris, Muscettola, & Vidal
2001) .

egy that works for all possible occurences of the uncontrol-
lables of the original bounds, but only for the final tightened
bounds.

The algorithm is as follows:

1. Given PSTP < Vo, E, Vy, Par,’P >, construct a corre-
sponding STP-u S < V{4, E', V), C > where V5 = Vg,
Vi =Vu,E'=E,andC =1x <X — Par(X) < ux
for each X € Vi, where Ix and uy are initialized to
include most of the mass of probability of px.

Non-deterministically CHOOSE a triangle of variables
A, B, C where (' is uncontrollable.

. Impose the constraints determined by the dynamic con-
trollability algorithm.

Propagate the constraints as in the controllability algo-
rithm, but allow requirement links to be squeezed.

. Repeat until the lower bound that corresponds to the cur-
rent STP-u is high enough, or the last constraint propaga-
tion did not change the STP-u.

In Iterative Tightening the order of consideration of each
triangle matters. When a triangle A, B, C and a contingent
link A — (' is selected and appropriate constraints are im-
posed to ensure controllability, essentially the algorithm cre-
ates an execution strategy that works for all cases where C
occurs within the current bounds given for 4 — (. Propa-
gation of these constraints may require that other uncontrol-
lables occur within a tighter interval to allow for this strategy
to work.

For example, suppose that there are two contingent links
Y — X and A — B. Selecting a triangle that involves the
first one may cause the bounds on the second one to shrink
considerably in order to allow the execution strategy to work
with all possible occurences of X. If B’s probability distri-
bution has heavy tails, that means that a significant mass
or probability will be excluded from the calculation of the
lower bound. If instead the second triangle is selected first,
its bounds will not be tightened but may cause the bounds
on the first link to shrink. If however, the distribution of X
has smaller variance, then shrinking the bounds will not ex-
clude as much probability mass and the algorithm will return
a tigher lower bound.

Possible variants of the algorithm include a backtracking
search where different choices of triangles are made in a
search for the STP-u that provides the tighest lower bound
on the probability of successful execution.

adamsp
Text Box

Non-Linear Optimization Solutions

In this section, we explore the possibility of solving the
lower bound problem with optimization methods. While the
objective function is suitable for typical optimization meth-
ods, the constraints are not. We now attempt to cast the
constraint of the resulting STP-u being dynamically control-
lable, as a set of inequalities, which would allow non-linear
optimization techniques to be used.

Consider the triangle of variables and edges of Figure 4,
where the edge A — C is a contingent link. According to
(Morris, Muscettola, & Vidal 2001) the triangle is dynam-
ically controllable if any of the following three conditions
hold:

1. v < 0, and the triangle is pseudo-controllable.

2. u>0,B—AC [y—wv,z—ul,and the triangle is pseudo-
controllable.

3.v>0,u <0,y —v < =z, and the triangle is pseudo-
controllable.

Pseudo-controllability denotes the fact that the bounds
[z,y] are not “squeezed” by the contraints of the triangle,
or in other words that [z,y] C [~dc4,dac]. Recall that the
dynamic controllability algorithm determines whether there
is a way to execute the plan no matter when the uncontrol-
lables occur. The interval [—dca,dac] is the interval dic-
tated by the constraints in the plan: any time within that in-
terval participates in at least one solution of the constraints.
The interval [z, y] is derived from the contingent link and is
a constraint on Nature. Thus, if there are values of [z, y] that
do not participate in any solution of the constraints, Nature
may select one of these values forbidding the completion of
the plan in a way that satisfies the constraints.

Apart from the three cases above for when a triangle is
dynamically controllable there is a fourth case. Thus, the
above three cases together are sufficient but not necessary
conditions. The fourth case involves accepting a ternary and
disjunctive constraint that is called a wait, which we will
ignore for the moment.

An STP-u is dynamically controllable if all such triangles
in the network are dynamically controllable. These three
cases direct the design of the our algorithm.

1. Givena PSTP < Vo, E, V7, Par, P >.

2. Define a non-linear optimization problem with decision
variables z;,y; for every uncontrollable, objective func-
tion [[, Po(z; <t <y;), and inequality constraints S as
defined below.

3. Initialize S « E.

4. For each triple of variables A;, B;, C; as in Figure 4,
where C; is uncontrollable:
e If v; < 0, then no extra constraint needs to be added.
e Ifu; > 0,then S « SU{Bl —A; C [yz —V;, T; —’U,Z]}
e Else, S+ SU {yz —v; < Z’Z}

5. Solve the optimization problem.
The solution to the optimization problem will return a set

of values for the decision variables for which all the con-
straints are satisfied. By construction, satisfying all these

103

constraints implies that the corresponding STP-u is dynam-
ically controllable. This is because each such triangle falls
into one of the three cases above.

In addition, in any solution of the optimization problem
the triangles are pseudo-controllable. This is because any
bounds z,y selected by the optimization for a contingent
link A — C are as squeezed as possible: y < da¢ because
if y > dac then y is outside the feasible set imposed by the
constraints of the optimization problem.

Intuitively, the algorithm is free to select any x, ¥ bounds
on contingent links and impose any constraints on Nature
desired. Of course Nature may not observe these constraints
but we can calculate the probability that she will and obtain
the desired lower bound.

Notice that since the three cases are sufficient but not nec-
essary it is conceivable that this is not the tightest lower
bound on the probability that can be achieved using this kind
of approach (i.e., by translating to an STP-u). Specifically,
there is a fourth case that we omitted from consideration: it
involves a disjunctive and ternary constraint called a wait on
C'. For example wait < C,5 > means that one should wait
to execute B until 5 time units have passed after A has been
executed or C has been observed. A non-linear optimization
algorithm that takes into consideration this case may be able
to further increase the bounds [z, y] to include more mass of
probability. It is currently unknown how significant is this
case in practice and how much looser than optimal is a lower
bound that is achieved by ignoring this case.

We now consider a specific class of probability density
functions and the corresponding optimization problems they
give rise to.

Optimization for Uniform Distributions

Let us denote with p; the pdf of the ith uncontrollable vari-
able and suppose that all probability distributions are uni-
form, that is p;(¢t) = bii—ai, when t € [a;, b;] and zero out-
side this interval.

If p(t) is uniform in [a, b], then

min(b, y) — max(a,)
b—a

for z < y. In Figure 5 this is justified pictorially where the
probability density of a uniform p; within the bounds [a, b]
is shown. P(z < ¢ < y) is the area above the intersection
of [a,b] and [z, y].

Instead of maximizing the actual probability of successful
execution, we can maximize its logarithm.

P<t<y)=

max IogH Piz; <t <y

which is equal to
maxz log Pi(z; <t <y;)

By utilizing the fact that P;’s are uniform, this is equivalent

to
max Z log &= 0

bi—ai’

adamsp
Text Box

WI
a x y

p(®)

&\\\\\\\\\\\\\\I
X a y

p(®

&\\\\\\\\\\\\%
a x y

p(®)

Figure 5: The mass of probability of a random variable uni-
formly distributed within [z, y] occuring within [a, b] is the
area above the intersection of the intervals.

where ¢; = max(z;,a) and & = min(y;, b). In turn, this
gives:

max(z log(&; — 0;) — Z log(b; — a;))

The last sum is a constant term and can be dropped from
the objective function during optimization (but is required to
compute the final bound on the probability). So the objective
function becomes

max Z log(&; — 0;),
or equivalently

min — ZlOg(fi — i)

The constraints of this optimization problem are given by
Steps 3 and 4 in the algorithm of the previous section. That
is, they are the difference constraints among the PSTP vari-
ables (controllable and uncontrollable ones) union the con-
straints required to guarantee the resulting STP-u is dynam-
ically controllable. In addition to these constraints however,
we need to add that o; = max(x;, a;), & = min(y;, b;), and
that z; < y;.

The max and min functions present problems to most op-
timization algorithms. Fortunately, in this case we can sub-
stitute &; = min(y;, b;) with the constraints & < b;,&; < y;,
and o; = max(x;,a;) with o; > a;, and o; > ;. This
is because, in order to maximize the objective function the
&; should be as large as possible; so the optimization en-
gine will increase the &; until at least one of the equalities

104

& = by, & = y; holds, in which case & = min(y;, b). A
similar argument holds for ;.

The feasible region defined by these inequality constraints
is convex. Additionally, the objective function is twice
differentiable everywhere except from the boundary where
o; = &. So the objective function is twice differentiable in
the interior of the feasible region.

Let us calculate the second derivative of each term in the
sum. Define f(£,0) = —log(§ — o). Then, Vf(£,0) =
[~(¢=0)"1 ((~0)7'] =[~a,a].fora= ({ —0)~". The

2 2

Hessian is H = V2f(£,0) = [aa2 _afj . H is semidef-
inite positive because the eigenvalues are non-negative. The
eigenvalues A solve det(A\ — V2 f(£,0)) = A2 —2a’X = 0,
ie, A =0o0r = 2a% > 0fore < £ Thus, function f de-
fined on a convex set (when o < £) has a positive semidef-
inite V2 f in the interior and thus is convex (provided the
interior is non-empty). The objective function, as a sum of
such convex functions is also convex.

Convex optimization problems have a unique minimum
and in general, are relatively easily solved with modern op-
timization software. We are currently considering other fam-
ilies of probability distributions such as exponential or nor-
mal distributions.

Discussion

The recent literature on planning has shown a growing inter-
est in handling more and more realistic problems, and along
with that has come a concern with various types of uncer-
tainty. In this paper, our focus has been on temporal uncer-
tainty: uncertainty about the time at which certain exoge-
nous, or “uncontrollable” events will occur. Significantly,
domain experts typically know more about such events than
just the interval of time during which they will occur—they
often know a probability distribution over the interval of oc-
currence. Yet the most successful formalism for planning
with temporal uncertainty, the STP-u’s, don’t allow one to
exploit that knowledge. Instead, the domain expert must
specify fixed bounds on the time during which each uncon-
trollable event must happen. If he sets the bounds too nar-
rowly, he may produce a plan that is dynamically control-
lable, but that nonetheless fails, because the uncontrollable
event occurs outside the modeled time. If he sets them too
widely, he may produce a plan that is not dynamically con-
trollable. And execution strategies only exist for dynami-
cally controllable plans; if an STP-u is not dynamically con-
trollable, there is no effective means of deciding when to
execute the controllable actions in it.

This poses a real problem for the designer of a planner
dealing with temporal uncertainty. It is difficult to know
how to set the bounds on the uncontrollable events; and if
the bounds are set too widely, it is impossible to assess the
probability that the plan can nonetheless be legally executed,
and thus, impossible to make a principled decision about
whether to adopt this plan or whether to search further for
an alternative.

What we would like to do is to enable the domain ex-
pert to specify bounds on the uncontrollable events that are

adamsp
Text Box

“as wide as possible”: by this we mean that they maximize
the probability that the events will in fact occur during the
modeled bounds, subject to the constraint that the network
is dynamically controllable. When the bounds are set in this
fashion, there are two results: first, we have an evaluation of
the probability that the plan can be legally executed, which
can be used to decide whether to accept or reject it, and sec-
ond, if it is accepted, then the network with the bounds thus
set can serve as the basis of a legal execution strategy.

Because STP-u’s do not include information about the
probability distribution of the timing of uncontrollable
events, we presented a generalization of them, called Proba-
bilistic Simple Temporal Problems (PSTPs). Unfortunately,
given an PSTP, it is difficult to compute an exact probability
of legal execution. What we can do, however, is bound the
probability, both from above and below. The upper bound
simply provides a way of rejecting a plan if it is not below a
given threshold. The lower bound is arguably more interest-
ing, as it is not only what gives a way of accepting a plan,
when it is above a threshold, but is also what allows one to
approximate the widest possible bounds.

We presented three alternative algorithms for approximat-
ing the widest possible bounds. The first performs binary
search for a value v that represents the minimal proportion
by which all the uncontrollable intervals need to be reduced
to achieve a dynamic controllability. The second runs the
dynamic controllability algorithm with the modification that
it does not exit as soon as controllability is deemed impos-
sible. Instead, it shrinks the intervals appropriately, relax-
ing the initial problem, until controllability is achieved. The
third algorithm takes a very different approach, attempting
to reduce the problem to one of non-linear optimization. It
approximates the set of controllable STP-u’s with a set of
inequality constraints. The next major step in this work it to
implement these three algorithms and conduct both experi-
mental analyses of their performance in terms of computa-
tional efficiency and quality of lower bounds returned. Ad-
ditionally, it will be important to integrate work on temporal
uncertainty of the kind described in this paper with work on
causal uncertainty, such as that discussed in (Tsamardinos,
Vidal, & Pollack 2003).

References

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Arrificial Intelligence 49:61-95.

Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In Proceedings
of the 17th International Joint Conference on A.1. (IJCAI-
01). Seattle (WA, USA): Morgan Kaufmann, San Fran-
cisco, CA.

Muscettola, N.; Nayak, P. P,; Pell, B.; and Williams, B. C.
1998. Remote agent: To boldly go where no ai system has
gone before. Artificial Intellience 103:5-47.

Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998. Re-
formulating temporal plans for efficient execution. In Pro-
ceedings of the International Conference on Principles of
Knowledge Representation and Reasoning (KR-98), 444—
452.

105

Smith, D.; Frank, J.; and Jénsson, A. 2000. Bridging the
gap between planning and scheduling. Knowledge Engi-
neering Review 15(1).

Stergiou, K., and Koubarakis, M. 2000. Backtracking al-
gorithms for disjunctions of temporal constraints. Artificial
Intelligence 120:81-117.

Tsamardinos, 1.; Morris, P.; and Muscettola, N. 1988. Fast
transformation of temporal plans for efficient execution. In
Proceedings of the 15th National Conference on Artificial
Intelligence.

Tsamardinos, 1.; Vidal, T.; and Pollack, M. E. 2003. CTP:
A new constraint-based formalism for conditional, tempo-
ral planning. Constraints (to appear), Special Issue on
Planning 8(4).

Tsamardinos, 1. 2001. Constrained-Based Temporal Rea-
soning Algorithms with Applications to Planning. Ph.D.
Dissertation, University of Pittsburgh.

Tsamardinos, I. 2002. A probabilistic approach to ro-
bust execution of temporal plans with uncertainty. In Proc.
of the 2nd Greek National Conference on Artificial Intelli-
gence.

Vidal, T., and Fargier, H. 1997. Contingent durations in
temporal CSPs: from consistency to controllabilities. In
Proceedings of the 4th International Workshop on Tempo-
ral Representation and Reasoning (TIME-97), 78-85.

Vidal, T., and Ghallab, M. 1996. Dealing with uncer-
tain durations in temporal constraint networks dedicated to

planning. In Proceedings of the 12th European Conference
on Artificial Intelligence (ECAI-96), 48-52.

adamsp
Text Box

APPENDIX E

Lecture Notes in Computer Science

Flexible Dispatch of Digunctive Plans

loannis Tsamardinos: Martha E. Pollack2, and Philip Ganchev?!

T Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA 15260 USA
tsamard@eecs.umich.edu, ganchevecs.pitt.edu
2 Department of Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor, M1 48103 USA
pollackm@eecs.umich.edu

Abstract. Many systems are designed to perform both planning and execution:
they include a plan deliberation component to produce plans that are then dis-
patched to an execution component, or executive, which is responsible for the
performance of the actions in the plan. When the plans have tempora con-
straints, dispatch may be non-trivial, and the system may include a distinct dis-
patcher, which is responsible for ensuring that all temporal constraints are satis-
fied by the executive. Prior work on dispatch has focused on plans that can be
expressed as Simple Temporal Problems (STPs). In this paper, we sketch adis-
patch algorithm that is applicable to a much broader set of plans, namely those
that can be cast as Disjunctive Tempora Problems (DTPs), and we identify four
key properties of the agorithm.

1 Introduction

Many systems are designed to perform both planning and execution: they include a
plan deliberation component to produce plans that are then dispatched to an execution
component, or executive, which is responsible for the performance of the actions in
the plan. When the plans have temporal constraints, dispatch may be non-trivial, and
the system may include a distinct dispatcher, which is responsible for ensuring that all
temporal constraints are satisfied by the executive. Prior work on plan dispatch [1-3]
has focused on plans that can be represented as Simple Tempora Problems (STP) [4].
In this paper, we sketch a dispatch algorithm that is applicable to a much broader set
of plans, those that can be cast as Digunctive Temporal Problems (DTPs), and iden-
tify four key properties of the algorithm.

2 Digunctive Temporal Problems

Definition. A Digjunctive Temporal Problem (DTP) is a constraint satisfaction
problem <V, C>, where V is a set of variables (or nodes) whose domains are the real
numbers, and C isaset of digunctive constraints of theform Ci: 1, <x;—y;<u; v

106

adamsp
Text Box

Lecture Notes in Computer Science

..V 1y €%, = Y < Uy, such that for 1<i <'n, x; and y; are both members of V, and |; , u;
arereal numbers. An exact solution to a DTP is an assignment to each variablein V
satistying al the constraintsin C. If aDTP has at least one exact solution, it isconsis-
tent.

A DTP can be seen as encoding a collection of alternative Simple Tempora Prob-
lems (STPs). To seethis, note that each constraint in a DTP is a digunction of one or
more STP-style inequalities. Let C;; be the j-th disunct of the i-the constraint of the
DTP. If we select one disunct C; from each constraint C;, then the set of selected
diguncts forms an STP, which we will call a component STP of a given DTP. It is
easy to see that a DTP D is consistent if and only if it contains at least one consistent
component STP. Moreover, any solution to a consistent component STP of D is aso
clearly an exact solution to D itself.

Definition. A(ninexact) solution to a DTP is a consistent component STP of it. The
solution set for aDTP isthe set of all its solutions.

When we speak of a solution to a DTP, we shall mean an inexact solution. Plans can
be cast as DTPs by including variables for the start and end points of each action.

3 A Dispatch Example

Consider a very simple example of a plan with three actions, P, Q, and R. (For presen-
tational simplicity, we assume each action is instantaneous and thus represented by a
single node). P must occur in theinterval [5,10] and Q in the interval [15,20]; P and
Q must be separated by at least 6 time units; and R must be performed either the inter-
val [11,12] or [21,22]. The plan as described can be represented as the following
DTP. {Cl. 5<P-TR<10v15<P-TR<20; C2. 5<Q-TR<10v15<Q-
TR<20; C3. 6<P-Q<o0ovb6Q-P<ew; C4 11<R-TR<12v21<R-
TR < 22}. (Note that TR, the time reference point, denotes an arbitrary starting
point.) This DTP has four (inexact) solutions: { STPy: Cy1, Cxp Cap, Ca1; STPy Cyy,
C22, Ca2, Caz; STP3! Ci, C1, Ca1, Caz; STP4: Ci, Co1, Ca, Cazl-

Definition: An STP variable x is enabled if and only if al the events that are con-
strained to occur before it have already been executed. A DTP variable x is enabled if
and only if it has a consistent component STP in which x is enabled.

In STP,, both P and R are initially enabled, while in STP; and STP,, Q isinitialy
enabled. Hence, all three actions are initially enabled for the DTP. Enablement is a
necessary but not sufficient condition for execution: an action must also be live, in the
sense that the temporal constraints pertaining to its clock time of execution are satis-
fied. In the current example, none of the actions are initially live. The first action to
becomeliveis P, at time 5. An actionislive during its time window.

107

adamsp
Text Box

Lecture Notes in Computer Science

Definition: The time window of an STP variable x isapair [l,u] suchthat | < x—TR
<u, andforal I',u suchthatl’ < x—TR<U, I'<| andu<u'. Givenaset of
consistent component STPs for a DTP, we will write TW (x,i) to denote the time win-
dow for variable x in thei™ such STP. The upper bound of atime window [l,u] for x
in STP i, written U(x,i), isu. The time window of a DTP variable X is TW (X)=Ujcs
TW (x,i), where Sisthe solution set of D.

The dispatcher can provide information about when actions are enabled and live in
an Execution Table (ET). Thisisalist of ordered pairs, one for each enabled action.
The first element of the entry specifies the action, and the second is a list of the con-
vex intervals in that element’s time window. For our example, then, the initial ET
would be {<P, {[5,10], [15,20]}>, <Q, {[5,10],[15,20]}}>, <R,
{[11,12],[21,22]}>}. The ET summarizes the information in the solution STPs so that
the executive does not have to handle them directly.

The ET provides information about what actions may be performed, but it does not
provide enough information for the executive to determine what actions must be per-
formed. To seethis, note that the ET just given does not indicate that there is a prob-
lem with deferring both P and Q until after time 10. However, such a decision would
lead to failure: if the clock time reaches 11 and neither P nor Q has been executed,
then all four solutions to the DTP will have been eliminated. Thus, in addition to the
information in the ET, the dispatcher must also provide a second type of information
to the executive. The deadline formula (DF) provides the executive with information
about the next deadline that must be met.

In the next section, we explain how to calculate the DF, which is more complicated
than computing the ET. Here we simply complete the example, by illustrating how the
ET and the DF would be updated as time passes. The initial DF would indicate that
either P or Q must be executed by time 10. Suppose that at time 8, action P is exe-
cuted. At this point, STP; and STP, are no longer solutions. The ET then becomes {
<Q, {[15,20]}>, <R, {[11,12],[21,22]}>} and the DF istrivialy “Q by 20" . In
this case, an update to ET and DF resulted because an activity occurred. However,
updates may also be required when an activity does not occur within an allowable time
window. For example, if R has till not executed at time 13, then its entry in the ET
should be updated to be just the singleton [21,22], with no changes required to the DF.
The example presented in this section contains variables with very little interaction.
In general, there can be significantly more interaction amongst the temporal con-
straints, and the DF can be arbitrarily complex.

4 TheDispatch Algorithm

We now sketch our algorithm for the dispatch of plans encoded as DTPs. Thein-
put isa DTP and the output is an Execution Table (ET) and a Deadline Formula (DF).
For each pair <x, TW(X)> in ET, x must be executed some time within TW(X). Itisup
to the executive to decide exactly when. The DF imposes the constraint that F has to

108

adamsp
Text Box

Lecture Notes in Computer Science

hold by time t, where a variable that appears in the DF becomes true when its corre-
sponding event is executed.

The dispatch agorithm will be called in three circumstances: (1) when a new plan
needs to have its dispatch information initialized, at or before time TR; (2) when an
event in the DTP is executed; (3) when an opportunity for execution passes because
the clock time passes the upper bound of a convex interval in the time window for an
action that has not yet been executed. Pseudo-code is provided in Figure 1. Space
constraints preclude detailed description of the algorithm (but see [5]). Here we sim-
ply illustrate the procedure for computing the DF, the most interesting part of the
algorithm.

Recall the example above. Initialy, at time TR, the DTP has four solutions. To
determine the initial DF, we consider the next critical moment, NC, which is the next
time at which any action must be performed. Thistimeis equal to the minimal value
of al the upper bounds on time windows for actions, i.e., it is min{ U(x,i)| x is an ac-
tioninthe DTP, and i isasolution STP}. For instance, in our example DTP, U(P, 1)
=U(P, 2) =10. The actions that may need to be executed by NC are those x such that
U(x,i) = NC for some STP i. We create alist UMIN containing ordered pairs <x,i>
such that U(x,i) = NC. In our current example, UMIN = {<P, 1>, <P, 2>, <Q, 3>,
<Q, 4>}. Now we perform the interesting part of the computation. If <x,i>isin
UMIN , it means that unless x is executed by time NC, STPi will cease to be a solu-
tion for the DTP. It is acceptable for STPi to be eliminated from the solution set only
if there is at least one alternative STP that is not simultaneously eliminated. This is
exactly what the deadline formula ensures. that at the next critical moment, the entire
set of solutions will not be simultaneously eliminated. We thus use a minimal set
cover agorithm to compute all sets of pairs <x,i> in UMIN such that the i values
form a minimal cover of the set of solution STPs. In our example, there is only one
minimal cover, namely the entire set UMIN. Thus, theinitial DF specifiesthat P or Q
must be executed by time 10: <Pv Q, 10>. In general, there may be multiple mini-
mal covers of the solution STPs. in that case, each cover specifies a disjunction of
actions that must be performed by the next critical time. For instance, suppose that
some DTP has four solution STPs, and that attime TR, U (L, 1) =U (L, 2) =U (M, 3)
=U M, 4) =U(N,4) =U(S, 3) =10. Then by time 10 either L or M must be exe-
cuted; additionally, at least one of L or N or S must be executed. The corresponding
DFis<(Lv M)A(Lv Nv S), 10>.

5 Formal Properties of the Algorithm

The role of a dispatcher isto notify the executive of when actions may be executed
and when they must be executed. Informally, we will say that a dispatch algorithm is
correct if, whenever the executive executes actions according to the dispatch notifica
tions, the performance of those actions respects the temporal constraints of the under-
lying plan. Obviously, dispatch agorithms should be correct, but correctness is not
enough. Dispatchers should also be deadlock-free: they should provide enough in-
formation so that the executive does not violate a constraint through inaction. A

109

adamsp
Text Box

Lecture Notes in Computer Science

Initial-Dispatch (DTP D)

1. Find al n solutions (consistent component STPs) to D, calculate their distance
graphs, and store them in Solutions [i]. Associate each solution with its (integer-
valued) index.

2. Setthevariable TR to have the status Executed, and assign TR=0.

3. Compute-Dispatch-Info(Solutions).

Update-for-Executed-Event (STP [i] Solutions)

1. Letxbetheevent that was just executed, at timet.
Remove from Solutions all STPsi for whicht ¢ TW (x,i).
Propagate the constraint t < x — TR < t in al remaining Solutions.
Mark x as Executed.
Compute-Dispatch-Info (Solutions).

akrwn

Update-for-Violated-Bounds (STPJ[i] Solutions)
1. LetU={U (X K|U (x, k) < Current-Time}
2. Remove from Solutions all STPsk that appear in U.
3. Compute-Dispatch-Info (Solutions).

Compute-Dispatch-Info (STP[i] Solutions)

1 For each event x in Solutions

2. {If xisenabled

3. ET = ET U <x, TW(X)>}.

4, Let U = the set of upper bounds on time windows, U(x,i) for each still un-
executed action x and each STP .

5. Let NC, the next critical time point, be the value of the minimum upper

bound in U.

6. Let Uyin ={U(x,)] U(x,i) = NC}.

7. For each x such that U(x,i) € Upn, let Sc={i | U(x,i) € Uyin}

8. {Initialize F = true;

9. For each minimal solution MinCover of the set-cover problem (Solu-

tions, US), let F = F A (V x| st Mincover X)-
10. DF =<F, NC>.}

Figure 1. The Dispatch Algorithm

third desirable property for dispatchersis maximal flexibility: they should not issue a
notification that unnecessarily eliminates a possible execution, i.e., an execution that
respects the constraints of the underlying plan. Finally, we will require dispatch algo-
rithms to be useful, in the sense that they really do some work. Usefulness will be
defined as producing outputs that require only polynomial-time reasoning on the part
of the executive. Without a requirement of usefulness, one could achieve the other
three properties by designing a DTP dispatcher that simply passed the DTP represen-
tation of a plan on to the executive, letting it do all the reasoning about when to exe-
cute actions.

110

Lecture Notes in Computer Science

Our dispatch agorithm has these four properties, as proved in [5]. The proofs de-
pend on a more precise notion of how the dispatcher and the executive interact. The
dispatcher issues a notification sequence, a list of pairs <ET,DF>; . . . ,<ET,DF>,,
with a new notification issued every time an event is executed or an upper bound is
passed. The executive performs an execution sequence, alist x;= ty, ..., X,=t, indi-
cating that event x; is executed at time t;, subject to the restriction that j>i = t;> t;.
An execution sequence is complete if it includes an assignment for each event in the
original DTP; otherwise it ispartial. The notification and execution sequences will be
interleaved in an event sequence. We associate each execution event with the preced-
ing notification, writing Notif(x) to denote the notification of event x;.

Definition. An execution segquence E respects a notification sequence N iff

1. For each execution event x=t;in E, <x, TW (x)> appearsin ET of Notif (x) and
tie TW(x), i.e., each event is performed in its allowable time window.

2. Foreach DF=<Ft>inN, {X|x =t € Eandt; <t} satisfiesF. That is, the execu-
tion sequence satisfies al the deadline formulae.

Theorem 1: The dispatch algorithm in Fig. 1 is correct, i.e., any complete execution
sequence that respects its notifications also satisfies the constraints of D.

Theorem 2: The dispatch algorithm in Fig. 1 is deadlock-free, i.e., any partial execu-
tion that respects its notifications can be extended to a complete execution that satis-
fiesthe constraints of D.

Theorem 3: The dispatch algorithm in Fig. 1 is maximally flexible, i.e., every com-
plete execution sequence that respects the constraints in D will be part of some com-
plete event sequence.

Theorem 4. The dispatch algorithm in Fig. 1 is useful, i.e., generating an execution
sequence is polynomial in the size of the notifications.

References

1 Muscettola, N., P. Morris, and |I. Tsamardinos. Reformulating Temporal
Plans for Efficient Execution. in Proceedings of the 6th Conference on Principles of
Knowledge Representation and Reasoning. 1998.

2. Tsamardinos, I., P. Morris, and N. Muscettola, Fast Transformation of Tem-
poral Plans for Efficient Execution, in Proceedings of the 15th National Conference
on Artificial Intelligence. 1988, AAAI PressMIT Press. Menlo Park, CA. p. 254-261.
3. Wallace, R.J. and E.C. Freuder, Dispatchable Execution of Schedules Involv-
ing Consumable Resources, in Proceedings of the 5th International Conference on
Artificial Intelligence Planning and Scheduling. 2000.

4, Dechter, R., |. Meiri, and J. Pearl, Temporal Constraint Networks. Artificial
Intelligence, 1991. 49: p. 61-95.
5. Tsamardinos, |., Constraint-Based Temporal Reasoning Algorithms, with

Applications to Planning. 2001.

111

APPENDIX F

A Schemefor Integrating E-Servicesin Establishing Virtual Enterprises’

Alan Berfield, Panos K. Chrysanthis
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260, USA
{alandae,panos} @cs.pitt.edu

Martha E. Pollack

Department of EE and Computer Science

University of Michigan
Ann Arbor, MI 48109, USA
pollackm@eecs.umich.edu

Abstract

An important aspect of Business to Business E-
Commerceisthe agile Virtual Enterprise (VE). VEs are es-
tablished when existing enterprises dynamically form tem-
porary alliances, joining their business in order to share
their costs, skills and resources in supporting certain activ-
ities. Currently, existing enterprises use workflows to auto-
mate their operation and integrate their information systems
and human resources. Thus, the establishment of a VE has
been viewed as a problem of dynamically expanding and in-
tegrating workflows. In this paper, we present an approach
to combining workflows from different enterprises, using
techniques developed in the Artificial Intelligence literature
on planning. Our method takes two workflow views, one
representing a service request and the other a service provi-
sion (advertisement), with a mix of vital and nonvital steps
and arich set of constraints, and returns a list of possible
legal combinations, if any exist. It then uses plan-merging
techniquesto find potential conflicts between the two work-
flows, and to suggest additional constraintsthat can resolve
the conflicts. The returned solutionsrepresent terms for the
establishment of a new VE, and can be evaluated by each
side to determine which is most desirable.

*This material is based upon work partially supported by NSF 1I1S-
9812532 and AFOSR F30602-00-0547 awards.

f0n Leave of Absence at Hewlett-Packard Laboratories, MS 1U-17,
Palo Alto, CA 94304, USA.

loannis Tsamardinos
Intelligent Systems Program
University of Pittsburgh
Pittsburgh, PA 15260, USA
tsamard@cs.pitt.edu

Qujata Banerjeef
Info. Sci. & Telecom. Dept.
University of Pittsburgh
Pittsburgh, PA 15260, USA
sujata@tele.pitt.edu

1. Introduction and Motivation

Electronic Commerce is expanding from the simple no-
tion of E-Store to the notion of Virtual Enterprises (VES)
where existing enterprises dynamically form temporary al-
liances, joining their business in order to share their costs,
skills and resources in supporting certain activities. An ex-
ample of aVE in the context of the travel industry would be
the collaboration of different travel agents, airliners, ground
transportation services, hotels, restaurants and entertain-
ment services in order to set up and manage a tourism trip.

Many enterprises use workflows to automate their oper-
ation and integrate their information systems and human re-
sources[19]. A workflow consists of a set of activities (also
called tasks) that need to be executed according to given
temporal constraints over a combination of heterogeneous
database systems and legacy systems. A major challenge
has been the devel opment of wor kflow management systems
(e.g., [9, 5, 13, 1]). Severa techniques have been devel-
oped for correct and reliable specification, execution, and
monitoring of workflows and the involved external support.
Many of these techniques are extensions of those in transac-
tion processing in databases combined with general middle-
ware services such as those found in CORBA/DCOM and
more recently in Java-based services such as Jini from Sun
and E* Speak from HP.

Very recently the idea of the use of workflows to sup-
port multi-organizational processes that form a virtual en-
terprise has attracted some attention [10, 6, 8]. The estab-
lishment of a VE can be seen as a problem of dynamically
expanding and integrating workflows in decentralized, au-
tonomous and interacting workflow management systems

112

[2, 7, 12]. During the establishment of a VE, a distributed,
multi-organizational workflow emerges from the dynamic
merging and reconfiguration of workflows representing E-
Services in the participating enterprises. In our previous
work, we looked at using mobile agents as a platform for
advertising, negotiating, and exchanging control informa-
tion about E-Services for the establishment of VE's[6]. In
this paper, we focus on amethod for verifyingthat the VE is
compatible with workflowsin the participating enterprises.

The contribution of this paper is a new method for es-
tablishing VESs, involving both the generation of outsourc-
ing requests and the validation of constraints. The scheme
incorporates techniques developed in the Artificial Intelli-
gence (Al) literature on planning, specifically algorithms
for merging temporal plans. Within the Al literature, a plan
is a collection of steps (i.e., tasks), with causal, temporal,
and resource constraints. A plan is intended to represent a
course of action that will achieve a specified goal when ex-
ecuted beginning in a specified initial state. Critical to the
notion of plansis that of causal structure: the stepsin each
plan are specified intermsof their preconditionsand effects,
and the plan records information about which steps cause
(or establish) the preconditions of other steps. When merg-
ing together two plans, it is necessary not only to check that
there are no violations of the temporal and resource con-
straints of the plans being merged, but also to ensure that
the necessary causal relations are maintained in the merged
plan. We argue in this paper that similar consistency re-
quirements also hold when a VE is formed.

In the next section, we review the basic structuresused in
workflows. In particular, we describe a class of workflows
that include specifications of preconditions and effects. In
Section 3, we describe a VE and its components. Section 4
describes our detailed scheme for establishing such a VE.
Section 5 deal swith the current state of our implementation.
We conclude with a summary in Section 6.

2. Wor kflow M odel

Workflows encode tasks and the relationships among
them. Workflow specification formalisms generally provide
asmall set of basic control flow relationships among tasks.
Typically there are four such relationships: OR-split, AND-
split, OR-joinand AND-join. Thefirst two relationshipsare
used to specify branching decisions in a workflow whereas
the remaining two specify points where activities converge
to initiate the next activity within a workflow. An OR-join
specifies alternatives whereas AND-join specifies required
activities.

While the relations just listed provide information about
the relative ordering of the tasks in a given workflow, to
handl e the problem of forming Virtual Enterprises, itisalso
necessary for the workflow to model a significant amount

of information about each task. Thus, we will assume an
enriched model of workflows in which each task has the
following information associated with it:

e Pre- and postconditions, which specify what must be
true before a task can be executed, and what will be
made true as a result of the task’s performance.

e Causal links, which relate each task that establishes a
condition (listed in its postconditions) to the task that
requiresit (listed in its preconditions).

¢ In- and out-parameters, which are used in the evalu-
ation of preconditions and postconditions. They carry
information and engender data flow during execution.
For example, a credit card number could be an in-
parameter to a“ pay for dinner” task.

e Temporal Constraintsthat specify the earliest and lat-
est start and end times of atask, aswell as the minimal
and maximal durations of the task. They can be abso-
lute times or relative to the execution of other tasks.

e Resource Constraints, which specify the equipment,
material, or agent resources required for the task.

e Sgnificance, which indicates whether the task is vi-
tal to the workflow and therefore must be executed,
or whether it is nonvital, and need only be executed if
feasible [6].

e Cost, which represents the price of the task.

Other information may also be associated with each task,
such as rules for exception handling should the task fail.
However, we will not be concerned with these types of in-
formation in the current paper.

As shown in Figure 1, a workflow can be graphicaly
depicted with nodes (thick boxes) denoting activities and
arrows denoting precedence. The figure represents a busi-
ness trip from [15]. Shaded nodes indicate vital activities
that must be completed to ensure proper execution. Nodes
with a pair of dashed linesleading to another workflow are
hierarchical activities: those that can be decomposed into
workflows themselves. AND-splitsand AND-joins are rep-
resented implicitly when two or more causal links emanate
or arrive at a node respectively. To represent OR-splits we
insert a conditional node that creates two new execution
contexts (branches), e.g., one for success and onefor failure
(in Figure 1, these are shown as nodes with edges labeled S
and F). Tasks are executed only when their context is true.
The OR-joinis represented implicitly when the context S or
F disappears from the [abels of subsequent edges.

We are assuming a typical Workflow Management Sys-
tem (WfMS) architecture with our enriched model of work-
flows. Specifically, aWfMS consists of the following three
basic components:

113

E Check National |_F
Check Avis P | car Not Avail.ﬂhlel

Car Reserved

F Room Not Available

Check Maxim

Room Reserved

Check Delta

Seat Reserved

Payment Not Made

Payment Made

Figure 1. Trip Plan Workflow

¢ Workflow Schema Library, which contains workflow
schemas or templates and generic constraints.

e WIMS Services, functions provided by the WFMS for
managing workflows. These include specifying work-
flows, verifying their correctness, instantiating and
scheduling them, executing them, and monitoringtheir
execution.

o \Workflow Repository, which contains al instantiated
and scheduled workflows, i.e., the workflows the busi-
ness is committed to performing.

3. Forming Virtual Enterprises

A Virtual Enterprise (VE) isformed when a business de-
cidesto commit to a new workflow, while outsourcing some
of the work involved in that workflow. Consider the exam-
ple of Jane Smith, an executive planning a trip to Vienna
She gets in touch with a travel agency to arrange the trip.
She decides that while she is there she would like to attend
an opera and tour the Art Museum. This adds the nonvital
nodes “buy opera ticket” and “buy museum tour ticket” to
the trip schema (Figure 1). The travel agency lacks connec-
tions with the entertainment/opera industry, so is unable to
purchase such tickets. In order to satisfy the customer, they
decide to outsource those tasks.

The above exampl e represents a common reason for out-
sourcing. When a business receives a new request from a
client, it takes the form of an instantiated workflow schema
from its Workflow Schema Library. The client may have
added constraints and/or customized the schema by adding

114

new nodes, which could represent extra or special activi-
ties and opportunities. The business may select some of the
tasks from the workflow to outsource and/or it may select
some of the open conditions from the workflow and out-
source their achievement. This outsourcing establishes a
VE.

In our VE workflow specification, we use the notion of
views to express outsourcing. Any subgraph of a workflow
graph defines a segment or a view of the workflow. For-
mally, aworkflow view can be defined as a projection on the
graph based on some criteria (projection(work flow, <
criteria >)). For example, consider the view that includes
al and only the vital nodes of the full workflow. The re-
quirement that nodes be vital isthe criteria used by the pro-
jection.

VitalView = projection(work flow, {a |

a € work flow A a.significance = vital})
Thenodesinaview retain al information of their originals,
including all constraints. However, because all constraints
are maintained, a view may have nodes that have temporal
constraints referring to other nodes not actually in the view,
and may also have broken causal links possibly resultingin
unsatisfied preconditions(i.e., anodein the view could have
a precondition that was established by some nodein the full
workflow that is not in the view).

A workflow view can represent any activity performed
by a service provider on behalf of a service requester. Con-
sequently, workflow views can be used to express service
requests or service provision (advertisement). In our pro-
posed system, it is these workflow views that are being re-
quested and advertised.

In our scheme, arequest has the following structure:

Requests: Rq = (P, G, RW)
where P = Service Reguester Profile,
G = set of Goals,
RW = Requested Workflow View

The profile can contain various information about the re-
guester, such as name, site identification, credentials, etc..
It may also contain a target price range. The set of goals
is a list of al goals (postconditions) that need to be ac-
complished. The workflow view captures all temporal con-
straints and resource usage issues involved.

In the example above, the request includes the profile of
the travel agency, the goals “opera ticket purchased” and
“museum ticket purchased”, and a view with two nodes that
indicate times by which the tickets must be purchased.

A requested workflow view can be potentially aug-
mented during negotiation to match the service provider's
workflow, reflecting opportunities, omitted activities and
data. During a negotiation we may decompose the required
view into several views and seek other service providersfor
the other parts of the view. In thisway, a single initia re-
quest may lead to the establishment of a VE comprising
multiple enterprises. A VE comprising multiple enterprises
can also result when a service provider'sview includes out-
sourcing. We will elaborate on thisin the next section.

The structure of an advertisement isthe same asthat of a
request.

Advertisements: Ad = (P, G, AW)
where P = Service Provider Profile,
G = set of Goals,
AW = Advertised Workflow View

It includes a profile, the set of goals accomplished, and a
workflow view encompassing constraints. The profile, in
addition to other information, may contain cost information
for the workflow as a whole, such as minimum cost, maxi-
mum cost (cost with all nonvital steps), or both. The list of
goalsindicates what the advertised workflow actually does,
and may also include goals associated with nonvital activ-
ities. Such advertisements will typically be stored in the
databases of trading servers. Each provider may have a set
of advertisements with the same goals but with a different
associated workflow view (i.e., different constraints).

To return to our example, an advertisement that would be
of interest to the travel agency would be for a business that
speciaizes in Vienna cultural events, including opera. The
single goal “opera ticket purchased” is accomplished. Its
workflow view includes the tasks “contact opera houses’,
“read current reviews’, and “ purchase ticket.”

The VE environment is a distributed environment. [t
consists of multiple businesses, acting as requesters and
providers, using services provided by negotiation areas or
trading places. The trading places could contain databases

115

of advertisements and could provide services allowing busi-
nesses to both place advertisements and to find advertise-
ments that meet their goals. Standardization of represen-
tation is clearly required (particularly of preconditions, ef-
fects, and goals), and could be enforced by the trading
servers. A portion of thisenvironment is shown in Figure 2.
Two negotiation areas are depicted, as well as four busi-
nesses WfMS. Shaded nodes again represent vital activi-
ties, and an advertised hierarchical Opera activity is shown
partially expanded.

3.1. Commitment and Outsourcing Request
Generation

In order to commit anew, possibly customized workflow,
aWfMS needs to make surethat it is schedulable. A work-
flow is schedulableif it iscorrect, complete, and compatible
with existing commitments.

Definition 1 Workflow Correctness: A workflow is cor-
rect if and only if

1. it hasno conflicting temporal or resource constraints,

2. for each goal/precondition P, there is a task that
achieves P (the producer task), and it is ordered be-
fore the task that requires it (the consumer task), and

3. for each goal/precondition P, no task that may negate
P can possibly be ordered in between the producer and
the consumer.

This notion of correctness is important as only correct
workflows can possibly be executed. Note that some work-
flows may contain preconditionsthat are assumed to be es-
tablished independently of the workflow itself. We will call
such preconditions open with respect to the workflow. A
simple example of such an open precondition is a work-
flow for renting a car that assumes the precondition of hav-
ing a driver'slicense. Workflows with such open precondi-
tionsareincorrect until they have been combined with other
workflowsthat establish all open preconditions.

Definition 2 Workflow Completeness: A complete work-
flow is a workflow that specifies all tasks needed to achieve
its goals and preconditions.

Definition 3 Workflow Compatibility: A workflow is
compatible with another if none of its nodes conflict with
any of the other’s (and vice versa).

Thismeansthat the temporal constraints, resource usage,
and postconditionsof its nodes do not prevent the execution
of the nodes in the other workflow (though they may place
[imits on when those nodes can be executed). So for ex-
ample, a compatibility conflict between workflows arises if

Requester

Requester

'WF-5chema

WIMS
Services

WF
Repository

Negotiation Area

Negotiation Area

Provider

Provider

1 'WF-Schema
(Advertised)

WIMS
Services

WF
Repository

Figure 2. VE Environment

two tasks that use the same resource (e.g., equipment) are
set to execute at the same time. Another example is atask
that dictates that a robot move to the printing room for the
purpose of getting a faxed itinerary, which conflicts with a
task that moves the robot to another room that could be ex-
ecuted after going to the printing room but before fetching
the fax.

An dternative definition of the compatibility of two
workflows is that the workflow resulting from their union
is correct. We propose the notion of a merge with the
Workflow Repository for determining the compatibility of
a workflow with the currently scheduled workflows (in the
Repository). If the merge is successful, the new workflow
can be committed and its execution enabled. If the mergeis
unsuccessful, the new workflow is not compatible and the
business may consider outsourcing.

An effective merging process will check whether the
above requirements (correct, complete, and compatible) are
met, and will indicate where problems lie: what nodes are
conflicting with others, which have unsatisfied (open) pre-
conditions, or which the business lacks the necessary ex-
pertise (i.e., roles as resources) to accomplish. It may also
suggest additional temporal or resource constraints that are
required to ensure that they are met. However, it'sdesirable
toimpose aminimal set of extra constraints, i.e., to provide
aleast-commitment response, asthisallowsincreased flexi-
bility to respond to changes that may arise during execution.

The merge process can also be used to identify and con-
struct outsourcing requests. In the event of an unsuccessful
merge, any nodes from the new view that are indicated as
problems by the merging process (those having irresolvable

116

resource conflicts with existing commitments) will form
part of the requested workflow view VRq by extracting them
from thefull workflow using projection. In additionto these
nodes, for each open preconditionin the new view not sat-
isfied by the existing commitments (such preconditionswill
be found by the merge process), a new place-holder nodeis
added to theview. Each of these new nodes represents atask
that accomplishes one of the open preconditions, i.e., it has
one of the open preconditions set as its postcondition, and
any associated temporal and causal links are applied. The
complete set of postconditions of every node in VRg make
up the goal set of the request, G. In the simplest case VRq
would be a single node, with associated constraints. More
complex cases wouldinvolve multiplenodes and richer con-
straints.

Recall that projected nodes maintain all constraints and
conditionsthey had in the parent workflow, and may there-
fore include unsatisfied preconditions and tempora con-
straintsreferring to nodes not inthe view. Thisis not really
aproblem asthey will be satisfied by non-outsourced nodes.
The preconditions, along with in-parameters, represent the
input to the outsourced view. Goals and out-parameters of
the outsourced nodes represent the output.

4. Outsourcing Scheme

Inthissection, wediscussindetail the stepsfor outsourc-
ing and establishinga VE.

Let R be a Requester and P be a set of providers
{P1,..., P,}. R has a set of workflows to which it is al-
ready committed, and which it storesin the WF Repository;

let us call them CR (commitment workflows at requester).
Similarly, each P; hasaset of workflows already committed
to; let us call them C'P (7).

Let R¢ = (R, G,VRq) be arequest of R for outsourcing
with goals ¢ = {G}, ...G), } and workflow view VRq. Each
P; can provide a set of aternative workflow views A(F;)
for achieving one or more ;5 of Ry.

The problem of outsourcing ishow to pick aset of work-
flow views S from the A(P;) of one or more P; so that the
combined set satisfies Rg and merges with CR, and each
A(P;) init merges with its provider's C'P(i). Specifically,
such a set achieves all goals of the outsourced workflow, al
temporal constraints are satisfiable, there are no resource
conflicts, and for every precondition of every workflow ac-
tivityin CRand C' P(#) thereexists acausa dependency that
ensures that the precondition will be met.

Formally, wewant aset S= wf; U wfy, U wfs U..U
wf,, wherewf; € |, A(Pi), j =1,...,n such that

e postconditions(S) D G
(al outsourcing goals are met)
e Ywfy € S postconditions(wfy) NG £ ¢
(each workflow achieves at least one goal)
e compatible(S, CR)
(Siscompatible with the requester’s commitments)
e Yuwf, € A(Py) compatible(wfy, CP(y))
(each alternative workflow is compatible with its
provider's commitments)

The above suggests a solution that has three phases:

1. Finding a set of alternative workflowsthat satisfy Rq
(Terms for the Establishment of a VE)
2. Checking for the satisfaction of C'P(7)
(Providers Validation of Terms and E-Service Bids)
3. Check for the satisfaction of R
(E-Service Bid Evaluation)

We elaborate on these phases in the next subsections.
4.1. Phase 1. Termsfor the Establishment of a VE

As mentioned previously, we assume in this paper that
finding alternative workflow views that satisfy a request Rg
is a service provided by trading servers. Each aternative
view represents a term for the establishment of a VE. Dur-
ing this first phase the sets A(F;) of aternative workflow
views are generated. These views accomplish the goas ¢
of Rq whilenot violatingany of itsconstraints. For the sake
of simplicity, we will assume in the rest of our discussion
that there is only one trading server.

The service searches the database of the trading server,
looking for advertisements that meet some or all of the re-
quested goals. Which advertisements are examined first de-
pends on the selection conditions being used. One such

condition would include the desirability of first consider-
ing those that accomplish al goals, and only considering
multiple, partial matches when all such are found. For each
advertisement found and selected, the server must finally
determineif it or any of its aternatives (involving different
combinations of nonvital nodes) can meet the constraints of
the request. This process continues until all advertisements
that meet any goals have been examined, or some termina-
tion criteriaare met (such as a deadline for search time).

For the detailed explanation, we will consider one such
advertisement found and selected by the trading server that
accomplishes al goalsin G; let uscall it Ad1.

Asshownin Figure 3, the service must determineif Ad1
will satisfy the constraints in the request’s workflow view
Rq. Todothis, Ad1 and Rq are first stripped down to only
vital nodes using projection. Temporal constraints of the vi-
tal nodes may need to be adjusted, as any referring to non-
vital nodes will be invalid. For any node that has such a
constraint, there are four possible situations:

1. The nonvital node referred to has no constraints on its
time! : the constraint on the vital node can be dropped.

2. The nonvital node has an absolute time: that time can
be used.

3. The norvital node has a time relative to some other
vital node: the reference to that node can be used.

4. The nonvital node has a time relative to some other
nonvital node: that nonvital must be searched in the
same fashion for atime or vital node reference.

It may be beneficial to instead store such aternative con-
straints with the vital nodes in order to save computational
time, though the number of norvital nodes is likely to be
small.

Next the service attempts to bind the constraints of the
vital-only view of Rg (called RqV in the figure) to the
stripped view of Ad1 (AdV in the figure). Binding adds
the constraints of the requested nodes to the corresponding
nodes in the advertisement (those that have the same post-
conditions). If AdV cannot support the added constraints
(because they conflict with existing ones), the bind failsand
the function must backtrack to find a different advertise-
ment. Otherwise, the new bound advertised view BV is
added to A(P;), where P; is the provider of BV, and the
search continuesfor itsvariants that include nonvital nodes.

The search for variantsof BV considers combinations of
BV and nonvital nodes from the full Ad1 and Rq. Thiscan
be achieved by the function addNodes, that adds a group of
nodes to the workflow BV, restoring any modified temporal
constraints that referred to them. Thisis basically a merge
process. The addNodes function fails and returns null if the

1 By “time” we mean either start or end time of the task, depending on
which the specific temporal constraint refers to.

117

resulting view is incorrect (i.e., the new nodes cannot be
added without violating constraints). If the function does
not fail, the resulting view is added to A(P;).

It isinteresting to point out that there is another possible
method for this search: working in the other direction, start-
ing by adding back all nonvitalsand then removing them to
find correct aternatives. It is not clear which approach is
better, but we intend to investigate this in future work.

In either case, the search will proceed until all possible
combinations have been attempted or some other termina
tion criteriahave been reached. Asmost views are expected
to have 3 or fewer nonvital steps, finding all possible com-
binations is not likely to be impractical. Once the search
hasfinished, A(F;) contains every alternative workflow so-
[ution for the workflow Ad1.

The service generates a set A(F,) for each P; with at
least one selected advertisement. The A(F,)'s created in
thisfashion are now sent out to their respective provider for
validation.

4.2. Phase 2: Providers Validation of Terms and
E-Service Bids

The second phase of the outsourcing takes place at the
providersof the advertisements. Each P, receivesthe A(F;)
generated for it in the previous phase, and must determine
whether any of the workflow viewsin A(P;) are compatible
with its C'P(¢). Each alternative basically represents a po-
tential new incoming workflow to be scheduled. Recall that
such scheduling can be accomplished using the merge pro-
cess. Thus, the provider attempts to merge each alternative
with C'P(7) independently. Any that fail are removed from
A(P;). Those that succeed can be kept to form the basis for
the service bid. Of course, if A(F;) isempty at the end of
this phase, then none of the views were compatible with the
provider's commitments.

To generate the full service bid, each view remaining in
A(F;) could possibly be expanded into multiple views if
the provider wishes to add additional nonvital nodes (repre-
senting special offers or bonuses). Note that such additions
would likely increase cost, but would possibly also increase
value. The provider may also rank the solutionsin order of
preference or cost to help the later decision process.

Each provider sends its service bid to the requester to be
evaluated in the next phase.

4.3. Phase 3: E-Service Bid Evaluation

In the third phase, the requester evaluates and selects an
E-Service bid. Of the views in the service bids returned
by the providers, the requester must determine which are
compatible with its CR. This is done in exactly the same
fashion as with the providers.

118

Each service bidin the returned list is combined with the
rest of the origina workflow to form a complete solution.
For each solution, a merge is attempted with the commit-
ted workflows. Any that fail to merge are discarded. Those
that successfully merge are correct views that each accom-
plish the outsourcing and that are compatible with both the
provider’'s and regquester’s previous commitments.

The requester may then evaluate these remaining views
to make afinal decision asto which onewill be used, which
likely involves cost comparisons.

4.4. M ultiple Partial-Solution Views

In the previous discussion, we assumed the simplest case
where there exist advertised views that accomplish al the
goals of the request. However, in many cases there may
be no single advertisements that accomplish them all. This
would require views from multiple advertisements to be
combined in order to meet the requester’sneeds. In order to
handle these cases, the described first and third phases need
to be enhanced.

For example, in Phase 1, the search for alternatives must
also search for combinations of advertisements that accom-
plish al goals. The merge process can be used again to ver-
ify that these combinations of advertisements are compat-
ible with each other in addition to meeting the constraints
of the request. For combined views belonging to a sin-
gle provider, the combination (and its alternatives involving
nonvital nodes) are grouped together as asingle view.

The requester in Phase 3 must be aware that returned
views do not necessarily accomplish all goads. Any E-
Service bids that only satisfy some of the goals must be
combined with other returned viewsto form compl ete solu-
tions.

5. Implementation

In our previous work, we proposed to use mobile agents
as a platform for establishing VE's [6]. Our goal istoim-
plement our scheme described in the previous section on
this platform. The idea is to use mobile agents to per-
form the phases of the scheme. The requester dispatches an
agent with itsrequest. The agent visits trading servers, and
spawns copies of itself to deliver alternatives to different
providers. It then gathers al returned service bids together
and deliversthe results back to the requester.

A core concept in our scheme for integrating E-Services
isthe merge process. It is thisprocess that verifies whether
or not different workflow views are compatible with each
other. It is aso responsible for adding nonvital nodes to
views and verifying that a view is compatible with a busi-
ness existing workflow repository. The merge process can
even be used to generate the outsourcing regquests.

Repest

e Adl = Ad € DB | < selection condilions >

e BV = bind(AdV, RqV)
¢ Repeat

— Bz = addNodes(BV, Nodes)
— IfBx # null - A(P;) = A(F;) U Bz

o AdV = projection(Adl, {a |a € Adl A a.significance = vital})

e RqV = projection(Rq,{a | a € Rq A a.significance = vital})

— Nodes = projection(Adl, selected nonvital € Adl) U projection(Ryq, selected nonvital € Rq)

o Until al combinations of nonvitalsfound or termination criteria met

Until all Ads found that meet < selection conditions > or termination criteria met

Figure 3. Service For VE Terms

Merging is not a trivial problem. It can be formulated
as a Constraint Satisfaction Problem or CSP, with tem-
poral features. The process must consider temporal con-
straints, resource usage, and causal links (preconditionsand
effects). There has been a great deal of research done on
similar problems by the Artificial Intelligence community
[14, 17, 20]. A number of formalizations have been de-
veloped for variations with more or less expressivity. The
two that most closely match our problem are the Disjunctive
Tempora Problem (DTP) and the Conditional Disunctive
Temporal Problem (CDTP).

For solving DTPs we have developed and implemented
a new agorithm called Epilitis[16], along with algorithms
that convert CDTPs to DTPs so that they may be solved by
it as well. Epilitis builds on plan merging techniques used
inatool called PMA (Plan Management Agent) [18]. Epili-
tisintegrates a number of techniques for pruning the search
space, some of which are Conflict Directed Backjumping,
Removal of Subsumed Variables, Semantic Branching, and
no-good learning. Epilitisis currently the most efficient al-
gorithm for solving such problems, as experimental results
have shown that it is two orders of magnitude faster than
the previous state-of -the-art solver, on synthetic benchmark
problems.

In the prototype system we are currently devel oping, we
will use Epilitis for the merging process at the WM S and
the trading servers. The representation that Epilitis expects
isnearly identical to our enhanced model of workflows; the
mapping between the two is trivial. Merging with Epilitis
hasall the propertiesdiscussed in Section 3. Any conflicting
tasks are identified with explanation, and a minimal number

119

of constraints are added. Plans with digjunctive temporal
constraints are supported (for added flexibility), and dupli-
cate nodes can be identified and pruned/combined.

Epilitis does not support the notion of significance (vi-
tal vs. nonvital tasks). However these are implemented
in the higher-level layer that performs the phases of our
scheme. Only this layer is aware of the vital/nonvital dis-
tinction. (This is the cause of some of the complexity in
the search for alternatives, as al the different combinations
of nonvitals must be attempted separately.) This layer also
serves to interface Epilitis with a relational DBMS using
Microsoft Access and MySQL that will be used to imple-
ment the Workflow Repositories.

The current version of Epilitisiswrittenin LISP, but us-
ing JLinker we have interfaced it to therest of our prototype
which isbeing developed in Java. The new version of Epili-
tis currently being developed will be in Java as well.

6. Conclusions

We are concerned with integrating E-Services for the es-
tablishment of a VE, where such services are represented
with workflows. We have therefore created algorithms that
make use of existing plan merging and temporal reasoning
algorithms from the Al literature. Our scheme is sound, in
that the workflows it returns as possible merge candidates
are guaranteed to be correct. It is aso complete, in that it
will find all such candidates, given sufficient time. It further
ensures that the merge candidates are compatible with all
businesses involved inthe VE. It can create the outsourcing
requests based on identified conflicts, handle any number of

nodes and workflowsto be outsourced, and isflexiblein that
it can build a VE using multiple providers, each with their
own set of constraints. Our scheme al so takes into consider-
ation that workflows have both vital and nonvital steps, and
appropriately considersthemin its search.

In our proposed system, the merging processis built with
existing Al algorithms. The specific algorithm, Epilitis, is
the best algorithm available at thistime. It has been imple-
mented and is a fully functional and working plan merging
tool. Currently we are developing our prototype system.
Our goal is to evaluate its performance in terms of speed
and memory usage. Another area we intend to explore is
its use as a plan/workflow repair system that would replace
broken or invalidated nodes or views with alternatives, pos-
sibly located in different databases on various machines.

Recently, there have been a variety of platforms devel-
oped with business to business E-services and Virtual En-
terprisesinmind. E*speak [3] from HP, VorteXML [4], and
CrossFlow [11] are examples. These systems provide vari-
ous features for managing and monitoring VE's, along with
some standards for communication. Such systems could
potentially be augmented or used conjunctively with our
scheme for automated VE establishment. We will investi-
gate such possihilitiesas part of our future work.

References

[1] Alonso G., D. Agrawal, A. El Abbadi and C. Mohan.
Functionalities and Limitations of Current Workflow
Systems. |EEE Expert, 12(5), 1997.

[2] Casati F, S. Ceri, B. Pernici and G. Pozzi. Workflow
Evolution, Data & Knowledge Engineering, 24(3):
211-238, 1998.

[3] Casati F. and M. Shan. Definition, Execution, Analy-
sis, and Optimization of Composite E-Services. Bul-
letin of the Technical Committee on Data Engineering,
24(1):30-35, 2001.

[4] ChristophidesV., R. Hull, A. Kumar, and J. Simeon.
Workflow Mediation using VorteXML. Bulletin of the
Technical Committee on Data Engineering, 24(1):41—
46, 2001.

[5] ChrysanthisP. K.. Guest Editor’s Introduction to Spe-
cia Issue on Workflow Systems. Distributed Systems
Engineering, 3(4):211-212, 1996.

[6] ChrysanthisP, T. Znati, S. Banerjee, S. Chang. Es

tablishing Virtual Enterprises by means of Mobile
Agents. Research Issuesin Data Engineering, 1999.

[7] Cichocki A. and M. Rusinkiewicz. Migrating Work-
flows. Workflow Management Systems and I nteroper-
ahility, A.Dogac et a. (Eds)Springer Verlag, SeriesF,
Vol 164, pp. 339-355, 1998.

[8] Davulcu H., M. Kifer, L. R. Pokorny, C. R. Ramakr-
ishnan, 1. V. Ramakrishnan, and S. Dawson. Model-
ing and Analysisof Interactionsin Virtual Enterprises.
Research Issuesin Data Engineering, 1999.

[9] Georgakopoulos D., M. Hornick and A. Sheth. “An
Overview of Workflow Management: From Process
Modeling to Workflow Automation Infrastructure.”
Distributed and Parallel Databases, 3(2), 1995.

[10] Georgakopoulos D., H. Sinha, K. Huff and B. Hur-
witz. “Monitoring Multi-organizational Processes”
Proc. of the 11th Int'l Conf. on Parallel and Dis-
tributed Computing Systems, pp. 75-80, 1998.

[11] Grefen P, K. Aberer, H. Ludwig, and Y. Hoffner.
CrossFlow: Cross-Organizational Workflow Manage-
ment for Service Outsourcing in Dynamic Virtual En-
terprises. Bulletin of the Technical Committee on Data
Engineering, 24(1):53-58, 2001.

[12] Han Y. and A. Sheth. On Adaptive Workflow Model-
ing. Proc. of the 4th Int’| Conf. on Information Systems
Analysis and Synthesis, pp. 108-116, 1998

[13] Jablonski S. et al. Externa and Internal Support Ser-
vices in Workflow Management Systems. Proc. of the
11th Int’l Conf. on Parallel and Distributed Comput-
ing Systems, pp. 81-86, 1998.

[14] V. Kumar. Algorithms for Constraint-Satisfaction
Problems: A Survey. Al Magazine, 13(1):32-44,
1992.

[15] Ramamritham K. and P. K. Chrysanthis. Advances
in Concurrency Control and Transaction Processing,
|EEE Computer Society Press, 1997.

[16] Tsamardinos |. Constraint-Based Temporal Reason-
ing Algorithms with Applicationsto Planning. Ph.D.
Thesis. University of Pittsburgh Intelligent Systems
Program, 2001

[17] Tsamardinos I., M. E. Pollack, et al. Merging Plans
with Quantitative Temporal Constraints, Temporally
Extended Actions, and Conditional Branches. Artifi-
cial Intelligence Planning and Scheduling (AIPS 00),
Breckenridge, Colorado, USA, 2000

[18] Tsamardinos I., M.E. Pollack, et al. Adjustable Au-
tonomy for a Plan Management Agent. AAAI Spring
Symposiumon Adjustable Agents., 1999.

[19] Workflow Management Coalition, Technology &
Glossary, Document Number WFMC-TC-1011, June
1996.

[20] Q. Yang. Intelligent Planning: A Decomposition and
Abstraction Based Approach. Springer, 1997.

120

