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Abstract 

 
 
 

The Air Force Institute of Technology, in conjunction with the Structural Health 

Monitoring branch of the Air Force Research Laboratory, is researching methods of 

determining effects of notch location and size on beam structures using modal frequency 

analysis.  This thesis explores the ability to detect included notches of varying 

magnitudes and locations within the frequency domain of an isotropic cantilever beam. 

A series of experiments employing centerline-notched 2024 T3 and 2024 O 

aluminum beams was used to determine whether natural frequency measurement in beam 

structures is a valid mechanism for damage detection.  Each specimen was excited by a 

strain actuator and the dynamic beam response measured using a laser Doppler 

vibrometer, thereby obtaining eigenvalues and eigenvectors for each case.  Results are 

analyzed for frequency degradation trends based on location, notch length, and vibration 

mode.  Correlation is made between experimentally observed values, ABAQUS 

modeling, and a series of MATLAB predictions utilizing a finite element solution 

approach developed by Perel and Palazotto (2002).   

It is determined that modal frequency analysis is an adequate global indicator of 

damage presence and magnitude, which reduces global stiffness.  Damage location is not 

easily identifiable from the data.  It is also determined that ABAQUS and the MATLAB 

solution approach are accurate to within 10% of experimental resonant frequency values 

for short notch lengths and low vibration modes, but highly deviant from experiment for 

longer notch lengths and higher modes.  Residual stresses contained in the 2024 T3 

specimens from cold working are determined to have minimal effect on beam dynamics. 



AFIT/GA/ENY/04-J01 

 v 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To My Wonderful Fiancée and Future Wife 
 

 



 

 vi 

 
Acknowledgments 

 
 
 
 

 I would like to express my sincerest thanks to my faculty advisor, Dr. Anthony 

Palazotto, for his guidance and patience with me through this thesis process.  His insight 

and aid in analysis was always greatly appreciated.  I also want to thank the fabrication 

experts at the AFIT machine shop for their expertise and ability to create accurate, usable 

test specimens for this project.  Additionally, a special thank you to Mr. Mark Derriso for 

providing the funding to make this project actually happen. 

 I am also indebted to my fellow classmates for their humor and positive outlook 

as we all trudged through this sleep-depriving and sometimes frustrating program over 

the last year and a half.  Thanks especially to Capt. Matt Kimsal for his motivating 

nature, because no matter how bad I had it, I could always count on him having it worse.  

 A final and ultimate thanks to God and the people He surrounds me with—their 

strength, prayers, and support will always be a blessing in my life, and will never be 

forgotten. 

 

 

 
       Aaron J. Reifsnyder 
 
 
 
 
 
 
 
 
 
 
 



 

 vii 

Table of Contents 

  Page 
 
Abstract   ......................................................................................................................iv 

Acknowledgments ........................................................................................................vi 

List of Figures ..............................................................................................................ix 
 
List of Tables  .............................................................................................................xii 
 
  I.  Introduction .............................................................................................................1 
 
       Structural Health Monitoring ..................................................................................1 
            Philosophy Behind SHM ...................................................................................1 
            Technological Approaches.................................................................................2 
       Published Analytical Approaches ...........................................................................5 
            Plate Analysis.....................................................................................................5 
            Truss Analysis....................................................................................................7 
            Beam Analysis ...................................................................................................8 
            Beam Analysis—Torsional Spring Model.......................................................11 
            Beam Analysis—Graphical Methods ..............................................................12 
            Beam Analysis—Internal Notches...................................................................16 
 
  II.  Theoretical Development .....................................................................................20 
 
        Natural Frequency Derivation for Clamped-Free (Cantilevered) Beam..............20 
        Theoretical Development of the MATLAB Algorithm.......................................25 
        Laser Doppler Vibrometry (LDV) .......................................................................32 
         
  III. Experimental Method and Setup ..........................................................................35 
 
        Experimental Test Equipment ..............................................................................35 
        Experimental Specimen Design ...........................................................................38 
             Residual Stresses.............................................................................................42 
        Piezoelectric Transducer (PZT) Application .......................................................48 
        Laser Vibrometry Setup and Procedure ...............................................................52 
             Hardware Arrangement...................................................................................52 
             Software Preparation.......................................................................................56 
         
 
 
  
 
 



 

 viii 

                                                                                                                                    Page 
 
IV.  Experimental Results and Analysis ......................................................................59 
 
        Control Specimen—Notchless Beam Case..........................................................59 
             Eigenvector Comparison.................................................................................63 
        Notched Beam Cases—Experimental Results .....................................................66 
             Nodal Damage Analysis .................................................................................69 
             Anti-Nodal Damage Analysis .........................................................................74 
             Damage Magnitude Analysis ..........................................................................76 
        2024 O Test Set....................................................................................................76 
        2024 T3 vs. 2024 O Frequency Comparison .......................................................78 
        Usage of the MATLAB Program.........................................................................80 
        Output Comparison with MATLAB Program .....................................................80 
        Comparison of Experiment with ABAQUS ........................................................88 
        Comparison of MATLAB with Independent Data ..............................................91 
         
  V.  Conclusions and Recommendations ....................................................................93 
 
        Frequency Reductions Due to Damage ................................................................93 
        Residual Stresses..................................................................................................94 
        Frequency Profiling Using ABAQUS .................................................................95 
        Frequency Profiling Using MATLAB .................................................................95 
        Recommendations ................................................................................................97 
         
Appendix A.  MATLAB FE Program Interfacing .....................................................100 
 
Appendix B.  Example Test Specimen Design Drawings (Free-End Notch Set)......108 
 
Bibliography...............................................................................................................113 
 



 

 ix 

 
List of Figures 

 

  Figure Page 
 
1.  Localization Error Indices for Individual Modes for Crack Location  
     x/L=0.25 (Kim and Stubbs, 2003:153) .................................................................13 

 
2.  Localization Error Indices for Individual Modes for Crack Location  
     x/L=0.375 (Kim and Stubbs, 2003:154) ...............................................................13 

 
3.  Natural frequencies (of various modes) in terms of crack depth for a  
     simply supported beam for various crack location ratios c/l (1--8/16;  
     2--5/16; 3--3/16):  (a) mode 1; (b) mode 2; (c) mode 3.   (Owolabi et.  
     al., 2003:8) ............................................................................................................15 

 
  4.  Differential Beam Element (Meirovitch 1986:221)..............................................21 
 
  5.  First Three Mode Shapes for a Cantilevered Beam (Meirovitch 1986:226) ........24 
 
6.  Zonal Definition of Cantilevered Beam with Attached Piezoelectric  
     Actuator (Perel and Palazotto, 2002:4460)...........................................................26 
 
7.  Finite Beam Element Showing Active Degrees of Freedom Utilized in 
     the MATLAB Formulation...................................................................................29 

 
  8.  Diagram of Laser Vibrometer Setup (Polytec, 2003:1) ........................................33 
 
  9.  Polytec Laser Vibrometer with Associated Computer Hardware .........................36 
 
10.  Front View of NRC Clamp, Stand, and Magnetic Base .......................................37 
 
11.  ACX Quick Pack Power Amplifier  Model EL 1224 ...........................................37 
 
12.  General Aluminum Test Specimen Profile ...........................................................39 
 
13.  Close-up of Notched Area in a Typical Test Specimen........................................41 
 
14.  Set of Original 2024 T3 Specimens (minus 8-cm clamped-end specimen) ..........41 
 
15.  (a)  Small Beam Element Prior to Cold Rolling;  (b) Small Beam  
       Element After Cold Rolling with Strain Profile ...................................................43 
 
 
 
  



 

 x 

                                                                                                                                    Page 
 
16.  Residual Stress Effects of Cold Working on Beams with Notches  
       at the Free End ......................................................................................................44 
 
17.  Aluminum 2024 O Specimens with Notches at the Clamped End .......................46 
 
18.  Comparison of 24-cm Notched Specimens (2024 T3 above; 2024 O below) ......47 
 
19.  Enlargement of Notched Regions of 24-cm Notched Beams  
       (2024 T3 left; 2024 O right)..................................................................................47 
 
20.  Quick Pack QP10Ni Strain Actuator Used for Vibrational Excitation.................48 
 
21-a to 20-l.  PZT Application Process.................................................................. 49-51 
 
22.  Improper Clamping of Test Specimen.  Note Skewed Bracket in Fore- 
       ground (viewed from cantilevered end)................................................................54 
 
23.  Proper Clamping of Test Specimen (viewed from cantilevered end) ...................54 
 
24.  Final Assembly Including Test Specimen ............................................................55 
 
25.  Laser Vibrometer Scanning Head Positioned Perpendicular to  
       Test Beam Apparatus ............................................................................................55 
 
26.  6x14 Scanning Point Grid Density on Cantilevered Test Specimen ....................56 
 
27.  Resonant Peaks Indicating 1st Through 4th Modal Actuation Frequencies  
       for the Notchless Beam Case (Bandwidth: 0 to 1.25 kHz) ...................................58 
 
28.  Resonant Peaks Indicating 1st Through 8th Modal Actuation Frequencies  
       for the Notchless Beam Case (Bandwidth: 0 to 5 kHz) ........................................58 
 
29-a to 29-h.  Eigenvector Comparisons—ABAQUS, Experiment, MATLAB.... 64-65 
 
30.  Frequency vs. Mode Number for 2024 T3 Notched Beams--Free End ................68 
 
31.  Frequency vs. Mode Number for 2024 T3 Notched Beams--Middle ...................68 
 
32.  Frequency vs. Mode Number for 2024 T3 Notched Beams--Clamped End  
       (minus the mismanufactured 8cm-notched beam) ................................................69 
 
33-a to 33-h.  Modes of Vibration with Curvature Inflection Nodes..................... 70-71 
 
 



 

 xi 

                                                                                                                                    Page 
 
34.  Frequency vs. Mode Number for 2024 O Notched Beams--Clamped End ..........78 
 
35.  Example of ABAQUS Meshing of 4cm Clamped-End Notched Beam...............88 
 
36.  ABAQUS Result for 8cm Clamped-End Notch Displaying Highly  
       Localized Bending (8th translational mode) .........................................................90 
 
37.  Unobserved Localized Mode Returned by ABAQUS for 8cm  
       Clamped-End Notch..............................................................................................90 
 
A-1.  Correct Eigenvector for First Bending Mode, Displaying Large  
         Normalized Displacement Amplitude (eigenvector n) .....................................106 
 
A-2.  Incorrect Eigenvector for First Bending Mode, Displaying Small  
         Normalized Displacement Amplitude (eigenvector n+1) .................................106 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 xii 

 

List of Tables 

 

 Table Page 
  
  1.  Results From Rectangular Aluminum Plate ...........................................................6 
 
  2.  Results From Trapezoidal, Cross-Ply, CFRP Plate ................................................6 
 
3.  Resonant Eigenvalues for Vibration Modes (Cantilevered Beam) .......................25 
 
4.  Comparison of Theoretical Modal Frequencies vs. Experimental  
     Frequencies for 2024 T3 Notchless Specimen......................................................60 
 
5.  Comparison of Theoretical Modal Frequencies vs. ABAQUS Results for 
     Notchless Aluminum Specimen............................................................................61 
 
6.  MATLAB Frequency Results vs. Theory for 20-, 40-, and 100-Element  
     Meshes ..................................................................................................................62 
 
7.  MATLAB Frequency Results vs. Experimental Results for 20-, 40-, and  
     100-Element Meshes.............................................................................................62 
 

  8.  MATLAB Frequency Results vs. Experimental Results with 3%  
       Adjustment for 20-, 40-, and 100-Element Meshes ..............................................63 
 
  9.  Experimental Modal Frequencies and Percent Deviation from Control  
       Specimen for 2024 T3 Notched Beams ................................................................67 
 
10.  Experimental Modal Frequencies, Deviation from Control Specimen, and 
       Number of Curvature Inflection Points Crossed for 2024 T3 Aluminum  
       Beams....................................................................................................................73 
 
11.  Experimental Modal Frequencies, Deviation from Control Specimen, and 
       Number of Maximum Deflection Points Crossed for 2024 T3 Aluminum  
       Beams....................................................................................................................75 
 
12.  Experimental Modal Frequencies and Percent Deviation from Control  
       Specimen for 2024 T3 Notched Beams (reorganized based on notch length)......77 
 
13.  Experimental Modal Frequencies and Percent Deviation from Control  
       Specimen for 2024 O Notched Beams ..................................................................77 
 
 
 



 

 xiii 

                                                                                                                                    Page 
 
14.  Modal Frequency Comparison of 2024 T3 Aluminum with 2024 O  
       Aluminum for 4cm, 12cm, and 16cm Notch Lengths at the Clamped End ..........79 
                                                                                                                              

15.  Modal Frequency Comparison--Experimental Results vs. MATLAB  
       Predictions (20-element model) for 2024 T3 Aluminum (with 3%  
       correction for residual stresses).............................................................................82 
 
16.  Modal Frequency Comparison--Experimental Results vs. MATLAB 
       Predictions (20-element model) for 2024 O Aluminum .......................................83 
 
17.  Modal Frequency Comparison--Experimental Results vs. MATLAB  
       Predictions (40-element model) for 2024 T3 Aluminum (with 3%  
       correction for residual stresses).............................................................................84 
 
18.  Modal Frequency Comparison--Experimental Results vs. MATLAB  
       Predictions (100-element model) for 2024 T3 Aluminum (with 3%  
       correction for residual stresses).............................................................................85 
 
19.  Modal Frequency Comparison--Experimental Result s vs. MATLAB  
       Predictions (40-element model) for 2024 O Aluminum .......................................86 
 
20.  Modal Frequency Comparison--Experimental Results vs. MATLAB  
       Predictions (100-element model) for 2024 O Aluminum .....................................86 
 
21.  Modal Frequency Comparison--Experimental Results vs. MATLAB  
       Predictions (20-element model) for 20cm and 24cm Notches, 2024 O  
       Aluminum .............................................................................................................87 
 
22.  Modal Frequency Comparison--Experimental Results vs. MATLAB  
       Predictions (40-element model) for 20cm and 24cm Notches, 2024 O  
       Aluminum .............................................................................................................87 
 
23.  Modal Frequency Comparison--Experimental Results vs. MATLAB  
       Predictions (100-element model) for 20cm and 24cm Notches, 2024 O  
       Aluminum .............................................................................................................87 
 
24.  Modal Frequency Comparison--Experimental Results vs. ABAQUS  
       Predictions for 2024 O Aluminum........................................................................89 
 
25.  Comparison of Existing Published Data with MATLAB Prediction,  
       Various Cases Using Spring Steel (adapted from Mujumdar and  
       Suryanarayan (1988:458)).....................................................................................92 
 



 

 1 

VIBROMETRIC DETECTION OF BEAM DAMAGE DUE TO  

INCLUSIONS 

 

I.  Introduction 
 

Structural Health Monitoring 

 The increasing complexity of modern aircraft and space structures brings a 

myriad of new challenges not only to design engineers and materials fabrication experts, 

but also to the post-production maintenance personnel who must thoroughly inspect each 

system for internal and external flaws to ensure failsafe operation.  This inspection 

process is highly time-consuming and very costly:  commercial airlines such as Delta and 

American typically reserve nearly 25% of their overall annual airline operating costs for 

maintenance and repair of the aircraft fleet, totaling over $711 million and $1.11 billion 

respectively in 2002 (Gage and McCormick, 2003).  Massive institutions such as the 

commercial airline industry, NASA, and the Department of Defense would greatly 

benefit from a passive system-wide structural health monitoring (SHM) system on their 

fleets, not only to reduce aircraft and spacecraft downtime due to maintenance, but also to 

potentially avoid catastrophic failures such as the 2001 Airbus crash in New York City 

and the disintegration of the space shuttle Columbia over Texas in 2003. 

 Philosophy Behind SHM. 

 Structural health monitoring posits the concept of continual monitoring of a 

system’s structural integrity via a series of sensor inputs analyzed automatically by a 

central computer validation system.  The literature defines SHM as “a reliable system 

with the ability to detect and interpret adverse ‘changes’ in a structure due to damage or 
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normal operation” (Kessler et. al., 2002:87).  The “changes” mentioned in the definition 

can come from a variety of sources:  manufacturing defects, impacts, fatigue cracks, 

thermal exposure, overstressing, etc.  The central focus of SHM is to identify the 

presence of a change in structural integrity as early as possible using non- invasive 

technology, whether that change may occur at the surface of a structure or internal to the 

material. 

 Technological Approaches. 

 For SHM to be successful, the damage detection technique utilized must satisfy 

several key requirements, as adeptly outlined by Castellini and Revel (2000:1):  “It must 

be non-destructive, easy to be used, rapid enough for online monitoring and with very 

reduced uncertainty in the response.”  Several approaches for non- invasive damage 

detection in structures have been studied with varying degrees of success, including X-

ray photography, infrared thermography, ultrasonic scanning, dye penetration, and 

magnetic particle induction, among others.  These approaches tend not to be easily used, 

particularly for large specimens or outside of a lab as they require extensive specialized 

optical imaging equipment or cumbersome detection devices.   

The damage diagnostic methods most widely considered to be promising for 

SHM purposes involve vibration induction and the observation of modal frequency shifts 

in the presence of damage.  Several factors make vibration-based damage detection a 

highly viable option:  it is non-destructive, inexpensive, requires a minimal amount of 

equipment, and ultimately is global in nature—meaning that the natural frequencies nω  

of a structural member depend upon the mass distribution and stiffness properties of the 
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entire member.  This can be easily seen by considering the generalized governing 

differential equation of motion of a multi-degree-of-freedom system 

 [ ]{ } [ ]{ } [ ]{ } { })(tFxKxCxM =++ &&&  (1) 

where [ ]M , [ ]C , and [ ]K  are the mass, damping, and stiffness matrices, respectively, 

{ }x&& , { }x& , and { }x  are the acceleration, velocity, and displacement vectors, and { })(tF  is 

the forcing function vector.  Dividing through by the mass matrix and rewriting in 

classical form yields 

 { } [ ]{ } [ ]{ } { }
[ ]M

tF
xxx nn

)(
2 2 =++ ωζω &&&  (2) 

where [ ] [ ]
[ ]M

K
n =2ω .  Therefore a change within either the mass or stiffness matrix of the 

structure (or both) will result in a shift in natural frequency. 

Modal frequency determination is also low-cost and simple to conduct.  One 

author concisely states the essence of frequency sensing when used in conjunction with 

structural health monitoring: 

 Modal parameters can be easily and cheaply obtained from measured vibration  
 responses.  The responses are acquired by some form of transducer which  
 monitors the structural response to artificially induced excitation forces or  
 ambient forces in the service environment.  Low input energy levels are sufficient  
 to produce measurable responses since the input energy is dynamically amplified. 

(Salawu, 1995:718) 
 
However, he also goes on to mention that a frequency change of greater than 5% would 

be necessary to detect the damage with confidence.  This conjecture is based on the 

arguments that others in academia have put forth against natural frequency response as a 

method of damage detection, namely: 
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1) A frequency shift does not necessarily imply damage is present (i.e. ambient 
condition effects). 

2) Damage at the modal nodes is not readily detected by this method. 
3) Data analysis can be slow if a complete eigensolution is necessary for systems 

with large mass and stiffness matrices. 
4) Initial data is necessary for the undamaged specimen (prior to damage 

induction) for comparison purposes to determine whether the mode has 
shifted. 

 
Though all of these arguments are valid points, none make the approach as a whole 

invalid.  It is important to consider that this research is still relatively young, and though 

semi- ideal conditions are utilized in the laboratory for theoretical verification, this does 

not mean that the approach only works under these conditions.  For instance, ambient 

conditions do indeed cause slight changes in system parameters (such as thermal materia l 

expansion/contraction, air density damping, etc.), however these discrete offsets  

may be accounted for in aggressive frequency modeling methods beyond fundamental 

theory.  Damage at modal nodes is difficult to detect since the nodes are inflection points 

for both surface velocity and acceleration, however considering multiple modes alleviates 

this problem by shifting the nodes with each successive mode.  The data analysis 

considerations, though currently hefty, will become less of an issue as computer 

technology continues to progress and processor speeds get faster.  

 The arguments supporting modal analysis for damage detection are certainly more 

substantive, a few of which are listed below: 

1) Changes in material stiffness due to internal damage must affect the modes 
(according to Eqs. (1) and (2)), and therefore should be able to be measured. 

2) Natural frequencies are global in nature, and therefore damage in any area of 
the structure will affect the modes and can thereby be detected. 

3) No one method of actuation is required to instigate dynamic modal response, 
and “low input energy levels are sufficient to produce measurable responses 
since the input energy is dynamically amplified” (Salawu, 1997:718). 
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4) Under actuation, the modal frequencies can be continuously monitored, 
triggering automated response when a damage- induced shift is detected. 

5) The method can be used on practically any specimen (beams, plates, trusses, 
rods, etc.) since every object has a unique set of modal frequencies. 

 
Therefore, despite the previously stated arguments against the methodology, many 

researchers and theorists on the subject accept modal frequency analysis as a valid 

approach deserving of further study, and have therefore intensively studied multiple 

simple structures in an attempt to create physically realistic models of induced-damage 

dynamic response. 

Published Analytical Approaches 

 Though slow but steady progress has been made in the field of modal vibration 

response for damage detection, the idea behind the theory has been around for over 30 

years.  The initial concept of vibration monitoring for damage presence began with rotor 

cracking in machinery and railroad equipment, as presented by Dimaroganas (1970) and 

Nagy, Dousis, and Finch (1978).  The latter work has been noted to explain that “the 

presence of cracks [in railroad wheels] causes some resonance frequencies to shift and 

others to split” (Man et. al., 1993:2030).  Cawley and Adams (1979) published a 

monumental work in this area, extending the concept of modal frequency shifts due to 

damage to a study of damage in plates, eventually leading to follow-on studies in trusses 

and beams as well. 

 Plate Analysis.  

 Cawley and Adams studied the effects of damage on the modal frequencies of a 

450 x 350 x 6 mm aluminum plate and a similar-sized trapezoidal carbon-fiber-reinforced 

plastic plate (1979:53).  They postulated that “if one set of frequencies were measured 
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before the structure was put into service, subsequent frequency measurements could be 

used to test whether the structure was still sound” (Cawley and Adams, 1979:49).  Saw 

cuts, crushing, and holes were introduced into the free-edge plate specimens at various 

intervals and modal frequencies observed.  They found that it was “possible to detect 

damage equivalent to the removal of one-percent of the cross-sectional area of the 

structure at a single location” (Cawley and Adams, 1979:49), and therefore reported the 

related frequency reductions as shown in Tables 1 and 2. 

 
Table 1.  Results From Rectangular Aluminum Plate 

 
 

 
Table 2.  Results From Trapezoidal, Cross-Ply, CFRP Plate 

 

(Cawley and Adams, 1979:54) 

 

 Cawley and Adams were not the only researchers to test frequency reductions in 

plates due to damage.  Jian, Tzou, Lissenden, and Penn (1997) embedded piezoelectric 

patches in the lamina of a series of glass fiber/epoxy prepreg plates and measured 

impulse-frequency response due to increasing internal delamination damage.  They noted 

that “both low and high modes are affected by the delamination,” however the lower 

modes required a much more significant damage inclusion to shift the modal frequency 



 

 7 

than the higher modes (1997:355).  Kessler et. al. (2002) took this experiment several 

steps further, examining graphite/epoxy plates with several different kinds of damages—

holes, impacts, delaminations, fatigue areas, and bent areas.  Using a Polytec scanning 

laser vibrometer (similar to the vibrometer used for experimentation in this thesis), they 

noted that “the frequency response method was found to be reliable for detecting even 

small amounts of damage in simple composite structures” (Kessler et. al., 2002:87).  

They also verified that all of the aforementioned damage types were detectable using 

frequency analysis over the first four bending modes and first two torsion modes. 

 Truss Analysis. 

 For a structure comprised of multiple basic elements (plates, beams, rods, etc.), a 

change in the mass or stiffness matrix of any one individual element will result in not 

only a change in the eigenvalues of that element, but also a change in the eigenvalues of 

the structure as a whole. Assuming that the stiffness and mass matrices of a structure can 

be written as 

  [ ] [ ]∑
=

=
n

i
ii KaK

0

 (3) 

  [ ] [ ]∑
=

=
n

i
ii MaM

0

 (4) 

where ia  are constants and iK , iM  are the stiffness and mass matrices of the ith element,  

Chondros and Dimarogonas set up a simple 3-element truss using prismatic elements and 

actuated the truss to induce the first and second global vibration modes (1989:251).  A 

crack was then introduced in one of the members and the associated frequency shifts 

recorded.  They found that a structural stiffness reduction of 10% resulted in a 5% 
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decrease in the first eigenvalue and a 0.5% decrease in the second eigenvalue, thereby 

validating frequency shift as a detection method for the presence of damage in simple 

structures.  Similarly, Thyagarajan, Schulz, and Pai (1998) studied the frequency 

response of an 18-element bridge truss with a 50% stiffness damage introduced into one 

of the members, resulting in an 8% reduction in the first natural frequency of the 

structure.  The test was repeated several times with damage being introduced into 

different structural members each time, yielding an associated downward frequency trend 

with each case. 

 A series of cantilevered truss experiments were performed by Cobb (1996) to 

develop an algorithm for structural member damage identification in space applications 

using limited measurement data.  A 96-member and a 104-member truss structure were 

considered over the first eight and first five flexible modes, respectively.  Minimization 

of a cost function relating measured values and the analytical approach was accomplished 

via eigensystem sensitivities, and damage location was then pinpointed us ing the partial 

eigenstructure method developed.  In all cases, “it was shown that the resulting natural 

frequencies from damage can only decrease” (Cobb 1996:9-1). 

 Beam Analysis. 

 The most extensive research for modal frequency analysis of damaged specimens 

has been in the area of beams, both composite and isotropic.  The vast concentration of 

work has been focused on the study of surface inclusions, i.e. cracks, surface notches, 

impacts, etc.  Though this thesis emphasizes internal damage in the form of a slot to 

model through-thickness delamination, the considerations of surface damage are certainly 
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applicable to establish frequency trends and an awareness of alternative modeling 

approaches.  

 Cawley and Ray (1988) utilized a free-free beam to test the frequency 

characteristics of area reduction in a specimen.  They removed slices of material near the 

midpoint of several isotropic steel bars in depth increments of approximately 0.5mm, 

gradually reducing the second moment of area by about 50-60% over the course of the 

experimental set.  The conclusion drawn from their experiment was that “the natural 

frequency changes produced by a defect of a given depth increase as the width of the 

defect is increased,” and in fact the frequency reductions follow a more exponential 

rather than linear relation as crack depth increases (Cawley and Ray, 1988:366).  Pandey, 

Biswas, and Samman (1991) looked not only at changes in the eigenfrequencies of 

cantilevered and simply supported beams with damage inclusions, but also at shifts in the 

“curvature mode shapes” given by the equation 

  
EI
M

v =′′  (5) 

where v ′′ is the curvature at a given section, M is the bending moment at that section, E is 

the Young’s Modulus and I is the second moment of inertia (Pandey et. al. 1991:322).  

This relation was applied to 20 continuous segments across the flexural profile of both a 

damaged and undamaged cantilever beam.  The absolute difference between the 

curvature mode shapes for all segments of both beams was calculated and the results 

plotted, identifying a spike in the region where damage was present.  They concluded that 

“from changes in frequency one can easily determine the presence of a crack or damage 

in a structure,” however locating that damage was a “completely different question” as 
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cracks at different locations could potential yield the same frequency signature, hence 

consideration of the displacement field was necessary (Pandey et. al., 1991:322). 

 Kam and Lee (1992) attempted to answer that “completely different question” 

posed by Pandey and his team with a strain energy approach for cantilevered beams 

under modal excitation.  Using the strain energy relation for the ideal case:  

  0002
1

0 rKrW T=  (6) 

with 

  FKr 1
00
−=  (7) 

where 0W  is the strain energy, 0K  is the stiffness matrix, F  is a matrix of applied forces 

and 0r  represents the nodal displacements, the authors compared the uncracked strain 

energy 0W  to the modified strain energy due to crack damage given by 
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where a  is the crack depth, b  is the element width, iK  are stress intensity factors 

(respectively for opening, sliding, and tearing type cracks), E  is the elastic modulus, ν  is 

the Poissan’s ratio, and )1/( 2ν−=′ EE  for plane strain (Kam and Lee, 1992:383-384).  

After applying a series of constraints, a minimization routine, and a Newton-Raphson 

solution approach, the authors backed out an approximate crack location with an error of 

approximately ± 5% after studying the first 10 natural frequencies and mode shapes.  

They thereby further verified that frequency reduction of the natural modes is a viable 

method for identifying damage presence. 
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 Beam Analysis—Torsional Spring Model. 

 Several authors attempted to model local stiffness reductions due to surface 

inclusions as a localized torsional spring connecting the neighboring two isotropic 

elements, with the torsional spring constant TK  proportional to the ratio of crack depth to 

beam depth, the Young’s Modulus of the material, and the second moment of inertia.  

Doyle (1995) took this approach in developing a damage detection scheme that studied 

the generation and reflection of axial waves after transverse vibration is initiated.  He 

compared observed experimental responses to a set of theoretical finite element (FE) 

predictions characterizing cracks at differing locations and magnitudes, and then chose a 

“best fit” for the experimental result through the use of a genetic algorithm to match 

theory with experiment.  Dado (1997) also used the torsional spring model but 

emphasized different end conditions.  His results showed that the respective modes of 

pinned-pinned, clamped-free, pinned-free, and clamped-clamped specimens all 

demonstrated eigenvector and eigenvalue shifts in the presence of surface damage.  Patil 

and Maiti (2002) further utilized the torsional spring method to characterize the 

frequency responses of beams with multiple cracks.  An indexed torsional spring constant 

TnK  was applied to each crack location on the beam and the beam segmented into 

appropriate lengths where only one damage location was present within the given 

segment.  Frequency variations of the segments were examined over the first three natural 

modes via their derived MATLAB procedure, and the segments with the greatest 

variation in frequencies were determined to be the segments within which damage was 

present. 
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 Beam Analysis—Graphical Methods. 

 Purely graphical methods have been researched as well to determine damage 

presence and location within a beam structure.  Kim and Stubbs (2002) used a series of 

plotted error indices for the first four modal frequencies of a cracked beam to identify the 

presence of a crack.  Their error index (the difference between the ratio of measured 

modal frequency changes and the ratio of modal sensitivities for a given element) is 

defined by  
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 (9) 

where  

 ije  =  localization error for the ith mode and the jth location 

 mZ  =  fractional change of the mth eigenvalue after damage 
 mqF =  modal sensitivity of the mth modal stiffness with respect to the qth element 
 NM  = number of modes considered 
 
will equal zero when damage is present in the jth location using the ith modal information 

(Kim and Stubbs, 2002:150).  The error index is then plotted for each mode, and where 

all ije  go to zero exist potential locations for damage presence (see Figures 1 and 2).  

Note that the symmetry of the functions produces two locations, only one of which is 

correct and in both cases shown the correct solution resides in the region where 5.0<
L
x

.   

It should be further noted that though the error- index method worked well for crack 

locations between 25.0=
L
x

 and 5.0=
L
x

, this method proved to be highly inaccurate as 
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Figure 1.  Localization Error Indices for Individual Modes for Crack Location 
x/L=0.25 (Kim and Stubbs, 2003:153) 

 
 
 
 

 

Figure 2.  Localization Error Indices for Individual Modes for Crack Location 
x/L=0.375 (Kim and Stubbs, 2003:154) 
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0→
L
x

.  Also, no cases were published where the crack was located beyond the midpoint 

of the beam. 

 A similar methodology was employed by Owolabi, Swamidas, and Seshadri 

(2002) to study the changes in modal frequencies and mode shapes due to thin saw cuts 

of various depths at several locations along the length of the beam.  Quoting the earlier 

study by Cawley and Adams, the authors tested the postulate that “any localized damage 

would affect each mode differently, depending on the particular location of the damage” 

(Owolabi et. al., 2002:2).  For this they measured the natural frequencies of uncracked 

aluminum beams and compared these results to the frequencies of beams with a saw cut 

included at several locations.  The authors then generated plots of the ratio of cracked-

frequency and uncracked frequency ( )cω ω  vs. the ratio of notch depth to beam width 

( )/a h  for various crack location ratios along the length of the beam ( )/c L  as Figure 3 

indicates.  This experiment was run on both fixed-fixed beams and simply supported 

beams, and as Figure 3 shows, each mode was affected in a different manner depending 

on whether the crack was located near a modal node or not.  The authors also created 

similar plots of eigenvectors for each mode and noted related displacement magnitude 

shifts. 

 Several other researchers took similar but slightly different graphical approaches 

to the frequency-shift characterization problem due to the onset of damage.  Waldron et. 

al. (2002) utilized a scanning laser vibrometer to measure the surface velocity at points 

along the broad edge of an actuated beam after surface notches were introduced.  They  
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Figure 3.  Natural frequencies (of various modes) in terms of crack depth for a      
simply supported beam for various  crack location ratios c/l (1--8/16; 2--5/16; 3--

3/16):  (a) mode 1; (b) mode 2; (c) mode 3.   (Owolabi et. al., 2003:8) 
 

concluded that “at higher natural modes, damage is easier to detect” and that “there is a 

much higher probability of detecting damage when the damage is near the anti-nodal  

point” (Waldron et. al., 2002:224), supporting conclusions previously reached by other 

authors.  Ismail, Ibrahim, and Martin in a previous study (1989) directly examined 

frequency response scans over the actuation range 60-2000 Hz and recognized noticeable 

reductions in resonant peaks over that range.  The data were then extrapolated and the 

frequency ratios ( )nc ωω  were plotted against crack size ( )/a h , as was later done by 

Owolabi et. al.  Again, it was noted that natural frequencies in all modes, but particularly 

the higher modes, decreased as damage magnitude increased.  Damage location played a 

significant part in which modes were most affected. 
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 Beam Analysis—Internal Notches. 

 Since most of the literature has focused on surface damage (as this is the most 

common due to external impacts and operating environment considerations), 

comparatively little research has been conducted on internal delaminations in composite 

beams.  These internal delaminations are actually a relatively common occurrence due to 

imperfect manufacturing methods, thermal debonding, impact/compression damage, etc., 

with the added problem that the damaged areas may not be able to be seen externally.  

Hence, researchers have attempted to use similar vibration analysis methods as those 

mentioned previously to detect internal damages versus those seen readily from the 

outside. 

 In 1982, Wang, Liu, and Gibby published a paper where free vibrations of split 

beams were investigated.  They considered discrete portions of a beam where a split 

(simulated delamination) was either present or not present and developed corresponding 

non-dimensionalized equations of motion for each.  For the regions where no split was 

present, only flexural vibration was assumed and thus the non-dimensionalized equation 

of motion for transverse displacement became 

  
4

4
4

0
d W

K W
dξ

− =  (10) 

where W w L=  with w as transverse displacement amplitude and L as the beam length, 

x Lξ =  with x as longitudinal coordinate of the notch centerpoint, and  

  4 4 2A
K L

EI
ρ

ω =  
 

 (11) 

where  
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 ω  =  radian frequency of harmonic motion  
 ρ  =  material density 
 A  =  cross-sectional area 
 E  =  elastic modulus (Young’s modulus) 
 I   =  second moment of area 
 
(Wang et. al., 1982:492).  For the region where the split was encountered, both 

longitudinal and transverse vibration was considered for each sublaminate and each was 

treated as a separate beam.  The governing differential equation for non-dimensionalized 

longitudinal displacement amplitude U was considered: 

  
2

4 4
2

0
d U

c K U
dξ

+ =  (12) 

where U u L=  with u as the longitudinal displacement, and 4 2c I AL=  (Wang et. al., 

1982:493).  With these relations the authors developed a series of displacement matrices 

while ensuring continuity between the regions, and were then able to solve a set of 

simultaneous equations for the modal frequencies of interest.  Though only the first, 

second, and third vibration modes of a fixed-fixed beam and the first and second modes 

of a cantilevered beam were considered, good results were obtained, demonstrating the 

expected decline in modal frequencies with increasing crack length or with more than one 

crack included. 

 Tracy and Pardoen (1988) also regionalized a centerline-notched beam into two 

homogeneous areas without a notch and two distinct sublaminates above and below the 

notch.  A FORTRAN algorithm was then developed based on similar mathematical 

theory to that of Wang et. al., and it was found that modes one through four experienced 

an increasing respective degradation in modal frequency due to a given notch length, 

supporting the idea that higher modes are affected by stiffness reductions more readily 



 

 18 

than lower modes.  The authors also stated that “as the delamination moves from regions 

of high shear force to regions of high curvature, the effect of the delamination is reduced” 

(Tracy and Pardoen, 1988:1207), meaning that crack propagation potential is minimized 

in the regions of high moment.  However, as Salawu points out, “at modal nodes (points 

of zero modal displacements), the [axial] stress is minimum for the particular mode of 

vibration.  Hence, a minimal change in a particular modal frequency could mean that the 

defect may be close to the modal node” (1997:718-719). 

 Also in 1988, Mujumdar and Suryanarayan studied frequency reductions in 

debonded steel strips.  Using a cantilever setup, the authors adhered multiple pieces of 

spring steel together with an instant-curing cynoacrylate while leaving discrete regions 

unglued, both along the centroidal axis and off-midplane, thereby simulating different 

delamination regions.  Their results supported the Tracy/Pardoen hypothesis that for any 

given mode, nodal damage is of higher consequence, stating that “in the case of beams 

with symmetric boundary conditions vibrating in the symmetric modes, the curvature is a 

maximum and the shear force is a minimum at midspan, therefore the weakening effect is 

a minimum for centrally located delaminations” (Mujumdar and Suryanarayan, 

1988:455).  They noted the expected decline in eigenfrequencies and eigenvectors over 

the first two vibration modes, and published a series of experimental data tables which 

are later used in this thesis as a comparison for the finite element approach by Perel and 

Palazotto (2002). 

 Using modal frequency analysis as an established and accepted method for 

damage detection in simple structures, Perel and Palazotto (2002) developed a 

MATLAB-based FE program to calculate the natural frequencies of an isotropic, 
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cantilevered beam with a notch inclusion to simulate delamination, having the ultimate 

goal of extending the proposed theory to composite members.  The usefulness of their 

program is that, contrary to previous FE approaches in the literature, the user need not re-

mesh the specimen for each crack condition, thereby saving valuable analysis and 

modeling time.   The purpose of this thesis is to validate the use of modal frequency 

response as a damage detection method for internally-notched cantilevered aluminum 

beams, and analyze the resulting modal frequencies for degradation trends based on 

inclusion location, inclusion length, and vibration mode.  Comparison of experimental 

results with the MATLAB FE program and the commercial FE analyzer ABAQUS is also 

carried out. 
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II.  Theoretical Development 

 
 
 

 A brief theoretical synopsis of three major topics in this thesis is presented in this 

chapter for background understanding.  First, cantilever beam theory is reviewed and the 

differential boundary-value problem solved from balance-of- force equations to produce 

the theoretical modal frequencies.  These results are later used in Chapter IV to verify the 

experimental outcome of the first eight vibration modes of the control specimen.  Then, 

the theory behind the MATLAB-based FE program developed by Perel and Palazotto 

(2003) is summarized.  Their program is an object of analysis for this thesis and is 

constructed using the cantilever arrangement.  Finally, an overview of Laser Doppler 

Vibrometry (LDV) is presented as LDV is the primary method of experimentation for 

this work.  

Natural Frequency Derivation for Clamped-Free (Cantilevered) Beam 

 The natural frequencies for a simple cantilevered isotropic beam can be developed 

from a differential boundary-value problem for a continuous clamped-free system.  As 

outlined extensively by Meirovitch (1986:221-226) and summarized in the derivation that 

follows, a differential beam element under transverse flexure will be kept in equilibrium 

by a differential applied external load, internal shear, and reaction moments at the left and 

right ends of the element (all assumed to be functions of displacement and time).  A free-

body diagram of this element is indicated in Figure 4. 
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Figure 4.  Differential Beam Element (Meirovitch 1986:221) 

 
Setting an abscissa collinear with the at-rest neutral axis of the beam and an ordinate 

normal to the abscissa in the transverse direction (direction of displacement during 

vibration), balancing the force equation of motion maF =  yields 
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where ),( txQ  is transverse shearing force, ),( txf  is the applied external load, )(xm  is 

the mass per unit length, and ),( txy  is the transverse displacement during vibration 

response.  Similarly, the moment equation of motion has the form 
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where ),( txM  is the reaction moment about the rotational axis and all other terms are as 

defined previously.  If one cancels appropriately in Eq. (14) and eliminates 2dx  terms the 

results become 
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which, when combined with Eq. (13), reduces to 
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From elementary mechanics of materials, bending deformation and bending moment are 

related by 
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where E is the modulus of elasticity of the material and )(xI  is the moment of inertia at 

the given distance from the origin.  By combining Eqs. (16) and (17) and assuming no 

damping,  one arrives at the fourth-order differential boundary-value equation of motion: 

 2

2

2

2

2

2 ),(
)(),(

),(
)(

t
txy

xmtxf
x

txy
xEI

x ∂
∂

=+







∂

∂
∂
∂

−         Lx <<0  (18) 

For the solution of natural frequencies for a cantilevered beam, the distributed external 

forcing function ),( txf  has zero magnitude.  Boundary conditions for the beam at the 

clamped-end and free-end are respectively given by:   
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Using the method of separation of variables where 

 )()(),( tFxYtxy =  (21) 

and assuming that )(tF  represents bounded harmonic oscillation with a frequency ω , 

then considering Eqs. (19), (20), and (21), Eq. (18) ultimately reduces to 
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For a uniform beam with constant E, I, and m over the range Lx <<0 , the expression 

becomes 

 0)(
)( 4

4

=− xY
dx

xYd
β  (23) 

where 

 
EI

m2
4 ω

β =  (24) 

The general solution to Eq. (23) is given by 

 xCxCxCxCxY ββββ coshsinhcossin)( 4321 +++=  (25) 

where iC  are unknown coefficients for the harmonic terms.  Since the clamped-end 

displacement and slope conditions are 

 0)0( =Y         0
)(

0

=
=xdx

xdY
, (26) 

the two resulting relations 

 031 =+ CC         042 =+ CC  (27) 

combine with Eq. (25) to form 

 )cosh(cos)sinh(sin)( 21 xxCxxCxY ββββ −+−=  (28) 

Further invoking the boundary conditions for free-end moment and shear defined by 
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two simultaneous equations are produced: 

 0)cosh(cos)sinh(sin 21 =+++ LLCLLC ββββ  (30) 

 0)sinh(sin)cosh(cos 21 =−−+ LLCLLC ββββ  (31) 
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After solving for 2C  in terms of 1C  and realizing that 01 ≠C  must be true for the non- 

 

trivial solution to exist, the resulting characteristic equation is formed: 

 1coshcos −=LL ββ  (32) 

The resonant eigenvalues rβ  found by numerically solving Eq. (32) are inserted into the 

displacement function of Eq. (28) to form the resonant natural modes (see Figure 5) in 

terms of only 1C , rβ , x , and L : 

        [ )sinh)(sinsinh(sin
sinhsin

)( 1 xxLL
LL

C
xY rrrr

rr
r ββββ

ββ
−−

−
=  

                                   ])cosh)(coscosh(cos xxLL rrrr ββββ −++         ...,2,1=r  (33) 

 
 

  

Figure 5.  First Three Mode Shapes for a Cantilevered Beam (Meirovitch 1986:226) 
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A listing of the first ten rβ  values is given in Table 3, taken from Gorman’s text on free 

vibrations of beams and shafts (1975). 

 
Table 3.  Resonant Eigenvalues for Vibration Modes (Cantilevered Beam) 

 

MODE ß r

1 1.875
2 4.694
3 7.855
4 10.996
5 14.137
6 17.279
7 20.420
8 23.562
9 26.704

10 29.845  

 

Therefore, considering the eigenvalue solution of Eq. (32) and the definition given by Eq. 

(24), the resonant (natural) frequencies rω  for the cantilevered beam are 

 4
2

mL
EI

rr βω =         ...,2,1=r  (34) 

For the purposes of the experiments undertaken in this thesis, only the first eight resonant 

modes were considered. 

Theoretical Development of the MATLAB Algorithm 

 The MATLAB-based finite element solution approach developed by Perel and 

Palazotto (2002, 2003) incorporates basic Euler-Bernoulli beam theory for element 

formulation to calculate the modal frequencies of a delaminated cantilevered beam under 

piezoelectric actuation.  The program was written specifically for the cantilevered beam  
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Figure 6.  Zonal Definition of Cantilevered Beam with Attached Piezoelectric 
Actuator (Perel and Palazotto, 2002:4460) 

 

case with a piezoelectric actuation source affixed to the surface of the beam, along its 

breadth, near the fixed base (shown in Figure 6). For the initial formulation, the 

delaminated region is assumed external to the beam portion covered by the piezoelectric 

actuator.  The crack tip coordinates, indicated by the distances α  and β , are parallel to 

the free longitudinal surfaces and centerline of the beam.  The dimension h  is the 

transverse thickness of the beam (the minor dimension), while the actuator thickness is 

represented by the dimensionτ .  The notch extends completely through the width of the 

beam to create through-width homogeneity of the disbonded area.   

 As extensively explained by Perel and Palazotto and briefly summarized here, the 

Euler-Bernoulli development utilized within the MATLAB code assumes a transverse 

displacement function of the form 
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  [ ]),(),()()(),(),,( 010 txWtxWzHxDtxWtzxw −+= γ
β

α  (35) 

where a and ß are the longitudinal notch tip coordinates and ? is the z-coordinate of the 

notch centerline.  Equation (35) also incorporates a double-sided unit step function of the 

form 
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and a Heaviside function defined by 
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),(0 txW  is the transverse displacement of the central beam axis antecedent to, posterior 

to, and below the notch while ),(1 txW  indicates the transverse displacement of the upper 

delaminated portion on the region βα << x .  The double-sided unit step and Heaviside 

functions mathematically restrict the sublaminates from overlapping during vibration 

response, which is physically impossible.  Compatibility of displacement and slope 

between notched and notchless regions during dynamic response incorporates the 

extended Hamilton’s Principle: 
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where q  represents the uniform load distributed across the upper surface of the beam and 

J  is a modified Lagrangian function of the form 



 

 28 

 

∫ ∫∫ ∫ ∫

∫ ∫∫∫∫

−

∧∧

−

∧∧∧∧

∧

−

∧∧∧

−+











−−+−

+−=−−=

L h

hh

h

h

hV

dxdzTUbdxfdzTUdzTUb

dxdzTUbdVfTUJ

β

β

α

γ

γ

α

λ

λ

2/

2/2/

2/

0

2/

2/

)()()(

)()(

 (39) 

The kinetic energy density and strain energy density are respectively defined by 
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and ),( txλλ =  is the Lagrange multiplier of the contact forcing function within the 

delamination: 
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 For the finite element matrix formulation, the authors approximate the unknown 

functions ),(0 txW  and ),(1 txW  from Eq. (35) by third-degree Hermit polynomials, 

considering classical two-dimensional beam element shape functions and the respective 

nodal degrees of freedom: 
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which are taken from the finite element text written by Cook et. al. (1974:25).  The finite 

beam element showing the active degrees of freedom considered in the MATLAB 

approach is shown in Figure 7. 

 

 

Figure 7.  Finite Beam Element Showing Active Degrees of Freedom Utilized           
in the MATLAB Formulation. 

 
 

After utilizing the eight given nodal parameters and the respective strain-displacement 

matrices [ ]wB  and [ ]uB  (derivation not shown for brevity) to produce expressions for the 

transverse and longitudinal displacements, the authors compiled the element stiffness 

matrix defined by 
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where b  is the width of the beam, 11S  is the elastic compliance coefficient of the material 









=

11
11

1
E

S , and [ ]
)81( x

Bε  comes from the strain energy approach where  

  [ ] [ ]
2

2

)81( x
B

B w

x ∂
∂

−=ε  (47) 

The strain energy for the finite element in terms of the nodal parameters then becomes 
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where the nodal parameters { }θ  are a column matrix of the terms on the extreme right-

hand side of Eqs. (43) and (44), and nqU  is an additional strain energy term that depends 

non-quadratically on the nodal parameters and [ ]uB . 

 The same basic approach is followed to characterize the stiffness properties of all 

finite elements within the undamaged region overlaid by the piezoelectric actuator, the 

undamaged regions of the free cantilever, and the cracked region within the beam.  

Appropriate constraints accounting for continuity of displacements and slopes at zonal 

interfaces are applied through the functional continuity of the interpolation polynomials 

given in Eqs. (43) and (44) and their derivatives, as well as through the penalty function 

method incorporating the global nodal parameters iθ  (Perel and Palazotto, 2002). 

 The actuation force produced by the affixed piezoelectric patch is integrated 

through the virtual work principle and through the constitutive equations of an 
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orthotropic piezoelectric layer, thereby yielding the modified virtual work princ iple 

defined by 
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where 

 V = applied voltage across the piezoelectric patch 
 τ  = thickness of piezoelectric patch 
 31d  = a matrix element characterizing the material properties of the PZT patch 

 )(cρ  = density of beam material (“c” denotes “composite”) 
 )( pρ  = density of piezoelectric patch material 
 g  = Gravitational constant ( 281.9

s
m ) 

 q  = unit surface electric charge 
 (u is defined below) 
 

 Ultimately, incorporating the modified virtual work principle from Eq. (49) with 

the Euler-Bernoulli assumptions for transverse and longitudinal displacement 
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the authors produced the following differential equations of motion as the basis of the 

MATLAB program development: 
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Laser Doppler Vibrometry (LDV) 

 The essence of LDV is based on the principle that incident laser light to a test 

object will induce a Doppler shift in the reflected laser beam if the object is in motion.  

This reflected beam can then be detected and compared with the original beam to judge 

the wavelength difference and therefore the object surface velocity along the axis of the 

incident laser beam.  Since laser light has an extremely high frequency (~ 4.74x1014 Hz), 

light intensity must be measured instead of direct wavelength shift. 

 An interferometer is therefore used to measure intensity differences of light 

beams.  A laser beam enters a beam splitter and is divided into a measurement beam (the 



 

 33 

beam that reflects off of the object being measured) and a reference beam that stays 

internal to the vibrometry system (see Figure 8) .  The reflected beam is then mixed with 

the reference beam and the resultant light is measured by a photodetector.  The beat 

frequency of the resultant light generates a time-dependent intensity I at the points where  

the measurement and reference beams interfere (Polytec, 2003).  This intensity can be 

characterized by the equation 

  ( )Φ++= DSRMR fRIIKRIItI π2cos2)(  (59) 

where 

 

 

Figure 8.  Diagram of Laser Vibrometer Setup (Polytec, 2003:1) 
 
 
 
 RI  =  intensity of the reference beam 
 MI   =  intensity of the measurement beam 
 R   =  effective reflectivity of the measured surface 
 K   =  a mixing efficiency coefficient 
 SI   =  intens ity of the shifted beam 
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 Df   = =λv2  Doppler frequency of the shifted beam where v  is the velocity of  
              the incident surface and λ  is light wavelength 
 Φ   = =∆ λπ L4  phase angle shift with L∆  as the vibrational displacement of  
      the incident surface 
 
With the measured )(tI , Equation (59) can be solved for the velocity term in Df  and 

therefore the object surface velocity is known.  Note that as the velocity vector moves 

toward the light source, the reflected light undergoes an increase in frequency.  

Conversely, as the velocity vector moves away from the light source, the reflected light 

decreases in frequency. 

 The velocity measurements can be integrated with respect to time to obtain 

displacements and differentiated with respect to time to obtain accelerations.  Using 

multiple scan points on a given object, the three dynamic parameters from each point can 

be interpolated to produce an overall dynamic profile of the object excitation.  This 

interpolation allows direct observation of the vibrational eigenvectors and therefore the 

associated eigenvalues can be calculated.  

 Using the principles mentioned above, an LDV system can be employed to 

measure any vibrating or moving object non-intrusively.  Three methods of measurement 

are typically utilized:  continuous scanning, point-by-point scanning, and a tracking mode 

in which the laser probe stays fixed on one particular point on a moving object (Halkon 

et. al., 2003:773).  For the particular purposes of this thesis, point-by-point scanning over 

a discrete area was used. 
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III.  Experimental Method and Setup 

 
 

 For the experimental portion of this study, 15 aluminum specimens were initially 

designed (ultimately this number grew to 18) with centerline notches of varying lengths 

near the free end of the cantilever, the midpoint, and the clamped end.  These specimens 

were piezoelectrically actuated using a Quick Pack strain actuator and the eigenmodes of 

each beam obtained through laser vibrometry.  The experimental results were then 

analyzed for frequency response trends based on notch location and magnitude, as 

accomplished in Chapter IV.  The acquired modal frequencies were also compared to the 

MATLAB FE output for the cases considered, as well as the ABAQUS CAE finite 

element program.  

 This chapter explains the experimental procedure and describes the equipment 

used for data acquisition.  

Experimental Test Equipment 

 The experimental validation was conducted in the Vibration Laboratory on the 

campus of the Air Force Institute of Technology.  In this laboratory, two laser 

vibrometers were used during the experimental process: 

  
 Laser Vibrometer 1:  Polytec OFV-056 scanning head with OFV-5000 controller  
                                              and PSV-Z-040 junction box 
 
 Laser Vibrometer 2:  Polytec PSV-400 scanning head with OFV-5000 controller  
                                              and PSV-400 junction box 
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Figure 9.  Polytec Laser Vibrometer with Associated Computer Hardware. 

 
 
The second vibrometer was used as an upgrade provided by Polytec, Inc. to the original 

equipment, received partway through the experimental process.  A picture of this 

vibrometer with the associated hardware is shown in Figure 9.  Each vibrometer was  

connected to an associated desktop computer (powered by an AMD Athlon XP 3000 

chip) supplied by Polytec, Inc. with Polytec Scanning Vibrometer Version 8.0 software 

loaded for scan analysis.  Other test hardware included the following (see Figures 10 and 

11): 

 
 Clamp:  Newport Research Corp. (NRC) Model B-1 
  
 Stand:  NRC Model 45 
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Figure 10.  Front View of NRC Clamp, Stand, and Magnetic Base. 

 

 
Figure 11.   ACX Quick Pack Power Amplifier Model EL 1224 
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 Magnetic Base:  NRC Model 100 Magnetic Base 
  
 Amplifier:  Active Control eXperts (ACX) Quick Pack Power Amplifier  
                    Model EL 1224 

The magnetic base was placed on the steel surface of a pneumatic shaker table in the at-

rest position to eliminate base motion.  The cylindrical test stand was then affixed to the 

magnetic base through four socket head cap screws, and the clamp slipped onto the top of 

the test stand and tightened via a locking screw.  This clamping stand was used to 

establish the cantilevered end condition for the test specimens. 

Experimental Specimen Design 

 Though the frequency analysis accomplished in this thesis (as well as the 

MATLAB development proposed by Perel and Palazotto) will ultimately serve as a 

foundation for the characterization of delaminations in composite structural cross-

sections, it was important for the initial verification experiments to avoid cross-ply and 

off-angle stresses (which may affect dynamic output) to ensure purity of the experimental 

results.  To this end, isotropic aluminum beams were chosen as the desired test specimens 

because they can be inexpensively manufactured, aluminum was readily available at the 

machine shop, and the lack of lamination layers allowed for a pure dynamic response 

with much less potential for previously existing manufacturing defects (as would be the 

case with composites).  Since 2024-T3 aluminum was most abundant in the machine 

shop, this material was selected (initially) for specimen fabrication. 

 The overall dimensions of the beams were chosen essentially for machining 

convenience since the beam characteristics are part of the input field for the MATLAB 

analysis (see Appendix A), and could therefore be of any value.  A dynamically 
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measurable length of approximately 12 inches was desired, so the beams were cut to a 

length of 15 inches to allow for the 3-inch clamped area (the width of the NRC clamp) 

for establishment of the cantilever.  The width of the beam was chosen to be 1 ½ inches 

to fit between the four cap screws of the clamping block while also minimizing the depth 

of cut necessary to create the included notch.  The depth of the beam was selected to be 

? -inch to allow for drilling of a 16
1 -inch starter hole for the electrical discharge 

machining (EDM) cutting wire (explained later in this section), since a smaller hole 

greatly increased the likelihood of snapping the drill bit off inside the specimen.  Figure 

12 shows a typical specimen profile. 

 For a complete frequency evaluation test set, three distinct locations for notch 

inclusions were required:  notches near the clamped end of the beam (but outside of the  

 

 
Figure 12.  General Aluminum Test Specimen Profile. 
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2 1/16-inch PZT area), notches near the center of the testable area, and notches near the 

free end of the cantilever.  All three locations were considered in both the MATLAB 

analysis and experimentally. 

 For the experimental portion of the analysis, 15 aluminum beams of the type 

shown in Figure 12 were manufactured.  The first was a control specimen in which no 

notch was included.  This piece served as a basis for vibrational trend comparison versus 

the beams including centerline notches, as well as a verification of the cantilever beam 

theory and the coefficients presented in Table 3 in Chapter II.  The next 12 beams 

consisted of 3 sets having 4 notched beams each.  Since the MATLAB program required 

all values to be entered in metric (SI) units, the notches were cut in units of centimeters.  

The first set included 4 beams with centerline notches near the clamped end of each 

beam, but forward of the PZT location, in lengths of 4cm, 8cm, 12cm, and 16cm. The 

two remaining four-beam sets contained notches having the same lengths as the first, with 

one set having the notches at the center of the active region of the beams, and the other 

set having the notches at the free end of the beams.  Two additional beams were created:  

one with a 20-cm notch and one with a 24-cm notch.  Both of these notches were 

centrally located in the cantilever portion of the beam.  Appendix B contains example 

drawings of the free-end notched beams—all other beams were drawn similarly.  A 16
1 -

inch starter hole was specified near the center of each notch (shown in Figure 13) to 

allow for the EDM cutting wire.  Unfortunately, the specimen having the 8-cm notch near 

the cantilevered end was incorrectly fabricated and due to other machining jobs at the 

time could not be remade.  The entire set of original specimens (minus the 

mismanufactured piece) is depicted in Figure 14. 
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Figure 13.  Close-up of Notched Area in a Typical Test Specimen. 
 
 

 
Figure 14.  Set of Original 2024 T3 Specimens (minus 8-cm clamped-end specimen).  
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 The notches in the beams were created using the EDM process.  This approach 

utilizes an ultra-high current passing through a thin wire to burn away material, thereby 

creating a “cut” in the specimen.  Throughout the process, the cutting area is constantly 

flooded by a liquid coolant (in this case water) to ensure thermal conduction from the 

wire to areas of material beyond the immediate cut is minimized. The EDM machine 

used for manufacturing the specimens for this project could create a notch with a smallest 

width of 0.012”, which was therefore chosen as the appropriate notch width to simulate a 

delamination as closely as possible.  

 Residual Stresses. 

 Upon receipt of the specimen set from the machine shop technicians, it was noted 

that, in the beams with long notch lengths, warping had occurred in the sublamina.  Initial 

conjecture suggested that high temperature inductions from the EDM process had 

thermally stressed the material, however this proved incorrect after further understanding 

of the extensive cooling methods used during the procedure.  Attention then turned to the 

material itself, particularly the temper designation of the aluminum—T3.  According to 

www.efunda.com, a website dedicated to engineering fundamentals, the T3 temper 

indicates tha t the aluminum has been “solution heat treated and then cold worked,” which 

is done to improve material strength and decrease thermal sensitivity.  However, a 

byproduct of the cold working process (in this case, cold rolling) is plastic deformation 

along the surface boundary and the introduction of latent compressive stresses into the 

final material.  Figure 15 shows a simple diagram of the stress/strain results of the cold 

rolling procedure. 
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Figure 15.  (a)  Small Beam Element Prior to Cold Rolling;  (b) Small Beam Element 

After Cold Rolling with Strain Profile 
 

 The presence of these stresses caused the internal notch faces to come together, 

and in the cases of the longer notch lengths, the beams to deform (such as the 20-cm and 

24-cm beams at the extreme right of Figure 14).   The effects of residual stresses on the 

four-beam set with notches at the free end are shown in Figure 16.  The other two sets of 

beams were likewise affected. 

 Though most of the beam specimens were still usable for comparative frequency 

testing (see Chapter IV—2024 T3 vs. 2024 O Frequency Comparison), the 20-cm and 24-

cm notch lengths were highly deformed and therefore rendered unusable.  It was desired 

to relieve the residual stresses in the specimens to allow the notches to open and  
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Figure 16.  Residual Stress Effects of Cold Working on Beams with Notches at the 
Free End. 

 
 
eliminate the beam warping if possible.  Initial consideration was given to thermally de-

stressing the beams, as is typically done with titanium and steel.  However, the 

temperatures required to stress-relieve aluminum, typically greater than 650° F, exceed 

the threshold where mechanical properties remain unchanged (Armao, 1999:6).  Another 

method considered for stress alleviation in the aluminum beams was stretch-strain 

relieving.  In this process, the aluminum is strained by approximately 0.75% in an effort 

to reduce the inhomogeneous plastic deformation throughout the cross-section (Nicholas, 

2003).  From basic material mechanics, the strain ε  of a material satisfies the relation 
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E
σ

ε =  (60) 

where E is the modulus of elasticity and σ  is the axial tensile stress.  Since the strain 

percentage is desired to be 0.75, meaning 0075.0=ε , and using the 2024 T3 aluminum 

modulus of E=10.6 x 106 psi in Eq. (60), the required applied stress to strain-relieve the 

specimens is =σ 79,500 psi.  This value far exceeded the 20,000 psi limit of the AFIT 

machine shop stress equipment.  A final approach to relieving the test beam stresses was 

to choose a different temper of aluminum and remanufacture some of the pieces. 

 Since the considered MATLAB algorithm is written such that the constitutive 

properties and mass density of the material need only be considered during analysis, an 

alternative 2024 aluminum temper could be utilized for additional specimen fabrication.  

Aluminum 2024 O was therefore chosen as the suitable substitute to 2024 T3.  The 2024 

designation means that the copper alloy percentages are the same in each alloy grade and 

hence the constitutive properties (which are alloy dependent) remain unchanged.  The 

“O” temper designation indicates the aluminum was post-processed by annealing and 

recrystallization only, meaning post- fabrication work had not been done on the aluminum 

and therefore residual stresses were absent. 

 The aluminum 2024 O was used to remanufacture the 20-cm and 24-cm notched 

specimens, as well as to recreate the 4-beam test set with notches at the cantilevered end 

(both for comparative purposes with the 2024 T3 as well as to obtain the 8-cm specimen 

mismanufactured in the initial test series).  The resulting specimens were stress-free, as 

can be seen from Figure 17 and particularly evident in Figure 18, which is a comparison 

of the 24-cm notched specimens manufactured from 2024 T3 and 2024 O.  An 
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enlargement of the notched regions of the two specimens in Figure 18 is shown in Figure 

19.  With the addition of the six 2024 O test beams to the original set of 12 usable 2024 

T3 beams, the total test array grew to 18 specimens.  These aluminum beams served as 

the basis for studying damage identification through modal vibration analysis and for 

evaluation of the MATLAB and ABAQUS natural frequency prediction accuracies. 

 
 
 

 
Figure 17.  Aluminum 2024 O Specimens with Notches at the Clamped End. 
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Figure 18.  Comparison of 24-cm Notched Specimens (2024 T3 above; 2024 O 

below). 
 

 
Figure 19.  Enlargement of Notched Regions of 24-cm Notched Beams (2024 T3 left; 

2024 O right). 
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Piezoelectric Transducer (PZT) Application 

 The vibrational excitation of the test specimens was accomplished via a 

piezoelectric strain actuator (see Figure 20) mounted on the surface of the beam near the 

cantilever base, as prescribed by Perel and Palazotto (2002) and diagrammatically shown 

in Figure 6.  The proper application of the actuator was of highest importance for 

accurate excitation results and modal values.  Figures 21-a through 21-l depict the PZT 

application process.  The procedures were outlined in similar fashion in the 

accompanying documentation provided with the M-Line M-Bond Application Kit. 

 Piezoelectric actuators were affixed to all 18 test specimens in the prescribed way.  

Special care was taken to ensure that the long PZT edge remained parallel to the beam 

edge, as tilted application could result in decreased resonant signatures. 

 

 
Figure 20.  Quick Pack QP10Ni Strain Actuator Used for Vibrational Excitation. 
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Figures 21-a through 21-l.  PZT 
Application Process. 

 

Figure 21-a.  Equipment Required for 
PZT Application.  From top- left to bottom 
right:  220-grit sandpaper, 400-grit 
sandpaper, ethyl alcohol, scotch tape, hand 
clamp, clamping block, cotton swabs, PZT 
actuator, M-Bond 200 adhesive, M-Prep 
Conditioner A, M-Prep Neutralizer 5A, 
Catalyst C, test specimen. 

 
 
 
 
Figure 21-b.  Degreasing.  Application area 
thoroughly degreased using a cotton swab and 
ethyl alcohol. 
 
 
 
 
 
 
 
 
 
Figure 21-c.  Dry Abrasion.  Area dry-
abraded twice using 220-grit sand paper.  
Residue wiped away with clean cloth. 
 
 
 
 
 
 
 
 
Figure 21-d.  Wet Abrasion.  Area wet-
abraded twice using M-Prep Conditioner A.  
Liquid and residue wiped away in one motion 
and in one direction using clean cloth (to 
avoid redeposit of abraded material). 
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Figure 21-e.  Clean with Conditioner A.  M-
Prep Condition A applied to area and wiped 
with cotton swabs repeatedly until swab 
comes out clean.  Area wiped once with clean 
cloth. 
 
 
 
 
 
 
 
 
Figure 21-f.  Neutralize.  M-Prep Neutralizer 
5A thoroughly applied to area with cotton 
swab.  Area wiped once with clean cloth. 
 
 
 
 
 
 
 
Figure 21-g.  PZT Placement.  PZT picked 
up using scotch tape (to avoid finger prints on 
application side) and positioned as desired on 
freshly abraded area.  Tape folded back to 
reveal underside of patch.  Underside cleaned 
with ethyl alcohol using a cotton swab. 
 
 
 
 
 
 
 
Figure 21-h.  Catalyst Applied.  To 
underside of PZT, Catalyst C applied to 
accelerate bonding process. 
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Figure 21-i.  Application of Bonding Agent.  
M-Bond 200 squeezed onto specimen surface 
in thin, parallel lines to ensure complete 
coverage of the underside of PZT. 
 
 
 
 
 
Figure 21-j.  PZT Placement and Clamping.  
PZT immediately folded over and visually 
checked for complete coverage of M-Bond 
200 on bottom surface.  Excess bonding agent 
is squeezed out from under PZT and wiped 
away.  Clamp used to ensure constant pressure 
throughout drying time.  Aluminum block 
diffuses pressure over entire PZT and 
alleviates direct contact between clamp teeth 
and actuator.  Allowed to set for 15 minutes. 
 
 
 
 
 
Figure 21-k.  Final Product.  Final view of 
test specimen with attached PZT after scotch 
tape removed. 
 
 
 
 
 
 
 
 
Figure 21-l.  Final Product—Side View.   
Side view of final product.  Ensured universal 
adhesion of all areas of actuator. 
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Laser Vibrometry Setup and Procedure  
 
 Once all aluminum test specimens were fabricated and PZT actuators attached, 

the experimental analysis could begin.  Originally it was desired to measure the modal 

response of each beam 3 times to obtain an average driving frequency for each of the 8 

tested modes—thereby yielding a total of 54 separate vibration tests for the 18 test 

specimens.  However, it was later found that better results were obtained if the first four 

modes were tested followed by a test for modes five through eight.  Therefore, each beam 

was tested six times:  three times for modes 1-4 and three times for modes 5-8, then the 

average modal frequency of the three tests for each given mode was calculated and 

considered to be the excitation frequency for that respective mode.  In all cases, the three 

experimentally-obtained resonant frequency values for a given vibration mode deviated 

from the calculated mean by no more than 1%, and in most cases the deviation was less 

than 0.5%.  In all, a total of 108 separate tests were run.  All tests followed the same test 

procedure as outlined in this section. 

 Hardware Arrangement. 

 A clear test area was chosen in the lab where no foreign objects could impact the 

laser line-of-sight from the scanning laser head.  All connections were ensured proper on 

the computer hardware as well as the scanning head, and the scanning head positioned 

normal to shaker table area where specimen actuation would take place.  A signal cable 

was run from the signal output node on Generator 1 of the junction box to the input jack 

of the ACX amplifier.  Switches on the amplifier were set to a voltage limit of 200V and 

a current limit of 200mA.  Another signal cable was connected from the output jack of 
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the amplifier to a set of alligator clips that would later attach to the prongs of the 

piezoelectric actuator. 

 The clamping end of the test specimen was placed behind the mounting brackets 

of the NRC clamp (taking care not to crush the tab of the PZT) and the cap screws finger 

tightened.  As mentioned by several authors in the literature, proper end conditions are of 

primary importance for accurate results, therefore special care was taken to ensure 

constant clamping pressure across the brackets.  Each bracket was visually inspected for 

an improper clamping arrangement (Figure 22), and if found, was corrected for good 

contact, as shown in Figure 23.  All cap screws were then tightened evenly using an allen 

wrench.  The final assembly, including the specimen, clamp, stand, and magnetic base is 

shown in Figure 24. 

 The assembly was then placed on the appropriate area of the shaker table and the 

magnetic base switch turned to the “on” position.  The ACX amplifier was placed near 

the assembly on a foam pad (to attenuate vibrations from its internal cooling fan to the 

table) and the alligator clips leading from the signal output jack connected to the prongs 

of the PZT.  The alligator clip wires were rested on the clamp in such a way so as to not 

dangle from the PZT tab, which could sway and induce vibrations into the beam.  The 

laser vibrometer scanning head was then turned on and centered on the aluminum beam, 

ensuring that the reference position of the laser coincided with the centerpoint of the 

active area of the specimen.  Through the PSV software, a visual verification of the 

perpendicularity of the aluminum beam with the scanning head was accomplished using 

the viewport of the image receiver.  Once all adjustments were made, the final setup 

resembled Figure 25.  A dark cloth was added as a backdrop to the test area for contrast  
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Figure 22.  Improper Clamping of Test Specimen.  Note Skewed Bracket in 

Foreground (viewed from cantilevered end). 
 
 

 
Figure 23.  Proper Clamping of Test Specimen (viewed from cantilevered end). 
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Figure 24.  Final Assembly Including Test Specimen. 

 

 
Figure 25.  Laser Vibrometer Scanning Head Positioned Perpendicular to Test 

Beam Apparatus. 
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enhancement, and during actual testing the laboratory lights were dimmed to reduce 

luminous noise. 

Software Preparation. 

 Using the scan point centered on the test beam, an alignment plane was fashioned 

by taking reflective intensity readings at various points along the test surface, thereby 

informing the software of the location of the test surface in 3-D space.  A scanning grid 

was then superimposed over the digital image of the beam to include all active regions of 

the cantilever (minus the area covered by the actuator).  For adequate measurement of 

eigenvalues and eigenvectors, this grid was chosen to have a density of 6 scan points 

across the width of the beam and 14 scan points along the length, for a total of 84 scan 

points on the beam surface (see Figure 26).  

  

 
Figure 26.  6x14 Scanning Point Grid Density on Cantilevered Test Specimen. 
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Other internal software options for data acquisition (chosen from the Acquisition tab) 

were set as follows: 

 General: 
       Acquisition Mode:  FFT  (Fast Fourier Transform) 
  Averaging:  Complex 
  No Remeasure 
 
 Frequency:  1.25 kHz  or  5 kHz 
  [1.25 kHz setting used for measuring modes 1-4; 5 kHz used for modes 5-8] 
 
 Window:  Rectangle 
 
 Trigger:  Source off 
 
 Vibrometer: 
  Velocity:  25  mm/s/V 
  Tracking Filter:  slow 
 
 Generator:  Pseudo-random 
  Amplitude:  2 
  Steady State:  5 sec. 
  Offset:  0 
 
Once all settings were chosen, data acquisition could commence after selecting a file in 

which to store the data.  Upon test onset, the computer sent a series of repeated actuation 

signals through the amplifier to the PZT and the surface velocity of the test beam was 

measured via the vibrometry theory explained in Chapter II.  The Polytec software 

correlated the excitation frequencies with the associated velocity readings for each scan 

point over time, and from this information produced an average velocity response 

function over the tested frequency bandwidth from which eigenvalues could be 

extrapolated at the resonant peaks (see Figures 27 and 28).  This process was repeated six 

times for each beam (as explained previously, three times at driving frequencies ranging 

from 0 to 1.25 kHz to obtain vibration modes 1-4, and three times at frequencies ranging 
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Figure 27.  Resonant Peaks Indicating 1st Through 4th Modal Actuation Frequencies 

for the Notchless Beam Case (Bandwidth: 0 to 1.25 kHz) 
 

 
Figure 28.  Resonant Peaks Indicating 1st Through 8th Modal Actuation Frequencies 

for the Notchless Beam Case (Bandwidth: 0 to 5 kHz) 
 
 
from 0 to 5 kHz to obtain the remaining 4 modes).  A 1.25 kHz reading and a 5 kHz  

reading were done sequentially, then the beam loosened and reclamped for the next pair  

of readings in an effort to average the effects of the end condition.  All 18 beams were  

tested in this manner, and the resulting data used for comparison with the predictions 

generated by the MATLAB and ABAQUS FE programs. 
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IV.  Experimental Results and Analysis 

 
 
 

 In this chapter, the experimental results obtained in the laboratory from all beam 

specimens are analyzed for frequency degradation trending based on notch location, 

notch size, and vibration mode, as well as compared to the frequency output predicted by 

the MATLAB FE program developed by Perel and Palazotto (2002), the frequencies 

predicted by the ABAQUS FE modeling program, and elementary beam theory (in the 

notchless case).  Also, the vibrational test results for delaminated beams published by 

Mujumdar and Suryanarayan (1988) are compared to the MATLAB predictions for 

several scenarios.  Ultimately, a determination is made as to whether notch locations, 

sizes, and effects on vibration modes are decidedly interrelated, and whether the 

MATLAB and ABAQUS FE programs accurately characterize experimental results for 

notched cantilevered beams. 

Control Specimen—Notchless Beam Case 

 Following the cantilever beam theory outlined in Chapter II, the theoretical 

eigenvalues for a notchless 12”x 1½”x 1/8” aluminum specimen were calculated using 

Eq. (34) and the coefficients from Table 3.  Setting =E 10.6 x 106 psi = 73.084 GPa, 

44.2
12

)"8/1)("5.1(
12

33

===
bh

I  x 10-4 in4 = 1.0 x 10-10 m4,  m = 0.225lbm = 0.102 kg, and 

L = 12 in = 0.3048 m, the first eight natural frequencies were calculated.  The obtained 

theoretical frequencies hold for both 2024 T3 and 2024 O aluminum since the Young’s 

modulus changes negligibly and the mass, the second moment of inertia, and the length 

are constant.  
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Table 4.  Comparison of Theoretical Modal Frequencies vs. Experimental 
Frequencies for 2024 T3 Notchless Specimen. 

MODE Theory (Hz) Experiment (Hz) ?  (%)
1 28.37 28.09 -0.99
2 177.78 172.43 -3.01
3 497.68 484.10 -2.73
4 975.53 944.80 -3.15
5 1612.45 1565.67 -2.90
6 2408.85 2342.00 -2.78
7 3364.22 3267.67 -2.87
8 4479.16 4359.33 -2.68  

 
 
 

 Experimentation compared well with theory.  Using the laser vibrometer and 

cantilever setup outlined in Chapter III, the natural frequencies of the notchless 2024 T3 

test specimen were obtained.  Table 4 lists these results along with an error percentage 

from theory.  Note the percentage difference of experiment from theory is approximately 

3% in all but the first mode, thereby validating the experimental setup and clamped end 

condition as adequate for vibrational analysis for all modes.  This percentage offset was 

later found to be essentially the same for the comparison of the notched specimens for 

both the T3 and O tempers (ref. Table 14 later in the chapter), where the notched beams 

containing residual stresses displayed modal frequencies consistently ~3% below the 

notched beams bereft of residual stresses.     

 Modal frequency results from ABAQUS also agreed well with theory for the 

notchless specimen case.  Modeling a 12- inch aluminum beam specimen with a fixed end 

condition and meshing the part using 1,500 8-noded 3-D brick elements resulted in modal 

frequency values deviating only 1% from the theoretical values, as shown in Table 5. 
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Table 5.  Comparison of Theoretical Modal Frequencies vs. ABAQUS Results for 
Notchless Aluminum Specimen. 

MODE Theory (Hz) ABAQUS (Hz) ?  (%)
1 28.37 28.63 0.92
2 177.78 179.24 0.82
3 497.68 501.93 0.85
4 975.53 984.31 0.90
5 1612.45 1628.50 1.00
6 2408.85 2434.00 1.04
7 3364.22 3399.50 1.05
8 4479.16 4522.60 0.97  

 
 
 

 Finally, the theoretical frequencies were evaluated against the MATLAB output 

for the notchless beam case.  To characterize the notchless condition, the endpoint 

coordinates in the input field of the program were offset by an extremely small margin to 

avoid the zero condition (which causes singularities in the sub-file calculations as the 

program is executed).  Four separate trials for the notchless case were considered, 

respectively having a 20-element mesh, a 40-element mesh, a 100-element mesh, and a 

200-element mesh.  Using the technique explained in Appendix A, the correct modal 

frequency values were isolated from the MATLAB results, yielding excellent agreement 

with theory and close agreement with experimentation (see Tables 6 and 7).  The 200-

element mesh required excessive memory usage and caused MATLAB to stop 

responding.  The 200-element mesh was therefore not used. 

 Employing the 3% adjustment for residual stresses being present in the test beam 

brought the MATLAB results from Table 7 much closer to the experimental frequencies, 

as can be seen in Table 8.  It is therefore evident that the MATLAB program developed 
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Table 6.  MATLAB Frequency Results vs. Theory for 20-, 40-, and 100-Element 
Meshes. 

MODE Theory (Hz)
20-elem. 40-elem. 100-elem. ? 20 (%) ? 40 (%) ? 100 (%)

1 28.37 28.60 28.49 28.25 0.81 0.42 -0.42
2 177.78 177.56 177.72 177.11 -0.12 -0.03 -0.38
3 497.68 494.61 496.23 494.88 -0.62 -0.29 -0.56
4 975.53 966.74 970.55 969.60 -0.90 -0.51 -0.61
5 1612.45 1599.04 1603.29 1604.76 -0.83 -0.57 -0.48
6 2408.85 2395.31 2396.42 2395.12 -0.56 -0.52 -0.57
7 3364.22 3353.47 3350.19 3328.50 -0.32 -0.42 -1.06
8 4479.16 4465.63 4460.65 4419.84 -0.30 -0.41 -1.32

MATLAB (Hz) Deviation from Theory

 
 
 
 
 
 

Table 7.  MATLAB Frequency Results vs. Experimental Results for 20-, 40-, and 
100-Element Meshes. 

MODE Exp. (Hz)
20-elem. 40-elem. 100-elem. ? 20 (%) ? 40 (%) ? 100 (%)

1 28.09 28.60 28.49 28.25 1.82 1.42 0.57
2 172.43 177.56 177.72 177.11 2.98 3.07 2.71
3 484.10 494.61 496.23 494.88 2.17 2.51 2.23
4 944.80 966.74 970.55 969.60 2.32 2.73 2.62
5 1565.67 1599.04 1603.29 1604.76 2.13 2.40 2.50
6 2342.00 2395.31 2396.42 2395.12 2.28 2.32 2.27
7 3267.67 3353.47 3350.19 3328.50 2.63 2.53 1.86
8 4359.33 4465.63 4460.65 4419.84 2.44 2.32 1.39

MATLAB (Hz) Deviation from Exp.
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Table 8.  MATLAB Frequency Results vs. Experimental Results with 3% 
Adjustment for 20-, 40-, and 100-Element Meshes. 

MODE
Exp. with 3% 

Adj. (Hz)

20-elem. 40-elem. 100-elem. ? 20 (%) ? 40 (%) ? 100 (%)
1 28.93 28.60 28.49 28.25 -1.15 -1.53 -2.36
2 177.60 177.56 177.72 177.11 -0.02 0.07 -0.28
3 498.62 494.61 496.23 494.88 -0.80 -0.48 -0.75
4 973.14 966.74 970.55 969.60 -0.66 -0.27 -0.36
5 1612.64 1599.04 1603.29 1604.76 -0.84 -0.58 -0.49
6 2412.26 2395.31 2396.42 2395.12 -0.70 -0.66 -0.71
7 3365.70 3353.47 3350.19 3328.50 -0.36 -0.46 -1.11
8 4490.11 4465.63 4460.65 4419.84 -0.55 -0.66 -1.56

MATLAB (Hz) Deviation from Exp.

 

 
agrees fully with experimental results, theory, and ABAQUS for the notchless, isotropic 

beam case. 

 Eigenvector Comparison. 

 When obtaining resonant frequencies, it was important to ensure the eigenvalues 

being considered corresponded to the correct eigenvector associated with the desired 

mode shape.  This was particularly important when using the MATLAB program, which 

normalized the displacements for all degrees of freedom and therefore required a visual 

verification of the modal amplitude to obtain the correct eigenvalue for the mode. 

Figures 29-a through 29-h graphically display the eigenvector comparison between 

ABAQUS, experimental results, and the MATLAB output (cases shown are results from 

the notchless beam).  For each test comparison across the spectrum of experimental 

cases, the eigenvalue outputs of the various predictive/experimental methods were 

matched to a particular eigenvector, and the eigenvectors analyzed to ensure cross-  
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Figure 29-a.  Mode 1 Eigenvector 

Comparison—ABAQUS, Experiment, 
MATLAB 

 

 

 
Figure 29-c.  Mode 3 Eigenvector 

Comparison—ABAQUS, Experiment, 
MATLAB 

 

 

 
Figure 29-b.  Mode 2 Eigenvector 

Comparison—ABAQUS, Experiment, 
MATLAB 

 

 

 
Figure 29-d.  Mode 4 Eigenvector 

Comparison—ABAQUS, Experiment, 
MATLAB 
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Figure 29-e.  Mode 5 Eigenvector 

Comparison—ABAQUS, Experiment, 
MATLAB 

 

 

Figure 29-g.  Mode 7 Eigenvector 
Comparison—ABAQUS, Experiment, 

MATLAB 

 

 

 
Figure 29-f.  Mode 6 Eigenvector 

Comparison—ABAQUS, Experiment, 
MATLAB 

 

 

 
Figure 29-h.  Mode 8 Eigenvector 

Comparison—ABAQUS, Experiment, 
MATLAB 
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comparison of the same modal frequency as is done in the figures.  This process 

confirmed that modal frequency comparison occurred between similar modes, and no 

spurious data sets were included for non-translational vibrations (such as torsional modes, 

longitudinal modes, etc.). 

Notched Beam Cases—Experimental Results 

  The series of 2024 T3 aluminum specimens was likewise tested via laser Doppler 

vibrometry according to the methods previously outlined.  This test set included the 

following, as described in Chapter III—Experimental Specimen Design: 

1) Four beams with an included notch propagating from the free end of the 
cantilever—notch lengths of 4cm, 8cm, 12cm, and 16cm. 

2) Four beams with an included notch propagating from the midpoint of the 
cantilever—notch lengths of 4cm, 8cm, 12cm, and 16cm. 

3) Three beams with an included notch propagating from the fixed end of the 
cantilever—notch lengths of 4cm, 12cm, and 16cm (the 8cm specimen was 
mismanufactured). 

 
Table 9 lists the modal frequencies obtained for the first eight vibration modes for all test 

beams, as well as a deviation percentage from the control specimen (notchless beam).  

Note that, with the exception of the first mode, the percentage deviation from the control 

specimen increases as the notch length increases.  This trend is due to reductions in the 

flexural rigidity EI of the beam, where E is the elastic modulus and 
12

3bh
I =  for the 

notchless cross-section, while the centerline-notched cross-section contains  

  
4812

2
2

3

3

bh
h

b
I =









=   (61) 
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Table 9.  Experimental Modal Frequencies and Percent Deviation from Control 
Specimen for 2024 T3 Notched Beams. 

1 2 3 4 5 6 7 8
28.91 175.27 471.73 931.77 1485.00 2213.33 3116.00 4151.00
-0.08 -1.32 -5.39 -4.25 -7.91 -8.25 -7.42 -7.55
29.30 166.93 421.63 774.33 1359.67 1779.33 2533.33 3476.67
1.27 -6.01 -15.44 -20.43 -15.69 -26.24 -24.73 -22.57

29.04 154.30 406.27 658.20 1090.33 1748.33 2369.00 3084.33
0.36 -13.12 -18.52 -32.36 -32.39 -27.52 -29.61 -31.31

28.26 146.77 336.60 561.47 1046.33 1535.00 2263.67 2750.00
-2.34 -17.36 -32.49 -42.30 -35.12 -36.37 -32.74 -38.75
27.73 170.57 456.23 899.23 1535.67 1977.67 3053.00 3785.67
-4.16 -3.96 -8.50 -7.60 -4.77 -18.02 -9.29 -15.69
28.13 169.00 390.87 725.80 1283.00 1846.67 2477.00 3483.33
-2.77 -4.84 -21.61 -25.42 -20.44 -23.45 -26.40 -22.42
27.47 161.33 366.13 635.70 1080.67 1729.33 2377.67 2991.00
-5.06 -9.16 -26.57 -34.68 -32.99 -28.31 -29.36 -33.39
26.82 152.43 324.87 577.30 1024.33 1403.33 1982.33 2820.33
-7.30 -14.17 -34.85 -40.68 -36.48 -41.82 -41.10 -37.19
27.73 169.90 474.87 965.50 1387.33 2077.33 3092.67 3946.33
-4.16 -4.34 -4.76 -0.79 -13.97 -13.88 -8.11 -12.11

25.13 146.63 369.13 682.80 1039.33 1656.33 2289.67 2949.00
-13.14 -17.44 -25.97 -29.84 -35.55 -31.34 -31.97 -34.32
24.22 137.10 300.30 563.17 1026.00 1449.00 1977.00 2755.67

-16.29 -22.81 -39.77 -42.13 -36.38 -39.93 -41.26 -38.63

12                    
Clamped 

12          
Middle

16              
Middle

4                    
Clamped 

8                   
Clamped 

MODAL FREQUENCIES (Hz)                                                                                         
Deviation from control values (%)
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O
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A
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4         
Free end

8               
Free End

12            
Free End

16                
Free End

4         
Middle

8              
Middle

16                    
Clamped  

 

Therefore, flexural rigidity decreases by 75% in the regions containing a centerline notch, 

which by definition reduces the global stiffness of the beam. 

 Also of interest is the overall trend of frequency reduction from the control 

specimen as mode number increases.  In general, the higher modes deviate much more 

from the notchless case than do the lower modes, indicating that the higher modes are 

much more sensitive to damage inclusions than are the lower modes (see Figures 30, 31, 

and 32), directly in line with the observations made by Tracy and Pardoen (1988).  
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Figure 30.  Frequency vs. Mode Number for 2024 T3 Notched Beams--Free End. 
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Figure 31.  Frequency vs. Mode Number for 2024 T3 Notched Beams--Middle. 
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Figure 32.  Frequency vs. Mode Number for 2024 T3 Notched Beams--Clamped End 

(minus the mismanufactured 8cm-notched beam). 
  

Nodal Damage Analysis. 

 A hypothesis was explored as to whether damage crossing through nodes of 

modal curvature inflection (i.e. locations where the oscillatory displacements transition 

from concave-up to concave-down) caused large jumps in modal frequency degradation 

for a given vibration mode.  Since curvature inflection points represent locations of least 

moment and highest shear, and shear at a free edge must be equal to zero, then a notch 

crossing through a region of curvature inflection that interrupts the shear flow through the 

cross-section might have an effect on the dynamics of the beam.  Figure 33-a through 33-

h show the curvature inflection points and approximate displacements from the 

cantilevered end for each vibration mode.  
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Figure 33-a.  1st Mode of Vibration; No Curvature Inflection Nodes. 

 

 
Figure 33-b.  2nd Mode of Vibration; One Curvature Inflection Node. 

 

 
Figure 33-c.  3rd Mode of Vibration; Two Curvature Inflection Nodes. 

 

 
Figure 33-d.  4th Mode of Vibration; Three Curvature Inflection Nodes. 
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Figure 33-e.  5th Mode of Vibration; Four Curvature Inflection Nodes. 

 

 
Figure 33-f.  6th Mode of Vibration; Five Curvature Inflection Nodes. 

 

 
Figure 33-g.  7th Mode of Vibration; Six Curvature Inflection Nodes. 

 

 
Figure 33-h.  8th Mode of Vibration; Seven Curvature Inflection Nodes. 
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Table 10 shows modal frequencies for the 2024 T3 notched beams, deviation 

from the notchless case, and the number of curvature inflection nodes intersected by each 

notch based on its position and length.  For the hypothesis to hold, a large increase in 

percent deviation from control values should occur for each additional curvature node 

intersected, and when no additional node is crossed, a minimal frequency drop should be 

observed.  For instance, for the 7th mode, free-end case, as the notch was increased from 

4cm to 8cm, one curvature node was crossed and the modal frequency decreased from     

-7.4% to -24.7%.  Similar transitional frequency drops occurred in the 4cm-8cm free-end 

8th mode, the 8cm-12cm free-end 5th mode, the 12cm-16cm middle-notch 6th mode, the 

12cm-16cm clamped-end 4th mode, etc.  Also, a minimal drop in modal frequency is seen 

in the 12cm-16cm free-end 5th mode case, which does not cross an additional node of 

curvature even though the shorter notch length before does (and shows the jump in 

frequency reduction).  The same phenomenon is observed across the range of notch 

lengths for the first and second modes of vibration, as well as various other notch cases 

throughout the experimental set. 

However, several data points disprove the theory as well.  The transition from 

4cm to 8cm in the middle-notch 4th mode case indicates a large jump of 17.8% in 

frequency degradation, however no additional curvature node was crossed by the longer 

notch.  This is also the case 12-16cm clamped-end 3rd mode and the 4cm-8cm free-end 

4th mode.  Similarly, in certain cases an additional curvature node was intersected with no 

appreciable decline in frequency observed, such as the 8cm-12cm middle-notch 6th mode 

transition and the 12cm-16cm clamped-end 5th mode transition.  Since several areas in 

the data refute the hypothesis that damage intercepting a region of curvature transition  
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Table 10.  Experimental Modal Frequencies, Deviation from Control Specimen, and 
Number of Curvature Inflection Nodes Crossed for 2024 T3 Aluminum Beams  

1 2 3 4 5 6 7 8
28.91 175.27 471.73 931.77 1485.00 2213.33 3116.00 4151.00
-0.08 -1.32 -5.39 -4.25 -7.91 -8.25 -7.42 -7.55

0 0 0 0 0 0 0 0
29.30 166.93 421.63 774.33 1359.67 1779.33 2533.33 3476.67
1.27 -6.01 -15.44 -20.43 -15.69 -26.24 -24.73 -22.57

0 0 0 0 0 0 1 1
29.04 154.30 406.27 658.20 1090.33 1748.33 2369.00 3084.33
0.36 -13.12 -18.52 -32.36 -32.39 -27.52 -29.61 -31.31

0 0 0 0 1 1 2 2
28.26 146.77 336.60 561.47 1046.33 1535.00 2263.67 2750.00
-2.34 -17.36 -32.49 -42.30 -35.12 -36.37 -32.74 -38.75

0 0 0 1 1 2 2 3
27.73 170.57 456.23 899.23 1535.67 1977.67 3053.00 3785.67
-4.16 -3.96 -8.50 -7.60 -4.77 -18.02 -9.29 -15.69

0 0 0 1 1 1 1 1
28.13 169.00 390.87 725.80 1283.00 1846.67 2477.00 3483.33
-2.77 -4.84 -21.61 -25.42 -20.44 -23.45 -26.40 -22.42

0 0 1 1 1 1 2 2
27.47 161.33 366.13 635.70 1080.67 1729.33 2377.67 2991.00
-5.06 -9.16 -26.57 -34.68 -32.99 -28.31 -29.36 -33.39

0 0 1 1 2 2 3 3
26.82 152.43 324.87 577.30 1024.33 1403.33 1982.33 2820.33
-7.30 -14.17 -34.85 -40.68 -36.48 -41.82 -41.10 -37.19

0 0 1 2 2 3 3 4
27.73 169.90 474.87 965.50 1387.33 2077.33 3092.67 3946.33
-4.16 -4.34 -4.76 -0.79 -13.97 -13.88 -8.11 -12.11

0 0 0 1 1 1 0 1

25.13 146.63 369.13 682.80 1039.33 1656.33 2289.67 2949.00
-13.14 -17.44 -25.97 -29.84 -35.55 -31.34 -31.97 -34.32

0 1 1 1 2 3 2 3
24.22 137.10 300.30 563.17 1026.00 1449.00 1977.00 2755.67

-16.29 -22.81 -39.77 -42.13 -36.38 -39.93 -41.26 -38.63
0 1 1 2 3 3 3 4
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(and hence changing the shear profile) causes large natural frequency declines, the 

hypothesis was determined to be incorrect. 

Anti-Nodal Damage Analysis. 

A similar study was done to determine if damage passing through a region of 

maximum curvature (and hence maximum normal stress and no shear) had a significant 

effect on the modal frequencies.  Table 11 shows the number of maximum curvature 

points intersected by each notch of the given length and position.  As was the case with 

the curvature inflection theory, several data points suggested that damage crossing 

successive regions of maximum curvature reduced resonant frequencies significantly (i.e. 

the 4cm-8cm free-end 7th mode transition and the 12cm-16cm clamped-end 3rd mode 

transition), but many other data points disproved the hypothesis (such as the 4cm-8cm 

middle-notch 4th mode transition where no additional max curvature point was crossed 

and the 12cm-16cm free-end 5th mode transition where an additional max curvature point 

was crossed but no appreciable decline in frequency was evident).  Therefore, antinodal 

damage is likewise not shown to be a driving factor behind modal frequency decline.  

This is quite sensible in that a centerline notch for a region of maximum moment 

minimally interrupts the normal stress experienced by the cross-section, as the centerline 

is the neutral axis of the specimen.  Should the notch be offset from the centerline, it 

would more noticeably disrupt the normal stress field of the cross-section and thereby 

potentially have more of an effect on the frequency response. 
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Table 11.   Experimental Modal Frequencies, Deviation from Control Specimen, and 
Number of Maximum Deflection Points Crossed for 2024 T3 Aluminum Beams  

1 2 3 4 5 6 7 8
28.91 175.27 471.73 931.77 1485.00 2213.33 3116.00 4151.00
-0.08 -1.32 -5.39 -4.25 -7.91 -8.25 -7.42 -7.55

0 0 0 0 0 0 0 0
29.30 166.93 421.63 774.33 1359.67 1779.33 2533.33 3476.67
1.27 -6.01 -15.44 -20.43 -15.69 -26.24 -24.73 -22.57

0 0 0 0 1 1 1 1
29.04 154.30 406.27 658.20 1090.33 1748.33 2369.00 3084.33
0.36 -13.12 -18.52 -32.36 -32.39 -27.52 -29.61 -31.31

0 0 0 1 1 2 2 2
28.26 146.77 336.60 561.47 1046.33 1535.00 2263.67 2750.00
-2.34 -17.36 -32.49 -42.30 -35.12 -36.37 -32.74 -38.75

0 0 1 1 2 2 3 3
27.73 170.57 456.23 899.23 1535.67 1977.67 3053.00 3785.67
-4.16 -3.96 -8.50 -7.60 -4.77 -18.02 -9.29 -15.69

0 0 0 1 1 1 1 1
28.13 169.00 390.87 725.80 1283.00 1846.67 2477.00 3483.33
-2.77 -4.84 -21.61 -25.42 -20.44 -23.45 -26.40 -22.42

0 0 1 1 1 2 2 2
27.47 161.33 366.13 635.70 1080.67 1729.33 2377.67 2991.00
-5.06 -9.16 -26.57 -34.68 -32.99 -28.31 -29.36 -33.39

0 1 0 1 2 2 3 3
26.82 152.43 324.87 577.30 1024.33 1403.33 1982.33 2820.33
-7.30 -14.17 -34.85 -40.68 -36.48 -41.82 -41.10 -37.19

0 1 1 2 2 3 3 4
27.73 169.90 474.87 965.50 1387.33 2077.33 3092.67 3946.33
-4.16 -4.34 -4.76 -0.79 -13.97 -13.88 -8.11 -12.11

0 0 1 0 0 1 1 1

25.13 146.63 369.13 682.80 1039.33 1656.33 2289.67 2949.00
-13.14 -17.44 -25.97 -29.84 -35.55 -31.34 -31.97 -34.32

0 1 1 1 2 2 3 3
24.22 137.10 300.30 563.17 1026.00 1449.00 1977.00 2755.67

-16.29 -22.81 -39.77 -42.13 -36.38 -39.93 -41.26 -38.63
0 1 2 1 2 3 4 4

16                    
Clamped

N
O

T
C

H
 S

IZ
E

 (c
m

) A
N

D
 L

O
C

A
T

IO
N

MODAL FREQUENCIES (Hz)                                                                                         
Deviation from control values (%)                                                                             

Number of maximum deflection points crossed

4                    
Clamped 

End
8                   

Clamped 
End
12                    

Clamped 
End

4         
Free end

8               
Free End

12            
Free End

16                
Free End

4         
Middle

8              
Middle

12          
Middle

16              
Middle

 

 

  

 

 



 

 76 

Damage Magnitude Analysis. 

 A further study was accomplished to determine whether magnitude, independent 

of position, could be resolved from the experimental modal frequencies.  Table 12 

reorganizes the previously displayed modal information by notch length for clarity in this 

subsection.  For longer notch lengths and higher modes, the deviation percentages from 

the notchless case become quite close despite notch location.   

Considering vibration modes 4 through 8, the 16cm notch lengths indicate 

vibration decreases within only a few percentage points of each other for each mode with 

the exception of the 7th mode; the 12cm notch cases likewise have modal deviations from 

the control specimen within a few percentage points of each other, as are the errors 

associated with the 8cm notches.  The 4cm notches show a more varied vibration 

response over the range of vibration modes, as do the lower modes (1 through 3) for all 

test specimens.  

Approximate damage magnitude is therefore identifiable in the frequency domain 

for notches of significant size (25% of the total beam length or more), since the notch 

frequency signature for each of the higher modes will be similar despite damage location.  

Low vibration modes do not indicate a similar grouping of resonant frequencies for a 

given notch length at varied locations.  Also, the 4cm notches do not demonstrate a tight 

distribution of frequency errors across the spectrum of vibration modes.    

2024 O Test Set 

The experimental beams free from residual stresses (2024 O) were likewise tested 

and the modal frequencies tabulated (see Table 13).  Similar trending to that of the 2024 

T3 beams is observed regarding frequency reduction as both notch length and mode 
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Table 12.  Experimental Modal Frequencies and Percent Deviation from Control 
Specimen for 2024 T3 Notched Beams (reorganized based on notch length). 

1 2 3 4 5 6 7 8
28.91 175.27 471.73 931.77 1485.00 2213.33 3116.00 4151.00
-0.08 -1.32 -5.39 -4.25 -7.91 -8.25 -7.42 -7.55
27.73 170.57 456.23 899.23 1535.67 1977.67 3053.00 3785.67
-4.16 -3.96 -8.50 -7.60 -4.77 -18.02 -9.29 -15.69
27.73 169.90 474.87 965.50 1387.33 2077.33 3092.67 3946.33
-4.16 -4.34 -4.76 -0.79 -13.97 -13.88 -8.11 -12.11
29.30 166.93 421.63 774.33 1359.67 1779.33 2533.33 3476.67
1.27 -6.01 -15.44 -20.43 -15.69 -26.24 -24.73 -22.57

28.13 169.00 390.87 725.80 1283.00 1846.67 2477.00 3483.33
-2.77 -4.84 -21.61 -25.42 -20.44 -23.45 -26.40 -22.42

29.04 154.30 406.27 658.20 1090.33 1748.33 2369.00 3084.33
0.36 -13.12 -18.52 -32.36 -32.39 -27.52 -29.61 -31.31

27.47 161.33 366.13 635.70 1080.67 1729.33 2377.67 2991.00
-5.06 -9.16 -26.57 -34.68 -32.99 -28.31 -29.36 -33.39
25.13 146.63 369.13 682.80 1039.33 1656.33 2289.67 2949.00

-13.14 -17.44 -25.97 -29.84 -35.55 -31.34 -31.97 -34.32
28.26 146.77 336.60 561.47 1046.33 1535.00 2263.67 2750.00
-2.34 -17.36 -32.49 -42.30 -35.12 -36.37 -32.74 -38.75
26.82 152.43 324.87 577.30 1024.33 1403.33 1982.33 2820.33
-7.30 -14.17 -34.85 -40.68 -36.48 -41.82 -41.10 -37.19
24.22 137.10 300.30 563.17 1026.00 1449.00 1977.00 2755.67

-16.29 -22.81 -39.77 -42.13 -36.38 -39.93 -41.26 -38.63
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Table 13.  Experimental Modal Frequencies and Percent Deviation from Control 
Specimen for 2024 O Notched Beams. 

1 2 3 4 5 6 7 8

28.65 174.73 489.47 995.40 1439.00 2136.67 3190.67 4104.67
-0.98 -1.62 -1.84 2.29 -10.77 -11.42 -5.20 -8.58

27.73 159.40 485.53 711.70 1273.67 1817.67 2679.67 3509.00
-4.16 -10.25 -2.63 -26.87 -21.02 -24.65 -20.38 -21.85

26.17 147.57 387.40 670.20 1070.33 1695.33 2354.67 3065.67
-9.55 -16.91 -22.31 -31.13 -33.63 -29.72 -30.04 -31.72

24.61 145.43 298.97 580.73 1028.33 1495.33 2042.00 2819.00
-14.94 -18.11 -40.04 -40.32 -36.23 -38.01 -39.33 -37.22
24.61 142.20 267.07 539.60 811.70 1312.00 1857.67 2392.33

-14.94 -19.93 -46.44 -44.55 -49.67 -45.61 -44.81 -46.72
22.79 134.80 266.93 514.33 781.27 1248.00 1762.33 2223.00

-21.23 -24.10 -46.47 -47.15 -51.55 -48.26 -47.64 -50.49
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Figure 34.  Frequency vs. Mode Number for 2024 O Notched Beams--Clamped End. 
 
 
number increase.  The residual stresses present in the 2024 T3 beams did not adversely 

affect the dynamic response trends as compared to the 2024 O beams—both indicated a 

proportional decrease in modal frequencies as notch length increased, and both indicated 

an increase in frequency reduction experienced by the higher modes versus the lower 

modes when referenced to the notchless case (see Figures 32 and 34).  The residual 

stress-free results likewise do not support the conjecture that damage at the modal nodes 

or antinodes constitutes increased degradation of the resonant frequencies. 

2024 T3 vs. 2024 O Frequency Comparison 

 Comparison of the 2024 T3 aluminum specimen modal frequencies with the 2024 

O modal frequencies was important to establish whether residual stresses critically 

damped the former to the point where the results were unusable for analysis.  
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Experimental results were compared for each of the three specimens created out of both 

materials:  the 4cm, 12cm, and 16cm notched beams with the inclusion located at the 

clamped end.  Table 14 provides a listing of the modal frequencies for each crack length 

and associated material, as well as the difference relation between the two materials using 

the stress- free 2024 O aluminum as the fundamental case.  The difference between the 

2024 O frequencies and the 2024 T3 frequencies averages to be ~3%, with the natural 

frequencies of the latter lower than the former.  This percentage difference was also seen 

to be the deviation of the 2024 T3 notchless frequency values with theory, as previously 

shown in Table 5.  It is therefore evident that the residual stresses found in the 2024 T3 

aluminum induce a relatively insignificant error into the overwhelming reductions in 

modal frequencies due to longer notch inclusions, as displayed in Tables 9 and 13.  The 

measured results are therefore viable for the conclusions made in determining whether 

the experimental frequencies of a damaged cantilever aluminum beam can be accurately 

characterized. 

 
Table 14.  Modal Frequency Comparison of 2024 T3 Aluminum with 2024 O 

Aluminum for 4cm, 12cm, and 16cm Notch Lengths at the Clamped End. 

1 2 3 4 5 6 7 8
2024 O 28.65 174.73 489.47 995.40 1439.00 2136.67 3190.67 4104.67

2024 T3 27.73 169.90 474.87 965.50 1387.33 2077.33 3092.67 3946.33
?(%) -3.21 -2.77 -2.98 -3.00 -3.59 -2.78 -3.07 -3.86

2024 O 26.17 147.57 387.40 670.20 1070.33 1695.33 2354.67 3065.67
2024 T3 25.13 146.63 369.13 682.80 1039.33 1656.33 2289.67 2949.00

?(%) -3.97 -0.63 -4.72 1.88 -2.90 -2.30 -2.76 -3.81
2024 O 24.61 145.43 298.97 580.73 1028.33 1495.33 2042.00 2819.00

2024 T3 24.22 137.10 300.30 563.17 1026.00 1449.00 1977.00 2755.67
?(%) -1.58 -5.73 0.45 -3.02 -0.23 -3.10 -3.18 -2.25
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Usage of the MATLAB Program 

 A copy of the MATLAB finite element program, which incorporates the theory 

presented in the 2002 publication by Perel and Palazotto and briefly summarized in 

Chapter II, was obtained from Dr. Victor Perel for experimental evaluation in February 

2003.  The innovative purpose of the program was to accurately characterize modal 

frequencies for a delaminated cantilevered beam while not requiring re-meshing for each 

included crack length, unlike all current commercial FE analyzers such as ABAQUS, 

NASTRAN, etc. The MATLAB algorithm was written specifically for the cantilevered 

beam case (as depicted in Figure 6, Chapt II), requiring several input fields to be filled in 

by the user regarding specimen characteristics for proper utilization.  A copy of the input 

field for the program is shown and its usage explained in Appendix A. 

 Once the proper values are entered into the appropriate fields, the program is 

executed and the output generated.  A listing of modal frequencies corresponding to each 

degree of freedom is generated as well as a plot of a specified eigenvector.  Normalized 

modal amplitude is checked for its order of magnitude and correlated to the appropriate 

eigenvalue, for all eigensolutions of a given case (ref. Appendix A).  These 

eigenvalue/eigenvector pairs are the predicted modal frequencies and shapes for the 

instance of interest. 

Output Comparison with MATLAB Program 

 Following the methods described in Appendix A, the MATLAB FE analysis 

program was configured to characterize all notch lengths and locations representative of 

the experimental specimens.  Considerable effort was taken to ensure accuracy of the 

input data, as this step required multiple integration calculations for beam parameters as 
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well as conversions between Standard English units and the SI system.  Once all cases 

had been executed and the appropriate eigenvalues for the considered modes of vibration 

chosen from the output, the frequency data shown in Table 15 could be compiled.  Note 

that the values entered for the 2024 T3 aluminum include the 3% correction factor for 

residual stresses, as this modification brings the experimental values closer to the true, 

stress-free magnitudes. 

 The data sets shown contain several interesting points that need to be addressed.  

First, the FE approach developed by Perel and Palazotto accurately characterizes the 

resonant frequency of an included isotropic beam with small error for short notch lengths.  

Observing specifically the 4cm notch cases, error from the experimentally obtained 

frequency values hovers around 5% for the majority of modes considered, though the 

MATLAB predictions for the first and eighth vibration modes with a crack located at the 

extrema of the beam provide moderately divergent results, where errors are in the 7% to 

14% range.  Between these two modes, the results are quite good with the exception of an 

outlier of 16% for the 6th mode, middle inclusion. 

Another observation is that the MATLAB output, as a whole, is relatively more 

accurate at the lower vibration modes across the range of test results than at the higher 

modes.  Deviation from experiment for modes 1 and 2 is less than 20% for all specimens 

except the 16cm, clamped end notch.  Beyond this point, error increases steadily to 40%, 

50%, and in some cases, 60% offset from the experimentally-acquired frequency values.  

It is therefore evident that the higher the mode being analyzed, the more apt MATLAB is 

to give largely incorrect results for modal frequency. 
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Table 15.  Modal Frequency Comparison--Experimental Results vs. MATLAB 
Predictions (20-element model) with Percent Offset from Experimental            

Values for 2024 T3 Aluminum (with 3% correction for residual stresses). 

1 2 3 4 5 6 7 8
Exp. 29.78 180.52 485.88 959.72 1529.55 2279.73 3209.48 4275.53

MATLAB 26.15 170.66 485.94 963.01 1608.52 2418.87 3382.62 4492.78
?(%) -12.17 -5.46 0.01 0.34 5.16 6.10 5.39 5.08
Exp. 30.18 171.94 434.28 797.56 1400.46 1832.71 2609.33 3580.97

MATLAB 24.94 172.22 493.05 978.75 1630.34 2431.60 3384.15 4503.56
?(%) -17.36 0.16 13.53 22.72 16.42 32.68 29.69 25.76
Exp. 29.91 158.93 418.45 677.95 1123.04 1800.78 2440.07 3176.86

MATLAB 24.43 174.02 501.79 983.04 1624.77 2440.46 3390.46 4511.48
?(%) -18.31 9.50 19.92 45.00 44.68 35.52 38.95 42.01
Exp. 29.10 151.17 346.70 578.31 1077.72 1581.05 2331.58 2832.50

MATLAB 25.25 174.76 504.38 980.58 1630.45 2438.20 3395.01 4514.58
?(%) -13.26 15.61 45.48 69.56 51.29 54.21 45.61 59.39
Exp. 28.56 175.68 469.92 926.21 1581.74 2037.00 3144.59 3899.24

MATLAB 28.74 169.71 489.01 961.45 1598.53 2376.46 3373.46 4461.30
?(%) 0.61 -3.40 4.06 3.80 1.06 16.66 7.28 14.41
Exp. 28.97 174.07 402.59 747.57 1321.49 1902.07 2551.31 3587.83

MATLAB 28.77 168.18 479.84 958.25 1602.87 2373.17 3314.81 4442.60
?(%) -0.71 -3.38 19.19 28.18 21.29 24.77 29.93 23.82
Exp. 28.29 166.17 377.12 654.77 1113.09 1781.21 2449.00 3080.73

MATLAB 28.52 170.19 470.30 951.50 1574.97 2394.30 3301.88 4422.16
?(%) 0.78 2.42 24.71 45.32 41.50 34.42 34.83 43.54
Exp. 27.62 157.01 334.61 594.62 1055.06 1445.43 2041.80 2904.94

MATLAB 29.41 173.42 465.19 935.37 1562.18 2341.26 3322.86 4411.72
?(%) 6.48 10.45 39.02 57.31 48.06 61.98 62.74 51.87
Exp. 28.56 175.00 489.11 994.47 1428.95 2139.65 3185.45 4064.72

MATLAB 26.50 179.45 497.21 961.40 1589.55 2384.94 3355.43 4461.30
?(%) -7.23 2.55 1.66 -3.32 11.24 11.46 5.34 9.76
Exp.

MATLAB
?(%)
Exp. 25.88 151.03 380.21 703.28 1070.51 1706.02 2358.36 3037.47

MATLAB 24.75 181.02 510.59 950.93 1577.61 2386.56 3326.09 4422.16
?(%) -4.37 19.85 34.29 35.21 47.37 39.89 41.03 45.59
Exp. 24.95 141.21 309.31 580.06 1056.78 1492.47 2036.31 2838.34

MATLAB 25.25 180.04 493.63 955.47 1580.49 2363.32 3329.34 4411.72
?(%) 1.20 27.49 59.59 64.72 49.56 58.35 63.50 55.43
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 The FE approach also deviates more from experimental observation in cases with 

long notch length.  The 4cm-notch frequency predictions are much less erroneous than 

the 8cm-notch predictions, which are in turn more accurate than the 12cm-notch 

predictions, etc.  The longer the notch length, the more difficulty the MATLAB program 

has in producing a reliable estimation of resonant frequencies for each modes.   
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 The same trends were observed in the stress- free 2024 O aluminum, as indicated 

in Table 16.  Error from experiment was still significant for high modes and long notch 

lengths, indicating that the residual stresses endemic to the 2024 T3 aluminum were not 

the cause of the significant deviations observed, but rather the deviations were a result of 

difficulties in the MATLAB solution approach. 

 
Table 16.  Modal Frequency Comparison--Experimental Results vs. MATLAB 

Predictions (20-element model) for 2024 O Aluminum. 

1 2 3 4 5 6 7 8
Exp. 28.65 174.73 489.47 995.40 1439.00 2136.67 3190.67 4104.67

MATLAB 26.50 179.45 497.21 961.40 1589.55 2384.94 3355.43 4461.30
?(%) -7.51 2.70 1.58 -3.42 10.46 11.62 5.16 8.69
Exp. 26.17 147.57 387.40 670.20 1070.33 1695.33 2354.67 3065.67

MATLAB 24.75 181.02 510.59 950.93 1577.61 2386.56 3326.09 4422.16
?(%) -5.42 22.67 31.80 41.89 47.39 40.77 41.26 44.25
Exp. 24.61 145.43 298.97 580.73 1028.33 1495.33 2042.00 2819.00

MATLAB 25.25 180.04 493.63 955.47 1580.49 2363.32 3329.34 4411.72
?(%) 2.58 23.80 65.11 64.53 53.69 58.05 63.04 56.50
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The FE mesh in the MATLAB program was refined to investigate whether 

lengthwise element concentration was the source of the comparative frequency errors.  A 

40-element mesh (twice the density of the previous analysis) was established and run for 

all notch length cases.  The results (see Table 17) indicate that the overall percentage 

differences between experiment and FE output decreased over the 20-element model, 

leading to the conclusion that the mesh refinement lessened the gap between the 

MATLAB estimation and actual experimental value. 
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Table 17.  Modal Frequency Comparison--Experimental Results vs. MATLAB 
Predictions (40-element model) with Percent Offset from Experimental            

Values for 2024 T3 Aluminum (with 3% correction for residual stresses). 

1 2 3 4 5 6 7 8
Exp. 29.78 180.52 485.88 959.72 1529.55 2279.73 3209.48 4275.53

MATLAB 31.75 192.96 510.05 966.54 1569.91 2339.30 3282.82 4390.15
?(%) 6.62 6.89 4.97 0.71 2.64 2.61 2.29 2.68
Exp. 30.18 171.94 434.28 797.56 1400.46 1832.71 2609.33 3580.97

MATLAB 34.30 186.34 481.56 942.76 1571.05 2339.30 3256.91 4390.15
?(%) 13.66 8.38 10.89 18.20 12.18 27.64 24.82 22.60
Exp. 29.91 158.93 418.45 677.95 1123.04 1800.78 2440.07 3176.86

MATLAB 37.68 176.41 479.66 942.21 1545.94 2341.51 3242.89 4354.37
?(%) 26.00 11.00 14.63 38.98 37.66 30.03 32.90 37.07
Exp. 29.10 151.17 346.70 578.31 1077.72 1581.05 2331.58 2832.50

MATLAB 36.64 173.82 481.41 929.83 1553.12 2316.63 3241.23 4334.30
?(%) 25.88 14.99 38.85 60.78 44.11 46.52 39.01 53.02
Exp. 28.56 175.68 469.92 926.21 1581.74 2037.00 3144.59 3899.24

MATLAB 28.62 169.47 489.38 963.91 1599.89 2371.20 3367.46 4411.02
?(%) 0.19 -3.54 4.14 4.07 1.15 16.41 7.09 13.13
Exp. 28.97 174.07 402.59 747.57 1321.49 1902.07 2551.31 3587.83

MATLAB 28.66 168.20 481.05 961.67 1606.27 2373.99 3310.27 4462.28
?(%) -1.09 -3.37 19.49 28.64 21.55 24.81 29.75 24.37
Exp. 28.29 166.17 377.12 654.77 1113.09 1781.21 2449.00 3080.73

MATLAB 28.41 170.22 471.25 954.38 1577.48 2394.51 3296.39 4462.28
?(%) 0.42 2.43 24.96 45.76 41.72 34.43 34.60 44.84
Exp. 27.62 157.01 334.61 594.62 1055.06 1445.43 2041.80 2904.94

MATLAB 29.30 173.48 466.01 936.18 1562.45 2335.40 3311.90 4428.71
?(%) 6.08 10.49 39.27 57.44 48.09 61.57 62.20 52.45
Exp. 28.56 175.00 489.11 994.47 1428.95 2139.65 3185.45 4064.72

MATLAB 25.79 180.00 502.65 973.93 1595.91 2373.13 3344.52 4479.75
?(%) -9.72 2.86 2.77 -2.06 11.68 10.91 4.99 10.21
Exp.

MATLAB
?(%)
Exp. 25.88 151.03 380.21 703.28 1070.51 1706.02 2358.36 3037.47

MATLAB 24.20 180.79 519.39 963.11 1577.88 2373.00 3316.20 4440.47
?(%) -6.49 19.71 36.61 36.95 47.39 39.10 40.61 46.19
Exp. 24.95 141.21 309.31 580.06 1056.78 1492.47 2036.31 2838.34

MATLAB 24.71 179.61 500.93 968.18 1579.75 2345.27 3316.45 4421.85
?(%) -0.97 27.19 61.95 66.91 49.49 57.14 62.87 55.79
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The mesh was further refined to 100 elements lengthwise and the results 

examined for continued convergence with experiment (data shown in Table 18).  Certain 

modes displayed a small comparative improvement with the new mesh density (e.g. the 

6th through 8th modes of the 4cm free-end-notched beam) while others regressed in 

accuracy (such as all modes for the 16cm middle-notched beam).  The 100-element mesh 

results indicated minimal, if any, improvement in the FE frequency approximations of the   
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Table 18.  Modal Frequency Comparison--Experimental Results vs. MATLAB 
Predictions (100-element model) with Percent Offset from Experimental            
Values for 2024 T3 Aluminum (with 3% correction for residual stresses). 

1 2 3 4 5 6 7 8
Exp. 29.78 180.52 485.88 959.72 1529.55 2279.73 3209.48 4275.53

MATLAB N/A 185.62 511.25 968.45 1560.91 2337.94 3275.90 4375.81
?(%) 2.82 5.22 0.91 2.05 2.55 2.07 2.35
Exp. 30.18 171.94 434.28 797.56 1400.46 1832.71 2609.33 3580.97

MATLAB N/A 186.37 481.37 941.93 1569.00 2337.94 3253.13 4367.17
?(%) 8.39 10.84 18.10 12.04 27.57 24.67 21.96
Exp. 29.91 158.93 418.45 677.95 1123.04 1800.78 2440.07 3176.86

MATLAB N/A 173.96 475.94 938.40 1541.83 2336.24 3241.03 4358.75
?(%) 9.46 13.74 38.42 37.29 29.73 32.83 37.20
Exp. 29.10 151.17 346.70 578.31 1077.72 1581.05 2331.58 2832.50

MATLAB N/A 176.63 487.06 939.64 1570.73 2333.34 3252.97 4345.76
?(%) 16.84 40.48 62.48 45.75 47.58 39.52 53.42
Exp. 28.56 175.68 469.92 926.21 1581.74 2037.00 3144.59 3899.24

MATLAB N/A 171.98 496.82 977.73 1614.78 2381.86 3378.19 4412.38
?(%) -2.11 5.72 5.56 2.09 16.93 7.43 13.16
Exp. 28.97 174.07 402.59 747.57 1321.49 1902.07 2551.31 3587.83

MATLAB N/A 167.80 479.90 959.91 1601.27 2363.48 3287.32 4433.26
?(%) -3.60 19.20 28.40 21.17 24.26 28.85 23.56
Exp. 28.29 166.17 377.12 654.77 1113.09 1781.21 2449.00 3080.73

MATLAB N/A 169.49 469.21 952.47 1576.13 2394.12 3317.85 4370.93
?(%) 2.00 24.42 45.47 41.60 34.41 35.48 41.88
Exp. 27.62 157.01 334.61 594.62 1055.06 1445.43 2041.80 2904.94

MATLAB N/A 175.08 469.98 943.55 1571.70 2341.51 3322.95 4448.36
?(%) 11.51 40.46 58.68 48.97 61.99 62.75 53.13
Exp. 28.56 175.00 489.11 994.47 1428.95 2139.65 3185.45 4064.72

MATLAB N/A 180.67 505.79 980.42 1598.65 2357.36 3300.73 4421.99
?(%) 3.24 3.41 -1.41 11.88 10.17 3.62 8.79
Exp.

MATLAB
?(%)
Exp. 25.88 151.03 380.21 703.28 1070.51 1706.02 2358.36 3037.47

MATLAB N/A 181.36 521.91 966.77 1578.62 2362.19 3290.94 4413.13
?(%) 20.08 37.27 37.47 47.46 38.46 39.54 45.29
Exp. 24.95 141.21 309.31 580.06 1056.78 1492.47 2036.31 2838.34

MATLAB N/A 179.88 502.99 973.37 1580.60 2333.39 3286.89 4377.61
?(%) 27.38 62.62 67.80 49.57 56.34 61.41 54.23
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higher modes and overall diminished accuracy of the lower modal frequencies.  The first 

vibration mode became impossible to distinguish from the multiple ijω  output as the 

normalized first-mode eigenvectors showed no relative amplitude deviation, and 

therefore the correct eigenvalue could not be isolated.  The mesh was refined once further 

to 200 elements, however this resulted in computer lock-up due to overwhelming 

memory usage for matrix calculations, and hence no results were obtainable. 
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 Both the 40-element and 100-element MATLAB results were likewise tabulated 

with the 2024 O experimental frequencies to ensure FE accuracy characteristics followed 

the same trends as previously mentioned, as shown in Tables 19 and 20.  Once again, 

large deviations between MATLAB predictions and experimental results were observed, 

with errors in excess of 50% in the cases of large crack lengths and high modes.  The 

crack length was increased twice further, to both a 20cm and 24cm notch centered on two 

2024 O beams, to note whether the MATLAB solutions for all mesh densities diverged 

even more from experimental observation for the longer notch cases.  Indeed they did, as 

 

 
Table 19.  Modal Frequency Comparison--Experimental Results vs. MATLAB 

Predictions (40-element model) for 2024 O Aluminum. 

1 2 3 4 5 6 7 8
Exp. 28.65 174.73 489.47 995.40 1439.00 2136.67 3190.67 4104.67

MATLAB 25.79 180.00 502.65 973.93 1595.91 2373.13 3344.52 4479.75
?(%) -10.00 3.01 2.69 -2.16 10.90 11.07 4.82 9.14
Exp. 26.17 147.57 387.40 670.20 1070.33 1695.33 2354.67 3065.67

MATLAB 24.20 180.79 519.39 963.11 1577.88 2373.00 3316.20 4440.47
?(%) -7.51 22.52 34.07 43.71 47.42 39.97 40.84 44.85
Exp. 24.61 145.43 298.97 580.73 1028.33 1495.33 2042.00 2819.00

MATLAB 24.71 179.61 500.93 968.18 1579.75 2345.27 3316.45 4421.85
?(%) 0.39 23.50 67.55 66.72 53.62 56.84 62.41 56.86
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Table 20.  Modal Frequency Comparison--Experimental Results vs. MATLAB 
Predictions  (100-element model) for 2024 O Aluminum. 

1 2 3 4 5 6 7 8
Exp. 28.65 174.73 489.47 995.40 1439.00 2136.67 3190.67 4104.67

MATLAB N/A 180.67 505.79 980.42 1598.65 2357.36 3300.73 4421.99
?(%) 3.40 3.33 -1.51 11.09 10.33 3.45 7.73
Exp. 26.17 147.57 387.40 670.20 1070.33 1695.33 2354.67 3065.67

MATLAB N/A 181.36 521.91 966.77 1578.62 2362.19 3290.94 4413.13
?(%) 22.90 34.72 44.25 47.49 39.33 39.76 43.95
Exp. 24.61 145.43 298.97 580.73 1028.33 1495.33 2042.00 2819.00

MATLAB N/A 179.88 502.99 973.37 1580.60 2333.39 3286.89 4377.61
?(%) 23.69 68.24 67.61 53.70 56.04 60.96 55.29
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evidenced in Tables 21 through 23.  Errors from experimental values reached over 90% 

in the middle to high vibration modes, once again validating the inaccuracy of the 

MATLAB solution approach for long notch lengths and high modes.  The significant 

difference in frequency values between experimentation and the MATLAB algorithm 

indicates the inadequacy of the program to characterize modal frequencies of notched 

aluminum beams for anything but short notch lengths. 

 
Table 21.  Modal Frequency Comparison--Experimental Results vs. MATLAB 
Predictions (20-element model) for 20cm and 24cm Notches, 2024 O Aluminum. 

1 2 3 4 5 6 7 8
Exp. 24.61 142.20 267.07 539.60 811.70 1312.00 1857.67 2392.33

MATLAB 29.81 176.90 468.04 912.98 1539.59 2321.10 3237.76 4390.04
?(%) 21.12 24.40 75.25 69.20 89.67 76.91 74.29 83.50
Exp. 22.79 134.80 266.93 514.33 781.27 1248.00 1762.33 2223.00

MATLAB 31.27 182.85 481.35 913.11 1515.41 2297.65 3231.27 4289.36
?(%) 37.20 35.64 80.33 77.53 93.97 84.11 83.35 92.95N
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Table 22.  Modal Frequency Comparison--Experimental Results vs. MATLAB 
Predictions (40-element model) for 20cm and 24cm Notches, 2024 O Aluminum. 

1 2 3 4 5 6 7 8
Exp. 24.61 142.20 267.07 539.60 811.70 1312.00 1857.67 2392.33

MATLAB 29.72 177.00 470.30 917.19 1542.52 2320.05 3233.53 4321.02
?(%) 20.77 24.47 76.10 69.98 90.04 76.83 74.06 80.62
Exp. 22.79 134.80 266.93 514.33 781.27 1248.00 1762.33 2223.00

MATLAB 30.80 183.01 488.08 924.99 1519.15 2288.75 3223.37 4296.11
?(%) 35.16 35.76 82.85 79.84 94.45 83.39 82.90 93.26

MODAL FREQUENCIES (Hz)                                                                                        

N
O

T
C

H
 S

IZ
E

 
(c

m
) A

N
D

 
LO

C
A

TI
O

N 20                    
Middle

24                    
Middle

 

 

Table 23.  Modal Frequency Comparison--Experimental Results vs. MATLAB 
Predictions (100-element model) for 20cm and 24cm Notches, 2024 O Aluminum. 

1 2 3 4 5 6 7 8
Exp. 24.61 142.20 267.07 539.60 811.70 1312.00 1857.67 2392.33

MATLAB N/A 177.30 470.10 915.03 1538.23 2311.55 3207.67 4270.34
?(%) 24.69 76.02 69.58 89.51 76.19 72.67 78.50
Exp. 22.79 134.80 266.93 514.33 781.27 1248.00 1762.33 2223.00

MATLAB N/A 179.44 481.19 915.04 1501.50 2252.39 3166.86 4240.34
?(%) 33.12 80.27 77.91 92.19 80.48 79.70 90.75
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Comparison of Experiment with ABAQUS 

 Two notched beam specimens were modeled in the ABAQUS CAE package in an 

attempt to determine whether the program could accurately replicate the observed 

dynamic response of the notched cantilever.  The 4cm clamped-end notched beam was 

modeled using just over 14,000 8-noded linear hexahedral brick elements (C3D8R) with 

a higher concentration of elements near the notched area, as shown in Figure 35.  

Approximately 60% of the total elements were localized in this region of the modeled 

beam.  The beam was characterized with the same properties as the experimental 

aluminum, incorporating the modulus of elasticity, Poisson’s ratio, and overall  

 

 

Figure 35.  Example of ABAQUS Meshing of 4cm Clamped-End Notched Beam. 
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dimensionality.  The 8cm clamped-end notched beam was likewise modeled in 

ABAQUS, employing over 24,000 hexahedral brick elements with a large concentration 

of the elements (also about 60%) near the notched area. 

ABAQUS, though quite accurate in the notchless case (as was the MATLAB 

procedure), could not accurately predict the modal frequencies of a specimen containing 

a large notch.  Though exceptionally good modal frequency predictions for the 4cm notch 

were obtained, exceptionally bad modal frequency predictions for the 8cm notch resulted 

(see Table 24).  ABAQUS also produced unusual mode shapes for the 8cm notch case.  

Throughout the course of the experimentation, all eigenvectors (including the notched 

specimens) resembled the notchless eigenvectors shown in Figures 29-a through h—this 

is known from the laser vibrometry profiles produced at the time of experimentation.  

However, ABAQUS returned mode shapes containing excessive bending local to the area 

of the inclusion, particularly at the higher modes, which was not observed during the 

experimental process (see Figure 36).  ABAQUS also returned local mode shapes which 

were not observed at all, such as the anomalous mode shown in Figure 37. 

 
Table 24.  Modal Frequency Comparison--Experimental Results vs. ABAQUS 

Predictions for 2024 O Aluminum. 

1 2 3 4 5 6 7 8
Exp. 28.65 174.73 489.47 995.40 1439.00 2136.67 3190.67 4104.67

ABAQUS 28.60 175.50 498.21 994.97 1502.10 2150.90 3189.30 4310.90
?(%) -0.17 0.44 1.79 -0.04 4.38 0.67 -0.04 5.02
Exp. 27.73 159.40 485.53 711.70 1273.67 1817.67 2679.67 3509.00

ABAQUS 10.52 66.57 133.31 321.08 527.30 636.87 897.99 1207.10
?(%) -62.06 -58.24 -72.54 -54.89 -58.60 -64.96 -66.49 -65.60
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Figure 36.  ABAQUS Result for 8cm Clamped-End Notch Displaying Highly                             

Localized Bending (8th translational mode). 
 

 

 
Figure 37.  Unobserved Localized Mode Returned by ABAQUS for 8cm        

Clamped-End Notch. 
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The modeling method by ABAQUS emphasized the inherent usability of the 

proposed MATLAB approach in that re-meshing is not necessary for each notch 

inclusion within MATLAB algorithm, however extensive work was required in 

ABAQUS to model and mesh each notch case.  The results from ABAQUS also re-

emphasized the highly non- linear aspects of the vibratory dynamics, which creates a 

difficult modeling scenario that few, if any, off- the-shelf finite element programs would 

be able to characterize. 

Comparison of MATLAB with Independent Data 

 As one final additional test, the MATLAB program was compared to previously 

existing modal frequency data for a delaminated beam as published by Mujumdar and 

Suryanarayan in 1988.  In their experiment, they considered a “laminated” cantilevered 

beam created by adhering two thin strips of spring steel together, leaving voids in the 

epoxy where delaminated regions were desired.  The experimental setup explanation was 

incomplete—only beam length and notch location were provided by the authors, leaving 

out beam width, beam thickness, and all mechanical properties of the material. 

 A standard materials handbook was referenced to obtain typical mechanical 

properties of spring steel:  7833=ρ  kg/m3, E = 31 x 106 psi = 213.74 x 109 Pa.  The 

thickness of spring steel is usually about 0.02 in = 5.08 x 10-4 m.  Since the width of the 

beam was not specified by the authors, but the delamination was considered to extend 

through the full width and propagate along the thickness, a width of 1.5 in. = 0.0381m 

was used for the steel beams considered in this analysis.  Thickness was assumed to be 

two steel strips (t = 0.001016m) since a centerline notch was required.  The following 

inertia values were calculated (using the formulae in Appendix A) for the final spring 
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steel beam and entered into the MATLAB simulation along with the previous mechanical 

properties: 

 I2  =  0.8982 
 I?1 =  0.3925 
 I?2 =  7.0728 x 10-8 
 
With these values, several representative cases of the Mujumdar and Suryanarayan 

experimental results were replicated in MATLAB with decent success, as indicated in 

Table 25.  Considering that the first two vibration modes were the only modes studied by 

the authors, the relatively good MATLAB predictions fall in line with typical percentage 

errors found beforehand for the first two modes in aluminum beams.  As mentioned 

previously, moderately good results from the MATLAB algorithm are obtained for the 

low modes, however this is no indication of the MATLAB accuracy at higher modes. 

 

Table 25.  Comparison of Existing Published Data with MATLAB Prediction, 
Various Cases Using Spring Steel (adapted from Mujumdar and           

Suryanarayan (1988:458)). 

Published Case Beam Length Notch Tip Locations Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

xd1=0.129m
xd2=0.173m
xd1=0.075m
xd2=0.117m
xd1=0.065m
xd2=0.150m

xd1=0.0185m
xd2=0.0325m

72.0 474.7 -8.86 -4.4519 0.13m 79.0 496.8

31.3 193.2 -2.19 -5.807 0.20m 32.0 205.1

31.1 195.0 -6.33 -6.566 0.20m 33.2 208.7

21.0 120.8

Error (%)

-4.15 -4.29

-3.67 -11.443 0.25m 21.8 136.4

Modal Frequencies (Hz)
Mujumdar/Suryanarayan Perel/Palazotto

1 0.20m No Crack 33.7 209.9 32.3 200.9
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V.  Conclusions and Recommendations  

 
 
Frequency Reductions Due to Damage 
 
 As previously found by several authors, a downward shift in modal actuation 

frequency was observed during experimentation for cantilevered beams with included 

damage.  Specifically, centerline notches of minimal thickness at various locations and 

lengths significantly reduced the first eight modal frequencies of aluminum cantilevered 

beam specimens, as would be expected due to the decrease in flexural rigidity EI of the 

beam.  The higher modes experienced a greater reduction in modal frequency than the 

lower modes for a given notch length.  Frequency reductions from the notchless case of 

5% for the first mode and 30% for the eighth mode for a given notch length were not 

uncommon across the spectrum of test sets. 

 Longer notch lengths reduced frequency more than shorter notch lengths for each 

vibration mode, as would be expected.  For instance, in the case of the first mode for  

2024 O aluminum, modal frequency decreases from the notchless case were 1%, 4%, 

10%, and 15% (respectively) for the 4cm, 8cm, 12cm, and 16cm clamped-end notches, 

respectively.  The experimental data did not indicate a relation between frequency 

degradation magnitude and notch length across the spectrum of modes—some modal 

frequencies decreased in a quadratic fashion for increasing notch length, some in a 

negative exponential fashion, and some displayed no pattern at all. 

 Damage passing through regions of curvature inflection (and hence maximum 

shear) does not have a readily identifiable effect on frequency reduction.  The interrupted 

shear flow through the cross-section at curvature inflection points, though certainly 
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present, is not the solitary factor in modal frequency reductions.  Though several data 

points from the experimental study seem to support the claim, many other data points do 

not and therefore the hypothesis is not considered a viable explanation for large-

magnitude frequency reductions, though buckling of the .   

 Damaged regions of maximum curvature (and hence maximum normal stress) 

within the modal responses of the beam were also explored for patterns associated with 

the observed frequency reductions, and were likewise found not to be the primary source 

of frequency degradation. 

 Damage magnitude is identifiable in the frequency domain for notch lengths at 

least 25% of the overall beam length (and possibly less, though notches between 4cm and 

8cm in length were not considered in this study).  The frequency reductions for each 

notch length for vibration modes 4-8 are approximately the same for each respective 

mode, independent of notch location.  This is a very useful finding for estimation of 

internal structural crack lengths in a structural health monitoring application. 

Residual Stresses 

 Residual stresses were found to be a significant aftereffect of the cold working 

process undergone by the 2024 T3 aluminum during fabrication.  As the material was 

cold rolled, a small amount of plastic deformation was induced into the surface of the 

aluminum, causing a strain profile across the cross-section as described in Chapter III. 

Without a centerline notch, the stresses associated with these strains are balanced and 

prevent the material from warping or bending.  Upon the inclusion of a notch, two lamina 

are created, each containing unbalanced residual stresses and therefore buckling of the 

lamina occurs, causing the notch to collapse or warp. 
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 The presence of residual stresses in the aluminum beams reduced modal 

frequencies by approximately 3% across the modal spectrum as compared to the 

frequencies of the 2024 O aluminum beams lacking the residual stresses.  Considering the 

large frequency reductions for increasing notch lengths as compared to the resonant 

frequencies of the control specimens, the residual stresses played a minor role in the 

overall modal frequency degradation. 

Frequency Profiling Using ABAQUS 

 The commercial FE program ABAQUS predicted the first eight modal 

frequencies for the notchless aluminum beam with great precision, with seven out of the 

eight resonant frequencies accurate to less than 0.3% from experiment.  The 4cm 

clamped-end notch case was accurate as well, with a maximum deviation from 

experiment of slightly over 1%.  The program failed to model the next- longer notch 

length of 8cm correctly, as the dynamics under consideration became highly nonlinear 

due to notch face interaction and outside of the scope of the software package.  ABAQUS 

results for the 8cm case yielded deviations from observed experimental values of 50% to 

over 70% for all modes considered.  ABAQUS also generated localized eigenvectors in 

the sublamina not seen in the laboratory experimentation.  ABAQUS was therefore 

considered inadequate to correctly model the dynamics of cantilever beams with included 

notches. 

Frequency Profiling Using MATLAB  

 The MATLAB program developed by Perel and Palazotto was designed to 

overcome the nonlinearity of the vibration response in notched cantilever beams, and also 

eliminate the need to remesh the specimen for each notch length or location considered 
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(saving valuable model construction time).  Similar to ABAQUS, the program accurately 

predicted the modal frequencies of the notchless case to within less then 1% for all modes 

except the first, using a 20-element, a 40-element, and a 100-element mesh.  A 200-

element mesh was attempted in an effort to further increase output accuracy, however the 

memory requirements for computation exceeded the computer threshold. 

 The notched specimens were not as accurately characterized, with the MATLAB 

program generating frequency predictions increasingly farther from experimental results 

as notch length increased, as mode number increased, and in some cases as element mesh 

density increased.  For example, in the 20-element model modal frequencies for the 4cm-

notched cases were generally 5% off from experimentally observed values, with some 

outliers in the 11% and 16% range.  As notches were allowed to grow, deviation of the 

MATLAB predictions from experimental results increased dramatically (but in no 

particular linear, quadratic, or exponential fashion) to over 90% in the 24cm-notched 

arrangement.  Departure from experiment for the short notch lengths reduced slightly in 

the 40-element model, where the 4cm-notched frequencies were accurate to within 3% in 

most modes, however there were still outliers in the 11% and 16% range in the same 

modes as the 20-element model.  MATLAB characterization of longer notch lengths 

exhibited some modes with slightly better accuracy, and some modes with worse 

accuracy, however deviations from experiment still approached 90% in the longest 

notches and highest modes.  The 100-element model generated output where the first 

vibration mode was not easily identifiable at all, and though higher modal predictions 

became better by about 2% to 3%, lower modal predictions became many times worse.   



 

 97 

 The MATLAB program was also used in an attempt to generate the published 

frequencies for delaminated, notched beams as reported by Mujumdar and Suryanarayan 

(1988).  Several representative cases were considered, however only the first two 

vibration modes were studied by the authors.  As generally evidenced in the experimental 

data in Chapter IV, the MATLAB program does a decent job predicting the first two 

vibration modes for notch lengths extending less than one-half the full length of the test 

specimen, typically within 10-15% of experimental value.  This trend continued in the 

comparison with Mujumdar and Suryanarayan, where the deviation of the MATLAB 

program with their results was less than 10% in all cases except one (where the error 

percentage was 11.4%). 

 Overall, the MATLAB procedure as it stands now would be a fairly good 

estimation tool for the modal frequencies of notchless beams or beams with small notches 

(less than one quarter of the overall beam length for all modes, or up to one half the beam 

length for modes 1 and 2, to get an accuracy of ~10%), however the program does not 

work well for beams with longer notches. 

Recommendations  

 Two areas should be investigated in the MATLAB theory in an attempt to 

generate better accuracy.  First, the Heaviside function used in conjunction with the 

double-sided unit step function to characterize transverse displacement creates a jump 

discontinuity in adjacent elements, and therefore may not monotonically converge when 

standard beam-element shape functions are considered in the model (though this is a 

common practice for delamination modeling according to Reddy [2004:764-766]).  

Additional research should be accomplished to determine whether the Heaviside solution 
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approach will converge or diverge with increased elements, or, secondly, whether more 

robust shape functions (and therefore more robust elements) should be considered for this 

particular problem.  Another consideration is that the Euler-Bernoulli assumptions on 

which the program is based begin to break down when higher modes are considered, due 

to the presence of excessive curvature and increasing through-thickness shear.  

Timoshenko beam theory takes these considerations into account and therefore should be 

considered. 

 Further investigation should be accomplished in the realm of internal stress, 

moment, and shear distributions within the beam cross-section and its effects on the 

resonant frequencies.  A more comprehensive study should be able to relate internal 

material mechanics to the presence of a notch and to the particular modal response 

signature. 

 An interesting follow-on research project would be a vibration analysis of 

multiple materials containing residual stresses.  As discovered in this thesis, residual 

stresses in aluminum 2024 generate a cross-spectrum frequency reduction for all modes 

of approximately 3%.  The percentage attenuation of modal frequencies is most certainly 

dependent on the amount of deformation incurred during the cold working process, 

however the magnitude of cold work done on a material is difficult to estimate without 

first-hand knowledge of the process from the manufacturer.  Zhuang and Halford are 

quick to point out that “there remains the technical challenge of understanding and 

accurately quantifying residual stress relaxation and redistribution” after mechanical 

processes have been undergone, such as the aforementioned cold working (2001:S31).  

Characterization of residual stress effects on the frequency response of common 
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structural component materials would greatly benefit the engineering community in their 

drive for accurate structural health monitoring algorithms. 
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Appendix A:  MATLAB FE Program Interfacing 

 
 

 Proper usage of the MATLAB FE program created by Perel and Palazotto 

requires understanding of the input parameters necessary for program execution.  On a 

global scale, all values are calculated and need to be entered in the SI unit system.  The 

frequency output listings generated by the program are in units of radians/second (rad/s), 

and therefore need to be converted to hertz (Hz) via the relation 

  
π

ω
ω

2
/ srad

Hz =   (A-1) 

A copy of the input field area used by the program is provided next (taken from the 

function BEGIN_RESPONSE_MODAL.m): 

 
format long e 
% enter number n of mode shape which is to be plo tted   
 n=38; 
 
% BEGINNING OF DATA INPUT: 
% coordinates of crack tips: 
xd1=0.05; 
xd2=0.16; 
zd=0.0001; 
 
mu=1e0; % a large number used in the penalty function method of applying constraints 
 
BeamLength=0.3048; 
height=0.003175; 
width=0.0381; 
rho=2768; 
 
NumberElements=20;  
 
% Numbers of elements covered with actuator: 
El_Num_With_Act=[1,2,3,4]; 
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bcdof=[1 2 3 4 ]; % a row-vector which contains global numbers of constrained nodal 
variables; 
dof_plot=41;  % global number of a variable which is to be plotted as a function of time; 
 
TimeIni=0;   % initial time; 
dt=0.1;     % time step size; 
TimeFin=10;   % final time; 
t=[TimeIni:dt:TimeFin]'; % Column-vector of moments of time at which the response 
will be evaluated. 
 
I1=-0.001828; 
I2=8.61215;  % alternative notation: I2=A0 
 
I_rho_0=0.42413;  % alternative notations: I_rho_0=J0=B0 
I_rho_2=5.64633*10^(-7); % alternative notations:= I_rho_2=J2=C0, this is rotary inertia 
coefficient 
 
S11=1.368e-11; 
 
V0=200; % amplitude of voltage applied to piezoelectric actuator, it is implied that 
voltage varies with time by law V=V0*cos(Omega_V*t+Alpha_V) 
 
% In this program both Amp and V0 can not have non-zero values 
 
Omega_V=600; 
Alpha_V=0; 
 
%  All elements are assumed to be of the same length. 
ElementLength=BeamLength/NumberElements; 
 
 NumberNodesPerElement=2;  
 NumberDofsPerNode=4;  
 NumberNodesSystem=(NumberNodesPerElement-1)*NumberElements+1;  
 NumberDofsSystem=NumberNodesSystem*NumberDofsPerNode; 
 q0=zeros(NumberDofsSystem,1);  % initial displacement vector (initial condition) ; 
 dq0=zeros(NumberDofsSystem,1); % initial velocity vector (initial condition) ; 
 
% Simpler notations: 
h=height; 
b=width; 
l=ElementLength; 
 
% END OF DATA INPUT 
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 Several of the fields are intrinsic to the operation of the program and therefore 

were not modified.  Others are relatively self-explanatory.  Of particular use for the 

common user were the following: 

 
 n:  The number of the mode shape which is to be plotted, corresponding to the 

sequential listing of solution eigenvalues from the program output.  [e.g. n=38 will plot 

the eigenvector corresponding to the 38th eigenvalue in the output, not necessarily the 38th 

mode of vibration.] 

 xd1:  The lateral coordinate of the left end of the included notch from the 

cantilevered base.  Units are entered in meters. 

 xd2:  The lateral coordinate of the right end of the included notch from the 

cantilevered base.  Units are entered in meters. 

 zd:  Vertical distance of notch centerline from beam centerline.  This value can be 

either positive or negative, but must lie within the beam height dimension such that it is 

actually included in the beam.  Units are entered in meters.  For the purposes of this 

thesis, the value was 0.0001—small enough to be essentially zero but not exactly zero, 

which causes singularities in the internal calculations. 

 BeamLength:  Length of beam measured from the cantilevered end to the free end.  

Units are entered in meters.  For the purposes of this thesis, the value was 0.3048 (12”). 

 height:  Thickness of beam in the transverse direction (direction of vibration—

along the z-axis according to Figure 6).  Units are entered in meters.  For the purposes of 

this thesis, the value was 0.003175 (1/8”). 
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 width:  Thickness of beam in the vertical direction (along the y-axis according to 

Figure 6).  Units are entered in meters.  For the purposes of this thesis, the value was 

0.0381 (1½”). 

 rho:  Mass density of the material being used.  Units are entered in kg/m3.  For 

aluminum, this value is 2768. 

 NumberElement:  Number of elements in the mesh.  For this program, in 

accordance with the published theory, the mesh is distributed only in the longitudinal 

direction.  Therefore, a mesh of 20 results in the length of the beam broken into 20 

elements of equal length.  Meshes of 20, 40, and 100 were used in this thesis.  As mesh 

density increased beyond 100, computation time and inaccuracy greatly increased as 

well.  A 200-element mesh was attempted but the computers used crashed. 

 El_Num_With_Act:  An array of the elements over which the actuator has been 

affixed.  Elements are numbered sequentially from cantilevered end to free end.  

Calculation by the user is necessary to determine how many of the elements, based on 

mesh density, are covered by the actuator.  For this thesis, the QP10Ni strain actuator was 

used, which has a length of 2 1/16 inches, or 0.0524 meters.  In the 20-element case for 

the beam of length 0.3048m, elements 1 through 4 are covered. 

 I2:  Second moment of inertia of the beam defined by 
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For this thesis, I2 = 8.61215. 

 I_rho_0:  Rotational moment of inertia defined by 
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where 

 0ρ = density of beam material 
 pρ = density of PZT material 
 all other variables as defined previously 
 
For this thesis, I_rho_0 = 0.42413. 
 
 I_rho_2:  Second rotational moment of inertia defined by 
 

  ∫ ∫
−

+

+=
2/

2/

2/

2/

220
0

t

t

t

t

p dzzbdzzbI
τ

ρ ρρ  (A-4) 

 
For this thesis, I_rho_2 = 5.64633 x 10-7. 
 
 S11:  Reciprocal of the Young’s Modulus for the beam material.  For this thesis,  
 
S11 = 1.368 x 10-11. 
 
 The remaining parameters are utilized for changing voltage inputs for the PZT, 

changing the element type and degrees of freedom, setting step times, and creating non-

zero initial conditions.  For this work, these values remained unchanged. 

 Once the input arrays are modified as necessary for a given case, the function 

BEGIN_RESPONSE_MODAL can be executed to view modal prediction results.  The 

output is received in two forms.  First, a listing of modal frequencies for each degree of 

freedom is generated, obtained by numerically solving the general eigenproblem 

  ( ) }0{}{][][ 2 =− dMK ω  (A-5) 

for all iλ (where [K] is the positive semidefinite stiffness matrix, [M] is the positive 

semidefinite mass matrix, and the vector {d} represents the degrees of freedom).  Due to 
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the application of constraints to the nodal degrees of freedom, and series of zero-value 

eigenvalues are produced at the beginning of the output.  In the 20-element case, 21 

degrees of freedom are restrained—rotation and longitudinal translation at the first node 

coincident with the cantilever base, and longitudinal translation for all subsequent nodes 

(since displacement is restrained to transverse motion only), hence 21 zeros are generated 

at the beginning of the output.  Additionally, a plot of the eigenvector associated with 

degree of freedom n, as chosen in the input, is produced.   

 Since the user is looking for the proper ijω , the decision must be made as to 

which eigenvalue is correlated to a given vibration mode by comparing eigenvectors.  It 

is important to choose the correct eigenvector for the desired mode as multiple 

eigenvectors of similar form are generated (incorporating all degrees of freedom), 

however relative magnitude may be off.  Figures A-1 and A-2 show a correct eigenvector 

versus an incorrect eigenvector for an example mode (in this case, the first bending 

mode).  Note the correct eigenvector in Figure A-1 shows a normalized displacement 

several orders of magnitude higher than the incorrect eigenvector in Figure A-2.  The n 

chosen in the input field to generate the correct eigenvector will correspond to the nth 

modal frequency from the output, which is the desired eigenvalue for the given mode (see 

following page).  The process of checking for proper eigenvectors and eigenvalues is 

iterative for all modes for a given crack length. 
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Figure A-1:  Correct Eigenvector for First Bending Mode, Displaying Large 

Normalized Displacement Amplitude (eigenvector n). 

 
Figure A-2:  Incorrect Eigenvector for First Bending Mode, Displaying Small 

Normalized Displacement Amplitude (eigenvector n+1). 
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Partial Sample Output from Trial Run 
 

. . .  

. . .  
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

4.868081376759656e+000 
1.127152812150922e+001 
1.165276880735184e+001 
1.190093091805270e+001 
1.364765533642256e+001 
1.471723767297972e+001 
2.689233961423111e+001 
3.487776530095482e+001 
3.725742109050611e+001 
3.749889609530827e+001 
3.757768315862990e+001 
5.973320189630839e+001 
7.102339214792067e+001 

         mode n-1   ?         1.194552099981771e+002 
                     mode n      ?         1.557102896376919e+002 
                     mode n+1  ?    1.698699504505314e+002 

2.753268115864362e+002 
1.101150177203550e+003 
3.023707836243113e+003 
6.160291477316835e+003 

 . . .  
 . . .  
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Appendix B:  Example Test Specimen Design Drawings 

 
(Free-End Notch Set) 
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4cm Notch, Free End 
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8cm Notch, Free End 
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12cm Notch, Free End 
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16cm Notch, Free End 
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