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Abstract

The feasibility of satellite operationsin close proximity to areference
satellite is of interest for both civilian and military applications. One such operation is
circular circumnavigation in atime period less than the orbital period of the reference
satellite. This thesis investigates a guidance scheme for such maneuvers involving
impulsive burns at specific points within a specified toroidal region centered on the
circular-orbiting reference satellite. Two analytical methods for determining the
magnitude and direction of the impulses are demorstrated. These methods are then used
asinitial estimates in an optimization scheme to produce the minimum total required

impulse.
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MANEUVER DESIGN FOR FAST SATELLITE CIRCUMNAVIGATION

|. Introduction

Operations between two spacecraft in orbit have become of increasing interest to
both the civilian and military communities. Satellite-to-satellite operations have been
demonstrated since the beginning of human space endeavors. The most common relative
satellite-to-satellite (relative motion) operations have been rendezvous between two
cooperating spacecraft, but other proximity operations are becoming more important. In
recent times, there has been considerable interest in orbiting satellites in close relative
formations.

Considerable work has been done in the area of satellite formation flying: the
design of formations (11; 13), their reconfiguration and maintenance (5), and formation
evolution through orbital perturbations (3; 12; 14; 15). Portions of this work have
focused on natural motion formations, establishing a relative position and velocity with
respect to areference orbit, and alowing the natural dynamics to produce elliptical
motion in the relative frame. Reconfiguration of formations, another topic of study, has
focused on optimizing propellant expenditure from one formation to another without
necessarily focusing on the shape or time variation of the flight path. (5; 13)

Other proximity operations maneuvers are becoming more important in planning
for such missions as ontorbit repair and refueling as well as potential damage inspection

or identification of Resident Space Objects (RSO). (7; 10) Circumnavigating a chief



satellite with a deputy satellite provides the ability to inspect the chief from a variety of
viewpoints. Often these viewpoints are required to be at a constant distance from the
chief and therefore requiring circular circumnavigations. A circumnavigation is defined
as the deputy’ s flight about a desired circular path (nominal path) with a specified

orientation about a chief spacecraft.

Previous Work

The minimum propellant required for a circular circumnavigation is the natural
motion circular formation (11:7-8), which requires the initial conditionsto beset upina
very specific manner. These natural motion circumnavigations al have a
circumnavigation period (rotating around the chief satellite through 360°) equal to the
period of the chief. This period is on the order of 90 minutes for Low Earth Orbiting
satellites with an altitude around 400 km, and increases as the altitude increases.

Circumnavigation times less than the chief’s orbital period, are termed ‘fast’.
These fast circumnavigation maneuvers have utility in the operation of a proposed
‘ingpector’ micro-satellite (4:1). In order to determine time changing phenomena on the
chief spacecraft, these maneuvers need to be accomplished less than the orbital period of
the chief satellite (4:1). Asthe required time for a circumnavigation decreases, the total
impulse required increases to perform the circumnavigation. Minimizing the total
impulse for a given maneuver allows for greater operational flexibility, increased sorties
for a given amount of propellant, and potentially increase the lifetime for any given

satellite performing these maneuvers.



The theoretical impulse requirements for differing circumnavigation times and
orientations of a nominal circular path have been demonstrated (4: 1-2). Their method
assumed continuous control to produce perfect circular motion with respect to the chief.

After simplifications, the unperturbed Hill’ s equations are derived as (4:2; 14:377)

X-2ny- 3n°x=f,
y+2nx = f, (1)
2+n°z=f,

where X, y, and z represent the position as a function of time relative to the chief, and “f,

fy, and f, are the propulsive forces per unit mass’ (4:2). From these equations the total

impulse, required to follow a path defined using Equation 1 is represented as (4:2):

T

DV =g/t + 12+ f2dt @

0
where T is the time required to follow the total path. This theoretical impulseis
informative in understanding the total forces required to follow a specific path, but often
the path is only constrained to lie within a certain volume. Exact adherence to a defined
circumnavigation path is not always necessary; operationaly, it is conjectured only a
very small percentage of the total flight path is required to be at a certain position and
time relative to the chief. The rest of the flight path is then constrained to be distance

away from nominal path, or in some instances a minimum distance to the chief

spacecraft/object.



Problem Statement

For the problem investigated here, the deputy will perform the circumnavigation
through a set of discrete impulses in a specified time of flight (TOF). The deputy’s flight
path must perform afull 2p angular rotation about the chief without doubling back on
itself. The placement and number of each burn point must be determined as well as the
required direction and magnitude of each individual impulse.

The deputy is also constrained to stay within a specified distance from the desired
or ‘nomina’ path during the circumnavigation maneuver. This constraint allows for
operational considerations such as collision avoidance and operational requirements for
the deputy’s payload. The payload is postulated to potentially be a remote sensing
detector (visual, infrared, etc...) where the distance to the chief can become an important
operationa factor.

There are two probable cases of general rules on constraining the placement of the
burn points. First, acase is defined by requiring all the burn points placed on the nominal
path. Thisiscaled the ‘Specia Case’. Next, acaseis defined by allowing the burn
points to be placed anywhere within the constraint volume, called the ‘ General Case'.
The specia case may be required if the spacecraft is required to be a constant distance
from the chief. For instance, there may be a plume exclusion zone or distance
requirement.

The general case has the most operational utility, because remote measurements

of the chief will be required after the relatively dynamic behavior of the spacecraft settles



after each subsequent burn point. Because the burn points do not have to be on the

nominal path, it allows more flexibility in choosing where burns are placed.

Overview of Content

A method involving discrete impulsive burns is desired. These maneuvers require
significant propellant expenditure to achieve the required circumnavigation trgectories
within the desired TOF. The placement, relative to the chief satellite, and the timing of
these discrete impulses (at the burn points) has a significant impact on the propellant
required for a given maneuver.

Hill’s equations are used as the primary tool for modeling the dynamics for the
required maneuvers. The equations are used to calculate the total impulse, Dv;, required
for a given circumnavigation maneuver. From these equations, the position, magnitude,
and direction of each discrete impulse, Dv, is determined. The magnitudes are summed
to determine the total impulse required. The required impulse is directly proportional to
the amount of thrust a propulsion system must provide, and thus the mass of propellant
required for a given mission.

A simple method for placement of the burn pointsisinitially developed, and used
as an initia guess for numerical optimization. The optimization routine is used to
investigate the lowest minimum propellant required. From analyzing the optimization
results, an analytical algorithm is proposed to approximate the minimum total required
impulse for a circumnavigation mareuver, and to develop a more robust initial guess for
the numerical optimization. This agorithm’s performance is then evaluated for several

Cases.



Il Methodology

Assumptions

The chief or RSO is assumed to be in a circular orbit, with the deputy orbit having

avery small eccentricity. Additionally, atwo body, point- mass gravitationa model is

assumed (i.e. no perturbations), and the distance between the deputy and the chief is

much less than the radius of the chief’s orbit. These assumptions alow the use of Hill’s

equations for relative orbital motion.

Hill’s Equations.
A specific form of Hill’s equations (16:83) is used (also known as the complete

Clohessy-Wiltshire solution) and shown as:

&IF(tu_ &r(t,)y

Gromd T O &)

The matrix (F) (16:83) are defined as:

g 4- 3cos(nDt) O 0 ls n(nDt) E(1- cos(nDt)) 0 3

€ n n .

é a

&(sin(nDx)- nDY) 1 0 Z(comDt)-1) Zsin(nd)-3nd 0 d

n n

F (Dt) = é: " F fVl\iI— ‘:3 1 ":J
Oo=¢ ng‘g 0 0  cos(nDt) 0 0 Hs‘n(nDt)g
g 3nsin(nDt) 0 0 cos(nDt) 2sin(nDt) 0 3

§6n(cos(nDt) -) 0 0 -2sin(nt) - 3+4cos(nDt) 0 a

& 0 0 -nsin(nDt) 0 0 cos(nDt) H

where n is the mean mation of the chief’s orbit and Dt=t-t;. Equation 3 determinesthe
position, dr, and velocity, dv, relative to the chief at atime, Dt, later than the initia

position and velocity.

3)

(4)



Assumptionsin Initial Conditions.

The deputy’ s initial position and velocity relative to the chief are assumed to be
known. However, in order to generalize the results, zero initial relative velocity is used
for al calculations. Zero initial velocity ensures no component direction of the initial
velocity can subtract or add to the impulse at the initial point. This essentially cancels the
effects of any variationsin theinitial conditions on the overall optimization.

Additionally, the deputy is required to not exceed a given distance from the
nominal path during any part of the maneuver. The distance from the deputy to the
nominal path is defined as a maximum deviation, r max. Thisdeviation, I max, IS measured
as the magnitude of the spatial deviation vector of the flight path from the nominal path.
This spatia deviation vector is thought of as a radius from the nominal path, thus r max is
termed the maximum deviation radius. The actual deviation (of the flight path from the
nominal path) is only measured in a spatial sense. It does not take into account when and
where the deputy is located on the flight path with reference to when and where the
deputy is to be nominally located along the nominal path. Ther nax constraint defines a

toroidal constraint surface about the nominal path.

I nstantaneous Dv Assumption.

Instantaneous impulses, Dv, which occur at discrete points in space, are assumed.
This assumption is less valid for low thrust vehicles or for extremely fast
circumnavigation times of flight when impulses may require a significant amount of time

to impart a change in velocity. For instance, this assumption breaks down as the



individual maneuver durations become a significant fraction of the circumnavigation time

of flight, TOF.

Nominal Path

The orientation and size of the circular nominal path can be described by four
parameters: ro, ?, Ty, and T,. (4:3) A 2-3 space fixed Ty, T, rotation sequence of acircle
of radius, ro, in the y-z plane defines the nominal circular path. The angle ? defines a
gpatial degree of freedom along the circular path with the initial point being defined by gp.
Figure 1 illustrates this rotation. The valuesof Ty, T, and r, are assumed to be given
quantities, whereas ? is a variable which must be varied to determine points on the circle.

These four parameters are defined in the Local Vertical, Local Horizontal (LVLH)
coordinate system. The LVLH coordinates define the y direction in the same direction of
the chief’ s instantaneous velocity vector. The x direction is defined in the radia (from
the center of the Earth) direction to the chief, and consequently the z direction is
orthogonal to x and y. This coordinate system is equivaent to the RSW coordinates used

in many texts (14:162-163).

Figure 1 a) Rotated Nominal Path b) Unrotated Nominal Path



Mathematically, any point along the nominal path is represented by a phasing
angle, g, and by rotating an initial vector of length ro placed along the y direction ([0; ro;
0]). This corresponds to the initial point located with gy = 0. Using the rotation described

above, the position vector as a function of gis (4:3)

&,005(Q,) S Q) 8(g) - 1, 8N Q,)cos(g)l
dr (@) = éro>COS(Q)>COS(9)+ro>Gn(g)>9n(Q)>9n(Q)u (5)
g r, c08(Q,) 5N g,) {

where g = 0.

State Vector Definition

Unique spatial positions where discrete, instantaneous impul ses occur are
called ‘burn points’. These burn points are required to perform the circumnavigation
within the required total time. Assigning individual time of flights between them allows
for the computation of the Dv required at each burn point. Hill’s equations (16:80) were
used to determine the total impulse, Dv;, required for a particular maneuver. This
parameterization assumes the time, t;, at each it point is known; the times, t; are
independent variables.

A complete circumnavigation is defined by a 2p rotation in g from some given
initial position (defined by a g, on the nominal path) within the required total time of
flight (TOF). The parameter, b, indicates the total number of discrete burn points along
the circumnavigation path.

A state vector, X, is composed of the spatia degrees of freedom for the burn
points positions, and the corresponding times when the deputy is located at the burn
point positions. There are two probable cases investigated for constraining the placement

of the burn points. Firgt, the ‘special case’ requires all the burn points to be placed on the



nominal path. Therefore, the special case only requires one degree of freedom, g, to
define aburn point placement. Next, the ‘general case’ is defined by alowing the burn
points to be placed anywhere within the constraint volume. For both cases, the burn
point timing is not specified, only the sum of the times as defined by the
circumnavigation.

Soecial Case Sate Vector.

The special case state vector is built from the discrete values of g and t;, defined by

» (D> D> M
8OO
(o el enY el en e en enly e

X
I

 fori=1..,b-1 (6)

WD B0

where b is the total number of burn points. In order to assure the circumnavigation is

complete (i.e. the deputy returns to the initial point), the angle to the final position, g, is
computed as 2p minus the sum of the previous g’s. Similarly, the time of the final point,
tp, IS computed as TOF minus the sum of al the previoust’s. These values are computed

as

9,=2p - a X(J)
e U
t, =TOF - § X(j+b-1)

=

10



General Case Sate Vector.

A genera case, representing three degrees of spatial freedom, defines the burn
points placed within a solid torus whose minor radius is defined by r nmax. Any point along
the actual flight path (and within the solid torus) has a vector from it to the nominal path
which represents a deviation radius, and has a magnitude of r. Thisradiusis rotated
about the nominal path by an angle, e as shown in Figure 2. The angle e can be rotated
through 2p defining a circle about any point on the nominal path. Rotating this circle by
?, creates atorus with an inner radius, rc = ro-r , and an outer radius, r =ro +r. Theinner

and outer radii will be used in Chapter V below.

Pz

P1

Figure 2. Sketch of Torus Parameterization

Figure 2 gives an illustration of the torus parameters to define a unique point
within the torus. A coordinate frame is fixed in the torus where the p, direction is defined
by the position of the initia position, which can be defined by the initial angle, go, with

respect to the LVLH frame. The ps direction lies within the nominal path plane

11



orthogonal to p,, and p; completesthe triad. Theradius, r, is allowed to vary from O to
I max-
Any point in the solid torus can be given by
X0+ Y, 0, +2,0, =1 sin(e) p, +(r, +1 cos(e)cos(@))p, + (I, +r cos(e)sin(@)) b, (8)
where %, Yp, and z, are components in the path coordinate system [p1 p2 p3]. Equation (8)
is modified from a general torus parameterization. (8) The position vector is expressed in

LVLH coordinates using the nominal path rotation angles Qy and Q, discussed above.

Thus the position vector, dr, is defined in the LVLH frame as

§(r sing)) cosQ, ) cosQ,) +(r, +r cosg))sin@)cosQ,)sin@,)- (r, +r cosg)) cosg)sin(Qz)l}
dr(r ,e,9) = g(r0 +r cosg))cosf)cosQ,) +(r sing)) cosQ,)sin@,) +(r, +r cos(e))sin@)sin@y)sin@z)g ©)
& (r, + 1 cosg))sin@)cosQ, ) - (r sing))sin@Q, ) 4

where @ is set to zero.

Now the general case state vector is defined using the three degrees of freedom:
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where the fina point in-plane angle, %, and time, t,, are computed asin Eq. (7), but the

final point radius, r ?and torus angle, & are allowed to vary.
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Total Impulse Computation (Cost Function).

To compute each discrete individua Dv requires knowledge of the individual time

of flight between the i and the (i+1)" burn point, calculated as

Dt, =t - D, =t -t (11)
Once the position of the current burn point, dr(t;), along with the time of flight,
Dt;, to the next burn point, dr (+1), is known; the required velocity, dv*( t;), immediately

following the burn is computed as
V" (1) =F o fF (D) 0F (1) - o (t.)] (12)

The velocity just prior to the burn, dv'( t), is calculated by
av' (1) = F ., (Dt,) xdr (t, ,) +F ,, (Dt,) xav ™ (t;. ) (13)
where F ; and F , are defined above in Eq. (4).(16:80) Thisvelocity is determined by
the location and magnitude of the previous Dv. Eq. (13) isvalid for al burn points except
for theinitial one. At theinitial burn point, dv'(t;) is assumed to be zero for al
calculations.
Once the velocity just prior to the burn point and the velocity just after the

impulsive bun is known, the Dv magnitude and direction is computed as

—> —_ — | —
Dv. =dv™(t.)- av' (t) (14)
Now that the individual Dv vectors are computed, the total required impulse can be

minimized. The total impulse is given by
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b-1
F(X)=Dv, =g DV (15)
i=0

Sngularity in Cost Function.

The cost function (Eg. (15)) is not continuous within the feasible region of most

cases. Thisisaresult of using the inverse of the F ,, matrix in Eq. (12); which is

computed as
é N3 - 4sinfy )) - 2n(cosfy ) - 1 u
&- 8+8cosfy ) +3 sin(y) - 8+8cosy ) +3 sin ) i
Frv‘l(Dt-):é 2n(cosfy ) - 1) nsinly )- 1) 0 U (16)
' g-8+8cos(y)+3/ snfy) 8-8cosy)- 3 sinfy ) ﬂ
é 0 0 LI
e sinf )g

wherey =nt. This matrix contains a singularity when y is zero or an integer multiple of
p. The cost function’s gradient becomes very steep in the region near the singularity, and
the numerical optimization routine will not converge to a solution if the search routine
approaches the singularity. Physically, this singularity is represented by burning between
two points of afinite distance apart in zero time which requires infinite Dv.

Several strategies are employed to mitigate the singularity’ s effects on the
numerical optimization. These strategies include initial guess inputs into the optimization
close to aloca minimum, utilizing alow number of burn pointsin the initial guess,
searching over different potential numbers of burn points, and establishing bounds on the
time instances to be e <t;. In practice, this lower limit of the times, e, has been set to

(1x10") x TOF to prevent the routine from approaching too close to the singularity.
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These mitigations allow good performance of the optimization routine in the vicinity of a

local minimum.

Flight Path Constraint

As mentioned previoudly, the actual circumnavigation flight path between burn
points must be contained within the torus and, therefore, must not deviate from the
nominal path by more than r max. For this reason, the deviation from the nominal path
must be calculated to ensure the relative satellite trgjectory meets this constraint. The
flight path between burn points is calculated in discrete time steps by propagating Hill’s

equations (16:80) forward after the burn is applied:

dr (tiy) = F  (Dtiy ) >0 (t;) +F (Dt ) >av ™ (t;) (17)
where Dt;; are intermediate time steps defined by dividing Dt; by z time steps. A value of
z = 20 was chosen for al calculations. This value of z provided adequate resolution of
the path’s shape and magnitude. The intermediate position vector, dr (tint), is used to

determine the flight path deviation represented as vector, r 4ey, illustrated in Figure 3.

15



> ™
o (t,)

! |
| |
i |
N | i
/ ,ylps : |
|\\ _,—’ :
N/ | - !
y |_’J_’ __________ _ : drpath |
", Nominal B it

/ \ Path

>
z P2

Figure 3. Path Constraint Definition Sketch
The ‘path frame [pl p2 p3] is defined by the space-fixed 1-2-3 rotation by g, Qy,
and Q; from the LVLH frame. Assuming the initial position always lies on the nominal
path, the corresponding transformation matrix, R, from the path frame to the LVLH

coordinates is

g cos(Q,)cos(Q,) cos(Q,)sin(Q;) - sin(Qy) 3(18)
R= a&05(Q,)sin(Q, )sin(gy) - cos(g,)siN(Q,)  cos(gy) cos(Q,) +sin(gy)sin(Q,)sin(Q,)  cos(Q,)sin(go)
&os(Q,)sin(Q,) cos(g, ) +8iN(go)sin(Q,) - sin(g,)cos(Q,) - cox(g,)sin(Q,)sin(Q,)  cos(g,) cos(Q,) Y
This matrix, R, is then used in the subsequent Egs. (19), (20), and (21). Each intermediate
point is transformed into the path frame by
édp,
gdpz
&lp;

= R >dr>(tint ) (19)

(e oy ey eny eng

The intermediate position vector, dr(tin:), is projected into the plane of the

nominal path to calculate the position vector of the nominal path’s closest point. Since

16



there is no preferred timing of the intermediate points along the circumnavigation, the

closes point is found as

. g
rogjng
g0

/ dp:? +dp,” (20)

The flight path deviation vector, r gey, is calculated by differencing the intermediate

d Fpath =

position vector and the projected path vector in the path frame:

I gev = (R>dr(t|nt)) - d_>path (21)
Finaly, the flight path constraint is defined by deviation radius magnitude, r gey, which

cannot exceed r max. The constraint is computed by ensuring the difference is never

positive:

‘rdW‘_ [ max £0 (22)
Additional Constraints
Each burn point’s gand t cannot exceed 2p and TOF respectively from the
problem statement above. Additionaly, the values for g and t must be zero or greater

(positive). These values are used to define the upper, X, and lower, X, limits on the

state vector.

A linear inequality constraint is needed to ensure g, and t, are not negative. From
Eq. (7), it can be seen the sum of the g' s and the sum of the t's cannot be greater than 2p
or TOF respectively. Physically, thiswould represent the circumnavigation doubling

back on itself producing a negative g,, and time flowing backwards giving a negative tp.
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Numerical Optimization
A numerical optimization technique is employed to locate locally minimum fuel
tragjectories. The general form of the optimization problem can be represented as
min F (X)
XT R"
Gy (X)EO
X, £XE X,

(23)

where Giineg(X) represents the nonlinear constraints from Eq. (22) and linear inequality
constraints from above. The states, X and X, represent the lower and upper bound
congtraints on the state vector. The goal is to find the state vector producing the
minimum vaue of the cost function, F(X) computed in Eq. (15).

The cost function, F(X), is highly nontlinear. The ‘fmincon’ functionin
MATLAB’s Optimization Toolbox (6) was chosen to perform the optimization. This
routine is designed using Sequential Quadratic Programming (9:3-26) which alows for
the use of nonlinear constraints, is appropriate for a single objective cost function, and
allows for linear constraints as well. It islimited by the fact the cost function must be
continuous over the interval, and will also attempt to minimize the maximum constraint if

there is no feasible solution (9:3-26).

MATLAB Optimization Routine.

As mentioned above, MATLAB’s ‘fmincon’ function uses the Sequentid
Quadratic Programming method which is composed of three main steps. updating the
Hessian matrix of the Lagrangian equation, solving the Quadratic Programming sub-

problem, and performing a Line-search and Merit function calculation. (9:Sec.3, 26).
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The optimization problem can be reformulated into the Kuhn-Tucker Equations (9: Sec.3,

26):

Y R N
NF (X )+e_1(l NG, (X)) =0 20
113G (X7) 2 0
wherel " isaLagrange multiplier termed a Kuhn-Tucker point at a unique state vector,
X", and mis the number of constraints. This equation essentially balances the gradients
of the active constraints and the gradient of the cost function to find a minimum. If the
minimum lies on the constraint boundary, it may not be a true minimum, but the least

cost function value along the boundary. The Kuhn-Tucker points can be found by

solving the Lagrangian equation (9: Sec.3, 27):

LOX1) = F(X) + A (11 Gaea(X) (25)

=1
The algorithm starts with an initial guess state vector. From the initial guess, a
Hessian is computed using finite difference calculations. The Quadratic Sub-Problem is
then solved (9: Sec.3, 28 and 2:238) to determine the search direction. Once the search
direction has been defined a line search and merit function are used to determine the step

size in order to update the state vector. The updated state vector is.
X = X, +ad, (26)
where di gives the search direction and a is the distance along the search direction. Once

the step size is determined the gradient of the function is evaluated at the new point, and

evaluated against Eq. (24). If the convergence criteria are not met, the BFGS (Broyden
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Fletcher- Goldfarb- Shanno) method (1:330 and 9: Sec.3, 30) is then used to determine an

updated Hessian matrix, and the procedure is reiterated.

Practical MATLAB Usage.

MATLAB uses finite differencing techniques to numerically compute the gradient
and Hessian of the cost function at any given state vector. These finite differences
require bounds on the step size for the finite difference. The default was set at 1x10°8, but
1x10°° produced higher quality results. Additionally, the tolerance on the gate vector, the
cost function and the constraints can be set as well. Changing these tol erances produced
significant differences in the output of the optimization program. Setting all tolerances
equal to 1x10™° produced the most consistent results for all the cases presented.

Functionally, the state vector quantities were normalized for input into
MATLAB’s‘fmincon’ routine. This gives a similar magnitude between the states and
produced better convergence. The angles e and g were normalized by 2p to give values
between zero and one, the deviation, r was normalized by the maximum deviation radius,
I max, @Nd time was normalized by TOF. (Angles of the special case shown below were

not normalized.)

Optimization Results Check.

In order to check the optimization program, the cost function is evaluated in select
directions around the area of the minimum given by the program. The goal of the check
is to gain confidence in the optimization results and understand what levels in the
numerical tolerances produced the best results. This method is based upon a subset of the

Welerstrass Theorem. (1:83)
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Specifically, the cost function is evaluated at the optimized state vector stepped in
only one state by arange of finite stepsand does not utilize the full set of possible states

as required by the Weierstrass Theorem. Each step creates a new state vector, X':

'=X+g;(m) @7)

wheremisthe step size, and g is given as

D> D> D> (D
o o

(28)
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~—~
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MDD> D> (D>

where ] represents the state to be stepped. This step vector is the same length as the
origina state vector, X.
If the optimized state vector isto produce alocal minimum within the defined

tolerances, the new stepped value of the cost function, F(X"), cannot be less than the cost

function value from the optimization output:
F(X)- F(X)>0 (29)
This step method described doesn’t fully ensure aloca minimum has been found
because the cost function could decrease in a direction not orthogonal to the states. For
instance, ssimultaneously stepping states 1 and 2 by some amount produces another
unique state vector and thus another unique cost function value. This check describes a

necessary condition for a minimum, but doesn’t describe a sufficient condition.
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If given a stepped vaue of the cost function for which Eq. (29) is not satisfied, the
state X does not represent a minimum in the cost function. However, the new state vector
must be evaluated to determine if it meets the constraints aswell. If the new state does
not meet the constraints, it is not a valid state, and therefore must be disregarded.

Functionally the new stepped state is compared to the constraints. If the new path
violates constraints an integer number is added to a variable called the check sum. This
check sumis zero if no constraints were violated, and greater than zero if the constraints
were violated. The other constraint’s violations (upper and lower limits of the state
vector and the linear inequality constraint on the sum of the times and g's) were included
in this check sum as well.

An dternate way to verify a minimum is to use the Kuhn-Tucker necessary
conditions (1:122). The Kuhn-Tucker method requires the cal culation of the gradient of
the cost function at the specific points. However, this method was not needed since the
step method described above was able to provide enough confidence in the minima found

by the optimization routine.
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1. Equal Angle/Equal Time M ethod

The behavior of the cost function isinitially evaluated with a very smple analytic
method in defining the placement and timing of the individual Dv;’s. This method
provides a baseline for comparing the optimization’s or other analytic methods
performance. The Equal Angle/Equal Time (EAET) method is defined by the burn points
placed upon the nominal path in equal angular displacements along the rominal path and
spaced equal times gpart. Each angular location and time is given by

i :E, t; =TO—F
b b

(30)
where b, the number of burn points, must be specified.

Figure 4 shows the behavior of the EAET with the TOF set to 0.1 times the orbital
period of the chief (about 9.25 minutes). The chief isin acircular orbit with an atitude
of 400 km for all calculations and results shown throughout this thesis, unless otherwise
stated.  The nominal path is oriented in the x-y plane (Qy = 90° and Q. = 0°) with the
initial point rotated 45° along the path (g = 45°). The nomina path’sradius is set at 50
m, with the deviation constraint, r max, €qual to 10 m. Two paths are shown in Figure 4.
The ‘Min Actual Path’ is using five burn points (b = 5), and the ‘Infeasible Path’ isusing
four burn points (b = 4). The constraint surface is shown as the circular grid, representing

the torus's surface.
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Figure 4. EAET with Minimum Feasible Number of Burn Points (b =5). Qy =90°Q;, =
0°,00=45° TOF=0.1,and r max=10m

Minimum Number of Burn Pointsfor Given r max.

For the EAET method there exists a minimum b for the required r max constraint to
be satisfied. The deviation from the nominal path is apparent, and depends upon the b
used in Equation 30. The number of burn points, b, is stepped in integer increments from
2 until the minimum number of burn points case meets the flight path constraint. In

Figure 4, the b = 4 case exceeds the maximum deviation.
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Dv; Versus Number of Burn Points.

The difference in magnitude of Dv; (also called the change in velocity in some

Figures) between the continuous and the discrete methods of circumnavigation can be

quantified by Figure 5. Figure 5 shows the variation of Dv; as a function of the number of

burn points for several path orientations. The circumnavigation for each case shown has

itsnomina path rotation Q, = 0°, aradius of 50 meters and a TOF = 0.1 times the chief’s

period (555 s).
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Figure5. Dv; Versusthe Number of Burn Points.

The flight path’s deviation from the nominal path increases as the number of burn

points decreases, which can be seen qualitatively from Figure 4. Asthe number of burn
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points increases the value of Dv; approaches a value that it would be for a continuous
burn on the nominal path.

The flight path’s deviation from the nominal path is aso a function of the number of
burn points. Therefore, the value of r nax determines the minimum number of burn points
that produce atrajectory within the torus. The minimum number of burn pointsis
determined by trial-and-error as above and represents the minimum Dv; for the EAET
method.

The EAET method is a very ssimple algorithm alowing for a quick determination of
the order of the required Dv, but further investigations show room to further minimize
Dvi. However, due to its simplicity, the EAET method presents a good basis for
measuring the performance of the optimization results. The Dv; for each subsequent
optimization result and analytical design method is compared to the EAET by computing

the percentage of savings from the EAET method for the given circumnavigation.

Comparison with Continuous Control Method.

The EAET method allows a direct comparison to continuous control techniques. (4)
The paradigm used differs from continuous control technique by the allowance of the
intermediate flight path between burn points to vary off of the defined nominal path.
The continuous control paradigm ensures all points on the circumnavigation follow the
nominal path vice the discrete methods proposed require the path to lie within a
constrained region about the nominal circular path. The variance or deviation from the

nominal path alows for considerable savings in the Dwv;.
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Varying the nominal path’s orientation and TOF also affects Dv; required. The
Dw varies similarly with TOF, Qy, and Q, as found in the continuous method (4:3) except
the magnitude of the Dv; isless. For instance, Figures 6 and 7 demonstrate the variation
of Dv; with rotating a 50 m nominal path about Qy while varying TOF from 0.1to 1. The
graphs show the Dv; variation as computed by the EAET method with six burn points
(b=6).

The shapes of the curves are the same as demonstrated in the continuous control
method (4:6) with a few exceptions. The overall magnitude of the surface is less than the
magnitude presented in the continuous case, except at the minimum points. Also,
because the initial velocity is set to zero relative to the chief, afinite amount of Dv is
required to put the circumnavigation on a natural motion trajectory which occurs at Qy =
30°and 120°witha TOF = 1 and Q, = 0°. (11:7) For these cases, the continuous case Dv;
would be zero as can be seen from Eq. (2) and as presented in Reference 4. (4:6)
However, the minimums and maximums still occur at the same respective values of Qy,

Qz, and TOF.
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Figure 7. Dv; Cross-Sections From Varying TOF and Qy
This comparison is extrapolated into the results for the optimization cases, and
subsequent analytical methods. For cases with TOF less than 0.5 times the chief’s orbital
period, the minimum Dv; occurs at Qy = 90° and Q, = 0°. This case will be the primary

example for the lower total impulse trajectories calculated below.
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V. Optimization Results

The EAET method has two drawbacks. the Dv; is not optimal and the
intermediate flight path constraints cannot be enforced except by trial-and-error selection
of the number of burn points. To investigate the behavior of optimal maneuvers that
satisfy the path constraint, we use numerical optimization. The optimization results are

presented using the two defined cases: the special case and the general case.

Special Case Results
The EAET method is used as the initial guess in the optimization of the cost

function shown in Eq. (15). Several other types of guesses were investigated, but they
mainly involved random choices of the states, and did not provide lower cost function
valuesthan the EAET method. Figure 8 shows the results from using the EAET initial
guesswithb=5,r nax =10 mand aTOF = 0.1. The nomina path is oriented in the x-y
plane to alow for simpler viewing of the actual flight paths; additionally, the x-y plane
represents the minimum required circumnavigation for this TOF as shown in Figure 7.

The initial guess's (EAET’s) vaue for the Dv; is 2.6082 m/s for the path defined in Figure

8. Thefina optimized Dv; value is 2.4485 m/s and represents a4.55% savingsin Dv;.
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Figure 8. Five Burn Points, Q, = 90°, Q, = 0°, ¢ = 45° with TOF = 0.1 and r max = 0.01 km

One fundamental difference between the guess and the optimized solution is the
deviation of the intermediate flight path from the nominal. Figure 9 shows the magnitude
the deviation from the nominal path, r 4ey, for the both the initial guess and the optimized
solution. The zero points for both lines in Figure 9 represent the burn points, which are
placed upon the nominal path. Note the EAET flight path does not directly touch the

constraint surface.
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Figure9. Five Burn Points Deviation, Qy = 90°, Q, = 0°, g,= 45°with TOF = 0.1, and
I max = 0.01 km

The optimized intermediate flight path touches the constraint boundary after the
initial burn and the final burn as seen in Figure 9; this excursion to the constraint
boundary skirts the inner radius of the torus as seen in Figure 8. The optimization
consistently found minima where the intermediate flight path skirts the constraint

boundary. This skirting is characteristic of all the reasonable optimal solutions computed.
The next step is to investigate the effect of varying the flight path constraint, r max.

Figure 10 shows the optimization for a path with the same orientation and TOF as Figure

8, but with r nax = 20 m. The minimum number of burn points for the EAET case is how

four. The optimized Dv; was determined as 2.05 m/s which represents a 12.5% savings

over the EAET vaue of 2.34 m/s.
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Figure 10. Four Burn Points, Decrease Constraint: Qy = 90°, Q.= 0° ¢, =45° TOF = 0.1
and r max = 0.02 km

The optimization routine placed the first and last burn points such that the first
and last paths were tangential to the inner constraint surface. This was a common theme
while decreasing the constraint (increasing r max). Ultimately, increasing r max  decreases
the total number of points possible, and if the maximum deviation is large enough the
circumnavigation requires only two burns which represents the minimum number of

burn points for a reasonable circumnavigation.
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Optimization Results Check Output.

The optimization results check as described above is used to determine whether or
not the optimization routine found alocal minimum. A variety of steps sizes were
utilized ranging from 1 x 10° to 1 x 10! step sizesin increments of one order of
magnitude. Each stepped state vector is evaluated to ensure the circumnavigation
constraints are met.

To show whether the constraints were met or exceeded for each new stepped state
vector, a Violation Matrix is developed. The Matrix is calculated for each new stepped
state vector, X', and is arow vector with six columns. If the value in the column is zero
then the particular constraint corresponding to the column was met, likewise if the value
is greater than zero that constraint has been violated the integer value number of times.
The constraint definitions are given in Table 1.

Tablel. Violation Matrix Definition

Violation Matrix Consiraint
Column Number
tsl
1 a g <2
t()_;l
2 at <1,
3 a<2p
4 ti<l
5 gandt >0
6 |Fdev|' rmax £0

33



Table 2 shows part of the step check data from the circumnavigation and
optimization presented in Figure 8 above. The full data are presented in Appendix A.
The top half of Table 2 for a step size of 1x10° ' produces changes in the cost function
much lower than the cost function tolerance; in this case the tolerance on the cost
function was set at 1x10°°. The lower half (bolded numbers) represent the step size which
shows the optimization meets the local minimum requirements. If the Step Check
column is negative, then the step size and direction represent a more minimum value for
the stepped cost function. However, since the optimization result was constrained the
bolded negative values al exceed constraints and therefore are not feasible states. The
feasible states are all positive. Thisis true for the step size of 1x10°, but decreasing the
step sizeto 1x10’ represents a case where the step size produces a difference in the new

cost function two orders below the numerical limit of the optimization criteria.



Table 2. Special Case Step Optimization Check Example

State Step Size, m Violation Step Check, Check
Number, Matrix F(X")-F(X) Sum
i (km/s)

1.00E-07 0000001 7.47E-12

1.00E-07 0000000 2.93E-11

1.00E-07 0000000 3.02E-11

1.00E-07 0000000 3.07E-11

1.00E-07 0000000 -7.93E-12

1.00E-07 0000000 -1.93E-11

1.00E-07 0000000 -1.98E-11

1.00E-07 0000000 -1.79E-11
-1.00E-07 0000000 -71.47E-12
-1.00E-07 0000000 -2.93E-11
-1.00E-07 0000000 -3.02E-11
-1.00E-07 0000000 -3.07E-11
-1.00E-07 0000000 7.93E-12
-1.00E-07 0000000 1.93E-11
-1.00E-07 0000000 1.98E-11
-1.00E-07 0000000 1.79E-11

1.00E-06 0000001 7.47E-11
1.00E-06 0000000 2.93E-10
1.00E-06 0000000 3.02E-10
1.00E-06 0000000 3.07E-10
1.00E-06 0000001 -7.93E-11
1.00E-06 0000001 -1.93E-10
1.00E-06 0000001 -1.98E-10
1.00E-06 0000001 -1.79E-10

-1.00E-06 0000001 -7.47E-11
-1.00E-06 0000001 -2.93E-10
-1.00E-06 0000001 -3.02E-10
-1.00E-06 0000001 -3.07E-10
-1.00E-06 0000001 7.94E-11

-1.00E-06 0000000 1.93E-10
-1.00E-06 0000000 1.98E-10

-1.00E-06 0000000 1.79E-10
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Unreasonable but Feasible Solutions.

Some of the optimization runs produced unreasonable circumnavigations, but still
met the mathematical constraints. For instance, placing an initial guess with only two
burn points spaced by p radians for the same circumnavigation requirements used in

Figure 8, yields an optimized path that doesn’t circumnavigate the chief, but still liesin
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the feasible space of the cost function. The initial guessisitsdf infeasible, but the
resulting feasible optimized path is shown in Figure 11. The optimized Dv; is 0.84460
m/s. Although the optimized path does not actually circumnavigate the chief, it does meet
the constraints as stated above. This type of minimum was only found when the initia

guess is infeasible.

0.05

0.0
¢ Oplimized Bum Points
Optirized Fight Path
Mamenal Path
oot 1 +  Inilial Guess Bum Poals
= Initial Guess Fhght Path
Z d .
.y
+
-0
-0.0a
L L
004 Q 005

Figure 11. Two Burn Points. Qy=90, Qz=0, go=45 with TOF = 0.1 and r max=0.01 km

Astheinitial conditions are modified by placing the initial point ahead or behind
the chief along the y-axis, (g, = 0 or p), aminimum can be found by moving
infinitesimally ‘forward’ along the path, and infinitesimally ‘back’ to the initial position.
The Dv; for these ‘ circumnavigations’ approach zero, which represents the global
minimum for those conditions. Of course, these cases do not represent valid

circumnavigations. This can be avoided by ensuring an adequate number of burn points
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are used in the initial guess, that they are sufficiently spaced apart, and the initial guessis

feasible.

Foecial Case Results Evaluation.

Severa other nominal paths, TOF requirements, and constraint boundaries were

investigated using the specia case shown in Table 3. The EAET method was used as the

initial guess for al of the outputs.

Table 3. Special Case Representative Results

Total Impulse (Dv)

Initial Conditions EAET Dy Special Case Optimization Results
ro=50m, Dv
a=6778km Min. Burn Dv (m/s)
Pts. (b) (m/s) % of EAET

P (SR | s
E ¢ 4.3%
SIS | s
g o T max 2.2%
& 9[7Q,=90°, Q,=0°, go=45°, 2.49
8 B| TOF=0.1,1 na=10m 5 261 ey
o e B
5 =04 T mac 11.8%
8 | Q=60°, Q;=30°, g;=45", 2.70
8 HTOF=01r ma=8m 6 2.85 =10
N ) PR
5 =V T mac 4.4%
B\ | Q=60°, Q=30°, g,=45", 5.49
S O| TOF=0.05, ma=10m 5 567 S0

The optimization results for varying the orientation of the nominal path shows the

limit for how well the optimization performs over the EAET case. The best the

optimization performed was when the nominal path isin the x-y plane, as expected for a
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constant deviation constraint. Conversely the smallest difference between the EAET and
the optimization occurred when the nominal path was not rotated at all, which
corresponds to the y-z plane circumnavigation. These results are consistent with Figures
6 and 7 as well as the continuous case results (4:3-8). The variation show in the y-z plane
nominal path gives credibility to extrapolating the effects of nominal path orientation
variation as well as TOF variation.

Comparing the total impulse value for differing r max constraints, while keeping
the circumnavigation path and TOF constant, shows that asr max decreases, the Dv;
increases. This result is consistent with the results implied from the EAET analytical
method; the minimum number of burn points has to increase to meet the flight path
constraint and as the minimum number of burn points increases the Dv; increases as well.
Another expected result is the Dv; scales directly with the TOF; shorter TOF sresult in

greater Dv;.

General Case Results

The Genera Case alows the burn points to vary off of the nomina path with
three spatial degreesof freedom but all other constraints apply. Figure 12 shows the
resultswith Qy = 90°, Q, = 0°, ¢ = 45° TOF = 0.1, and r ma=0.01 km, and the minimum
EAET, b=5, astheinitia guess (equivalent to Figure 8). The optimization routine found
alocal minimum with the intermediate burn points placed on the nominal path. The
optimized Dv; doubles the savings from the optimized special case at 2.3754 m/s
representing 8.92% savings. The flight path touches the inner constraint radius at four

points with the optimization routine minimizing the path length between the third and
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fourth burn points. While all the burn points still lie on the nominal path, the endpoint is

now located on the outside constraint boundary.

[+ Optimized Bum Peints
Dplimized Fight Path

oo Mominal Path
+ Inibigd Guess Bum Polnts
-~ Initiel Guess Flight Path
0.04 e T R
7 -|
| "
n.oz | i
' i
£ o :
Py 1
|
-b.02 | |
! |
' &
-0.04 1 i
i i
=005 ) 0,35

Figure 12. General Case Optimization Results for Qy=90, Q,=0, g,=45, TOF =0.1
and r na=0.01 km
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Figure 13. General Case Optimization Results Deviation for Qy=90, Q,=0, g,=45,
TOF =0.1and r max=0.01 km
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Figure 12 shows an interesting result; all burn points still lie on the nominal path
when they are free to vary off of it. Thisindicates the cost function has alocal minimum
when the burn points are placed on the nominal path and corresponds to the special case
above.

Varying Initial Guess Radii.

The numerical results are sensitive to different initial guesses. The next approach
isto run the optimization placing the initial guess burn points away from the nominal
path. The guesses are defined by using the EAET placement in gand t aong avarying
radius away from the nominal path radius, but within the constraint boundary. Figure 14
shows the placement of the initial guess burn points on the extreme outer constraint
boundary, at aradius of 60 meters. The end point of theinitial guessis set on the outside
edge of the constraint boundary. The optimization routine finds alocal minimum very
close to the EAET guess placed on the nominal radius with the burn points placed within

1-3 meters off the nominal radius.
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Figure 14. Genera Case Optimization with Guess on Outer Constraint Boundary.
Qy=90°, Q,=0°, g,=45° with TOF = 0.1 and r max=0.01 km
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Figure 15. Deviation of Guess on Outer Constraint Boundary. Qy=90° Q,=0°, ¢,=45°
with TOF = 0.1 and r 1ax=0.01 km
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Figure 15 shows the deviation of the initial guess on the outside constraint boundary and
the optimization. Again the optimization finds the state vector such that the intermediate
flight paths skirt the inner constraint boundary, while trying to eliminate a burnpoint by
minimizing the path between the third and fourth burn points. The Dv; for this
optimization is 2.3775 m/s or 8.85 % savings on EAET which is approximately the same
as the results for the initial guess on the nomina path.

Placing the initial guess burn points on the interior radius of the constraint surface
leads to non-convergence in the optimization. The TOF of 0.1 causes every flight path
point except for the burn points to be in the cost function’s infeasible region. No fast
TOF was found to converge on a solution if al burn points were placed on the inner
constraint radius.

The next step isto progressively step the initial guess radius (constant radius upon
which the EAET points are located) inward (toward the inner constraint radius) from ro.
Figure 14 shows the results when the 5 point EAET guess is placed upon a radius of 48.5
m (1.5 m less than the nomina of 50 m). The initial guess Dvt isfound to be 2.5324 m/s
and the optimized Dvt is 2.378 m/s. The optimized solution represents 8.9408% savings
onthe EAET method at the nominal radius. The key feature of the new optimized
solution is the fact that all intermediate paths now skirt the inner constraint radius.

The Dv; is approximately the same as the previous two cases, indicating a region
inwhich the objective function is ‘flat’; resulting in a numerically sensitive search that
yields many different local minima. These local minima are only stationary points due to

numerical imprecision.
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Figure 16. Guess Radius of 485 m. Qy=90° Q.= 0° @ = 45° with TOF = 0.1
and r max = 0.01 km

-——— Optimized Path
0.01 - Initial Guess Path

/\ — — Constraint Boundary
0.009 \ Z - ’ \ - \ -
BNy

o

0.007 pt-

4———-4—"“”’”

e

\. \

E 0.006 X\
X

|

IR
RN
Yl NI

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (fraction of TOF)

Figure 17. Guess Radius of 48.5 m, Deviation. Qy=90° Q.= 0° @, = 45°
with TOF = 0.1 and r nax = 0.01 km

Placing the 5 burn point initial guess on a radius tighter than the average radius of
3 m shown in Figure 17 produces an infeasible guess that will not converge to a solution
for these parameters; therefore the number of burn points must be increased in order to

find feasible initial guesses that will converge to a solution.
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Figure 18 represents the guess with an inner radius one third of the distance from

the nominal radius to the inner constraint boundary while increasing b to six. The

optimization finds a minimum touching the inner constraint boundary between every

burn point. The resulting optimized intermediate burn points are placed at a nearly

constant r gey Of 6 Meters as seen in the deviation of the optimization in Figure 19.
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Figure 18. Initial Guess 1/3 Less Nominal Radius and b = 6. Q,=90°, Q,=0°, ¢,=45°with

TOF =0.1 and r 1ax=0.01 km
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Figure 19 Deviation with Initial Guess 1/3 Less Nominal Radius and b = 6. Q,=90°,
Q=0°, gy=45° with TOF = 0.1 and r 11ax=0.01 km

The one third radius guess' s Dv; is 2.5923 m/s; whereas the optimized Dv; is 2.3360 m/s.
This represents a 0.61% savings and 10.44% savings respectively compared to the
minimum EAET at the nominal radius. The increase in savings from the optimized
solution shown in Figure 16, is counter to the EAET conclusion of the lower the number
of burn points the lower the Dv;.

Theinitial guess radius is tightened to 6.5 meters while keeping the number of
burn points constant at six. Figures 20 and 21 illustrate the results from thisinitial guess.
Note the initial guessisin the cost function’s infeasible region, but the optimization
routine is able to converge on aminimum. The savings from the initial guess (compared
to EAET) is 7.23% at avalue of 2.4197 m/s, whereas the savings from the optimization is
10.42% at avalue of 2.3365 m/s. This shows there is a unique radius for a given number
of burn points where all the intermediate flight paths are tangentia to the inner constraint
radius. Thisfact will be used to develop an analytical method for determining the

placement of the burn points.
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Out of Nominal Plane Component.

Most of the burn points do not have a significant out-of-nominal-plane placement
for most rotations. The maximum out of nominal plane placement of the burn points
occurs when the nominal path is not rotated, but left in the y-z plane. Figure 22 shows an
edge on view of acircumnavigation with r0 =50 m, Qy = 0°, Q, = 0° g, = 45° and a TOF
=0.1. The maximum deviation radiusis set at 10 m, but the maximum deviation out of
planeis2 m. Theinitial guessisthe EAET with aradius one third less than the nominal
(the same as presented in Figure 22). The small deviation is used as a simplifying

assumption in the development of an analytical method below.
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Figure 22. y-z Plane Circumnavigation

General Case Results Evaluation.

The main trend from the general case optimization is the intermediate flight paths

all skirt the inner constraint radius. These circumnavigations represent the least Dv;
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found for a given number of burn points, and the shortest path lengths between the burn
points.

There are two additional trends. First, given a set of rotation angles, constraint
boundary, and an initial guess with atighter radius the number of burn points must
increase to find a feasible solution. However, this increase in the number of burn points
does not increase Dv; as indicated from the EAET method. Second, there appears to be
radius which allows a balance between the dynamics of the system and shortening the
path length for a given number of burn points. Additionally, the resulting out-of-
nominal-plane component for optimized burn points is small.

The initial guesses have so far produced hints as to where the minima are located,
but a new method for developing an initial guessis desired. A better guess will alow for

amore comprehensive search for the best circumnavigation maneuver.
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V. Analytical Design Method

Based on the general case optimization results, an improved analytical design
method is developed yielding a lower Dv; than the EAET method. For fast TOF (less
than 0.3 of the chief’s orbital period), it is hypothesized that a minimal total length path
that skirts the inner constraint radius is optimal for a given number of burn points. The
path can be approximated as straight lines tangential to the inner constraint radius.
Furthermore, there exists a unique radius from the chief upon which the burn points are
placed. This radius (termed the design radius, rq) is no more than the nominal radius and
no less than the nominal radius minus the maximum deviation radius (the inner constraint
radius). Trendsin the genera case results justify this hypothesis.

The general case results justify this hypothesis based upon three factors. First, the
general case optimization results indicate minima with all the intermediate flight points
touching the inner constraint radius. Next, the burn points lie within a nearly constant
radius greater than the inner constraint radius, but less than the nominal radius. Finaly,

the optimized burn points lie within a plane very near the plane of the nomina path.

Analytical Design Assumptionsand Simplifications

In creation of the design algorithm, several factors are assumed and
simplifications made from the general case optimization results. The flight paths are
assumed to be straight lines. Additionally, the algorithm places the *designed’ plane to
coincide with the nominal path’s plane. The times of flight between burn points are
assumed to be the same ratio with TOF as the burn point’s g angle from the last burn
point to 2p. The end point for the circumnavigation is constrained to lie on the outside

constraint boundary on a line between initial point and the chief. Finaly, the g angles
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between the 2" burn point and the next to last burn point are assumed to be equally
divided.

Algorithm Description and Analysis

All burn points but the initial burn point lie on a circle with the design radius, rg.
The inner constraint radius, r¢, is computed by subtracting r max from rp. A search range
for the values of the design radius, rq, is a set of the radii from the inner constraint radius
to the nominal radius. A set of burn points is determined for each potential design radius
within thisrange. Figure 23 shows the corresponding position and relevant angles for all

the burn points for a unique design radius.

Figure 23 Sketch of Design Algorithm Geometry

The second burn point, by, is determined by finding the tangent line from the
initia point, by, to the inner constraint radius in the circumnavigation’s direction, and
placing b, at the farthest intersection of the tangent line and the circle inscribed by rq. In

order to compute the g angle between the two burn points, the angle a must be found by
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a =dn 180
= g— (31)
l 5

The initia path length, p;, between the burn points is computed using the Pythagorean

Theorem:

— 2 2 2 2
Py _\/ro - I +\/rd - Ie (32)

Using this path length and the angle, a, g; is computed using the Law of Sines:
18P, Sn(@) 9
sin "————x (33)

O, = 0
My a

The next step is to compute the last burn point (in Figure 23 it isbg). Theangleay is
computed exactly as Eq. (31), but ro is replaced with the radius to the end point, r;. Eq.
(32) is used again to determine the final path length, pn, however ro is replaced by r; in
Egs. (31) and (32). Next, Eq. (33) is used to determine the last angle, g, replacing the
appropriate variables.

Once the second and last burn points have been determined, the intermediate burn
points are calculated. A tangent line to the inner constraint radius is circled from the
second burn point and each subsequent burn points. The next burn point is placed at the
intersection of the tangent line and the design radius. The g value for each burn point is
determined by simple geometry. This procedure is accomplished until the sum of
previous g values exceeds 2p - g,1. The next to the last angle, gy 1, (in Figure 23: g) is
calculated as

-2

5
Oh1=20-¢A 9 +0,+
- gi=1 bﬂ (34)

51



The next step is to iterate the cost function through each value of the design radii.
This iteration can be visualized in Figure 24. Figureillustrates four design radii, special
attention should be drawn to the two middle circles (specifically to the drawn area of
interest) and the next-to-the-last path length. For the greater of the two circles, the next-
to-the-last path is tangent to the inner constraint radius. However, decreasing the design
radius to the next circle produces a next-to-the-last path that is not tangent to the inner
congtraint radius. There exist specific design radii which produce a flight path tangent to

the inner radius between each burn point including the next to the last flight path.

Designradii

Initial Point

End Point Areaof Interest

Figure 24 Sketch of Straight Line Flight Paths with Multiple Design Radii

Now that the burn points are placed, the total circumnavigation velocity change,
Dv;, is calculated for arange of design radii. The design radius producing the minimum
Dv; isthen chosen. Figure 25 shows the Dv; as afunction of ryq used to determine the final

design radius.
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Figure 25. Dv; vsrg. Qy =90°, Q.= (0°, go=45°with TOF = 0.1 and r max = 0.01 km

The minimum for this case occurs at arg of 0.04124 km. The vertical dashed
lines represent transitions from one discrete number of burn points to another in the
analytical design. The jumpsin Dv; in Figure 25 are directly correlated to these
trangitions. The reason for this behavior is seen in Figure 24 where the py.1 path isonly
tangent at unique values of the design radius as discussed above.

An example of the MATLAB code for this algorithm is located in Appendix B.

Variation of Number of Burn Points with Design Radius.
The number of burn points grows exponentially as the design radius approaches

the inner constraint radius, which can be seen in Figure 26.
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Figure 26. Number of Burn Pointsvs. rq Qy = 90°, Q, = 0°, @, = 45° with TOF = 0.1 and
I max = 0.01 km

The minimum Dv; does not correlate to the minimum number of burn points. This
result seemingly contradicts the conclusion above that the lower the number of burn
points the lower Dv;. The number of burn pointsis increased in order to shorten the flight
path to skirt the inner constraint radius. Eventually, though, increasing the number of

burn points (tightening the design radius) no longer decreases the Dv; but increases it.

End Point Position Selection.

The decision to nominally place the end point on the outer constraint boundary
was determined empirically by investigating many general case solutions, and
experimentally by varying the end point for a specific circumnavigation maneuvers
analytical design. The analytical design algorithm is modified to change the position of
the end point for the maneuver. This is accomplished by varying the value of r; from the

inner torus radius to the outer torus radius and computing the total impulse for each
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design. Figure 27 shows the impact on the total impulse with varying the radius to the
end point for the circumnavigation maneuver defined by the parameters: Qy = 90°, Q, =",
O =45°with TOF = 0.1 and r max = 0.01 km. The maximum value for Dv; occurs on the

inner constraint radius, and the minimum value occurs at the outer constraint radius.
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Figure 27. End Point Variation in the Analytical Design Method, r max = 0.01 km.

There are circumnavigations for which placing the endpoint on the outer
constraint boundary does not represent the minimum analytical design choice. Figure 28

shows the results of varying the endpoint for the same circumnavigation, but with an

increased maximum deviation radius: I max = 0.02 km.
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Figure 28. End Point Variation in the Analytical Design Method, r max = 0.02 km.
This shows the optimal placement of the endpoint near the nominal radius,
however the difference between placing the endpoint onits optimal position and the outer

constraint boundary is not great. Additionaly, the large increase in the maximum
deviation radius for this circumnavigation may not be realistic for operational constraints.
To simplify the agorithm, the end point is assumed to lie on the outer constraint
boundary for the rest of the results presented. The optimal end point placement can be
used if the maximum deviation radius becomes a significant fraction of the nominal
radius, however for all examples in this thesis the end point has been placed on the outer

constraint boundary.
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Analytical Design Method Performance

The designed algorithm for the initial conditions is input as the initial guess into
the optimization routine. This alows for significant savings compared to the EAET case,
but also validates the use of the algorithm as a good approximation near a local
minimum.

Optimization Results with Design as Initial Guess.

Figure 29 shows the optimization results using the design algorithm guess for
ro =50 m, Qy =60° Q.= 30° @ = 45° with TOF = 0.1 and r max=0.01 km. Figure 30

shows the deviation of both the design and the optimized solution.

Design Bum Paints
Diesign Path
+  Optimized Bum Points
- Optimazed Path
- Mominal Path

002, 4

Z ikm)

002 fieing

0.05 ™. S

o (k)

Figures 29. Design and Optimized Circumnavigation Paths. ro =50 m, Q, = 60°,
Q,=30° g, =45°with TOF = 0.1 and r max = 0.01 km
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Figures 30. Design and Optimized Circumnavigation Path Deviations. o =50 m, Qy =
60°, Q,=30° ¢, =45°with TOF = 0.1 and r max = 0.01 km

The two paths are very close to each other, with the optimized path touching the
inner constraint radius at most points. The design actual path does not actually touch the
constraint radius because the actual flight paths between burn points are curved as
opposed to straight lines. The Dv; for the design path is 2.3928 m/s with the optimized
Dv; equal to 2.2942 m/s which represent savings of 10.30% and 14.00% respectively.
Savings realized by using the optimized state vector as opposed to the design state vector
are only 0.0985 m/s, or 3% on EAET. The computational requirements for the
optimization may not justify this small increase.

Variation of the Inner Constraint Radius (Maximum Deviation Radius).

As seen in the Specia Case results varying the maximum deviation radius has an
impact on the placement of the burn points for the optimized solution. For the analytic

method the number of burn points increases as expected (subsequently the Dv; increases)
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as the maximum deviation radius decreases. The inverse relationship is true as well.
Figures 31 and 32 show the circumnavigation paths and deviations respectively for the
same circumnavigation shown in Figure 29, but with r max increased to 20 m. The Dv; for
the design path is 1.84 m/s with the optimized Dv; equal to 1.72 m/s which represent
savings of 21.25% and 28.33% respectively over an EAET method using 4 burn points

and aDv; = 2.40 m/s.

= Design Burn Points
— Design Fath

+ Optirmized Burn Points
— - Optimized Path
— - Mominal Fath

Figure 31. Design and Optimized Circumnavigation Paths—Larger r max.
ro =50m, Qy = 60° Q.= 30° @ = 45° with TOF = 0.1 and I max = 0.02 km
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Figure 32. Design and Optimized Circumnavigation Deviations—Larger r max.
ro =50m, Qy =60° Q,=30° @ =45°with TOF = 0.1 and r max = 0.02 km

The design radius for this case is farther from the inner constraint radiusat 32.9 m
(2.9 m away from the inner constraint radius). The mgjor increase in savingsis a result
of the total path length for the circumnavigation being considerably shorter (tighter radius)
than the EAET method, even with reducing the number of burnpoints. The amount of
decrease in Dv; for the EAET due to the decrease in the number of burn points (compared
to the previous one) does not compensate for the better results found by the design and
optimization. Overall, comparing the actual values of Dv;, the general observation is

made: increasing the r max results in a decrease in Dv;, consistent with all other cases.
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Variation of the Nominal Radius.

Increasing the nominal radius shows the performance of the algorithm for another
circumnavigation, and the percentage of savings over the EAET method stays relatively
constant. Figures 33 and 34 show the results of increasing the nominal radius to 100m
while making keeping the percentage (of the nominal radius) of the maximum deviation
radius constant at 20% (20 m for 100 m). The orientation of the nomina path and TOF
are the same as the circumnavigation shown in Figures 29 and 30 (rp = 100 m, Qy = 60°,
Q:=30° ¢ =45°with TOF = 0.1 and r max = 0.02 km). The Dv; for the design path is

4.78 m/s with the optimized Dv; equal to 4.59 m/s which represent savings of 10.30% and

13.90% respectively.
< Design Burn Points
—— Design Path
+ Optimized Burn Points
— — Optimized Path
. — - Mominal Path
.r':’ e =
3 2 .f’,.{;"’".—-h——w—_____;,\ -H_ > T ;
005 o a0
Bl i)
r i) ] f "._-I .
o5t IR /,

Figures 33. Design and Optimized Circumnavigation Paths—L arger ro.
ro =100 m, Qy = 60°, Q.= 30° @, = 45° with TOF = 0.1 and r max = 0.02 km
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Figures 34. Design and Optimized Circumnavigation Path Deviations— Larger ro.
ro =100 m, Qy = 60°, Q.= 30° @ = 45° with TOF = 0.1 and I max = 0.02 km

There are two effects of note from this example. First, the percentage of savings
from the EAET stays relatively constant. Keeping the same ratio of inner constraint
radius to the nominal radius allows for relatively constant savings, which implies for any
given orientation the results can be scaled at a particular TOF.

Second, the number of burn points stays relatively constant for both the EAET and
the design/optimization. Asthe nominal radius is increased for a constant TOF, the time
to travel between subsequent burn points decreases with increasing distance. Essentially,

this indicates the paths between the burn points better approximate a line, and the
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minimum number of points allowed with a given inner constraint radius stays nearly

constant.

Circumnavigation Requirements Comparison.

The results from a representative set of initial conditions are shown in Table 4.

The analytic design outperforms the minimum burn EAET case, and the optimization

results using the analytical design method as the initial guess always produces the

minimum circumnavigation Dv; found from any guess. Another benefit to the analytical

design as an initial guessis a very high probability of convergence to a minimum.

Table4. Analytic Design Algorithm Performance

Initial Conditions

Total Impulse (Dy)

ro=50m,
a=6778km EAET Dy Analytical Design Algorithm

i Design Dv Optlng:atlon

Burn D BL.”n fd (m/s) (m/s)

e 9T e ey

EAET

g ?cfﬁ‘fﬁfaoo’_gfg“f’ 5 2,67 1 412 239 229
E g T T mac 10.3% 14.0%
%E Q,=0°, Q,=0°, g,=0°, 2.79 271
: § TOF=0.1r ny=10m 5 3.02 11 412 " o
8 O] Q790°, =0, go=45", 237 224
8 8| TOF=011 ya=10m 5 261 11 412 o eD
5 $§§(55Q1f3°°’_g§§4§°' 4 239 13 29 L7
5 T mae 23.2% 27.8%
g ] QF60°, Q,=30°, g,=45" 254 244
g E TOF=0.1,r ma=8m 6 2.84 13 429 ey )
5 ?gf‘fb%:foo’:gféf' 5 118 10 415 L% 0%
5 ST max 11.3% 16.6%
B, | Q=60°, Q,=30°, g,=45", 5.14 497
S O| TOF=0.05,1 ma=10m 5 5.67 13 40.8 Y P
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Table 4 also presents other indications of the cost function’s nature, specifically;
there is a strong correlation between the savings and the inner constraint radius as well as
the TOF. AsFigure 35 shows, the percent savings between the EAET method and the
Analytical Design Method decreases with increasing TOF. As the TOF increases the
EAET becomes a better approximation. The local minimums produced using the design
algorithm as the initial guess are the lowest, valid circumnavigations found of all the
initial conditions investigated.

The discontinuous steps in the EAET curve represent changes in the minimum
number of burn points. The EAET does not necessarily minimize the path length by
having the intermediate flight path tangent to the inner constraint radius, which produces
the mgjor difference between the two curves. The analytical method has the advantage of
producing a relatively smooth line in Figure 35 which eliminates inefficiencies created by
the discretized nature of the EAET method.

x40

-— Design 4 Y TOF =0.05

«— Design & v, TOF =01

+ Design 4 v, TOF =0.2
EAET aw; TOF =0.05

— EAET v TOF =01
EAET aw; TOF =0.2

o

a 0.005 0.0 oS ooz 0.025 0.03 0.035 0.04 0.045
r. k)
4

Figure 35. Dv; versus r; with varying TOF.
ro =50 m, Qy=60°, Q,=30°, §o=45°, I max = 0.01 km.



Design Radius Versus Inner Constraint Radius (Maximum Deviation Radius).

The analytical design method determines a design radius based upon the
dynamics and the inner constraint radius. It is informative to investigate how the design
radius varies as a function of the inner constraint radius for a particular circumnavigation

which is presented in Figure 36.
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Figure 36. Design Radius Versus Inner Constraint Radius. ro = 50 m, Qy=60°, Q,=30°,
Q=45°, TOF=0.1

The dashed straight line is where the design radius would be equal to the inner constraint
radius, and the starred line represerts the computed design radius for each inner
congtraint radius. The design radii approach the inner constraint radii as the inner

constraint radius shrinks with the greatest difference at the 30 m point. The greatest
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difference is approximately 3 m. There does not appear to be a direct correlation between
the differences in the design radii and the inner constraint radii and the total impulse
shown in Figure 35. The roughness of the design radius line is a function of the
increment size of the individual design radii used in the algorithm; the smaller the

increment size the smoother the line.

Initial Conditions Considerations.

The analytical design method can be easily generalized to the problem where the
initial position does not necessarily lie on the ‘nominal’ path. This can be accomplished
by replacingthe nomina radius with a ‘pseudo-nominal’ radius in the algorithm, and
placing the inner constraint radius at the minimum allowable distance to the chief. For
this problem, the end point placement would need to be taken into account. If the
distance from the initial point to the inner constraint radius (i.e. maximum deviation
radius) is large (greater than 0.2 rp), then the position of the end point should be added to
the algorithm as shown above.

In general, the initia velocity of the deputy with respect to the chief will not be
necessarily zero. The plane of the constraint torus may be chosen (if a free parameter) to
better the deputy’s initial relative velocity vector. The magnitude and direction of the
initial velocity can have a significant affect on the Dv; by directly adding or subtracting to

the results presented.
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VI. Conclusions

Two design approaches have been developed to allow a satellite to
circumnavigate a chief satellite or Resident Space Object viaimpulsive thrusting. The
first method located burn points about a nominal path in equal angles and equal times.
When considering the flight path constraints, there exists a specific minimum number of
burn points for which the equal-angle/equal-time flight path will be feasible. This
minimum number of burn points yields the minimum total fuel expenditure for this
method. This method is useful due to its inherent simplicity, and scales to the continuous
case as the number of burn points goes to infinity.

The second circumnavigation analytic approach was to choose a design radius and
locate the burns along a circle of that radius, with the trgjectory between the burns
intersecting a circle of minimum approach distance at a tangent point. This method
always yielded lower fuel expenditure than the equal-angle/equal-time (EAET) method,
and increased the savings over the EAET method as the total circumnavigation time of
flight decreased. The analytical design method produced a relatively smple algorithm
that could be used for on-board autonomous operations.

The two described methods were employed as initial guesses for a numerical
optimization routine to find a minimum fuel solution. In most cases, the local minimum
was fairly close to the analytical design method in both tragjectory and fuel expenditure.
Thus, the analytical design approach generally always provides the best initial guess

toward a minimum:-fuel solution.
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Appendix A. Special Case Output Data with Optimization Check

Special Case Data Output :

Optimized Total DeltaVee: 2.48949127357e-003

Initial Total Delta Vee: 2.60817455142e-003
I nputs:

thetayd = 90 deg

thetayzd= 0 deg

ganmaldd=  45deg

b= 5

ro m= 50 km

a 6778 km

Tot TOF=  0.100

r dev= 0.0100 km

TolFun = 1.0e-009

TolCon = 1.0e-009

TolX = 1.0e-009
DiffMaxChange = 1.0e-001
DiffMinChange = 1.0e-009
Gradient: Eigenvalues of Hessian:
0.00007461 0.00038337
0.00029368 0.01170769
0.00030405 0.06065438
0.00035531 0.12869209
-0.00006748 0.74177054
-0.00017411 0.91848107
-0.00018238 1.03272863
-0.00007135 2.00804976
Norm of Gradient: 0.00061946

Initial Guess State Vector:  Optimized State Vector:

1.25664 1.43005
1.25664 1.15891
1.25664 1.14946
1.25664 1.14303
0.20000 0.25428
0.20000 0.19841
0.20000 0.18950
0.20000 0.18143
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g(u)

+1.0e-009
+1.0e-009
+1.0e-009
+1.0e-009
+1.0e-009
+1.0e-009
+1.0e-009
+1.0e-009
-1.0e-009
-1.0e-009
-1.0e-009
-1.0e-009
-1.0e-009
-1.0e-009
-1.0e-009
-1.0e-009

Violation M at

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

F(X")

2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003

F(X")-F(X)

+7.4724515e-014
+2.9334521e-013
+3.0243429e-013
+3.0654038e-013
-7.9358395e-014
-1.9296023e-013
-1.9792024e-013
-1.7930579e-013
-7.4724515e-014
-2.9334521e-013
-3.0243473e-013
-3.0654082e-013
+7.9305052e-014
+1.9295633e-013
+1.9785952e-013
+1.7924507e-013

kkhkhkkkhhkkkhhhkkhhhkkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhkhhkkhkhkkkkkkkkx*%

+1.0e-008
+1.0e-008
+1.0e-008
+1.0e-008
+1.0e-008
+1.0e-008
+1.0e-008
+1.0e-008
-1.0e-008
-1.0e-008
-1.0e-008
-1.0e-008
-1.0e-008
-1.0e-008
-1.0e-008
-1.0e-008

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
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+7.4724732e-013
+2.9334547e-012
+3.0243473e-012
+3.0654051e-012
-7.9335540e-013
-1.9296049e-012
-1.9789764e-012
-1.7926841e-012
-7.4724471e-013
-2.9334525e-012
-3.0243455e-012
-3.0654038e-012
+7.9335019e-013
+1.9296019e-012
+1.9789465e-012
+1.7926563e-012
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g(u)
+1.0e-007
+1.0e-007
+1.0e-007
+1.0e-007
+1.0e-007
+1.0e-007
+1.0e-007
+1.0e-007
-1.0e-007
-1.0e-007
-1.0e-007
-1.0e-007
-1.0e-007
-1.0e-007
-1.0e-007
-1.0e-007

Violation M at
0000001
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

F(X')
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894912¢-003
2.4894912e-003
2.4894912¢-003
2.4894913e-003
2.4894913e-003
2.4894913e-003
2.4894913e-003

F(X')-F(X)
+7.4724597e-012
+2.9334540e-011
+3.0243468e-011
+3.0654051e-011
-7.9332938e-012
-1.9295616e-011
-1.9789163e-011
-1.7926180e-011
-7.4724571e-012
-2.9334531e-011
-3.0243460e-011
-3.0654041e-011
+7.9330729¢-012
+1.9296525¢-011
+1.9790109¢-011
+1.7927353e-011

khkkkkhkhkhhkhkhhhhhhhhhhhdhhhhhhhhhhddhhhhhdhhhddddhdxxx*x

+1.0e-006
+1.0e-006
+1.0e-006
+1.0e-006
+1.0e-006
+1.0e-006
+1.0e-006
+1.0e-006
-1.0e-006
-1.0e-006
-1.0e-006
-1.0e-006
-1.0e-006
-1.0e-006
-1.0e-006
-1.0e-006

0000001
0000000
0000000
0000000
0000001
0000001
0000001
0000001
0000001
0000001
0000001
0000001
0000001
0000000
0000000
0000000

2.4894913e-003
2.4894916e-003
2.4894916e-003
2.4894916e-003
2.4894912e-003
2.4894911e-003
2.4894911e-003
2.4894911e-003
2.4894912e-003
2.4894910e-003
2.4894910e-003
2.4894910e-003
2.4894914e-003
2.4894915e-003
2.4894915e-003
2.4894915e-003
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+7.4724661e-011
+2.9334572e-010
+3.0243504e-010
+3.0654096e-010
-7.9301980e-011
-1.9291631e-010
-1.9784854e-010
-1.7920718e-010
-1.4724503e-011
-2.9334499-010
-3.0243424e-010
-3.0653996e-010
+7.9370827e-011
+1.9300532e-010
+1.9794419e-010
+1.7932833e-010
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g(u)
+1.0e-005
+1.0e-005
+1.0e-005
+1.0e-005
+1.0e-005
+1.0e-005
+1.0e-005
+1.0e-005
-1.0e-005
-1.0e-005
-1.0e-005
-1.0e-005
-1.0e-005
-1.0e-005
-1.0e-005
-1.0e-005

Violation M at
0000001
0000000
0000000
0000000
0000001
0000001
0000001
0000001
0000001
0000001
0000001
0000001
0000001
0000000
0000000
0000000

F(X')
2.4894920e-003
2.4894942¢-003
2.4894943e-003
2.4894943e-003
2.4894905e-003
2.4894893e-003
2.4894893e-003
2.4894895e-003
2.4894905e-003
2.4894883e-003
2.4894882e-003
2.4894882¢-003
2.4894921e-003
2.4894932e-003
2.4894933e-003
2.4894931e-003

F(X')-F(X)
+7.47253636-010
+2.9334902¢-009
+3,0243862¢-009
+3.0654547e-009
-7.89921356-010
-1.9251596e-009
-1.9741791e-009
-1.7866183e-009
-7.47238026-010
-2.9334169e-009
-3.0243066e-009
-3.0653544e-009
+7.9680664e-010
+1.93405656-009
+1.9837483¢-009
+1.7987368e-009

khkkkkhkhkhhkhkhhhhhhhhhhhdhhhhhhhhhhddhhhhhdhhhddddhdxxx*x

+1.0e-004
+1.0e-004
+1.0e-004
+1.0e-004
+1.0e-004
+1.0e-004
+1.0e-004
+1.0e-004
-1.0e-004
-1.0e-004
-1.0e-004
-1.0e-004
-1.0e-004
-1.0e-004
-1.0e-004
-1.0e-004

0000001
0000000
0000000
0000000
0000001
0000001
0000001
0000001
0000001
0000001
0000001
0000001
0000001
0000000
0000000
0000000

2.4894987e-003
2.4895206e-003
2.4895215e-003
2.4895219e-003
2.4894837e-003
2.4894724e-003
2.4894720e-003
2.4894740e-003
2.4894838e-003
2.4894619e-003
2.4894610e-003
2.4894606e-003
2.4894996e-003
2.4895110e-003
2.4895115e-003
2.4895098e-003
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+7.4732388e-009
+2.9338204e-008
+3.0247445e-008
+3.0659060e-008
-7.5893082e-009
-1.8851248e-008
-1.9311213e-008
-1.7320955e-008
-7.4716777e-009
-2.9330866e-008
-3.0239482e-008
-3.0649031e-008
+8.2778406e-009
+1.9740938e-008
+2.0268143e-008
+1.8532805e-008
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Appendix B. MATLAB" Codefor Analytical Design M ethod"
Main Program: Analytical Design and Optimization

% Analytical Design Algorithm for Fast Satellite Circumnavigation
% Main Program

% Capt Stan Straight, USAF

% Air Force Institute of Technology

% 18 Feb 04

clc;clear;
global thetay thetaz gamma0 ro_m a Tot_TOF devr rdO epsiO

%%6%6%0%%%6%6%6%0%%%%6% %0 %%

% Inputs

%6%6%6%0%%%6%6%6%0%%%%6 %% %%

% Rotation of the path from the y-z plane about the y axis
thetayd = 60; % degrees

thetay = thetayd.* pi./180; % radians

% Rotation of the path about the z-axis
thetazd = 30; % degrees
thetaz = thetazd* pi/180; % radians

% Definetheinitial angle of theinitial position from the y-axis
% direction

gamma0d = 45; % degrees

gamma0 = gamma0d* pi/180; % radians

% Input the radius of the reference orbit in kilometers
a=6778; % km

% Input the time of flight for the complete circumnavigation as afraction
% of the reference orbit's period
Tot_TOF = .1;

% Define the nominal radius
rom=100; % m
rO = ro_m./1000; % km

% Maximum Deviation Radius
devr = 0.04; %km

% Minimum Radius to search over (fraction of the devr)
minrc = 1.001;

% Establish the initial radius from the nominal path and the angle from the

" Version 6.5, Release 13. See Reference 6.
T Only core programs and sub-programs shown: main program and sub-programs call other sub-programs
for formatting datafor plotting not included
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% minor axis

rdo =0,

epsi0 =0;
909%6%0%6%0%6%%%%%6%6%6%0%6%0%6%%6%%%%6%6%0%6%0%6%%6%%%%6%6%6%6%0%6%0%6% %% %%6%6%6 % %%
%  End Inputs
90%%0%6%0%6%%%%0%6%0%6%0%%%0%%0%6%0%6%0%6%%6%%0%%0%6%0 %% %% %% %% %% %% %% %0 %% %%
% Inner constraint radius

rc =r0 - devr;

maxrc = rc+devr;

% QOutside constraint radius
rt =r0 + devr;

% Calculate alpha angle for algorithm
a = acos(rc./r0);

% Establish the search region
rd = minrc.*rc:.0001:maxrc;

% Call the algorithm as a function firstorddes
[states,tot_delvee,const,numbpts] = firstorddes(rt,rc,rd);

% Check for the plot of the points where there is a change in the number of
% burn points between each different case
combo = [rd' numbpts];
jun=1,
for s= L:length(rd)-1
if combo(s,2) > combo(s+1,2) | combo(s,2) < combo(s+1,2);
ptbpt(jun,:) = combo(s,:);
jun=jun+1;
end
end

% Determine the minimum point, and the design radius producing the minimum
% value

[yuck,ind] = min(tot_delvee);

rdyuck = rd(ind);

% Add one to the number of burn points vector to determine the acctual
% number of burn points within a given state
bvec = numbpts + 1,

% Find the plotsfor the min state
smin = states(:,ind);
for g = L:length(smin)-3
if sum([smin(g) smin(g+1)]) >0
xstmin(g) = smin(g);
end
end

% Place the burn points for the minimum design vector
[bposi,rnom] = plCostfcnavl(xstmin);

% Use the optimization program to evaluate a new minimaif available
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[xstop,fvalop] = genoptimization(xstmin);
% Place the burn points for the optimized state vector
[bposiop,rnomo] = plCostfcnavl(xstop);

% Create the actual intermediate points for each state vector
cvecmin = plotintptsavl(xstmin);
cvecop = plotintptsav1(xstop);

% Plot the total impulse as afunction of the design radii

figure(1)

plot(rd,tot_delvee,'.-")

%title(['Analytical Approach: Total DeltaVee vs Change in Design Radius, devr=",num2str(devr)])
xlabel('r_d (km)")

ylabel(\Deltav_t (km/s)")

hold on

for h =1:length(ptbpt)

plot([ptbpt(h,1) ptbpt(h,1)],[min(tot_delvee) max(tot_delvee)],'r:")
end

hold off

% Plot the number of burn points

figure(2)

plot(rd,bvec)

%ititle('Number of Burn Points Computed vs. Design Radius))
xlabel ('r_d (km)")

ylabel (‘Number of Burn Points (Includes the Initial Point)")

% Call afunction to create the torus surface representing the maximum
% deviation constraint
[rdx,rdy,rdz] = torusmaker1(r0,devr,thetay,thetaz);

figure(3)

plot3(bposi(:,1),bposi(:,2),bposi(:,3),'ro',cvecmin(;,1),cvecmin(;,2),cvecmin(:,3),'r-',...
bposiop(:,1),bposiop(:,2),bposiop(:,3),'k+',cvecop(:,1),cvecop(:,2),cvecop(:,3),'k--,...
rnom(:,1),rnom(:,2),rnom(:,3),"-.")

gridon

% title(['Optimized Flight Path, Thetay="num2str(thetayd),', Thetaz=',num2str(thetazd),...

% ', Gamma0',num2str(gamma0d),’, b=",num2str(numbpts(ind)+1),", TOF=',num2str(Tot_TOF)])

legend('Design Burn Points,'Design Path','Optimized Burn Points','Optimized Path','Nominal Path’)

xlabel ('x (km)")

ylabel(y (km))

zlabel('z (km)")

axis square

hold on

mesh(rdx,rdy,rdz)

hidden off

shading flat

colormap([0.9 0.9 0.9])

hold off

axis equal

% Create the plot showing the deviation from the nominal path for each the

% design state and the optimized state vector
[cmi tvecmi] = planonlincont(xstmin);
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[co,tveco] = planonlincont(xstop);
cmin = zeros(length(tvecmi)+1,1)";
tvecmin = zeros(length(tvecmi)+1,1)";
cmin(2:length(tvecmi)+1) = cmi;
tvecmin(2:length(tvecmi)+1)= tvecmi;

cop = zeros(length(tvecmi)+1,1)";

tvecop = zeros(length(tvecmi)+1,1)";
cop(2:length(tvecmi)+1) = co;
tvecop(2:length(tvecmi)+1)= tveco;

% Compute aline for visualizing the constraint
dep = ones(length(tvecmi)+1,1)";

devrplot = dep.* devr;

figure(4)

plot(tvecmin,cmin,'.-' tvecop,cop,'+-',tvecmin,devrplot,--")

% title(['Deviation of Actual Path', Thetay=",num2str(thetayd),’, Thetaz=",num2str(thetazd),...

% ', Gammal',num2str(gamma0d),’, b=",num2str(humbpts(ind)+1),’, TOF=",num2str(Tot_TOF)])
xlabel ('Time (fraction of TOF)")

ylabel(\rho (km)")

gridon

axis([0 1 O devr+devr.*.05])

legend('Design Path','Optimized Path','Constraint Boundary',4)

bO= (Iength(xstmin)+2)./4;

% Create adummy variable to populate with the EAET method
xst0(1:2.*b0) = zeros(2.*b0,1)";

% Equal Angle/Equal Time

gammai = 1./b0;
ti = (1./b0);
fori=1:b01

xst0(2.*b0 + i) =gammai;
xst0(2.*b0 + i+(b0-1)) =ti;
end

% Compute the total impulse for the EAET
eqgtot_delvee = Costfcnavl(xst0);

disp(['Equal Burn/Equal Time Total Delta Vee: ',num2str(eqgtot_delvee)])
disp(['Design Total Delta Vee:',num2str(yuck)])
disp([' Found at an rd of:",num2str(rdyuck)])
disp(['Optimized Total Delta Vee:',num2str(fvalop)])
% Compute the percentage difference between the Design and Optimized
% Total DeltaVee
designper = ((eqtot_delvee - yuck)./egtot_delvee).* 100;
optimper = ((eqtot_delvee - fvalop)./eqtot_delvee).* 100;
disp(’ )
disp(['Percentage Saved by Design:',num2str(designper),'%’)
disp(['Percentage Saved by Optimization:',num2str(optimper),'%)
if const(ind) >0
disp("™*******Designed State Exceeds Constraints*******")
end
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Subprogram: Analytical Design Function

function [states,tot_delvee,const,numbpts] = firstorddes(rt,rc,rd)

% Thisfunction is the analytical design method given the inner

% contraint radius, rc, the last point radius rt, and the search region for

% the design radius (rd). The design radius must be larger than one point.
% The output isthe states for each design radius, the total impulse for

% those states and the constraint matrix for those states. 1f any number
% inthe constraint matrix is greater than 0, then the state exceeds the

% constraints. The format for calling thisfunctionis

% [states,tot_delvee,const] = firstorddes(rt,rc,rd)

global thetay thetaz gamma0 ro_maTot_TOF devr rd0 epsiO

r0 = ro_m./1000; % km
maxrc = rc+devr;

a = acos(rc./r0);
sigma=0;

for k = L:length(rd)
% First path length
p(1,k) = sgrt(ro*2-rc™2)+sgrt(rd(k)2-rch2);
pf(K) = sgrt(rt"2-rc”2)+sgrt(rd(k)*2-rc™2);

gamma(1,k) = asin((p(1,k).*rc)./(r0.*rd(k)));
gammaf (k) = asin((pf(k).*rc)./(rt.*rd(k)));

counter =1;

while sigma(k) < (2.* pi-gammaf (k))
gamma(counter+1,k) = 2.*acos(rc./rd(k));
counter = counter + 1;
sigmat = sum(gamma,1);
sigma(k) = sigmat(k);

end

if sigma(k) > (2.*pi - gammaf(k))
gamt(1:counter-1,k) = gamma(1:counter-1,k);
sigmaft = sum(gamt,1);
sigmaf (k) = sigmaft(k);
gamma(counter,k) = 2.*pi - sigmaf(k) - gammaf(k);
end

sigma(k+1) = 0;
end

% Normalize the gammsto 2 pi
gamman = gamma./(2.* pi);

% Set the time between the burn pointsto the same ratio with respect to
% the total time

timen = gamman;

% Compute the normalized distance from the nominal

rdn = abs(rO-rd)./devr;
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% Set al the points except for the last one on the inside of the nominal
% within the nominal's plane; place the last point on the outside of the
% torus in the nominal's plane

epsi(1:length(rd)-1) = 0.5;

epsi(length(rd)) = 0;

% Build each unique state vector
gut = size(gamman);

for h = 1:length(rd)
for g = 1:gut(1)
if gamman(q,h)>0
numbpts(h) = g;
bi = numbpts;
end
end
end
% Add one to the number of burn points vector to determine the acctual
% number of burn points within agiven state
bvec = numbpts + 1;
for u= 1:length(rd)
xstn(1:bi(u)) = rdn(u);
xstn(bi(u)+1) = abs(rO-rt)./devr;
xstn(bi(u)+2:2.*bi(u)+1) = 0.5;

if rt>=r0
xstn(2.*bi(u)+2) = 0;
else
xstn(2.*bi(u)+2)=0.5;
end

xstn(2.* bi(u)+3:3.*bi(u)+2) = gamman(1:numbpts(u),u);
xstn(3.* bi(u)+3:4.* bi(u)+2) = timen(1:numbpts(u),u);
if u==

states = zeros(length(xstn),length(rd));
end
Xstn = xstn';
states(1:length(xstn),u) = xstn;
% Compute the cost function value for the new state vector
tot_delvee(u) = Costfcnavl(xstn);

% Compute the constraint function for the state to determine if the
% constraints are viol ated
[dum,ceq] = anonlincon(xstn);
c(u,1:length(dum)) = dum;
const(u)=0;
constc(u) = 0;
for y = 1:length(c)

if c(uy)>0

const(u) = const(u)+1;
constc(u) = 1;

end
end
xsth=0;
dum=1];

end
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Sub-Subprogram: Cost Function Evaluation — Analytical Design

function tot_delvee = costfcnav1(xst)

% Thisisthe cost function to be used with fmincon. It computes the total

% delta vee required to perform acircumnavigation, global variables are used and

% should be defined by the main program, additionally the state vector xst should be
% of the format rd's, epsilon's, gamma's then time and of 4*b-2 length.

global thetay thetaz gammaO ro_m a Tot_TOF devr rdO epsiO

% Calculate the mean notion of the reference orbit in rad/s
n = sgrt((3.98601* 10"5)/a*3);

% Compute the time of circumnavigation
refperiod = 2* pi/n; % seconds
tot_toc = Tot_TOF*refperiod; % seconds

b= (length(xst)+2)./4;

bmax = b;

% Path radius in kilometers
rO = ro_m/1000; % kilometers

% Calculate the real values from the normalized states
rds = xst(1:b).*devr;

epsis = xst(b+1:2.*b).* 2.*pi;

gamms = xst(2.*b+1:3.*b-1).*2.* pi;

tims = xst(3.*b:4.*b-2).*tot_toc;

% Define theinitial position vector of theinitial burn point
rdx0 = rd0.*sin(epsi0).* cos(thetay).* cos(thetaz) +
(rO+rd0.* cos(epsi0)).* sin(gamma0).* cos(thetaz).* sin(thetay)...
- (rO+rd0.* cos(epsi0)).* cos(gamma0).* sin(thetaz);
rdy0O = (rO+rd0.* cos(epsi0)).* cos(gamma0).* cos(thetaz)+rd0.* sin(epsi0).* cos(thetay).* sin(thetaz)...
+(r0+rd0.* cos(epsi0)).* sin(gamma0).* sin(thetay).* sin(thetaz);
rdz0 = (r0+rd0.* cos(epsi0)).* sin(gamma0).* cos(thetay)-rd0.* sin(epsi0).* sin(thetay);

rint = [rdx0;rdy0;rdzQ]";

% Define theinitial velocity vector of theinitial burn point
vint=[000];

% Establish theinitial velocity of the interceptor at theinitial point
dvf(1,:) = vint;

fors=1b

ifs<b
rd = rds(s);
epsi = epsis(s);
toc = tims(s);
if s==
gamma_j = gamms(s)+gamma0;
else
gamma_j = gamms(s)+gamma. j;
end
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elseif s==
rd = rds(s);
epsi = epsis(s);
gamma._j = (2.*pi - sum(gamms))+gamma._ j;
toc = tot_toc - sum(tims);

end

%Position of the next burn point

rdx = rd.*sin(epsi).* cos(thetay).* cos(thetaz) +

(rO+rd.* cos(epsi)).* sin(gamma_j).* cos(thetaz).* sin(thetay)...

-(rO+rd.* cos(epsi)).* cos(gamma _j).* sin(thetaz);

rdy = (rO+rd.* cos(epsi)).* cos(gamma._j).* cos(thetaz)+rd.* sin(epsi).* cos(thetay).* sin(thetaz)...
+(rO+rd.* cos(epsi)).* sin(gamma j).* sin(thetay).* sin(thetaz);

rdz = (rO+rd.* cos(epsi)).* sin(gamma._ j).* cos(thetay)-rd.* sin(epsi).* sin(thetay);

rfin = [rdx;rdy;rdz]’;

% Compute the velocity needed to go from the current point to the next point
% in the given time of flight

dvi(s,:) = hillsvel2(rint,rfin,toc,n);

ifs<b

% Compute the actual velocity at the next point
dvf(s+1,:) = hillsvelf(rint,dvi(s,:),toc,n);
end
% Reset the position of the next burn point to the current burn
% point to propagate the next sequential burn point along the path
rint = rfin;

end

% Compute the change in velocity
delvee vec = dvf - dvi;

if b==

delvee_mag_burn(b) = norm(delvee_vec(b,:));
end
forg=1b
delvee_mag_burn(g) = norm(delvee vec(g,:));
end

tot_delvee = sum(delvee_mag_burn);

Sub-Subprogram: Compute I mpul se Between Points Using Hill’ s Equations

function vint = hillsvel2(rint,rfin,tof,n)

% This program will take an initial and final position row vectors defined

% in the LVLH frame, the time of flight between the points and output the
% initial velocity required to achieve these parameters. The outputisin

% arow vector format for the velocity componentsin the LVLH frame. The
% time of flight needsto bein seconds and the value of n hasto bein

% rad/s. nisthe mean motion of the reference orbit.
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% Define the value of psi
ang =n* tof;

% Input the phi rr and phi rv matrices
phirr = [(4-3* cos(ang)),0,0;6* (sin(ang)-ang),1,0;0,0,cos(ang)];

inphirv = [n* (3*ang-4* sin(ang))/(-8+8* cos(ang)+3* ang* sin(ang)),-2* n* (cos(ang)-1)/(-

8+8* cos(ang)+3* ang* sin(ang)),0;
2* n* (cos(ang)-1)/(-8+8* cos(ang)+3* ang* sin(ang)),n* sin(ang)/(8-8* cos(ang)-3* ang* sin(ang)),0;
0,0,n/sin(ang)];

% compute the required initial velocity
vint = (inphirv* (rfin-phirr*rint’))’;
%end

Sub-Subprogram: Propogate Velocity from Previous Burn Point with Hill’s
Equations

function vfin = hillsvelf(rint,vint,tof,n)

% This program will take an initial position and initial velocity row vectors defined
% inthe LVLH frame, the time of flight between the points and output the

% velocity at the end of the time of flight required to achieve these parameters.

% The outputisin

% arow vector format for the velocity componentsin the LVLH frame. The

% time of flight needs to be in seconds and the value of n hasto bein

% rad/s. nisthe mean motion of the reference orbit.

% Define the value of psi
ang =n* tof;

% Input the phi vr and phi vv matrices

phivr = [3*n*sin(ang),0,0;6* n* (cos(ang)-1),0,0;0,0,-n* sin(ang)];

phivv = [cos(ang),2* sin(ang),0; -2* sin(ang), -3+4* cos(ang),0;0,0,cos(ang)];
% compute the required final velocity
vfin = (phivr*rint'+phivv*vint')";

Subprogram: Perform Optimization Using fmincon

% Compute the optimized path given the global constraints and initial guess
% state vector
% Capt Stan Straight

function [xst,fval] = genoptimization(xstO)
global thetay thetaz gamma0 ro_m aTot_TOF devr rd0 epsiO
% Establish the options parameters for the optimization function

dmaxchange = 1e-1;
dminchange = 1e-9;
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TolFun = 2e-9;
TolCon = 1e-9,
TolX = 1e-9;

% Calculate the mean motion of the reference orbit in rad/s
n = sgrt((3.98601* 10"5)./&"3);

% Compute the time of circumnavigation

refperiod = 2*pi./n; % seconds

tot_toc = Tot_ TOF*refperiod; % seconds

% Compute the number of burn points

b= (Ilength(xst0)+2)./4;

bmax = b;

% Path radiusin kilometers

rO = ro_m/1000; % kilometers

% Establish the A matrix contraint and the b matrix constraint
A = zeros(4.*b-2,4.*b-2);

A(1,2.*b+1:3.*b-1) = ones(1,b-1);

A(2,3.*b:4.*b-2) = ones(1,b-1);

% Establish the b matrix contraint

bineq = zeros(4.*b-2,1);

bineq(1) = 1;

bineq(2) = 1;

% Define the lower and upper bounds of the functions

fork = 1:4*b-2
ub(k) = 1;

end

ub=ub’;

forp=1:4*b-2
1b(p) = 0;

end

Ib(3.*b:4.*b-2) = le-7,

Ib=1b'

options=

optimset('LargeScale','off','MaxFunEvals',20000,'M axlIter',500, Tol Fun', TolFun, TolCon', Tol Con,...
TolX', TolX, Display','iter',' DiffMaxChange',dmaxchange, DiffMinChange',dminchange);

% Use fmincon function to find the state vector that produces the minimum total deltavee

[xst,fval exitflag,output,lambda,grad,hessian] =
fmincon(@Costfcngvl,xst0,A ,bineq,[],[],!b,ub,@gnonlincon,options);

Sub-Subprogram: Cost Function Evaluation for Optimization.

function tot_delvee = costfcngv1(xst)

% Thisisthe cost function to be used with fmincon. It computes the total

% delta vee required to perform a circumnavigation, global variables are used and
% should be defined by the main program, additionally the state vector xst should be
% of the format rd's, epsilon's, gamma's then time and of 4*b-2 length.

global thetay thetaz gamma0 ro_maTot_TOF devr rd0 epsiO

b= (length(xst)+2)./4;
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bmax = b;

% Calculate the mean motion of the reference orbit in rad/s
n = sgrt((3.98601* 10"5)/a3);

% Compute the time of circumnavigation
refperiod = 2*pi/n; % seconds
tot_toc = Tot_ TOF*refperiod; % seconds

% Path radius in kilometers
rO = ro_m/1000; % kilometers

% Calculate the real values from the normalized states
rds = xst(1:b).* devr;

epsis = xst(b+1:2.*b).* 2.* pi;

gamms = xst(2.*b+1:3.*b-1).* 2.* pi;

tims = xst(3.*b:4.*b-2).*tot_toc;

% Define theinitial position vector of theinitial burn point
rdx0 = rd0.* sin(epsi0).* cos(thetay).* cos(thetaz) +
(rO+rd0.* cos(epsi0)).* sin(gamma0).* cos(thetaz).* sin(thetay)...
-(rO+rd0.* cos(epsi0)).* cos(gamma0).* sin(thetaz);
rdy0 = (rO+rd0.* cos(epsi0)).* cos(gamma0).* cos(thetaz) +rd0.* sin(epsi0).* cos(thetay).* sin(thetaz)...
+(rO+rd0.* cos(epsi0)).* sin(gamma0).* sin(thetay).* sin(thetaz);
rdz0 = (rO+rd0.* cos(epsi0)).* sin(gamma0).* cos(thetay)-rd0.* sin(epsi0).* sin(thetay);

rint = [rdx0;rdy0;rdz0Q]’;

% Define theinitial velocity vector of theinitial burn point
vint =[000];

% Establish theinitial velocity of the interceptor at the initial point
dvf(1,:) = vint;

fors=1b
if s<b
rd = rds(s);
epsi = epsis(s);
toc = tims(s);
if s==
gamma._j = gamms(s)+gammao;
else
gamma_j = gamms(s)+gamma j;
end
elseif s==
rd = rds(s);
epsi = epsis(s);
gamma _j = (2.* pi - sum(gamms))+gamma_j;
toc = tot_toc - sum(tims);
end
%Position of the next burn point
rdx = rd.*sin(epsi).* cos(thetay).* cos(thetaz) +
(rO+rd.* cos(epsi)).* sin(gamma._j).* cos(thetaz).* sin(thetay)...
-(rO+rd.* cos(epsi)).* cos(gamma j).* sin(thetaz);
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rdy = (rO+rd.* cos(epsi)).* cos(gamma._j).* cos(thetaz)+rd.* sin(epsi).* cos(thetay).* sin(thetaz)...
+(rO+rd.* cos(epsi)).* sin(gamma _j).* sin(thetay).* sin(thetaz);
rdz = (rO+rd.* cos(epsi)).* sin(gamma_j).* cos(thetay)-rd.* sin(epsi).* sin(thetay);

rfin = [rdx;rdy;rdz]’;

% Compute the velocity needed to go from the current point to the next point
% in the given time of flight
dvi(s,:) = hillsvel2(rint,rfin,toc,n);
if s<b
% Compute the actual velocity at the next point
dvf(s+1,:) = hillsvelf(rint,dvi(s,:),toc,n);
end
% Reset the position of the next burn point to the current burn
% point to propagate the next sequential burn point along the path
rint = rfin;
end

% Compute the change in velocity
delvee vec = dvf - dvi;

if b==

delvee_mag_burn(b) = norm(delvee_vec(b,:));
end
forg=1b
delvee_mag_burn(g) = norm(delvee_vec(g,:));
end

tot_delvee = sum(delvee_mag_burn);

Sub-Subprogram: Determine Flight Path Constraints

function [c,ceq] = gnonlincon(xst)
global thetay thetaz gamma0 ro_maTot_TOF devr rd0 epsiO

% Define the number of intermediate points

z2=20;

% Cal culate the mean motion of the reference orbit in rad/s
n = sgrt((3.98601* 10"5)/a"3);

% Compute the time of circumnavigation

refperiod = 2* pi/n; % seconds

tot_toc = Tot_TOF*refperiod; % seconds

% Path radius in kilometers
rO = ro_m/1000; % kilometers
b= (length(xst)+2)./4;

bmax = b;

% Calculate thereal values from the normalized states

rds = xst(1:b).*devr;
epsis = xst(b+1:2.*b).*2.* pi;
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gamms = xst(2.*b+1:3.*b-1).*2.* pi;
tims = xst(3.*b:4.*b-2).*tot_toc;

% Define theinitial position vector of theinitial burn point
rdx0 = rdO.* sin(epsi0).* cos(thetay).* cos(thetaz) +
(rO+rd0.* cos(epsi0)).* sin(gamma0).* cos(thetaz) .* sin(thetay)...
-(rO+rd0.* cos(epsi0)).* cos(gamma0).* sin(thetaz);
rdy0 = (rO+rd0.* cos(epsi0)).* cos(gamma0).* cos(thetaz)+rd0.* sin(epsi0).* cos(thetay).* sin(thetaz)...
+(rO+rd0.* cos(epsi0)).* sin(gamma0).* sin(thetay).* sin(thetaz);
rdz0 = (rO+rd0.* cos(epsi0)).* sin(gamma0).* cos(thetay)-rd0.* sin(epsi0).* sin(thetay);

rint = [rdx0;rdy0;rdzQ]";

% Define theinitial velocity vector of theinitial burn point
vint=[000];

% Establish the initial velocity of the interceptor at theinitial point
dvf(1,:) = vint;

fors=1b

ifs<b
rd = rds(s);
epsi = epsis(s);
toc = tims(s);
if s==1
gamma._j = gamms(s)+gamma0;
else
gamma_j = gamms(s)+gamma. j;
end

elseif s==
rd = rds(s);
epsi = epsis(s);
gamma j = (2.* pi - sum(gamms))+gamma_j;
toc = tot_toc - sum(tims);

end

%Position of the next burn point
rdx = rd.*sin(epsi).* cos(thetay).* cos(thetaz) +
(rO+rd.* cos(epsi)).* sin(gamma._j).* cos(thetaz).* sin(thetay)...
-(rO+rd.* cos(epsi)).* cos(gamma j).* sin(thetaz);
rdy = (rO+rd.* cos(epsi)).* cos(gamma _j).* cos(thetaz)+rd.* sin(epsi).* cos(thetay).* sin(thetaz)...
+(rO+rd.* cos(epsi)).* sin(gamma _j).* sin(thetay).* sin(thetaz);
rdz = (rO+rd.* cos(epsi)).* sin(gamma_j).* cos(thetay)-rd.* sin(epsi).* sin(thetay);

rfin = [rdx;rdy;rdz]";

% Compute the velocity needed to go from the current point to the next point
% in the given time of flight

dvi(s,:) = hillsvel2(rint,rfin,toc,n);

% Compute the vector of intermediate points within the
cirfin = inthillsoptnonlin(rint,dvi(s,:),toc,n,2);

q(s) = (z+1+(s-2).*2)’,

cvec(q(s):q(s)+z-1,:) = cirfin;
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% Reset the position of the next burn point to the current burn
% point to propagate the next sequential burn point along the path
rint = rfin;

end

% Create arotation matrix from the LVLH frame to the circumnav frame given

% the values of gammao, thetay, and thetaz

rotxtop = [cos(thetay).* cos(thetaz),cos(thetay).* sin(thetaz),-1.* sin(thetay);...
cos(thetaz).* sin(gamma0).* sin(thetay)-cos(gamma0).* sin(thetaz),...
cos(gamma0).* cos(thetaz)+sin(thetay).* sin(thetaz).* sin(gamma0),cos(thetay).* sin(gamma0);...
cos(gamma0).* cos(thetaz).* sin(thetay)+sin(gamma0).* sin(thetaz),...
-1.* (cos(thetaz).* sin(gamma0))+cos(gamma0).* sin(thetay).* sin(thetaz),...
cos(gamma0).* cos(thetay)];

pathvec = zeros(length(cvec),3);

% Create the c matrix by determining the distance of the intermediate
% position to the position of the nominal path.
for m = 1:length(cvec)
% Extract each intermediate position
cvecp = cvec(m,:);
% Rotate each vector into the pgw, then take the projection onto the
% pq frame
cvecprot(m,:) = (rotxtop* cvecp)’;
cvecproj(m,:) = cvecprot(m,2:3);
pathvec(m,2:3) = r0.* (cvecproj(m,:)./norm(cvecproj(m,:)));
end

cmat = cvecprot-pathvec;
for w = 1:length(cvec)
c(w) = norm(cmat(w,:))-devr;
end
% By setting this quantity to zero it eliminates the nonlinear equality constraint

% requirement
ceq=0;
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