PROPERTIES OF CARBON NITRIDE FILMS DEPOSITED WITH AND WITHOUT ELECTRON CYCLOTRON RESONANCE PLASMA ASSISTANCE

Ming Y. Chen
Daniel J. Kramer

FEBRUARY 2001

Approved for public release; distribution is unlimited.

This material is declared a work of the U. S. Government and is not subject to protection in the United States.

MATERIALS AND MANUFACTURING DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750
This report primarily discusses the properties of carbon nitride films deposited with and without electron cyclotron resonance plasma assistance. The research involves the use of materials and manufacturing processes, including electron cyclotron resonance (ECR) source and nitrogen partial pressure.

The security classification of this report is Unclassified. The name of the responsible person is Ming Y. Chen. The telephone number is (937) 255-9099.
Properties of carbon nitride films deposited with and without electron cyclotron resonance plasma assistance

Ming Y. Chen*, Daniel J. Kramer
Materials and Manufacturing Directorate, Air Force Research Laboratory, AFFL / MLBT, Wright-Patterson AFB, Dayton, OH 45433-7701, USA

Received 19 November 1999; received in revised form 12 July 2000; accepted 27 September 2000

Abstract

Research on carbon nitride has received considerable attention since B-C$_3$N$_4$ offers high technological potential for protective, wear, and optical applications. Deposition of carbon nitride by various techniques has mostly resulted in nitrogen deficient amorphous CN$_x$ films. In this research, reactive magnetron sputtering with and without the assistance of an electron cyclotron resonance (ECR) source was used to deposit CN$_x$ thin films at ambient temperature. The process variables include power level, nitrogen partial pressure, and substrate bias. X-ray photoelectron spectroscopy and Auger analysis were used to determine the composition and chemical bonding of the films. Ball-on-disk experiments were performed between 440C stainless steel balls and CN$_x$-coated 40Cr substrates at 0.1 m/s sliding velocity and 1 N load. The effects of process variables and interface modification on friction and wear rate were examined. Mechanical properties including hardness, modulus, and elastic response were obtained from nanoindentation. CN$_x$ films with hardness in the range of 12-16 GPa demonstrated better wear performance than the hardest diamond-like carbon (24 GPa) deposited by the same technique. ECR assisted magnetron sputtering provided films with the lowest wear rates. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Carbon nitride films; Electron cyclotron resonance plasma; Friction; Hardness

1. Introduction

Based on the theoretical calculations made by Liu and Cohen, B-C$_3$N$_4$, crystalline solid, which has the same structure as B-Si$_2$N$_2$, was predicted to have extremely high hardness, comparable to or greater than that of diamond [1,2]. In addition to its predicted extreme hardness, carbon nitride may prove to be a novel material for device applications similar to B-Si$_2$N$_2$ and as a variable bandgap semiconductor [3]. Considerable effort has been directed toward the synthesis of this material by various deposition techniques including reactive dc and rf magnetron sputtering [4,5], ion beam deposition [6,7], ion beam assisted deposition [8], chemical vapor deposition [9], pulsed laser deposition (PLD) [10–13], and ECR assisted electron beam evaporation of graphite [14]. Most carbon nitride (CN$_x$) films reported were amorphous and nitrogen deficient with $x < 1$. Evidence of nanocrystallites in a mostly amorphous carbon nitride film was reported [4,10–12]. However, the diffraction data obtained were not unique to the B-C$_3$N$_4$ structure that made unambiguous interpretation of the crystalline phase very difficult. Amorphous CN$_x$ films are themselves useful since they have properties such as high hardness, variable optical band gap depending upon nitrogen content [15], and high chemical inertness. Currently, there is enormous interest in the replacement of amorphous carbon overcoats as wear resistant coatings in the magnetic thin film rigid disk recording industry. Carbon nitride films have high potential for this application.

*Corresponding author. Tel.: +1-937-255-9099; fax: +1-937-255-2179.
E-mail address: ming.chen@wpafb.af.mil (M.Y. Chen).

0040-6090/01 $ - see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0040-6090(00)01779-X
We have grown CN$_x$ films using dc magnetron sputtering as well as PLD. Our carbon nitride films were again all nitrogen-deficient with x ranging from 0.4 to 0.8 (30–45%) [16] and from 0.3 to 0.6 (25–40 at% nitrogen) [13], respectively. PLD deposition at low pressure conditions (2 mtorr N$_2$) generated little or no nitrogen incorporation in the film. The utilization of a directed atomic nitrogen beam source was found necessary in order to achieve a high-nitrogen concentration. Similar results were reported by Niu et al. [12].

In this work, we focused on deposition of CN$_x$ using dc magnetron sputtering with and without assistance from an electron cyclotron resonance (ECR) source for generating excited nitrogen species. ECR is an easy method to deliver a high density of low energy nitrogen species (tens instead of hundreds of electron volts for RF plasma) with enhanced ionization ratio. The motivation for this research was to explore the effect of additional low energy excited nitrogen species generated by an ECR source in enhancing nitrogen incorporation to achieve the β-C$_3$N$_4$ structure. The effects of process variables including target power level, nitrogen partial pressure and substrate bias, on the composition, chemical structure, morphology, and mechanical properties of CN$_x$ films were studied.

2. Experimental

Films were deposited inside a stainless steel vacuum system equipped with an ASTEX (Applied Science and Technology, Woburn, MA) ECR microwave plasma source powered by a 100–700 W, 2.45 GHz power supply. The chamber was evacuated by a turbomolecular pump to a base pressure of 1 x 10$^{-4}$ torr (1 torr = 133 Pa). A direct current (DC) magnetron sputtering source was used for film growth. A high purity graphite target was reactively sputtered. A schematic of the deposition apparatus is shown in Fig. 1. Ultra high purity nitrogen was used as the sputtering gas without any additional carrier gas. The process variables included total pressure (2–25 mtorr), target power (50–400 W), ECR power (100–400 W), substrate bias (ground, float, −50, −100, and −200 V), and substrate-target distance ($d = 6–21$ cm). The substrates used for CN$_x$ coatings included 400Cr stainless steel disc (60 HRC, 25.4 mm diameter), 440C foil, and Si (100). Some ZnS substrates were also coated for future evaluation for potential rain/sand erosion resistant infrared (IR) applications. All substrates were ultrasonically cleaned in the sequence of acetone, methanol baths and then sputter etched in an Ar atmosphere just prior to each film deposition. The substrate was not intentionally heated except from exposure to the plasma during deposition which did not exceed 100°C. The nitrogen flow was normally held constant at 8 sccm. The deposition rates were determined from film thickness measurements obtained from coated Si substrates using a surface profilometer (Dektak). Typical film thickness was in the range from 60 to 500 nm.

The microstructure and wear morphology were examined using scanning electron microscopy (SEM) X-Ray photoelectron spectroscopy of films deposited with and without ECR assistance were obtained using a Surface Science Instruments M-Probe spectrometer. A monochromatic source of Al Kα X-ray was used to induce photoelectron emission. X-Ray photoelectron spectroscopy and Auger analysis were used to determine the composition and chemical bonding of the films. Tribological testing of the films was performed using a ball-on-disc tribometer. Some films were deposited on top of a Ti interlayer (~1500 Å) for tribological evaluation of the benefit of a bonding layer. A Dektak profilometer was used to determine the width and depth of the wear tracks on the coated disks. Experiments were performed using 440C stainless steel balls and CN$_x$-coated 440C stainless steel discs at 0.1 m/s sliding velocity and 1 N load (Hertzian stress of 0.4 GPa). Mechanical properties including hardness, modulus and elastic response were measured using a NanoInstruments, Nanoinder II with a Berkovich indentation head. Instrument calibrations were performed following the procedure developed by Oliver et al. [17].

3. Results and discussion

3.1. Film microstructure and chemistry

SEM micrographs for a typical CN$_x$ film deposited with or without ECR assistance are shown respectively in Figs. 2b and 2a. It shows that the film microstructure was smooth, featureless and continuous (scratch marks remaining on substrate after polishing) except for deposition conditions involving low pressure (2 mtorr).
Fig. 2. Representative SEM micrograph of CNx films deposited on 316 stainless steel: (a) with de magnetron sputtering and (b) with ECR assisted de magnetron sputtering.

Fig. 3. Deposition rate for de magnetron sputter deposited CNx films and polished-like carbon films with and without ECR assistance.

Fig. 4. Typical Auger spectra of CNx films deposited with and without ECR assistance.

rate increases with increasing magnetron power and decreasing substrate-to-target distance. This is expected as the flux of depositing materials is enhanced with higher power and shorter substrate-to-target distance conditions.

Chemical information from the films was obtained from scanning Auger and X-ray photoelectron spectroscopy (XPS) analysis. Typical Auger spectra of films deposited with and without ECR assistance are shown in Fig. 4. The spectra were similar indicating that the films consist of mostly C and N. The carbon peak shape resembles that of DLC instead of graphitic C. The absence of substrate signals indicates that the film was smooth without large pinholes. Using the relative sensitivity factors given by Davis et al. [19] the highest nitrogen to carbon ratio, x, obtained in this study was 0.9 (48% atomic nitrogen). All the films deposited in
this study were nitrogen deficient as compared to the predicted \(p\text{-CN}\) with \(x = 1.33 \). Fig. 5 shows the XPS depth profile results of a \(p\text{-CN} \) film after 30 s, 1 min and 2 min Ar sputtering. This film was deposited at 150 W, 31 mtorr nitrogen, and floating potential. The value of nitrogen content in drops from 0.36 for the as-received film to 0.34, 0.28, and 0.2 for the corresponding 30 s, 1- and 2-min sputtered film. The result shows that the film suffered preferential sputtering of nitrogen. In addition to C and N, a small amount of oxygen (8-12%) was detected in the as-received films. With just 30 s light sputtering, the oxygen peak intensity decreases from 12 to 2.5%, indicating its presence is predominantly near the surface region. The origin of this impurity is likely due to residual water vapor in the deposition chamber [20] and/or exposure to air during film transfer.

3.2. Effects of process variables

Negative substrate bias was found to decrease the nitrogen incorporation in the film. Even with a floating potential of \(-15 \text{ V}\), the nitrogen positive ion with relatively low energy could still cause preferential removal of nitrogen similar to Ar sputtering. For a film deposited with ECR assistance, enhanced bombardment and re-sputtering by energetic species were also observed which explains the lower deposition rate. As the level of negative bias was increased to 200 V, no film accumulation was observed. Severe re-etching of the growing film prevented film growth.

Figs. 6 and 7 show the XPS N(1s) and C(1s) spectra of \(p\text{-CN} \), films deposited at 2 and 25 mtorr nitrogen pressure, 200 W ECR power, and 100 W magnetron power. All the as-deposited \(p\text{-CN} \) films show similar nitrogen and carbon spectra. The N(1s) spectra were fitted with two peaks centered at 399.01 eV (N1) and 400.70 eV (N2). The peak at 399.01 eV is similar to the reported value for \(N\text{-C} \) nitride [21,22] that may form at the terminating end of a compound skeleton. The presence of N-C peak is consistent with our IR and Raman result [4,16,18] with nitride (CN) at 2200-2300 cm\(^{-1}\). The N2 peak at 400.70 eV can be assigned to aromatic N-C bonds that may originate from N-substituting C in an aromatic ring structure [23,24]. There were no distinct differences observed in N (1s) spectrum as a function of process variables except a slight increase in the integral intensity of the 408.70 eV peak for the higher pressure condition (25 mtorr). The ratio of N1/N2 increased from 1.18 to 1.33 as the pressure is decreased from 25 to 2 mtorr. The effect of surface etching removal of aromatic N-C bonds as a result of ECR assistance is evidently more pronounced at low pressure than at high pressure. Preferential removal of aromatic N-C bonds may explain the observed higher N1/N2 ratio at 2 mtorr.

The carbon (1s) XPS spectra, shown in Fig. 7 can be fitted with three peaks at 288.67 eV (C1), 286.54 eV(C2) and 284.85 eV(C3). The XPS spectrum obtained from a diamond-like carbon (DLC) film deposited with pure argon, at 10 mtorr without substrate bias at the same substrate-to-target distance is also included in this figure for comparison. The C1(1s) peak positions for C3 and the DLC (284.66 eV) are similar to the reported value for amorphous carbon [25] (284.4-284.75 eV). C3 for \(p\text{-CN} \) can originate from amorphous carbon and adventitious surface carbon. The former is expected since the films were carbon-rich and a large fraction of the C atoms will thus have other C atoms as their nearest neighbors. The existence of carbon-nitrogen bonds would tend to transfer electron charge to the electrongative nitrogen instead of carbon, resulting in higher binding energies for the carbon core electrons. The higher binding energy values for C1 and C2 imply that their origins may be attributed to carbon bonded to nitrogen. Several researchers have attributed C2 to originate from the ring N-C bond [26-28]. The bro-
matic N = C bonds are likely to arise from N substituting C in an aromatic ring structure. From our previous results [14,16,18], the predominantly 3s inactive and Raman active 3p carbon absorption lines for DLC became IR active around 1546 and 1382 cm⁻¹ for C₂, indicating some nitrogen substitution in the aromatic ring structure. Parallel electron energy loss spectroscopy studies [18] also showed that carbon and nitrogen are predominantly 3p-bonded to each other. Fujimoto and Ogata attributed C2 to be related to C₃N triple bonding. However, ion bombardment of DLC film was also observed to contribute to more C₂ instead of C₃ intensity. The ratio of C₁/C₃ was found to decrease from 1.23 to 0.63 while C₂/C₃ ratio increase from 0.87 to 2.78 as the deposition pressure decreased from 25 to 2 mtorr. The nitrogen content in the film decreased as the pressure is decreased giving rise to a higher C₃ intensity. Higher degree of ion bombardment at low pressure is likely to decrease C₃ and increase C₂ contribution. According to Rossi et al. [20], C₁ can be associated with C₃N₂ bonds. It can also assigned to CO bonds which formed at the surface of the films upon ion exposure, prior to XPS analysis [28]. Fujimoto and Ogata [8] attributed C2 to be related to CN triple bonding. From our previous results [4,16,18], the predominately IR inactive and Raman active 3p carbon absorption lines for DLC became IR active around 1546 and 1382 cm⁻¹ for CN, indicating some nitrogen substitution in the aromatic ring structure.

Fig. 8 shows the C(1s) spectrum for CN, films deposited without ECR assistance at the same conditions. The N (1s) spectrum showed similar results as a function of most process variables whether the film was deposited with or without ECR assistance. The deposition conditions of samples, substrate-to-target distance (d) and corresponding ratios of C₁/C₃, C₂/C₃, and N₁/N₂ are tabulated in Table 1. The ratio of N₁/N₂ remains relatively constant for a given deposition condition except when the film was deposited with ECR assistance at low pressure. Comparison of the overall C (1s) spectra for films deposited with and without ECR assistance showed that the integral intensity of the C₁ peak is the highest for films deposited without ECR assistance at high pressure or high substrate to target distance. In addition, the ratio C₁/C₃ becomes higher as the pressure is increased. This indicates that formation of C = N or CO absorption is favored at higher pressure. The C₂/C₃ ratio increases slightly for films deposited without ECR assistance while the ratio decreases for films deposited with ECR assistance as the deposition pressure is increased. The C₁ peak is also observed to be the dominant peak for ECR assisted films at low pressures (2–10 mtorr). The effects of process variables on the film composition were also explored. In general, the nitrogen to carbon ratio, x, for magnetron sputter deposited films with (x = 0.3–0.6) and without (x = 0–0.4–0.9) ECR assistance tends to decrease with increasing magnetron power or decreasing substrate to target distance. Higher ratios were achieved at high nitrogen pressure (25 mtorr instead of 2 mtorr). At low target power (100 W), the nitrogen to carbon ratio was 0.8, indicating resputtering due to energetic species is less. For magnetron powers of 500, 1000 and 1500 W, the nitrogen to carbon ratios were similar (x = 0.4 at 6 cm substrate-to-target distance) and independent of substrate bias.
and total pressure (3–11 mtorr). For a given C/N ratio arriving at the growing film surface, the nitrogen to carbon ratio in the film can be attributed to the flux and the energy levels of the depositing species which in turn, are influenced by the deposition conditions. High deposition pressure and large substrate-to-target distance conditions would generate lower flux in reaching the substrate surface. The depositing species would have lower energy due to gas scattering, thus causing less preferential removal of nitrogen and so is higher. Recombination of atomic nitrogen is also more likely to occur at these conditions. On the other hand, conditions with high power, high pressure, or small substrate-to-target distance would produce high level of flux, resulting is the observed low, x, value.

3.3. Hardness and tribological properties

The carbon XPS spectra for films deposited at various conditions including pressure, power level, with or without ECR assistance, and substrate-to-target distance were similar to that shown in Fig. 8a,b. The respective peak width (full width half maximum) of C2 were found to be in the ranges: 1.16–1.60 eV and 2.22–3.05 eV. The C2 peak broadening was observed for films deposited at conditions with low pressure, high magnetron power or high ECR power. These deposition conditions favor enhanced ion bombardment during deposition. This peak broadening was similarly observed with C2 = 1.60 eV with flowing condition and 2.59 eV for ~50 V substrate bias condition when deposited at 10 mtorr and 100 W target power. The latter would have a higher degree of ion bombardment contributing to the peak broadening observed. The corresponding ratios of carbon integral intensity obtained from XPS, C1/C3 and C2/C3, as a function of film average hardness are shown respectively in Figs. 9 and 10 for films with narrow and broad C2 peak. From Fig. 9, the hardness was found to be a low value whenever the intensity of C1 is high and C2 peak width is small. The hardness also tends to increase with decreasing relative intensity of C1 corresponding to C–C bond as suggested by the decreasing ratio of both C1/C3 and C2/C3 when C2 peak width is small (Fig. 9). When the C2 peak width is broad (Fig. 10), the hardness seems not be correlated with the C1/C3 value: the hardness ranges from 2 to 15 GPa for C1/C3 = 0.6–0.8 and the higher hardness (15 GPa) is obtained for the highest C2/C3 value (2.7). The DLC films grown using the same deposition technique have the highest C3 intensity and film hardness (24 GPa) among all the films deposited in this study. Fig. 11 shows the average hardness of CN films deposited without and with ECR (200 W) assistance at the deposition conditions of 100 W magnetron target power and

8 cm substrate-to-target distance. There is a general trend of decreasing hardness with increasing deposition pressure. At a high deposition pressure or a large substrate-to-target distance, the integral intensity of C1 is high and the resulting films are always soft. Higher nitrogen pressure increases the probability of collision of the sputtered carbon with the nitrogen species, leading to bond forming between them forming the soft graphitic or C–N2 material as opposed to hard C–N material.

At large substrate-to-target distance (d > 14 cm), the hardness of the films remained low regardless of the deposition pressure. However, we did not examine all the other deposition parameters for smaller substrate-to-target distance. At low nitrogen pressure, the range of hardness of the films was very large depending on the other deposition parameters. For films deposited

![Fig. 9] Ratios of carbon (1s) integral intensity obtained from XPS, C1/C3 and C2/C3, as a function of film average hardness for film with C2 peak width = 1.16–1.60 eV.

![Fig. 10] Ratios of carbon (1s) integral intensity obtained from XPS, C1/C3 and C2/C3, as a function of film average hardness for film with C2 peak width = 2.22–3.05 eV.
Fig. 11. Average hardness of CN$_x$ films deposited without and with ECR (200 W) assistance. The films were deposited at 100 W target power and 8 cm substrate-to-target distance.

with Ar (DLC), the hardness was significantly higher than CN$_x$ films that were deposited at 10 mtorr. At low deposition pressure (3 mtorr), the hardness of CN$_x$ approached that of the DLC films.

The hardness as a function of magnetron target power and ECR assisted power level (x-axis) for film deposited without and with ECR assistance with 8 cm substrate-to-target distance is shown in Fig. 12. For the films grown at 3 mtorr without ECR assistance, there is an optimal power (~100 W) for obtaining the highest hardness. At this magnetron power level, ECR assisted deposition has resulted in lower hardness values for ECR power of 100–400 W. For a given 100-W target power, the ECR power at ~200 W gives films with higher hardness.

The coefficient of friction (COF) was plotted against the total sliding distance in Fig. 13a,b for a typical CN$_x$ film that was deposited with and without a Ti interlayer.

Fig. 12. Variation of average hardness as a function of power level (x-axis) of magnetron target power and ECR power for films deposited without and with ECR assistance, respectively.

layer, subjected to un lubricated ball-on-disc tribotest ing in lab air with 40% relative humidity. The friction behavior of a DLC with a Ti interlayer was included in Fig. 13b for comparison. The COF for all CN$_x$ films deposited in this study were found to be independent of the deposition conditions and were in the same range 0.20–0.25 with initial COF ~ 0.16. Similar COF was obtained for DLC films grown with a Ti interlayer. The wear scars as examined by SEM are shown in Fig. 14. Films deposited without a Ti interlayer were adherent to the 440C substrate, however, they failed in a brittle mode under load at a shorter sliding distance than films deposited with a Ti interlayer. The films failed along the weakest interface instantly with the onset of film fracture leaving large cracks running along the edge of the wear track. On the other hand, the occurrence of this sudden catastrophic damage to the film was not observed for films deposited with a Ti interlayer. Wear debris consisting of very fine particles along the two edges of the wear track was observed (Fig. 13b), instead of film delamination. From Fig. 13b, some spikes in the COF were observed when the CN$_x$ film was tested beyond 1170 m sliding distance. The spikes indicated the generation of a few larger particles of wear debris arising from regions where some plowing and chipping away had occurred inside the wear track. Clearly, films deposited with a Ti interlayer showed much improvement in the film adhesion and wear life. The absence of these spikes for DLC suggests that the film adhesion for DLC was better than that of CN$_x$ films to the Ti coated 440C substrates.

For films deposited with ECR assistance without a Ti interlayer, film delamination was observed in a few regions on the 440C and ZnS substrate surface after exposure to several days in an air environment. On the other hand, this was not observed for films deposited without ECR assistance, suggesting less compressive residual stress in the as-deposited films. Similar enhancement in the film adhesion and minimization of film delamination was achieved by adding a Ti interlayer.

From the friction tests, comparative wear rates (k) were calculated for the films by dividing the volume of removed material by the normal load and the sliding distance. The variation in wear rate with film hardness is shown in Fig. 15. The normalized wear rates were obtained from 1000-m sliding tests of CN$_x$ and DLC films deposited with a Ti interlayer. Lower wear rates are generally observed for films with higher hardness. With the DLC films hardness from 1 to 16 GPa, the elastic recovery ranges from 40 to 79% and average effective modulus of 20–253 GPa were obtained. For CN$_x$ films, with hardness greater than ~12 GPa, the wear rates were lower than that for the harder DLC film deposited. In addition, lower wear rates were observed for films deposited with than without ECR.
assistance for these hard films. The wear rate of the best films grown using ECR assistance was found to be only half of that of DLC films deposited by the same technique when the film hardness was 15.6 and 23.8 GPa, respectively. This suggests that hard CNx film deposited by ECR assistance have great potential for tribological applications.

4. Conclusion

Carbon nitride films were deposited using dc magnetron sputtering both with and without the assistance of an electron cyclotron resonance plasma source. The films were all nitrogen-deficient as compared to β-C3N4 with nitrogen content ranging from 0.3 to 0.9 (25–48 at.% nitrogen). The effects of process variables on film properties were examined. Higher nitrogen incorporation could be achieved by increasing the deposition pressure and substrate-to-target distance without using ECR assistance. However, the chemical bonds favored at these conditions were weak bonds, consisting of

Fig. 15. Variation of wear rate with film hardness. Data were obtained from 1000-m sliding tests of CNx and DLC films that were deposited with a Ti interlayer.
C=N₂, aromatic C≡N bonds and N≡C bonds instead of the strong β-C₃N₄ bonds. Negative substrate bias was found to enhance ion bombardment and sputtering which resulted in less film accumulation and lower nitrogen content. A wide range of hardness (1–16 GPa) was obtained by adjusting the deposition conditions. Low coefficients of friction (0.16–0.27) were obtained for un lubricated ball-on-disc testing against 440C stainless steel. Wear resistant CNₓ films with hardness greater than ~12 GPa have shown wear rates lower than the hardest DLC films deposited by the same method. Lower wear rates were observed for these films deposited with ECR assistance. In this work, hard CNₓ films deposited by DC magnetron sputtering with and without ECR assistance have demonstrated excellent wear resistance with high deposition rate (lower cost), indicating their good potential for tribological applications.

Acknowledgements

The excellent technical support of V. Vidoni and B. Lowery is gratefully acknowledged. This work was supported by the Materials & Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH.

References