
  

AFRL-IF-RS-TR-2004-127 
Final Technical Report 
May 2004 
 
 
 
 
 
 
FLEXIBLE AND SCALABLE METHODS FOR 
MULTI-AGENT DISTRIBUTED RESOURCE 
ALLOCATIONS BY EXPLOITING PHASE 
TRANSITIONS 
  
University of Southern California 
 
  
Sponsored by 
Defense Advanced Research Projects Agency 
DARPA Order No. K278 
  
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 
The views and conclusions contained in this document are those of the authors and should not be 
interpreted as necessarily representing the official policies, either expressed or implied, of the 
Defense Advanced Research Projects Agency or the U.S. Government. 
 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

 
 

 



  

 STINFO FINAL REPORT 
 
 
 This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS).  At NTIS it will be releasable to the general public, 
including foreign nations. 
 
 
 AFRL-IF-RS-TR-2004-127 has been reviewed and is approved for publication 
 
 
 
 
 
 
 
APPROVED:   /s/ 
   ROBERT J. PARAGI 
   Project Engineer 
 
 
 
 
 
 
 
 FOR THE DIRECTOR:   /s/ 
     JAMES A. COLLINS, Acting Chief 
     Information Technology Division 
     Information Directorate 
 
 
 
 
 
 
 
 
 



  

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE
MAY 2004 

3. REPORT TYPE AND DATES COVERED 
FINAL                    May 00 – Sep 03 

4. TITLE AND SUBTITLE 
 
FLEXIBLE AND SCALABLE METHODS FOR MULTI-AGENT DISTRIBUTED 
RESOURCE ALLOCATIONS BY EXPLOITING PHASE TRANSITIONS 

6. AUTHOR(S) 
 
Weixiong Zhang 
  

5.  FUNDING NUMBERS 
G     - F30602-00-2-0531 
PE   - 62301E  
PR   - ANTS 
TA   -  00 
WU  -  02  
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 
University of Southern California 
Department of Contracts and Grants 
837 West Downey Way, Room 325 
Los Angeles CA 90089-1147 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
 
N/A 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 
Defense Advanced Research Projects Agency         AFRL/IFTB 
3701 North Fairfax Drive                                            525 Brooks Road 
Arlington VA 22203-1714                                           Rome NY 13441-4505 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 
AFRLIF-RS-TR-2004-127 
 

11. SUPPLEMENTARY NOTES 
 
AFRL Project Engineer:   Robert Paragi/IFTB/(315) 330-3547                    Robert.Paragi@rl.af.mil 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words) 
This report summarizes the main findings and results on five independent yet closely related research topics, which 
were motivated by some difficult distributed constraint problems from Autonomous Negotiating Teams (ANTs) domains:  
(1) distributed constraint problem solving in sensor networks and low overhead distributed constraint algorithms, (2) 
analysis of negotiation protocols as distributed search, (3) phase transitions and backbones of the Traveling Salesman 
Problem, (4) configuration space analysis of Boolean satisfiability and backbone-guided local search, and (5) improved 
integer local search algorithms for complex scheduling problems.  Our results provide deep understanding of the 
difficulty and complexity of distributed constraint problems in sensor networks and distributed environments, and 
produce effective and efficient methods, algorithms and software for these difficult problems. 
 

15. NUMBER OF PAGES14. SUBJECT TERMS  
autonomous negotiation, autonomous agents, software agent system complexity and 
dynamics, intelligent agents, computational phase transitions  16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 
 

UL 

NSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 

120



Table of Contents

1 Summary and Introduction 1

2 Low Overhead Distributed Constraint Algorithms 4

2.1 Distributed Constraint Satisfaction and Optimization in Sensor Networks . . . . . . . . . 5

2.2 Constraint Models in Distributed Multiple Coloring . . . . . . . . . . . . . . . . . . . . . 6

2.3 Distributed Stochastic Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Breakout and Distributed Breakout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Completeness and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.3 Stochastic Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Comparative Analysis and Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Solution quality in terms of network sizes . . . . . . . . . . . . . . . . . . . . . . 23

2.5.2 Anytime performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.3 Communication Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.4 Solving Scheduling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Related Work and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Analysis of Negotiation Protocols by Distributed Search 32

3.1 Target Tracking and the SPAM Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Tracking multiple targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 The SPAM protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Constraint Problems in Cooperative Negotiation . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Negotiation Protocol as Search Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Negotiation as distributed search . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 SPAM protocol as search algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Experimental Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Time complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.3 Convergency and performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Conclusions and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

i



4 Phase Transitions and Backbones of the Asymmetric Traveling Salesman 51

4.1 The Asymmetric Traveling Salesman and Assignment Problem . . . . . . . . . . . . . . . 53

4.2 The Control Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Phase transitions in the ATSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.2     Existence of Hamiltonian circuit with zero-cost edges   .   . . . . . . . . . . . . . . 58
4.3.3      Quality of the AP lower-bound function.   .   .   .   .  .  . . . . . . . . . . . . . . . .  59

         4.3.4     How many phase transitions  . .  .  .  .  .  .  .  .  .   .   .  .   .   .   .   .   .   .  .  .  . .   . .   . .     60 
4.4 Asymptotic ATSP tour length and AP precision . . . . . . . . . . . . . . . . . . . . . . .. .   60

4.5 Threshold Behavior of Subtour Elimination . . . . . . . . . . . . . . . . . . . . . . . . ..  .  62

4.5.1 Branch-and-bound subtour elimination . . . . . . . . . . . . . . . . . . . . . . ..  .  62

4.5.2 Threshing behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..  .  65

4.6 Related Work and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..  .  66

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..  .  67

5 Configuration Landscape Analysis and Backbone Guided Local Search for Satisfiability and

Maximum Satisfiability                                                                                                                            69

5.1 SAT, Max-SAT, and WalkSAT local search . . . . . . . . . . . . . . . . . . . . . . . . . ..  .  71

5.1.1 Boolean satisfiability and maximum satisfiability . . . . . . . . . . . . . . . . . ..  .  71

5.1.2 The WalkSAT local search algorithm . . . . . . . . . . . . . . . . . . . . . . . ..  .  71

5.1.3 WalkSAT with dynamic noise strategy . . . . . . . . . . . . . . . . . . . . . . . ..  .  73

5.2 Configuration Landscapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .  .  .  74

5.3 Backbone Guided Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..  .  79

5.3.1 Main ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..  .  79

5.3.2 Biased moves and selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..  .  80

5.3.3 Backbone guided WalkSAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..  .  80

5.3.4 Backbone guided WalkSAT with dynamic noise . . . . . . . . . . . . . . . . . . ..  .  81

5.3.5 Computing pseudo backbone frequencies . . . . . . . . . . . . . . . . . . . . . ..  .  82

5.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..  .  82

5.4.1 Random ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..  .  82

5.4.2 Problem instances from SATLIB . . . . . . . . . . . . . . . . . . . . . . . . . . ..  .  84

5.5 Conclusions and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..  .  87

6 An Improved Integer Local Search for Complex Scheduling Problems       89

6.1 Scheduling and Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..  .  90

6.2 PB Encoding and Integer Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..  .  92

6.3 The Walksat and WSAT(oip) Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . ..  .92

6.4 Improvement and Extensions to WSAT(oip) . . . . . . . . . . . . . . . . . . . . . . . . . ..  .93

6.4.1 Backbone-guilded biased moves . . . . . . . . . . . . . . . . . . . . . . . . . . ..  .  93

6.4.2 Aspiration search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..  .  95

ii



6.4.3 Dynamic, adaptive parameters…………………………………………. 97 
 

6.5 Applications and Experimental Evaluation…………………………………. 98 
 

6.5.1 Crew training scheduling……………………………………………. 99 
 

6.5.2 Progressive party scheduling…………………………………….… 100 
 

6.5.3 Basketball tournament scheduling…………………………………. 100 
 

6.6 Conclusions…………………………………………………………..…… 101 
 
References……………………………………………………………………………...101 

iii



List of Figures

1 Solution quality phase transitions on 2-coloring grids;k = 4 (left) andk = 8 (right). . . . 11

2 Solution quality phase transitions on grids;k = 8 using 4 colors (left) and 5 colors (right). 11

3 Solution quality phase transitions on 2-coloring graphs;k = 4 (left) andk = 8 (right). . . 13

4 Solution quality phase transitions on graphs;k = 8 using 4 colors (left) and 5 colors (right). 13

5 Communication phase transitions on grids withk = 8 using 4 colors (left) and 5 colors

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 The number of steps taken by DBA on chains with the best and worst variable identifier

arrangements (left) and on trees with worst identifier arrangements (right). . . . . . . . . . 18

7 A worst case of DBA for coloring a ring. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 Steps taken by DBA and variants on the example of Figure 7 with random initial assign-

ments (left) and the specific assignment of Figure 7 (right). . . . . . . . . . . . . . . . . . 19

9 DBA(wp) and DBA(sp) on grid20× 20 andk = 4. . . . . . . . . . . . . . . . . . . . . . 20

10 DBA(wp) (left) and DBA(sp) (right) on graph with 400 nodes and k=8. . . . . . . . . . . 21

11 DBA and random DBAs on grid20× 20 andk = 4. . . . . . . . . . . . . . . . . . . . . 22

12 DBA and random DBAs on graph with 400 nodes and k=8. . . . . . . . . . . . . . . . . . 22

13 DBA and random DBAs on tree with depthd = 4 and branching factork = 4. . . . . . . . 23

14 DSA vs. DBA in terms of number of sensors,T = 6. . . . . . . . . . . . . . . . . . . . . 23

15 DSA vs. DBA in terms of number of sensors,T = 18. . . . . . . . . . . . . . . . . . . . 24

16 Anytime performance of DSA and DBA in dense sensor networks,T = 6. . . . . . . . . . 25

17 Anytime performance of DSA and DBA in sparse sensor networks,T = 6. . . . . . . . . . 25

18 Anytime performance of DSA and DBA in dense sensor networks,T = 18. . . . . . . . . 26

19 Anytime performance of DSA and DBA in sparse sensor networks,T = 18. . . . . . . . . 26

20 Communication-cost phase transitions of DSA on scan scheduling,T = 6. . . . . . . . . . 27

21 Communication cost of DSA and DBA,T = 6 (left) andT = 18 (right). . . . . . . . . . . 28

22 Finding best possible schedule using DSA (top) and DBA (bottom),N = 80. . . . . . . . 28

23 Finding best possible schedule using DSA (top) and DBA (bottom),N = 300. . . . . . . . 29

24 Sequential SPAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

25 Synchronous SPAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

26 An example for incompleteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

27 Execution of sequential SPAM on the example . . . . . . . . . . . . . . . . . . . . . 43

28 Number of problems solved by each algorithm . . . . . . . . . . . . . . . . . . . . . 44

29 The rate of completeness for sequential SPAM . . . . . . . . . . . . . . . . . . . . . 45

30 The CPU time of each algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

31 The convergency speed of two algorithms . . . . . . . . . . . . . . . . . . . . . . . . 47

32 The convergency speed of two algorithms . . . . . . . . . . . . . . . . . . . . . . . . 47

33 Synchronous SPAM scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

34 Sequential SPAM scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

iv



35 (a) Average fraction of distinct distances in matrixD, ρ(n, b), controled by the effective

number of digits,β = b log−1
10 (n), for n = 100, 500, 1000 and1500. (b) Averageρ(n, b)

after finite-size scaling, with scaling factor(β − βc) log10(n), whereβc = 2. . . . . . . . 55

36 (a) Average optimal ATSP tour cost. (b) Scaled and normalized average optimal tour cost,

with rescaling factor(β − βc) log10(n) andβc = 1. . . . . . . . . . . . . . . . . . . . . . 57

37 (a) Average fraction of backbone. (b) Rescaled average backbone fraction, with rescaling

factor(β − βc) log10(n) andβc = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

38 (a) Average number of optimal ATSP tours. (b) Rescaled average number of optimal ATSP

tours, with rescaling factor(β − βc) log10(n) andβc = 1.39± 0.008. . . . . . . . . . . . 59

39 (a) Probability of the existence of Hamiltonian circuits with zero cost arcs. (b) Rescaled

probability of zero-cost Hamiltonian circuits, with rescaling factor(β − βc) log10(n) and

βc = 0.865. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

40 (a) Average probability thatAP (D) = ATSP (D). (b) Average probability after finite-

size scaling, with rescaling factor(β − βc) log10(n) andβc = 1.17± 0.005. . . . . . . . . 61

41 (a) Average accuracy of AP lower-bound function, measured by the error of AP cost rel-

ative to ATSP cost. (b) normalized and rescaled average accuracy, with rescaling factor

(β − βc) log10(n) andβc = 0.97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

42 Simultanous examination of the phase transitions of backbone and ATSP tour cost on

1,500-city problems, all rescaled with(β − 1) log10(n). . . . . . . . . . . . . . . . . . . . 63

43 DFBnB subtour elimination on the ATSP. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

44 (a) Normalized average number of AP calls of DFBnB subtour elimination. (b) Scaled

average number of AP calls, with(β − betac) log10(n), whereβ0 = 1.49± 0.025. . . . . 65

45 Main operations in a try of WalkSAT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

46 Experimental validation of Dyna-WalkSAT on random Max-3-SAT, for 2,000-variable

problem instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

47 Configuration landscapes of local minima from WalkSAT on 100 variable random 3-SAT

and Max-3-SAT, relative to optimal solutions. . . . . . . . . . . . . . . . . . . . . . . . . 76

48 Contours of the configuration landscapes of local minima from WalkSATon 100 variable

Max-SAT with C/V ratios of 6.0 and 8.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

49 Local minima from WalkSAT on 2,000-variable Max-3-SAT with C/V ratios of 4.3, 6 and 8. 78

50 Anytime performance of Dyna-WalkSAT and BG-Dyna-WalkSAT on random Max-3-SAT

with 2,000 variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

51 Anytime comparison on a crew scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . 99

v



List of Tables

1 Next value selection in DSAs. Here C stands for conflict,∆ is the best possible conflict

reduction between two steps,v the value giving∆, andp a probability to change the

current value, which represents the degree of parallel executions, and “-” means no value

change. Notice that when∆ > 0 there must be a conflict. . . . . . . . . . . . . . . . . . . 9

2 Mean Conflicts Over 10,000 problem instances After 100 Steps . . . . . . . . . . . . . . . 48

3 Numerical results on AP cost, the ATSP cost and AP error relative to the ATSP cost, in

percent. The cost matrices are uniformly random. Each data point is averaged over 10,000

problem instances. In the table,n is the number of cities, digits is the number of digits for

intercity distances, and all numerical error bounds represent 95 percent confidence intervals. 64

4 Comparison of backbone guided Dyna-WalkSAT variations over Dyna-WalkSAT on 2,000

variable random Max-3-SAT. Performance is measured by the average number of con-

straint violations. The errors represent 95% confidence intervals. . . . . . . . . . . . . . 83

5 Comparison of BG-Dyna-WalkSAT and Dyna-WalkSAT on random Max-3-SAT with C/V

ratio of 8.0, averaged over 1,000 instances.Diff is the improvement of BG-Dyna-WalkSAT

over Dyna-WalkSAT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 BG-Dyna-WalkSAT versus Dyna-WalkSAT on relatively easy satisfiable problems.Dyna-

WalkSATandBG-Dyna-WalkSATare the numbers of runs resulting in satisfying solutions

(out of 20) by these algorithms. The better results from the two algorithms are underlined

and in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Dyna-WalkSAT vs. BG-Dyna-WalkSAT on harder satisfiable problems. Dyna-WalkSAT

and BG-Dyna-WalkSAT are the average numbers of violations in the best solutions found

by the algorithms for a given problem, averaged over 20 runs. Gain is the percentage im-

provement of BG-Dyna-WalkSAT over Dyna-WalkSAT. The better results are underlined

and in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8 Dyna-WalkSAT vs. BG-Dyna-WalkSAT on unsatisfiable problems. The legend is the same

as that in Table 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9 A simple resource allocation problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10 Comparison on crew training scheduling, wheren andm are the numbers of variables

and clauses, respectively;unsatis the average number of violated hard constraints,penalty

the average penalty score, andtime the average CPU time in seconds. The better results

between the two algorithms are in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

11 Comparison on progressive party scheduling problem, wheren andm are the numbers of

variables and clauses, respectively, andmedianandaverageare the median and average

CPU times in seconds. The better results are in bold. . . . . . . . . . . . . . . . . . . . . 100

12 Comparison on ACC backetball scheduling problem, where the legends are the same as in

Table 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vi



Acknowledgement

Thanks to Stephen Fitzpatrick for many discussions related to distributed stochastic search, and to Ale-

jandro Bugacov for many helpful discussions on crew scheduling problems.  In particular, the following
researchers and graduate students participated in this research, Sharlee Climer, Zidong Deng, Moshe Looks,

Guandong Wang, Lars Wittenburg, Zhao Xing, Weihong Zhang, Weixiong Zhang and Xiaotong Zhang.

vii



1 Summary and Introduction

We have touched upon in this research many aspects of distributed constraint problems in different dis-

tributed environments and settings. Our results provided insights to some of the intrinsic issues of problem

solving in distributed environments. The final products of this research include new understanding of

phase transitions and backbones of combinatorial optimization problems, such as the Traveling Salesman

Problem, new algorithms for complex and distributed constraint satisfaction and optimization problems,
and corresponding software.

Our research has been mainly focused on five topics. We briefly summarize the main findings and

results in the following five paragraphs. Each of these topics will be discussed in great detail in a separate

section.

The first topic is distributed constraint solving and low overhead distributed constraint algorithms. We

specifically consider constraint problem solving, e.g., distributed scheduling, in distributed sensor net-

works. We study such distributed algorithms that have low overhead on computation and communication.

We first cast such problems as distributed constraint satisfaction problems (DisCSP) and distributed con-

straint optimization problems (DisCOP) and model them as distributed multiple coloring. To cope with

limited resources and restricted real-time requirement, we consider distributed algorithms that have low

overhead on resource consumption and high anytime performance. To meet these requirements, we study

two existing DisCSP algorithms, distributed stochastic search algorithm (DSA) and distributed breakout

algorithm (DBA), for solving DisCOPs and the distributed scheduling problems. We experimentally show

that DSA has a phase-transition or threshold behavior, in that its solution quality degenerates abruptly and

dramatically when the degree of parallel executions of distributed agents increases beyond some critical

value. We also consider the completeness and complexity of DBA for graph coloring. We show that DBA

is complete on acyclic graphs and is able to color an acyclic graph ofn nodes inO(n2) steps. However,

on a cyclic graph, DBA may never terminate. To improve DBA’s performance on coloring cyclic graphs,

we propose two stochastic variations. Finally, we directly compare DSA and DBA for solving distributed

multiple coloring and distributed scheduling problems in sensor networks. The results show that DSA

is superior to DBA when controlled properly, having better or competitive solution quality and signifi-

cantly lower communication cost than DBA. Therefore, DSA is the algorithm of choice for our distributed

scheduling problems.

The second topic is negotiation as distributed search. Negotiation is one of the main mechanisms

for coordination and cooperation in distributed environments. However, most negotiation protocols are

complex and their features are difficult to characterize. We propose a general experimental approach to

analyzing negotiation strategies using distributed search. In this approach we first formulate the problems

that negotiation protocols intend to solve as distributed constraint satisfaction/optimization problems, and

then capture the negotiation protocols as distributed search algorithms. By analyzing the derived search

algorithms, we can characterize many important properties of the negotiation protocols. In this paper, we

are particularly interested in the properties of a newly developed negotiation protocol, which is motivated

by distributed sensor network applications, including its completeness, complexity, convergence rate, and

1



scalability. Although the idea of viewing negotiation as distributed search is not completely new, in this

research we not only view negotiation as distributed search, but directly apply a search algorithm to reveal

the essential features of a negotiation protocol and analyze its performance.

The third topic is phase transitions and backbones of combinatorial optimization problems, the Trav-

eling Salesman Problem in particular. In recent years, phase transitions have been successfully used to

analyze combinatorial optimization problems, characterize their typical-case features and locate the hard-

est problem instances. In this research, we empirically study phase transitions of the asymmetric Traveling

Salesman, an NP-hard combinatorial optimization problem that has many real-world applications. Using

random instances of up to 1,500 cities, we show that many properties of the problem, including the optimal

tour cost and backbone, experience sharp transitions as the precision of intercity distances increases across

a critical value. Our experimental results on the costs of the Asymmetric Traveling Salesman (ATSP) tours
and assignment problem support the theoretical result that the asymptotic cost of assignment problem isπ2/6.

In addition, we show that the average computational cost of the well-known branch-and-bound subtour

elimination algorithm for the problem also exhibits a threshold behavior, transitioning from easy to difficult as
the distance precision increases. These results answer positively an open question regarding the existence of
phase transitions in the Traveling Salesman, and provide guidance on how difficult ATSP problem instances
should be generated.

The fourth topic is a novel metaheuristic for local search in solving Boolean satisfiability. Many

constraint problem can be captured as Boolean satisfiability (SAT) and maximum satisfiability (Max-

SAT), which are difficult combinatorial problems that have many important real-world applications. In

this research, we investigate the configuration landscapes of local minima reached by the WalkSAT local

search algorithm, one of the most effective algorithms for SAT. A configuration landscape of a set of

local minima is their distribution in terms of quality and structural differences relative to an optimal or a

reference solution. Our experimental results show that local minima from WalkSAT form large clusters,

and their configuration landscapes constitute big valleys, in that high quality local minima typically share

large partial structures with optimal solutions. Inspired by this insight into WalkSAT and the previous

research on phase transitions and backbones of combinatorial problems, we propose and develop a novel

method that exploits the configuration landscapes of such local minima. The new method can be embedded

in a local search algorithm, such as WalkSAT, to improve its performance. On large problem instances

from a SAT library (SATLIB), the backbone guided WalkSAT algorithm finds satisfiable solutions to SAT

problems with higher probabilities than WalkSAT, and obtains better solutions on Max-SAT problems,

improving solution quality by 20% on average.

The last topic is a set of effective methods for complex scheduling problems. We consider complex

scheduling problems that can be captured as optimization under hard and soft constraints. The objective of

such an optimization problem is to satisfy as many hard constraints as possible and meanwhile to minimize

a penalty function of unsatisfied soft constraints. We present an efficient local search algorithm for these

problems which improves upon WalkSAT(oip), a WalkSAT-based local search algorithm for overconstrained

problems represented in integer programs. We introduce three techniques to the WSAT(oip) algorithm to

extend its capability and improve its performance: backbone guided biased moves to drive the search to

2



the regions in search space where high-quality and optimal solutions reside; sampling-based aspiration

search to reduce search cost and make anytime solutions available over the course of the search; and

dynamic parameter tuning to dynamically adjust the key parameters of the algorithm to make it robust

and flexible for various applications. Our experimental results on large-scale crew scheduling, basketball

tournament scheduling and progressive party scheduling show that the new improved algorithm can find

better solutions with less computation than WSAP(oip).

Most of the research described in this report has been published in many conference and journal papers,

which include those of [100, 110, 111, 115, 116, 117, 118, 119, 120].

The rest of the report will describe these topics and results in detail. As these topics are relatively

independent, we draw conclusions for each of them, at the end of their corresponding sections.

3



2 Low Overhead Distributed Constraint Algorithms

In recent years, various micro-electro-mechanical systems (MEMS) devices, such as sensors and actuators

with some information processing capabilities embedded within, have been developed and deployed in

many real-world applications [85, 93]. For example, one application that we have been involved with is

detecting and tracking mobile objects in dynamic and real-time environments, where distributed sensors

must cooperatively monitor an area to detect new objects and some of the sensors have to sense and

measure at the same time in order to triangulate a target. Such distributed sensor environments were

specific research platforms in the Autonomous Negotiating Teams (ANTs) domains. In such distributed

applications, there are logical restrictions among the actions of the sensors and actuators and restrictions

on available computational and communication resources as well as restrictions on energy consumption.

Multi-agent system technology can play a critical role in developing large-scale networked, embedded

systems using such smart devices, by providing frameworks for building and analyzing such systems.

Due to the real-time nature of many applications and limited computational resources on the devices, e.g.,

slow CPUs and small memories, the key to large-scale, real-time MEMS is the mechanism that the smart

devices (or agents) use to make viable distributed decisions in restricted time with limited computational

resources. Therefore, the methods for distributed constraint problem solving are also important tools for

such real-time decision making in distributed environments.

In contrast to the current research on sensor networks, which has largely focused on building ad hoc,

mobile communication networks (e.g., [40, 121]), this line of research on applying multi-agent system

technology and constraint problem-solving techniques has a paramount importance to the overall success

of embedded sensor networks by addressing the key issue of resource allocation at the application level.

We have been developing large-scale sensor networks controlled by distributed multi-agent systems

for the applications of mobile object detection and tracking problem and the vibration dampening in the

avionics domain. We place an agent on top of a sensor, which runs on a battery and has, among other

things, a slow CPU, a small memory and a wireless communication unit. The sensors/agents need to be

programmed in such a way that they can collaboratively carry out a task, which no single sensor/agent can

do on its own. In this research, we are particularly interested inlow-overhead methodsfor solving DisCSPs

and DisCOPs. By low-overhead methods we mean those in which limited communication among agents

is needed and agents make their decisions without global knowledge of the system and without knowing

the actions of the other agents.

In this research, we study distributed stochastic algorithm (DSA) [25, 27, 67] and distributed breakout

algorithm (DBA) [79, 103, 105], two existing algorithms for DisCSP, for the purpose of solving our dis-

tributed scheduling problems in sensor networks. In other words, we apply and extend these algorithms to

solving DisCOP, which is much more difficult than DisCSP.

Note that DSA and DBA are incomplete in that they do not guarantee to find satisfying solutions

to DisCSPs and thus may not find optimal solutions to DisCOPs either. Nevertheless, we choose these

algorithms for two reasons. First, compared to complete distributed algorithms, such as those of [103, 104],

DSA and DBA have low computational and communication cost. An agent in these algorithms only

4



needs information local to itself and information of neighboring agents connected through the underlying

constraint graphs. Therefore, the computational cost is low. These algorithms also do not have to record

many previous states visited, so that memory requirement is low as well. Second, as we will see later in

this section, these algorithms have good anytime performance, finding good approximate solutions quickly.

Even if they are not guaranteed the optimality of solutions that they provide, such heuristic algorithms are

sufficient for finding good approximate solutions in real-time environments where the targeting objectives

may also change over time, making optimal solutions less important.

In addition to the above important characteristics to serve the needs of some applications in sensor

networks, DSA and DBA also have unique features in resolving conflicts among distributed agents. DBA

introduces priorities among agents’ actions for conflict resolution, while DSA uses randomness to possi-

bly avoid conflicts. Moreover, as shown in this section, DSA has a threshold behavior, in which solution

quality degrades abruptly and dramatically as the randomness for conflict resolutions increases beyond a

critical value, and DSA becomes complete and has a low polynomial time complexity for distributed mul-

tiple coloring problems when the underlying constraint graphs are acyclic. However, on other constraint

graph structures, including the constraint graphs constructed from our motivating applications, DSA is

superior to DBA, generally finding better solutions with less time. Overall, our experimental results show

that DSA is a good choice of algorithm for our sensor network applications.

This section is organized as follows. A detailed account of the scheduling problems is given in Sec-

tion 2.1. We formulate the problems as weighted multi-coloring problems in Section 2.2. We then describe

DSA and analyze its threshold behavior in Section 2.3. We consider DBA and its completeness and com-

plexity for graph coloring in Section 2.4. We also discuss introducing randomness to improve DBA’s

performance. We compare the performance of DSA and DBA on distributed multiple graph coloring and

our distributed scheduling problem of finding the shortest scan schedule for mobile object detection in

Section 2.5. We discuss related work in Section 2.6, and finally conclude in Section 2.7.

Early results of this section have appeared in [111, 116, 118, 120].

2.1 Distributed Constraint Satisfaction and Optimization in Sensor Networks

To set the stage for our investigation of distributed algorithms for distributed constraint problems, we first

describe our application problems in sensor networks.

Detecting and tracking mobile objects in large open environments is an important topic that has many

real applications in different domains, such as avionics, surveillance and robot navigation. We are devel-

oping such an object detecting and tracking system using MEMS sensors, each of which operates under

restricted energy sources, i.e., batteries, and has a small amount of memory and restricted computational

power. In a typical application of our system, a collection of small Doppler sensors are scattered in an open

area to detect possible foreign objects moving into the region. Each sensor can scan and detect an object

within a fixed radius. However, the overall detecting area of a sensor is divided into three equal sectors,

and the sensor can only operate in one sector at any given time. The sensors can communicate with one

another through radio communication. The radio channel is not reliable, however, in that a signal may

5



get lost due to, for instance, a collision of signals from multiple sensors, or distorted due to environment

noises. Moreover, switching from one scanning sector to another sector and sending and receiving radio

signals take time and energy. To save energy, a sensor may turn itself off occasionally or periodically if

doing so does not reduce system performance.

The overall system operates to achieve two conflicting goals, to detect foreign objects as many and as

quickly as possible and meanwhile to preserve energy as much as possible so as to prolong the system’s

lifetime. The overall problem is thus to find a distributed scan schedule to optimize an objective function

that balances the above two conflicting goals.

One of our goals here is to develop a scalable sensor network for object detection in that the system

response time for detecting a new object does not degenerate when the system size increases. To this

end, we place an agent on top of each sensor and make the agent as autonomous as possible. This means

that an agent will not rely on information of the whole system, rather the local information including

its neighboring sensors or agents. These agents also try to avoid unnecessary communication so as to

minimize system response time. Therefore, complex coordination and reasoning methods are not suitable.

We set forth to apply simple, low-overhead methods for solving this distributed scheduling problem.

We assume that the sensors are stationary, in that they will not move after being placed in an opera-

tion environment. We consider two distributed algorithms, distributed breakout and distributed stochastic

search, that were developed earlier to solve distributed constraint satisfaction problems. Our objectives

are twofold. First, we want to understand how these two algorithms compare with each other on a real-

world application such as our scan scheduling problem. Second, we want to identify the right application

condition and parameters of the algorithm that we will use based on the evaluation.

2.2 Constraint Models in Distributed Multiple Coloring

Our first step to address the distributed scheduling problems is to model them as distributed constraint

satisfaction and optimization problems. Indeed, the core problems in our applications discussed in the

previous section can be captured as distributed multi-coloring problems.

In the mobile object detection problem, a sensor needs to scan its three sectors as often as possible.

However, to save energy, two neighboring sensors should try to avoid scanning a common area covered by

two overlapping sensor sectors at the same time since one sensor’s sensing of an area is sufficient to detect

possible objects in the area. The objective is to find a sequence of sensing actions so that each sensor sector

can be scanned at least once within a minimal period of time. In other words, the objective is a cyclic scan

schedule in which each sector is scanned at least once with the constraint of minimizing the energy usage.

As all agents execute the same procedure, scanning actions on different sensors take approximately

the same amount of time. Assume that the sensors are synchronized1, an assumption that can be lifted by

a synchronization method2 [94]. Therefore, the problem can be viewed as coloring a weighted graph so

1The algorithms we will consider shortly, DSA and DBA, are synchronous. It has also been observed that under certain
conditions asynchronized actions may actually improve the performance of a distributed algorithm [26].

2Indeed, DBA and its synchronization mechanism have been implemented and tested on a real-time middleware using Object
Request Broker framework

6



that the total weight of violated constraints is minimized. Here, a node corresponds to a sensor or agent,

a link between two nodes represents the constraint of a shared region between two agents, and the weight

captures the area of a common region. The larger a shared region is, the more energy will be wasted if

two sensors scan the shared region at the same. Moreover, each color corresponds to a time slot in which

a sector is scanned and the total number of colors represents the scanning cycle length or the number of

time slots required to scan each of the sectors of all sensors. A node must have at least one color so that

the corresponding sector is scanned at least once, and may also have multiple colors so that the sector may

be sensed multiple times to increase system’s object detection rate.

We further consider a sensor as an hypernode of three nodes, each of which corresponds to a sector of

the sensor. Within an hypernode, two nodes cannot share a color since two sectors cannot be scanned at the

same time. In other words, the colors assigned to the nodes within an hypernode are mutually exclusive.

This is a hard constraint that cannot be violated. Furthermore, not all available colors must be used as

a sensor may sometimes turn itself off. A node within a hypernode may also be constrained by a node

of another hypernode if the two corresponding sectors share a common region. This constraint may be

violated, resulting in wasted energy. Overall, we are looking for such a coloring that satisfies all hard

constraints within hypernodes and minimizes the weights of violated constraints among hypernodes so as

to reduce the overall conflicts of scanning common regions among overlapping sectors.

We can model the distributed scan scheduling problem as follows. LetG(V, E) be an undirected

graph with a set of hypernodesV and a set of edgesE. Each hypernodev ∈ V , which represents a sensor,

consists ofk nodes,v1, v2, · · · , vk, which modelk sectors of the sensor. (In our application, we have

k = 3.) An edge between nodesui ∈ u andvj ∈ v is denoted as(ui, vj) ∈ E, andui andvj are called

neighbors. Two hypernodes are neighbors if any pair of their nodes are neighbors. The weight of an edge

(ui, vj), denoted asw(ui, vj), is the area of a common region covered by sectors of sensorsu andv. Every

hypernode is given a totalT available colorsthat can be used and a sensor activation ratioα ≤ 1. |T |
corresponds to a schedule length.α captures the frequency of how often a sensor should be active, and

1 − α is the frequency determining how often a sensor should turn itself off to save energy. Given the

total available colorsT , the weighted multi-coloring problem is to color the nodes following these criteria.

First, exactlydαT e colors are used within a hypernode. This means that a node may have more than one

color if the available colors are more than the nodes in a hypernode, i.e.,dαT e > k. Second, every node

must have at least one color and no two nodes within a hypernode can share a color. Third, minimizing

conflicts between pairs of nodes in different hypernodes, so the total weight of violations going across

hypernodes is minimized. When no conflict is allowed or a minimal level of allowed conflicts is specified,

the overall problem is to find the minimal number of allowed colorsT and such a schedule satisfying the

criteria.

The distortion and damage detection problem can also be captured by a constraint model. Scheduling

the signaling activities of the ping nodes can be formulated as a distributed graph coloring problem. A

color here corresponds to a time slot in which a ping node sends out signals. The number of colors is

therefore the length in time units of a schedule. The problem is to find a shortest schedule such that the

7



pinging signals do not interfere with one another in order to increase damage detection response time and

reduce the amount of wasted energy. The problem is equivalent to finding the chromatic number of a given

constraint graph, which corresponds to the minimal worst-case response time and a coloring of the graph

within the overall system response time.

In short, this damage detection problem is a distributed constraint satisfaction/optimization problem

with variables and constraints distributed among agents. Collectively the agents find a solution to minimize

an objective function, which is the number of violated constraints.

2.3 Distributed Stochastic Search

In this section, we study distributed stochastic search algorithm. In fact, this is not a single algorithm, but

a family of distributed algorithms, as we will see shortly.

2.3.1 The algorithm

Distributed stochastic algorithm (DSA) is uniform [94], in that all processes are equal and have no iden-

tities to distinguish one another. It is also synchronous in principle [94], in that all processes proceed in

synchronized steps and in each step it sends and receives (zero or more) messages and then performs local

computations, i.e., changing local state. Note that synchronization in DSA is not crucial since it can be

achieved by a synchronization mechanism [94].

The idea of DSA and its variations is simple [25, 27, 67, 83]. After an initial step in which the agents

pick random values for their variables, they go through a sequence of steps until a termination condition

is met. In each step, an agent sends its current state information, i.e., its variable value in our case, to

its neighboring agents if it changed its value in the previous step, and receives the state information from

the neighbors. It then decides, often stochastically, to keep its current value or change to a new one. The

objective for value changing is to possibly reduce violated constraints. A sketch of DSA is in Algorithm 1.

The most critical step of DSA is for an agent to decide the next value, based on its current state and its

believed states of the neighboring agents. If the agent cannot find a new value to improve its current state,

it will not change its current value. If there exists such a value that improves or maintains state quality, the

agent may or may not change to the new value based on a stochastic scheme.

Table 1 lists five possible strategies for value change, leading to five variations of the DSA algorithm.

In DSA-A, an agent will change its value only when the state quality can be improved. DSA-B is the same

as DSA-A except that an agent may also change its value if there is a violated constraint and changing its

value will not degrade state quality. DSA-B is expected to have a better performance than DSA-A since

by reacting stochastically when the current state cannot be improved directly (∆ = 0 and there exists a

conflict), the violated constraint may be satisfied in the next step by the value change at one of the agents

involved in the constraint. Thus, DSA-B will change value more often and has a higher degree of parallel

actions than DSA-A.

Furthermore, DSA-C is more aggressive than DSA-B, changing value even if the state is at a local

minima where there exist no conflict but another value leading to a state of the same quality as the current

8



Algorithm 1 Sketch of DSA, executed by all agents.
Randomly choose a value
while (no termination condition is met)do

if (a new value is assigned)then
send the new value to neighbors

end if
collect neighbors’ new values, if any
select and assign the next value (See Table 1)

end while

Algo. ∆ > 0 C, ∆ = 0 no C,∆ = 0
DSA-A v with p - -
DSA-B v with p v with p -
DSA-C v with p v with p v with p

DSA-D v v with p -
DSA-E v v with p v with p

Table 1: Next value selection in DSAs. Here C stands for conflict,∆ is the best possible conflict reduction
between two steps,v the value giving∆, andp a probability to change the current value, which represents
the degree of parallel executions, and “-” means no value change. Notice that when∆ > 0 there must be
a conflict.

one. An agent in DSA-C may move to such an equal-quality value in the next step. It is hoped that by

moving to another value, an agent gives up its current value that may block any of its neighbors to move

to a better state. Therefore, the overall quality of the algorithm may improve by introducing this equal-

quality action at a single node. The actual effects of this move remain to be examined, which is one of the

objectives of this research.

Parallel to DSA-B and DSA-C, we have two more aggressive variations. DSA-D (DSA-E) extends

DSA-B (DSA-C) by allowing an agent to move, deterministically, to a new value as long as it can improve

the current state (∆ > 0). These variations make an agent more greedily self centered in that whenever

there is a good move, it will take it.

Notice that the level of activities at an agent increase from DSA-A, to DSA-B and to DSA-C, and from

DSA-D to DSA-E. The level of activities also reflects the degree of parallel executions among neighboring

processes. When the level of local activities is high, so is the degree of parallel executions.

To change the degree of parallel executions, an agent may switch to a different DSA algorithm, or

change the probabilityp that controls the likelihood of updating its value if the agent attempts to do so.

This probability controls the level of activities at individual agents and the degree of parallel executions

among neighboring processes. One major objective of this research is to investigate the effects of this

control parameter on the performance of DSA algorithms.

The termination conditions and methods to detect them are complex issues of their own. We will adopt

a termination detection algorithm [94] in a later stage. In our current implementation, we terminate DSAs

after a fixed number of steps. This simple determination method serves the basic needs of the current

research, i.e., experimentally investigating the behavior and performance of these algorithms, one of the

9



main focuses of this section.

2.3.2 Phase Transitions

DSAs are stochastic, in that they may behave differently even if all conditions are equal. We are interested

in their typical or statistical behavior at an equilibrium state when the behavior of the algorithms does not

seem to change dramatically from one step to the next. We are specifically interested in the relationship

between the degree of parallel executions, controlled by the probabilityp (cf. Table 1), and the performance

of the algorithms, including their solution quality and communication costs.

It turns out that the performance of DSAs may experience phase transitions on some constraint struc-

tures when the degree of parallelism increases. Phase transitions refer to a phenomenon of a system in

which some global properties change rapidly and dramatically when a control or order parameter goes

across a critical value [14, 44]. A simple example of a phase transition is water changing from liquid to ice

when the temperature drops below the freezing point. For the problem of interest here, the system property

is DSAs performance (solution quality and communication cost) and the order parameter is the probability

p that controls the degree of parallel executions of the agents.

Solution quality: We experimentally investigate DSAs’ phase-transition behavior on grids, random

graphs and trees. In our experiments, we used different networks, including grids, which appear in our

motivating application, and graphs and trees. We considered graph coloring problems, by varying the

connectivity of the structures and the number of colors used, we are able to generate underconstrained,

critically constrained and overconstrained problem instances. In the following discussions, we will focus

on grid and graph structures.

Starting from random initial colorings, we let the algorithms run for a large number of steps, to the

point where they seem to reach an equilibrium, i.e., the overall coloring quality does not change signifi-

cantly from one step to the next. We then measure the solution quality, in terms of the number of constraints

violated. In our experiments, we measure the performance at 1,000 steps; longer executions, such as 5,000

and 10,000 steps, exhibit almost the same results.

The distributed algorithms were simulated on one machine using a discrete event simulation method [103].

In this method, an agent maintains a step counter, equivalent to a simulated clock. The counter is increased

by one after the agent has executed one step of computation, in which it sends its state information, if nec-

essary, receives neighbors’ messages, and carries out local computation. The overall solution quality is

measured, at a particular time point, by the total number of constraints violated, and the communication

cost is measured by the total number of messages sent.

We varied the degree of parallel executions, the probabilityp in Table 1, and examined the quality of

the colorings that DSAs can provide. The solution quality indeed exhibits phase-transition behavior on

grid and graph structures as the degree of parallelism increases.

Grids We generate grids of various sizes, including20× 20, 40× 40 and60× 60 grids, and use different

number of colors, ranging from two to eight. In order to study how DSAs will scale up to large problems,

we simulate infinitely large grids. We remove the grid boundaries by connecting the nodes on the top to

10



0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

Probability of Parallellism

N
um

be
r 

of
 V

io
la

tio
ns

DSA−A
DSA−B and DSA−C
DSA−D and DSA−E

D , E

B , C 

A 

0 0.2 0.4 0.6 0.8 1

400

600

800

1000

1200

1400

1600

1800

2000

Probability of Parallellism

N
um

be
r 

of
 V

io
la

tio
ns

DSA−A
DSA−B and DSA−C
DSA−D and DSA−E

D , E

B , C 

A 

Figure 1: Solution quality phase transitions on 2-coloring grids;k = 4 (left) andk = 8 (right).

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

Probability of Parallellism

N
um

be
r 

of
 V

io
la

tio
ns

DSA−A
DSA−B
DSA−C
DSA−D
DSA−E

A 

B 
C 

D 

E 

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

500

600

700

800

900

Probability of Parallelism

N
um

be
r 

of
 V

io
la

tio
ns

DSA−A
DSA−B
DSA−C
DSA−D
DSA−E

A 

B 

C 

D 

E 

Figure 2: Solution quality phase transitions on grids;k = 8 using 4 colors (left) and 5 colors (right).

those on the bottom as well as the nodes on the left to those on the right of the grids. We also change the

degree of constrainedness by changing the number of neighbors that a node may have. For example, on a

degreek = 4 grid, each node has four neighbors, one each to the top, the bottom, the left and the right.

Similarly, on a degreek = 8 grid, each node has eight neighbors, one each to the top left, top right, bottom

left and bottom right in addition to the four neighbors in ak = 4 grid.

Figure 1 shows the total numbers of constraint violations after 1,00 steps of the algorithms using two

colors on20 × 20 grids withk = 4 (Figure 1(left)) andk = 8 (Figure 1(right)). Each data point of the

figure is averaged over 1,000 random initial colorings. Note that the results from larger grids, such as

40× 40 grids, follow almost identical patterns as in Figure 1.

The figures show that DSAs’ phase-transition behavior is controlled by the degree of parallelism, ex-

cept DSA-A on grids withk = 4. The transitions are typically very sharp. For example, as Figure 1(left)

shows, the solution quality of DSA-B and DSA-C decreases abruptly and dramatically when the proba-

bility p increases above 0.8. More importantly and surprisingly, after the transition, the solution quality is

even worse than a random coloring. The average solution quality of random colorings corresponds to the

pointp = 0 on the DSA-B and DSA-C curves in the figure. This indicates that the degree of parallel exe-

11



cutions should be controlled under a certain level in order for the algorithms to have a good performance.

Furthermore, the transitions start earlier for DSA-D and DSA-E. Although DSA-A, the most conservative

algorithm, does not show phase transitions on grids ofk = 4, its average solution quality is much worse

than that of DSA-B, because it may be easily trapped in local minima.

The degree of parallelism and the constrainedness of the underlying network structures also interplay.

Grids withk = 4 are 2-colorable while grids withk = 8 are not, and are thus overconstrained. The results

shown in Figure 1 indicate that the phase transitions appear sooner on overconstrained problems than on

underconstrained problems. Even the most conservative DSA-A also experiences a phase transition when

k = 8. The most aggressive ones, DSA-D and DSA-E, always performs worse than a random coloring on

this overconstrained grid.

A coloring problem becomes easier if more colors are used, since it is less constrained to find a satisfy-

ing color in the next step. However, the phase-transition behavior persists even when the number of colors

increases. Figure 2 shows the results on grids withk = 8 using 4 and 5 colors. Notice that the curves in

the 4-color figure and the curves for 3 colors (not shown here) follow similar patterns as in the case for 2

colors in Figure 1(right).

Graphs The phase transitions of DSAs persist on graphs as well, and follow similar patterns as in the

grid cases. We conducted experiments on random graphs. We generate graphs with 400 and 800 nodes

and average node connectivity equal tok = 4 andk = 8. A graph is generated by adding edges to

randomly selected pairs of nodes. These two types of graphs are used to make a correspondence to the

grid structures ofk = 4 andk = 8 mentioned before. We also generated random trees with depth four and

average branching factorsk = 4 andk = 8.

Figure 3 shows the results on graphs withk = 4 andk = 8 using 2 colors, and Figure 4 the results

on graphs withk = 8 using 4 and 5 colors. Each data point is an average of 1,000 random instances.

The solution quality is also measured after 1,000 steps of executions. As all the figures show, the phase

transitions on random graphs have similar patterns as those on grids. Therefore, the discussions on the grids

apply in principle to random graphs. We need to mention that on graphs, the most aggressive algorithms,

DSA-D and DSA-E, do not perform very well under all degrees of parallel executions. This, combined

with the results on grids, leads to the conclusion that DSA-D and DSA-E should not be used.

Trees There is no phase transition observed on random trees in our tests. All DSAs perform poorly on

2-coloring, in comparison with their performance on grids and graphs. This seems to be counterintuitive

since trees have the simplest structures among all these network structures. One explanation is that DSAs

may be easily trapped into local minima. Since trees are always 2-colorable, we are able to easily create

local minima in which none of DSAs can escape.

Communication cost: We have so far focused on DSAs’ solution quality without paying any attention

to their communication costs. Communication in a sensor network has an inherited delay and could be

unreliable in many situations. Therefore, communication cost of a distributed algorithm is an integral part

of its overall performance. It is desirable to keep communication cost as low as possible.

In fact, the communication cost of a DSA algorithm goes hand-in-hand with its solution quality. Recall

12



0 0.2 0.4 0.6 0.8 1
100

200

300

400

500

600

700

800

900

Probability of Parallelism

N
um

be
r 

of
 V

io
la

tio
ns

DSA−A
DSA−B and C
DSA−D and E

A 

B , C

D , E

0 0.2 0.4 0.6 0.8 1
400

600

800

1000

1200

1400

1600

1800

2000

Probability of Parallelism

N
um

be
r 

of
 V

io
la

tio
ns

DSA−A
DSA−B and C
DSA−D and E

A 

B , C

D , E

Figure 3: Solution quality phase transitions on 2-coloring graphs;k = 4 (left) andk = 8 (right).

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

500

600

700

800

Probability of Parallelism

N
um

be
r 

of
 V

io
la

tio
ns

DSA−A
DSA−B
DSA−C
DSA−D
DSA−E

A 

B 

C 

D 

E 

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

500

600

700

Probability of Parallelism

N
um

be
r 

of
 V

io
la

tio
ns

DSA−A
DSA−B
DSA−C
DSA−D
DSA−E

A 

B 

C 

D 

E 

Figure 4: Solution quality phase transitions on graphs;k = 8 using 4 colors (left) and 5 colors (right).

that an agent will send a message to its neighbors after it changed its value (cf. Algorithm 1 and Table 1).

In DSA-A, DSA-B and DSA-D, an agent may change its value if there is a conflict, and will not do so if it is

currently at a state of a local minimum, while in DSA-C and DSA-E, an agent may probabilistically change

its value at a local minimum state. Therefore, in general the communication cost at a node will go down if

the agent moves to a better state, and go up otherwise. As a result, the overall communication cost will also

follow similar trends. If the solution quality of DSA improves over time, so does its communication cost.

Therefore, the communication cost is also controlled by the degree of parallel executions of the agents.

The higher the parallel probabilityp is, the higher the communication cost will be.

We verified this prediction by experiments on grids and graphs, using the same problem instances as

used for analyzing solution quality. Figure 5 shows the communication cost on grids withk = 8 using 4

colors (left) and 5 colors (right) after 1,000 steps. Comparing these these figures with those in Figure 2,

it is obvious that solution quality and communication cost follow identical patterns. Furthermore, the

communication cost on graphs (not shown here) follows similar patterns as those on grids.

13



0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

Probability of Parallelism

A
ve

ra
ge

 C
om

m
un

ic
at

io
ns

 E
ac

h 
S

te
p

DSA−A
DSA−B
DSA−C
DSA−D
DSA−E

A 

B C 

D 

E 

0 0.2 0.4 0.6 0.8 1

0

500

1000

1500

2000

2500

3000

3500

Probability of Parallelism

A
ve

ra
ge

 C
om

m
un

ic
at

io
ns

 E
ac

h 
S

te
p DSA−A

DSA−B
DSA−C
DSA−D
DSA−E

A 

B 

C 
D 

E 

Figure 5: Communication phase transitions on grids withk = 8 using 4 colors (left) and 5 colors (right).

2.4 Breakout and Distributed Breakout

Distributed Breakout algorithm was based on a centralized predecessor. To better understand the dis-

tributed algorithm, we start with the centralized version. We then study the strength and weakness of DBA

for graph coloring.

2.4.1 The algorithm

Algorithm 2 Sketch of DBA
set the local weights of constraints to one
value ← a random value from domain
while (no termination condition met)do

exchangevalue with neighbors
WR← BestPossibleWeightReduction()
send WR to neighbors and collect their WRs
if (WR > 0) then

if (it has the biggest improvement among neighbors)then
value ← the value that gives WR

end if
else

if (no neighbor can improve)then
increase violated constraints’ weights by one

end if
end if

end while

The breakout algorithm [79] is a local search method equipped with an innovative scheme of escaping

local minima for CSP. Given a CSP, the algorithm first assigns a weight of one to all constraints. It then

picks a value for every variable. If no constraint is violated, the algorithm terminates. Otherwise, it chooses

a variable that can reduce the total weight of the unsatisfied constraints if its value is changed. If such a

weight-reducing variable-value pair exists, the algorithm changes the value of a chosen variable. The

algorithm continues the process of variable selection and value change until no weight-reducing variable

14



can be found. At that point, it reaches a local minimum if a constraint violation still exists. Instead of

restarting from another random initial assignment, the algorithm tries to escape from the local minimum

by increasing the weights of all violated constraints by one and proceeds as before. This weight change

will force the algorithm to alter the values of some variables to satisfy the violated constraints.

Centralized breakout can be extended to distributed breakout algorithm (DBA) [103, 105]. Without

loss of generality, we assign an agent to a variable, and assume that all agents have unique identifiers. Two

agents areneighborsif they share a common constraint. An agent communicates only with its neighbors.

At each step of DBA, an agent exchanges its current variable value with its neighbors, computes the pos-

sible weight reduction if it changes its current value, and decides if it should do so. To avoid simultaneous

variable changes at neighboring agents, only the agent having the maximal weight reduction has the right

to alter its current value. If ties occur, the agents break the ties based on their identifiers. The above pro-

cess of DBA is sketched in Algorithm 2. For simplicity, we assume each step is synchronized among the

agents. This assumption can be lifted by a synchronization mechanism [94].

In the description of [103, 105], each agent also maintains a variable, calledmy-termination-counter

(MTC), to help detect a possible termination condition. At each step, an agent’s MTC records the diam-

eter of a subgraph centered around the agent within which all the agents’ constraints are satisfied. For

instances, an agent’s MTC is zero if one of its neighbors has a violated constraint; it is equal to one when

its immediate neighbors have no violation. Therefore, if the diameter of the constraint graph is known to

each agent, when an agent’s MTC is equal to the known diameter, DBA can terminate with the current

agent values as a satisfying solution. However, MTCs may never become equal to the diameter even if a

solution exists. There are cases in which the algorithm is not complete in that it cannot guarantee to find

a solution even if one exists. Such a worst case depends on the structure of a problem, a topic of the next

section. We do not include the MTC here to keep our description simple.

It is worth pointing out that the node, or agent, identifiers are not essential to the algorithm. They are

only used to set up a priority between two competing agents for tie breaking. As long as such priorities

exists, node identifiers are not needed.

2.4.2 Completeness and Complexity

Distributed algorithms are generally incomplete in that they cannot guarantee to find a solution even if one

exists. It is also generally difficult to show the completeness of a distributed algorithm and to analyze its

complexity. In this section, we consider the completeness and complexity of DBA on a special class of

problems, i.e., distributed graph coloring. Here, the complexity is defined as DBA’s number of synchro-

nized distributed steps. In one step, value changes at different nodes are allowed while one variable can

change its value at most once. We also use variables, nodes and agents interchangeably in our discussion.

Acyclic graphs: First notice that acyclic graphs are 2-colorable. Thus, coloring acyclic graphs is less

constrained with more colors. Therefore, it is sufficient to consider acyclic graphs with two colors. To

simplify our discussion, we first consider chains, which are special acyclic graphs. The results on chains

will also serve as a basis for trees.

15



Chains We will refer to the combination of variable values and constraint weights as aproblem state, or

statefor short. Asolutionof a constraint problem is a state with no violated constraint. We say two states

areadjacentif DBA can move from one state to the other within one step.

Lemma 2.1 DBA will not visit the same problem state more than once when 2-coloring a chain.

Proof: Assume the opposite, i.e., DBA can visit a state twice in a process as follows,Sx → Sy → · · · →
Sz → Sx. Obviously no constraint weight is allowed to increase at any state on this cycle. Suppose that

nodex changes its value at stateSx to resolve a conflictC involving x. In the worst case a new conflict at

the other side of the node will be created.C is thus “pushed” to the neighbor ofx, sayy. Two possibilities

exist. First,C is resolved aty or another node along the chain, so that no state cycle will form. Second,

C returns tox, causingx to change its value back to its previous value. Since nodes are ordered, i.e., they

have prioritized identifiers, violations may only move in one direction andC cannot return tox from y

without changing a constraint weight. This means thatC must move back tox from another path, which

contradicts the fact that the structure is a chain.ut

Lemma 2.2 DBA can increase a constraint weight to at mostbn/2c when coloring a chain ofn variables

using at least two colors.

Proof: The weight of the first constraint on the left of the chain will never change and thus remain at one,

since the left end node can always change its value to satisfy its only constraint. The weight of the second

constraint on the left can increase to two at the most. When the weight of the second constraint is two

and the second constraint on the left is violated, the second node will always change its value to satisfy

the second constraint because it has a higher weight than the first constraint. This will push the violation

to the left end node and force it to change its value and thus resolve the conflict. This argument can be

inductively applied to the other internal nodes and constraints along the chain. In fact, it can be applied to

both ends of the chain. So the maximal constraint weight on the chain will bebn/2c. ut
Immediate corollaries of this lemma are the best and worst arrangements of variable identifiers. In the

best case, the end nodes of the chain should be most active, always trying to satisfy the only constraint,

and resolving any conflict. Therefore, the end nodes should have the highest priority, followed by their

neighbors, and so on to the middle of the chain. The worst case is simply the opposite of the best case; the

end nodes are most inactive and have the lowest priority, followed by their neighbors, and so on.

Theorem 2.1 DBA terminates in at mostn2 steps with a solution, if it exists, or with an answer of no

solution, if it does not exist, when coloring a chain ofn variables using at least two colors.

Proof: As a chain is always 2-colorable, the combination of the above lemmas gives the result for a chain

with nodes of domain sizes at least two. It is possible, however, that no solution exists if some variables

have fixed values or colors. In this case, it is easy to create a conflict between two nodes with domain size

one, which will never be resolved. As a result, the weights of the constraints between these two nodes

will be raised ton. If each agent knows the chain lengthn, DBA can be terminated when a constraint

16



weight is more thann. (In fact, the chain length can be computed inO(n) steps as follows. An end node

first sends number 1 to its only neighbor. The neighboring node adds one to the number received and then

passes the new number to the other neighbor. The number reached at the other end of the chain is the chain

length, which can be subsequently disseminated to the rest of the chain. The whole process takes2n steps.)

Furthermore, a node needs at mostn−1 steps to increase a constraint weight. This worst case occurs when

a chain contains two variables at two ends of the chain which have the lowest priorities and unity domain

sizes so neither of them can change its value. On such a chain, a conflict can be pushed around between

the two end nodes many time. Every time a conflict reaches an end node, the node increases the constraint

weight to push the conflict back. Since a constraint weight will be no more thann, the result follows.ut
A significant implication of these results is a termination condition for DBA for coloring a chain. If

DBA does not find a solution inn2 steps, it can terminate with the conclusion that no solution exists. This

new termination condition and DBA’s original termination condition of my-termination-counter guarantee

DBA to terminate on a chain.

TreesThe key to the proof for coloring chain and tree structures is that no cycle exists in an acyclic graph,

so that the same conflict cannot return to a node without increasing a constraint weight.

The arguments on the maximal constraint weight for coloring chains hold for general acyclic graphs

or trees. First consider the case that each variable has a domain size at least two. In an acyclic graph, an

arbitrary constraint (link)C connects two disjoint acyclic graphs,G1 andG2. AssumeG1 andG2 haven1

andn2 nodes, respectively, andn1 ≤ n2. Then the maximal possible weightW onC cannot be more than

n1, which is proven inductively as follows. If the nodev associated withC is the only node ofG1, then

the claim is true sincev can always accommodateC. If G1 is a chain, then the arguments for Lemma 2.2

apply directly and the maximal possible weight of a constraint is the number of links the constraint is

away from the end variable ofG1. If v is the only node inG1 that connects to more than one constraint

in G1, which we call a branching node, then a conflict atC may be pushed intoG1 when the weight of

C is greater than the sum of the weights of all constraints inG1 linked tov, which is at most equal to the

number of nodes ofG1. The same arguments equally apply whenv is not the only branching node ofG1.

Therefore, the maximal constraint weight is bounded byn.

The worst-case complexity can be derived similarly. A worst case occurs when all end variables of

an acyclic graph have fixed values, so that a conflict may never be pushed out of the graph. A constraint

weight can be bumped up by one after a conflict has traveled from an end node to other end nodes and

back, within at mostn steps.

Based on these arguments, we have the following result.

Theorem 2.2 DBA terminates in at mostn2 steps with either an optimal solution, if it exists, or an answer

of no solution, if it does not exist, when coloring an acyclic graph withn nodes with at least two colors.

The above completeness result can be directly translated to centralized breakout algorithm, leading to

its completeness of coloring acyclic graphs as well. Moreover, since each step in DBA is equivalent to

n steps in the centralized algorithm, each of which examines a distinct variable, the complexity result on

17



0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 s

te
ps

chain length

perfect ordering
worst ordering

good ordering

worst ordering

1

10

100

1000

10000

10 100 1000 10000

nu
m

be
r 

of
 s

te
ps

number of nodes

branchin factor 2
branchin factor 6

branching factor 2

branching factor 6

Figure 6: The number of steps taken by DBA on chains with the best and worst variable identifier arrange-
ments (left) and on trees with worst identifier arrangements (right).

DBA also means that the worst-case complexity of the centralized algorithm isO(n3). These analytical

results reveal the superiority of centralized breakout algorithm and DBA over conventional local search

methods of coloring acyclic graphs, including the distributed stochastic algorithm discussed in Section 2.3,

which are not complete even on a chain.

Our experimental results also show that the number of steps taken by DBA is much smaller than the

n2 upper bound, as shown in Figure 6. In our experiments, we used different size chains and trees and

averaged the results over 100 random trials. We considered the best- and worst-case identifier arrangements

for chains (Figure 6 left) and worst-case arrangement for trees (where more active nodes are closer to the

centers of the trees) with different branching factors. As the figure shows, the average number of steps

taken by DBA is near linear for the worst-case identifier arrangement, and the number of steps is linear on

trees with a worst-case identifier arrangement (Figure 6 right). Furthermore, for a fixed number of nodes

the number of steps decreases inversely when branching factors of the trees increase. In short, DBA is

efficient on coloring acyclic graphs.

Cyclic graphs: Unfortunately, DBA is not complete on cyclic constraint graphs. This will include

non-binary problems as they can be converted to binary problems with cycles. This is also the reason that

breakout algorithm is not complete on Boolean satisfiability with three variables per clause [79], which is

equivalent to a constraint with three variables.

When there are cycles in a graph, conflicts may walk on these cycles forever. To see this, consider a

problem of coloring a ring with an even number of nodes using two colors (black and white), as shown

in Figure 7, where the node identifiers and constraint weights are respectively next to nodes and edges.

Figure 7(1) shows a case where two conflicts appear at locations between nodes 1 and 3 and between

nodes 4 and 5, that are not adjacent to each other. The weights of the corresponding edges are increased

accordingly in Figure 7(2). As node 1 (node 4) has a higher priority than node 3 (node 5), it changes its

value and pushes the conflict one step counter-clockwise in Figure 7(3). The rest of Figure 7 depicts the

subsequent steps until all constraint weights have been increased to 2. This process can continue forever

with the two conflicts moving in the same direction on the chain at the same speed, chasing each other

endlessly and making DBA incomplete.

18



5

2

4

31

6

7
8

5

2

4

31

6

7
8

2

2

2

2

5

2

4

31

6

7
8

5

2

4

31

6

7
8

2

2

5

2

4

31

6

7
8

5

2

4

31

6

7
8

2

22

2

5

2

4

31

6

7
8

5

2

4

31

6

7
8

2

22

2

5

2

4

31

6

7
8

5

2

4

31

6

7
8

2

22

2

2

2

22

5

2

4

31

6

7
8

5

2

4

31

6

7
8

2
2

2

2

22

5

2

4

31

6

7
8

5

2

4

31

6

7
8

2
2

2

2

2

2

1.) 2.) 3.) 4.)

5.) 6.) 7.) 8.)

Figure 7: A worst case of DBA for coloring a ring.

4

6

8

10

12

14

16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r 

of
 s

te
ps

probability of DBA(wp/sp)

DBA
DBA(wp)
DBA(sp)

DBA DBA(wp)

DBA(sp)

13
14
15
16
17
18
19
20
21
22

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r 

of
 s

te
ps

probability of DBA(wp/sp)

DBA(wp)
DBA(sp)

DBA(wp)

DBA(sp)

Figure 8: Steps taken by DBA and variants on the example of Figure 7 with random initial assignments
(left) and the specific assignment of Figure 7 (right).

2.4.3 Stochastic Variations

A lesson that can be learned from the above worst-case scenario is that conflicts should not move at the

same speed. We thus introduce randomness to alter the speeds of possible conflict movements on cycles of

a graph. This stochastic feature may increase DBA’s chances of finding a solution possibly with a penalty

on convergence to solution for some cases.

DBA(wp) and DBA(sp): We can add randomness to DBA in two ways. In the first, we use a proba-

bility for tie breaking. The algorithm will proceed as before, except that when two neighboring variables

have the same improvement for the next step, they will change their values probabilistically. This means

that both variables may change or not change, or just one of them. We call this variation weak probabilistic

DBA, denoted as DBA(wp).

In the second method, which was inspired by the distributed stochastic algorithm [25, 27, 116], a

variable will change if it has the best improvement among its neighbors. However, when it can improve

but the improvement is not the best among its neighbors, it will change based on a probability. This

variation is more active than DBA and the weak probabilistic variation. We thus call it strong probabilistic

DBA, DBA(sp) for short.

19



0
100
200
300
400
500
600
700
800
900

1 10 100 1000

vi
ol

at
io

ns

steps

DBA(wp) p=0.1
DBA(wp) p=0.5
DBA(wp) p=0.9

DBA(wp) p=0.1

DBA(wp) p=0.5

DBA(wp) p=0.9

0
100
200
300
400
500
600
700
800
900

1 10 100 1000

vi
ol

at
io

ns

steps

DBA(wp) p=0.1
DBA(wp) p=0.5
DBA(wp) p=0.9

DBA(sp) p=0.5

DBA(sp) p=0.9

DBA(sp) p=0.1

Figure 9: DBA(wp) and DBA(sp) on grid20× 20 andk = 4.

One favorable feature of these variants is that no variable identifiers are needed, which may be im-

portant for some applications where node identifiers across the whole network is expensive to compute.

Moreover, these variants give two families of variations to DBA, depending on the probabilities used. It

will be interesting to see how they vary under different parameters, the topic that we consider next.

DBA(wp) versus DBA(sp): We first study the two variants on the example of coloring an 8-node ring

of Figure 7. In the first set of tests, node identifiers and initial colors are randomly generated and 10,000

trials are tested. DBA is unable to terminate on 15% of the total trials after more than 100,000 steps3, while

on the other 85% of the trials DBA finds a solution after 5 steps on average as shown in Figure 8(left). In

contrast, DBA(wp) and DBA(sp) always find solutions but require almost twice as many steps on average

with the best probability around0.6.

In the second set of tests, we use the exact worst-case initial assignment as shown in Figure 7. As

expected, DBA failed to terminate. DBA(wp) and DBA(sp) find all solutions on 1,000 trials. Since they

are stochastic, each trial may run a different number of steps. The average number of steps under different

probability is shown in Figure 8(right).

Next we study these two families of variants on grids, graphs and trees. We consider coloring these

structures using 2 colors. For grids, we consider20 × 20, 40× 40, and60 × 60 grids with connectivities

equal tok = 4 andk = 8. To simulate infinitely large grids in our experiments, we remove the grid

boundaries by connecting the nodes on the top to those on the bottom as well as the nodes on the left

to those on the right of the grids to createk = 4 grid. Fork = 8 grid, we further link a node to four

more neighbors, one each to the top left, top right, bottom left and bottom right. This renders the problem

overconstrained for two-coloring. Hence, the algorithms may only try to improve the solution quality by

minimizing the number of violated constraints.

The results of20 × 20 grids with k = 4 are shown in Figure 9, averaged over 2,000 trials. As the

figures show, the higher the probability the better DBA(wp)’s performance. For DBA(sp)p = 0.5 is the

best probability.

We generate 2,000 graphs with 400 nodes with an average connectivity per node equal tok = 4 and

3Our additional tests also show that DBA’s failure rate decreases as the ring size increases.

20



800
900

1000
1100
1200
1300
1400
1500
1600
1700

1 10 100 1000

vi
ol

at
io

ns

steps

DBA(wp) p=0.1
DBA(wp) p=0.5
DBA(wp) p=0.9

DBA(wp) p=0.5

DBA(wp) p=0.9

DBA(wp) p=0.1

DBA(sp) p=0.5

DBA(sp) p=0.9

DBA(sp) p=0.1

800
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800

1 10 100 1000 10000

vi
ol

at
io

ns

steps

Figure 10: DBA(wp) (left) and DBA(sp) (right) on graph with 400 nodes and k=8.

k = 8 by adding, respectively, 1,600 and 3,200 edges to randomly picked pairs of unconnected nodes.

These two graphs are generated to make a correspondence to the grid structures ofk = 4 andk = 8

considered previously, except that both random graphs are not two-colorable. All algorithms are applied

to the same set of graphs for a meaningful comparison. Figure 10 shows the results on graphs withk = 8.

There is no significant difference within the DBA(wp) family. However, DBA(sp) with large probabilities

can significantly degrade to very poor performance, exhibiting a phenomenon similar to phase transitions.

Since DBA(sp) with high probability is close to distributed stochastic algorithm [25, 27, 116], the results

here are in line with those of [116].

We also consider DBA(wp) and DBA(sp) on random trees with various depths and branching factors.

Due to space limitations, we do not include detailed experimental results here, but give a brief summary. As

expected, they all find optimal solutions for all 10,000 2-coloring instances. Within DBA(wp) family, there

is no significant difference. However, DBA(sp) with a high probability has a poor anytime performance.

Combining all the results on the constraint structures we considered, DBA(sp) appears to be a poor

algorithm in some cases, especially when its probability is very high.

DBA(wp) and DBA(sp) versus DBA: The remaining issue is how DBA(wp) and DBA(sp) compare

with DBA. Here we use the best parameters for these two variants from the previous tests and compare

them directly with DBA. We average the results over the same sets of problem instances we used in

Section 2.4.3. Figures 11, 12 and 13 show the experimental results on grids, random graphs and trees,

respectively. With their best parameters, DBA(wp) and DBA(sp) appear to be compatible with DBA. Fur-

thermore, as discussed earlier, DBA(wp) and DBA(sp) increase the probability of convergence to optimal

solutions. DBA(wp), in particular, is a better alternative in many cases if its probability is chosen carefully.

Stochastic features do not seem to impair DBA’s anytime performance on many problem structures and

help overcome the problem of incompleteness of DBA on graphs with cycles.

2.5 Comparative Analysis and Application

We now directly compare DBA and DSA on multi-coloring problems generated from the scan scheduling

problem discussed in Section 2.2. In our experiments, we set the sensing radius of a sensor to one unit, and

21



0
100
200
300
400
500
600
700
800
900

1 10 100

nu
m

be
r 

of
 v

io
la

tio
ns

number of steps

DBA
DBA(wp) p=0.9
DBA(sp) p=0.5DBA(sp) p=0.5

DBA(wp) p=0.9

DBA

Figure 11: DBA and random DBAs on grid20× 20 andk = 4.

800
900

1000
1100
1200
1300
1400
1500
1600
1700

1 10 100 1000

nu
m

be
r 

of
 v

io
la

tio
ns

number of steps

DBA(sp) p=0.5

DBA

DBA(wp) p=0.9

Figure 12: DBA and random DBAs on graph with 400 nodes and k=8.

used a square of10× 10 units as the area to be monitored. The number of sensing sectors is set to three to

match our hardware system. We randomly and uniformly placed a fixed number of sensors with arbitrary

orientations in the square. We then converted these problems into multi-coloring problems as described

in Section 2.2. We experimented with different values of maximum allowed colorsT , which correspond

to the cycle lengths of scanning, and different sensor activation ratiosα, which determin how often the

sensors will be active within a scanning cycle. In the following, we report the results usingT = 6 and

T = 18 with α = 2/3.

For DSA, we changed its probabilityp of parallel executions from0.1 to 0.99, with an increment

of 0.01. We used 100 instances for eachp. We evaluated the performance of DSA and DBA when

they have reached relatively stable states. Specifically, we ran DSA and DBA to the point where their

performance does not change significantly from one step to the next. On all network sizes we considered,

these algorithms’ performance seems to be stabilized after 256 steps. Similar results have been observed

after 1024, 2048 and longer steps. In the rest of this section, we report the results at 256 steps.

22



0
10
20
30
40
50
60
70
80
90

1 10 100

vi
ol

at
io

ns

steps

DBA
DBA(wp) p=0.9
DBA(sp) p=0.5

DBA(sp) p=0.5

DBA(wp) p=0.9

DBA

Figure 13: DBA and random DBAs on tree with depthd = 4 and branching factork = 4.

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

number of sensorsra
tio

 o
f v

io
la

te
d 

co
ns

tr
ai

nt
s 

to
 to

ta
l c

on
st

ra
in

ts

DBA 

                (a) 

DSA p=0.1

 

DSA p=0.4 

DSA p=0.9 
DSA p=0.7 

20 40 60 80 100
0.01

0.015

0.02

0.025

0.03

0.035

number of sensorsra
tio

 o
f v

io
la

te
d 

co
ns

tr
ai

nt
s 

to
 to

ta
l c

on
st

ra
in

ts
DBA 

                (b)          
         
         
         
DSA p=0.1
         
         
         

DSA p=0.4 

DSA p=0.9 
DSA p=0.7 

Figure 14: DSA vs. DBA in terms of number of sensors,T = 6.

2.5.1 Solution quality in terms of network sizes

Since one of our ultimate objectives is to choose DBA or DSA to solve our distributed scan scheduling

problem, we need to investigate the relationship between the quality of the schedules found by these two

algorithms and the properties of the underlying networks. To this end, we experimentally compared DBA

and DSA on multi-coloring problems produced from sensor networks of various sizes. We changed the

density of multi-coloring graphs by changing the number of sensorsN . The solution quality is the total

weight of violated soft constraints normalized by the total weight of soft constraints, measured at 256 steps

of the algorithms’ executions when their performances are relatively stable.

We run DBA and DSA with four different representative probabilitiesp of parallel executions, 0.1,

0.4, 0.7 and 0.9. We varied the density or number of sensors and compared the quality of the colorings

that DSA and DBA produced. We changed the number of sensors from 25 to 100 with an increment

of 5 sensors, and from 100 to 500 with an increment of 25 sensors. We averaged the results over 100

random problem instances for each fixed number of sensors. Figure 14 shows the result onT = 6. The

horizontal axes in the figures are the numbers of sensors, and the vertical axes are the normalized solution

23



20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

ra
tio

 o
f v

io
la

te
d 

co
ns

tr
ai

nt
s 

to
 v

io
la

te
d 

co
ns

tr
ai

nt
s

number of sensors

DBA 

DSA p=0.1

DSA p=0.4 

DSA p=0.7

DSA p=0.9

Figure 15: DSA vs. DBA in terms of number of sensors,T = 18.

quality after 256 steps. Longer executions, such as 512 and 1024 steps, exhibit almost identical results.

Figure 14(a) shows the result in the whole range of 25 to 500 sensors and Figure 14(b) expands the results

of Figure 14(a) in the range of 25 to 100 sensors,

As analyzed in Section 2.4, DBA may perform better than DSA on underconstrained problems, espe-

cially acyclic graphs. An underconstrained scan scheduling problem may be created when more colors

are available. Indeed, when we increase the number of allowed colors (targeting schedule cycle length) to

eighteen (T = 18), DBA outperforms DSA on sparse networks with less than 50 sensors. This result is

shown in Figure 15, where each data point is averaged over 100 trials.

Based on the experimental results, we can reach three conclusions. First, DBA typically performs

worse than DSA when its degree of parallelism is not too high in the range of 25 to 500 sensors. Second,

when the sensor density increases, the performance of DSA may degenerate, especially if its degree of

parallelismp is high. For instance, DSA withp = 0.9 becomes the worst of all when there are more than

400 sensors (Figure 14). This means that the denser the sensor networks are, the smaller the parallel degree

p should be. The degenerated performance of DSA with a largep is mainly due to its phase-transition

behavior revealed in the previous section. When the sensor density increases, more constraints will be

introduced into the inherited constraints of the scan scheduling problem, so that the problem becomes

overconstrained. As indicated in the phase-transition section, DSA’s phase-transition behavior appears

sooner when overall constraints are tighter. Third, in the underconstrained region, a higher degree of

parallelism is preferred to a lower degree.

2.5.2 Anytime performance

An important feature of our targeting sensor network for object detection is real-time response. High

real-time performance is important, especially for systems with limited computation and communication

resources in which it may be disastrous to wait for the systems to reach stable or equilibrium states. This

is particularly true for our sensor-based system for object detection and mobile object tracking. Therefore,

24



10
0

10
1

10
2

10
3

0.1

0.15

0.2

0.25

0.3

0.35

number of steps

ra
tio

 o
f v

io
la

te
d 

co
ns

ta
in

ts
 to

 to
ta

l c
on

st
ra

in
ts

DBA 

DSA p=0. 78

(a) 

N=500 sensor networks 

10
0

10
1

10
2

10
3

0.05

0.1

0.15

0.2

0.25

0.3

ra
tio

 o
f v

io
la

te
d 

co
ns

tr
ai

nt
s 

to
 to

ta
l c

on
st

ra
in

ts

number of steps

DBA 

DSA p=0. 9

(b) 

N=300 sensor networks 

Figure 16: Anytime performance of DSA and DBA in dense sensor networks,T = 6.

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

number of steps

ra
tio

 o
f v

io
la

te
d 

co
ns

tr
ai

nt
s 

to
 to

ta
l c

on
st

ra
in

ts

DBA 

DSA p=0. 9

(c) 

N=80 sensor networks 

DSA p=0.9 
DBA 

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

number of steps

ra
tio

 o
f v

io
la

te
d 

co
ns

tr
ai

nt
s 

to
 to

ta
l c

on
st

ra
in

ts

DBA 

DSA p=0. 9

(d) 

N=40 sensor networks 

DSA p=0.9 
DBA 

Figure 17: Anytime performance of DSA and DBA in sparse sensor networks,T = 6.

the algorithm for the distributed scan scheduling must have anytime property, i.e., the algorithm can be

stopped at anytime during its execution and is able to provide a feasible solution at that point. Fortunately,

DBA and DSA can both be used for this purpose because the hard constraints internal to individual sensors

(a sensor cannot scan its two sectors at the same time) are always maintained.

In the rest of this section, we directly compare DBA and DSA as anytime algorithms. We use the same

set of experimental conditions and parameters as in the previous sections, i.e., sensors have three sectors

and are randomly and uniformly placed on a10× 10 grid, with results averaged over 100 trials.

We first consider dense networks withN = 500 andN = 300 sensors. Based on the phase-transition

results in Section 2.3.2, DSA performs the best withp = 0.9 andp = 0.78 for the networks ofN = 500

andN = 300 nodes, respectively. We used these parameters in our experiments. The experimental results

are in Figure 16. As the results show, DSA performs much better than DBA in both anytime performance

and final solution quality.

We now consider sparse sensor networks, using networks withN = 80 and N = 40 sensors as

representatives. As discussed earlier, a higher degree of parallelism should be used on sparse graphs, we

25



10
0

10
1

10
2

10
3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a)

number of steps

ra
tio

 o
f v

io
la

te
d 

co
ns

tr
ai

nt
s 

to
 to

ta
l c

on
st

ra
in

ts

DSA p=0.78 

DBA 

N=500 sensor networks 

10
0

10
1

10
2

10
3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
(b)

number of steps

ra
tio

 o
f v

io
la

te
d 

co
ns

tr
ai

nt
s 

to
 to

ta
l c

on
st

ra
in

ts

DSA p=0.9 

DBA 

N=300 sensor networks 

Figure 18: Anytime performance of DSA and DBA in dense sensor networks,T = 18.

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

number of stepsra
tio

 o
f v

io
la

te
d 

co
ns

tr
ai

nt
s 

to
 to

ta
l c

on
st

ra
in

ts

DSA p=0.9 

DBA 

N=80 sensor networks 

(a) 

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

ra
tio

 o
f v

io
la

te
d 

co
ns

tr
ai

nt
s 

to
 to

ta
l c

on
st

ra
in

ts

number of steps

(b)

DSA p=0.9 

DBA 

N=40 sensor networks 

Figure 19: Anytime performance of DSA and DBA in sparse sensor networks,T = 18.

thus usep = 0.9 for our two sparse networks. The results, averaged over 100 trials, are in Figure 17.

Clearly, DBA and DSA exhibits similar performance, with DSA being able to produce slightly better

solutions at the end.

To complete our analysis, we also compared DSA and DBA on the same sets of instances, but with 18

available colors (T = 18). The results on dense and sparse sensor networks are included in Figures 18 and

19, respectively. Interestingly, DBA’s anytime performance degenerates, compared to that usingT = 6.

In summary, as far as solution quality (anytime and final solutions) is concerned, our experimental

results indicate that DSA should be adopted for the distributed scan scheduling problem.

2.5.3 Communication Cost

We have so far concentrated on the solution quality of DBA and DSA without paying any attention to their

communication cost. As mentioned earlier, communication in a sensor network has an inherited delay

and could be unreliable in most situations. Therefore, a good distributed algorithm should require a small

number of message exchanges.

26



0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12
x 10

5

probability of parallelism

to
ta

l i
nf

or
m

at
io

n 
ex

ch
an

ge

DSA 

(a) 

N=500 sensor networks 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

to
ta

l i
nf

or
m

at
io

n 
ex

ch
an

ge

probability of parallelism

DSA 

(b) 

N=300 sensor networks 

Figure 20: Communication-cost phase transitions of DSA on scan scheduling,T = 6.

In each step of DBA, an agent announces its best possible conflict reduction to its neighbors and

receives from the neighbors their possible weight reductions. Thus, the number of messages sent and

received by an agent in each step of DBA is no less than the number of its neighbors, and the total number

of messages exchanged in each step is more than a constant for a given network.

In contrast, an agent may not have to send a message in a step in DSA if it does not change its value.

In an extreme case, an agent will not change its value if it is at an local minima. If solution quality of DSA

improves over time, its communication cost will reduce as well. In principle, the communication cost of

DSA is correlated to its solution quality. The better the current solution, the less the number of messages.

In addition, the communication cost is also related to the degree of parallel executions of the agents. The

higher the parallel probabilityp is, the higher the communication cost will be. As shown in Section 2.3,

the communication cost of DSA goes hand-in-hand with its solution quality and also experiences a similar

phase-transition or threshold behavior on regular coloring problems. Figure 20 shows the phase-transition

behavior of DSA’s communication cost on theN = 500 andN = 300 sensor networks usingT = 6

that we studied before. Here we considered the accumulative communication cost of all 256 steps. This

result indicates that the degree of parallelism must be controlled properly in order to make DSA effective.

Similar phase-transition patterns have been observed when we useT = 18.

We now compare DSA and DBA in terms of communication cost. Figure 21 shows the results eval-

uating DBA and DSA with probabilityp = 0.78 on N = 500 networks usingT = 6 andT = 18,

averaged over 100 trials. The figures plot the average numbers of messages exchanged in DSA and DBA

at a particular step. Clearly, DSA has a significant advantage over DBA on communication cost. The

large difference on communication cost between DSA and DBA will have a significant implication on

how these two algorithms can be used in real sensor networks, especially when the sensors are connected

through delayed, unreliable and noisy wireless communication. For our particular application and system

where communication was carried out by radio frequencies, DBA’s high communication cost makes it

noncompetitive.

In summary, in terms of solution quality and communication cost, DSA is preferable over DBA for our

27



10
0

10
1

10
2

10
3

0

2000

4000

6000

8000

10000

12000

to
ta

l i
nf

or
m

at
io

n 
ex

ch
an

ge

number of steps

DBA 

DSA p=0. 78

N=500 sensor networks 

10
0

10
1

10
2

10
3

0

2000

4000

6000

8000

10000

12000

number of steps

to
ta

l i
nf

or
m

at
io

n 
ex

ch
an

ge DBA 

DSA p=0.78 

N=500 sensor networks 

Figure 21: Communication cost of DSA and DBA,T = 6 (left) andT = 18 (right).

0 50 100 150 200 250

10
0

number of steps

vi
ol

at
ed

 c
on

st
ra

in
ts

 p
er

 ti
m

es
lo

t

DSA p=0.9 

T=33 T=30 T=27 T=24 T=21 T=18 T=15 

N=80 sensor networks 

T=36 

0 200 400 600

10
0

number of steps

vi
ol

at
ed

 c
on

st
ra

in
ts

 p
er

 ti
m

es
lo

t

DBA 

T=33 T=30 T=27 T=24 T=21 T=18 T=15 

N=80 sensor networks 

T=36 

0 200 400 600

10
0

number of steps

vi
ol

at
ed

 c
on

st
ra

in
ts

 p
er

 ti
m

es
lo

t

DBA 

T=33 T=30 T=27 T=24 T=21 T=18 T=15 

N=80 sensor networks 

T=36 

Figure 22: Finding best possible schedule using DSA (top) and DBA (bottom),N = 80.

distributed scan scheduling if DBA’s degree of parallelism is properly controlled.

2.5.4 Solving Scheduling Problem

Based on the results from Sections 2.3.2 to 2.5.3, we now apply DSA and DBA to dealing with two related

problems at the same time, finding the shortest scan cycle lengthT and obtaining a good schedule given

the shortest cycle lengthT .

To this end, we run DSA and DBA in iterations, starting with an initially largeT . T is reduced after

each iteration. Given aT in an iteration, DSA or DBA searches for a schedule of a quality better than a

predefined thresholdQ. The iteration stops whenever such a schedule is found within a fixed number of

steps, and a new iteration may start with a smallerT .

In our simulation, we checked the quality of the current schedule after each simulated step. As soon

as the quality of the current schedule exceeds the given thresholdQ, we terminate the current iteration.

This is equivalent to having an agent compute the global state of a distributed system, a method infeasible

for our completely distributed system. We use this mechanism here simply to evaluate the performance of

DSA and DBA.

28



0 20 40 60 80
20

40

60

80

100

120

140

number of steps

vi
ol

at
ed

 c
on

st
ra

in
ts

 p
er

 ti
m

es
lo

t

DSA p=0.9 

T=33 T=30 T=27 T=24 T=21 T=18 T=15 

N=300 sensor networks 

T=36 

0 200 400 600 800
20

40

60

80

100

120

140

vi
ol

at
ed

 c
on

st
ra

in
ts

 p
er

 ti
m

es
lo

t

number of steps

DBA

T=33 T=30 T=27 T=24 T=21 T=18 T=15 

N=300 sensor networks 

T=36 

Figure 23: Finding best possible schedule using DSA (top) and DBA (bottom),N = 300.

Figures 22 and 23 show the results on two networks, one withN = 80 sensors and the other with

N = 300. In our experiments, we fixed the sensor activation ratio atα = 2/3, used initialT = 36, and

reducedT by three after each iteration, which ran a maximum of 256 steps. The threshold for schedule

quality was set toQ = 0.01 for N = 80 andQ = 40 for N = 300. As the results show, DSA is superior

to DBA. On theN = 80 network (Figure 22), DSA finds a targeting schedule of lengthT = 15 in 242

steps, while DBA needs 588 steps. On theN = 300 network (Figure 23), DSA takes 64 steps, while DBA

uses 691 steps, which is an order of magnitude difference.

In summary, our results clearly show that DSA is superior to DBA on the distributed scan scheduling

problem. If communication cost is also a concern, DSA is definitely the algorithm of choice for the

problem.

2.6 Related Work and Discussions

The basic idea of distributed stochastic search must have been around for some time. A similar idea was

used by Pearl in distributed belief update [83]. The idea was directly used for distributed graph coloring

in [25, 27]. DSA-B considered here is the same as CFP in [27]. However, [25, 27] failed to reveal phase

transitions discussed in this section. The idea was also studied using spin glasses models [67] where

phase transitions were characterized. Phase transitions in distributed constraint problem solving was also

reported in [42].

This research extends the existing work of DSA in many different ways. It proposes two variations

to the basic DSA. It systematically studies observation-based, distributed stochastic search for distributed

coordination and provides an experimental, qualitative analysis on the relationship among the degree of

parallelism, problem constrainedness, solution quality and overall system behavior such as phase transi-

tions. It also demonstrates that phase transitions exist in many different problems and problem structures

and they persist when the degree of parallelism changes. Notice that the phase transitions considered in

this section are different from phase transitions of graph coloring problems [14]. Here we studied the

phase-transition behavior of distributed search algorithms, which needs not be phase transitions of the

29



coloring problems we considered.

Other related algorithms include complete algorithms for DisCSP, such as the asynchronous weak-

commitment (AWC) search algorithm [103, 104], and for DisCOP. These complete algorithms are impor-

tant for distributed constraint solving. Comparing to DBA and DSA, however, they require longer running

time and usually have worse anytime performance, making them inferior for real-time applications where

optimal solutions may be too costly or may not be necessary. In addition, these complete algorithms need

a sufficiently large amount of memory to record the states (agent views) that an agent has visited in order

to avoid revisiting a state multiple times so as to make the algorithms converge to a solution if it exist. In

contrast, DSA and DBA are able to reach near optimal solutions quickly without additional memory. This

feature, along with their good anytime performance, made DSA and DBA attractive applications in sensor

networks where memory is a critically limited resource. In addition, on coloring acyclic graphs, DBA is

complete and has a low polynomial complexity, making it an alternative algorithm for optimal solution in

such a case.

DSA differs from DBA, AWC and Adopt by the notion of uniformness. A distributed algorithm is

called uniform if all nodes execute the same procedure and two nodes do not differ from each other [94].

Therefore, DSA is a uniform algorithm since the nodes do not have identifications and they all execute

the same set of instructions. However, DBA, AWC and Adopt are not uniform because the nodes in these

algorithms need to have identifications to differ from one another and to set priorities to decide what to

execute next.

We need to emphasize that the notion of uniformness for distributed algorithms has a practical impor-

tance for applications in sensor networks. In a typical application in sensor networks, sensors may have to

dynamically organize to form a system. The use of identifications of and priorities among nodes (sensors)

will introduce prohibitive barriers on what systems a set of sensors and a given placement can form. The

fact that DSA is a uniform algorithm further supports the conclusion from the comparison results in this

section that DSA is the algorithm to choose over DBA.

2.7 Conclusions

We were motivated in this research to apply the framework of multiagent systems and the techniques

of distributed constraint problem solving to resource bounded, anytime, distributed constraint problems

in sensor networks. Our specific applications include the detection of mobile objects and the detection of

material damage in real time using distributed sensors and actuators. We first formulated these problems as

distributed multiple coloring problems with the objective of minimizing the number of violated constraints.

To cope with limited resources and to meet the restricted requirement of anytime performance, we

were interested in those distributed algorithms that have low-overhead on memory and computation for

solving distributed constraint optimization problems. We focused particularly on the distributed stochastic

algorithm (DSA) [25, 27, 67, 83] and the distributed breakout algorithm (DBA) [79, 103, 105], two exist-

ing distributed algorithms that fit into the category of low-overhead distributed algorithms. We analyzed

and compared DSA and DBA on distributed multiple coloring problems that were generated from our

30



distributed scheduling problems in sensor networks. We specifically investigated the relationship among

the degree of parallel executions, problem constrainedness, and DSA’s behavior and performance. We

showed that DSA exhibits a threshold behavior similar to phase transitions in which its performance, in

terms of both solution quality and communication cost, degrades abruptly and dramatically when the de-

gree of agents’ parallel execution increases beyond a critical point. We also studied the completeness

and complexity of DBA on distributed graph coloring problems, showing that DBA is complete and has

low polynomial complexity on coloring acyclic graphs. However, DBA is not complete in general. We

also introduced randomization schemes to DBA to improve its worst case performance. Finally, we di-

rectly compared DSA and DBA on our application problems of distributed scheduling problems in sensor

networks. We showed that if controlled properly, DSA is significantly superior to DBA, finding better

solutions with less computational cost and communication overhead. For distributed scheduling problems

such as the ones considered in this section, DSA is the algorithm of choice.

One important lession we have learned from this research was that full syncronization may not be

absolutely necessary in achieving high degree of optimality in distributed environments. This is even

more so when computational and communicational resources are critically limited and constrained, which

appear very often in Autonamous Negotiating Teams domains.

31



3 Analysis of Negotiation Protocols by Distributed Search

Negotiation is an important mechanism for coordination and collaboration in multi-agent systems. It

is particularly effective for systems consisting of self-interested agents, each of which may have different

objectives to achieve and different restrictions to abide to. It is perhaps also prevalent in applications where

privacy of individual agents needs to be protected. Due to its importance, negotiation has been studied for

quite some time, and many different negotiation strategies and protocols have been proposed and developed

[11, 2, 17, 23, 24, 62]. Cooperative negotiation has been studied to solve difficult distributed problems

such as distributed conflict resolution [2, 62], distributed task allocation [11, 24], and distributed resource

allocation [17]. In all these domains, multiple agents share some common resources, e.g., communication

channels and CPU times, and can mutually benefit from one another by cooperatively scheduling the

resources. For these problems, agents only have the information about their local tasks and resources. They

gradually become aware of the global information through negotiation and solve the global problem by

individually solving sub-problems and integrating the solutions to sub-problems into a globally consistent

solution [64]. For some applications, agents may also need to assess and refine the global solutions into

global optimal solutions to make the best use of common resources.

However, global optimal solutions are very hard to achieve through cooperative negotiation in a dis-

tributed setting, due to its computational and communicational complexity. Furthermore, most existing

negotiation protocols are complex and their features are difficult to characterize. To our knowledge, we

have not seen a published work that analyzes a negotiation protocol in depth to understand important issues

of a negotiation method, such as its completeness, complexity and scalability.

In this section, we propose an experimental approach to analyzing negotiation methods. Our strategy

consists of two steps. In the first step, we formulate the distributed problems solved by a negotiation

method by distributed constraint satisfaction/optimization problems, and capture the negotiation protocol

as a distributed constraint search. In the second step, we study the properties of the negotiation protocol

by analyzing the derived search algorithm. Note that to a larger extent, the idea of viewing negotiation as

distributed search is not completely new. Indeed, it has been suggested that distributed AI can be viewed as

distributed search [64]. Nevertheless, we not only view negotiation as distributed search in this research,

but take this view one step further and directly apply a search algorithm to capture the essential features of

a negotiation protocol and analyze its properties and performance.

In this research, we specifically focus on a resource allocation problem underlying a mobile object

tracking problem using distributed sensors and a recently developed negotiation protocol, Scalable Proto-

col for Anytime Multi-level negotiation (SPAM) [68], for this problem. The SPAM negotiation protocol

has been successfully used to manage a set of distributed sensors to solve the problem of tracking multiple

targets. Specifically, a set of networked sensors cooperatively detect and localize a set of moving targets

by taking local measurements and exchanging information. Since a sensor is only capable of measuring

the distance from a target to the sensor as well as the speed of the target, in order to estimate the location of

the target, multiple sensors have to detect at the same time and combine their measurements. Having mea-

surements from more sensors at the same time or getting the measurements more frequently will produce

32



a higher quality tracking.

The primary objective of this multiple target tracking problem is to allocate the sensors to the targets

so as to maximize the tracking quality. The SPAM protocol is designed for solving this problem with

distributed negotiating agents. Each sensor is associated and managed by an agent. Whenever a new

target is detected, an agent may also play the role of managing the task of keeping track of the target, i.e.,

determining which sensors to use for tracking and making schedules for the available sensors. Such an

agent is also called a track manager in the protocol. When more than one target enters the system, conflicts

on the demand of sensors exist, and track managers may need to negotiate with one another to resolve the

conflicts on their local schedules and/or cooperatively produce a global schedule to attempt to maximize

the overall tracking quality. The key idea of the SPAM protocol is to select one of the conflicting track

managers as a mediator to resolve the conflicts and generate partial solutions for the conflicting managers

involved. This conflict resolution process may propagate to multiple negotiation threads. An experimental

study showed that the SPAM protocol works very well for this real-time sensor tracking problem. However,

the SPAM protocol is too complex to be amenable to a thorough theoretical analysis, and almost all of its

important features, such as completeness and convergency, have not been analyzed.

In addition to developing a general experimental approach of analyzing negotiation strategies, another

objective of this research is to elucidate the properties of SPAM, including its completeness, convergence,

complexity and robustness. To this end, we view the resource (sensor) allocation problem for target track-

ing as a distributed constraint satisfaction/optimization problem and transform the SPAM protocol into

distributed search algorithms. We then characterize many important features of the SPAM protocol by

analyzing the derived search algorithms.

This section is organized as follows. We briefly describe the sensor tracking problem and the SPAM

negotiation protocol in section 3.1. We formulate the cooperative negotiation problem as a multi-agent

constraint problem in section 3.2. In section 3.3, we describe our strategy to characterizing the negoti-

ation as distributed constraint search, and further generalizing and extending the SPAM protocol as two

distributed constraint search algorithms. In section 3.4 we apply the derived search algorithms to experi-

mentally analyze some essential features of the negotiation protocol. Finally we conclude and summarize

our results in section 3.5.

3.1 Target Tracking and the SPAM Protocol

The application we consider is the tracking of multiple moving targets using a network of loosely coupled

sensors. This application has also motivated the SPAM negotiation protocol. We will briefly describe the

problem in section 3.1.1 and the protocol in section 3.1.2.

3.1.1 Tracking multiple targets

In this problem, a set of Doppler sensors are scattered with varying orientations throughout a tracking

area. Each sensor is able to detect an object within a fixed radius. However, the overall detection area of a

sensor is divided into three equal sectors, and the sensor can only operate in one sector at any given time.

33



The Doppler sensor is only capable of detecting the distance between a target and the sensor by measuring

signal amplitude as well as the speed of the target based on signal frequency. In order to track a target, at

least three sensors are required to sense at the same time and triangulate the location of the target. Having

more sensors tracking at the same time or taking measurements more frequently will produce a higher

quality tracking.

The problem can thus be described as follows. Givenn sensors andm targets, develop a schedule

for all the sensors to track the maximal number of targets as accurately and frequently as possible over

a period of time. The complication of the problem stems in at least two factors. First, multiple targets

can exist and conflicts on allocating a sensor to multiple targets may be unavoidable, especially when the

number of sensors is not sufficient. Second, an agent has partial knowledge of the overall problem but

needs to act using local information and information from its neighboring agents.

From utility theoretical point of view, the problem can be considered as a problem of maximizing a

utility function of the targets being tracked over a period of time. If the number of sensors allocated to

a particular target is less than three, no reliable estimation to the location of the target can be obtained.

On the other hand, even though having more than three sensors allocated to a target will give rise to better

tracking result, the tracking quality is not linear of the number of sensors used and the quality improvement

will be negligibly small after a specific number of sensors. For example, the utility function of tracking

a set ofm targets can be defined as the total sum of the utility of tracking individual targets, each of

which can be defined ass × 1
2

√
3l − 5 if l sensors are allocated to a target during a period times. This

utility function could be more complicated if it takes into account the location and the orientation of each

individual sensor with respect to the target being tracked.

3.1.2 The SPAM protocol

The SPAM protocol is designed with many considerations on real-time performance and dynamic issues.

The protocol is divided into three stages or abstraction levels to cope with three levels of real-time con-

straints. In the lowest or sensor level, the system is required to respond immediately so that the problem

is solved without any information on each local sensor. At the end of this stage, many conflicts over the

allocation of the sensors may exist. At the second abstraction level, the problem is solved with knowing

the schedule on each local sensor. At the end of this stage, all the local conflicts can be solved, but some

non-local conflicts may be introduced due to missing the global information. At the third or the resource

level, the conflicting agents negotiate over their local schedules through a mediator who generates partial

solutions for all these agents and tries to solve non-local conflicts. As long as conflicts exist in the system,

some agent will become a mediator and propagate the negotiation. A brief description of these three stages

are given below.

Both simulation and hardware experiments show that the SPAM protocol works very well for the real-

time moving target tracking problem. However, since the protocol itself is too complex to analyze, some

important features of the protocol are still unclear. We are especially interested in the following properties

of the protocol: completeness, time complexity, rate of convergence, and scalability. In order to capture

34



Algorithm 3 SPAM Protocol Stage 0
Evaluate and order the usable resources
Decides an initial objective level
if (have more time)then

Go to Stage 1
else

Choose a solution maximizing the local utility
Bind the solution and exit

end if

Algorithm 4 SPAM Protocol Stage 1
Collect the local information from all usable resources
Generate the set of local solutions
if (have solution without conflicts)then

Choose the solution with the maximum local utility
Bind the solution

else
Choose a solution which both minimizes the conflicts and maximizes the local utility
Bind the solution and exit
if (have more time)then

Go to Stage 2
end if

end if

these properties, we will transform the protocol into succinct distributed constraint search algorithms. By

analyzing these search algorithms, we can characterize many important features of the protocol. Before

we launch onto search algorithms, we first describe the constraint formulation of the tracking problem, the

topic of the next section.

3.2 Constraint Problems in Cooperative Negotiation

A distributed problem that can be solved by cooperative negotiation normally involves a set of agents,

each of which has some tasks to be scheduled using a set of shared resources. Given a set ofn agents

overm resources, a cooperative negotiation problem can be formally represented as(A,R), whereA =

{a1, a2, · · · , an} is the set ofn agents andR = {s1, s2, · · · , sm} the set ofm resources. An agent,ai, is

represented by a tuple:

ai = (Ri, Ci, wi),

whereRi, Ri ⊆ R, is a set of resources that can be used by agentai, Ci represents a task to be scheduled

by ai, andwi is the weight assigned to taskCi.

The task ofCi may also consists of a set of sub-tasksTi = {T (i)
1 , T

(i)
2 , · · · , T

(i)
ti
}, and (Ti, Ri)

constitutes a local sub-problem that can be internally solved by agentai. In other words,(Ti, Ri) is local

to ai and is unknown to the other agents. The overall taskCi requires a certain number of resources, and

this number, represented byoi, is called the objective level. Given the set of usable resourcesRi and the

objective leveloi of the agentai, there areli =
(|Ri|

oi

)
alternative solutions. Then taskCi can be represented

35



Algorithm 5 SPAM Protocol Stage 2
Mediator detects the oscillation by checking the history of negotiation
if (have oscillation)then

Lower the objective level
end if
Request meta-level information from the conflicting agents
while (have no solution)do

Generate partial solutions for all these agents
if (all agents are at their lowest objective level)then

Choose a solution at the lowest objective level with min-conflicts
Exit

else
Lower the objective level of one agent

end if
end while
Mediator sends all the partial solutions to the other agents
The other agents evaluate and rank the solutions
Mediator chooses a consistent solution according to the feedback
All the agents bind their solutions
Some agent propagates the negotiation if having conflicts

by

Ci =
li∨

j=1

Sij

whereSij represents one possible solution for the agentai to the taskCi. And Si = {Si1,Si2,· · · ,Sili}
constitutes the solution space for the sub-problemCi on agentai. Given the objective leveloi, Sij can be

further represented by

Sij =
oi∧

m=1

(rij
m = i)

whererij
m ∈ Ri. Hererij

m = i means that the resourcerij
m is allocated to taskCi. Moreover, in order to

makeCi true, at lease one solutionsoli =
oi∧

m=1
(ri

m = i), soli ∈ Si, must be true; therefore, all the resource

ri
m should be allocated toCi. We callsoli the local sub-solution for the sub-problemCi on agentai.

Here, an agent is a track manager, and a resource corresponds to a sensor in the SPAM protocol.

With the restriction that a resource can only be used by one task at any time, each resource should have a

consistent allocation or assignment in the local sub-solution of each taskCi, which constitutes a constraint

among tasks. Note that each taskCi is distributed among a set of agents. Therefore, we can formulate

the cooperative negotiation problem as the following distributed constraint satisfaction problem:Given a

constraint problem(A, R), is there an assignment of resourcesR+ ⊆ R such that
n∧

i=1
Ci is satisfied?

As discussed in Section 3.1.1, an agentai can have a utility functionUi : Si 7→ R that can be used to

discriminate alternative local solutions. Furthermore, the overall goal of the negotiation problem is to find

a globally consistent solution with maximal global utility among all the solutions. Therefore, sinceCi has

36



a weightwi, the global utility can be simply defined asUtiltotal =
n∑

i=1
wi · Utili, whereUtili = Ui(soli)

is the utility of the agentai with the local sub-solutionsoli. With the extension, the agentai is represented

by (Ri, Ci, wi, Ui), and we can formulate the cooperative negotiation problem as the following constraint

optimization problem:Given a constraint problem(A,R), what is the assignment of resources to agents

such that the constraint
n∧

i=1
Ci is true and the utility functionUtotal is maximized?

3.3 Negotiation Protocol as Search Algorithms

The problems solved by cooperative negotiation can be formulated as distributed satisfaction or optimiza-

tion problems. A negotiation protocol can be viewed as a distributed search process. In this section, we

propose to characterize the negotiation protocol by a distributed search algorithm.

3.3.1 Negotiation as distributed search

Negotiation and search are fundamentally different. The former is naturally a multi-agent problem solving

method in which information may not be shared among agents. Thus, negotiation is generally harder than

search, since a global view of a problem may never be constructed. In such a situation, it may become

difficult for an agent to even determine whether the current variable assignments are in a better state than

the previous ones. Moreover, a negotiation process may be trapped in an infinite negotiation loop in which

all the agents revisit some previously encountered global solutions endlessly. Furthermore, negotiation

may have more restrictions than search. For example, time or some other parameters can become a factor

when evaluating the results of the negotiation. Thus, the negotiation is normally more complicated in the

sense of searching for a solution.

Although negotiation and search are different approaches to problem solving, they both search for

assignments to variables of a problem which constitute solutions. Search can also be an ingredient of

negotiation. In a negotiation problem, a task of an agent can be viewed as a variable. It can be assigned

any values (sub-solutions) in its solution space. The sub-solutions of different variables may conflict with

one another due to the inter-agent constraints. When an agent assigns a value to its task, it also needs

to make it consistent with the assignments of other agents which is similar to what a normal constraint

search algorithm does. An agent’s assignment, when communicated to other agents as a proposal in the

negotiation, can be rejected by the other agents. Other agents may provide counter-proposals. Thus a

negotiation is just a search process, in which the agents try to assign values or revise values to their tasks

to satisfy all the inter-agent constraints.

Generally, a negotiation may have two primary goals, to search for consistent solutions and to search

for a consistent solution of a maximal utility. The first goal focuses on the conflict resolution, which is

a problem solved routinely by constraint satisfaction search algorithms. In this regard, negotiation can

thus be viewed as a constraint satisfaction method. The second goal of finding a consistent solution of a

maximum utility is simply an optimization problem, a harder search problem. Note that a task of an agent

can be a complicated subproblem, and the solution space of the subproblem itself may be large. All agents

need to search, cooperatively, to find the best possible global solutions.

37



In short, negotiation can be viewed as a mechanism for solving distributed constraint satisfaction

and constraint optimization problem. Taking this view, we propose to use search algorithms as tools for

analyzing negotiation protocols.

3.3.2 SPAM protocol as search algorithms

The original SPAM protocol [68] has many features to handle real-time and dynamics issues. Although

these features are very necessary and important to deal with real-world applications, they are hardly

amenable to a thorough analysis. It seems to be very difficult to design an abstract model of such a com-

plicated protocol for a theoretical analysis. Therefore, it is difficult to understand, through an analytical

approach, some primary properties of the protocol, such as completeness, rate of convergence, complexity

and scalability.

The difficulty for a theoretical analysis suggests that an experimental analysis is in demand. Here, we

propose to use search algorithms to capture a negotiation protocol so as to characterize the important fea-

tures of the protocol through analyzing the search algorithms. Once a negotiation protocol is transformed

to search algorithms, whenever a theoretical analysis is possible for the search algorithms, such an analysis

can also be translated back to the original negotiation protocol.

Another difficulty for analyzing a distributed negotiation protocol comes from the distributed nature

of the applications to which the protocol is applied. First, it is usually difficult to set up distributed ex-

periments with a large number of agents and resources using a sufficient number of hardware, while still

being able to collect enough accurate experimental data for an evaluation. Second, most experiments in

a distributed environment are not repeatable. A distributed negotiation protocol is in essence nondeter-

ministic. There are indeed many factors, for instance the synchronization among agents, that can change

experimental results from one run to another.

Therefore, caution must be taken in the experimental analysis. In this section, we will first transform

the SPAM protocol to a sequential search algorithm, called sequential SPAM. Here, sequential search does

not necessarily mean centralized search. The search process in the sequential SPAM can still be distributed

among different agents, but in each step only one agent, chosen arbitrarily, is allowed to change its local

values. One run of such a sequential algorithm corresponds to one possible execution of the original

negotiation protocol. Introducing sequential execution is expected to have little impact on the effects of

the protocol while making the analysis easier. The sequential search algorithm is designed to represent

the features of the original protocol as close as possible, so that the results from the search algorithm is

expected to shed some light on the original protocol.

We will then modify the SPAM protocol to construct a synchronous search algorithm, called syn-

chronous SPAM. In this version, the agents negotiate in a more tightly cooperative manner. The agents

are dynamically ordered during the negotiation. The agent that revises its local assignment earlier has a

higher priority. This modification is introduced to make the protocol complete, since the original protocol

cannot guarantee the completeness of a negotiation process, as we will see in the next section. Note that

completeness is not the same as optimization. If a constraint problem is not satisfiable, the synchronous

38



if no conflcits 
among these agents

all agents choose a 
solution

choose one agent which
has conflcits

the agent tries to solve
the conflicts locally
with all the solutions

if has solution

change to new solution
with the best utility

STAGE 1

NO

YES

STAGE 0

if it’s an
oscillation

YES
done

no 
solution

YES

request meta-level information
from conflicting agents

generate solutions for 
these agents

if has solution

change to the new solutions
according to the heuristic

YES

NO

no 
solution

NO

STAGE 2
NO

Figure 24: Sequential SPAM

SPAM algorithm is expected to give an answer of ‘NO’. Using synchronous SPAM, we are able to evalu-

ate the completeness of the original protocol. Moreover, we also expect to understand how to improve the

original protocol by analyzing the synchronous search algorithm.

Sequential SPAM

We now characterize the SPAM protocol as a sequential search algorithm in which only one agent is

allowed to change its local values. The protocol is viewed as the following search algorithm, shown in

Figure 24.

Similar to the SPAM protocol, this algorithm is divided into three stages. In stage 0, each agent

chooses a solution for its local problem without knowing any information about the current schedule of

each resource. In stage 1, each agent collects the information of all the resources that can be used. Then

one of these agents with conflicts with other agents, chosen randomly, tries to resolve the conflicts locally

by searching for a solution in its local solution space. If there exists a local solution that does not conflict

39



with all the other agents, the agent will change to such a non-conflict solution with the best utility.

If there exists no non-conflict solution, the agent will choose a solution which minimizes the conflicts

with the other agents and moves on to stage 2. In other words, this agent becomes a mediator to resolve the

conflicts in which it is involved. In stage 2, the agent requests meta-level information from the conflicting

agents. It then tries to generate solutions for these agents. If there exist non-conflict solutions, these

agents will change to non-conflict solutions based on the heuristic that the most constrained agent chooses

a solution first.

If there is still a conflict among agents, a neighboring conflicting agent will attempt to resolve the

conflict by propagating the negotiation. To avoid an infinite negotiation loop, each agent records the

history of its previous negotiations. If an oscillation is detected, the algorithm terminates or the agent’s

objective level is reduced (meaning that more resources to be used) to lower the constrainedness of the

conflicts. However, as we will see later, this termination condition will make the algorithm lose possible

solutions or solutions with higher objective levels. Therefore, the completeness of the algorithm or the

protocol can not be guaranteed.

Synchronous SPAM

The synchronous SPAM search algorithm is not exactly the same as the original SPAM protocol. It

simulates the original protocol as close as possible and ensures completeness. The algorithm is shown in

Figure 25.

In the synchronous SPAM algorithm agents negotiate in a more tightly cooperative manner. The al-

gorithm has additional features, such as priority and commitment, to guarantee the completeness. In this

algorithm, each agent has a tentative initial solution for its local problem. The tentative solution is revised

when the agent commits its solution. All the committed sub-solutions constitute a partial solution to the

overall problem. The revised solutions must satisfy all the constraints with the sub-solutions. If there exist

multiple solutions, a min-conflict heuristic [76] is used to minimize as many conflicts with tentative solu-

tions as possible. If no solution exists, the partial solutions will be added as a new constraint, and all the

committed solutions will be uncommitted and become tentative solutions again. Here the idea is borrowed

from weak-commitment search algorithm [106] which has proved to be more efficient than backtracking

algorithms in many cases. After the partial solution is uncommitted, the agent will request meta-level

information from the other conflicting agents and try to generate solutions for all of these agents. If no

solution exists, the whole problem will have no solution at the current objective level. As a result, some

agents must lower their objective levels, i.e., reduce some constraints of their local problems. Otherwise,

these agents will just commit the solutions. Note that when there is no solution, the algorithm will not try

to minimize the number of violated constraints. Thus this algorithm is for solving constraint satisfaction

not optimization.

As we will see in the next section, this algorithm can guarantee completeness. It can also be easily

modified into an asynchronous version in which multiple agents can search in parallel but still guarantee

the completeness.

40



if no conflcits 
among these agents

all agents choose a 
tentative solution

choose one agent which
has conflicts

the agent tries to solve
the conflicts locally
with partial solutions
(committed solutions
by some other agents)

if has solution

commit the solution
(add the solution to 
the partial solutions)

if there are multiple
solutions, choose the
solution that minimize
the conflicts with the
tentative solutions

STAGE 1

NO

YES

STAGE 0

if partial 
solution
is empty

YES
done

no 
solution

YES

record the partial solution as a new 
constraint, uncommit the partial 

solutions as the tentative solutions

request meta-level information
from conflicting agents

generate solutions for 
these agents

if has solution

commit the solutions
(add to the partial solutions)

YES

NO

no 
solution

NO

STAGE 2

NO

Figure 25: Synchronous SPAM

3.4 Experimental Analysis and Results

To reveal the properties of the SPAM protocol, we now analyze the completeness, convergence rate, com-

plexity and scalability of sequential and synchronous SPAM algorithms. Here, the completeness of a

protocol is the capability of finding a solution if one exists; the convergence rate concerns the number of

negotiation steps required to reach a solution; the complexity measures the total number of steps taken

before a protocol terminates; and the scalability considers how the properties of a protocol change as the

size of a system increases.

3.4.1 Completeness

The synchronous SPAM protocol can be proved complete. Since the algorithm records the abandoned

partial solutions as new constraints, the algorithm will not create the same partial solution twice. Therefore,

the completeness of the protocol is guaranteed, because there are a finite number of partial solutions to be

41



enumerated. The worst-case time complexity of this protocol is obviously exponential in the number of

agents. Assuming that there aren agents, and each agent has a solution space of sizeS, the worse case

time complexity will beO(Sn). Since the problem itself is NP-complete, this result seems inevitable. The

worst case space complexity of this protocol is also exponential in the number of agents since if there is no

solution for the whole problem, all the partial solutions will be added as new constraints. However, unlike

most of the tree search algorithms, the synchronous SPAM changes the search order flexibly, which makes

it more efficient since it avoids exhaustively searching all the bad solutions when previous values are set

wrong.

Figure 26:An example for incompleteness

The sequential SPAM protocol is not complete. This is simply because that the agents in this algorithm

do not follow any ordering of assignments during the search. This will cause some agents to cycle through

some sub-solutions and fall into an infinite search or negotiation loop. In principle, the algorithm is similar

to a local search and can step on a loop in search space or be trapped by local minima. To avoid such an

infinite loop or local minimum, the protocol simply gives up the current search by lowering the current

objective level if an oscillation is detected. This makes the algorithm incomplete to find some possible

solutions.

Figure 26 gives a simple example of incompleteness where four agents (track managers) try to uti-

42



lize eight resources (sensors) for target tracking. The problem has a solution which gives each agent a

maximum objective level of two. The synchronous SPAM algorithm can find the solution after several

steps given the initial assignment shown in the Figure 26, while the sequential SPAM fails to find such a

solution, due to oscillations in search processes.

Figure 27:Execution of sequential SPAM on the example

Figure 27 illustrates an example of execution steps of sequential SPAM. For the initial assignments

(after stage 0),a1 anda2 have conflicts on the resources1. a1 searches locally but finds that there is no

local solution to resolve the conflicts (after stage 1). It then goes into stage 2 to negotiate witha2. It

finally finds a partial solution (assign(s4, s5) to a2 and(s1, s6) to a1) for botha1 anda2 which resolves

conflicts. So in step 2, new values are assigned. Sincea2 anda4 still have conflicts ons4, a2 propagates

the negotiation. But note thata4 has only two resources available, the only partial solution fora2 anda4 is

to assign(s2, s4) to a4 and(s1, s5) to a2. So in step 2, new values are assigned. Now, ifa1 is to propagate

the negotiation, it will find that the same situation in step 2 as in step 0. An oscillation is detected which

makes the algorithm exit without finding the possible solution.

Although sequential SPAM is not complete, our experiments show that the possibility for the algorithm

to be complete is very high, especially in under-constrained situations. The experiment is set up with 10

agents and 20 agents. The number of resources are 30 and 60 respectively. Each task has a fixed objective

level of 3, which is the best possible in both situations. The availability of resources to agents varies from

0.1 to 0.9. The availability here simply means the probability that any resource can be used by an agent.

For example, in our experimental setting of 10 agents and 30 resources, when availability equals 0.5, on

average each agent will have 15 resources to use. This implies that when the availability increases, the

constrainedness of the problem decreases. Given a set of agents, a set of resources, and the availabilityp,

each problem instance in our experiment is generated by randomly adding an edge between an agent and a

resource with the probabilityp. An edge between an agent and a resource simply means that the resource

is available to the agent.

Figure 28 shows the ratio of the problems solved by sequential and synchronous SPAM algorithms over

10,000 problem instances, with different resource availability. Since the synchronous SPAM algorithm is

complete, the results of synchronous SPAM give a baseline for sequential SPAM. The result for the 10

agents case shows that when the resource availability is bigger than 0.4, most of the problems are solvable;

43



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Availability of resource to the agent

R
at

io
 o

f p
ro

bl
em

s 
w

ith
 s

ol
ut

io
ns

SynSPAM 10 agents
SeqSPAM 10 agents
SynSPAM 20 agents
SeqSPAM 20 agents

Figure 28:Number of problems solved by each algorithm

whereas when the resource availability is less than 0.2, most of the problem are unsolvable. As with other

CSPs, it is expected that the hardest instances of this negotiation problem are more likely to occur when

the resource availability is between 0.2 and 0.4, where around half of the problems are solvable. Notice

that when the problem size increases to 20 agents, the transition from the region with most unsolvable

problems to the region with most solvable problems is even sharper. We suspect that a phase transition

may exist in the negotiation problem.

Figure 29 shows the ratio of completeness of the sequential SPAM algorithm as the resource avail-

ability of the problem increases or the constrainedness of the problem decreases. This figure comes from

the same results plotted in Figure 28. Each data point equals to the number of problems solved by the se-

quential SPAM algorithm divided by the number of problems solved by the synchronous SPAM algorithm.

Since synchronous SPAM is a complete algorithm, the ratio directly reflects the ratio of completeness of

sequential SPAM. The result shows that as the resource availability increases, the completeness of sequen-

tial SPAM increases as well. For the 20 agents problem, when the availability is greater than 0.4, the

completeness ratio of sequential SPAM is more than half. When the resource availability increases beyond

0.6, more than 80% of the solvable problem instances are solved by the sequential SPAM algorithm. This

simply indicates that the original SPAM protocol is well suited for under-constrained problems, having a

very high possibility to be complete.

3.4.2 Time complexity

The sequential SPAM algorithm sacrifices completeness for computation time, as to be verified by exper-

iments. Again, we run both sequential and synchronous SPAM algorithms on 10,000 problem instances

44



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Availability of resource to the agent

R
at

io
 o

f c
om

pl
et

en
es

s

10 agents
20 agents

Figure 29:The rate of completeness for sequential SPAM

with different resource availabilities. The problem settings are still 10 agents with 30 resources. Figure 30

plots the average total CPU time of each algorithm for these 10,000 instances in second. Both experiments

were on a linux machine with 756 MB memory and an AMD 1.4GHZ processor.

The result of the synchronous SPAM algorithm shows a phenomenon similar to that of phase transi-

tions. It takes more CPU times on problems with resource availability at 0.3 and 0.4 than the problems in

the other resource availability. The results here are consistent with the results in Figure 28 which shows that

the problems around 0.3 and 0.4 availability are located in the middle of a phase transition on solubility,

and thus are harder to determine quickly if they are solvable or not.

However, the result of the sequential SPAM algorithm does not show any phase-transition phenomenon.

Its CPU time smoothly increases with the resource availability. Under all the availability settings we con-

sidered, the sequential SPAM algorithm takes less CPU time than the synchronous SPAM algorithm. One

explanation is that the sequential algorithm is able to give up searching for a solution sooner on hard

problems than the synchronous algorithm so that the former finishes faster than the latter. Another, minor

reason is that the sequential SPAM algorithm has a lower overhead in each step.

One simple implication of these results is that there exists a tradeoff between the completeness and time

complexity of a protocol. Adding additional features such as those we introduced in the synchronous algo-

rithm may make a protocol complete, but meanwhile may decrease the time performance of the protocol.

For many soft-constrained problems in practice where the completeness is not crucial, using incomplete

algorithms or protocols such as the SPAM protocol seems to be the right choice.

45



0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

4000

Availability of resource to the agent

C
P

U
 ti

m
e 

of
 1

00
00

 r
un

s 

CPU time of SynSPAM
CPU time of SeqSPAM

Figure 30: The CPU time of each algorithm

3.4.3 Convergency and performance

The sequential and synchronous algorithms cannot guarantee to always turn the current state into a better

one after each step of negotiation. For asynchronous SPAM, during the stage 1, when an agent commits

a local solution that has no conflict with partial solutions, this new solution may introduce more conflicts

with tentative solutions than the conflicts it can reduce. Consequently, the overall conflicts are increased

after one step of negotiation. Similar example can also be found in stage 2 of the sequential SPAM

algorithm. However, both algorithms are able to terminate after a finite number of steps. Therefore, both

algorithms will finally converge to some specific values. For the synchronous SPAM algorithm, this value

is 0 if the problem is solvable as the algorithm is complete, while for the sequential SPAM algorithm, this

value may not necessarily be 0.

Here, we are particularly interested in the rate of convergence of these two algorithms, which basically

measures how fast the protocols improve solution quality. Figure 31 shows the experimental results with

10 agents and 30 resources averaging over 10,000 problem instances, indicating that the convergency

speed of the sequential algorithm is normally better than that of the synchronous algorithm. This result is

not surprising. If we compare the two algorithms, we will find that in each step, the synchronous SPAM

algorithm tries to resolve the conflicts with only partial solutions, whereas the sequential SPAM tries to

resolve the conflicts with all the solutions. This means that in each step, the sequential SPAM is likely to

resolve more conflicts than the synchronous SPAM, so that its convergency speed may be faster. Figure 32

also shows the results on some larger problems with 20 agents and 30 agents.

Based on these results, we find the following interesting facts. Despite its incompleteness, when the

sequential SPAM algorithm terminates, the final solutions are almost always near optimal. Specifically, the

46



1 10 100

2

4

6

8

10

12

14

10 Agents 30 Resources Availability = 0.2

Number of steps

A
ve

ra
ge

 c
on

fli
ct

s 
ov

er
 1

0,
00

0 
ru

ns
SynSPAM deviation
SynSPAM mean
SeqSPAM deviation
SeqSPAM mean

1 10 100

0

2

4

6

8

10

12

14
10 Agents 30 Resources Availability = 0.5 

Number of steps

A
ve

ra
ge

 c
on

fli
ct

s 
ov

er
 1

0,
00

0 
ru

ns

SynSPAM deviation
SynSPAM mean
SeqSPAM deviation
SeqSPAM mean

Figure 31:The convergency speed of two algorithms

1 10 100

0

5

10

15

20

25
20 Agents 60 Resources Availability = 0.2

Number of steps

A
ve

ra
ge

 c
on

fli
ct

s 
ov

er
 1

0,
00

0 
ru

ns

SeqSPAM deviation
SeqSPAM mean
SynSPAM deviation
SynSPAM mean

1 10 100
0

5

10

15

20

25

30

35

40
30 Agents 90 Resources Availability = 0.2

Number of steps

A
ve

ra
ge

 c
on

fli
ct

s 
ov

er
 1

0,
00

0 
ru

ns

SynSPAM deviation
SynSPAM mean
SeqSPAM deviation
SeqSPAM mean

Figure 32:The convergency speed of two algorithms

average solutions from sequential SPAM are only a few conflicts more than that of synchronous SPAM, es-

pecially in the under-constrained situations. This is summarized in Table 2, which shows the performance

results of two algorithms on tracking problems with different problem sizes and resource availabilities.

Each data point in the table shows the average number of conflicts unsolved after 100 step execution of the

algorithms, averaged over 10,000 random problem instances. Based on the table, most of the results of the

sequential algorithm are comparative to the synchronous algorithm, especially in the under-constrained

cases. For 10-agent problems, the biggest performance gap occurs when the resource availability is equal

to 0.3, which is located near the middle of a phase transition on solubility. For 20 agent problems, the

phase transition point shifts to the availability of 0.2, and correspondingly the biggest performance gap

shifts as well. In all other regions apart from phase transition, the performance differences between the

two algorithms are trivial.

In light of all the above results and the results on the completeness, we can conclude that for many

real-time applications, it is reasonable to give up the total completeness of SPAM protocol in favor of a

47



Table 2: Mean Conflicts Over 10,000 problem instances After 100 Steps

size algo. resource availability
0.2 0.3 0.4 0.5 0.6 0.8

10 agents Syn. SPAM 4.2956 0.8491 0.1761 0.0173 0.0016 0
Seq. SPAM 5.9764 3.0456 1.3994 0.6950 0.2799 0.0409

20 agents Syn. SPAM 0.7201 0.0377 0.0016 0 0 0
Seq. SPAM 5.9953 1.9827 0.8805 0.4009 0.1965 0.0342

faster convergency to a good enough solution.

3.4.4 Scalability

5

10

15

20

25

6 9 12 15 18 21 24 27 30 6

0

20

40

60

80

Number of Agents

Number of resources available to each agent

N
um

be
r 

of
 s

te
ps

 to
 fi

nd
 s

ol
ut

io
n

Figure 33:Synchronous SPAM scalability

Another important aspect of performance analysis of a protocol is the study of how the performance

varies as problem size increases, i.e., how the protocol scales. This feature is particularly important in

applications such as sensor networks in ANTs domains, since such systems can easily have hundreds or

thousands of sensors. A good scalability means that system performance does not degrade disproportion-

ally with the size of the system or does not degenerate at all when the number of components increases.

Here we are interested in answering the following question: will the number of negotiation steps that

SPAM protocol takes to find a solution dramatically increase as the number of agents increases?

Figure 33 shows the experimental results for the synchronous SPAM protocol, in which the number of

agents varies from 5 to 25, and the average number of resources available to each agent varies from 6 to

30. The total number of resources is three times of the number of agents in each of 1,000 random problem

48



5

10

15

20

25

6 9 12 15 18 21 24 27 30

20

40

60

80

Number of agents

Number of resources available to each agent

N
um

be
r 

of
 s

te
ps

 to
 fi

nd
 s

ol
ut

io
n

Figure 34:Sequential SPAM scalability

instances. In other words, the objective level for each agent is set to 3. Note that for the 5-agent problems,

the maximum number of resources available to each agent is 15. We simply extend the data on 15 to 30

in the 5-agent case to make the results easy to show. In Figure 33, each data point represents the average

number of steps over the solvable problems of 1,000 runs. From the results, we can see that the scalability

of synchronous SPAM is super linear. Particularly around the phase transition area, the performance of the

protocol substantially degrades.

Figure 34 shows the experimental results on the sequential SPAM protocol with the same experiment

setup as above. Again each data point represents the average result over the 1,000 solvable problem

instances. Comparing to the results in Figure 33, Figure 34 shows that the scalability of sequential SPAM

is better than the scalability of synchronous SPAM. However, based on these results, we are unable to

affirm that the scalability of sequential SPAM is linear. Nevertheless, the results indicate that the sequential

SPAM algorithm does not seems to have a substantial degrading region around the phase-transition area

similar to the synchronous SPAM algorithm. We should also note that at each point in Figure 34, fewer

problems are completely solved than the corresponding point in Figure 33.

3.4.5 Summary

In this section, we experimentally analyze the properties and performance of two distributed search al-

gorithms derived from a recently developed cooperative negotiation protocol for resource allocation in

networks of distributed sensors. The sequential version simulates the protocol as close as possible, while

the synchronous version adds some additional features to ensure the completeness. The experimental re-

sults on these algorithms help us understand the properties of the original protocol. Specifically, our results

49



show that the SPAM protocol is not complete in terms of finding a solution. However it has a high proba-

bility of finding a solution if one exists, especially in under-constrained situations. The SPAM protocol is

able to give up sooner on the hard problems so as to finish faster than the complete protocols. The protocol

converges well in the sense that it can find good low-conflict solutions within a small number of steps. The

solution quality is comparative to the complete protocol in most of the cases. The protocol seems to scale

very well as the number of agents and the number of resources increase.

With all these results above and the fact that the SPAM protocol is normally used in a dynamic envi-

ronment, it is reasonable to give up the completeness of the protocol in favor of computational complexity,

convergency speed, and scalability. Note that in a dynamic environment, even if the protocol finally finds

the optimal solution with a complete search, the problem could have already changed and the optimal

solution may no longer be relevant. Therefore, making the right tradeoff between solution quality and

computational time is critical, and the SPAM negotiation protocol seems to make such a tradeoff very well

for real-time moving target tracking.

3.5 Conclusions and Discussions

Motivated to understand the properties of a recently developed cooperative negotiation protocol, we pro-

posed an approach to analyzing distributed negotiation methods. In this approach, we view and formulate

a negotiation protocol as a distributed search, and then experimentally investigate the properties and per-

formance of the search algorithms to help draw conclusions on the original protocol. We demonstrated

this approach on the Scalable Protocol for Anytime Multi-level (SPAM) negotiation protocol for allocating

resources among a set of cooperative distributed sensors. In addition to the contribution on a negotiation

protocol itself, we substantially extended the well known notion of distributed AI as distributed search [64].

We not only viewed a distributed cooperative negotiation as a distributed search, we also proposed to use

search as a simulation tool to analyze negotiation protocols. As we demonstrated in this section, this

approach can overcome many difficulties inherent to a negotiation protocol that is hard to investigate an-

alytically. We believe that this approach is general and can be carried over to analyzing other distributed

problems and strategies.

In reflecting on the experimental results on the performance of the SPAM negotiation protocol obtained

in this section, it seems that high-quality global solutions to a distributed problem can be achieved without

a global control but with a negotiation protocol in which agents rely on information restricted to their

small neighborhoods. With a small locality of information sources, anytime performance of a system can

also be significantly improved. An important lesson we have learnt from the results of this section is

that propagating information among neighboring agents and using information in a small neighborhood

vicinity may be a good general strategy for distributed problem solving.

50



4 Phase Transitions and Backbones of the Asymmetric Traveling Salesman

Phase transitions of combinatorial problems and threshold behavior similar to phase transitions in combi-

natorial algorithms have drawn much attention in recent years [37, 44, 70]. Introduced first in the so-called

spin glass theory [75] in physics, phase transition refers to such a phenomenon of a system in which some

global properties change rapidly and dramatically when a control parameter goes across a critical value.

A daily-life example of phase transitions is water changing from ice (solid phase) to water (liquid phase)

to steam (gas phase) when the temperature increases. It has been shown that many combinatorial decision

problems have phase transitions, including Boolean satisfiability [14, 77, 43, 88, 78], graph coloring [14],

and the symmetric Traveling Salesman (deciding the existence of a complete tour of vising a given set of

cities with a cost less than a specified value) [33]. Phase transition can be used to characterize typical-case

properties of difficult combinatorial problems [37, 70]. The hardest problem instances of most decision

problems appear very often at the points of phase transitions. Therefore, phase transitions have been used

to help generate the hardest problem instances for testing and comparing algorithms for decision prob-

lems [1, 14, 77].

Another important and useful concept for characterizing combinatorial problems is that of back-

bone [61, 78]. A backbone variable refers to such a variable that has a fixed value among all optimal

solutions of a problem; and all such backbone variables are collectively referred to as the backbone of the

problem. If a problem has a backbone variable, an algorithm will not find a solution to the problem until

the backbone variable is set to its correct value. Therefore, the fraction of backbone, the percentage of

variables being in the backbone, reflects the constrainedness of the problem and directly affects an algo-

rithm searching for a solution. The larger a backbone, the more tightly constrained the problem becomes.

As a result it is more likely for an algorithm to set a backbone variable to a wrong value, which may

consequently require a large amount of computation to recover from such a mistake.

However, the research on the phase transitions and (particularly) backbones ofoptimization problems

is limited, which is in sharp contrast with the numerous studies of the phase transitions and backbones

of decision problems, represented by Boolean satisfiability (e.g., [14, 77, 43, 88, 78]). An early work on

the symmetric TSP introduced the concept of backbones [61]. However, it has left the question whether

there exists a phase transition of the TSP, the optimization version of the problem to be specific, open

since 1985. One of the best (rigorous) phase-transition results was obtained on number partitioning [10],

an optimization problem. However, the phase transition analyzed in [10], also experimentally in [34, 35],

is the existence of a perfect partition for a given set of integers, which is in essence a decision problem.

In addition, [34, 35] also studied the phase transitions of the size of optimal 2-way partition. The rela-

tionship between the phase transitions of satisfiability, a decision problem, and maximum satisfiability, an

optimization problem, was studied in [108]. It was experimentally shown that the backbone of maximum

Boolean satisfiability also exhibits phase transitions, emerging from nonexistence to almost a full scale

abruptly and dramatically. In addition, the relationship between backbones and average-case algorithmic

complexity has also been considered [90].

In this section, we investigate the phase transitions of the asymmetric Traveling Salesman Problem.

51



Our results answer the long-standing open question of [61] based on the more general form of the problem.

The Traveling Salesman Problem (TSP) [38, 63] is an archetypical combinatorial optimization problem

and one of the first NP-hard problems studied [52]. Many concepts, such as backbone [61], and general

algorithms, such as branch-and-bound [66], local search [65] and simulated annealing [86] were first

introduced and studied using the TSP. The problem is also very often a touchstone for combinatorial

algorithms. Furthermore, the fact that many real-world problems, such as scheduling and routing, can be

cast as TSPs has made the problem of practical importance. In this section, we consider the asymmetric

TSP (ATSP), where a distance from one city to another may not be necessarily the same as the distance

on the reverse direction. The ATSP is more general and most ATSPs are more difficult to solve than their

symmetric counterparts [51].

Specifically, using uniformly random problem instances of up to 1,500 cities, we empirically reveal that

the average optimal tour length, the accuracy of the most effective lower-bound function for the problem

(the assignment problem [69]), and the backbone of the ATSP undergo sharp phase transitions. The control

parameter is the precision of intercity distances which is typically represented by the maximum number

of digits for the distances. Note that these results are algorithm independent and are properties of the

problem. Furthermore, we show that the average computational cost of the well-known branch-and-bound

subtour elimination algorithm [4, 7, 92] for the ATSP exhibits a phase-transition or threshold behavior

in which the computational cost grows abruptly and dramatically from easy to difficult as the distance

precision increases. Our results lead to a practical guidance on how to generate large, difficult random

problem instances for the purpose of algorithm comparison.

It is worthwhile to mention that besides the results in [61] there are two additional pieces of early em-

pirical work related to the phase transitions of the Traveling Salesman. The research in [113] investigated

the effects of two different distance distributions on the average complexity of the subtour elimination

algorithm for the asymmetric TSP. The main result is that the average complexity of the algorithm is con-

trolled by the number of distinct distances of a random asymmetric TSP. We will extend this result further

in Section 4.5. However, we need to caution that these results are algorithm specific, which may not

necessarily reflect intrinsic features of the underlying problem. The research in [33] studied the decision

version of the symmetric TSP. Specifically, it analyzed the probability that a tour whose length is less than

a specific value exists for a given random symmetric euclidean TSP, showing that the probability has a

one-to-zero phase transition as the length of the targeting tour increases. Note that this phase-transition

result does not address the open question of [61] which is on the optimization version of the problem. The

experimental results of [33] also showed that the computational cost of a branch-and-bound algorithm,

which unfortunately was not specified in this section, exhibits an easy-hard-easy pattern.

This section is organized as follows. In Section 4.1, we describe the ATSP and a related problem called

assignment problem. We then investigate the parameter that controls phase transitions in Section 4.2, and

study various phase transitions of the ATSP in Section 4.3. In Section 4.5, we describe the well-known

subtour elimination algorithm for the ATSP, and analyze the threshold behavior of this algorithm. We

discuss related work in Section 4.6 and finally conclude in Section 4.7.

52



4.1 The Asymmetric Traveling Salesman and Assignment Problem

Givenn cities and the distance or cost between each pair of cities, theTraveling Salesman Problem(TSP)

is to find a minimum-cost tour that visits each city once and returns to the starting city [38, 63]. When

the distance from cityi to city j is the same as the distance fromj to i, the problem is the symmet-

ric TSP (STSP). If the distance from cityi to city j is not necessarily equal to the reverse distance, the

problem is the asymmetric TSP (ATSP). The ATSP is more difficult than the STSP, with respect to both

optimization and approximation [51]. The TSPs are important NP-hard problems [32, 52] and have many

practical applications. Many difficult combinatorial optimization problems, such as vehicle routing, work-

shop scheduling and computer wiring, can be formulated and solved as the TSPs [38, 63].

The ATSP can be formulated as an integer linear programming problem. LetV be the set ofn cities,

A the set of all pairs of cities, andD = (dij) the distance or cost matrix specifying the distance of each

pair of cities. The following integer linear programming formulation of the ATSP is well known:

ATSP (D) = min
∑

i,j

dijxij , (1)

subject to

∑

i∈V

xij = 1, ∀j ∈ V ; (2)

∑

j∈V

xij = 1, ∀i ∈ V ; (3)

∑

i∈S

∑

j∈S

xij ≤ |S| − 1, ∀S ⊂ V, S 6= ∅; (4)

xij ≥ 0, ∀i, j ∈ V (5)

where variablesxij take values zero or one, andxij = 1 if and only if arc(i, j) is in the optimal tour, fori

andj in V . Constraints (2) and (3) restrict the in-degree and out-degree of each city to be one, respectively.

Constraints (4) impose thesubtour eliminationconstraints so that only complete tours are allowed.

The ATSP is closely related to theassignment problem(AP) [69], which is to assign to each cityi

another cityj, with the distance fromi to j as the cost of the assignment, such that the total cost of

all assignments is minimized. The AP is a relaxation of the ATSP in which the assignments need not

form a complete tour. In other words, by removing the subtour elimination constraints (4) from the above

representation, we have an integer linear programming formulation of the AP. Therefore, the AP cost

is a lower bound on the ATSP tour cost. If the AP solution happens to be a complete tour, it is also a

solution to the ATSP. While the ATSP is NP-hard, the AP can be solved in polynomial time, inO(n3) to

be precise [69].

4.2 The Control Parameter

Consider two cases of the ATSP, one with all the intercity distances being the same and the other with

every intercity distance being distinct. In the first case, every complete tour going through alln cities is

53



an optimal tour or a solution to the ATSP. There is no backbone variable since removing one edge from an

optimal solution will not prevent finding another optimal solution. The ATSP in this case is easy; finding

an optimal solution does not require any search at all. In addition, the cost of the optimal solution is also

a constant, which isn times of the intercity distance. In the second case where all distances are distinct,

every complete tour covering alln cities has a high probability to have a distinct cost. Therefore, an

arc in the optimal solution is almost surely a backbone variable and removing it may destroy the optimal

solution. In addition, it is expected to be difficult to find such an optimal solution among a large number

of suboptimal solutions in this case.

Therefore, there are significant differences between the above two extreme cases. One of the most

important differences is the number of distinct distances in the distance matrixD. More precisely, many

important characteristics of the random ATSP, including the size of backbone and complexity, are deter-

mined by the fraction of distinct distances among all distances. We denote the fraction of distinct distances

in distance matrixD asρ. We are particularly interested in determining howρ affects the characteristics

of the ATSP when it gradually increases from zero, when all distances are the same, to one, when all

distances are distinct.

In practice, however, we do not directly control the number or the fraction of distinct distances in

matrixD. Besides the actual structures of the “layouts” of the cities, the precision of the distances affects

the number of distinct distances. The precision of a number is usually represented by the maximal number

of digits allowed for the number. This is even more so when we use a digital computer to solve the ATSP,

which typically has 32 bits (or 4 bytes) for integers or 64 bits (or 8 bytes) for double precision real numbers.

As a result, the number of digits for distances is naturally a good choice for the control parameter.

The effect of a given number of digits on the fraction of distinct distances in distance matrixD is

relative to the problem sizen. Consider a matrixD with distances uniformly chosen from integers

{0, 1, 2, · · · , R − 1}, where the rangeR is determined by the number of digitsb. For a fixed number

of digitsb, the fraction of distinct distances of a larger matrixD is obviously smaller than that of a smaller

D. Therefore, the control parameter for the fractionρ of distinct distances ofD must be a function of the

number of digitsb and the number of citiesn, which we denote asρ(n, b).

To find the control parameter, consider the number of distinct distances inD for a given integer range

R. The problem of finding the number of distinct distances is equivalent to the following bin-ball problem.

We are givenM balls andR bins, and asked to place the balls into the bins. Each ball is independently put

into one of the bins with an equal probability. We are interested in the fraction of bins that are not empty

after all the placements. Here, for asymmetric TSPM = n2 − n balls correspond to the total number of

nondiagonal distances of matrixD, andR bins represent the possible integers to choose from. Since each

ball (distance) is thrown independently and uniformly into one of theR bins (integers), the probability

that one bin is not empty after throwingM balls is1 − (1 − 1/R)M . The expected number of occupied

bins (distinct distances) is simplyR
(
1− (1− 1/R)M

)
. Thus, the expected fraction of distinct distances

in matrixD is

E[ρ(n, b)] =
R

(
1− (1− 1/R)M

)

M
(6)

54



0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1
(a) fraction of distinct numbers

effective number of digits

av
er

ag
e 

fr
ac

tio
n 

of
 d

is
tin

ct
 n

um
be

rs n =    100
n =    500
n = 1,000
n = 1,500

−5 −4 −3 −2 −1 0 1 2 3 
0

0.2

0.4

0.6

0.8

1.0
(b) rescaled fraction of distinct numbers

rescaled effective number of digits

av
er

ag
e 

fr
ac

tio
n 

of
 d

is
tin

ct
 n

um
be

rs n =    100
n =    500
n = 1,000
n = 1,500

Figure 35: (a) Average fraction of distinct distances in matrixD, ρ(n, b), controled by the effective number
of digits,β = b log−1

10 (n), for n = 100, 500, 1000 and1500. (b) Averageρ(n, b) after finite-size scaling,
with scaling factor(β − βc) log10(n), whereβc = 2.

Note that ifM or n is fixed,E[ρ(n, b)] → 1 asR → ∞, since in this case the expectation of the number

of distinct distances approachesM . On the other hand, whenR is fixed,E[ρ(n, b)] → 0 whenM or n

goes to infinity, since all of a finite number ofR bins will be occupied by an infinite number of balls in

this case.

Following convention in practice, we use decimal values for distances. ThusR = 10b, whereb is the

number of digits for distances. It turns out that if we plotρ(n, b) againstb/ log10(n), it will have relatively

the same scale for different problem sizesn. This is shown in Figure 35(a). This means that the scaling

function for the effective number of digits isf(n) = log−1
10 (n). Functionb/ log10(n) is thus theeffective

number of digitsthat controls the fraction of distinct distances in matrixD, which we denote asβ(n, b).

This also means that to have the same effective number of digitsβ on two different problem sizes, sayn1

andn2 with n1 < n2, the rangeR should be different. On these two problems,R needs to benβ
1 andnβ

2 ,

respectively, givingnβ
1 < nβ

2 .

We need to point out that the integer rangeR can also be represented by a number in other bases, such

as binary. Which base to use will not affect the results quantitatively, but introduces a constant factor to the

results. In fact, sinceb = log10(R), whereR is the range of integers to be chosen,β(n, b) = b/ log10(n) =

logn(R), which is independent of the base of the values for intercity distances.

It is interesting to note that, controlled by the effective number of digitsb/ log10(n), the fraction of

distinct entitiesρ has a property similar to a phase transition, also shown in Figure 35(a). The larger the

problem, the sharper the transition, and there exists a crossover point among the transitions of problems

with different sizes. We may examine this phase-transition phenomenon more closely using finite-size

scaling. Finite-size scaling [5, 101] is a method that has been successfully applied to phase transitions in

similar systems of different sizes. Based on finite-size scaling, around a critical parameter (temperature)

Tc, problems of different sizes tend to be indistinguishable except for a change of scale given by a power

55



law in a characteristic length, which is typically in the form of(T − Tc)n1/v, wheren is the problem size

andv the exponent of the rescaling factor. Therefore, finite-size scaling characterizes a phase transition

precisely around the critical pointTc of the control parameter as the problem scales to infinity. However,

our analysis revealed that the scaling factor has a large exponent of 9 [110], indicating that the phase

transitions in Figure 35(a) does not exactly follow the power law finite-size scaling.

To find the correct rescaled control parameter, we reconsider (6). Asn → ∞ and distance rangeR

grows with problem sizen, i.e.,R →∞ asn →∞, we can rewrite (6) as

lim
n→∞,R→∞

E[ρ(n, b)] = lim
R→∞

R

M

(
1− (

(1− 1/R)R
)M/R

)

=
R

M

(
1− e−M/R

)
, (7)

where the second equation followslimR→∞(1 − 1/R)R = e−1. Since our underlying control parameter

is the number of digits,b = log10(R), we takex = log10(R/M). Asymptotically asn → ∞, M ' n2,

which leads tox = log10(R)− 2 log10(n) = (β − 2) log10(n). Usingx, we rewrite (7) as

lim
n→∞,R→∞

E[ρ(n, b)] = 10x
(
1− e−10−x

)
. (8)

The rescaled control parameter asn → ∞ for the expected number of distinct distances inD is (β −
2) log10(n). Therefore, the critical point is 2 and the rescaling factor islog10(n). The rescaled phase

transition is shown in Figure 35(b), which plotsρ(n, (β − 2) log10(n)).

Note that the number of digits used for intercity distances is nothing but a measurement of the precision

of the distances. The larger the number of digits, the higher the precision becomes. This agrees with the

common practice of using more effective digits to gain precision. Therefore, the control parameter is in

turn determined by the precision of intercity distances.

Finally, it is important to note that even though the discussion in this section focused on asymmetric

cost matrices and the ATSP, the arguments apply to symmetric distance matrices and the symmetric TSP

as well. That is, withM revised to(n2 − n)/2, asymptotically asR andn goes to infinity,log10(M) '
2 log10(n), so that(β−2) log10(n) is also a rescaled control parameter for the number of distinct distances

in symmetric cost matrices.

4.3 Phase Transitions

With the control parameter, the effective number of digitsβ(n, b) for intercity distances, identified, we are

now in a position to investigate possible phase transitions in the ATSP and the related assignment problem.

To set forth to investigate these phase transitions, we generated and studied uniformly random problem

instances with 100-, 200-, 300- upto 1,000-cities and 1,500-cities. Although we have results from 100-,

200-, 300-, up to 1,000-city as well as 1,500-city problems, to make the result figures readable, we only use

the data from 100-, 500-, 1,000- and 1,500-city problems to report the results. For the problem instances

considered, intercity distances are independently and uniformly chosen from{0, 1, 2, · · · , R − 1} for a

given rangeR, which is controlled by the number of digitsb. We variedb from 1.0 to 6.0 for instances

56



0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(a) ATSP tour cost

effective number of digits

av
er

ag
e 

A
T

S
P

 to
ur

 c
os

t

   100−city
   500−city
1,000−city
1,500−city

−2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1
(b) rescaled ATSP tour cost

rescaled effective number of digits

no
rm

al
iz

ed
 a

ve
ra

ge
 A

T
S

P
 to

ur
 c

os
t

   100−city
   500−city
1,000−city
1,500−city

Figure 36: (a) Average optimal ATSP tour cost. (b) Scaled and normalized average optimal tour cost, with
rescaling factor(β − βc) log10(n) andβc = 1.

with up to 1,000-cities and from 1.0 to 6.5 for instances with 1,500-cities. The digits are incremented by

0.1, i.e., we usedb = 1.0, 1.1, 1.2, · · · .

4.3.1 Phase transitions in the ATSP

We are particularly interested in possible phase transitions in the ATSP cost, phase transitions of backbones

and phase transitions of the numbers of ATSP tours. The results on backbone can shed some light on the

intrinsic tightness of the constraints among the cities as the precision of distance measurement changes.

The ATSP tour cost

There is a phase transition in the ATSP tour cost,ATSP (D), under the control parameterβ, the

effective number of digits for intercity distances. Figure 36(a) shows the results on 100-, 500-, 1,000- and

1,500-city ATSP instances, averaged over 10,000 instances for each data point. The reported tour costs

are obtained by dividing the integer ATSP tour costs byn× (R − 1), wheren is the number of cities and

R the range of intercity costs. Equivalently, an intercity distance was virtually converted to a real value in

[0, 1].

As shown, the ATSP tour cost increases abruptly and dramatically as the effective number of digits

increases, exhibiting phase transitions. The transitions become sharper as the problem becomes larger, and

there exist crossover points among curves from different problem sizes. By finite-size scaling, we further

determine the critical value of the control parameter at which the phase transitions occur. Following the

discussion in Section 4.2, the scaling factor has a form of(β−βc) log10(n). Our numerical result indicated

that βc = 1.02 ± 0.007. We thus useβc = 1 to show the result in Figure 36(b). It is worthwhile to

mention that the AP cost follows almost the same phase-transition pattern of the control parameter shown

in Figure 35 with a slightly different critical point (data not shown here).

Backbone and number of optimal solutions

57



0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

effective number of digits

av
er

ag
e 

fr
ac

tio
n 

of
 b

ac
kb

on
e

(a) fraction of backbone

   100−city
   500−city
1,000−city
1,500−city

−2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

rescaled effective number of digits

av
er

ag
e 

fr
ac

tio
n 

of
 b

ac
kb

on
e

(b) rescaled fraction of backbone

   100−city
   500−city
1,000−city
1,500−city

Figure 37: (a) Average fraction of backbone. (b) Rescaled average backbone fraction, with rescaling factor
(β − βc) log10(n) andβc = 1.

We now turn to the backbone of the ATSP, which is the percentage of directed arcs that appear in

all optimal solutions. The backbone also exhibits phase transitions as the effective number of digits for

distances increases. The result is included in Figure 37(a), where each data point is averaged over 10,000

problem instances. The rescaled result is shown in Figure 37(b), where the critical pointβc = 1. Inter-

estingly, the phase-transition pattern of the backbone is almost identical to that of the fraction of distinct

entities in the distance matrix, shown in Figure 35, and that of the ATSP tour cost, shown in Figure 36.

The fraction of backbone is related to the number of optimal solutions of a problem. We thus examined

the total number of optimal solutions of the ATSP. This was done on small ATSPs, from 10 cities to 150

cities, as findingall optimal solutions on larger problems is computationally too expensive. The results

are averaged over 100 trials for each data point. As shown in Figure 38, where the vertical axes are in

logarithmic scale, the number of optimal tours also undergoes a phase transition, from exponential to a

constant, as the number of digits increases. Note that when the number of digits is small, it is very costly

to find all optimal solutions, even on these relatively small problems.

The fraction of backbone captures in essence the tightness of the constraints among the cities. As

more intercity distances become distinct, the number of tours of distinct lengths increases. Consequently,

the number of optimal solutions decreases and the fraction of backbone grows inversely. When more arcs

are part of the backbone, optimal solutions become more restricted. As a result, the number of optimal

solutions decreases. As the fraction of backbone increases and approaches one, the number of optimal

solutions decreases and becomes one as well, which typically makes the problem of finding an optimal

solution more difficult.

4.3.2  Existence of Hamiltonian circuit with zero-cost edges

When the precision of intercity distances is low, it is likely that the ATSP tour has a cost of zero,

meaning that there exists an Hamiltonian circuit consisting of zero-cost arcs. It is a decision problem to

58



0.5 1 1.5 2 2.5 3
10

0

10
2

10
4

10
6

effective number of bits

av
er

ag
e 

nu
m

be
r 

of
 o

pt
im

al
 to

ur
s

(a) number of optimal solutions

  20−city
  30−city
  50−city
100−city
150−city

−1 0 1 2
10

0

10
2

10
4

10
6

(b) rescaled number of optimal tours

rescaled effective number of digits

av
er

ag
e 

nu
m

be
r 

of
 o

pt
im

al
 to

ur
s

  20−city
  30−city
  50−city
100−city
150−city

Figure 38: (a) Average number of optimal ATSP tours. (b) Rescaled average number of optimal ATSP
tours, with rescaling factor(β − βc) log10(n) andβc = 1.39± 0.008.

determine if an Hamiltonian circuit exists in a given ATSP. We examined this decision problem using the

same set of 10,000 problem instances used in Figures 36 and 37. The result is shown in Figure 39. Notice

that although it follows the same rescaling formula of(β−βc) log10(n), the critical point of the transition,

β0 = 0.865, is different from the critical point ofβc = 1 for the phase transitions of backbones and ATSP

tour cost, as shown in Figures 36 and 37.

4.3.3 Quality of the AP lower-bound function

The existence of Hamiltonian circuits of zero-cost arcs also indicates that when the number of digits for

intercity distances is very small, for example, less than 1.9 (orR ≈ 80) for n = 1, 500, both the AP and

ATSP costs are zero, meaning that these two costs are the same as well. It is useful to know how likely the

AP cost is equal to the ATSP tour cost; the answers to this issue constitutes the first step to the elucidation

of the accuracy of the AP lower-bound cost function.

Given a random distance matrixD, how likely is it that an AP cost will be the same as the ATSP

tour cost as the effective number of digitsβ increases? We answer this question by examining the prob-

ability that an AP costAP (D) is equal to the corresponding ATSP costATSP (D) asβ increases. Fig-

ure 40(a) shows the results on 100-, 500-, 1,000- and 1,500-city ATSP instances, averaged over the same

set of 10,000 instances for Figure 36 for each data point. As shown in the figure, the probability that

AP (D) = ATSP (D) also experiences abrupt and dramatic phase transitions. Figure 40(b) shows the

phase transitions after finite-size scaling, with critical pointβc = 1.17± 0.005.

The results in Figure 40 also imply that the quality of the AP lower-bound function degrades as the

distance precision increases. The degradation should also follow a phase-transition process. This is verified

by Figure 41, using the data from the same set of problem instances. Note that the critical point of the

phase transition for the accuracy of AP isβc = 0.97, which is different from the critical pointβc = 1.17

59



0.5 1 1.5
0

0.2

0.4

0.6

0.8

1
(a) probability of Hamiltonian circuit

effective number of digits

pr
ob

ab
ili

ty
 o

f H
am

ilt
on

ia
n 

ci
rc

ui
t    100−city

   500−city
1,000−city
1,500−city

−1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1
(b) rescaled prob. of Hamiltonian circuit

rescaled effective number of digits

pr
ob

ab
ili

ty
 o

f H
am

ilt
on

ia
n 

ci
rc

ui
t    100−city

   500−city
1,000−city
1,500−city

Figure 39: (a) Probability of the existence of Hamiltonian circuits with zero cost arcs. (b) Rescaled
probability of zero-cost Hamiltonian circuits, with rescaling factor(β − βc) log10(n) andβc = 0.865.

for the phase transition of the probability thatAP (D) = ATSP (D).

4.3.4 How many phase transitions?

So far, we have seen many phase transitions on different features of the ATSP and its related assignment

problem. Qualitatively, all these phase transitions follow the same transition pattern, meaning that they

can all be captured by the same finite-size rescaling formula of(β − βc) log10(n), whereβc is a critical

point depending on the particular feature of interest.

It is interesting to note that the critical points for the phase transitions of the ATSP tour costs and

backbone fractions are all atβc = 1. A close examination also indicates that these two phase transitions

follow almost the same phase transition, as shown in Figure 42, where the rescaled curves for the ATSP tour

cost and the backbone fraction are drawn from 1,500-city ATSP, averaged over 10,000 problem instances.

Except the close similarity of the phase transitions of the ATSP tour cost and the fraction of backbones,

the other phase transitions all have different critical points, indicating that they undergo the same type of

phase transitions at different ranges.

4.4 Asymptotic ATSP tour length and AP precision

As a by-product of the phase-transition results, we now provide numerical values of the ATSP cost, the AP

cost and its accuracy, asymptotically when the number of cities grows. We attempt to extend the previous

theoretical results on the AP cost, which was shown to asymptotically approachπ2/6 [3, 74], and the

observations that the relative error of the AP lower bounds descreases as the problem size increases [4, 92].

Not every real number can be represented in a digital computer. Thus, it is infeasible to directly

examine a theoretical result on reals using a digital computer. For our purpose, on the other hand, the

phase-transition results indicate that when the precision of the intercity distances is high enough, all the

60



0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
(a) probability AP(D) = ATSP(D)

effective number of digits

av
er

ag
e 

pr
ob

ab
ili

ty
 A

P
(D

) 
=

 A
T

S
P

(D
)

   100−city
   500−city
1,000−city
1,500−city

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

rescaled effective number of digits

no
rm

al
iz

ed
av

er
ag

e 
pr

ob
. A

P
(D

)=
A

T
S

P
(D

) (b) rescaled probability AP(D)=ATSP(D)

   100−city
   500−city
1,000−city
1,500−city

Figure 40: (a) Average probability thatAP (D) = ATSP (D). (b) Average probability after finite-size
scaling, with rescaling factor(β − βc) log10(n) andβc = 1.17± 0.005.

quantities of the ATSP we have examined, including the ATSP cost, the AP cost and its precision as a

lower-bound cost function, as well as the backbone, are relatively stable, in the sense that they do not

change significantly even when the precision of intercity distances increases further. Therefore, it is suffi-

cient to use a high distance precision to experimentally analyze the asymptotic properties of the ATSP cost

and other related quantities.

We need to be cautious in selecting the number of digits for intercity distances. As we discussed in

Section 4.2, the same number of digits for intercity distances gives rise to different effective numbers of

digits on problems of different sizes. Furthermore, the phase transition results in Section 2.3.2 indicate

that the effective numbers of digits must be scaled properly in order to have the same effect on problems

of different sizes when we investigate an asymptotic feature.

Therefore, in our experiments, we fixed the scaled effective number of digits for intercity distances,

(β − βc) log10(n), to a constant. Based on our phase-transition results, especially that on the control

parameter in Figure 35, we chose to take(β − 2) log10(n) a constant of 2.1, for two reasons. First,

(β − 2) log10(n) = 2.1 is sufficiently large so that almost all distances are distinct, regardless of problem

size, and the quantities we will examine will not change substantially after the finite-size scaling. Secondly,

(β − 2) log10(n) = 2.1 is relatively small so that we can experiment on problems of large sizes. To save

memory as much as possible, the intercity distances are integers of 4 bytes in our implementation of the

subtour elimination algorithm. Thus the number of digits must be less than 9.4 without causing an overflow

in the worst case. Using(β − 2) log10(n) = 2.1, we can go up to roughly 3,000-city ATSPs.

Table 3 shows the experimental results, with up to 3,000 cities, on the average AP cost, the ATSP tour

cost, and accuracy of the AP cost function in the error of AP cost relative to the ATSP cost. The results

are averaged over 10,000 instances for each problem size. Based on the results, the AP cost approaches

to 1.6442 and the ATSP cost to 1.6446. Note that the experimental AP cost of 1.6442 is very close to the

theoretical asymptotic AP cost ofπ2/6 ≈ 1.6449 [3, 74]. In addition, the accuracy of AP function indeed

61



0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(a) precision of AP function

effective number of digits

av
er

ag
e 

re
la

tiv
e 

er
ro

r 
of

 A
P

(D
) 

to
 A

T
S

P
(D

)
   100−city
   500−city
1,000−city
1,500−city

−2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1
(b) rescaled accuracy of AP function

rescaled effective number of digits

no
rm

al
iz

ed
 a

ve
. r

el
at

iv
e 

er
ro

r 
of

 A
P

(D
)

   100−city
   500−city
1,000−city
1,500−city

Figure 41: (a) Average accuracy of AP lower-bound function, measured by the error of AP cost relative
to ATSP cost. (b) normalized and rescaled average accuracy, with rescaling factor(β − βc) log10(n) and
βc = 0.97.

improves as the problem size increases, reduced to about 0.02548% for 3,000-city problem instances. This

result supports the previous observations [4, 92].

4.5 Threshold Behavior of Subtour Elimination

All the phase-transition results discussed in the previous section indicate that the ATSP becomes more

constrained and difficult as the distance precision becomes higher. In this section, we study how a well-

known algorithm for the ATSP, branch-and-bound subtour elimination [4, 7, 92], behaves. We separate this

issue from the phase transition phenomena studied before because what we will consider in this section is

the behavior of a particular algorithm, which may not be necessarily a feature of the underlying problem.

Nevertheless, this is still an issue of its own interest because this algorithm is the oldest and is still among

the best known methods for the ATSP, and we hope that a better understanding of an efficient algorithm

for the ATSP can shed light on the typical case computational complexity of the problem.

4.5.1 Branch-and-bound subtour elimination

The branch-and-bound (BnB) subtour algorithm elimination [4, 7, 92] solves an ATSP in a state-space

search [82, 107] and uses the assignment problem (AP) as a lower-bound cost function. The BnB search

takes the original ATSP as the root of the state space and repeats the following two steps. First, it solves the

AP of the current problem. If the AP solution is not a complete tour, it decomposes it into subproblems by

subtour elimination that breaks a subtour by excluding some arcs from a selected subtour. As a subproblem

is more constrained than its parent problem, the AP cost to the subproblem must be as much as that of the

parent. This means that the AP cost function is monotonically nondecreasing. While solving the AP

requiresO(n3) computation in general, the AP to a child node can be incrementally solved inO(n2) time

based on the solution to the AP of its parent.

62



−2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

rescaled effective number of digits

no
rm

al
iz

ed
 c

os
t a

nd
 fr

ac
tio

n 
of

 b
ac

kb
on

e

tour cost
backbone

Figure 42: Simultanous examination of the phase transitions of backbone and ATSP tour cost on 1,500-city
problems, all rescaled with(β − 1) log10(n).

There are many heuristics for selecting a subtour to eliminate [4], and we use the Carpaneto-Toth

scheme [13], or the CT scheme for short, in our algorithm. One important feature of the CT scheme is

that it generates no duplicate subproblem so that the overall search space is a tree. One example of this

scheme is shown in Figure 43. The AP solution to the original ATSP contains two subtours that are in the

root of the tree of the figure. The subtour2 − 3 − 2 is chosen to be eliminated, since it is shorter than

the other subtour. We have two ways to break the selected subtour, i.e., excluding directed arc(2, 3) or

(3, 2). Assume that we first exclude(2, 3) and then(3, 2), generating two subproblems, nodesA andB

in Figure 43. When generating the second subproblemB, we deliberately include(2, 3) in its solution.

By including the arc that was excluded in the previous subproblemA, we force to exclude in the current

subproblemB all the solutions to the original problem that will appear inA, and therefore form a partition

of the solution space usingA andB. In general, letE be the excluded arc set, andI be the included arc set

of the problem to be decomposed. Assume that there aret arcs of the selected subtour,{e1, e2, · · · , et},
that are not inI. The CT scheme decomposes the problem intot child subproblems, with thek-th one

having excluded arc setEk and included arc setIk, such that

Ek = E ∪ {ek},
Ik = I ∪ {e1, · · · , ek−1},

}
k = 1, 2, · · · , t. (9)

Sinceek is an excluded arc of thek-th subproblem,ek ∈ Ek, and it is an included arc of thek + 1-st

subproblem,ek ∈ Ik+1, a complete tour obtained from thek-th subproblem does not contain arcek, while

a tour obtained from thek + 1-st subproblem must have arcek. Thus a tour from thek-th subproblem

cannot be generated from thek + 1-st subproblem, and vice versa. In summary, the state space of the

ATSP under BnB using the CT subtour elimination scheme can be represented by a tree without duplicate

nodes.

In the next step, the algorithm selects as the current problem a new subproblem from the set ofactive

63



n digits AP cost ATSP cost relative AP error (%)

200 6.7021 1.63533± 0.00254 1.64302± 0.00254 0.46817± 0.00970
400 7.3041 1.63942± 0.00180 1.64311± 0.00180 0.22485± 0.00468
600 7.6563 1.64072± 0.00146 1.64314± 0.00145 0.14765± 0.00317
800 7.9062 1.64227± 0.00125 1.64407± 0.00125 0.10904± 0.00237

1,000 8.1000 1.64297± 0.00114 1.64441± 0.00114 0.08754± 0.00191
1,200 8.2584 1.64284± 0.00104 1.64402± 0.00105 0.07187± 0.00158
1,400 8.3923 1.64313± 0.00096 1.64413± 0.00096 0.06148± 0.00139
1,600 8.5082 1.64319± 0.00090 1.64405± 0.00090 0.05276± 0.00117
2,000 8.7021 1.64382± 0.00082 1.64451± 0.00082 0.04231± 0.00095
2,200 8.7848 1.64372± 0.00077 1.64434± 0.00077 0.03813± 0.00085
2,400 8.8604 1.64360± 0.00074 1.64417± 0.00073 0.03477± 0.00079
2,600 8.9299 1.64429± 0.00071 1.64481± 0.00071 0.03234± 0.00074
2,800 8.9943 1.64382± 0.00068 1.64430± 0.00068 0.02966± 0.00068
3,000 9.0542 1.64421± 0.00065 1.64463± 0.00065 0.02548± 0.00061

Table 3: Numerical results on AP cost, the ATSP cost and AP error relative to the ATSP cost, in percent.
The cost matrices are uniformly random. Each data point is averaged over 10,000 problem instances. In
the table,n is the number of cities, digits is the number of digits for intercity distances, and all numerical
error bounds represent 95 percent confidence intervals.

subproblems, which are the ones that have been generated but not yet expanded. This process continues

until there is no unexpanded problem, or all unexpanded problems have costs greater than or equal to the

cost of the best complete tour found so far.

Thanks to its linear-space requirement, we use depth-first branch-and-bound (DFBnB) in our algo-

rithm. DFBnB explores active subproblems in a depth-first order. It uses an upper boundα on the optimal

cost, whose initial value can be infinity or the cost of an approximate solution, such as one obtained by

Karp’s patching algorithm [53, 56], which repeatedly patches two smallest subtours into a big one until

a complete tour forms. Starting at the root node, DFBnB selects a recently generated nodex to examine

next. If the AP solution ofx is a complete tour, thenx is a leaf node of the search tree. If the cost of a

leaf node is less than the current upper boundα, α is revised to the cost ofx. If x’s AP solution is not a

complete tour and its cost is greater than or equal toα, x is pruned, because node costs are monotonic so

that no descendant ofx will have a cost smaller thanx’s cost. Otherwise,x is expanded, generating all its

child nodes. To find an optimal goal node quickly, the children ofx should be searched in an increasing

order of their costs. In other words we use node ordering to reduce the number of nodes explored. To speed

up the process of reaching a better, possibly optimal, solution, we also apply Karp’s patching algorithm to

the best child node of the current node.

Our algorithm is in principle the same as that of [12], which is probably the best known complete

algorithm for the ATSP. The main difference between the two is that, due to a consideration on space

requirement, we use depth-first search while [12] used best-first search.

64



1  4

5  6
2  3

2   3

  6

1   4
 
  5

6  2  3

4  1  5

E={(2,3)}
I={}

E={(3,2)}
I={(2,3)}

E={(3,2),(6,2)}
I={(2,3)}

E={(3,2),(3,6)}
I={(2,3),(6,2)}

2  3  6

4  1  5

A B

C D

1  4  2

6  3  5

Figure 43: DFBnB subtour elimination on the ATSP.

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

effective number of digits

no
rm

al
iz

ed
 a

ve
ra

ge
 n

um
be

r 
of

 A
P

 c
al

ls

(a) normalized number of AP calls

   100−city
   500−city
1,000−city
1,500−city

−4 −3 −2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1
(b) rescaled normalized # of AP calls

rescaled effective number of digits

no
rm

al
iz

ed
 a

ve
ra

ge
 n

um
be

r 
of

 A
P

 c
al

ls

   100−city
   500−city
1,000−city
1,500−city

Figure 44: (a) Normalized average number of AP calls of DFBnB subtour elimination. (b) Scaled average
number of AP calls, with(β − betac) log10(n), whereβ0 = 1.49± 0.025.

4.5.2 Threshing behavior

Figure 44(a) shows the average complexity of DFBnB subtour elimination, measured by the number of

calls to the AP function, in terms of the effective number of digits for intercity distances. The result is

averaged over the same 10,000 problem instances for each data point as used for the phase transitions

studied in Section 2.3.2. Note that the number of AP calls increases significantly from small problems to

large ones using the same number of effective digits for distances. Thus, we normalize the result in such

a way that for a given problem size, the minimal and maximal AP calls among all problem instances of

the same size are mapped to zero and one, respectively, and the other AP calls are proportionally adjusted

to a ratio between 0 and 1. This allows us to compare the results from different problem sizes in one

figure. The curves in Figure 44(a) follow a pattern similar to that of the phase transitions in Section 2.3.2.

65



The complexity of the subtour elimination algorithm increases with the effective number of digits, and

exhibits a threshold behavior similar to phase transitions. Indeed, we can use finite-size scaling to capture

the behavior as the problem size grows, as illustrated in Figure 44(b).

The results in Figure 44 and the phase-transition results of Section 2.3.2 indicate that the complexity

of the subtour elimination algorithm goes hand-in-hand with the constrainedness of the problem, which is

determined by the portion of distinct entities of distance matrix, which is in turn controlled by the precision

of distances.

Similar results have been reported in [113], where the effects of two different distance distributions

on the average complexity of the subtour elimination algorithm were analyzed to conclued that the de-

terminant of the average complexity is the number of distinct distances of a problem. The results of this

section extend that in [113] to different sizes of problems and by applying finite-size scaling to capture the

threshold behavior as problem size increases.

We need to contrast the experimental result in this section with the theoretical result on the NP-

completeness of the TSP of intercity distances 0 and 1. It has been known that the degenerated TSP

with distances 0 and 1 is still NP-complete [80]. On the other hand, our experimental results showed that

when intercity distances are small, relative to the problem size, the ATSP is easy on average. Based on our

experimental result, a large portion of the problem instances with small intercity distances can be solved

by the assignment problem or Karp’s patching algorithm with no branch-and-bound search required. This

discrepancy indicates that the worst case of the problem is rare and most likely pathological.

4.6 Related Work and Discussions

Two lines of previous work have directly influenced and inspired this research. The first line of related

work was on the expected complexity of tree search, which shed light to the BnB subtour elimination

algorithm described in Section 4.5.1 as it solves the ATSP in a tree search. The analysis was carried out

on an abstract random tree model calledincremental treeT [55, 72, 73, 112, 107]. The internal nodes of

T has variable number of children and edges inT are assigned finite and nonnegative random values. The

cost of a node inT is the sum of the edge costs along the path from the root to that node. An optimal goal

node is a node of minimum cost at a fixed depthd. The overall goal is to find an optimal goal node.

There exist phase transitions in the cost of the optimal goal node and the complexity to the problem of

finding an optimal goal inT . The control parameter is the expected number of child nodes of a common

parent node which have the same cost as the parent. The cost of an optimal goal node almost surely

undergoes a phase transition from a linear function of depthd to a constant when the expected same-

cost children of a node increases beyond one. Meanwhile, best-first search and depth-first branch-and-

bound also exhibit a phase-transition behavior, i.e., their expected complexity changes dramatically from

exponential to polynomial ind as the expected same-cost children of a node is reduced to below one.

Note that following the result of [21], best-first search is optimal for searching this random tree among all

algorithms using the same cost function, in terms of number of node expansions, up to tie breaking. Thus,

the above results also give the expected complexity of the problem of searching an incremental tree.

66



The second line of related research was on characterizing the the assignment problem (AP) lower-

bound cost function and its relationship with the ATSP, which has been a research interest for a long

time [3, 18, 30, 31, 54, 56, 74, 96]. The first surprising result [96] is that the expected AP cost approaches

a constant as the number of citiesn goes to infinity if the entries of distance matrixD are independent

and uniform over reals[0, 1]. This constant has been the subject of a long history of pursuit. It has been

shown rigorously, based on rigorous replica method from statistical physics [75], that the optimal cost of

random assignment approaches asymptotically toπ2/6 [3], which is approximately 1.64493. Our results

in Section 4.4 show that the AP and the ATSP costs approach 1.64421 and 1.64463, respectively, which

support the theoretical results on the AP cost.

More importantly, the relationship between the AP cost and the ATSP cost has remarkably different

characteristics under different distance distributions. On one extreme, the AP cost is the same as the ATSP

cost with a high probability, while on the other extreme, it can differ from the ATSP cost, with a high

probability, by a function of problem sizen. Let AP (D) be the AP cost andATSP (D) the ATSP cost

under a distance matrixD. If the expected number of zeros in a row ofD approaches infinity when

n → ∞, thenAP (D) = ATSP (D) with a probability tending to one [30]. However, if the entities of

D are uniform over the integers[0, 1, · · · , bcnnc], thenAP (D) = ATSP (D) with a probability going

to zero, wherecn grows to infinity withn [30]. Indeed, when the entities ofD are uniform over[0, 1],

E(ATSP (D)−AP (D)) ≥ c0/n, wherec0 is a positive constant [31].

These previous results indicate that the quality of the AP function varies significantly, depending on the

underlying distance distribution. Precisely, the difference between the AP cost and the ATSP cost has two

phases, controlled by the number of zero distances in the distance matrixD. In one phase, the difference

is zero with high probability, while in the other phase, the expectation of the difference is a function of the

problem sizen. Our experimental results in Section 2.3.2 adds to this analysis the existence of a phase

transition between these two phases.

The two-phase result on the accuracy of the AP cost function is also in principle consistent with the

phase-transition result of incremental random trees. The root of the search tree has a cost equal to the AP

costAP (D) to the problem and an optimal goal node has the ATSP tour costATSP (D). If we subtract

the AP cost to the root from every node in the ATSP search tree, the root node has cost zero and an optimal

goal node has cost equal toATSP (D)−AP (D). When there are a large number of zero distances inD,

there will be a large number of same-cost children, and the AP cost of a child node in a search tree is more

likely to be the same as the AP cost of its parent, since AP will tend to use the zero distances. Therefore,

it is expected that more nodes in the search tree will have more than one child node having the same cost

as their parents.

4.7 Conclusions

The main contributions from ourresearch and the most important lessons we have learnedare twofold. First,

we answered positively the long-standing question whether the Traveling Salesman Problem (TSP) has

phase transitions [61]. We studied this issue on a more general version of the problem, the asymmetric

67



TSP (ATSP). We empirically showed that many important properties, including the ATSP tour cost and

the fraction of backbone, have two characteristically different values, and the transitions between them are

rather abrupt and dramatic, displaying a phase-transition phenomenon. The control parameter of the phase

transitions is the effective number of digits representing the intercity distances or the precision of distance

measure.

Second, our results provide a practical guidance on how to generate difficult random ATSP problem

instances and which random instances should be used to compare the asymptotic performance of ATSP

algorithms. A current common practice in comparing algorithms when using a random ensemble is to

generate problem instances of different sizes with a fixed distance precision. Our phase transition results

indicate that the correct way is to use instances of different sizes that have the same or similar features

such as the same fraction of backbones. This in turn requires increasing the precision of intercity distances

as the problem size grows.

It is important to note that the exact locations of various phase transitions presented here remain to be

mathematically determined, using methods probably from statistical physics [70, 75].

68



5 Configuration Landscape Analysis and Backbone Guided Local Search
for Satisfiability and Maximum Satisfiability

Boolean satisfiability or SAT is an archetypical decision problem [32]. Given a set of Boolean variables

and a set of clauses, which specify constraints among the variables, the problem is to decide if there

exists a variable assignment that satisfies all constraints. Moreover, there are overconstrained problems

in the real world in which not all constraints are satisfiable and the objective is to satisfy the maximal

number of constraints. Such a problem is called maximum Boolean satisfiability or Max-SAT, which is

the optimization counterpart of SAT. Max-SAT is more general and difficult to solve than SAT. The solution

to a Max-SAT can be used to answer the question of its decision counterpart. Many real-world problems

can be formulated and solved as SAT or Max-SAT, including scheduling, multi-agent cooperation and

coordination, and pattern recognition [6, 16, 20, 29].

Recent years have witnessed significant progresses on SAT in two directions. The first is the under-

standing of problem properties, such as phase transitions [14, 37, 48, 77] and backbones in various difficult

combinatorial problems [78, 109], which were defined in Section 4. It has been shown that there exist sharp

transitions in the satisfiability of random SAT problem instances as the ratio of the number of clauses to

the number of variables (clause/variable or C/V ratio) increases beyond a critical value [14, 77], a phe-

nomenon similar to phase transitions in disordered systems [37, 44, 48]. It has also been observed that the

fraction of backbone variables, the ones that have fixed values among all optimal solutions to Max-SAT,

increases abruptly as the clause/variable ratio goes across a critical value, yet another phenomenon similar

to phase transitions [109].

The second research direction is focused on developing efficient SAT solvers, especially local search

algorithms [71, 89, 87]. The best known local search algorithms include WalkSAT [87] and its varia-

tions [71]. These algorithms are able to significantly outperform systematic search algorithms on most

random problem instances and some problem classes of real applications, solving larger satisfiable prob-

lem instances in less time, albeit the former may fail to reach a solution on a particular instance even if such

a solution exists. The great success of WalkSAT has subsequently led to the paradigm of formulating and

solving difficult problems from other problem domains, such as planning, as satisfiability problems [57].

The SAT-based approach is now among the best methods for planning.

A problem of fundamental interest and practical importance is how to utilize problem structural in-

formation, such as that of phase transitions and backbones, in a search algorithm to cope with the high

computational cost of difficult problems, as well as to improve the performance of the algorithm. The

published work on this topic is limited. [84] developed a transformation method that exploits phase tran-

sitions of tree search problems, and [22] proposed a method to incorporate backbone information from

SAT in a systematic search algorithm. [95] proposed a heuristic backbone sampling method for generating

initial assignments for a local search for Max-SAT. Despite the success of these previous works, much

research needs to be carried out on exploiting structural information in order to demonstrate the viability

of incorporating such information in search algorithms.

One of the challenges in utilizing the structural information of a problem, such as phase transitions or

69



backbones, in a search algorithm, is to make the algorithm not only work on random problem instances,

but also perform well onindividual problem instances, especially those from real-world applications. To

our knowledge no result on individual real problem instances has been reported in the previous work using

structural information. A phase-transition property is a characteristic of a collection of problem instances

drawn from a common distribution. Therefore, phase-transition information may only help when solving

a set of related problem instances from which structural information can be extracted. For individual

problem instances, however, information of an ensemble may be irrelevant. Therefore, new structural

information must be acquired and new mechanism of applying such information must be designed.

In this section we are mainly interested in Max-SAT, thanks to its generality and broad applicability in

practice, and local search algorithms, the WalkSAT algorithm in particular, which was originally developed

for SAT problem instances. We first investigate the configuration landscapes of local minima reached by

WalkSAT. Briefly, we define the configuration landscape of a set of local minima as their distribution

with respect to their cost and structure differences in reference to all optimal solutions or a particular

local minimum. Similar global structures have been analyzed on other optimization problems, such as

the Traveling Salesman problem (TSP) and graph bisection problem, and local search algorithms, such

as 2-opt for the TSP [9, 61]. Our experimental results on SAT and Max-SAT show that local minima

from WalkSAT reside close to one another, forming clusters in configuration landscapes. The results also

indicate that WalkSAT is also effective for Max-SAT, finding many high quality local minima that are very

close to optimal solutions in terms of cost and structure differences. Although we carry out this analysis in

part for the purpose of developing a new method, the work itself and the results are of interest of their own.

Our results indicate that WalkSAT is not only an efficient algorithm for SAT, but also a good choice for

Max-SAT. To our knowledge, this study appears to provide the first systematic performance analysis on

WalkSAT for Max-SAT. Previous research also showed that WalkSAT is an effective method for solving

overconstrained Steiner Tree problems [50].

The second main contribution of this section is an innovative and general heuristic method that ex-

ploits backbone information to improve the performance of a local search algorithm. The new method is

driven by the results on the configuration space analysis of local minima uncovered in the first part of this

section. It is also inspired by the previous research on phase transitions [14, 37, 48, 77] and backbones

of combinatorial problems [78, 109]. This method is built upon the following working hypothesis: On a

problem whose optimal and near optimal solutions form a cluster, if a local search algorithm can reach

close vicinities of such solutions, the algorithm will be effective in finding some information of the solution

structures, backbone in particular. This implies that the local minima reached by the algorithm must share

many parts of the solution structures with the optimal solutions. If we extract such structure information

from local minima, we can then use it to adjust the local search in such a way that it moves directly toward

the regions of the search space containing high quality solutions. Using Max-SAT and the WalkSAT local

search algorithm, we demonstrate how this new method can improve WalkSAT’s effectiveness. We empir-

ically show that the new method is effective on random problem instances as well asreal problem instances

from a SAT library (SATLIB [47]), increasing WalkSAT’s probability of reaching better solutions.

70



We proceed as follows in the rest of the section. In Section 5.1, we first describe SAT and Max-SAT, as

well as the WalkSAT local search algorithm for both SAT and Max-SAT. In this section, we also describe

an extension to WalkSAT that allows a dynamic parameter tuning [46] at runtime, which we utilize to free

WalkSAT from reliance on a manually set noise parameter. We investigate the configuration landscapes of

local minima from WalkSAT in Section 5.2. We then develop the backbone guided local search algorithm

in Section 5.3. We discuss the main idea of this method, consider how it can be incorporated in WalkSAT to

make biased moves, and describe ways of capturing backbone information. We then present in Section 5.4

experimental results of backbone guided local search on random problem instances and instances from

SATLIB [47]. We conclude in Section 5.5 with some discussions for future work.

An early version of this section appeared in [115]. The software we developed and used in this research

is freely available at http://www.cse.wustl.edu/∼zhang/projects/bgwalksat/index.html.

5.1 SAT, Max-SAT, and WalkSAT local search

We provide in this section some background information on SAT and Max-SAT problems and the WalkSAT

local search algorithm for SAT [71, 87]. We also review an existing refinement to WalkSAT for SAT [46],

which eliminates WalkSAT’s dependence on a manually set noise parameter, and demonstrate its efficacy

for Max-SAT.

5.1.1 Boolean satisfiability and maximum satisfiability

A Boolean satisfiability, or SAT, is typically represented by a formula consisting of a set of Boolean

variables and a conjunction of a set of disjunctive clauses of literals, which are variables or their negations.

A clause is satisfied if one of its literals is set to true, and a formula is satisfied if no clause is violated.

A formula defines constraints on the possible combinations of variable assignments in order to satisfy the

formula. A SAT problem is to decide if a variable assignment exists that satisfies all the clauses. When not

all clauses can be satisfied, the objective is to maximize the number of satisfied clauses and the problem

becomes maximum Boolean satisfiability, or Max-SAT, which is an optimization problem. A SAT or

Max-SAT with k literals per clause is short handed ask-SAT or Max-k-SAT, respectively. It is known

thatk-SAT with k being at least three is NP-complete and Max-k-SAT with k at least two is NP-hard [32],

meaning that there is no known polynomial algorithm for the problems, and it is unlikely such an algorithm

exists.

5.1.2 The WalkSAT local search algorithm

Since the WalkSAT local search algorithm [87] was developed to solve Boolean satisfiability, the existing

study of WalkSAT and its variations has mainly concentrated onsatisfiableSAT instances. As Max-SAT,

which includessatisfiableas well asunsatisfiableinstances, is our main focus in this research, we are

interested in the effectiveness of WalkSAT in finding optimal solutions to both satisfiable and unsatisfiable

instances.

71



pick a variable of least break-
count in C (greedy pick)

initial assignment generation

pick a unsatisfied clause C
(clause pick)

exist a variable in C with
zero break-count?

pick a variable of 
zero break-count in C

(flat pick)
flip a coin

1-p p

yes
no

pick a variable in C
(noise pick)

flip the chosen variable

Figure 45: Main operations in a try of WalkSAT.

WalkSAT is a randomized algorithm. The algorithm and its variations all follow the same overall

procedure that starts with an initial random variable assignment and makes moves by flipping one variable

at a time from True to False or vice versa, until it finds a satisfying assignment or reaches a predefined

maximal number of flips. Each such attempt is called atry or restart. The procedure repeats until a

maximal number of tries has been attempted.

To select which variable to flip in each step, the effect of flipping a variable is assessed. Flipping a

variable may make some unsatisfied clauses satisfied, and some satisfied clauses unsatisfied. The numbers

of clauses that will be made unsatisfied by flipping a variable is called thebreak-countof the variable at

the current assignment. WalkSAT attempts to flip a variable with zero break-count, trying to make the

next assignment no worse than the current one. To find such a variable with zero break-count, WalkSAT

first selects an unsatisfied clauseC, uniformly randomly, from all unsatisfied clauses. This is calledclause

pick. If C has a variable of zero break-count, WalkSAT then picks such a variable,uniformly randomly,

from the ones that qualify (calledflat pick ). If no zero break-count variable exists inC, WalkSAT then

makes a random choice. With probabilityp it chooses,uniformly randomly, a variable from all the variables

involved inC (callednoise pick); or with probability1− p it selects a variable with the least break-count,

breaking a tiearbitrarily if multiple choices exist (calledgreedy pick). Figure 1. The algorithm takes

three Figure 45. The algorithm takes three parameters to run: the number of tries, the maximal number of

flips in each try, and a probability for noise pick, which is commonly referred to as thenoise ratioof the

algorithm.

72



5.1.3 WalkSAT with dynamic noise strategy

One limitation of the WalkSAT family of algorithms is their dependence on a manually set noise ratio.

To be effective, the noise ratio needs to be tuned for each individual problem, especially for those that do

not share common features. So far, two methods have been proposed to resolve this issue for SAT. Auto-

WalkSAT [81] uses a probing phase to estimate the optimal parameter for the noise ratio. The estimated

noise ratio is then adopted throughout the search phase of the algorithm. Similar to the original WalkSAT,

Auto-WalkSAT uses a static noise ratio.

Deviating from the static strategy, WalkSAT with dynamic noise [46] adopts the strategy of automat-

ically adjusting noise ratio as the search progresses. In other words, the dynamic strategy uses different

noise ratios at different stages of the search. This strategy seems to be more reasonable than the static

strategy. It is relatively easier to make great progress at an early stage of a local search than at a later stage,

therefore the noise ratio should be adjusted accordingly, depending on where the current search is in the

overall search space.

The idea of dynamic noise strategy is simple: start a local search with the noise ratio equal to zero, and

examine the number of violations in the current state everyθm flips, wherem is the number of clauses

of a given problem, andθ a constant. If the number of violations has not decreased since the last time

we checked (θm flips ago), the search is assumed to have stagnated, and the noise ratio is increased to

wp + (1− wp)φ, wherewp is the current noise ratio andφ is another constant. Otherwise, the noise ratio

is decreased towp(1−2φ). The discrepancy between the formulas for increasing and decreasing the noise

ratio is based on some empirical observations of how WalkSAT behaves when the noise ratio is too high,

compared with how it behaves when the parameter is too low [46]. The dynamic strategy was designed

and tested with WalkSAT’s cutoff parameter set to infinity; i.e., no random restarts. This is the setting we

use for WalkSAT with dynamic noise for all of our experiments for SAT and Max-SAT. For convenience,

we refer to this strategy as Dyna-WalkSAT in the remaining of the section.

Note that Dyna-WalkSAT uses two parameters,θ andφ. The difference of using these two new pa-

rameters and using the noise ratio in the original algorithm is that these two parameters do not have to be

tuned for every single problem instance; the performance of Dyna-WalkSAT with the same values forθ

andφ is relatively consistent across different problem instances. Following [46], we have setθ = 1/6 and

φ = 1/5 in our experiments for SAT and Max-SAT.

Though Dyna-WalkSAT was originally designed and tested within the contexts of SAT, we have found

it to be effective on Max-SAT as well. In our experiments, we used problem instances of 2,000 variables

and C/V ratios of 4.3, 6.0 and 8.0 to capture problem instances from different constrainedness regions.

We generated 1,000 random problem instances at each of these C/V ratios. The problem instances were

random in that a clause was generated by uniformly picking three literals, without replacement, and by

discarding duplicate clauses. For WalkSAT, the noise ratios were set from 0.0 to 0.9, with an increment of

0.1, the number of tries per problem instance at 100, and the number of flips per try at 10,000. We also ran

Dyna-WalkSAT on each of these problem instances. To make a fair comparison, we let Dyna-WalkSAT

execute one million flips total. Dyna-WalkSAT also used the same parameters as used by WalkSAT, except

73



0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

# 
of

 V
io

la
tio

ns

Noise Ratio

c/v = 4.3

WalkSAT
DynaWalkSAT

150

200

250

300

350

400

450

500

550

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

# 
of

 V
io

la
tio

ns

Noise Ratio

c/v = 6

WalkSAT
DynaWalkSAT

400

500

600

700

800

900

1000

1100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

# 
of

 V
io

la
tio

ns

Noise Ratio

c/v = 8

WalkSAT
DynaWalkSAT

Figure 46: Experimental validation of Dyna-WalkSAT on random Max-3-SAT, for 2,000-variable problem
instances.

the noise ratio. To reiterate, following [46] we setθ = 1/6 andφ = 1/5 in Dyna-WalkSAT, which have

been found to be effective over a wide range of SAT and Max-SAT instances.

The experimental results are shown in Figure 2. The horizontal axes are noise ratios for WalkSAT

and the vertical axes record the average solution quality. The error bars in the figures measure the 95%

confidence intervals of the results. For all three C/V ratios tested, the performance of Dyna-WalkSAT is

very close to the performance of WalkSAT with the optimal noise ratio, indicating that the dynamic noise

strategy is effective for 3-SAT and Max-3-SAT.

Due to its simplicity and reasonable performance, in the rest of this section we will use Dyna-WalkSAT

with θ = 1/6 andφ = 1/5 as default parameters to replace WalkSAT in our experimental analysis.

5.2 Configuration Landscapes

Given two variable assignments to a given SAT or Max-SAT problem instance, we can measure their

differences in two ways. The first is the difference of their costs or the numbers of violated clauses. This

difference can be normalized (divided) by the total number of clauses, giving the difference of violations

per clause. The second quantity measures structural difference in the form of the Hamming distance

between the two assignments. Since a solution to a SAT problem is simply a string of 0 and 1, Hamming

distance here is simply the conventional Hamming distance for binary strings. The Hamming distance can

74



also be normalized by the total number of variables, resulting in the normalized Hamming distance per

variable. We adopt normalized cost difference and normalized Hamming distance to make the results from

problems of different sizes directly comparable.

With the relative solution quality and structure difference of two assignments specified, we define the

configuration landscape of a set of assignments or solutions as the distribution of the solutions in terms of

their qualities and structure differences relative to a reference solution, which can be an optimal solution

or the best solution in a given set. The set of solutions can be all the optimal solutions, all suboptimal

solutions up to a fixed bound, as well as local minima from a local search.

We can use landscape configuration to capture the effectiveness of the WalkSAT and Dyna-WalkSAT

algorithms on 3-SAT and MAX-3-SAT. We carried out two sets of experiments. In the first set of exper-

iments, we aimed to directly measure the effectiveness of WalkSAT in terms of finding optimal and near

optimal solutions. To this end, we used all optimal solutions to measure the quality of a set of local minima

from WalkSAT. Since finding all optimal solutions is computationally expensive, we restricted ourselves

to relatively small random problem instances with 100 variables and C/V ratios of 2.0, 4.3, 6.0 and 8.0

to capture problems in different constrainedness regions. We generated 1,000 problems for each C/V ra-

tio. The problems were randomly generated by uniformly picking three literals without replacement for a

clause, with duplicate clauses discarded.

To find all optimal assignments to a Max-SAT problem, we extended the well known Davis-Putnam-

Logemann-Loveland (DPLL) algorithm for SAT [19] to Max-SAT. We ran our extended DPLL algorithm

for Max-SAT [102] and WalkSAT on the same set of 100-variable Max-3-SAT problem instances. For

WalkSAT, we set the number of tries per problem at 100, the number of flips per try at 10,000, and

the noise ratio at 0.5. We then examined the configuration landscapes of the local minima reached by

WalkSAT against the optimal solutions in terms of the cost difference between a local minimum and an

optimal solution as well as the Hamming distance of the local minimum to its nearest optimal solution.

Note that the Hamming distance of a local minimum in fact measures the minimal number of flips required

to turn the local minimum into an optimal solution.

The configuration landscapes of local minima from WalkSAT are summarized in Figure 47. Since

WalkSAT is very efficient on underconstrained SAT instances, finding satisfiable solutions on nearly all

problem instances when the C/V ratio is 2.0, we do not include the results for a C/V ratio of 2.0 here.

The X-Y planes in the figures show the correlation between the normalized Hamming distance and the

normalized cost difference. Each point on the X-Y plane represents a set of possible local minima with the

same cost difference and Hamming distance that may be visited by WalkSAT. The origins of the figures

correspond to global optima. The vertical Z axes measure the total numbers of local minima reached by

WalkSAT.

As shown in Figure 47(a), WalkSAT performs well on underconstrained and critically constrained

problems, in that it can find global minima very often. This is shown by the point on the Z axis indicated by

the arrow in the figure. Therefore, WalkSAT is effective in finding optimal solutions on underconstrained

and critically constrained problems. However, the number of local minima that are also global optima

75



0
0.2

0.4
0.6 0

0.01
0.02

0.03
10

0

10
1

10
2

10
3

10
4

normalized cost differencenormalized Hamming dist.

n
u

m
b

er
 o

f 
lo

ca
l m

in
im

a
(a) v=100, cv=4.3

0

0.2

0.4

0.6 0
0.01

0.02
0.03

10
0

10
1

10
2

10
3

10
4

normalized cost difference

(b) v=100,cv=6.0

normalized Hamming dist.

n
u

m
b

er
 o

f 
lo

ca
l m

in
im

a

0

0.2

0.4

0.6 0
0.01

0.02
0.03

10
0

10
1

10
2

10
3

normalized cost difference 

(c) v=100, cv=8.0

normalized Hamming dist.

n
u

m
b

er
 o

f 
lo

ca
l m

in
im

a

Figure 47: Configuration landscapes of local minima from WalkSAT on 100 variable random 3-SAT and
Max-3-SAT, relative to optimal solutions.

decreases from 66,677 to 8,616 as the C/V ratio increases from 2.0 to 4.3, indicating that the effectiveness

of WalkSAT decreases. This number decreases further from 201 to 0 on overconstrained problems with

C/V ratios of 6.0 and 8.0, respectively (Figures 47(b) and (c)). This result indicates that WalkSAT becomes

less effective at finding optimal solutions as problem constrainedness increases. Figure 48 shows the

contours of the configuration landscapes in Figures 47(b) and (c) on the X-Y planes, showing a nearly

linear correlation between the cost difference and the Hamming distance. That is, a local minimum that

has a high cost tends to have a large Hamming distance to an optimal assignment.

In the second set of experiments, we examined the configuration landscapes of local minima from

Dyna-WalkSAT. We used 2,000-variable random 3-SAT and Max-3-SAT with C/V ratios of 4.3, 6.0 and

8.0. As before, we generated 1,000 problem instances for each C/V ratio. Because the problems were too

large to be solved optimally, we built a configuration landscape of a set of local minima with respect to the

best local minimum among them. The results are shown in Figure 49, which are qualitatively similar to

the configuration landscapes in Figure 47.

An interesting result from these experiments is that the configuration landscapes of local minima

reached by WalkSAT and Dyna-WalkSAT exhibitbell surfaceson overconstrained problems with large

76



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

c/v=6.0

normalized Hamming distance

n
o

rm
al

iz
ed

 c
o

st
 d

if
fe

re
n

ce

0
0 0

0

20
0

200
200

200

200

40
0

400

400

40
0

60
0

80
0

800

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.005

0.01

0.015

0.02

0.025

c/v=8.0

normalized Hamming distance

n
o

rm
al

iz
ed

 c
o

st
 d

if
fe

re
n

ce

0

0

10
0

100 100

100

100

20
0

200

200

20
0

300

300

30
0

400

400

500

Figure 48: Contours of the configuration landscapes of local minima from WalkSATon 100 variable Max-
SAT with C/V ratios of 6.0 and 8.0.

C/V ratios. More importantly, the summit of such a bell surface shifts away from optimal solutions, the

(0,0) point on the X-Y plane, as the C/V ratio increases. This observation is examplified by the contours in

Figure 48. Nevertheless, despite the increased difficult of Max-SAT as the C/V ratio grows, WalkSAT and

Dyna-WalkSAT are still fairly effective in that they are able to reach local minima that are close to global

optima. For 100-variable instances with C/V ratio of 8.0 (Figure 48(b)), the majority of local minima

reached by WalkSAT, the ones located at the peak point of the bell surface of the figure, have a normalized

cost difference to optimal solutions of 0.014 for 100 variable problems, which is equivalent to about eleven

more constraints violated than an optimal solution on such overly constrained problem instances. Since

WalkSAT is typically executed with multiple trials, the best local minimum it can landed on will be much

better than such most likely local minima.

Another interesting and important observation of the results in Figure 48 is that there is a near linear

correlation between the cost difference between a local minimum and its nearest optimal solution and their

Hamming distance, the two quality measurements we adopt. This is evident that the contours in Figure 48

have ellipse shapes. An implication of this observation is that a local minimum with a small cost is more

77



0
0.2

0.4
0.6

0.8

0

2

4

6

x 10
−3

normalized Hamming distance

(a) c/v=4.3

normalized cost difference 0
0.2

0.4
0.6

0.8

0

0.005

0.01

0.015

normalized Hamming distance

(b) c/v=6

normalized cost difference

0.1
0.2

0.3
0.4

0.5
0.6

0

0.005

0.01

0.015

normalized Hamming distance

(c) c/v=8

normalized cost difference

Figure 49: Local minima from WalkSAT on 2,000-variable Max-3-SAT with C/V ratios of 4.3, 6 and 8.

likely to share a larger common solution structure with an optimal solution. More importantly, majority

local minima have most parts of their variable assignments consistent with their nearest global optima.

For instance, the majority local minima on 100-variable problems with C/V ratio of 8.0 have normalized

Hamming distances around 0.13. This means that out of 100 variables, 87 of them are correctly set. This

implies that these local minima must share large portions of the variable assignments with the optimal

solutions. We will exploit this phenomenon in our new search algorithm in the next section.

In concluding this section, we need to point out that the results of this section extended the previous

studies on global structures of optimization cost surfaces [8, 9, 61]. It has been shown in these studies (and

other works cited in [8, 9, 61]) that there exists a correlation between the cost differences and distances

among local minima of such optimization problems as the symmetric Traveling Salesman problem and

graph bisection problems. [8, 9] particularly showed a near linear relation between the quality of local

minima and distances among them, which is similar to the contour results in Figure 48. Our results made

two noticeable extensions to the study of global structures of optimization problems. First, we consid-

ered configuration landscape defined as distribution of local minima with respect to the cost differences

and distances between the local minima and optimal solutions or best local minima. This allows us to

78



directly examine globally convex property or “big valley” structure of the cost surfaces of optimization

problems [9]. Secondly, our results showed that there indeed exists a big valley structure in the con-

figuration landscapes of 3-SAT and Max-3-SAT, supporting the “big valley” conjecture on optimization

problems [8].

Furthermore, we would also like to point out that the “big valley” results in [8, 9] led to a new multi-

start strategy that utilize such a “big valley” structure of local minima. In this section, we present a

different, novel way to exploit such global structures, which is the topic of the next section.

5.3 Backbone Guided Local Search

In this section, we discuss in detail the backbone guided local search algorithm. We first present the main

idea and then discuss how it can be applied to WalkSAT, forming the backbone guided WalkSAT algorithm.

We also consider two different ways to estimate backbone frequencies using local minima.

5.3.1 Main ideas

The backbone variables of a problem are the ones that are critically constrained, since they must be set

to particular values to make an optimal solution feasible. By the same token, if a pair of a variable and

one of its values appears more often in the set of all optimal solutions, the variable is more constrained.

If, somehow, we knew the frequency of a variable-value pair in all optimal solutions, we could construct

a “smart” search algorithm by using the backbone frequency information as an oracle to guide each step

of the algorithm. Take WalkSAT as an example. At each step of the algorithm, we can use the backbone

frequencies to change the way in which a variable is chosen to flip, i.e., we prefer flipping a variable that

is unsynchronized with its backbone frequency more than another variable under the current assignment.

In other words, we should focus on fixing the critically constrained variables that are not currently set

correctly.

Unfortunately, exact backbone frequencies of a problem are even more difficult to come by than actual

problem solutions. To address this problem, the second key idea of backbone guided local search is to

estimate backbone frequencies using local minima of a local search. We simply treat local minima as if

they were optimal solutions and computepseudo backbone frequencies, which are an estimation of real

backbone frequencies. More precisely, we define the pseudo backbone frequency of a literal (a variable-

value pair) as the frequency with which the literal appears in all local minima, which we denote asp(l)

wherel is a literal. Note thatp(l) = 1− p(¬l), where¬l is the negation ofl.

The quality of pseudo backbone frequencies depends on the effectiveness and efficiency of the local

search algorithm used. As discussed in Section 5.2, high-quality local minima can be obtained by efficient

local search algorithms, such as WalkSAT. Even though WalkSAT may land on suboptimal solution with

fairly high probabilities, particularly on overconstrained problem instances, most of the local minima from

WalkSAT indeed have large portions of variables set to the correct values, so that they contain parts of

optimal solutions or partial backbone. In this research, we adopt WalkSAT to collect local minima and

then in return apply the backbone guided search method to WalkSAT to improve its performance.

79



5.3.2 Biased moves and selections

Pseudo backbone frequencies can be incorporated in a local search algorithm to make ”biased” moves or

flips. Consider a simple example of two variables,x1 andx2, that appear in a violated clause and have the

same effect under the current assignment, i.e., flipping one of them makes the violated clause satisfied, and

both variables have the same break-count or will cause the same number of satisfied clauses unsatisfied if

flipped. LetB be the set of backbone variables along with their fixed values,T be the set of local minima

from which pseudo backbone frequencies were computed, andv1 andv2 are the current values ofx1 and

x2. We will prefer to flipx1 overx2 if under the current assignment,P{(x1 = v1)∈B|T } < P{(x2 =

v2)∈B|T }, which means that under the current assignment,x1 is less likely to be part of backbone than

x2, given the set of local minimaT . Note thatP{(x = v)∈B|T } is the pseudo backbone frequency of

literal x = v under the evidence of a set of local minimaT .

How can the pseudo backbone frequencies be used to alter the way that WalkSAT chooses variables?

As discussed in Section 5.1.2, WalkSAT makesuniformly random choices in selecting a variable to flip

when multiple choices exist. For example, when there are more than one unsatisfied clause under the

current assignment, WalkSAT arbitrarily (uniformly) chooses an unsatisfied clause. Similarly, when there

are multiple variables with zero break-count, WalkSAT chooses one arbitrarily.

Based on the maximum entropy principle [49], it is optimal on average to make an unbiased choice if

there is no information to distinguish one choice over another. Therefore, with no additional information

on optimal assignments, the WalkSAT algorithm is optimal on average in terms of selecting a variable to

flip. In backbone guided search, we apply pseudo backbone information to force WalkSAT to make random

but biasedchoices. If a backbone variable and a nonbackbone variable can make a clause satisfied, the

backbone variable should be chosen. In other words, we modify WalkSAT’s random strategies in such a

way that a backbone or overconstrained variable will be chosen more often than a nonbackbone variable.

To this end, we use pseudo backbone frequencies to help make random biased selections.

5.3.3 Backbone guided WalkSAT

Backbone guided WalkSAT has two phases. The first is aestimationphase that collects local minima by

running WalkSAT, with a fixed number of tries. The local minima thus collected are compiled to compute

the pseudo backbone frequencies of all literals.

The second phase carries out the actualbackbone guidedlocal search, which uses pseudo backbone

frequencies to modify the way that WalkSAT chooses variables to flip. The second phase also runs many

tries, each of which produces a local minimum, very often a new one. The newly discovered local minima

can be subsequently added to the pool of all local minima found so far and be used to update the pseudo

backbone frequencies.

We now consider methods for making biased moves in WalkSAT. The first random choice in WalkSAT

is clause pick, where an unsatisfied clause is selected when multiple ones exist. We want to pick, with

high probabilities, those variables that are either part of the backbone or highly constrained in all optimal

solutions. Therefore, we should choose a clause containing the maximal number of critically constrained

80



variables. To this end, we use the total pseudo backbone frequency of all the literals in an unsatisfied clause,

normalized among all unsatisfied clauses, to measure the likelihood that the clause contains backbone and

highly constrained variables. We then select an unsatisfied clause among all unsatisfied based on their

likelihoods of containing backbone variables. Specifically, letC be the set of unsatisfied clauses, andqC be

the sum of pseudo backbone frequencies of all the literals in a clauseC ∈ C. We then letpC = qC/Q be the

probability to select clauseC among all unsatisfied clauses inC, whereQ =
∑

C∈C qC is a normalization

factor.

WalkSAT uses three other random pick rules to arbitrarily select a variable after an unsatisfied clause

is chosen (see Section 5.1.2 and Figure 45). To reiterate, the flat pick rule chooses a variable from a set

of zero break-count variables, if any; the noise pick rule selects one from all variables involved in the

chosen clause; and the greedy pick rule takes a variable among the ones of least break-count. In essence,

these rules use the same operation, picking a variable equally likely from a set of variables. Therefore, we

can modify these rules all in the same way by using pseudo backbone frequencies. Let{x1, x2, · · · , xw}
be a set ofw variables from which one must be chosen,{v1, v2, · · · , vw} their current assignments, and

{p1, p2, · · · , pw} the pseudo backbone frequencies of literals{(x1 = v1), (x2 = v2), · · · , (xw = vw)}.
Then we choose variablexi with probability (1 − pi)/

∑w
j=1(1 − pj). Here we use probability1 − pi

because it is the probability of literal(xi = ¬vi) being in the pseudo backbone, which is the valuexi is

going to change to.

Furthermore, the idea of pseudo backbone frequencies can also be applied to generate an initial assign-

ment for a local search. Specifically, a variable is assigned a particular value with a probability proportional

to the pseudo backbone frequency of the variable-value pair. This was called heuristic backbone sampling

in [95].

5.3.4 Backbone guided WalkSAT with dynamic noise

To make the backbone guided WalkSAT algorithm more general and robust, we would like to have it use

dynamic noise strategy. The dynamic noise strategy discussed in Section 5.1.3 runs a long sequence of

variable selections and flips with no restarts. This, unfortunately, is incompatible with backbone guided

local search, which requires random restarts in order to collect local minima to construct pseudo backbone

frequencies.

To overcome this problem, we have devised a “compromise”, which allows a reasonable combination

of using dynamic noise method and applying backbone information. Specifically, we run WalkSAT with

dynamic noise strategy for a number of short runs to construct pseudo backbone frequencies, followed by

several long runs of backbone guided local search. In our particular implementation of backbone guided

Dyna-WalkSAT, we let it run thirty short runs for computing pseudo backbone frequencies, followed by

seven long runs, each of which has ten times more flips than a short run.

81



5.3.5 Computing pseudo backbone frequencies

The performance of backbone guided local search depends greatly upon the quality of pseudo backbone

information used. The more truthful the pseudo backbone information is, the more effective the new local

search will be. In order to retrieve as much backbone information as possible, an unbiased sample of local

minima should be used, in which local minima need to be derived from independently generated starting

assignments. Therefore, random initial assignments should be preferred.

Given a set of local minima, the computation of pseudo backbone frequencies needs to be done with

care. We propose two different ways to compute pseudo backbone frequencies. The first and most straight-

forward method is to treat all the given local minima as if they were of equal quality, and take the frequency

of a literal l that appears in all local minimaS as its pseudo backbone frequencyp(l). Specifically, we

have

p(l) =

∑
∀si∈S,l∈si

1
|S| (10)

We call this methodaveraging countingor AC for short.

It is imperative to note that not all local minima are of equal quality. In general, a lower quality local

minimum tends to contain less backbone information than a higher quality local minimum, as discussed in

Section 5.2. Therefore, the backbone information carried in a lower quality local minimum is less reliable.

This means that a literal appearing in a lower quality local minimum should contribute less to the pseudo

backbone frequencies than a literal appearing in a higher quality local minimum. As a result, we introduce

a discount factor to adjust the contribution of a literal based on the quality of the local minimum where

it came from. If a local minimumsi has costci, which is the number of violated clauses in the local

minimum, then we can compute the pseudo backbone frequencyp(l) of a literall = (xi = vi) as follows.

p(l) =

∑
∀si∈S,l∈si

(
1
ci

)

∑
∀si∈S

(
1
ci

) (11)

In other words, the contribution of a local minimum toward a pseudo backbone probability of a literal is

reciprocally weighted by the cost of the local minimum. We thus call this methodcost reciprocal averaging

counting(CRAC).

5.4 Experimental Evaluation

We now experimentally analyze the performance of the backbone guided WalkSAT (BG-WalkSAT) algo-

rithm on SAT and Max-SAT. We used the dynamic noise strategy in both WalkSAT and BG-WalkSAT, i.e.,

we compare Dyna-WalkSAT and BG-Dyna-WalkSAT. Our benchmark problems are randomly generated

problems and those from the SATLIB [47].

5.4.1 Random ensembles

In this set of experiments, we generated random MAX-3-SAT instances with 2,000 variables and three

different C/V ratios of 4.3, 6.0, and 8.0, to sample instances from regions of differing constrainedness. We

82



C/V ratio
Configuration 4.3 6.0 8.0
Dyna-WalkSAT 11.06± 0.718 200.87± 4.411 531.79± 10.990

BG-Dyna-WalkSAT 23.28± 1.060 190.91± 4.958 504.21± 10.643
BG-GreedyPick 20.58± 1.046 200.01± 4.499 506.68± 10.638
BG-NoisePick 10.47± 0.725 185.21± 4.203 518.48± 10.827

BG-Initialization 7.33± 0.627 190.290± 4.19 519.96± 10.771
BG-ClausePick 13.75± 0.693 202.74± 4.595 537.02± 11.156

Table 4: Comparison of backbone guided Dyna-WalkSAT variations over Dyna-WalkSAT on 2,000 vari-
able random Max-3-SAT. Performance is measured by the average number of constraint violations. The
errors represent 95% confidence intervals.

ignored C/V ratio of 2.0 since WalkSAT can easily find satisfiable assignments to most of such undercon-

strained problems. At each of the ratios considered, we generated 1,000 problem instances, and compared

Dyna-WalkSAT and BG-Dyna-WalkSAT. Dyna-WalkSAT ran one long try with a maximum of one mil-

lion flips. BG-Dyna-WalkSAT ran 30 short tries, each with a maximum of 10,000 flips, as in WalkSAT,

to collect local minima. It then executed seven long tries, each with 100,000 flips, which was ten times

longer than a short try. Thus BG-Dyna-WalkSAT executed one million flips also.

We found that on random problem instances the average counting (AC) method for computing pseudo

backbone frequencies is less effective than the cost reciprocal averaging counting (CRAC) method under

all different C/V ratios we tested. Therefore, we will present the results from CRAC here.

Using random problem instances, we first examined the effects of applying biased moves to Dyna-

WalkSAT. The results are included in Table 4. In the table, we list the results of average constraint vio-

lations for Dyna-WalkSAT and BG-Dyna-WalkSAT first, followed by the applications of biased moves to

different random picks in WalkSAT. For instance, BG-ClausePick stands for Dyna-WalkSAT with biased

clause picks. As shown, biased noise pick and biased initialization can improve Dyna-WalkSAT under

all C/V ratios; biased clause pick has negative effects on performance; and biased greedy pick is only

effective on highly overconstrained problems. Their combination also has mixed effects: the combined

biased moves improve upon Dyna-WalkSAT on overconstrained Max-3-SAT. Note that we do not include

the results for biased flat pick because it has no effect on almost all problem instances we tested. The

reason is that in most cases, there is only one variable with zero break-count for 3-SAT, so that biased flat

pick was not used most of the time.

The results in Table 4 also show that BG-Dyna-WalkSAT can only improve upon Dyna-WalkSAT

on overconstrained instances with the C/V ratios equal to 6.0 and 8.0; while it fails to do so on critically

constrained instances with the C/V ratio of 4.3. One possible reason is that Dyna-WalkSAT is very effective

and efficient, finding optimal solutions very often.

Additional insight can be gained from an inspection of anytime behavior of Dyna-WalkSAT and BG-

Dyna-WalkSAT, which are shown in Figure 50. As discussed earlier, BG-Dyna-WalkSAT outperforms

Dyna-WalkSAT only when the C/V ratios are 6.0 and 8.0. A key observation on these figures is that

there was a big jump on the quality of the best local minimum found so far right after pseudo backbone

83



0

50

100

150

200

250

0 200000 400000 600000 800000 1e+06

# 
of

 v
io

la
tio

ns

# of flips

c/v=4.3

Dyna-Walksat
Dyna-BGWalksat

150

200

250

300

350

400

450

500

550

0 200000 400000 600000 800000 1e+06

# 
of

 v
io

la
tio

ns

# of flips

c/v=6

Dyna-Walksat
Dyna-BGWalksat

500

550

600

650

700

750

800

850

900

950

0 200000 400000 600000 800000 1e+06

# 
of

 v
io

la
tio

ns

# of flips

c/v=8

Dyna-Walksat
Dyna-BGWalksat

Figure 50: Anytime performance of Dyna-WalkSAT and BG-Dyna-WalkSAT on random Max-3-SAT with
2,000 variables.

information was applied to the search algorithm. This indicates that pseudo backbone information can

indeed improve the search performance.

We also investigated the performance of BG-Dyna-WalkSAT with all biased moves as the problem

size increases. We considered random Max-3-SAT with C/V ratio fixed at 8.0, and the number of variables

from 2,000 to 10,000, with an increment of 2,000. We used 1,000 problem instances for each different size

of problems. The results comparing to Dyna-WalkSAT are shown in Table 5.

As the results showed, BG-Dyna-WalkSAT is able to improve upon Dyna-WalkSAT on random Max-

3-SAT, especially on overconstrained problem instances.

5.4.2 Problem instances from SATLIB

We compared BG-Dyna-WalkSAT against Dyna-WalkSAT on problem instances from SATLIB [47]. The

test problems include SAT-encoded instances from a variety of application domains, including blocks

world planning, bounded model checking, all interval series problems, and hard graph coloring problems.

We only chose problems with more than 350 variables, and discarded those that can be easily solved by

WalkSAT and BGWalkSAT. The chosen problem instances are difficult to solve in general, and their details

84



# var Dyna-WalkSAT BG-Dyna-WalkSAT Diff
2,000 528.32 497.61 30.71
4,000 1097.60 1041.92 55.68
6,000 1675.80 1597.36 78.44
8,000 2248.19 2159.61 88.58

10,000 2831.32 2724.14 107.18

Table 5: Comparison of BG-Dyna-WalkSAT and Dyna-WalkSAT on random Max-3-SAT with C/V ratio of
8.0, averaged over 1,000 instances.Diff is the improvement of BG-Dyna-WalkSAT over Dyna-WalkSAT.

Table 6: BG-Dyna-WalkSAT versus Dyna-WalkSAT on relatively easy satisfiable problems.Dyna-
WalkSATand BG-Dyna-WalkSATare the numbers of runs resulting in satisfying solutions (out of 20)
by these algorithms. The better results from the two algorithms are underlined and in bold.

problem #Var #Clause Dyna-WalkSAT BG-Dyna-WalkSAT

bw large.c 3016 50457 1 2
bw large.d 6325 131973 1 0

par8-1 350 1149 6 19
par8-2 350 1157 6 19
par8-3 350 1171 7 17
par8-4 350 1155 0 16
par8-5 350 1171 1 15
qg1-08 512 148957 8 12
qg2-08 512 148957 1 4
qg3-08 512 10469 11 20
qg6-09 729 21844 0 5
qg7-09 729 22060 4 5
g125.17 2125 66272 5 0
g250.29 7250 454622 4 2

can be found on the website.

We considered satisfiable and unsatisfiable problems. We ran both Dyna-WalkSAT and BG-Dyna-

WalkSAT with a total of ten million flips (compared with one million for our results for random instances)

as most of these problem instances are larger than the random Max-3-SAT instances considered in the

previous experiments. Interestingly, the average counting (AC) method for computing pseudo backbone

frequencies is slightly better than the cost reciprocal averaging counting (CRAC) method. Moreover,

biased noise pick and biased clause pick provide substantial improvements to Dyna-WaslkSAT; their com-

bination exhibited superior performance, over a wide range of real instances. In the rest of the section,

we present the results of BG-Dyna-WalkSAT using these two biased moves. In our experiments, we ran

each of BG-Dyna-WalkSAT and Dyna-WalkSAT twenty times, with each run executing a maximum of ten

million flips.

In viewing the results, we found it useful to divide the satisfiable instances into two categories, the

easier instances, which were solved at least once (Table 6), and the harder ones, which were not solved by

either method, in any of their runs (Table 7). Results for unsatisfiable instances are presented in Table 8.

As the results show, BG-Dyna-WalkSAT significantly outperforms Dyna-WalkSAT in most cases.

85



Table 7: Dyna-WalkSAT vs. BG-Dyna-WalkSAT on harder satisfiable problems. Dyna-WalkSAT and
BG-Dyna-WalkSAT are the average numbers of violations in the best solutions found by the algorithms
for a given problem, averaged over 20 runs. Gain is the percentage improvement of BG-Dyna-WalkSAT
over Dyna-WalkSAT. The better results are underlined and in bold.

problem #Var #Clause Dyna-WalkSAT BG-Dyna-WalkSAT gain (%)

bmc-ibm-1 9685 55870 25.3 4.15 83.60
bmc-ibm-2 3628 14468 5.4 1.2 77.78
bmc-ibm-3 14930 72106 115.25 19.7 82.91
bmc-ibm-4 28161 139716 118.15 38.9 67.08
bmc-ibm-5 9396 41207 12.95 1.25 90.35
bmc-ibm-6 51654 368367 358.25 103.6 71.08
bmc-ibm-7 8710 39774 17.4 6.4 63.22

bmc-galileo-8 58074 294821 65.65 15.5 76.39
bmc-galileo-9 63624 326999 95.95 17.3 81.97
bmc-ibm-10 61088 334861 406.15 162.45 60.00
bmc-ibm-11 32109 150027 439.8 358.45 18.50
bmc-ibm-12 39598 19477 554.65 445.25 19.72
bmc-ibm-13 13215 6572 88.05 2.7 96.93

f2000 2000 8500 2.2 2.05 6.82
par16-1-c 317 1264 5.45 5.35 1.83
par16-1 1015 3310 10.45 9.45 9.57

par16-2-c 349 1392 6.2 5.9 4.84
par16-2 1015 3374 10.6 10.4 1.89

par16-3-c 334 1332 6 5.65 5.83
par16-3 1015 3344 10.45 9.75 6.70

par16-4-c 324 1292 6.15 5.5 10.57
par16-4 1015 3324 10.4 9.55 8.17

par16-5-c 341 1360 6.25 6.05 3.20
par16-5 1015 3358 10.45 9.85 5.74

par32-1-c 1315 5254 21.7 20.85 3.92
par32-1 3176 10277 30.95 30.25 2.26

par32-2-c 1303 5206 21.15 21.2 -0.24
par32-2 3176 10253 32.1 28.35 11.68

par32-3-c 1325 5294 22.05 21.3 3.40
par32-3 3176 10297 32.95 28.55 13.35

par32-4-c 1333 5326 21.3 21.4 -0.47
par32-4 3176 10313 33.65 29.4 12.63

par32-5-c 1339 5350 23.15 22.05 4.75
par32-5 3176 10325 32.9 30.3 7.90
Average 29.82

86



Table 8: Dyna-WalkSAT vs. BG-Dyna-WalkSAT on unsatisfiable problems. The legend is the same as
that in Table 7.

problem #Var #Clause Dyna-WalkSAT BG-Dyna-WalkSAT gain (%)

longmult06 2848 8853 1.5 1.65 -10.00
longmult07 3319 10335 2.05 2.2 -7.32
longmult08 3810 11877 3.65 2.65 27.40
longmult09 4321 13479 6.75 2.9 57.04
longmult10 4852 15141 10.25 5.6 45.37
longmult11 5403 16863 15.05 9.2 38.87
longmult12 5974 18645 17.8 16.2 8.99
longmult13 6565 20487 23.25 21.4 7.96
longmult14 7176 22389 32.6 24.6 24.54
longmult15 7807 24351 41.5 30 27.71
ssa6288-047 10410 34238 100.25 89.7 10.52

Average 20.01

On easier satisfiable instances (Table 6), BG-Dyna-WalkSAT finds more satisfying solutions than Dyna-

WalkSAT for all parity (par) and quasigroup (qg) classes, and produces similar results to Dyna-WalkSAT

on blocksworld (bg) instances. On harder satisfiable instances (Table 7), BG-Dyna-WalkSAT outperforms

Dyna-WalkSAT in all but two of 34 instances, where it is less than half a percent worse. In contrast, the

overall average gain is about 30%, and the gain is over 50% in 11 of them. On unsatisfiable instances (Ta-

ble 8), BG-Dyna-WalkSAT produces impressive gains on longmult instances, and on ssa6288-047, with

an overall average gain of 20%. On unsatisfiable quasigroup instances (not shown), BG-Dyna-WalkSAT’s

performance was similar to that of Dyna-WalkSAT. The performance of BG-Dyna-WalkSAT is never more

than 10% worse than Dyna-WalkSAT on any of the unsatisfiable instances we studied.

The most glaring failure of BG-Dyna-WalkSAT is on the satisfiable instancesg125.17 andg250.29,

shown in Table 6. These instances are SAT-encoded graph coloring problems, and serve to illustrate an

important point. As described in Section 5.2, we believe that our method is effective because it exploits

the “big valley” structure of the solution space. However, graph coloring problems exhibit a particular

type of symmetry in their solution structures which is opaque to local search methods such as WalkSAT.

For example, given a solution to a graph coloring problem, swapping red with green results in another

solution, which is symmetrical to the original. Thus, there is not a single “big valley” but several in the

configuration landscape of the problem, which can bury the true backbone information and thus lead to

degraded performance. Presumably, BG-Dyna-WalkSAT’s performance will suffer on all instances with

this type of symmetry.

5.5 Conclusions and Discussions

In this section, we first carried out a systematic investigation of configuration landscapes of local minima

reached by the WalkSAT local search algorithm on random 3-SAT and Max-3-SAT problems. In this

analysis, we introduced configuration landscapes to capture the distributions of local minima in terms of

87



their cost and structural differences. Our analysis revealed that the configuration landscape of a set of local

minima from WalkSAT exhibit a single bell-shaped surface, showing that the local minima form a single

large cluster. Our results also showed that the WalkSAT algorithm is effective on Max-3-SAT, finding high

quality local minima that have large portions of variable assignments consistent with optimal solutions.

Based on the configuration landscape analysis, we developed a novel method to exploit backbone in-

formation to improve the performance of a local search algorithm, the WalkSAT algorithm in particular.

The main ideas of the method are to extract backbone information from local minima and use it directly

to fix possible discrepancies between the current assignment and optimal solutions, so as to guide a local

search algorithm towards the regions of search space containing high quality as well as optimal solu-

tions. Our experimental results show that the new method can significantly improve the performance of

the WalkSAT local search algorithm on most problem instances from SATLIB, including SAT-encoded

problem instances from various applications. On these problem instances, our backbone guided WalkSAT

algorithm has a higher probability of reaching satisfiable solutions than the original WalkSAT algorithm,

and is able to improve its solution quality on Max-SAT problem instances by 20%.

In retrospect, the most important contributions of and lessons learnt from this section are the idea of

using backbone information to improve the performance of a local search algorithm and a simple way of

capturing backbone information by using local minima from a local search algorithm. These ideas are

general and applicable to other combinatorial problems and other search methods. For example, we have

successfully applied the ideas of backbone guided local search to the Traveling Salesman Problem and

the Lin-Kernighan local search algorithm [65], which is one of the oldest and most efficient algorithm for

the problem [114]. By using structural information such as backbones, the new method drives a search

algorithm towards the areas of the search space where most optimal or near optimal solutions are located.

In comparison, most existing search techniques focus on the costs of the states in a search space. Therefore,

the new algorithm is focused more on where the problems are in the current state, and tries to fix them

directly.

One possible drawback of our method is that it requires a good estimation of backbone information.

If this estimation deviates substantially from the real backbone information, the new method will not be

effective. Nevertheless, the cost reciprocal method for estimate backbone frequencies provides a simple

mechanism to ease this problem to some extent by discounting the contribution of a poor local minimum

to the pseudo backbone frequencies. Furthermore, most local search methods are randomized algorithms,

so better solutions may occasionally be discovered and added to the pool of local minima. Such better

local minima will subsequently improve the quality of the estimation of backbone information.

The new backbone guided local search method seems to be not very effective on Max-SAT problems

with little structure. The method is particularly hindered by symmetry embedded in a problem. An exam-

ple of such a problem is graph coloring, where swapping two colors in a solution leads to another solution.

In short, backbone guided local search seems to be effective on problems from which significant structural

information can be extracted. How to extend the ideas and algorithm presented in this section to address

symmetries is an interesting future research topic.

88



6 An Improved Integer Local Search for Complex Scheduling Problems

The recent advances in the research of Boolean satisfiability (SAT) have provided great insights into the

problem, such as phase transitions and backbones [77, 78, 109] (also discussed in Section 4), and have

developed efficient algorithms for solving SAT, represented by the widely applied WalkSATlocal search

algorithm [71, 87] and its variants [45, 71]. The success of WalkSAThas also led to the paradigm of

formulating and solving complex planning and scheduling problems as SAT problems [57, 59, 58]. Under

this paradigm, a complex problem is encoded as a SAT problem, a solution to the SAT problem is found by

applying an algorithm for SAT, and finally the solution is mapped back to the original problem. This SAT-

based paradigm has been shown successful for some complex problems in real applications. For example,

Blackbox is one of the most competitive methods for planning [58, 59], which was developed under the

SAT-based paradigm by applying SAT encoding and SAT algorithms.

Many constraints in real-world applications, however, are complex and may not be easily and effi-

ciently encoded as clauses [15, 28]. More useful and general constraint formulations are integer linear

programs (ILP) [41, 98], which allow integer variables and complex constraints, and subsume pseudo

Boolean formulae with variables taking values 0 or 1 [39, 97, 98]. ILPs and pseudo Boolean formulae

have been extensively applied to planning and scheduling problems [60, 98].

WSAT(oip) [98] is an extension to the WalkSATalgorithm for handling overconstrained integer programs

(OIPs) that involve hard and soft constraints. Here a hard constraint is one that needs to be satisfied, and

a soft constraint is one that may be violated but incurs a penalty if not satisfied. The objective of such a

problem is to satisfy all hard constraints, if possible, or as many hard constraints as possible when over-

constrained, while minimizing a penalty function. WSAT(oip) has been shown effective on large constraint

optimization and scheduling problems [60, 97, 98].

Inherited from the WalkSATalgorithm, WSAT(oip) is a local search algorithm that makes stochastic local

perturbations to the current assignment of all variables in searching for progressively better solutions [98].

A noticeable characteristic of WalkSATand WSAT(oip) is that whenever multiple choices exist, auniformly

randomor unbiasedchoice will be made. For example, when an unsatisfied clause is to be selected from

a set of unsatisfied clauses, each qualified candidate is given equal change to be picked. Likewise, the

variable whose value is to be changed next is chosen, uniformly randomly, from multiple candidates. Such

uniform random moves are ineffective when there exist large “plateau” regions in search space, and the

problem is exacerbated in OIPs and WSAT(oip) when “plateau” regions become larger due to larger domains

of integer variables.

Motivated to solve complex, real-world scheduling problems with hard and soft constraints, we aim

to improve WSAT(oip). We particularly introduce three techniques to the existing algorithm. The first is a

method of making biased moves in attempting to fix possible discrepancies between the current variable as-

signment and an optimal solution, so as to drive the search to the regions in search space where high-quality

and optimal solutions locate. These biased moves are devised based on our previous work of backbone

guided local search for (maximum) Boolean satisfiability [115]. The second method is a sampling-based

aspiration search in order to restrict the search to finding progressively improving solutions, so as to reduce

89



search complexity and increase anytime performance of the resulting algorithm. Our experimental anal-

ysis show that this method is particularly effective on problems with hard and soft constraints. The third

method is an extension of Hoos’s dynamic noise strategy for WalkSAT[46] to WSAT(oip), so that the critical

parameter of noise ratio of WSAT(oip) does not have to be tuned for each individual problem instance. The

resulting WSAT(oip) becomes more robust, general and flexible for different applications.

This section is organized as follows. We first describe in Section 6.1 our motivating scheduling prob-

lem and consider its complexity. We then discuss pseudo Boolean encoding and overconstrained integer

programs in Section 6.2, and briefly describe WalkSATand WSAT(oip) in Section 6.3. We then present

the three improving techniques for WSAT(oip) in Section 6.4. We experimentally evaluate the extended

WSAT(oip) in Section 6.5, using our scheduling problems and the instances of two scheduling problems

from CSPLIB [36]. We finally conclude in Section 6.6.

6.1 Scheduling and Resource Allocation

The specific, motivating scheduling problem of this research is to schedule a large number of training

activities for a crew over a period of time, ranging from a few days to a few weeks or months [15, 28].

In such a problem, a trainee needs to finish a set of required activities that requires many trainers and

various equipment. These activities are associated with one another by precedent relationships, i.e., one

training activity cannot be scheduled until a trainee has finished certain prerequisites. A used equipment

(resources) can be reused after some maintenance, which itself is an activity to be scheduled. In addition,

individual activities have different importance and carry different penalties if not scheduled. The objective

is to schedule as many activities as possible for all the trainees within a gross period of time using the

available trainers and equipment so that the penalty of unscheduled activities is minimized. Even though

this scheduling problem is not overarchingly sophisticated, it can indeed be viewed as a representative of

general scheduling problems with various constraints and being required to optimize an objective function.

At the center of our training scheduling problem, as well as many other similar problems, is a resource

allocation problem, i.e., a problem of assigning resources (e.g., trainers and equipment in our scheduling

problem) to needy activities. The properties of such an underlying resource allocation problem can help

characterize the scheduling problem. The complexity of the former will dominate the complexity of the

latter. If the resource allocation problem is difficult, the scheduling problem is doomed to be hard as well.

We now consider a simple, static resource allocation problem that was abstracted from our training

scheduling problem at a particular time. We are given a set ofn tasks,T = {T1, T2, · · · , Tn}, and a set of

r resources,R = {R1, R2, · · · , Rr}. Each task requires a certain number of resources in order to execute,

which we call resource requirements. Each resource can only be allocate to one resource requirement,

and a resource requirement can be met by having one desirable resource allocated to it. We denote the

qi resource requirements of taskTi by Qi = {Qi,1, Qi,2, · · · , Qi,qi}. Table 9 shows a small example

of resource requirements of two tasks over three resources. An entity of 1 (0) in the table means that a

resource can (cannot) be allocated to the corresponding requirement. In general, the available resources

may not be sufficient to fulfill every task; and a task carries a penalty, calledtask penalty, if not scheduled.

90



R1 R2 R3

T1 Q1,1 0 1 1
Q1,2 1 0 0

T2 Q2,1 1 1 0
Q2,2 1 1 0

Table 9: A simple resource allocation problem.

The resource allocation problem is to allocate the resources to the tasks so that the overall penalty of

unfulfilled tasks is minimized, which constitutes an optimization problem. If all tasks have equal penalties,

it is equivalent to fulfill the maximal number of tasks.

Compared to some other resource allocation problems, for instances the permutation problems con-

sidered in [91, 99], our problem has a unique, small structure embedded within a task. A task can be

scheduled if and only if all its resource requirements are met. We call this featurebundled resource re-

quirement. Furthermore, a pair of resource requirements have an exclusive resource contention in that a

resource acquired by one requirement cannot be allocated to the others. We call this featureexclusive re-

source contention. To be convenient, we call the problembundled, exclusive resource allocation problem,

or BERAPfor short.

We now show that BERAP is NP-hard [32]. To this end, we prove that a decision version of the

problem is NP-complete [32]. A simple, special decision version of BERAP is the following. Given a set

of tasks, each of which has a set of resource requirements, decide if at leastk tasks can be fulfilled. Here

we simply consider every task having a penalty one if it is not fulfilled.

Theorem 6.1 BERAP with more than two resource requirements per task is NP-complete.

Proof: We show the above decision version of BERAP is NP-complete. We reduce a NP-complete set

packing problem [32] to this decision problem. Given a collectionS of finite sets and a positive integer

K ≤ |S|, set packing is to decide ifS contains at leastK mutually disjoint subsets. Formally, it is to decide

if there existsS′ ⊆ S such that|S′| ≥ K and for allS1 ∈ S′ andS2 ∈ S′, S1 ∩ S2 = ∅. The problem is

NP-complete when every subsetSi ∈ S has more than two elements. We now reduce an NP-complete set

packing problem to our decision BERAP. We map all the elements in the subsets of a set packing problem

instance to the resources of BERAP, each subset of the set packing instance to a task of BERAP, and an

element in the subset to a resource requirement of the respective task. In other words, the total number of

tasks is the number of subsets|S|, the number of resources is the number of distinct elements in all subsets

of S, and the number of resource requirements of a task is the number of elements in the corresponding

subset. GivenK ≤ |S|, the constructed BERAP is to decide if at leastK tasks can be fulfilled. Clearly, a

solution to the BERAP is also a solution to the original set packing problem.ut
This NP-completeness result leads to the conclusion that our crew scheduling problem in intractable

in the worst case.

91



6.2 PB Encoding and Integer Programs

A clause of Boolean variables can be formulated as a linear pseudo Boolean (PB) constraint [39, 98],

which we illustrate by an example. We start by viewing Boolean value True (T ) as integer 1, and value

False (F ) as 0. We then map a Boolean variablev to an integer variablex that takes value 1 or 0, and map

v to 1 − x. Therefore, whenv = T , we havex = 1 and1 − x = 0 which corresponds tov = F . With

this mapping, we can formulate a clause in a linear inequality. For example,(v1 ∨ v2 ∨ v3) can be mapped

to x1 + (1 − x2) + x3 ≥ 1. Here, the inequality means that the clause must be satisfied in order for the

left side of the inequality to have a value no less than one. In general, the class of linear PB constraints is

defined as
∑

i ci · Li ∼ d, whereci andd are rational numbers,∼ belongs to{=,≤, <,≥, >}, and theLi

are literals.

However, a clause in an overconstrained problem may not be satisfied so that its corresponding in-

equality may be violated. To represent this possibility, we introduce an auxiliary integer variablew to

the left side of a mapped inequality. Variablew = 1 if the corresponding clause is unsatisfied, mak-

ing the inequality valid;w = 0 otherwise. Since the objective is to minimize the number of violated

clauses, it is then to minimize the number of auxiliary variables that are forced to take value 1. To

be concrete,(v1 ∨ v2 ∨ v3), (v2 ∨ v4) can be written as an overconstrained PB formula of minimizing

W = C1 · w1 + C2 · w2, subject to
{

x1 +(1− x2) +x3 +w1 ≥ 1
x2 +(1− x4) +w2 ≥ 1

whereC1 andC2 are the penalties of the first and second clauses, respectively.

More complex constraint problems, where variables takes integers rather than Boolean values, can be

formulated as overconstrained integer programs (OIPs) [98], which are integer linear programs (ILPs) [41]

in the sense that they both use inequalities to define the feasible regions of a solution space and aim to

optimize an objective function. OIPs differ from ILPs in that OIPs introduce additional, competing soft

constraints to encode the overall optimization objective.

A constraint in OIP defines a feasible region for all assignments of the (integer) variables involved. For

an assignment that violating a constraint, we can define the distance of the assignment to the boundary of

the feasible region specified by the constraint. Such a distance can be measured by the Manhattan distance,

the minimum integer distance in the grid space defined by the variable domains. This Manhattan distance

was callscoreof the constraint under the given assignment [98]. Obviously, if an assignment satisfies a

constraint, then its distance to the constraint boundary is zero.

6.3 The WalkSAT and WSAT(oip) Algorithms

WSAT(oip) belongs to the family of WalkSAT-based local search algorithms, each of which follows the same

basic procedure of the WalkSAT algorithm [71, 87]. The WalkSATalgorithm was discussed in Section 5.1.2

and in Figure 45.

WSAT(oip) was built to solve OIPs by extending the WalkSAT algorithm to support integer variables and

generic constraints such as inequalities. The main extensions and modifications made by WSAT(oip) are the

92



following:

• Distinguishing hard and soft constraints: When Choosing a violated constraintC, WSAT(oip) selects

a violated hard constraint with probabilityph and a violated soft constraint with probability1− ph.

• Restricted neighborhood: When choosing a variable whose value to be changed from all the vari-

ables associated with the selected constraintC, only will the (integer) values that differs from the

current value by at mostd be considered.

• Tabu search: When multiple variable-value pairs exist in the greedy choice which make the same

amount of improvement to the objective value, break ties first in favor of the one that has been used

the least frequently, and then in favor of the one that has not been used the longest.

Similar to WalkSATWSAT(oip) still uses a noise ratio, which has to be tuned for every problem instance.

6.4 Improvement and Extensions to WSAT(oip)

WSAT(oip) is not very efficient on large problems. We introduce three extensions to improve its perfor-

mance.

6.4.1 Backbone-guilded biased moves

One observation on local search for SAT problems is that there exist a large amount of plateau regions

in the search space where neighboring states all have the same quality. This observation inspired the

development of WalkSATthat “walks” on the plateau, thus the name of WalkSAT, by making random moves

in order to navigate through plateau regions and to hopefully find downfall edges. Such random, sometimes

aimless, plateau moves are not very effective. Even though the use of a tabu list can help prevent to visit

the recently visited states [45], the algorithm may still have to explore a large portion of a plateau area.

The inefficacy of WalkSAT's random moves is exacerbated in WSAT(oip) where non-Boolean variables

can have large domains, which lead to larger neighborhoods and thus larger plateau regions. Therefore, it

is important to shorten or avoid, if possible, such random moves.

The main ideas

Our main idea to address the inefficacy caused by uniformly random moves in WSAT(oip) is to exploit

an extended concept of backbone. The backbone variables of an optimization problem are the ones that

have fixed values among all optimal solutions; and these backbone variables are collectively called the

backbone of the problem. The size of the backbone, the fraction of backbone variables among all variables,

is a measure of the constrainedness of a given problem. The concept of backbone variables can be extended

to backbone frequencies. The backbone frequency of a variable-value pair is the frequency that the pair

appears in all optimal solutions; and the backbone frequency of a variable is the maximum backbone

frequency of its values. Specifically, letx be a variable with domainD = {v1, v2, · · · , vk}, andp(x(vi))

be the backbone frequency ofx takingvi, then the backbone frequency ofx isp(x) = maxvi∈D{p(x(vi))}.
Thus, a backbone variable must have backbone frequency of one. The backbone frequency of a variable

93



captures the tightness of the constraints that the variable is involved; the higher the frequency, the more

constrained the variable is.

We can apply backbone frequencies to modify random moves in WSAT(oip). If, somehow, we knew

the backbone frequencies of the variable-value pairs of a problem, we could construct a “smart” search

algorithm by using the backbone frequency information as an oracle to guide each step of WSAT(oip). At

each step of the algorithm, we can use the backbone frequencies to change the way in which a variable is

chosen to focus on fixing the critically constrained variables that are not currently set correctly.

Unfortunately, obtaining the exact backbone frequencies of a problem requires to find all optimal

solutions, thus is more difficult than finding just one solution. To address this problem, the second key

idea of backbone guided local search is to estimate backbone frequencies using local minima from a local

search algorithm. We simply treat local minima as if they were optimal solutions and computepseudo

backbone frequencies, which are an estimate of real backbone frequencies. More precisely, we define

the pseudo backbone frequency of a variable-value pair as the frequency that the pair appears in all local

minima.

The quality of pseudo backbone frequencies depends on the effectiveness and efficiency of the local

search algorithm used. High-quality local minima can be obtained by efficient local search algorithms.

Even though WSAT(oip) may land on suboptimal solutions with fairly high probabilities, most of the local

minima from WSAT(oip) are expect to have large portions of variables set to correct values, so that they

contain partial optimal solutions or partial backbone. In this research, we directly adopt WSAT(oip) to

collect local minima, and then in return apply the backbone guided search method to the algorithm to

improve its performance.

Biased moves in WSAT(oip)

Pseudo backbone frequencies can be incorporated in WSAT(oip) to make ”biased” moves. Consider an

example of two variables,x1 andx2, that appear in a violated constraint and have the same effect under the

current assignment, i.e., changing the value to one of them makes the violated constraint satisfied, and both

variables have the same break-count or will cause the same number of satisfied constraints unsatisfied if

changed. LetB be the set of backbone variables along with their fixed values,T be the set of local minima

from which pseudo backbone frequencies were computed, andv1 andv2 are the current values ofx1 and

x2. We will prefer to changex1 overx2 if under the current assignment,P{(x1 = v1)∈B|T } < P{(x2 =

v2)∈B|T }, which means that under the current assignment,x1 is less likely to be part of backbone than

x2, given the set of local minimaT . Note thatP{(x = v)∈B|T } is the pseudo backbone frequency of

x = v under the evidence of a set of local minimaT .

How can the pseudo backbone frequencies be used to alter the way that WSAT(oip) chooses variables?

As discussed in Section 6.3, WSAT(oip)uniformlyrandomly chooses a variable when multiple choices exist.

For example, when there are multiple variables with zero break-count, WSAT(oip) chooses one arbitrarily.

In backbone guided search, we apply pseudo backbone information to force WSAT(oip) to make random

butbiasedchoices. If two variables can make a constraint satisfied, the variable having a higher backbone

frequency will be chosen. In other words, we modify WSAT(oip)’s random strategies in such a way that a

94



backbone or critically constrained variable will be chosen more often than a less restricted variable. To

this end, we use pseudo backbone frequencies to help make random biased selections.

Specifically, we apply pseudo backbone frequencies to modify the random choices made in WSAT(oip).

The first random choice in WSAT(oip) is constraint pick, where a violated constraint is selected if multiple

ones exist. We want to pick, with high probabilities, those variables that are part of the backbone or

highly constrained in all optimal solutions. Therefore, we choose a constraint with the maximal number

of critically constrained variables. We use the pseudo backbone frequencies of variables in an unsatisfied

constraint, normalized among the violated constraints involved, to measure the degree of constrainedness

of the constraint. We then select an unsatisfied constraint among all violated ones based on their degrees of

constrainedness. Specifically, letC be the set of unsatisfied constraints, andqc the sum of pseudo backbone

frequencies of all the variables in a constraintC ∈ C. We then select constraintC, with probability

pc = qc/Q, from all unsatisfied constraints inC, whereQ =
∑

C∈C qc is a normalization factor.

WSAT(oip) uses three other random rules to arbitrarily select a variable after an unsatisfied constraint is

chosen (see Section 6.3 and Figure 45). The flat pick rule chooses a variable from a set of zero break-count

variables, if any; the noise pick rule selects one from all variables involved in the chosen constraint; and

the greedy pick rule takes a variable among the ones of least break-count. In essence, these rules use the

same operation, i.e., picking a variable equally likely from a set of variables. Therefore, we can modify

these rules all in the same way by using pseudo backbone frequencies. Let{x1, x2, · · · , xw} be a set of

w variables from which one must be chosen,{v1, v2, · · · , vw} their best satisfying assignments (the ones

satisfying the constraint and having the highest pseudo backbone frequencies), and{p1, p2, · · · , pw} the

pseudo backbone frequencies of variable-value pairs{(x1 = v1), (x2 = v2), · · · , (xw = vw)}. Then we

choosexi with probabilitypi/
∑w

j=1 pj .

Furthermore, the idea of pseudo backbone frequencies can also be applied to generate an initial assign-

ment for a local search. Specifically, a variable is assigned a particular value with a probability proportional

to the pseudo backbone frequency of the variable-value pair.

The backbone guided WSAT(oip) algorithm

The backbone guided WSAT(oip) algorithm has two phases. The first is theestimationphase that collects

local minima by running WSAT(oip), with a fixed number of tries. The local minima thus collected are

compiled to compute the pseudo backbone frequencies of all variable-value pairs.

The second phase carries out the actualbackbone guidedsearch, which uses pseudo backbone frequen-

cies to modify the way that WSAT(oip) chooses variables to change. This phase also runs many tries, each

of which produces a (new) local minimum. The newly discovered local minima are subsequently added to

the pool of all local minima found so far to update the pseudo backbone frequencies.

6.4.2 Aspiration search

Solving an OIP requires to optimize two (conflicting) objectives, satisfying the maximum number of hard

constraints and minimizing a penalty function of soft constraints violated. Two obvious methods can

be taken to make a balance between these two objectives. One is to directly search for a solution by

95



considering hard and soft constraint together, which was suggested and taken in WSAT(oip) [98], which

attempts to select a variable involved in a hard constraint with probabilityph and a variable associated

with a soft constraint with probability1 − ph. Note that the performance of WSAT(oip) depends to a large

degree on this parameter. The other way is to satisfy the maximum number of hard constraints first and

then try to minimize the total penalty of violated soft constraints. However, these two methods do not

work very well on large, complex OIPs.

In many real-world constraint problems, our training scheduling problems discussed in Section 6.1

in particular, the number of hard constraints may be large; finding the best assignment to the variables

involved in hard constraints may itself be a costly task. Even if such an optimal solution can be found, it

may not be extended to an overall assignment of minimal penalty. Therefore, many optimal assignments

to the variables in hard constraints must be examined, making the overall search prohibitively costly.

To make WSAT(oip) efficient on OIPs, we propose what we callaspiration searchstrategy. An aspi-

ration level corresponds to a targeted penalty score; the higher an aspiration level, the lower the targeted

penalty score. Given an aspiration level, we first search for an assignment so that the total penalty of

unsatisfied soft constraints is no more than the targeted penalty value. When such an assignment is found,

we attempt to extend the current partial assignment to satisfy the maximum number of hard constraints.

This process of extending a partial assignment to a complete assignment may be repeated many times;

and the maximum number of hard constraints satisfiedSh is recorded. Each such process corresponds to

a probing in the search space under the current aspiration level. We then increase the aspiration level and

repeat the processes of probing with the objective of finding an assignment that violates no more less than

Sh hard constraints and whose penalty meets the restriction of the current new aspiration level.Sh is also

updated if a better assignment, one violating less hard constraints, is found under the current aspiration

level. This means that the overall processes attempt to find progressively better solutions for both hard and

soft constraints. If we fail to find an assignment satisfying at leastSh hard constraints and keeping the

penalty above the current aspiration level after a certain number of tries, the algorithm terminates and the

best solution found so far is returned.

Aspiration search has several advantages. First, it decomposes an OIP into several decision problems,

each of which has a different degree of constrainedness represented by an aspiration level. At a given

aspiration level, this strategy also integrates a sampling method, which first probes the search space to

reach a partial assignment such that the penalty function is above the aspiration level, with a search for sat-

isfaction of the hard constraints. Thanks to the partial assignment, the hard constraints can be simplified,

as the variables involved in soft constraints are instantiated, so that optimizing hard constraints becomes

relatively easier. As a result, aspiration search is able to reduce search cost. Second, the probabilityph of

choosing a variable involved in hard constraints, an important parameter determining the performance of

WSAT(oip), disappears, making the algorithm less problem dependent. Third, the aspiration search strategy

can interact closely with the backbone-guided local search method, making the latter more effective. Since

aspiration search is able to reach progressively better solutions, the suboptimal solutions at various aspi-

ration levels can thus be used as local minima to compute pseudo backbone frequencies, which expedites

96



the process of gathering backbone frequency information.

When applying sampling method, it is desirable, albeit difficult, to know if the current partial assign-

ment at a certain aspiration level can be extended to satisfy at leastSh hard constraints. Our approach

to this problem is to monitor the progress of extending the partial assignment to a full assignment. If the

number of violated hard constraints decreases after a fixed number of movesM , we consider the current

partial assignment extensible. Otherwise, the current partial assignment will be abandoned, and another

partial assignment above the current aspiration level will be sampled. Note that the performance of the

overall search is affected by the fixed number of movesM within which a better complete assignment

must be found. If this number is too large, we may waste too much time on an unsatisfiable deadend;

whereas if it is too small, we may miss a satisfiable sample. We develop a dynamic method to adjust this

parameterM in our extended WSAT(oip) algorithm. The detail of this method will be discussed in the next

subsection where we collectively deal with the issues of how to dynamically adjust the parameters of the

WSAT(oip) and extended WSAT(oip) algorithm.

6.4.3 Dynamic, adaptive parameters

One limitation of the WalkSAT family of algorithms, including WSAT(oip), is its dependence on a manually

set noise ratio, which is the probability of how often a nongreedy move should be taken (see Section 6.3).

In addition, whenever a noise ratio is chosen it will be used throughout the search. It is evident that big

progresses can be more easily made at an early stage of a local search than at a late stage. Therefore the

noise ratio should be adjusted dynamically depending on where the current search is in the overall search

space.

The dynamic noise strategy proposed in [46] for WalkSATis one such method. The idea of this strategy

is simple: start a local search with the noise ratio equal to zero, and examine the number of violations

in the current state everyθm flips, wherem is the number of constraints of a given problem, andθ a

constant. If the number of violations has not decreased since the last time we checked (θm flips ago), the

search is assumed to have stagnated, and the noise ratio is increased towp + (1− wp)φ, wherewp is the

current noise ratio andφ is another constant. Otherwise, the noise ratio is decreased towp(1 − 2φ). The

discrepancy between the formulas for increasing and decreasing the noise ratio is based on some empirical

observations of how WalkSATbehaves when the noise ratio is too high, compared with how it behaves when

the parameter is too low [46]. We refer to this strategy as Dyna-WalkSATfor convenience.

Dyna-WalkSATuses two parameters,θandφ. The difference of using these two new parameters and

using the noise ratio in the original algorithm is that these two parameters do not have to be tuned for every

single problem instance; the performance of Dyna-WalkSATwith the same values forθandφ is relatively

consistent across different problem instances.

Although Dyna-WalkSATwas originally designed and tested on WalkSATfor SAT, we have found it

effective on WSAT(oip) for pseudo Boolean encoded problems and OIPs. We call WSAT(oip) using the

dynamic noise strategy Dyna-WSAT(oip). Following [46] we setθ= 1/6 andφ = 1/5 in Dyna-WSAT(oip),

which have been found to be effective over a wide range of problem instances. Due to its simplicity and

97



Problem WSAT(oip) EWSAT(oip)
n m unsat penalty time unsat penalty time

11520 16308 12.43 10380 287.4 12.08 9330 167.6
21240 34908 10.58 8550 824.7 8.05 6270 490.2
21800 37501 3.45 2520 56.0 3.35 2325 56.3
40718 72071 3.95 2970 26.2 3.88 2880 41.2
41496 66892 11.93 10230 1936.4 8.70 6810 965.2
79580 143896 4.10 3120 514.5 3.97 2963 344.3

Table 10: Comparison on crew training scheduling, wheren andm are the numbers of variables and
clauses, respectively;unsatis the average number of violated hard constraints,penaltythe average penalty
score, andtime the average CPU time in seconds. The better results between the two algorithms are in
bold.

reasonable performance, in the rest of this subsection we will use Dyna-WSAT(oip) with θ = 1/6 and

φ = 1/5 as default parameters in our experimental analysis.

As mentioned at the end of the previous section, another parameter in our extended WSAT(oip) algo-

rithm is the number of movesM between two consecutive check points for examining progress, if any,

made by the algorithm in extending the current partial assignment to a complete one that satisfies the max-

imum number of hard constraints under the current aspiration level. A good value for parameterM can

be achieved when a good balance is made between the algorithm’s ability to find satisfied solutions and its

ability to escape from local minima. This leads to our adaptive parameter approach, in which the parameter

M is dynamically adjusted based on progress made or not made, as reflected in the time elapsed since the

last improvement made to hard constraints. At the beginning of the search, we give an initial value that is

proportional to the number of hard constraintsm to parameterM . If the number of hard constraints does

not decrease over the lastM search steps, we increaseM to M + k1m, wherek1 is a positive constant

less than one. Otherwise, we decreaseM by k2m, wherek2 is another positive constant less than one. In

our experiments, we tookM = min{m,K/10} andk1 = k2 = M/5, whereK is the maximum number

of moves for a restart.

6.5 Applications and Experimental Evaluation

We implemented an improved and extended WSAT(oip) algorithm that incorporates the backbone-guided

biased moves, sampling-based aspiration search and dynamic parameter strategies. We shorthand the

improved WSAT(oip) as EWSAT(oip). In this section, we report the experimental results, comparing the

EWSAT(oip) algorithm with its predecessor, the WSAT(oip) algorithm. We carried out our analyses on

three different scheduling problems: our crew training scheduling problem (Section 6.1), progressive party

scheduling and basketball tournament scheduling. The last two problems were studied in [98], and also

included as benchmark problems in CSPLIB [36], an online repository of CSP problems. All our experi-

ments were run on an AMD Athelon 1900 machine with 2GB memory.

In our experiments, we tried various parameter settings for the WSAT(oip) algorithm, which include

the probabilityph of choosing a hard violated constraint over a soft violated constraint and the size of

98



0 1000 2000 3000

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

CPU Time (second)

P
en

al
ty

 S
co

re
 

Wsat(oip)
EWsat(oip)

Figure 51: Anytime comparison on a crew scheduling.

tabu list. The comparison results below are for the best parameters for WSAT(oip). Specifically, on our

crew scheduling problems, the best probabilityph is 99%, and on the party scheduling and basketball

scheduling problems, the bestph is 90%. To make a fair comparison, we applied dynamic parameter

method to automatically adjust the noise ratios for both WSAT(oip) and EWSAT(oip), and let EWSAT(oip)

have the same size of tabu list as used by WSAT(oip), which was set to 4.

6.5.1 Crew training scheduling

The first and main problem we considered is our crew training scheduling problem. The test set consists of

six large and many small problem instances, derived from a real application domain involved with a large

number of crew members of different specialty and various equipment that requires routine maintenance.

These problem instances vary in sizes and degree of constrainedness; the largest instances has 79,580

variables and 143,896 constraints. These problems were collected from overconstrained situations and

their hard constraints did not seem to be satisfiable all together. Here we present the results on these six

large instances.

In our experiments, we allowed WSAT(oip) and EWSAT(oip) to have 200 random restarts for each of

their run, and 60,000 maximum moves (variable-value changes) with each restart. The average results

comparing these two algorithms over 40 runs on all six problem instances are shown in Table 10. We

examined the average minimum number of unsatisfied hard constraints (unsat), the average minimum

penalties (penalty) and the average CPU time (time) required to reach solutions of such qualities. As the

99



Problem WSAT(oip) EWSAT(oip)
name n m median average median average

ppp:1-12,16 4662 31725 0.175 0.185 0.186 0.190
ppp:1-13 4632 30964 0.406 0.441 0.388 0.423

ppp:1,3-13,19 4608 30348 0.469 0.472 0.388 0.449
Ppp:3-13,25,25 4644 31254 0.625 0.713 0.656 0.718
ppp:1-11,19,21 4602 30179 15.283 15.814 9.453 12.856
ppp:1-9,16-19 4626 30747 44.906 63.553 34.546 58.302

Table 11: Comparison on progressive party scheduling problem, wheren and m are the numbers of
variables and clauses, respectively, andmedianandaverageare the median and average CPU times in
seconds. The better results are in bold.

results show, EWSAT(oip) is able to find better solutions with more hard constraints satisfied and lower

penalties for all problem instances, and some times with less execution time.

Additional insights were gained when we examined the anytime performance of the two algorithms on

these difficult problems. Figure 51 shows such an anytime comparison on one of the six instances, also

averaged over 40 runs. As shown, EWSAT(oip) can make significant improvement in an early stage of the

search, indicating that it explores more fruitful regions of the search space more effectively than WSAT(oip).

The anytime results on the other problem instances were similar to that in Figure 51.

6.5.2 Progressive party scheduling

The Progressive Party Problem (PPP) is to progressively timetable a sequence of parties. There are a

total of six critically constrained PPP problem instances in CSPLIB [36], which are all satisfiable. We

considered all of them in our experiments. We allowed 100 random restarts in one run of the algorithm,

each of which used 60,000 moves. We averaged the results over 40 runs for each of two algorithms.

The problem sizes are relatively small, comparing to the crew scheduling problems, with the number of

variables less than five thousand and the number of constraints no more than 32,000. Table 11 shows the

median and average CPU times to reach satisfying solutions by WSAT(oip) and EWSAT(oip).

On four of the six problem instances, both algorithms take less than one second to finish and have

similar performance. On the other two problem instances, EWSAT(oip) can reduce median execution time

from 15.3 seconds to 9.5 seconds and 44.9 seconds to 34.6 seconds, giving time reductions of 37.9% and

22.9%, respectively.

6.5.3 Basketball tournament scheduling

The Atlantic Coast Conference (ACC)Basketball Scheduling Problem is to arrange a basketball tournament

in the ACC. The problem was originally described by Michael Trick and George Nemhauser. Walser

developed a pseudo Boolean integer linear programming model for these problems [98]. The objective of

an encoded ACC scheduling problem is to satisfy all the hard constraints while minimizing the total penalty

caused by violated soft constraints. The difficulties of the available problem instances vary dramatically.

100



Problem WSAT(oip) EWSAT(oip)
name n m median average median average

acc-tight:2 1620 2520 0.86 1.03 0.77 1.05
acc-tight:3 1620 3249 1.30 2.16 1.26 1.83
acc-tight:4 1620 3285 44.14 61.49 35.35 48.69
acc-tight:5 1339 3052 1171.17 1071.18 603.57 609.05

Table 12: Comparison on ACC backetball scheduling problem, where the legends are the same as in
Table 11.

Here we only consider four instances of moderate difficulties.

The experiment setup was the same as for the party scheduling problem considered earlier. The median

and average times to reach satisfying solutions to these problems are included in Table 12. EWSAT(oip)

outperformed WSAT(oip) on all these instances except the slightly slower average time on instance acc-

tight:2. The performance of EWSAT(oip) seems to improve on hard instances. For example, EWSAT(oip)

reduced the median running time by 48.4% on acc-tight:5, increased from 20.5% on acc-tight:4.

6.6 Conclusions

WSAT(oip) is an extensively applied integer local search algorithm for solving constraint problems with

hard and soft constraints which are represented as overconstrained integer linear programs (OIPs). In

this section, we introduced three strategies to improve the performance and applicability of WSAT(oip) in

solving complex scheduling problems: biased-move strategy to improve the efficacy of local search by ex-

ploiting backbone structures; sampling-based aspiration search to find high quality solutions and improve

anytime performance; dynamic parameter adaptation to make WSAT(oip) robust and more applicable to

real-world problems. Our experimental results on three large and complex scheduling problems show that

our improved WSAT(oip) algorithm significantly improves upon the original WSAT(oip) by finding better

solutions on overconstrained problems or finding better or same-quality solutions sooner. We expect that

these new methods can be applied to other search algorithms and combinatorial optimization problems.

The most important lesson we have learnt from this research was that single method may not be effec-

tive. It usually requires to combine many different strategies in order to solve difficult problem instances

with a reasonable amount of time.

References

[1] D. Achlioptas, C. Gomes, H. Kautz, and B. Selman. Generating satisfiable instances. InProceedings

of the 17th National Conference on Artificial Intelligence (AAAI-02), 2000.

[2] Mark R. Adler, Alvah B. Davis, Robert Weihmayer, and Ralph W. Worrest. Conflict-resolution

strategies for nonhierarchical distributed agents. InDistributed Artifical Intelligence, volume 2,

pages 139–162. 1989.

101



[3] D. J. Aldous. Theζ(2) limit in the random assignment problem.Random Structures and Algorithms,

18:381–418, 2001.

[4] E. Balas and P. Toth. Branch and bound methods. InThe Traveling Salesman Problem, pages

361–401. John Wiley & Sons, Essex, England, 1985.

[5] M. N. Barber. Finite-size scaling. InPhase Transitions and Critical Phenomena, volume 8, pages

145–266. Academic Press, 1983.

[6] J. C. Beck and M. S. Fox. A generic framework for constraint-directed search and scheduling.AI

Magazine, 19(4):101–130, 1998.

[7] M. Bellmore and J. C. Malone. Pathology of traveling-salesman subtour-elimination algorithms.

Operations Research, 19:278–307, 1971.

[8] K. D. Boese. Models for Iterative Global Optimization. PhD thesis, UCLA/Computer Science

Department, 1996.

[9] K. D. Boese, A. B. Kahng, and S. Muddu. New adaptive multistart techniques for combinatorial

global optimizations.Operations Research Letters, 16, 1994.

[10] C. Borgs, J. T. Chayes, and B. Pittel. Phase transition and finite-size scaling for the integer parti-

tioning problem.Random Structures and Algorithms, 19:247–288, 2001.

[11] Stephanie Cammarata, David McArthur, and Randall Steeb. Strategies of cooperation in distributed

problem solving. InProceedings of the Eighth International Joint Conference on Artificial Intelli-

gence, pages 767–770, 1983.

[12] G. Carpaneto, M. Dell’Amico, and P. Toth. Exact solution of large-scale, asymmetric Traveling

Salesman Problems.ACM Trans. on Mathematical Software, 21:394–409, 1995.

[13] G. Carpaneto and P. Toth. Some new branching and bounding criteria for the asymmetric traveling

salesman problem.Management Science, 26:736–743, 1980.

[14] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the really hard problems are. InProceedings

of the 12th International Joint Conference on Artificial Intelligence (IJCAI-91), pages 331–337,

Sydney, Australia, August 1991.

[15] J. Chen, A. Bugacov, P. Szekely, M. Frank, M. Cai, D. Kim, and R. Neches. Coordinated aggressive

bidding in distributed combinatorial resource allocation. InProc. AAMAS Workshop on Represen-

tations and Approaches for Time-critical Decentralized Resource/Role/Task Allocation, Melbourne,

Australia, July 2003.

[16] P. Codognet and F. Rossi. Notes for the ECAI2000 tutorial on Solving and Programming with Soft

Constraints: Theory and Practice. available at http://www.math.unipd.it/ frossi/papers.html.

102



[17] Susan E. Conry, Robert A. Meyer, and Victor R. Lesser. Multistage negotiation in distributed

planning. InReadings in Distributed Artifical Intelligence, pages 367–384. 1988.

[18] D. Coppersmith and G. B. Sorkin. Constructive bounds and exact expectations for the random

assignment problem.Random Structures and Algorithms, 15:113–144, 1999.

[19] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.Communica-

tions of ACM, 5:394–397, 1962.

[20] R. Dechter.Constraint Processing. Morgan Kaufmann, 2003.

[21] R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality of A∗. Journal

of ACM, 32:505–536, 1985.

[22] O. Dubois and G. Dequen. A backbone-search heuristic for efficient solving of hard 3-SAT formula.

In Proceedings of the 17th International Joint Conference on Artificial Intelligence, (IJCAI-01),

pages 248–253, 2001.

[23] Edmund H. Durfee and Victor R. Lesser. Negotiation task decomposition and allocation using

partial global planning. InDistributed Artifical Intelligence, volume 2, pages 229–244. 1989.

[24] Edmund H. Durfee and Thomas A. Montgomery. A hierarchical protocol for coordinating multi-

agent behaviors. InProceedings of the Eight National Conference of Artificial Intelligence, pages

86–93, 1990.

[25] M. Fabiunke. Parallel distributed constraint satisfaction. InProc. Intern. Conf. on Parallel and

Distributed Processing Techniques and Applications (PDPTA-99), pages 1585–1591, 1999.

[26] S. Fitzpatrick and L. Meertens. Experiments on dense graphs with a stochastic, peer-to-peer colorer.

In AAAI-02 Workshop on Probabilistic Approaches in Search, to appear.

[27] S. Fitzpatrick and L. Meertens. An experimental assessment of a stochastic, anytime, decentralized,

soft colourer for sparse graphs. InProc. 1st Symp. on Stochastic Algorithms: Foundations and

Applications, pages 49–64, 2001.

[28] M. Frank, A. Bugacov, J. Chen, G. Dakin, P. Szekely, and B. Neches. The marbles manifesto: A

definition and comparison of cooperative negotiation schemes for distributed resource allocation.

In Proc. AAAI-01 Fall Symposium on Negotiation Methods for Autonomous Cooperative Systems,

pages 36–45, 2001.

[29] E. C. Freuder and R. J. Wallace. Partial constraint satisfaction.Artificial Intelligence, 58:21–70,

1992.

[30] A. Frieze, R. M. Karp, and B. Reed. When is the assignment bound asymptotically tight for the

asymmetric traveling-salesman problem? InProc. of Integer Programming and Combinatorial

Optimization, pages 453–461, 1992.

103



[31] A. Frieze and G. B. Sorkin. The probabilistic relationship between the assignment and asymmetric

traveling salesman problems. InProc. of SODA-01, pages 652–660, 2001.

[32] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of NP-

Completeness. Freeman, New York, NY, 1979.

[33] I. Gent and T. Walsh. The TSP phase transition.Artificial Intelligence, 88:349–358, 1996.

[34] I.P. Gent and T. Walsh. Phase transitions and annealed theories: Number partitioning as a case

study. InProceedings of 12th ECAI, 1996.

[35] I.P. Gent and T. Walsh. Analysis of heuristics for number partitioning.Computational Intelligence,

14(3):430–451, 1998.

[36] I.P. Gent and T. Walsh. CSPLib: a benchmark library for constraints. Technical report, Technical

report APES-09-1999, 1999. Available at http://csplib.cs.strath.ac.uk/. A shorter version appears

in the Proceedings of the 5th International Conference on Principles and Practices of Constraint

Programming (CP-99).

[37] C. P. Gomes, T. Hogg, T. Walsh, and W. Zhang. IJCAI-2001 tutorial: Phase transitions and structure

in combinatorial problems. http://www.cs.wustl.edu/∼zhang/links/ijcai-phase-transitions.html.

[38] G. Gutin and A. P. Punnen, editors.The Traveling Salesman Problem and Its Variations. Kluwer

Academic Publishers, 2002.

[39] P. Hammer and S. Rudeanu.Boolean Methods in Operations Research and Related Areas. Springer,

1968.

[40] J. Hill and D. Culler. Mica: A wireless platform for deeply embedded networks.IEEE Micro.,

22(6):12–24, 2002.

[41] F. Hillier and G. Lieberman.Introduction to Operations Research. McGraw-Hill, 7 edition, 2002.

[42] K. Hirayama, M. Yokoo, and K. Sycara. The phase transition in distributed constraint satisfaction

problems: First results. InProc. Intern. Workshop on Distributed Constraint Satisfaction, 2000.

[43] T. Hogg. Exploiting problem structure as a search heuristic. Technical report, Xerox PARC, January

1995.

[44] T. Hogg, B. A. Huberman, and C. Williams. Phase transitions and the search problem.Artificial

Intelligence, 81:1–15, 1996.

[45] H. H. Hoos. On the run-time behaviour of stochastic local search algorithms for SAT. InProceed-

ings of the 16th National Conference on Artificial Intelligence (AAAI-99), pages 661–666, 1999.

104



[46] H. H. Hoos. An adaptive noise mechanism for WalkSAT. InProceedings of the 18th National

Conference on Artificial Intelligence (AAAI-02), pages 655–660, Edmonton, Canada, July 28-Aug.

1 2002.

[47] H. H. Hoos and T. Stuzle. SATLIB - the satisfiability library. http://www.informatik.tu-

darmstadt.de/AI/SATLIB, 1999.

[48] B. A. Huberman and T. Hogg. Phase transitions in artificial intelligence systems.Artificial Intelli-

gence, 33:155–171, 1987.

[49] E. T. Jaynes. The rationale of maximum entropy methods.Proc. IEEE, 70:939–952, 1982.

[50] Y. Jiang, H. Kautz, and B. Selman. Solving problems with hard and soft constraints using a stochstic

algorithm for MAX-SAT. InProc. 1st Workshop on AI and OR, Timberine, OR, 1995.

[51] D. S. Johnson, G. Gutin, L. A. McGeoch, A. Yeo, W. Zhang, and A. Zverovitch. Experimental

analysis of heuristics for the ATSP. In G. Gutin and A. Punnen, editors,The Traveling Salesman

Problem and its Variations, pages 445–488. Kluwer Academic Publishers, 2002.

[52] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,

editors,Comlexity of Computer Computations, pages 85–103. Plenum Press, 1972.

[53] R. M. Karp. A patching algorithm for the nonsymmetric traveling-salesman problem.SIAM Journal

on Computing, 8:561–573, 1979.

[54] R. M. Karp. An upper bound on the expected cost of an optimal assignment. In D. Johnson, editor,

Discrete Algorithms and Complexity: Proc. of the Japan-US Joint Seminar, pages 1–4, New York,

1987. Academic Press.

[55] R. M. Karp and J. Pearl. Searching for an optimal path in a tree with random costs.Artificial

Intelligence, 21:99–117, 1983.

[56] R. M. Karp and J. M. Steele. Probabilistic analysis of heuristics. InThe Traveling Salesman

Problem, pages 181–205. John Wiley & Sons, Essex, England, 1985.

[57] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and stochastic search.

In Proceedings of the 13th National Conference on Artificial Intelligence (AAAI-96), pages 1194–

1201, 1996.

[58] H. Kautz and B. Selman. BLACKBOX: A new approach to the application of theorem proving to

problem solving. InWorking notes of the Workshop on Planning as Combinatorial Search, held in

conjunction with AIPS-98, 1998.

[59] H. Kautz and B. Selman. Unifying SAT-based and graph-based planning. InProceedings of the

16th International Joint Conference on Artificial Intelligence (IJCAI-99), 1999.

105



[60] H. Kautz and J. P. Walser. Integer optimization models of AI planning problems.Knowledge

Engineering Review, 15:101–117, 2000.

[61] S. Kirkpatrick and G. Toulouse. Configuration space analysis of traveling salesman problems.J.

Phys. (France), 46:1277–1292, 1985.

[62] Susan E. Lander and Victor R. Lesser. Customizing distributed search among agents with het-

erogeneous knowledge. InProceedings of the First International Conference on Information and

Knowledge Management, pages 335–344, 1992.

[63] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors.The Traveling

Salesman Problem. John Wiley & Sons, Essex, England, 1985.

[64] Victor R. Lesser. An overview of dai: Viewing distributed ai as distributed search.Journal of

Janpanese Society for Artificial Intelligence-Special Issue on Distributed Artificial Intelligence,

5(4):392–400, January 1990.

[65] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the Traveling Salesman Problem.

Operations Research, 21:498–516, 1973.

[66] J. D. C. Little, K. G. Murty, D. W. Sweeney, and C. Karel. An algorithm for the traveling salesman

problem.Operations Research, 11:972–989, 1963.

[67] W. G. Macready, A. G. Siapas, and S. A. Kauffman. Criticality and parallelism in combinatorial

optimization.Science, 271, 1996.

[68] Roger Mailler, Regis Vincent, Victor lesser, Jiaying Shen, and Tim Middlekoop. Soft-real time,

cooperative negotiation for distributed resource allocation. InAAAI Fall Symposium on Negotiation

Methods for Autonomous Cooperative Systems, 2001.

[69] S. Martello and P. Toth. Linear assignment problems.Annals of Discrete Mathematics, 31:259–282,

1987.

[70] O. C. Martin, R. Monasson, and R. Zecchina. Statistical mechanics methods and phase transitions

in optimization problems.Theoretical Computer Science, 265:3–67, 2001.

[71] D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in local search. InProceedings of

the 14th National Conference on Artificial Intelligence (AAAI-97), pages 321–326, 1997.

[72] C. J. H. McDiarmid. Probabilistic analysis of tree search. In G. R. Gummett and D. J. A. Welsh,

editors,Disorder in Physical Systems, pages 249–260. Oxford Science, 1990.

[73] C. J. H. McDiarmid and G. M. A. Provan. An expected-cost analysis of backtracking and non-

backtracking algorithms. InProceedings of the 12th International Joint Conference on Artificial

Intelligence (IJCAI-91), pages 172–177, Sydney, Australia, August 1991.

106



[74] M. Mézard and G. Parsi. On the solution of the random link matching problem.J. Physique,

48:1451–1459, 1987.

[75] M. Mézard, G. Parsi, and M. A. Virasoro, editors.Spin Glass Theory and Beyond. World Scientific,

Singapore, 1987.

[76] Steven Minton, Andy Philips, Mark D. Johnston, and Philip Laird. Minimizing conflicts: a heuristic

repair method for constraint satisfaction and scheduling problems.Artificial Intelligence, 58(1-

3):161–205, 1992.

[77] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT problems. InPro-

ceedings of the 10th National Conference on Artificial Intelligence (AAAI-92), pages 459–465, San

Jose, CA, July 1992.

[78] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. Determining computa-

tional complexity from characteristic ’phase transitions’.Nature, 400:133–137, 1999.

[79] P. Morris. The breakout method for escaping from local minima. InProceedings of the 11th National

Conference on Artificial Intelligence (AAAI-93), pages 40–45, Washington, DC, July 1993.

[80] C. H. Papadimitriou and M. Yannakakis. The travelling salesman problem with distances one and

two. Math. Oper. Res., 18:1–11, 1993.

[81] D. J. Patterson and H. Kautz. Auto-WalkSATA self-tuning implementation of walkSAT.In Electronic

Notes in Discrete Mathematics (ENDM), 9, 2001, Elsevier. Presented at the LICS 2001 Workshop

on Theory and Applications of Satisfiability Testing, Boston University, MA, June 14-15, 2001.

[82] J. Pearl.Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley,

Reading, MA, 1984.

[83] J. Pearl. Evidential reasoning using stochastic simulation of causal models.Artificial Intelligence,

32:245–257, 1987.

[84] J. C. Pemberton and W. Zhang. Epsilon-transformation: Exploiting phase transitions to solve com-

binatorial optimization problems.Artificial Intelligence, 81:297–325, 1996.

[85] H. Reichl. Overview and development trends in the field of MEMS packaging. invited talk given at

14th Intern. Conf. on Micro Electro Mechanical Systems, Jan. 21-25, 2001, Switzerland.

[86] Jr. S. Kirkpatrick, C. D. Gelatt, and M. Vecchi. Optimization by simulated annealing.Science,

220:671–680, 1983.

[87] B. Selman, H. Kautz, and B. Cohen. Noise strategies for local search. InProceedings of the 12th

National Conference on Artificial Intelligence (AAAI-94), pages 337–343, Seattle, WA, 1994.

107



[88] B. Selman and S. Kirkpatrick. Critical behavior in the computational cost of satisfiability testing.

Artificial Intelligence, 81:273–295, 1996.

[89] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability problems. In

Proceedings of the 10th National Conference on Artificial Intelligence (AAAI-92), pages 440–446,

San Jose, CA, July 1992.

[90] J. Slaney and T. Walsh. Backbones in optimization and approximation. InProceedings of the 17th

International Joint Conference on Artificial Intelligence (IJCAI-01), pages 254–259, 2001.

[91] B. M. Smith. Modelling a permutation problem. InProc. of ECAI-00 Workshop on Modelling and

Solving Problems with Constraints, 2000.

[92] T. H. C. Smith, V. Srinivasan, and G. L. Thompson. Computational performance of three subtour

elimination algorithms for solving asymmetric traveling salesman problems.Annals of Discrete

Mathematics, 1:495–506, 1977.

[93] M. Takeda. Applications of MEMS to industrial inspection. invited talk, 14th Intern. Conf. on

Micro Electro Mechanical Systems, Jan. 21-25, 2001.

[94] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 2 edition, 2000.

[95] O. Telelis and P. Stamatopoulos. Heuristic backbone sampling for maximum satisfiability. InProc.

2nd Hellenic Conf. on Artificial Intelligence, pages 129–139, 2002.

[96] D. W. Walkup. On the expected value of a random assignment problem.SIAM Journal on Comput-

ing, 8:440–442, 1979.

[97] J. P. Walser. Solving linear pseudo-boolean constraint problems with local search. InProceedings

of the 14th National Conference on Artificial Intelligence (AAAI-97), 1997.

[98] J. P. Walser.Integer Optimization by Local Search. Springer, 1999.

[99] T. Walsh. Permutation problems and channeling constraints. InProc. IJCAI-01 Workshop on Mod-

eling and Solving Problems with Constraints, pages 125–133, 2001.

[100] G. Wang, W. Zhang, R. Mailler, and V. Lesser.Distributed Sensor Networks: A Multiagent Systems

Approach, chapter Analysis of negotiation protocols by distributed search, pages 339–362. Kluwer,

2003.

[101] K. G. Wilson. Problems in physics with many scales of length.Scientific American, 241:158–179,

1979.

[102] Z. Xing and W. Zhang. A constraint sensitive algorithm for maximum satisfiability. manuscript

under preparation, 2003.

108



[103] M. Yokoo. Distributed Constraint Satisfaction: Foundations of Cooperation in Multi-Agent Sys-

tems. Springer Verlag, Berlin, Heidelberg, New York, 2001.

[104] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satisfaction prob-

lem: formalization and algorithms.IEEE Trans. on Pattern Analysis and Machine Intelligence,

10(5):673–685, 1998.

[105] M. Yokoo and K. Hirayama. Distributed breakout algorithm for solving distributed constraint sat-

isfaction problems. InProceedings of the 2nd International Conference on Multi-Agent Systems

(ICMAS-96), pages 401–408, 1996.

[106] Makoto Yokoo.Distributed Constraint Satisfaction. Springer, 1998.

[107] W. Zhang. State-space Search: Algorithms, Complexity, Extensions, and Applications. Springer,

1999.

[108] W. Zhang. Phase transitions and backbones of 3-SAT and Maximum 3-SAT. InProc. 7th Intern.

Conf. on Principles and Practice of Constraint Programming (CP-2001), pages 153–167, 2001.

[109] W. Zhang. Phase transitions and backbones of 3-SAT and maximum 3-SAT. InProc. Intern. Conf.

on Principles and Practice of Constraint Programming (CP-01), pages 153–167, 2001.

[110] W. Zhang. Phase transitions of the asymmetric traveling salesman. InProceedings of the 18th

International Joint Conference on Artificial Intelligence (IJCAI-03), pages 1202–1207, 2003.

[111] W. Zhang, Z. Deng, G. Wang, L. Wittenburg, and Z. Xing. Distributezhangww-dsa,d problem

solving in sensor networks. InProc. AAMAS-02, 2002.

[112] W. Zhang and R. E. Korf. Performance of linear-space search algorithms.Artificial Intelligence,

79:241–292, 1995.

[113] W. Zhang and R. E. Korf. A study of complexity transitions on the asymmetric Traveling Salesman

Problem.Artificial Intelligence, 81:223–239, 1996.

[114] W. Zhang and M. Looks. Backbone guided local search for the traveling salesman. Inpresented at

the 5-th Metaheuristic International Conference, Kyoto, Japan, August 2003.

[115] W. Zhang, A. Rangan, and M. Looks. Backbone guided local search for maximum satisfiability. In

Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI-03), pages

1179–1184, 2003.

[116] W. Zhang, G. Wang, and L. Wittenburg. Distributed stochastic search for distributed constraint

satisfaction and optimization: Parallelism, phase transitions and performance. InProc. AAAI-02

Workshop on Probabilistic Approaches in Search, pages 53–59, 2002.

109



[117] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg.Distributed Sensor Networks: A Multiagent Sys-

tems Approach, chapter A comparative study of distributed constraint algorithms with applications

to problems in sensor networks, pages 319–338. Kluwer, 2003.

[118] W. Zhang and L. Wittenburg. Distributed breakout revisited. InProceedings of the 18th National

Conference on Artificial Intelligence (AAAI-02), pages 352–357, 2002.

[119] W. Zhang and Z. Xing. Distributed breakout vs. distributed stochastic: A comparative evaluation

on scan scheduling. InProc. AAMAS-02 Workshop on Distributed Constraint Reasoning, to appear.

[120] W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. An analysis and application of distributed con-

straint satisfaction and optimization algorithms in sensor networks. InProc. 2nd Intern. Joint Conf.

on Autonomous Agents and Multi-Agent Systems (AAMAS-03), 2003.

[121] J. Zhao, R. Govindan, and D. Estrin. Computing aggregates for monitoring wireless sensor net-

works. InProc. 1st IEEE Intern. Workshop on Sensor Network Protocols and Applications Anchor-

age.

110




