AFRL-1F-WP-TR-2004-1516

INTEGRATED MANAGEMENT OF
POWER AWARE COMPUTATION AND
COMMUNICATION (IMPACCT)

Dr. Pai Chou and Dr. Nader Bagherzadeh

University of California, Irvine
160 Administration
Irvine, CA 92697-1875

MAY 2003

Final Report for 08 May 2000 — 07 May 2003

| Approved for publicrelease; distribution isunlimited. I

STINFO FINAL REPORT

INFORMATION DIRECTORATE

AIR FORCE RESEARCH LABORATORY

AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA
INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN
GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE US
GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR
SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT
LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR
CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL
ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL
INFORMATION SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE
GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

R _.-"_'::-J rz“‘: A - ’
P LMk y sbofl

J
KERRY L. HILL ALFRED J. SCARPELLI
Project Engineer Team Leader
Embedded Info Sys Engineering Branch Embedded Info Systems Engineering Branch
Information Systems Technology Division Information Systems Technology Division

M\-«
JAMES S. WILLIAMSON, Chief
Embedded Info Systems Engineering Branch

Information Systems Technology Division
Information Directorate

Do not return copies of this report unless contractual obligations or notice on a
specific document requires its return.

REPORT DOCUMENTATION PAGE or APDIOVed

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)
May 2003 Final 05/08/2000 — 05/07/2003
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
INTEGRATED MANAGEMENT OF POWER AWARE COMPUTATION AND F33615-00-1-1719
COMMUNICATION (IMPACCT) 5b. GRANT NUMBER
5¢c. PROGRAM ELEMENT NUMBER
69199F
6. AUTHOR(S) 5d. PROJECT NUMBER
Dr. Pai Chou and Dr. Nader Bagherzadeh ARPI
5e. TASK NUMBER
|_—|'
5f. WORK UNIT NUMBER
0K
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
University of California, Irvine
160 Administration

Irvine, CA 92697-1875

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
ACRONYM(S)

Information Directorate DARPA/IPTO AFRL/IETA

Air Force Research Laboratory 3701 Fairfax Drive

Air Force Materiel Command Arlington, VA 22203-1714 - SRP,;,NOSROTR,LTJ%EASQ(ISTP RING AGENCY

Wright-Patterson AFB, OH 45433-7334 AFRL-IF-WP-TR-2004-1516

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The IMPACCT, or Integrated Management of Power Aware Computation and Communication, program objectives are to
enhance the power/performance tradeoff range and to correctly compose different component level power management
techniques at the system level. Power and timing constraints can be used as knobs to tune the system for performance or
power, without hardwiring to either goal. To maximize performance and resolve power “hot spots,” we exploit system-
level task maotion under pair-wise timing and total power as constraints. A distinguishing feature of our work is our ability
to handle co-activation, an essential property for the correct operation of these embedded systems. Furthermore, we
propose mode selection as a generalized way for fully exploiting novel power management features provided by an
increasingly intelligent class of power-aware components. They are capable of managing power and provide many more
power modes. However, today’ s power management techniques often cannot take full advantage of these rich features, but
instead they use only two or three modes (e.g., on/off). Our mode selection methodology models the dependency and
produces a mode schedule that considers restricted transitions and overhead amortization.

15. SUBJECT TERMS
Power Aware Computing and Communications (PAC/C), power management, power scheduling, voltage scaling

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT | b. ABSTRACT | c. THIS PAGE OF ABSTRACT: OF PAGES Kerry L. Hill
Unclassified | Unclassified | Unclassified SAR 246 19b. TELEPHONE NUMBER (Include Area Code)
(937) 255-7698 x3604

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Acknowledgement

This research was sponsored by DARPA under contract F33615-00-1-1719. It repre-
sents a collaboration between the University of California at Irvine and the NASA/Cal
Tech Jet Propulsion Laboratory. Special thanks to Dr. N. Aranki, Dr. B. Toomarian, Dr.
M. Mojarradi and Dr. J. U. Patel at JPL and Kerry Hill at AFRL for their discussion

and assistance.

Contents

Contents

List of Figures

List of Tables

Introduction and Overview
Introduction

Overview of Capabilities

2.1 Impacctoverview

2.2 Input: Application Model and Constraints
2.3 Target ArchitectureandMapping
2.4 Power-Aware Scheduling
25 Mode Selection

2.6 Simulation Supporto

General Scheduling

Power Aware Scheduling

12

14

27

3.1 Introduction 27
3.1.1 Power-aware vs. low-power 28
3.1.2 System-level power-aware design 29
3.1.3 Approach: designtools 29

3.2 RelatedWork 30
3.2.1 Subsystemshutdown 30
3.2.2 Realtimescheduling 31
3.2.3 Powerawareness 31

3.3 Motivating Example o 32

3.4 Problem Formulation, 35
3.4.1 Constraint graph and properties 35
3.4.2 Power characteristicsofaschedule 40
3.4.3 Power-aware Ganttchart 43

3.5 Algorithm 45
3.5.1 Algorithm for timing scheduling a7
3.5.2 Algorithm for max power scheduling 47
3.5.3 Algorithm for min power scheduling 52

3.6 ExperimentalResults 56

3.7 ChapterSummary 61

Power Aware Task Motion 62

4.1 Introduction 62

42 RelatedWork 65

4.3 DVSAnomaly. 67

4.4 Task Motion under Timing and Power Constraints 69
4.4.1 Constraintgraphandschedule 70
4.4.2 Task motion under timing constraints 71
4.4.3 \Utilization constraints L 76

4.5 Scheduling Algorithms 79
4.5.1 Construction of the iterationgraph 80
45.2 Task promotion algorithm 80
4.5.3 Algorithm for power-aware task motion/scheduling 82

4.6 ExperimentalResults 82
4.6.1 A system-level constraint model of the Mars rover 84
4.6.2 Schedulingresults 87

47 ChapterSummary 93

Data Regular Scheduling 94

SuperDVS 95

5.1 Introduction 96
5.1.1 LimitsofDVS 96
5.1.2 BeyondDVSImit 97

52 RelatedWork 98

5.3 Motivating Example: ATR 99

5.4 Super DVS: Energy Efficiency through Parallelism 104
541 SuperDVS 104
5.4.2 Implementation related issues: buffer management110
5.4.3 Coarser granularity: processing multiple frames together .114

5.5 Analytical Results on Energy Reduction 116
5.5.1 Anempirical processormodel 116
5.5.2 Properties of the algorithm and dataset 117
5.5.3 Power and energy reduction by superDVS 118
5.5.4 TheimpactofDVSoverhead. 119

5.6 ChapterSummary 121

6 Communication Speed Selection and Partitioning

123

6.1 Introduction 124
6.2 RelatedWork 127
6.3 SystemModel 128
6.3.1 JobsandTasks, 128
6.3.2 PowerScaling, 129
6.3.3 M-Node Pipeline 131
6.4 Schedulability Conditions 133
6.5 Motivating Exampleo o 135
6.6 Problem Formulation L. 138
6.7 AnalyticalResults 149
6.8 ChapterSummary 153
IV Mode Selection 154
7 Power Mode Selection 155
7.1 Introduction 156
7.2 RelatedWork 158
7.2.1 Dynamic Voltage Scaling(DVS) 158
7.2.2 Dynamic power management (DPM) 160
7.3 Modeling Resource Dependency 161
7.3.1 Definitions 161
7.3.2 Mode Dependency Graph 162
7.3.3 Generating Mode Combinations 164
7.3.4 Example: Microsensor 165
7.4 Mode Selection 167
7.4.1 Problem Statement L. 168
7.42 Algorithm 169

7.5 ExperimentalResults, 173

7.6 ChapterSummary 175
8 Topology Selection 176
8.1 Introduction 176
8.2 Background and RelatedWork 178
8.21 FireWireBus 178

8.2.2 Power Management with FireWire 179

8.3 Problem Formulation 180
8.3.1 Definitions 180

832 CostFunction., 184

8.3.3 Problem Statement L. 185

8.4 Algorithm 186
8.4.1 Approach 186

8.4.2 Algorithms 187

8.4.3 Complexity 189

8.5 ExperimentalResults 190
8.6 ChapterSummary 196

V Conclusion 198
9 Conclusions and Future Work 199
Bibliography 201
A Tool 210
Al Introduction 210
A.1.1 AnOverview of IMPACCTtool 210

A.1.2 Features of IMPACCT tool version1.0 212

A.2 Scheduler 212

A.2.1 Software Installation 212
A22 GettingStarted 213
A.2.3 Runningthetool 216
A3 ModeSelector 223
A.3.1 Software Installation 223
A3.2 GettingStarted 223
A.3.3 Runningthetool 224
A4 Inputformats 231

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1

4.2
4.3

The IMPACCT system-level design tool for power-aware embedded

SYSIEMS. e e e 20
Constraint graph of a scheduling problem. 38
Power-aware Gantt chart of a time-valid schedule. 45
Algorithm for timing scheduling. 48
Algorithm for max power scheduling. 49
A valid schedule after max power scheduling. 52
Algorithm for min power scheduling. 53
The improved schedule after min power scheduling. 55
Constraint graph of the Marsrover. 56
Schedule forthe bestcase. 57
Schedule for the typicalcase. 57
Schedule forthe worstcase. 58
Adaptive speedup in power-aware scheduling. 60

An example where DVS fails to reduce power and energy at system

level, while our new technique will succeed. 68
Task motion under timing constraints. 72
Task motion under utilization constraints. 72

4.4
4.5
4.6
4.7
4.8
4.9
4.10

4.11

51
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3

6.4

6.5
6.6

Algorithm to construct the iterationgraph. 80

Algorithm to decide whether a tasks promotable. 81
Task promotion algorithm. 81
Power-aware task motion algorithm. 83
Constraint graph of the Marsrover. 85
Schedule for Scenario 1 (highest power budget). 38
Schedule for Scenario 2 (moderate power budget). 90
The serial schedule for Scenario 3 (lowest power budget). 90
Block diagram of the ATR algorithm. 100
The ATR algorithm. 102
Power profile of intra-task DVS. 103
Partition the nested loop intostages. 106
Parallel algorithms for superDVS. 109
Power profile of superDVS. 111
Pipelined processors with shared memory buffers. 112
ModifiedSTAGEOQ to procesdN frames atatime. 113
Pipelined ATR with directly linked data connection. 115
Timing and power properties of a processing hode. 131
A3-nodepipeline. 132
Functional blocks of the ATR algorithm. 135

The impact of different partitioning schemes and communication speed
settings. 136
The optimal sub-structure of Problem 1. 140
The dynamic programming approach to solve Problem 1. Each entry
EJi, j] can be computed by the shaded entries in the previous row. The

global optimal energy is the minimum value of the last column. . . 141

6.7
6.8
6.9

6.10
6.11
6.12

6.13
6.14
6.15
6.16

7.1
7.2
7.3
7.4
7.5

7.6
7.7
7.8
7.9
7.10
7.11

Optimal partitioning algorithm. 142
The optimal sub-structure of Problem2. 144
The dynamic programming approach to solve Problem 2. Each entry

E[i,k] can be computed by the shaded m&{y— 1,1]. The global opti-

mal energy is the minimum value of the lastrow. 144
Optimal speed selection algorithm. 146
The optimal sub-structure of Problem 3. 147

The multi-dimensional dynamic programming approach to solve Prob-
lem 3. Each entr]i, j,k] can be computed by the shaded entries in

the previous sub-matrix. The global optimal energy is the minimum

value in the last row of all sub-matrices. 148
Combined partitioning with speed selection. 150
Power vs. performance of the XScale processor. 151
Power modes of the Ethernetinterface. 151
Analyticalresults. 152
An application scenario that has resource dependency. 159,
Comparison of three schedules. 160
Atable for violation checking. 163
Check satisfactionofanMDG. 163

(a) An MDG example: microsensor. (b) Reduce the MDG to a resource

S 164
Generate mode combinations for cyclic MDG. 166
Mode combinations of microsensor. 168
Top level Mode Selection algorithm. 170
The MDG for the Microrover. 171
Comparison among different working scenarios. 172
A mode schedule for microrover., 174

10

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Examplesoftree strings. 180

The tree enumeration algorithm. 187
The ADDASLEAFroutine. 188
The top level topology selection algorithm. 188
Example Ip= 3, fourtreesfound. 192
Example Ip=4,onetreefound. 192
Example Ip=6,onetreefound. 192
Workload balanceness vs. potential energy saving. 195

11

List of Tables

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3

4.4

5.1
5.2
5.3
5.4

8.1
8.2
8.3

Timing constraints in Mars rover’'s operations. 33
Power consumption of Mars rover’s operations. 34
Performance of the rover under existing schedule. 58
Performance of the rover under power-aware schedules. 58.

Comparison of existing schedule to power-aware schedules under a

Mmission scenario. 59
Timing constraints of the Marsrover. 86
Power sources and consumers of the Marsrover. 86
Comparison of schedules in a three scenarios. 91
Comparison of schedules in a comprehensive scenario. 91
An abstract model of a voltage-scalable processor. 116
Parameters of the code and inputdata. 117
Energy and power saving achieved by superDVS. 118
Energy overhead vs. different DVS granularity. 120
Power data of FireWire interface (inmW). 190
Alistof FireWiredevices 191
Alistoftransactions L. 191

8.4 Experiment results for Example | (eightnodes). 191

8.5 The number of devices with differenthubtypes. 195

13

Part |

Introduction and Overview

14

Chapter 1

Introduction

Recent years have seen the emergenqmuofer-awareembedded systems. They are
characterized by not only low power consumption, but more generally by their ability to
support a wide range of power/performance trade-offs. These systems can be viewed
as providing “knobs” that can be turned one direction to reduce power consumption
or the other direction to increase performance. The ability to maximize the range of
power-performance trade-offs is driven by new applications that demand very high
performance while operating under stringent timing and power constraints. One such

application can be found in the space domain in the form of a rover.

Let us consider the Mars Pathfinder rover from NASA/JPL [4]. It was designed
to roam on Mars to take digital photographs and perform scientific experiments over
several hundred days. Its energy sources consist of a battery pack and a solar panel,
and future versions are expected to incorporate a nuclear generator or other energy
scavenging devices. The initial version was designed to be low-power, and this was ac-
complished by serializing all tasks, including mechanical and heating as well as com-
putation. However, low-power also means low performance in this case, as the rover

could move at most 10cm per minute, and shoot and wirelessly transmit at most three

15

high-resolution photos in a day. Even though during daytime the solar panel could
output more power than could be consumed by the rover, the rover was unable to take

advantage of this power; instead, the extra heat was redirected to heating the wheels.

This is an instance where a low-power design may be correct, but a power-aware
version can do much better. We have proposed a power-aware version of the rover:
by allowing power usage and performance to track power availability, the power-aware
system with more system-level parallelism achieved 33% speedup while saving 33%

battery energy [44].

Encouraged by the initial success, we explored additional power management op-
portunities at the system level. Since the goal is to increase the dynamic range of
power/performance curves, we sought ways to increase performance in one direction
and to reduce power in the other. To increase performance when more power (such
as solar) is available, we attempted system-level task motion, a class of effective tech-
nigues that have been developed for many different domains ranging from VLIW in-
struction scheduling to hardware synthesis. To reduce energy consumption, we also
attempted to incorporate other researchers’ new power management techniques that are
power-aware. These include a variety of dynamic voltage scaling (DVS) and schedul-
ing algorithms for modern embedded processors, whose voltage and frequency can be

controlled.

However, a somewhat surprising result was that many of these performance en-
hancement and power reduction techniques yield incorrect and rather counterintuitive
results when applied together at the system level. Existing scheduling techniques that
treat the power budget as a resource constraint (e.g., mapping power to the total reg-
ister count) fail to correctly satisfy the power constraints. On the other hand, DVS
techniques, which slow down processors in order to achieve quadratic energy savings,

actually end up consuming more energy at the system level.

The main reason these techniques fail is that many important system-level depen-

16

dencies are not properly modeled or considered. In a system, the components do not
work independently; instead, they work very much together with each other, and power
management decisions made on one component can have a chain of effects on the
power usage of the other components. This is further complicated by the fact that dif-
ferent components are built with different power management capabilities. In the Mars
rover, not all components are power manageable. In fact, some components include
motors for steering and driving the rover, heating elements for melting the frozen lu-
bricants on the wheels, and the R/F module. Many of these components cannot scale
their voltage or frequency the same way a processor can. Furthermore, mode changes
are seldom instantaneous or free; instead, they incur nontrivial timing and power over-
head that cannot always be amortized. As a result, the combined effect of these power
management techniques can often contradict the designer’s intuition and even cancel

each other’s effects.

It is clear that an integrated design tool is sorely needed to help designers man-
age such a multi-dimensional problem: functional correctness, timing constraints, and
power awareness. To address these difficult problems, we develop a tool-based design
methodology called IMPACCT, for Integrated Management of Power-Aware Comput-
ing and Communication Technologies. As with most system-level design tools, IM-
PACCT starts with high-level modeling of the application, separate from the target
architecture. The designer then uses IMPACCT to transform and refine the high-level
model towards implementation. IMPACCT also supports power-aware functional sim-

ulation to help with design validation.

This report focuses on two of the core design tasks in IMPACCT: power-aware
scheduling and mode selection. The objectives are to enhancing the power/performance
trade-off range and to correctly compose different component level power management
techniques at the system level. Power and timing constraints can be used as knobs to

tune the system for performance or power, without hardwiring to either goal. To max-

17

imize performance and resolve power “hot spots,” we exploit system-level task mo-
tion under pair-wise timing and total power as constraints. A distinguishing feature
of our work is our ability to handleo-activation an essential property for the cor-

rect operation of these embedded systems. Furthermore, we propose mode selection
as a generalized way for fully exploiting novel power management features provided
by an increasingly intelligent class of power-aware components. They are capable of
managing power and provide many m@aver modesHowever, today’s power man-
agement techniques often cannot take full advantage of these rich features, but instead
they use only two or three modes (e.g., on/off). Our mode selection methodology mod-
els the dependency and produces a mode schedule that considers restricted transitions
and overhead amortization. Together these techniques not only form the foundation
for integrating many power management techniques, but more importantly they help
even experienced designers avoid many pitfalls with composing these components at
the system-level.

This report is a compilation of research work done by the IMPACCT project. Its
main contribution is that, by taking an integrated, global perspective in managing
power, it addresses the pitfalls of many of today’s local, component-level techniques.
The rest of Part | presents an overview of IMPACCT capabilities, including specifi-
cation, architecture, simulation, and power management techniques. Parts Il and Il
present two important classes of scheduling techniques. Part Il present general time-
constrained, power-constrained scheduling, compile-time scheduling techniques, while
Part 11l exploits specialization to data-regular applications. Part IV investigates more

architecture details with techniques we call mode selection and topology selection.

18

Chapter 2

Overview of Capabilities

2.1 Impacct overview

IMPACCT is a system-level design tool for exploring power/performance trade-offs in
hard real-time systems by means of power-aware scheduling and architectural config-
uration. The current implementation includes an interactive graphical tool for schedul-
ing, mode selection, and an interface to a simulation back-end for integrated evaluation
of the system under design. Amdabhl’s law applies to power as well as performance.
That is, the power saving of a given component must be scaled by its percentage con-
tribution to an entire system. Furthermore, a system in the broad sense includes not
only computational components but also those in the non-computational domains (e.g.,
mechanical and thermal subsystems), which are equally important in many mission-
critical applications. IMPACCT is the first tool to correctly address all of these system-
level power management issues. Fig. 2.1 shows the main components of the IMPACCT
framework, and this chapter will highlight each box in order. The combination of these
features in IMPACCT presents a compelling design-time tool for engineers to explore

a wide range of system-level power/performance trade-offs with confidence.

19

Library Composition Transformation Synthesis

timing Manger
analysis synthesis
software

mode -
@ mapping selection [> Compilation
architectural G
powerdﬁurce buffer Interface
moaels | | sizing synthesis
[E— —
Architecture G G
bed

. selective focus
Validation simulation T

&

Figure 2.1: The IMPACCT system-level design tool for power-aware embedded sys-
tems.

2.2 Input: Application Model and Constraints

To use IMPACCT, the designer must construct a model for the application and con-
straints. Although the detailed application behavior is ultimately written in one of the
system programming languages (such as C, C++, Ada, Java, etc), IMPACCT does not
process these files directly; instead, they are passed to power/timing analysis or simu-
lation tools for estimation or validation. IMPACCT expects the designer to construct

a higher-level model for the application in our custom language. This description in-
cludes ports and channels for expressing data dependencies, and it supports timing and
power constraints. Note that timing and power are not necessarily intrinsic to the appli-
cation problem itself, but they should really be viewed as “budgets” whose values are
selected based on engineering decisions. One main purpose of the tool is to help de-
signers with constraint refinement or adjustment (re-budgeting) by giving them a quick
estimate. This approach allows the designer to start working with the power/timing
budget for various tasks to be performed long before the program or component is de-

signed. As these pieces become available, they will then be used to refine these budgets

20

with more accurate estimation.

We currently support power constraints and timing constraitsver constraints
are the min/max bounds on the power dimension of the power profilemBixepower
constraint requires that the system never draw more than the specified amount of power
at any given moment. It may be derived from the maximum current rating of the
power supply and can be a hard constraint. Even though most systems to date could
assume sufficient power by design, the next generation power-aware embedded systems
will need to work with a much more diverse set of power sources with much lower
power budgets and reduced availability. This will make max-power a hard constraint.
On the other hand, we believain-powerwill be an important constraint, especially
for systems with renewable energy sources. One reason is that as heat becomes an
important issue in embedded systems, unused power must be carefully dissipated or
else the system risks overheating. Rechargeable batteries have finite capacities and will
contribute to the heat when overcharged. In the case of the rover, it would require extra
heat dissipation hardware to handle unused min-power. This would add extra weight
and cost to the rover. Another reason is that the min and max constraints together
will be a way to explore power/performance trade-offs without being hardwired to the

low-power goal. Both min and max power constraints may be functions over time.

Timing constraints are in the form ofin/max timing separatiobetween pairs of
events, where an event can be the start or end of a task. This is a general way for
expressing precedence, absolute and relative deadlines, and also co-activation. Tasks
assigned to different resources may run in parallel. We currently use a simple custom
language to capture these timing constraints. The syntax of this high-level file is not
important; it just has to be expressive enough to construct a graph description of the

pair-wise timing constraints.

21

2.3 Target Architecture and Mapping

The input to IMPACCT consists of a model for the target architecture and application-
to-architecture mapping. The target system architecture provides the primitives for
power management as well as the power/timing attributes needed for scheduling and
mode selection. The elements of the application model are mapped to those of the target
architecture: that is, the tasks are mapped to the processors, and channels mapped to
the busses. IMPACCT providegamponent libraryand asystem architecture template

to aid the description of the target architecture.

The component library consists of models for components and busses in the target
architecture. They include processors, memory modules, bus controllers, communica-
tion modules, sensors and actuators, digital cameras, and various peripheral devices.
The designer instantiates and configures these components from the library. The com-
ponent models will provide an interface for the rest of the design tool to ask questions
about the power/timing attributes needed to synthesize or for simulation. Some of these
attributes such as modes, clock rates, or voltage may be stored as fixed values, but oth-
ers such as the execution delay or the power consumption may need to be derived
by either evaluating a formula or by simulation. Each component model may encap-
sulate any number of detailed models (RTL, SPICE, power-macromodel), but they are
abstracted from the designer. IMPACCT augments these low-level models with higher-
level models for supporting system-level power management. These features include
the power modes, the allowed transitions between modes, the power/timing coeffi-
cients associated with each mode and the transitions, and the interface description for
controlling these power management features. This mode model will be described in

more detail in the Mode Selection chapter.

Unlike traditional hardware/software co-design that is more about free-form ex-
ploration of an optimal architecture, we take a platform-based approach for practical

reasons. IMPACCT provides architectural templates for configurable platforms, and

22

currently supported is a symmetric multiprocessor architecture interconnected with a
two-tier bus. It can be configured for different numbers of processors and components
from the library. The two-tier bus includes the IEEE 1394 (“FireWire") for high-speed,
real-time data and théC for low-speed control. Both are power efficient and sup-
port dynamically adding/removing or powering up/down individual nodes for the pur-
pose of power management. The software runs on WindRiver vxWorks, a commercial
real-time OS for embedded systems. Scheduling and mode selection are performed

statically but the run-time system can switch between different schedules.

2.4 Power-Aware Scheduling

Our scheduler enhances the dynamic range of power/performance trade-offs. The core
scheduler handles both timing and power as constraints, not just goals. Power and tim-
ing are both treated as min/max constraints. The advantage is that these constraints be-
come the knobs for tuning the system’s power/performance trade-offs. By making the
constraints track the available solar power, the IMPACCT scheduler has been shown to
accelerate the system while saving energy at the same time for a Mars rover. This fea-
ture will be critical to also systems that use alternative energy sources such as thermal
batteries as well as those with thermal management concerns. In addition, we explore
system-level task motion as a way to vary the level of parallelism to further increase

the dynamic range of these systems. Scheduling will be discussed in Chapter 3.

2.5 Mode Selection

Another complementary feature in IMPACCT is mode selection. It is the task of de-
riving a schedule for mode changes in the components of the system, such that all
architectural effects are properly considered. It takes as input a schedule from the pre-

vious step, and it decides what power modes in which each component should operate

23

over time. Mode selection addresses issues that fail to be handled by today’s greedy
dynamic voltage schedulers by considering the transition overhead and dependencies.
It will not change mode if the time/power overhead involved cannot be amortized over
the tasks to be performed, and it also prevents system-level power spikes due to greedy,
isolated voltage scaling. More importantly, IMPACCT’s mode selection properly mod-
els and handles co-activation dependencies. For example, when the processor is on,
the memory must be on, too. By modeling these dependencies in the mode selection
step, IMPACCT will ensure that the resulting power management policy considers all
features critical to the correct operation of the entire system. Mode Selection will be

described in more detail in Chapter 7.

2.6 Simulation Support

IMPACCT supports simulation at various stages of the design flow. The high-level
application description can be simulated functionally without mapping to an architec-
ture. The IMPACCT high-level simulator has been integrated into the scheduler. It not
only computes the ordering of the tasks to run on generic resources, but also invokes
the compiled application files via native calls to simulate their functionality. The high-
level simulator is also responsible for implementing the inter-process communication
mechanisms using buffer management.

This setup also enables the integration of heterogeneous simulation and emulation
models with a uniform user interface. Because the simulation models are externalized,
the IMPACCT simulation coordinator can replace the external, native calls with any
other calls, as long as they conform to a compatible application programming inter-
face. For example, hardware-in-the-loop simulation can be accomplished by replacing
these external calls with calls to device drivers that control emulation hardware. Sim-
ilarly, these calls can also be made to detailed simulation models when accuracy or

controllability is required. The back-end is completely decoupled from the front-end,

24

which provides a uniform user interface including visualization support.

25

Part Il

General Scheduling

26

Chapter 3

Power Aware Scheduling

Power-aware systems are those that must make the best use of available power. They
subsume traditional low-power systems in that they must not only minimize power
when the budget is low, but also deliver higher performance when required. This chap-
ter presents a new scheduling technique for supporting the design and evaluation to a
class of power-aware systems in mission critical applications. It computes a schedule
that satisfies stringent min/max timing and max power constraints at all times. Further-
more, it also makes the best effort to satisfy min power constraint in an attempt to fully
utilize free solar power or to control power jitter. Experimental results show that our
automated technique yields designs that improve performance and reduce energy cost
simultaneously compared to hand-crafted designs used in previous missions. This tool
forms the basis of the IMPACCT system-level framework that will enable designers to

aggressively explore many more power-performance trade-offs with confidence.

3.1 Introduction

Power management is becoming one of the central issues in embedded systems. They

are particularly critical to systems that must carry their own power source and cannot

27

rely on a power outlet on the wall. Without power, the system is useless. In the con-
sumer space, the consequence may mean not being able to make an emergency call
or other minor inconveniences; but in mission-critical systems, such a failure can cost
millions and even human lives.

This chapter investigates key issues in power management for mission-oriented sys-
tems. Our motivating example comes from the NASA Mars Pathfinder rover developed
at JPL [4]. It features several interesting properties that were not adequately addressed
by previous work. First, such a system must be designed to be power-aware, rather
than low-power. Second, it is critical that power management decisions be made at the

system level, rather than only at the component level.

3.1.1 Power-aware vs. low-power

Traditionally, many components and systems have been designed to be low-power.
However, we believe there is a critical difference between power-aware and low-power
systems. Power-aware systems must make the best use of their available power, and
they subsume low-power as a special case.

In the Mars rover case, its designers constructed a low-power design. It incorpo-
rated some of the best low-power design techniques at all levels of abstraction. The
rover has two power sources: a solar panel and a non-rechargeable battery. To strictly
control power draw, the designers serialized all tasks, including driving, steering, ob-
stacle detection, and heating motors. This low-power design allows the rover to operate
for hundreds of days during daylight, and it sleeps at night. However, full serialization
also means the rover moves as slowly as 10cm per minute, and it can only take a total
of three pictures per day.

A power-aware design can greatly improve the utility of the rover. We observe
that the battery is non-rechargeable, and thus solar power would be wasted if not used

while it is available. In the existing design, the rover follows the same serial schedule

28

regardless of the solar power level, and simply directs the excess energy to heating
the wheels. A rover with more parallelism in its schedule can perform better (more
tasks, more quickly) while saving even more battery energy than the existing low-
power design if it can take advantage of the free power, as validated by our experiments

in the results section.

3.1.2 System-level power-aware design

We believe that power-aware designs must be done at the system-level, not just at the
component level. Amdahl’s law applies to power as well, not just performance. That s,
the power saving of a given component must be scaled by its percentage contribution
in an entire system. If a component only draws 2% of the power in a system, a 50%
reduction in its power amounts to merely 1% saving to the system. Therefore, it is
critical to identify where power is being consumed in the context of a system, not just
the components in isolation.

In the case of the Mars rover, it turns out that some of the biggest consumers are
not even in the digital computer, but they also include the wheel motors, the steering
motors, laser-guided obstacle detection, and the heaters. A successful power-aware
design must consider these non-computation domains and coordinate their power usage

as a whole system.

3.1.3 Approach: design tools

Our approach is to support power-aware design with a system-level design tool. One
of the lessons learned from the Mars rover was that, without a tool, the designer had
no choice but to embed many power-management decisions in the implementation. As
a result, they were forced to design conservatively and could not consider more than
one or two design alternatives. The purpose of our tool is to enable the exploration of

many more points in the design space, so that additional knowledge about the mission

29

can be incorporated to refine the design without requiring dramatic redesign.

The work presented in this chapter represents one of the core tools in a larger design
framework, called IMPACCT. The designers input a high-level behavioral specification
of the design in terms of communicating processes and constraints. These processes
have been assigned to run on specific execution resources, either interactively or semi-
automatically by the design tool. The scheduling tool in this chapter constructs a con-
straint graph and performs power-aware scheduling. The output is then fed to another
tool that performs optimizations and synthesis of power managers at the architectural
level.

This chapter is organized as follows. Section 3.2 reviews related work, and Sec-
tion 3.3 describes the application example in more detail. We present the problem for-
mulation in Section 3.4 and graph-based scheduling algorithms in Section 3.5. Then,
we discuss experimental results in Section 3.6 followed by our concluding remarks and

future work.

3.2 Related Work

Prior works have addressed minimization of power usage at the system level. Their
common goal is to minimize power usage while maintaining a satisfactory level of
performance or meeting real-time constraints. However, these low-power techniques

often cannot be directly adapted in power-aware systems.

3.2.1 Subsystem shutdown

Shutting down idle subsystems such as network interfaces, hard disks, and displays
can save a significant amount of power in a system. The shutdown decision can be
based on idle times of individual subsystems, although such approaches are less than

satisfactory. Proposed improvements either attempt to make the timeout adaptive to the

30

actual usage pattern, or use profiling to help predict the proper time to shutdown and
power up subsystems [62, 20, 64].

While it is important to manage the power of subsystems, unfortunately these tech-
nigues have several limitations. First, they do not handle timing constraints, including
deadlines and min/max separation. Second, they are not power-aware in the sense
that they do not distinguish between free power (such as solar sources) vs. expensive
power (non-rechargeable battery). These power managers do not control their work-
load; instead, they make the best effort to minimize power consumption by treating the

workload as a given.

3.2.2 Real-time scheduling

Many real-time scheduling techniques have been proposed to date, but only recently
have researchers started to address power issues with the objective of minimizing
power usage. For example, rate-monotonic scheduling has been extended to scheduling
variable-voltage processors. The idea is to save power by slowing down the processor
just enough to meet the deadlines [48].

Such technigues have several limitations. First, they are CPU schedulers that mini-
mize CPU power, rather than power managers that control subsystems and task execu-
tions. Second, in practice, it is difficult to tune the voltage or frequency scale to such a
fine precision. As a result, the risk of missing deadlines may be high, even if context
switching overhead is taken into account. Also, while these schedulers meet timing

constraints, they do not handle constraints on power usage.

3.2.3 Power awareness

We believe power-aware scheduling must have several key features. First, they must
handle both timing and power stringently as hard constraints. This is unlike previous

work that treats them as desirable by-products but cannot always make strong guar-

31

antees. Second, domain-specific knowledge about the power source, battery model,
and other operating conditions must be expressible in terms of supported types of con-
straints on the timing and power. The types of constraints that are sufficiently expres-
sive for our application are min and max timing constraints on tasks, as well as min
and max power constraints on the system. Min/max timing constraints subsume dead-
lines and precedence dependencies and can express dependencies across subsystems
[18, 19]. Max power would track the budget imposed by the current power sources.
Min power constraints, strictly speaking, may be counter-intuitive in that it forces the
power manager to maintain a certain level of activity. The primary motivation is that
power from solar panels or other free sources that cannot be stored should be fully
utilized greedily, or else they will be wasted. Another motivation is to control the jit-
ter in the system-level power curve in an attempt to optimize battery usage. However,
min power constraints are not imperatively enforced, and we assume that they may be

violated occasionally or be met by scheduling background tasks.

3.3 Motivating Example

To demonstrate the effectiveness and applicability of our power-aware scheduling tech-
nigues, we choose the NASA/JPL Mars rover as our motivating example. Its mission is
to perform scientific experiments and imaging on Mars surface. The rover is deployed
and operated for at least 7 sols (days on Mars). If it keeps performing well at the end of
the designated period, an extended mission may continue. The rover’s power sources
consist of a non-rechargeable battery pack and a solar panel. Clearly, the duration of
a mission is limited by the amount of remaining battery energy. Thus, a careful man-
agement of power usage may yield potential energy savings, as well as performance
speedup.

The rover travels between different target locations before experiments and imag-

ing can be performed. Since the temperature on Mars surface can be as188°&5

32

Operation Duration(s) Timing constraints

Heating steering motors 5 At least 5s, at most 50s before steering
Heating wheel motors 5 At least 5s, at most 50s before driving
Hazard detection 10 At least 10s before steering

Steering 5 At least 5s before driving

Driving 10 At least 10s before next hazard detection

Table 3.1: Timing constraints in Mars rover’s operations.

driving in low temperature requires more power and energy consumption because the
motors must be heated periodically. This fact indicates that mechanical and thermal
subsystems are the major power consumers. Therefore, our model targets the mechan-
ical and thermal subsystem under a typical mission scenario when the rover is moving

to the next location.

We give a high-level description of the rover’s operations. The rover drives about
7cm in distance in one single step of movement. During each step, it must first detect
any obstacles in the moving direction and choose a safe angle to move. Then the four
steering motors are started to turn to the right direction. Finally, the six wheel motors
are driven to perform one step of movement. Therefore, hazard detection - steering -
driving must operate in sequence. The other set of timing constraints comes from the
requirement to heat the motors before steering and driving. All four steering motors and
six wheel motors must be heated within a certain period prior to mechanical operations.
The timing constraints are summarized in Table 3.1. The power consumption of each
operation varies with environmental temperature. We assume that the temperature is
closely related to the sunlight density that can be measured by power output from the
solar panel. In order to examine how the power-aware scheduling techniques handle
different constraints, we investigate three cases of solar power output: best case is
14.9W at noon time; the typical case is 12W; and the worst case is at dusk. The
maximum supply power is limited by the threshold of battery power output, which

we assume to be 10W. Therefore, in all cases, the rover can be safely operated only

33

Power sources Duration Power (W)

Best case Typical case Worst case
& tasks (s) 040 | @60°C @80°C

Solar panel 14.9 12 9
Battery pack 10 max 10 max 10 max
CPU constant 25 3.1 3.7
Heating two motors 5 7.6 9.5 11.3
Driving 10 7.5 10.9 13.8
Steering 5 4.3 6.2 8.1
Hazard detection 10 5.1 6.1 7.3

Table 3.2: Power consumption of Mars rover’s operations.

if its instantaneous power consumption is less than available solar power plus 10W
maximum battery power output, which constitutes the max power constraint. We also
extract the solar power level as the min power constraint to distinguish such free power
from the costly power. Table 3.2 illustrates the power sources and consumers in three

cases.

The goal of a scheduler is to assign tasks to time slots such that all timing and
power constraints are satisfied. Without an automated tool, the existing solution by
JPL had to be hand-crafted. It serializes all operations to minimize power draw from
the non-rechargeable battery. The existing design is very low-power, but is also very

slow and can possibly incur additional energy cost in some bad cases.

By introducing power-aware scheduling, not only could we improve performance,
but also save non-rechargeable energy by better utilization of solar energy. This is
in contrast to the conventional trade-off between energy and performance, where im-
provement on one is done at the expense of each other. A power-aware approach can
win both at the same time. Section 3.6 provides a detailed analysis to a case study on

the Mars rover example.

34

3.4 Problem Formulation

Our problem formulation is based on an extension to a constraint graph used in a pre-
vious time-driven scheduling problem [18]. Section 3.4.1 reviews the base formula-
tion and our extension on parallel execution and slack properties. Section 3.4.2 de-
fines power characteristics of the scheduling problem including the power profile of
a schedule and new properties by applying the max and min power constraints. Sec-
tion 3.4.3 presents a new way of viewing the time/power scheduling problem as a two-

dimensional constraint problem by drawing analogies from the Gantt chart.

3.4.1 Constraint graph and properties

We formally define the concepts in our model as we construct the constraint graph
formulation for a scheduling problem. These concepts include tasks, timing constrains,

schedules and the slack properties of a schedule.

Definition 1 (Tasksu e T) GivenT as the set of all tasks and a set of execution re-
sourceR, a tasku € T is characterized by a set of functions= {r(u),d(u), p(u)},
wherer(u) € R is the execution resource onto which the task is mapgdéa) is its

execution delay, ang(u) is its power consumption.

To handle parallel execution resources that consume power, the funcfion- R
maps each task to a resource ReExamples of execution resources include not only
computing resources such as an embedded microprocessor, but also other consumers
of power, e.g. mechanical subsystems and heaters. We further assume that if two tasks
u andv are mapped to the same resound@) = r(v)), thenu andv must be serialized
in the final schedule to eliminate resource conflicts.

The execution of task takesd(u) time units. We also assume the availability of
the power consumption functiom,: T — R > 0, which returns the estimated power

consumption by all tasks. As a result, the energy consumption ofitessik(u) x p(u).

35

In practice, the power consumption can be either in the form of (min, typical, max), or
a function over time, rather than an exact value. Since our formulation can be extended

to handling these cases, we will assume a single value to simplify the discussion.

Definition 2 (Timing constraints) A timing constraint specifies the timing relation-

ship between two tasksv € T, in one of the two forms:

(1) A min timing constraint u— v: 8,0 > 0 indicates that must start at leasttime

units afteru starts, formallyt, —t, > .

(2) A maxtiming constraint k- v: d,0 > 0 indicates that must start at mositime

units afteru starts, formallyt, —t, < 0.

A min timing constrainu — v : & implies tasku precedey, sincet, —t, > &> 0;
while a max constraint < v : d does not imply any precedence relationship between
u andv. This min-max timing separation handles more general timing relationships
between tasks. For example, a taskith a deadling to finish its executiont(>> d(u))
is a special case of a max timing constramt-— u : T — d(u), wherea, theanchor, is a

virtual task that starts the schedule= 0.

Definition 3 (Scheduleo, Finish time 15) Given a task sef,

(1) A scheduleos assigns start timg, to every tasku € T. Without ambiguity, we
further overload they notation to map any task to its assigned start time ac-

cording tog, that is,a(u) =ty.

(2) Thefinish timeof a schedule is the time when all tasks ifi finish their execu-

tion. It is defined asq = max(o(u) +d(u)),Yue T.

We construct a constraint graph based on the tasks, their resource mapping and

the corresponding constraints among the tasks in a scheduling problem. A schedule

36

as the solution to the problem can be computed based on the constraint graph and its

properties.

Definition 4 (Constraint graph G(V,E)) Given atask sé€l, a resource s&to which

all tasks inT are mapped, and a timing constraintGapecifying the timing constraints

between tasks ifi, aconstraint graph GV, E) can be constructed as follows.

(1) The verticesV represent all tasks/ = {a} U{u|Vu € T}. Each vertexu eV
has three attributes(u),d(u), p(u) representing its resource mapping, execution
delay and power consumption of tagkespectivelyr (a) = nil,d(a) =0, p(a) =

0.

(2) The edge€ CV xV represent timing constraints between tasks. For two ver-
ticesu,v €V, an edg€u,v) with weightw(u, V) is denoted agu,v) : w(u,v). It

specifies a timing constraint between taskndv, such that, —t, > w(u,v).

(2.a) A min timing constrainu — v: 8,6 > 0 is represented by an edgev) : & with

non-negative weight > 0, called aorward edge

(2.b) A max timing constrainu < v: 5,0 > 0 is represented by an ed@eu) : —d

with negative weight-& < 0, called sbackward edge

An example of a constraint graph is shown in Fig. 3.1. Nine tasks named are
mapped into three resources,B andC. Each vertexu is denoted with a name and its

attributes in the form of (u) /d(u)/p(u).

Lemma 1 (Schedulability property) Given a scheduling problem with a task $eta

resource seR and a timing constraint s€tformulated as a constraint gra@V,E), a
schedules that satisfies all timing constraints can be computed asitheLl% SOURCE
LONGESTPATH lengths froma € V. A positive cycle in the graph indicates a conflict-

ing set of timing constraints that cannot be satisfied.

37

Figure 3.1: Constraint graph of a scheduling problem.

A schedule computed by Lemma 1 must satisfy all timing constraints. In addition,

a feasible schedule must not have any resource conflict, that is, tasks that share the

same resource must be serialized.

Definition 5 (Time-validity of a scheduld Given a scheduling problem with a task

setT, aresource sét and a timing constraint s&, a schedule is time-validif

(1) o satisfies all timing constraints @, and

(2) V tasksu,v € T such thatr(u) =r(v) € R, uandv must be serialized, that is,

eithera(u) +d(u) < o(v) or a(v) +d(v) < o(u) holds.

Lemma 1 indicates the way to use graph algorithms to solve scheduling problems
with timing constraint. The constraint graph can also be used to serialize tasks on
shared resources, as required by Definition 5 to obtain a time-valid schedule. Se-
rialization can be performed by adding extra edges to constraint geapRor ex-
ample, to serialize task after u, an edge(u,v) : d(u) can be added t6, such that

o(u) +d(u) < a(v) is guaranteed.

38

Given a time-valid schedule, there are alternative choices for start time assign-
mento(u) to a tasku. We extract these available time slots as slacks of tasks. Slack is

a measure of how much a task can be delayed without invalidating the schedule.

Definition 6 (Constraint slack AS) Given a time-valid schedule computed from a

constraint grapis(V, E),

(1) ¥ edge(u,v) : d € E, theedge slaclof edge(u, V) is defined ad§ (u,v) = a(v) —
o(u) —o.

(2) Forany taskirepresented by a vertexc V, theconstraint slaclof u is the mini-
mum among all edge slacks@$ outgoing edges, that iAS(u) = min(AS(u,v)),

Vv vertexv such thaiu,v) € E.
(3) If udoes not have any outgoing edga$(u) = 15 — o(u) — d(u).

Lemma 2 If a scheduleo is time-valid, then a modified schedu#é does not violate
any timing constraints if it is identical to, except that the start time of tasks delayed
until another timeo’(u) within its constraint slaclA$(u), that is 0< o’(u) — o(u) <

AS(u), for a specific taski.

The constraint slack of a taskdefines the maximum time unit by which it can be
delayed without violating any timing constraint. It is calculated by the outgoing edges
fromu. If there is no outgoing edges can be delayed all the way until it completes at
the finish time of the schedule. Such a delay will maintain the satisfaction of all timing

constraints, but it may introduce new resource conflicts.
Definition 7 (Resource slackh;) Given a time-valid schedule computed from a
constraint graplis(V, E), for any tasku represented by a vertexc V,

(1) If 3 a taskv that is mapped to resoureéu) andv is scheduled aften, task
u's resource slacks defined af\j;(u) = min(a(v)) — a(u) — d(u), Vv such that

r(v) =r(u) ando(v) > o(u).

39

(2) If suchvdoes not existj;(u) = T — o(u) —d(u).

Lemma 3 If a schedulas is time-valid, then a modified scheduiédoes not have any
resource conflicts if it is identical i, except that the start time of tasks delayed until
another timeo’ (u) within its resource slacR(u), that is 0< o’(u) — a(u) < AG(u),

for a specific taski.

The resource slack of a taskrepresents the vacant time slots betwasncom-
pletion and the start of the next task on resourg. If uis the last task scheduled
onr(u), then it can be delayed all the way until it completes at the finish time of the
schedule. The new schedule remains time-valid if the delayawoes not exceed both

its constraint slack and resource slack.

Definition 8 (SlackAy) Given a time-valid schedule computed from a constraint
graphG(V, E), for any tasku represented by a vertexe V, its slackis defined as the

minimum of its constraint slack and its resource slagu) = min(AS(u), AL (u)).

Lemma 4 (Slack-bounded time-validity) If a schedules is time-valid, then a modi-

fied schedul@’ is also time-valid if it is identical ta, except that the start time of task
uis delayed until another timg (u) within its slackAg(u), that is 0< ¢’(u) — o(u) <

Ag(u), for a specific taski.

Given a time-valid schedule, Lemma 4 allows some tasks to be delayed while yield-
ing new schedules that are also time-valid. The slack properties of tasks form the basis

of our power-aware scheduling algorithms for power/performance trade-offs.

3.4.2 Power characteristics of a schedule

We extend the power properties to schedules based on the constraint graph formulation.

A schedule has a power profile representing the power consumption of task execution.

40

We introduce max and min power constraints and extract some new properties by ap-

plying power constraints to a schedule.

Definition 9 (Power profile Py, Total energy Eg) Given a time-valid schedule,

(1) The power profileof o is defined as a function of time. At any given tirhe
its value is the total power consumption of all tasks that are being executed at

That is,Ps(t) = 5 p(u), V tasku € T such thao(u) <t < o(u)+d(u).

(2) Thetotal energyof o is the integral of its power profile over time, that i&; =

S Po(t)dt

Definition 10 (Max and min power constraints Pnaxand Pmyin) The power profild>;

is constrained by two parametePsax Pmin € R, Pmax=> Pmin > 0.

(1) The max power constraint f2x specifies the maximum level of supply power

that can be provided to support task execution.

(2) Themin power constraint |}, specifies the level of power consumption to main-

tain a preferred magnitude of activity.

We treat the max power constraint as a hard constraint. At any given moment, the
total power consumption by all running tasks must not exd@gg. The min power
constraint is a soft constraint. The scheduler should make the best effort to meet the
min power goal, in order to fully utilize free power such as solar, as well as to control

the amount of jitter in power profile.

Definition 11 (Power spike, power gap)Given a schedules with its power profile

Ps(t), and power constrain®@max andPmin,

(1) At any given timet;, if the power profileP;(t1) exceeds max power constraint,

that is,Ps(t1) > Pmax then the power profile at tintd. is called gpower spike

41

(2) At any given timety, if the power profilePs(t2) is below min power level, that

is, Ps(t2) < Pmin, then the power profile at time is called gpower gap

Power spikes and power gaps are the times slots where the power constraints are
violated. Since only the max power constraint is treated as a hard constraint, a schedule
with any power spikes must not be considered as a valid one. However, power gaps

will not invalidate a schedule. Accordingly, a valid schedule is defined as follows.

Definition 12 (Power-validity of a schedul@ Given atime-valid schedulecomputed

from a constraint graps with the task seT, constraint se€, and resource s&, for

a max power constraifnay, schedules is power-validif,
(1) oistime-valid by Definition 5, and

(2) Its power profile does not exceed max power constraint, thBg{5) < Pmax for

0<t<1g.

Definition 12 incorporates the power usage of a schedule as a constraint in addition
to the existing constraints on the time dimension. Only max power constraint is used
to qualify the validity of a schedule. (In the ensuing text, if not explicitly specified, a
“valid” schedule means it is power-valid, which implies its time-validity.) Min power
usage, which refers to the utilization to free power sources, is not enforced. Such
separation distinguishes different power sources as expensive power and free power.
It forms some new perspectives on power/performance trade-offs in a power-aware

system, as described in the following definitions.

Definition 13 (Power costPcs(Pmin), Energy costE c;(Pmin)) Given atime-valid sched-

ule o with a min power constrair®,, reprsenting free power level,

(1) The power costof o is the power usage above the min power IdRgh. It is

42

defined as a function of time arihin,

Ps(t) — Pmin WhenPg(t) > Py
Pcs(Pmin,t) = o{t) = Finin ot ™ for 0<t<14

(2) Theenergy cosis the integral of the power cost function,

ECU(Pmin) = f(}c PC()'(Pmm,t)dt

Definition 14 (Min power utilization pg(Pmin)) Given a time-valid schedule with a

min power constrain®nyi, > 0 reprenting free power level, itain power utilizations

defined as the ratio of its energy drawn from free power source over the total available

Eg—ECy(Pmin)
Pminxtg *

free energypo(Pmin) =

We do not limit the power and energy costs and min power utilization in Def-
initions 13 and 14 to only a power-valid schedule, since these properties are also
meaningful to schedules that are not power-valid. They further highlight the differ-
ence between costly power and free power. Any power consumption below the min
power level does not contribute to the energy consumption from non-renewable en-
ergy sources. In fact, the free power should be utilized greedily to preserve the costly
power. This new perspective subsumes the conventional power or energy minimization
techniques as a special case, whagg = 0. A power-aware design should explore
different trade-offs betweeperformance vs. costly powerhile making the best ef-
fort to fully utilize the free energy for performance speedup. This forms the basis of

our power-aware scheduling techniques presented in Section 3.5.

3.4.3 Power-aware Gantt chart

There exist various visual representations for real-time scheduling problems, e.g. Gantt
chart. However, very few of them have the capability to express power properties of

a schedule, regardless of any power constraints. We introduqeoater-aware Gantt

43

chartas a new visual representation for power-aware scheduling problems. It presents
a schedule in two different viewsime viewand power view Each view is a two
dimensional diagram whose horizontal axis represents time and vertical axis represents
power. In the time view, tasks are displayed as bins placed on several rows that denote
parallel execution resources. The power view shows the power profile of the schedule

with min and max power constraints and some corresponding power properties.

In the time view for a schedule computed from a constraint gra@with task set
T and resource s&, the execution of a taske T is represented by a horizontal bin
beginning with its start times(u) and whose length corresponds to its duratign).
We scale the vertical size of the bin to denote power consumpfion As a result, the
area of the bin indicates its energy expenditure. Each execution reggurde takes
one row denoted bR;. All tasks that are mapped on this resource, thatuss T such
thatr(u) = R, are displayed in rovR; in timing order. The empty time slots between
adjacent bins represent the resource slacks. Timing constraints, and slacks in the time
dimension, though normally not shown, can also be intuitively visualized by selectively

attaching annotation on the bins.

By collapsing all bins in the time view to the lowest horizontal axis, the expected
power profilePs(t) can be shown in the power view of the power-aware Gantt chart. It
also illustrates the composition of the power profile from every power consumer’s con-
tribution at each time. With annotation of max and min power level, power spikes and
power gaps can be directly observed; the power/energy cost vs. free power usage are
clearly separated; and power properties such as power/energl cg$min, t), E ¢ (Pmin)
and min power utilizatiorps(Pmin) can be visualized with the corresponding annota-

tions.

Fig. 3.2 shows the power-aware Gantt chart of a time-valid schedule to the example
problem in Fig. 3.1. In addition to a graphical representation to schedules, the power-

aware Gantt chart also serves as the underlying model for a power-aware design tool

44

—— d
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time
Power

25.00 E_total: 156.00

E_cost: 48.00

: g

10.00 S L
500 ‘ ; . Util: 72.00%
0.00 = d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time

Figure 3.2: Power-aware Gantt chart of a time-valid schedule.

that allows the designers to evaluate different power/performance trade-offs visually.
The designers can manually intervene with the automated scheduling process by drag-
ging and locking the bins to alternative time slots in the time view, while observing the

results in the power view interactively.

3.5 Algorithm

Based on the constraint graph formulation, we develop graph algorithms for power-
aware scheduling. Given a scheduling problem, the goal of the power-aware scheduler
is to find a valid schedule with following properties. (1P must be time-valid, that is,
it satisfies all timing constraints and can arrange all tasks to corresponding execution
resources without any resource conflicts. g@2pust satisfy the max power constraint,
that is, no power spikes can be found in the schedule. By qualifying (1) and (2) the
schedule is a valid one that meets all hard constraintso ()uld have power gaps
according to the min power constraint, but the scheduler should make its best efforts
to remove power gaps, by reducing power/energy cost or improving min power utiliza-
tion.

Power-aware scheduling is a multi-constraint solving problem. Our approach is to

first examine different constraints in our model defined in Section 3.4. We find that

45

the constraints on timing and resource sharing are the most critical ones that must be
considered first as necessary conditions. Next, we consider max power constraints after
after a time-valid schedule is found. The scheduler must eliminate all power spikes
while keeping the schedule time-valid to generate a valid schedule. Finally, the min
power constraint can be applied after a valid schedule is given. The analysis suggests
an incremental approach by solving one type of constraint at a time in the following

three steps.

First, based on the constraint graph of the problem, we try to find a schedule that
is time-valid. Power constraints and power consumption of tasks are not considered
in this step. The algorithm is presented in Section 3.5.1. It extends previous work
on a time-driven serial scheduling for a single execution resource to handling parallel

execution on multiple resources.

Second, after a time-valid schedule is computed from the first step, the max power
constraint is applied to constrain its power profile. Section 3.5.2 explains the algorithm
to remove power spikes by using heuristics based on slack properties of the schedule.
Tasks that contribute to a power spike are partially reordered by a slack-based order-
ing function. To avoid exhaustive search in the solution space, we apply heuristics to

examine more reasonable solutions first.

Finally, given a valid schedule provided by the previous step, we apply the min
power constraint and reorder tasks within their slacks to reduce power gaps and im-
prove the min power utilization. The algorithm is illustrated in Section 3.5.3. It does
not guarantee full utilization of the min power level. Also, the final schedule should
not have a longer finish time with a loss of performance, since min power is a soft

constraint that is not critical to the applicability of the schedule.

46

3.5.1 Algorithm for timing scheduling

The time-constrained scheduling algorithm is shown in Fig. 3.3. It is a extension to
a previous serialization algorithm [18]5 is the constraint graph for the scheduling
problem.anchoris the source vertex that is used iINSLE SOURCEL ONGESTPATH
algorithm. It represents a virtual task that starts at timei.called the candidate ver-

tex that is being visited at each step as the algorithm traverses Gramtologically.

The start time of candidateis assigned as the distance from techorto c in the
longest path. The next candidatés selected front's successors. Tasks that share
the same resources are serialized by adding edges between vertices. If these additional
edges for serialization produce any positive loops in the graph, they are then removed
by the algorithm and another topological ordering is attempted. The first invocation
to the algorithm starts froranchoras the first candidate. Then the algorithm is recur-
sively invoked at each step when a new candidate is selected. A time-valid schedule is
returned when all vertices are scheduled.

This algorithm can be proved to always find a time-valid schedule if one exists,
since it will traverse all possible topological orderings of the graph before it terminates
with a failure.

Based on the problem shown in Fig. 3.1, its time-valid schedule is illustrated in
Fig. 3.2 in the form of a power-aware Gantt chart. There are one power spike and

several power gaps left for the remaining steps of our power-aware scheduler.

3.5.2 Algorithm for max power scheduling

The approach to meeting max power constraint is to eliminate the power spikes of a
time-valid schedule computed by the previous step. The algorithm is shown in Fig. 3.4.
It has three parameters: gra@hvertexanchor, and max power constraiftyax. The
timing scheduler is always called first to obtain a time-valid schedule. The algorithm

examines the power profile; of the returned scheduteto find the first power spike

47

TimingScheduler(Grap, vertexanchor, vertexc)
La:= SINGLE SOURCELONGESTPATH(G,ancho)
if (positive cycle foundjhen

return FAIL
C .= set of topological successors of candidate
if (C=0) then
return o with o(c) :=La
while (C # 0) do
Vv := one topological successor Gf
C:=C—{v}
B: foreachu e Cdo
if u¢ V's successors
then addu to v's successors
if (r(c)=r(u))then
serializeu afterc
w := the most recently scheduled task, such that)(= r(v))
if (w# nil) then
serializev afterw
o = TimingScheduleKg, anchorv)
if (o # FAIL) then
return o with a(c) :=La
undo added edges ®since step B
return FAIL

Figure 3.3: Algorithm for timing scheduling.

48

MaxPowerScheduler(Graph, vertexanchor, Pyay)
o := TimingSchedulefg, anchor, anchor
if (0 =FAIL) then
return FAIL
for 1 :=0;t<1g;t:=t+1)do
S:=set of all active tasks &t ordered by slacR,
power:= Py(t)
reschedule= FALSE
while (power> Pyax0r reschedules TRUE) do
B: repeat
V = EXTRACT MAX(S)
if (reschedule= FALSE and Ag(v) = 0) then
reorder tasks i by constraint slaclag
reschedule= TRUE
delayv by some time units (heuristically determined)
power:= power— p(V)
S:=S—{v}
until (power< Ppnaxor S=0)
if (S=0) then
return FAIL
if (reschedule= TRUE)then
lock start time of all tasks i%
0 := MaxPowerSchedule®, anchor Pyay)
if (o # FAIL) then
return o
undo added edges @ since step B
return o

Figure 3.4: Algorithm for max power scheduling.

at timet. To eliminate the spike, several simultaneous taskse delayed so that the
height of the power curve is less thBaax The algorithm itself is called recursively
after the spike atis eliminated by delaying tasks. A valid schedalés found if there

is no power spike imw; and the time-validity ob is always guaranteed. If no solution

can be found after the recursive call, a failure notice is returned suggesting that either
additional tasks atneed to be delayed, or one or more tasks already delayed have been

incorrectly chosen.

The key issues in this algorithm are properly selecting and delaying tasks for spike

49

elimination. We do not attempt exhaustive enumeration to all possible partial orders
of tasks which would take exponential orders of total number of tasks. Therefore,
some heuristics must be applied. The badly chosen tasks could have several impacts.
First, the total execution time; may be extended unnecessarily, leading to a loss of
performance. Second, the algorithm may evaluate some invalid schedules repeatedly
before approaching a valid one, so that the scheduler requires extra computation time

needlessly. Finally, the algorithm may fail to find a valid schedule even if one exists.

We propose slack-based heuristics for selecting and delaying tasks. First, a slack-
based heuristic function is used to order simultaneous tasks. When a power spike
is detected at time, the algorithm orders tasks that are activa &y their slacks
As(Definition 8), and then selects tasks to delay based on the following conditions. (1)
If there are tasks with non-zero slacks, the task with the largest slack is always selected
first. The algorithm continues selecting tasks to delay until the power sptkis a¢-
moved. (2) If no tasks with non-zero slack is available while the power spikis atill
present, the remaining tasks are reordered by their constraint dg(Refinition 6).

Tasks with larger constraint slacks will be delayed. (3) If the power spike cannot be
removed until all the remaining tasks have zero constraint slack, tasks are randomly

selected to be delayed.

After a task is selected to be delayed, the second question is by how long it should
be delayed, which is referred to as tthelay distance To delay a taski based on an
existing schedule, we add an edge froranchorto u, with positive weight’ as the
lower bound on its new start time. Therefore, the delay distante-is(u). Clearly,
making a small delay distance is not efficient. On the other hand, we do not expect the
delay distance to be too large such that the finish time of the schedule may be unnec-
essarily increased. We currently heuristically set the upper bound of the delay distance
to the execution time of the task. In addition, in case (1) where the selected task

some slack, the delay distance is further bounded by its #lagk). According to the

50

slack-bounded time-validity (Lemma 4), if the delay distance isfless than its slack,

the new schedule is still time-valid. Therefore, in case (1), we put this extra bound
to reduce the effort for rescheduling for time-validity. The algorithm can still proceed
with a time-valid schedule. While in cases (2) and (3), since the new schedule after
the delay is no longer time-valid, the timing scheduler must be invoked to make the
schedule time-valid again by asserting the Boolean variasdehedule In case (2),

the selected taslt has some constraint slack but no resource slack, the delay distance
is further bounded by its constraint slaik(u), so that all timing constraints are pre-
served thus the scheduler only needs to eliminate the resource conflict caused by the
delay. All of these constraints can actually serve the purpose of pruning out the search
space tremendously. Finally, in case (3), which eliminates a power spike at the cost of
introducing new timing violations, some significant timing adjustment to the schedule

is expected.

After enough tasks are delayed and the power spikdiaappears, we lock the start
time of the remaining tasks. The start time of a tas& locked by adding two edges to
graphG, a forward edgéanchoru) : o(u) , and a backward edde, anchor : —a(u).

As a result, taski is forced to start at time(u) by the SNGLE SOURCE LONGEST

PATH algorithm. These locks are especially meaningful to case (3). When the scheduler
delays a task to eliminate a power spike at tintgit is desirable to keep all tasks that

are scheduled befoteintact. While in case (3), if the delayed tagkas an outgoing
backward edgéu, v) such that task is scheduled beforg the delay tau will force v

to be also delayed. In fact, an attempt to remove a power spike starting at liyne
delaying a taski may cause a new power spike beforeéSuch a result will certainly
complicate the scheduler. The algorithm could spend much more time dealing with the
unexpected spikes before it converges to a valid schedule. By locking the tasks that do
not form a power spike dt no further delays can be applied to these tasks. However,

if delays to these tasks are necessary for a valid schedule, the algorithm will fail in its

51

13 14 1E {hifes6.00

)
N
4
S > w o

E_cost: 44.00

N

OIPOOSIRE0
8833883833

Util: 74.67%

d
13 14 15 Time

Figure 3.5: A valid schedule after max power scheduling.

next recursions and these locks will be undone. Then the algorithm will choose one
task from them to make further delay and continue recursion.

It is notable that in some extreme cases, the max power constraint scheduler may
not be able to find a valid schedule even though one exists . The reason is that the al-
gorithm does not enumerate all possible combinations in partially ordered tasks. How-
ever, in practice, our heuristics perform very well in finding a valid solution without
sacrificing performance. Our slack-based heuristics tend to examine more reasonable
schedules first. Also, the heuristic to lock the tasks before the recursion can help reduce
the computation of the scheduler.

The schedule shown in Fig. 3.2 does not satisfy the max power constraint. Fig. 3.5
show the valid schedule after applying the max power scheduler. Teakd f are

delayed to remove the power spike.

3.5.3 Algorithm for min power scheduling

The goal of the min power constraint scheduler is to reduce the energy cost by im-
proving min power utilization for a given valid schedule. The algorithm is shown in
Fig. 3.6. Four parameters are passed to the algorithm: geaphrtexanchor, power
constraint®ax andPyin. A valid schedule is obtained from the power-valid sched-

uler at the beginning of the algorithm. & already has full min power utilization,

52

MinPowerScheduler(Grap8, vertexanchor, Pmax, Pmin)
0 := MaxPowerSchedule®; anchor Pyay)
if (o0 = FAIL) then
return FAIL
if (Po(Pmin) = 1) then
return
improvement= TRUE
while (improvement TRUE)do
improvement= FALSE
for (t in a heuristic order of range (0g)) do
if (Ps(t) < Pmin) then
S:= set of tasks that start befare
foreachu € Ssuch thatAg(u) >t —o(u) —d(u) do
d.=0
B: delayu some time units such thatis active at
if (o is validand pg(Pmin) > Po’ (Pmin)) then
improvement= TRUE
if (Po(Pmin) = 1) then
return
else
undo added edges ®in step B
o:=0
return o

Figure 3.6: Algorithm for min power scheduling.

53

then no further improvement is necessary, and the algorithm completes. Otherwise, it
tries to find a power gap at timeto and delay some tasks scheduled befate fill

this power gap. These tasks must have enough slacks to be delayedsuctil that

the new schedule is time-valid. The algorithm also checks whether the new schedule
has any power spikes, and whether its min power utilization is better than the existing
schedule. If so, itis a better schedule and the algorithm continues searching for further

improvement. Otherwise, the delay is cancelled and the previous schedule is restored.

In order to find an “optimal” schedule whose energy cost is the minimized, the algo-
rithm should examine all valid partial orderings of tasks, which will increase the com-
plexity of computation to an exponential order of tasks. Therefore, we apply heuristics
based on following observations. First, the scheduler may need to scan the schedule
multiple times. This is because delaying tasks to fill a power gap atttimey create
new power gaps before Also, since delaying one taskwill change the slacks of
other tasks that are constrained lpythere may be new opportunities for reordering
those tasks that are not eligible for delay previously. As a result, either new power gaps
or new tasks to fill other power gaps can be found after the algorithm scans the sched-
ule again. Moreover, the order in which to visit the power gaps will lead to different
final schedules because different partial reorderings of tasks are applied. This suggests
that better schedules could be found if we scan the schedule in various orders in time
dimension, e.g. incremental order, reverse order, or random order. Finally, when a task
u is selected to fill a power gap stwe consider alternative time slots to reschedule
u, rather than just starting att. It is difficult to determine the “best” time slot for
reschedulingu since it alters not only the power profile but also the slacks of some
other tasks. We also address this issue by heuristics. Some available heuristics are:
startingu att, finishingu at the end of the power gap starting frapor a randomly
chosen time slot. In practice, we can scan the schedule multiple times while altering

some of the heuristics during each scan and take the best results.

54

) o [
B
e f g
A
®
T — d
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1F thig¥Es6.00
Power -
20.00
12.
%4:) E_cost: 21.00
12.00 i
1000 h 9 [)
8.00 i)
288 S f c Util: 90.00%
2.00 e h 5 d
0004 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time

Figure 3.7: The improved schedule after min power scheduling.

The Boolean variablémprovementefers to whether the scheduler finds a better
schedule during one scan to the existing schedule. If no further delay can improve the
schedule, the algorithm terminates successfully. Each scan (except the last one) will
improve the schedule by delivering the same performance with a reduced energy cost.
Since min power constraint is a soft constraint, the schedule tolerates the existence of

power gaps after it makes the best efforts to remove them.

In this algorithm, tasks are delayed within their slacks during schedule improve-
ment. This guarantees that the delays always result in time-valid schedules. The al-
gorithm also never introduces delays that either create power spikes or incur a higher
energy cost. Therefore, no additional rescheduling will be necessary after delaying
these tasks. Furthermore, the min power scheduler can possibly reduce the height of
the power profile. This indicates the same schedule can be applied to different power

constraints without any extra effort to reschedule the problem.

Fig. 3.7 shows a better schedule that improves on the valid schedule in Fig. 3.5.
Energy cost is reduced while the height of the power profile curve is also reduced. In
fact, the same schedule can be directly applied to all cases with a range of constraints
where 15< Ppax < 20,2 < Pnin < 15, without recomputing a schedule for each case.
This feature makes our statically computed power-aware schedules directly adaptable

to a run-time scheduler that schedules tasks according to the dynamically changing

55

Step 1: Hazard!

detection |
.".,vFA?ﬁFf,'?f}Q..,f . Heat steer :
S 1&2 H
2 T P R—
Heat .
wheel . ST S USRS
> 182 § Step 1: Steer
HW12/5 - e 5 .STEER/5
~
50 TN
Heat E N A 4
wheel s »> Step 1: Drive
______ pi 384 DRIVE /10 \\
. Hwaa/s -50 - A Dy
10 Heat steer :
384
i ¥ H HS34/5
iStep 2: Hazard! g
Heat : detection ”
wheel LHAZARDILO P
HWS56 /5 T
A S A e 5
Step 2: Steer
(STEER/S BH
5
5 w A
» Step 2: Drive
i) DRIVE / 10
5 4

-50

Figure 3.8: Constraint graph of the Mars rover.

constraints imposed by the environment.

3.6 Experimental Results

This section presents scheduling results for the Mars rover operations and a case study
for evaluating our power-aware scheduling algorithms in a mission scenario.

The constraint graph for the Mars rover is shown in Fig. 3.8. Since the power
consumption varies in three different cases, the power attributes of tasks are not shown
in the graph. To simplify the problem, we assume all heaters are independent resources
and one heater can heat two motors at a time. Therefore there are a total of five thermal
heaters. Four steering motors are considered a single steering mechanical resource.
The six wheel motors are modeled as one mechanical unit for driving. There is also a

laser guided digital component for hazard detection.

Fig. 3.9, 3.10 and 3.11 show the results for three cases after applying power-aware

56

Power E_total: 610.00

25.00 Pmax: 24.90
E_cost: 79.00
Pmin: 14.90
Util: 71.28%

s2
cPu
000 g 5 0 15 20 £3 30 E3 7 I3 50 Time
Figure 3.9: Schedule for the best case.

P E_total: 825.50
22.00 Pmax: 22.00
20.00
18.00

E_cost: 147.00
16.00 s -
1400 | Hs34 | Hsl2
12.00 Pmin: 12.00
10.00 Util: 94.24%
8.00 Hw34 HwW56
6.00 Hd1 Hd2 2
400
200 cPU
000 g 5 T 15 20 25 30 3 40 4 5 5 60 Time

Figure 3.10: Schedule for the typical case.

scheduling algorithms. Fig. 3.9 gives first two iterations of the loop in the best case.
To utilize the available free energy, we manually unroll the loop and insert two heating
tasks to improve loop efficiency through better solar energy utilization. Therefore the
second iteration can be repeated without too much energy cost. In other cases only one
iteration is shown since loop unrolling is not necessary. In the best case, because the
power budget is sufficient, a fast schedule is given by allowing operations to overlap.
In the typical case, parallel operations are still possible while some heating tasks are
serialized. In the worst case, a tight power budget forces all operations to be serialized,
leading to a slow schedule.

The existing schedule used in the past mission was designed to be low-power. To
avoid exceeding max power supply, JPL uses a serialized schedule that is fixed in all
situations, regardless of available solar power and power consumption in different con-

ditions. The existing schedule is identical to our power-aware schedule computed with

57

E_total: 1063.00

Pmax: 19.00

E_cost: 388.00

Hs34 | Hs12 | Hw34

[Pmin: 9.00

Hdl Util: 100.00%

400 _—

2.00 CPU

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 Time

Figure 3.11: Schedule for the worst case.

Solar power (W) Battery energy (J) Solar energy (J) % of solar energy Time (S) Moving distance

149 0 6725 60% 75 2 steps - 14cm
12 55 817 91% 75 2 steps - 14cm
9 388 675 100% 75 2 steps - 14cm

Table 3.3: Performance of the rover under existing schedule.

the lowest min and max power constraints. The fundamental difference is that, our
schedule is completely constraint-driven; whereas the existing solution is hardwired
and does not track the power availability. The performance and energy cost of our

schedules and the existing schedule are compared in Table 3.3 and Table 3.4.

We use finish timas and energy cosE ¢;(Pmin) to the non-rechargeable battery
as the metrics. The existing scheme only schedules for the worst case; while in other
cases, solar energy is under-utilized and opportunities to performance improvement are
overlooked. However, JPL's low-power schedule appears “economic” since its energy
cost is low. Our schedules, on the other hand, speeds up the rover's movement by up
to 50% in the best case and 25% in the typical case, while drawing more costly energy

from the battery. To evaluate this trade-off, we apply our schedules and the existing

Solar power (W) Battery energy (J) Solar energy (J) % of solar energy Time (s) Moving distance

149 795/6 534 70% 50 2 steps - 14cm
12 147 679 94% 60 2 steps - 14cm
9 388 675 100% 75 2 steps - 14cm

Table 3.4: Performance of the rover under power-aware schedules.

58

Time frame Solar power JPL Power-aware

Travel Time Energy Travel Time Energy
(s) (W) distance (s) cost (J) distance (s) cost (J)
0-599 14.9 16 600 0 24 600 1455
600-1199 12 16 600 440 20 600 1470
1200 - 9 16 600 3114 4 160 776
Total 48 1800 3554 48 1360 23915
Improve

24.4% 32.7%
ment

Table 3.5: Comparison of existing schedule to power-aware schedules under a mission
scenario.

schedule to a mission scenario when the available solar power varies over time, and
then evaluate the performance vs. energy cost in this bigger picture.

Suppose the mission is to travel to the next target location, which is 48 steps away
from the current location. The mission starts around noon when maximum solar power
is present. While the mission is in progress, the power output from the solar panel drops
from 14.9W to 12W after 10 minutes, then falls to the worst case at 9W 10 minutes
later. If the existing schedule is applied, the rover will spend 10 minutes evenly in
the best case, typical case, and worst case since it has a fixed moving speed (16 steps
per 10 minutes). This results in a long execution time (30 minutes) and considerable
energy cost in the worst case. When our schedules are used, the rover finishes 50%
of its work (24 steps) in the first 10 minutes, 42% of work (20 steps) in the next 10
minutes, leaving the remaining 8% (4 steps) in the worst case for less than 3 minutes.
Since our schedules accelerate execution at the best and typical cases, the rover can
finish the mission earlier before having to work in the costly worst case. The results of
this case study are shown in Table 3.5. The analysis shows our schedules win both on
performance and energy savings considerably.

Fig. 3.12 highlights the property of the power-aware scheduler in a geometrical
view. The top chart illustrates how the power-aware scheduler adjusts the execution
speed adaptively with available power budget, while the existing scheme ignores the
power constraint and always operates at the lowest speed. The workload is represented

by the integral of the speed curve over time. Therefore our curve reaches the given

59

Execution speed scales with power source

in power-aware scheduling Solar
Solar power / 16

Relative speed power
14

121 = = Speed

(JPL)
10

8 7 Speed

I (Power-

6 — — — aware)

10 20 30 Time

Reduced energy cost in power-aware scheduling

Solar power /
16

Power draw Solar
from battery \ power
12 e —
\,_ = = Battery

8 power -

(JPL)
F e —— _I
4
4] Battery
’ 1 power -
, (Power-
o= "=]) aware)
10 20 N
Time

Figure 3.12: Adaptive speedup in power-aware scheduling.

workload earlier because of higher execution speed before operating in the worst case.
The bottom chart shows the power cost from battery over time and how it alters as
power constraint varies. The energy expenditure is symbolized by the integral of power
curve over time. When the mission is completed, both the speed curve and power curve
also end. Although our power curve is higher in most time during the mission, by com-
pleting earlier we avoid further energy cost from integrating a high power curve with a
longer execution time. Therefore, given the same workload, the power-aware scheduler

is capable of achieving performance speedup less energy cost simultaneously.

60

3.7 Chapter Summary

Power-aware design becomes a more important issue in mission-critical systems that
require best use of available power sources and deliver high performance at the same
time. We target the scheduling algorithms to embedded systems with variable power
constraints and various types of power consumers, as well as different energy sources
that are classified as costly power vs. free power. In these systems, power-aware tech-
niques have potentials for both performance improvement and energy savings.

In this chapter, we present a constraint-driven model that incorporates power and
timing constraints in a system-level context. We propose three core algorithms that
decompose the power-aware scheduling problems into steps. Via this incremental ap-
proach, we distinguish the properties of each sub-problem and apply heuristics to solve
the constraints by different methods. The case study to a real application demonstrates
that our power-aware method is capable of improving performance while saving ex-
pensive energy.

Several interesting issues in this dimension need further attention. To expand the
applicability of our algorithms, more effective heuristics need to be discovered. We
would also like to incorporate more novel power management techniques including
voltage/frequency scaling into this tool to support more effective power-aware de-

signs.

61

Chapter 4

Power Aware Task Motion

New embedded systems are being built with new types of energy sources, including
solar panels and energy scavenging devices, in order to maximize their utility when
battery and A/C power are unavailable. The large dynamic range of these unsteady
energy sources is giving rise to a new clasp@fier-awaresystems. They are similar to
low-powersystems when energy is scarce; but when energy is abundant, they must be
able to deliver high performance and fully exploit the available power. To achieve the
wide dynamic range of power/performance trade-offs, we propose dasévmotion
technique, which tunes the system-level parallelism to the power/timing constraints
as an effective way to optimize power utility. Results on real-life examples show an
energy reduction of 24% with a 49% speedup over best previous results on the entire

system.

4.1 Introduction

Recent years have seen the emergengmuofer-awareembedded systems. They are
characterized by not only low power consumption, but more generally by their ability

to support a wide range of power/performance trade-offs. That is, these systems can

62

be viewed as providing “knobs” that can be turned one direction to reduce power con-
sumption, or the other direction to increase performance. The ability to adapt the range
of power/performance trade-offs is driven by new applications that demand very high

performance while under stringent timing and power constraints.

One example that fits this description is the Mars rover by NASA/JPL [4]. It was
designed to roam on Mars to take digital photographs and perform scientific experi-
ments over several hundred days. Its energy sources consist of a battery pack and a
solar panel, and future versions are expected to incorporate nuclear generators, thermal
batteries, and energy scavenging devices. Besides the Mars rover, many new emerging
embedded systems are also following this trend towards new types of heterogeneous,
renewable energy sources. Future personal digital assistants (PDAs) will likely include
solar panels as found in many calculators today. Yet another example is the distributed
sensors. They are being built today to draw energy from solar power, wind power,
or even ocean waves. They represent a great improvement because they enable the
system’s continued operation for useful or critical tasks when the traditional energy

sources like battery and A/C become unavailable.

These new types of energy sources are posing new challenges to designers of
power-aware systems. What they all have in common is that many of these new energy
sources are far from being ideal power supplies. For example, the output of a portable
solar panel today can be up to 15W under direct sunlight, or down to 1mW under in-
candescent light. Similarly, other sources will be determined by the wind or ocean
wave, which can also cause the available power to vary by several orders of magnitude.
Embedded systems powered by such sources must be designed to operate in as wide
a range as possible. Indeed, new emerging components such as the Intel XScale are
able to scale their power/performance ovex2@nd this dynamic range will likely to

increase.

While low power operation is clearly important, the ability to fully exploit the avail-

63

able power when energy is abundant is equally important. However, today’s systems
let much free energy go to waste, because they are designed for fixed budgets. For
example, a system with an XScale draws approximately 1W of power, but when the
solar panel outputs 15W in direct sunlight, up to 1400% of the power will be wasted.
Even if there is a rechargeable battery, when it becomes fully charged, the extra power
turns into waste heat. This is also the case with the Mars rover, which accomplishes its
low-power property by serializing all tasks, including mechanical and heating as well

as computation. However, it also discards excess power as waste heat.

One way to take advantage of the excess power is to increase parallelism. In fact,
parallelism is in general an effective way for both high performance and low power. By
operating additional processors at their peak rate, they will be able to take advantage
of the abundant energy. Parallelism can also enable a set of processors to operate at a
lower power level than a single processor with the same performance. Although it is
difficult to parallelize algorithms in general, systems with many concurrent activities

present many opportunities for parallelism-based trade-offs.

Peak-power poses new challenges to such a power-aware architecture with multiple
processors. Today’'s systems satisfy the peak-power constraint by construction, that is,
each component is given a budget that is guaranteed never to be exceeded according
to their data sheet. However, by using multiple processors to fully utilize the available
power when abundant, a multiple processor architecture would risk exceeding the total
budget when the supply power is low, if it is not designed carefully. Therefore, it is
of utmost importance that the proposed scheme be able to fully respect the maximum

power as a hard constraint.

In this chapter, we propose to enhance the dynamic range of these embedded sys-
tems by means dhsk motiorand power-aware scheduling. It transforms tasks within
their timing constraints and their precedence dependency in order to match the par-

allelism to the available power level. Furthermore, we exploit domain-specific knowl-

64

edge about the power-consuming tasks to achieve additional significant power/performance
improvements over existing schedulers. The enhanced dynamic range and power-
awareness enable the system to accomplish more tasks in a shorter amount of time
while respecting all timing constraints. The benefits must ultimately be translated into
application-specific metrics, but as power-aware systems are deployed in more mission-
critical applications, the saving from reduced mission time or enhanced quality may
translate into a saving of millions of dollars.

Section 4.2 reviews related work. Section 4.3 uses an example showing a counter-
intuitive result when some of the well-known techniques will fail at the system level.
However, this problem can be successfully addressed by our new technique, which is

presented in Section 4.4. We discuss experimental results in Section 4.6.

4.2 Related Work

To explore the power/performance range in power-aware embedded systems, we can
draw from many techniques developed for low power and high performance. This
section surveys related works in these areas with a discussion on their integration at the
system level.

Low power can be achieved by many ways. For system-level designs, where the
components are largely off-the-shelf or already designed, the applicable techniques
include subsystem shutdown and dynamic voltage scaling (DVS). In the first case,
subsystem shutdown decision can be based on fixed idle times, adaptive timeout, or
predictive based on a mix of profile and runtime history [64, 62, 20]. Similarly, power-
up may be either event-driven or predictive in an attempt to minimize timing or power
penalty. In the second case, DVS techniques have been developed for variable-voltage
processors (introduced by [74], with follow-up by [26, 48] and more). Because energy
is a quadratic function of voltage, lowering the voltage can result in significant saving

while still enabling the processor to continue making progress, unlike the shutdown

65

case. Lowering the voltage will also require reduction in frequency, which has the

effect of reducing dynamic switching power.

In addition to low power, the power/performance range can also be increased to-
wards high performance by drawing from previous works on retiming or pipelining
and applying them to the system level. Leiserson et al. first established the theoreti-
cal foundation for retiming synchronous circuits [42], and this has been extended to
loop scheduling for VLIW processors [56, 15, 35]. Shifting tasks in a data flow graph
(DFG) across the iteration boundary can result in a shorter execution time or alleviate
the resource pressure (e.g. number of registers and functional units). Such techniques

are also used in power minimization by reducing switching activities [41, 75].

Existing techniques need significant enhancements before they can be correctly
applied to a system-level power management problem. First, most techniques to date
treat either power or timing as ajective rather than &onstraint In real systems, the
max power budget is a real, hard constraint, whose violation can lead to malfunction.
Max power was not of central concern previously, but as we consider additional power
sources such as solar whose power output can vary, max power constraints must be
strictly enforced. This becomes especially important as we increase the range of power
and performance trade-offs by tuning the parallelism. Second, the tasks to be sched-
uled are related to each other not only by precedence, data dependency or deadline,
but also related across different components by dependenciesliketivation which
must be correctly modeled for system-level power management, or else anomalies can
occur. Co-activation means the execution of one task requires the power consumption
of other dependent services or tasks. A simple example is that when the CPU is run-
ning, it imposes a co-activation dependency on the memory. Techniques such as DVS
are designed mainly for minimizing CPU power, but they have not considered other
components that have dependencies on the CPU. In fact, energy saved on the CPU

may be more than offset by the increased energy consumed by the rest of the system.

66

The following section presents a simple example to illustrate such an anomaly with

applying DVS without system-level considerations.

4.3 DVS Anomaly

We present a simple example in Fig. 4.1 to illustrate an anomaly with applying DVS
without considering system-level dependencies, resulting in a suboptimal and incorrect
system. It will be further used to explain our new system model and scheduling tech-
nigue in the ensuing text. In this example, five taals c, x,y are to be scheduled on

four execution resources B, X, Y. The constraints are:

1. The overall deadline is at time 3.

2. The max power budget is 10W.

3. Tasksa,b andc must be serialized.

4. The execution resourcésB are not voltage-scalable.

5. Only taskx can be voltage-scaled on resouXde.g. a processor), and it has

some slack time to finish before time 2.

6. Tasky must be co-activate with task and its resourc¥ is also not voltage-

scalable (e.g. memory, 1/O).

Note that task/ need not start and finish at the same time,dsut it mustenvelop
X, i.e., start no later thar starts and finish no sooner thardinishes. For simplicity,
this example assumeasandy start and finish together.

We present schedules as power-aware Gantt charts, where the horizontal and ver-
tical axes represent time and power, respectively. Each chart also consists of a pair of
views: time vieworganizes tasks by horizontal tracks that correspond to power con-

suming resources (processors, peripherals) pameer viewstacks the tasks over time

67

A——a]

B b |
| C 1
X X task x has deadline 2
Y y task y co-activates with task x -
0 1 2 3 Time
Power exceeding max power budget
1 ﬁ Pmax: 10
X Energy: 19
Y b
C 1
3 Time

(a) The schedule is not valid since max power budget is exceeded at
time slot [0,1] due to parallel tasks x, y and a.

X is slowed down to
save power/energy

b Zz
Z C 1 .
7 y'S execution delay increases
by co-activating with x
—cxceeding %nax power budget S Time
........................... I.:’.............................Pmax: 10
Energy: 21 <« more
energy
8' y T 1
0 1 2 3 Time

(b) DVS technique reduces power and energy consumption of task x.
However, it fails to produce a valid schedule to the entire system.
The energy comsumption of the whole system is increased by co-activation.

|_ prolog _.l loop body can be iterated after time 1 44

A I w—

B[shift tasks x, y to previous iteration b -

X X (____x H x[1] from next iter.

Y ----y y[1] from next iter.

Power 0 1 2 3 4 Time

il: ... = max: 10
X | x[1] from next iter. nergy: 19
Y —— b Y[from next ter

0 1 2 3 4 Time

(c) Our task motion technique shifts task x and its co-activated task y
to the previous iteration such that the max power budget is satisfied.

Figure 4.1: An example where DVS fails to reduce power and energy at system level,
while our new technique will succeed.

68

to show the power breakdown by tasks. The curve that traces the height of the power
view is thepower profilefor the entire system.

Fig. 4.1(a) shows a time-valid schedule with a max-power violation during time
[0,1]. Reschedulingt andy in [1,2] will be time-valid but still violates max power.

Fig. 4.1(b) shows the case when DVS was used to slow dowrxtaskil its deadline

of time 2. Intuitively, reducing both power and energy of taskhould eliminate the

max power violation, but instead it not only does not reduce max power, but actually
increases total energy at the system level. Because DVS slows down the processor,
now the execution ok overlaps with tasko, thereby leading to higher system-level
power. Furthermore, becaugeruns more slowly, its co-activated tagkmust also
consume power for longer but on a device that is not voltage scalable. Thus, energy
saved by slowing dowm is more than offset by the additional energy consumed by
the lengtheneg@. This anomaly is an example where DVS should not be applied in
isolation.

Fig. 4.1(c) shows a feasible solution obtained by our pewer-aware task motion
technique on iterative tasks. Taszkandy are shifted (ompromoted to the previous
iteration to overlap task instead ofa or b. As a result, both the max power and
the deadline are satisfied. However, the optimal solution cannot be obtained unless
we exploit domain-specific knowledge about the task set by eliminating a precedence
dependency and replacing it withugilization constraint The details will be explained

in later sections.

4.4 Task Motion under Timing and Power Constraints

We present a new power-aware task motion technique for evaluating power/performance
trade-offs in embedded systems. We first define our constraint model and introduce our
representations: a timing constraint grdpfor scheduling, and thigeration graph G

for task motion. We also defingtilization constraintdo support more aggressive but

69

provably correct design space exploration.

4.4.1 Constraint graph and schedule

The input to the scheduler is(Bming) constraint graph G/, E), where the vertice¥
represent tasks, and the ed@es V x V represent timing constraints between tasks.
Each vertex € V has three attributesi(v), p(v) andr(v), representing tasi's ex-
ecution delay power consumptiorand resource mappingespectively. Each edge
(u,v) € E has two attributesd(u,v) andA(u,v). d(u,v) specifies thenin/max timing
constraintg18]. For any functioro that assigns the start times to taskandv aso(u)
anda(v), o(v) —a(u) > d(u,v). If d(u,v) > 0, edge(u, V) is called aforward edgethat
specifies anin timing constraintIf d(u,v) < 0, it is abackward edgéndicating amax
timing constraint A(u,v) is called thedependency depthivhich specifies constraints
across iterations. Aiterationis a full pass of executing of each of the tasks once in a
valid order.d(u,v) andA(u,V) indicate that the execution of taskin iterationi must
precede task in iterationi + A(u,v) by 8(u,v) time units. IfA(u,v) =0, edge(u,v)
specifies arintra-iteration constraint Otherwise, it is arinter-iteration constraint
We assume that inter-iteration constraints are only precedence dependencies (forward
edges) and their dependency depths are positive integers. For backward edges, their
dependency depths are always zero.

A scheduleo assigns a start time(v) to each task € V. It has afinish timets
when all tasks complete their execution. Scheduig calledtime-validif all the start
time assignments satisfy all timing constraints, and tasks that share the same resource
are serialized. If> represents an iteration of a loopmust also satisfy inter-iteration
constraints such that they must hold across iterations when multiple instarcesef
concatenated.

A schedules has gpower profilefunction of timePs(t),0 <t < 14 representing the

instantaneous power consumption of all tasks during the executiofilidistrated by

70

the power view of the Gantt-chart in Fig. 4.1). The power profile is constrained by two
parametersPmax Pmin, SUCh thaPmax > Ps(t) > Pmin > 0. Themax powerconstraint

Pmax specifies the maximum budget of supply power that can be provided by the power
sources. Thenin powerconstraintPy, specifies the level of power consumption to
maintain a preferred level of activity.

The max power constraint is a hard constraint. At any given tirttee value of the
power profile functiorPs(t) must not excee®nax. Schedules is calledpower-valid
(or simply,valid) if it is time-valid and its power profile does not exceed the max power
constraint. However, we treat the min power constraint as a soft constraint that could
be violated occasionally in a valid schedule.

In cases where the min power constrdhqt, represents the free power level (e.qg.
solar), the energy drawn from the non-renewable energy sources is definedeas the
ergy cost Eg(Pmin) of a schedules. It distinguishes between costly power and free
power in such a way that any power consumption below the free power level does not
contribute to the energy cost on non-renewable energy sources, and therefore should

be utilized maximally.

4.4.2 Task motion under timing constraints

Task motion obtains different versions of a scheduling problem by converting between
intra-iteration and inter-iteration constraints. We first construcitaration graph
G'(V,E’): it has the same vertices as those of the constraint gBdtE), but edges
E’ consist of only intra-iteration constraints. Formal/,= {(u,v) : (u,v) € E such
thatA(u,v) = 0,8 (u,v) = 8(u,v) }. The edges ift’ will not have dependency depths
since they are always zero. The expected loop duratierobtained from the original
schedule computed from the initial iteration gra@h

Our work differs from previous works in several ways. First, existing techniques ei-

ther do not consider timing constrai@f their data flow graphs (DFG), or the value of

71

Constraint graph G Iteration graph G'

Schedule o

o

B

0,0 0 X

° G 0,-2) ° @ 2 Y
co-active co—acllve‘

© @ © @&

T 2 3 Time

(a) before task motion, no valid
solution can be found.

b
X[1]
y[1]
1 2 3 Time

S
-

=y

S

o

N
< X W >

.

03
co—acl\ve‘ N N 0,1) CO—acl\ve‘

(b) after promoting task x and co-activating 0
task y, a valid solution is found.

max: 10

T
° X1] nergy:19
ﬁ v

H—\g
<X @ >

co—activei

1 2 3 Time
&]
b
1]
1]
1 2 3 Time

(c) after promoting task a, a variation
of solution (b) is produced.

Figure 4.2: Task motion under timing constraints.

Constraint graph G Iteration graph G'

x

<

Schedule o
o I w—
o I N
v} T 2 3 Time
....................................... Pmax: 10
X Energy: 19
y —bl—c—l
0 T 2 3 Time

(b) after promoting task x and co-activating task y,
a valid solution is found.

T
X[1]
4]
Time
(o] max: 10
X[1] nergy: 19
yiil
3 Time

(c) after promoting task a with utilization constraints, (]
a new solution with better performance is found.

Figure 4.3: Task motion under utilization constraints.

72

roushrv
72

dis always 0 or 1 that only indicates precedence (data dependency). We capture more
general min/max timing constraints that are essential to correctly modeling the oper-
ation in new embedded systems, and our approach subsumes DFG as a special case.
Second, where existing schedulers use one DFG, we need two graphs: (1) the tim-
ing constraint grapi® must update dependency depdhwhen transforming between
intra-iteration and inter-iteration constraints; (2) the iteration g@pimust change the

values of corresponding timing constraidfsn order to correctly reinterpret the new
constraints after task motion. Existing techniques do not handle timing constraints, and
their values never change.

Without loss of generality, we focus our discussion on asknotionby which the
execution of a task is shifted to the previous iteration of the loop, and the instance of
the same task in the next iteration is promoted into the new loop body. The inverse
procedure for tasdemotioncan be similarly defined.

A taskv is promotableif either vertexv € V does not have any incoming forward
edges, or all of’'s incoming forward edges i have at least one dependency depth. If
o is a valid schedule of one iteration, we gaomotea taskv according to thexpected
loop duration which is the finish tim&, of 0. Givent = 14, promoting a task entails

the following transformations o& andG':

1. For each ofv's incoming forward edgegu,v) in graphG, decrease (u,v) by
one. If (u,v) becomes an intra-iteration constrair(y,v) = 0), edge(u,v) is

added to grapks’ if it is not present inG'.
2. For eachv's outgoing forward edgév, u) in graphG, increase\(v,u) by one.

3. For eachv's incoming backward edggu,v) in graphG', increasey (u,v) by T,

thatis,&' (u,v) = &' (u,v) + 1.

4. For eachv's outgoing edggv,u) in graphG’, decreas& (v,u) by 1, that is,
¥(vu)=8(vu) -

73

Steps 1 and 2 push one dependency depth fvisnincoming forward edges to
its outgoing forward edges. Step 1 also adds any new intra-iteration constraints after
promotion to grapl@’, which tracks only intra-iteration constraints. Step 3 transforms
the incoming backward edges wfor the promotion (its incoming forward edges are
managed in step 1). Step 4 transforms the outgoing edgesfarf both forward and

backward edges. Steps 3 and 4 can be validated as follows.

When a tasks is promoted in grapl@’, vertexv represents the execution of task
v in the next iteration. Therefore, the new start time assignmény = a(v) +1. In
step 3, before promoting, edge(u,v) indicateso(v) — o(u) > &'(u,v). Thus after
the promotion,o’(v) — o(u) = (o(v) + 1) — o(u) > & (u,v) + 1. Therefore, the new
constraint inG’ is & (u,v) + 1. Similarly in step 4, edgév,u) meanso(u) — o(v) >
0/ (v,u) before promotion. Thusy(u) —o’(v) = o(u) — (o(v) + 1) > & (u,v) — 1. The

constraint becomeX(u, v) — 1 after the promotion.

When a task is being promoted, its corresponding min timing constraints (zero or
positive values) will become max timing constraints (negative values) by step 3; and
vice versa, its corresponding max timing constraints will transform into new min timing
constraints by step 4. Promotion effectively reduces the values of min constraints and
makes the problem easier to solve by exposing more scheduling opportunities. We say
that the constraint iselaxed and this is a key technique for increasing the system’s

dynamic range.

Fig. 4.2 illustrates task promotion on the example previously shown in Fig. 4.1.
Fig. 4.2(a) shows the initial constraint gra@consisting of five vertices representing
five tasksa,b,c,x,y. They all have the same execution delay of one time unit, and
their power consumption ip(a) = 3W, p(b) = 6W, p(c) = 2W, p(X) = p(y) = 4W.
Therefore the most power consuming task and the least power consuming one.is
Tasksa, x,y have dedicated execution resoufeeX,Y (r(a) = A ;r(x) = X,r(y) =Y),

respectively; while taskis andc share the execution resouBér (b) = r(c) = B). For

74

brevity, these task attributes are not shown in the graph. The edges in the constraint
graphG represent timing constraints. They are denotetha8) corresponding to the

dependency depths and the values of the timing constraints.

For example, the forward edde,b) represents an intra-iteration constraint with
dependency depth(a,b) = 0, and it is a min constraint with(a,b) = 1 indicating
o(b) —o(a) > 1. Since taslka’s delayd(a) = 1, this constraint can be paraphrased as
“task b cannot start until task completes,” that is, tasks andb must be serialized.
Similarly tasksb andc are also serialized by eddb,c). Edge(x,a) with d(x,a) = 0
indicates that task cannot start before taskstarts, because(a) — o(x) > 0. Edge
(x,c) with 8(x,c) = 2 specifies a min separation between tasknd taskc, that is,
o(c) —a(x) > 2. Therefore, task must wait until task has started for two time units.
Edge(c, a) with 8(c,a) = —2 is a backward edge representing a max constraif: —
o(a) < 2. It defines the deadline to start taskelative to the start time of task This
deadline is equal to the start time of taglus two time units. In addition to these intra-
iteration timing constraints, there is an inter-iteration timing constfaind), indicating
that the start time of task precedes task in the next iteration(A(b,x) = 1) by one
time unit @(b,x) = 1). Inter-iteration constraints are marked as dashed arrows. There
is a co-activation dependency between tasind tasky. This is denoted as a pair of
special timing constraints. As mentioned previously, we assume each iteration must

finish within three time units.

The initial iteration grapli’ has the same set of vertices representing tasks, x, y.
The edges irG’ only represent intra-iteration constraints. Therefore only constraint
valued' is shown on each edge. Dependency depit not shown since it is always
zero in graphG’. For example, the inter-iteration ed@ie x) does not appear in the

initial G'. The co-activation dependency is still denoted as a special constraht in

The initial schedules computed from the iteration grap® is also shown in

Fig. 4.2(a). It is the same as Fig. 4.1(a). Although all timing constraints are satis-

75

fied, the schedule is not valid since during time [0, 1] the power consumption of
the whole system is 11W, exceeding the max power constPaigt= 10W. No valid
solution is possible even if we try voltage scaling for tasks

In Fig. 4.2(b) task and its co-activated taskare promoted to produce a hew valid
schedule (same as Fig. 4.1(c), except that the prolog is not shown), which otherwise
cannot be achieved without promotion. The constraint gi@phill only update the
values of dependency depthof the timing constraints correspondingxoSince the
original schedule finishes at time 3, the timing constradhta G’ will be transformed
usingt = 3. By step 1, edgéb,x) € G becomes an intra-iteration edge (solid arrow)
and is inserted t&@'. By step 2, edges$x,a) and (x,c) € G become inter-iteration
edges (dashed arrows). By step 4, edgea) and(x,c) € G’ reduce their constraint
values byt = 3. Accordingly, task's outgoing min constraints are transformed into
more relaxed max constraintd'(x,a) = —3,8'(x,c) = —1, compared to 0 and 2 in
Fig 4.2(a)). As a result, taskscan be rescheduled in time s[@t 3] without violating
any timing constraints, and the max power constraint is also satisfied. Xasidy
are promoted together due to co-activation, but they are scheduled as separate tasks
because they may not start and finish at the same time.

Fig. 4.2(c) further promotes task Both graphss andG’ are transformed accord-
ing to steps 1 — 4. It yields another valid schedule that is a variation of the solution in
Fig. 4.2(b). If taskd andc are promoted subsequently, the initial constraint gr@ph

in Fig. 4.2(a) will be restored.

4.4.3 Utilization constraints

Task motion is based on the classification of intra-iteration and inter-iteration timing
constraints. However, in some cases, it is difficult or unnecessary to decide whether
a timing constraint should be intra-iteration or inter-iteration. Such cases are present

in the Mars rover. For example, for timing constraints between a heater and a motor

76

by which the motor is heated periodically, whether to model these constraints as intra-

iteration or inter-iteration is not clear. In fact, whether the heaters and the motors stay

in the same iteration does not matter. In the computation domain, these correspond to
background, preemptible tasks that need not synchronize with the main control loop

but must be given a share of the CPU time to avoid starvation.

We call such constraintatilization-based timing constraints. They can be ex-
pressed as either intra-iteration or inter-iteration ones. A utilization constraint between
two tasksu andv is also represented as an edgev) € E in constraint graple with
its dependency depth denotedXsl,v) = x, indicating that it can be either zero or
non-zero.

Now we examine task motion under utilization constraints. It needs only minor

modifications to the procedure we defined in Section 4.4.2.

(a) The initial iteration grapt@’ will include both intra-iteration constraints aod-

lization constraintsn its edges(Treat utilization constraints as intra-iteration)

(b) Ataskvis promotable if either vertexe V does not have any incoming forward
edges, or the dependency depthaf all v's incoming forward edges are positive

valuesor . (Treat utilization constraints as inter-iteration)

(c) The modified procedure for promoting a tasis as follows.

1. For each of/'s incoming forward edge&u, v) in graphG, decreasa(u,V)
by one,if A(u,v) # x. If A(u,v) becomes 0, add edda, V) to graphG’ if it
is not present irG'. (No update for utilization constraints in step.1)

2. For eachv's outgoing forward edgév,u) in graphG, increasei(v,u) by
one,if A(u,v) # x. (No update for utilization constraints in step. 2)

3. For each/s incoming backward edgei, v) in graphG’, &' (u,v) = & (u,v) +
T, if A(u,v) # x. Otherwise,d (u,v) remains unchanged Do nothing for

utilization constraints in step 3)

77

4. For eachv's outgoing edgév,u) in graphG’, & (v,u) = & (v,u) — 1. (Same

as previous step 4)

Since utilization constraints can be either intra-iteration or inter-iteration, by giving
them some special treatments, the modified procedure is straightforward except steps 3
and 4 need more explanation. In step 3, if efg®) represents a utilization constraint,
d'(u,v) can be transformed into either one of the two form§u,v) or & (u,v) +1,
since it can be either intra-iteration or inter-iteration. That is, the transformation is
valid eithero’(v) — a(u) > &(u,v) or ¢’(v) — a(u) > &(u,v) + 1 holds. Obviously,
the solution to these two inequalities with @R relation iso’(v) — o(u) > & (u,v),
which means the constraint with the smaller value applies. The value of a utilization
constraint will not increase by, Likewise, in step 4, the value of the new constraint is
the smaller one betwee(v,u) — T and® (v, u), which is& (v,u) — 1. In summary, if
the promoted tasi has any incoming utilization-constraint edges, these edges remain
the same in the iteration graj@i during the promotion. Fov's outgoing utilization-
constraint edges, the values of constraint&irare decreased by the loop duration
As a result, utilization constraints will always be relaxed to produce more scheduling
opportunities.

For example, if resourcA is a heater, a motor, or a CPU running a preemptible
background tasks, then we can model taskth utilization constraints. The modified
procedure for task motion under utilization constraints in illustrated in Fig. 4.3.

Fig. 4.3(a) shows the initial grapl& G’ and scheduls. Itis identical to Fig. 4.2(a),
except that utilization constraints are marked as a different type of dashed arrows in the
constraint grapl@, and their dependency depth= x. Since the iteration grap@’ is
the same as the graj@i in Fig. 4.2(a), no valid schedule could be found. To address
this problem, Fig. 4.3(b) shows promotion to taskandy. It is similar to Fig. 4.2(b)
except the utilization constraifi, @) is not updated in grap8. It shows a valid sched-

ule, which is the same as schedule in Fig. 4.2(b).

78

In Fig. 4.3(c), when task with utilization constraints is promoted, the correspond-
ing constraint values in grag® are different from those in Fig. 4.2(c) in comparison.
Specifically, by modified step 3, utilization constrafota) will not increase its value
in G'. &(c,a) will remain —2 as opposed to 1 in Fig. 4.2(c). The same rule also applies
to utilization constrain{x,a) such thaty(x,a) = —3 instead of 0. Since the serial-
ization chain formed by min constraints is broken, taagis c (after promotinga, the
chain becomel, c,ain Fig. 4.2(c)) no longer need to be serialized. Now tasksmall
power consumer, can overlap whitsuch that an unexpected solution with a shorter ex-
ecution time { = 2) is discovered, and it also satisfies the max power constraint. This
optimal solution could not have been obtained without using utilization constraints,

which enable more aggressive, provably correct relaxation of the time constraints.

4.5 Scheduling Algorithms

Given a scheduling problem, the scheduler to support power management decisions
must compute a scheduethat meets goals in multiple dimensions. Fistmust

be time-valid in that all timing constraints, including intra-iteration, inter-iteration and
utilization-based, are satisfied. Second, it must be power-valid for a max power con-
straint with a reduced energy cost for a min power constraint. Finally, the scheduler
must evaluate different versions of the loop iterations to either improve the schedule
with shorter execution time or less energy cost, or explore various power/performance
trade-offs.

We present our power-aware task motion technique as follows. In Section 4.5.1
we build an iteration graply’ that tracks only the intra-iteration constraints from the
constraint grapl®. The promotion to one task transforms both gra@rendG’, to be
presented in Section 4.5.2. Section 4.5.3 introduces the power-aware scheduler with
task motion technique that evaluates different versions of the loop by using a power-

aware scheduler to compute a single-iteration schedule for each version. We derive the

79

ITERATION GRAPH(graphG)
create grapl’ (V,E), withG'V :=GV,G.E:=0
for each edge(u,v) € G.E loop
if (A(u,v) =00r A(u,v) = %) then
add edg€u,v) to G'.E, with & (u,v) := d(u,V)
end if
end loop
return G’

Figure 4.4: Algorithm to construct the iteration graph.

scheduling algorithms presented in [44] as the power-aware scheduler to reduce energy
cost. After the best version is selected with the minimum energy cost, the scheduler
computes a prolog and an epilog to start and finish the loop execution. Other solutions
with different loop durations, as well as those that cannot be evaluated together the

existing version, are recorded for further evaluation.

4.5.1 Construction of the iteration graph

The concept of the iteration graph is introduced in Section 4.4. The algorithm in
Fig. 4.4 constructs an iteration gra@! based on a constraint gra with intra-

iteration, inter-iteration and utilization-based constraints.

4.5.2 Task promotion algorithm

We present two algorithms for task promotion and the corresponding graph transfor-
mation to both constraint gragh and the iteration grap8’. The algorithm in Fig 4.5
decides whether a tasks promotable by checkings incoming forward edges. If they
consist of only inter-iteration and utilization-based constraints,wddes not have any
incoming forward edges, thenis promotable. The algorithm in Fig 4.6 promotes a

taskv by transforming both graphs andG’ with an expected loop duratian

80

PROMOTABLE(graphG, vertexv)
for eachv's incoming forward edgéu,v) € G.E loop
if (A(u,v) =0)then
return FALSE
end if
end loop
return TRUE

Figure 4.5: Algorithm to decide whether a tasis promotable.

PROMOTHgraphG, graphG/, vertexv, timeT)
for eachv's incoming forward edgéu,v) € G.E loop # step 1
if (A(u,v) # «) then
A(u,v) :=A(u,v) —1
end if
if (A(u,v) =0)then
add edg€u,v) to G'.E with & (u,v) := 3(u, V)
end if
end loop
for each v's outgoing forward edgév,u) € G.E loop # step 2
if (A\(v,u) # x) then
A(v,u) :=A(vu)+1
end if
end loop
for eachv's incoming edg€u,v) € G'.E loop # step 3
if (A(u,v) # x and d(u,v) < 0) then
O (uv) =& (uv)+1
end if
end loop
for eachv's outgoing edgév,u) € G'.E loop # step 4
d(vu):=d(vu)—1
end loop
return

Figure 4.6: Task promotion algorithm.

81

4.5.3 Algorithm for power-aware task motion/scheduling

The algorithm is shown in Fig. 4.7. It first constructs a iteration gr&plfrom the
constraint grapls. ThenG' is scheduled by a power-aware scheduler, which is derived
from [44]. The returned scheduteis kept as a temporarily best schedule and whose
durationty is taken as the expected loop durationThen the algorithm traverses all
vertices inG.V in a topological order by extracting one promotable tagkeach step.
When a tasks is promoted, both graphs andG’ are updated. Then the power-aware
schedule is invoked again to examine whether an improved schedule with the same
execution time and less energy cost can be found, and the better schedule is stored. In
case a schedule with a different finish time is found, it indicates that another version of
the loop. It is not appropriate to simply discard the slower schedule, because it could
represent a different power/performance trade-off. Instead, the graphs leading to the
incompatible versions are stored in 8dtt, and the algorithm cancels the last promotion
and attempts another topological ordering. The algorithm completes if all tasks are
promoted, or the topological traversal cannot proceed since the next promotion always
generates an incompatible version. Finally, it computes two additional schedules, one
for the prolog and one for the epilog (algorithms not shown). Once the algorithm finds
the best schedule for the loop body, it returns the full set of schedules that includes
Oprolog: O, @nd Oepilog. The algorithm also returns the salt that contains graphs
leading to alternative solutions. These graphs will be examined by the same algorithm

to evaluate different power or energy vs. performance trade-offs.

4.6 Experimental Results

We use the NASA/JPL Mars rover [4] to evaluate the effectiveness our power-aware
task motion technique. We first construct a system-level representation that includes

the mechanical and thermal subsystems, as well as different energy sources. Then, we

82

POWER AWARE TASK PROMOTIONgraphG, Pmax Pmin)
GO :=G;Alt:=0
G := ITERATION GRAPH(G)
0 := POWER AWARE SCHEDULINGG', Pmax, Pmin) # [44]
Ec:=Ecs(Pnin); T:=1s
V"= GV, Vprolog := 0
for eachv € V' loop
if PROMOTABLE(G, V) then
V' =V’ —{v}
M: PROMOTHG, G, v, T)
if (G € Alt) then
break
end if
0’ := POWER AWARE SCHEDULINGG', Pnax Pmin)
if (T # 1) then
Alt := Alt+{G}; V' =V’ +{v}
undo step M
else
if (Ecy < Ec) then
0 :=0"; Vprolog .=V’
end if
end if
end if
end loop
if (Vprolog =G.V 0or Vprolog = 0) then
return o,0,0,Alt
end if
Vepilog := G.V - Vprolog
Oprolog = PROLOG(GO,VprO|Og, o)
Oepilog = EPILOG(GO, Vepilog O)
return G, Oprolog, Oepilog, Alt

Figure 4.7: Power-aware task motion algorithm.

83

examine the results after applying our scheduling techniques.

4.6.1 A system-level constraint model of the Mars rover

The rover travels between different target locations on the Mars surface to perform sci-
entific experiments and shoot images. Its power sources consist of a non-rechargeable
battery and a solar panel. The life-time of its mission is limited by the amount of
remaining battery energy. Since the temperature on Mars surface can be as low as
—80°C, the rover must heat its motors periodically as it drives them to move. Thus,
mechanical and thermal subsystems are the major power consumers.

Our model captures timing constraints across different resources including compu-
tational, thermal and mechanical subsystems. We focus on a typical operating condi-
tion when the rover is traveling. When the rover drives its six wheels for a full rotation,
it is called one step, which is about 7cm in distance. Before driving the wheels, it must
first detect any obstacles on its way and choose a safe angle to turn. Then it turns itself
in the correct direction using the four steering motors. Finally, the six wheel motors
are driven. Therefore, hazard detection, steering, and driving must operate in sequence.
Other constraints are related to heating the motors in a certain period prior to driving
them, as summarized in Table 4.1. We assume the power consumption of tasks varies
with environmental temperature that tracks the sunlight intensity, and we investigate
three scenarios with different solar power output: 14.9W (noon time), 12W, and 9W
(dusk). The max power constraint is equal to the available solar power plus 10W max-
imum battery power output. We also extract the solar power level as the min power
constraint to distinguish the free power from the costly power. Table 4.2 illustrates the
power sources and consumers in three scenarios.

The constraint graph for the Mars rover is shown in Fig. 4.8. During each iteration,
the rover moves two steps (14cm). We assume all heaters are independent resources

and one heater can heat two motors at a time. Therefore there are a total of five thermal

84

Y)
Step 1: Hazard:

detection
_HAZARD/10 |

; Heat steer |
1&2
Heat 0,10

Wwheel v HS12/5

v

1&2 Step 1: Steer

HW12 /5 STEER /5

Heat
wheel
3&4

HW34 /5

Heat steer
3&4 H
Heat
wheel
5&6
HWS56 / 5
A
tep 2: Steer :
STEER/5
0/*, -50
0,5
¥ Step 2: Drive
o DRIVE / 10
or, 50 0/, 5 f
0/, -50

Figure 4.8: Constraint graph of the Mars rover.

85

Operation Duration(s) Timing constraints

Heating steering motors 5 At least 5s, at most 50s before steering
Heating wheel motors 5 At least 5s, at most 50s before driving
Hazard detection 10 At least 10s before steering

Steering 5 At least 5s before driving

Driving 10 At least 10s before next hazard detection

Table 4.1: Timing constraints of the Mars rover.

Power sources Duration I?o'vvler SN?

est case Ical case orst case

& tasks (S) @-40°C yp@-eso"c @-80°C

Solar panel 14.9 12 9
Battery pack 10 max 10 max =10 max
CPU constant 2.5 3.1 3.7
Heating two motors 5 7.6 9.5 11.3
Driving 10 7.5 10.9 13.8
Steering 5 4.3 6.2 8.1
Hazard detection 10 5.1 6.1 7.3

Table 4.2: Power sources and consumers of the Mars rover.

heaters. Four steering motors are considered a single steering mechanical resource.
The six wheel motors are modeled as one mechanical unit for driving. There is also
a laser guided digital component for hazard detection. Eachuéslkdenoted with

its resource mapping(v) and its execution delagl(v). The power consumption is

not shown since it varies in different scenarios. Each €dge) is denoted with its
dependency depth(u,Vv) and timing constraind(u,v). The timing constraints on the
heating tasks are actually utilization-based constraints. They are denoted differently
from inter-iteration constraints and intra-iteration ones. We first treat them as intra-
iteration and then change them to utilization constraints to compare the differences in

their results.

86

4.6.2 Scheduling results

We use the energy cost to non-rechargeable baesyPnin) and the execution time

(t5) as metrics to examine the scheduling results by the following techniques:

(0) the existing manual solution,
(I) previous power-aware scheduling [44],
(I) power-aware task motion without utilization constraints,

(1) power-aware task motion with utilization constraints.

We first evaluate the scheduling results in three individual scenarios with different
power constraints. Then, we present a case study by combining the three scenarios into

one comprehensive scenario, where the power constraints vary over time.

Scenario 1: high power budgetPnax= 24.9W, Pmin = 14.9W

Fig. 4.9(a) shows the power-aware schedule (1) for this scenario. In this scenario, since
the power budget is sufficient, some tasks are executed in parallel, and thus the schedule
is fast. However, some energy cost (76.5J) is drawn at the beginning of the schedule
while the solar energy is under-utilized in the latter part. Without task motion, we
cannot further exploit free solar power to reduce energy cost.

Fig. 4.9(b) shows the schedule after power-aware task motion(ll), though without
exploiting utilization-based constraints. Some heating tasks are promoted such that
they consume free solar energy instead of costly battery energy. The resulting perfor-
mance is the same as the previous schedule (50s), but the energy cost is significantly
reduced (16.5J). In this schedule, the timing constraints on heaters are considered as
intra-iteration constraints.

If we consider utilization-based constraints (lll), we can further improve the sched-

ule significantly, as shown in Fig. 4.9(c). The heating tasks are reordered to other slots

87

Prax: 24.9

loop body
.50 Ec:765

Prin: 149

CPU
5 10 15 20 F3 30 3 40 45 50 Time

(a) Power-aware schedule (1)

max. 24.9

prolog ——«<——— loop body epilog
: 1:50 Ec: 165

15.00

win: 149

10.00

5.00

CPU
0 10 20 30 40 50 60 70 80 ES) 100 Time

(b) Power-aware task promotion without utilization constraints (ll)

[
ww prolog ——«——— loop body [epilog —— M 249
20.00 :: y 1:50 Ec: 45 .25 Ec:3
1500 in 14.9
10.00
500

cPU

000 g () 20 EN) 20 50 60 70 80 %0 100 Time

(c) Power-aware task promotion with utilization constraints (l11)

Figure 4.9: Schedule for Scenario 1 (highest power budget).

88

with even less energy cost to non-rechargeable battery. As a result, the schedule in
Fig. 4.9(c) is strictly better than the previous two schedules in the sense that it delivers
same performance (50s) with less energy cost (4.5J). This superior schedule could not
have been found until we converted the constraints on the heating tasks to utilization
edges. In general, utilization constraints can expose rich new scheduling opportunities
by effectively increasing the number of alternative time intervals for partially reorder-
ing tasks. They are useful for a power manager to either minimize energy cost or

evaluate different energy/performance trade-offs.

Scenario 2: moderate power budgetPnax = 22W, Pyin = 12W

Fig. 4.10(a) shows the power-aware schedule (I) for this scenario. With a smaller power
budget and a reduced level of free (solar) power source than Scenario 1, this new sched-
ule is slower { = 60s) while drawing more energy from the battery (147J). It is notable
that task motion does not yield a different schedule if we model the constraints on heat-
ing tasks as intra-iteration ones. A somewhat surprising result (Ill) can be discovered
if the scheduler exploits the utilization constraints, as shown in Fig. 4.10(b). The re-
sulting schedule can be as fast as the schedule found in Scenario5D$§), if paying

a higher energy cost (208J) is acceptable. Neither solution is strictly better than the
other, since they represent alternative design points for energy/performance trade-offs.
Again, conversion to utilization constraints exposes more aggressive but safe design

points that otherwise would not be possible.

Scenario 3: low power budgetPmax = 19W, Pnin =9W

Fig. 4.11 shows a slow schedule (0) for this scenario. A tight power budget forces all
operations to be serialized, leading to a low-performance 15s) and high-costHc
= 388J) schedule. Since overlapping any two tasks will violate the max power budget,

task motion cannot yield any alternative schedule.

89

2200 Prax: 22.0
P loop body max
18.00 1.60 Ec: 147
16.00
1400 | Hsl2 Hs34 Hwi2
12,00 Prin: 12.0
10.00
800 Hw34 Hw56 Dr1 Dr2
6.00 Hd1 St1 Hd2 St2
4.00
200 CPU
000 0 5 10 15 20 25 30 35 40 45 50 55 6 T—”TE
(a) Power-aware schedule (1)
Power
5.
22,00 Brol 6 io0p body apiiog Pmax: 22.00
20.00 .35 :50 25
18.00 Ec: 127 Ec: 208 Ec: 87
16.00
14,00 {Hsi2Hs3a| [Hw34 Hs12 Hs34 Hw12HW3aH Hs12 Hsaa
12.00 Pmin: 12.00
10.00
8.00 Hwid hwsd Drl Dr2 Dr1 Dr2
6.00 { Hdl st Hd2 | st2 Hd1l | St1 Hd2 S2
400
200 cPU
000 o 10 20 30 20 50 60 70 80 % 00 110 Time

(b) Power-aware task motion with utilization constraints (l11)

Figure 4.10: Schedule for Scenario 2 (moderate power budget).

Table 4.3 summarizes the scheduling techniques that are applied to the three sce-
narios. It shows that our power-aware task motion technique and utilization constraints

can support more aggressive design space exploration effectively.

A comprehensive scenario: the available power varies over time

The existing schedule used in the past mission followed a low-power design paradigm.

To avoid exceeding max power budget, the designers at JPL implemented a fully serial-

o6 Prax 19.0

1600] T:75
14001 Ec: 388

1000 Hs12 Hs34 Hw12 Hw34 Hw56 Dri Dr2
8001 Hg1 St Hd2 @ St2
6.00

0 5 1 15 2 25 % &b 4 4 0 5 60 6 70 75 Nme

Figure 4.11: The serial schedule for Scenario 3 (lowest power budget).

90

(0) JPL's () Power-aware [(Il) Power-aware + | (lll) Power-aware +
Low-power Task motion Task motion +
(hand-craft) Utilization constraint

1=75sEc=0J J T=50s Ec=79.5J | 1=50s Ec=16.5] 1=50s Ec=4.5] N

Scenario

2| 1=75s Ec =55] /| T=60s Ec=147J same as (I) T=>50s Ec =208J
3 | 1=75s Ec=388J same as (0) same as (0) same as (0)
V=keep x=drop

Table 4.3: Comparison of schedules in a three scenarios.

JPL Task motion A Task Motion B
Time) (0-0-0) (In-1-0) (H1-111-0)
frame (s) Scenario Distance | Time | Energy|Distance| Time |Energy |Distance| Time |Energy
(step) | (s) |cost(J)| (step) | (s) |cost(J)| (step) | (s) |cost(J)
0 -599 1 16 600 0 24 600 129 24 600 129
600 - 1199 2 16 600 440 20 600 1470 23 600 2482
1200 - 3 16 600 | 3114 4 150 776 1 10 85
Total 48 1800 | 3554 | 48 1350|2375 | 48 [1210 | 2696
Improve- 33% | 33% 49% | 24%
ment

Table 4.4: Comparison of schedules in a comprehensive scenario.

ized schedule (0) that was fixed in all conditions, without tracking the available power
budget including the solar source. It is identical to our schedule in Scenario 3 with the
lowest power budget. Without our task motion technique that aggressively explores the
design space, the designers had no alternative choices for different scenarios but over-
constrained the existing design for the worst case. However, the existing low-power
solution draws less costly energy from the battery than our solutions. Our schedules,
on the other hand, speed up the rover's movement by up to 50% in Scenario 1 with
the maximum power budget (l11). In Scenario 2, we have two alternative solutions that
improve the rover’s performance by 25% (1) and 50% (111), respectively. However, our
faster schedules draw more costly energy from the battery. To evaluate this trade-off
between performance and energy cost, we apply our schedules to a scenario where the

available solar power varies over time.

Suppose the mission is to travel to a target location in a distance of 48 steps. The

91

mission starts with maximum solar power at 14.9W (Scenario 1). Then, it drops to
12W (Scenario 2) after 10 minutes, then falls to 9W (Scenario 3) 10 minutes later. If
the existing serial schedule (0) (Fig. 4.11) is applied, the rover will spend 10 minutes
evenly in the three scenarios, since it has a fixed moving speed (16 steps per 10 min-
utes). This results in a long execution time (30 minutes) and considerable energy cost
in Scenario 3. On the other hand, our power-aware scheduler can produce two schemes.
In scheme A, the rover finishes 50% of its work (24 steps) in the first 10 minutes by
using our schedule (lll) for Scenario 1 (Fig. 4.9(c)). Then it completes 42% of the work
(20 steps) in the next 10 minutes by schedule (I) for Scenario 2 (Fig. 4.10(a)), leaving
the remaining 8% (4 steps) in Scenario 3 for only 2.5 minutes. In scheme B, the rover
also finishes 24 steps in the first 10 minutes with the same schedule (1) for Scenario
1. By using the fast schedule (lll) (Fig. 4.10(b)) for Scenario 2, the rover almost com-
pletes the whole mission by traveling 23 steps in the next 10 minutes, leaving the last
step in Scenario 3 for only 10 seconds (because its prolog is long). Since our sched-
ules accelerate the execution with sufficient power budget in first two scenarios, the
rover can finish the mission earlier before having to work in the costly Scenario 3. The
analysis of this case study in Table 4.4 shows that both power-aware schemes A and
B are strictly better than the existing design in that they win performance and energy
saving simultaneously. Scheme A delivers a higher performance with a 33% improve-
ment, while saving 33% of the costly energy from non-rechargeable battery. Scheme
B even further speeds up the execution by 49% with a 24% energy reduction com-
pared with the existing solution. Moreover, these two alternative designs with different
power/performance trade-offs are discovered by our automated scheduling techniques.

They cannot be extracted otherwise by the existing techniques.

92

4.7 Chapter Summary

We have presented a power-aware task motion technique for enhancing the dynamic
range of embedded systems powered by heterogeneous energy sources that include re-
newable, unsteady ones like solar panels. They must be able to not only operate as
low-power devices when the supply power is low, but equally importantly use the free
abundant energy for useful work while respecting power and timing constraints. We
used a DVS Anomaly example to show the pitfalls of applying existing power manage-
ment techniques without considering system-level dependencies like co-activation, and
this has resulted in not only higher energy consumption but also violation of max power
constraints. We then showed our constraint formulation and task motion to safely trans-
form the tasks while respecting these system-level dependencies. We further enhanced
task motion by exploiting utilization-based constraints that exposed additional schedul-
ing opportunities for preemptible, background tasks or even non-computational power
consumers such as heaters. These all served to enhance the dynamic range while ensur-
ing all transformations are safe and provably correct. Experimental results on the Mars
rover demonstrated the effectiveness of our approach for the solar- and battery-powered
system. We expect the benefits to transfer to a whole emerging class of new embedded

systems that must draw energy from many renewable but unsteady sources.

93

Part Il

Data Regular Scheduling

94

Chapter 5

SuperDVS

Dynamic voltage scaling (DVS) is a popular approach to power and energy reduction
in microprocessors: it not only reduces the average power level, but also increases
the processor’s energy efficiency (i.e., lower energy per instruction). However, DVS
will not be a fruitful technique for further energy reduction based on today’s single
processor assumption. In fact, it may actually lead to higher energy consumption due to
the lack of system-level considerations. We propose to exploit system-level parallelism
as an effective means to achieving the next order of energy improvement for the entire
system. By using multiple processors to perform the same task, each processor has
reduced workload and thus can run at even more energy efficient points beyond the
limits of today’s best DVS without sacrificing performance. A secondary effect is
that the smoother power profile and reduced peak current not only reduce time/power
overhead associated with voltage scaling, but also extend battery life. Experimental
results on an image processing algorithm show a 60% reduction in energy and 80% in

power compared to the best DVS approach.

95

5.1 Introduction

Dynamic voltage scaling (DVS) is a well-studied technique for minimizing energy con-
sumption in embedded microprocessors. Many modern processors are designed to op-
erate at different voltage and frequency settings as an effective way to manage power
usage. Itis advantageous to operate the processor at a lower voltage whenever possible,
because energy is proportionaM8. In other words, it takes less energy to execute an
instruction at a lower voltage, even though the total execution time is longer. DVS tech-
nigues exploit slacks in the task set by slowing down the processor just enough without
violating the deadline. Many DVS techniques have been proposed to overcome the
limits in slowing down the processor, including inter-task DVS, intra-task DVS, slack

borrowing, etc.

5.1.1 Limits of DVS

DVS has been studied extensively for single processors. However, DVS is running
against several fundamental limits. Due to variation in workload, it is not always pos-
sible to run the processor at the lowest possible constant speed at all times; for example,
different types of MPEG frames require a wide range of processing. This not only pre-
vents the processor from operating at the optimal rate, but also forces the processor to
pay power and timing overhead associated with voltage scaling. In fact, as processor
performance increases, the voltage scaling granularity decreases, and as a result, as
much as 30% of the energy could be spent on scaling overhead alone. Unfortunately,
most DVS techniques proposed to date do not consider any overhead.

Another limit is DVS’s assumption about a single processor, even though many
realistic system include peripheral devices controlled by the processor, but this depen-
dency is never modeled. In fact, the power consumption at the system level may be
dominated by these peripherals, rather than the processor, and it is crucial to exploit

shutdown opportunities (especially communication interface) in peripherals. However,

96

most peripherals are not as power manageable as the processor. As a result, the DVS
approach to increasing the processor’s power efficiency at the expense of performance
can actually keep the dependent peripherals in the same high-power operating mode
for a longer period of time. That is, not only is the power saving due to DVS limited to

its percentage contribution to the entire system, it can actually result in higher overall

energy consumption.

5.1.2 Beyond DVS limit

To further improve energy efficiency beyond DVS, we break the limits of DVS de-
scribed above. First, we must improve power efficiency without sacrificing perfor-
mance; otherwise, we will repeat the pitfall of increasing energy consumed by depen-
dent peripherals. Second, we must decrease the dynamic range of the power of the
processor, even though the workload has a wide dynamic range, in order to maximize
its energy efficiency (in terms of Joules per instruction). This can be achieved by ex-
ploring thegranularity for voltage scaling, where coarser grain scaling results in lower
overhead.

In this chapter, we propose to break the DVS limits by exploring system-level
pipelining. We improve energy efficiency by applying voltage scaling to each code par-
tition, but make up for the performance loss with parallelism. We make the observation
thatn processors running af/fh speed will be significantly more energy efficient than
a single processor running at the speed determined by today’s best DVS techniques. It
not only significantly reduces the energy consumed by the processor, but also results
in much lower peak power and a smoother power profile, both of which are attractive
features for batteries. We also determine the optimal granularity for voltage scaling so
as to balance adaptivity with the adaptation cost.

The grand challenge will be to extract parallelism in the application so that it can

be mapped onto a multi-processor architecture with a much higher power efficiency

97

as a whole system. Parallelism extraction from a sequential program like C is a very
difficult problem in general, but fortunately data regular applications can be described
in a variety of data flow models that are amenable to mapping onto architectures with
multiple processors. Another challenge is to design the architectural features to enable
the processors to compose with each other efficiently.

This chapter uses an automatic target recognition (ATR) example to demonstrate
the next order of magnitude power/energy saving beyond DVS for data regular ap-
plications. We show our parallelized code with shared memory communication, and
we discuss the software run-time support in the form of adjusting references for each

pipeline stage.

5.2 Related Work

Dynamic voltage scaling technique has been studied extensively recently. Researchers
have addressed DVS related issues in the following aspects.

Real-time scheduling has been extended to DVS scheduling on variable-voltage
processors. A few analytical models have been proposed. Weiser et al. proposed the
initial scheduling model in [71], and the aspect of energy minimization was analyzed by
Yao et al. and the optimal off-line schedule is given in [74]. Hong et al. proposed an off-
line scheduling heuristic for non-preemptive systems in [25] and an on-line algorithm
for mixed workload of both sporadic and periodic tasks in [27]. Ishihara et al. analyzed
the optimal schedule for a processor that can operate in several discrete voltages in [34]
and proposed an integer linear programming solution. Okuma et al. proposed a DVS
scheme [48] that always guarantees deadlines for all tasks, although the energy may not
be optimal. Shin et al. presented a run-time checking mechanism that can shut down the
processor or adjust the processor speed [59] and an algorithm to minimize energy for
periodic tasks [60]. Quan et al. improved this technique by finding an optimal schedule

for both periodic and sporadic tasks [54].

98

More realistic DVS models have been proposed to consider design issues, e.g. DVS
overhead and the presence of the scheduler. Hong et al. presented a synthesis design
flow for variable-voltage processor cores [28]. The impact of DVS overhead is studied
with a few scheduling schemes. It turns out that the analytical models may not be
yield optimal solutions when overhead is taken into account. Burd et al. presented an
implementation scheme for a microprocessor with DVS capability [13]. In [52] Pering
et al. simulated different DVS scheduling algorithms and considered the presence of
the scheduler as a part of the system, and the DVS overhead is also examined.

Some researchers have applied DVS to embedded applications, where the processor
only deals with one or a few specific tasks. Shin et al. proposed an intra-task DVS
scheme [58] that tries to maximally utilize the slack time within one task, as opposed to
inter-task DVS scheme that borrows slack time from finished tasks. Im et al. proposed
an inter-task DVS scheme for multi-media applications in [32] based on the observation
that the slack time cannot be utilized when no task is available. The solution is to buffer

the tasks such that the slack time can be used when the buffer is not empty.

5.3 Motivating Example: ATR

We use an automatic target recognition (ATR) algorithm [61] as our motivating exam-
ple. Its block diagram is shown in Fig. 5.1. The algorithm is described in Fig. 5.2. It
takes a sample image as the input. TAeGET DETECTIONMOodule detectM targets

on the original image. For each target, a region of interest (ROI, which is a smaller
image surrounding the target on the original imagé) is extracted and Fourier trans-
formed by FFT module to space-frequency domain. The transforangds multiplied

by a few predefined templates, then Fourier transformed inversely by IFFT module
back to space domain. For each template, the resubirfghas a specific attribuéal

that indicates the distance of the target. If it is larger than a threshold vaieis

fed to thecoMPUTE DISTANCEMOodule, an image processing routine to calculate the

99

image

A 4

TARGET
DETECTION

M targets 4 _________
and ROIs

A4

outer loop:
for all targets

1
1
1
1
1
1
1

. 1
inner loop: 1 IFFT

for all templates 1
1
! ROls
1
1 Y
1
1 COMPUTE
1 DISTANCE
1
1
1

targets and
their distances

Figure 5.1: Block diagram of the ATR algorithm.

100

distance.

The timing requirement to the ATR algorithm is to sustain a frame rate, the number
of images processed per unit time. Its inverse is cdlii@tie delaywhich is the maxi-
mum delay time to process each frame. The goal is to reduce the energy consumption

of the processor for a given frame delay.

One key characteristic of the algorithm is that its execution delay falls in a diverse
range with regard td1, the number of targets detected tWARGET DETECTIONmMOd-
ule, since FFT and IFFT are quite computation-intensive. In additionif thate-
ment at label B also affects the distribution of the execution delay due to another

computation-intensive modutBOMPUTE DISTANCE

Among the current DVS techniqueisitra-task DVS58] is most suitable for this
problem. By applying this technique, static timing analysis is performed at compile
time to insert additional annotations at labels A and B to compute remaining the worst-
case workload (in worst-case instruction codwiCIC). In the beginning, the remain-
ingWCICis theW CICof the whole algorithm. At A, the remainingy CICis computed
based on number of targetk At B, the outcome of the conditional branch will modify
W CIC by subtracting the instruction coun) of COMPUTE DISTANCEmModule. The
ICs of other modules are fixed for fixed-size images, e.g.,,4288. Therefore, A and

B are the only places where the remainiigC|C could decrease.

During the execution of the algorithm at run-time, when a new frame arrives, the
processor speed is set based on the frame delay aNd@H€ of the whole algorithm.
As the program execution reaches A or B, the remaihgIC is updated and the

processor adjusts its frequency and voltage based on the remaining tiéGiad

It is notable that the voltage at point B could scaled made many times for each
image frame, since B is located inside the inner loop. In our current analytical study,
we set the maximum number of targets to 7, so there might be 0-7 targets in each

frame. The number of matching templates is 3. As a result, B could be reached up to

101

ATR (imageim, arrayT EMPLATE floatVaky)
TARGET:= TARGET DETECTIONim)
A: for each (targete TARGET) loop
roi0 := getRoi{m,target)
roil := FFT{oi0)
for each (templatec TEMPLATE) loop
roi2 = IFFT(oil x templaté
B: if roi2.Val > Val, then
COMPUTE DISTANCHK[0i2)
end if
end loop
end loop
format data and return computed distance

Figure 5.2: The ATR algorithm.

21 times for one frame. Therefore, to process each frame, the processor may change
its voltage/frequency up to 23 times, including the initial maximum speed setting and
the speed drop after A.

A typical power profile for intra-task DVS is shown in Fig. 5.3. It always starts
with a high power spike at the beginning of each time slot for one frame, and then
steps down once at A, followed by a few more drops each time wheif toadition
evaluates t¢-ALSEat B.

Intra-task DVS appears to be the right solution for reducing processor energy for
application-specific algorithms. However, there are still some issues that need to be
addressed for more energy efficient designs. For example, there is a high power spike
at the beginning of each time slot, because the initial processor speed is always set at
a high speed for the worst case. In most cases the worst-case instructioMtGLEt
is not a good measure of the typical workload of the application. Therefore, what is
seen in the power profile chart is a few sharp slumps after the initial spike at peak
power. By the time when one frame is about to be finished, the processor normally
operates at a very low power level; and it must switch to high power for the next frame

in anticipation for the worst-case workload.

A power profile in such a pattern has several undesirable properties. High peak

102

70 7

601\ f i

A |
N 'l |

30

Power
S

20 A

10 1

Time

Figure 5.3: Power profile of intra-task DVS.

power is known to have many negative effects, e.g. it shortens the battery life. In
addition, frequent switching between high-power mode and low-power mode will incur
an overhead on both time and energy when the processor is changing its supply voltage
and frequency. Although most DVS studies do not consider this overhead, it can be
non-trivial when the voltage change is significant. Finally, the power profile with high

jitters is not very energy efficient compared to a smooth one.

One potential solution to this problem is to extract the parallelism in the algorithm
and distribute the workload into multiple processors. Successful parallelization can
reduce both power and energy by running only a part of the code on each processor
at a slower speed. Even though more processors are involved, the overall energy and
power consumption will still be reduced significantly. However, it is generally difficult
to parallelize serial algorithms. In addition, parallel algorithms require sophisticated
support for synchronization, communication (e.g. cache coherence), etc., which may

consume even more energy than the energy saved by parallelization.

Another solution is to find one or more “average” speeds to execute the algorithm

103

such that the power profile is smoothed by lowering the height of the power spike;
meanwhile, the energy will be also reduced. In an “ideal” solution, the minimum
energy is achieved by running the processor at a constant speed such that the task
is finished just before the end of the allocated time slot. However, the value of this
optimal speed must be determined at the beginning to process the task, but it cannot be
known until the last instruction (actually the last branch instruction) of the algorithm is
completed. Thus, such an “ideal” solution is generally not possible. A partial solution

is to partition the algorithm into several segments such that an average speed can be
found for each segment. The energy spent within the segment is reduced; and it also

helps to lower the power spike.

5.4 Super DVS: Energy Efficiency through Parallelism

We present our newuper DVSechnique in Section 5.4.1 to improve the energy ef-
ficiency of the ATR algorithm. It explores parallelism of the algorithm by first par-
titioning the code, and then pipelining the execution of all partitions. This allows to
distribute the workload to multiple processors running at slower speeds. For each pro-
cessor, we apply DVS and derive the optimal constant speed that minimizes energy and
peak power at the same time. The new technique is called super DVS in the sense that
DVS is applied to each small partition of the code. Parallel execution normally needs
special treatment for communication. We propose a simple data handling technique
in Section 5.4.2 by managing FIFO buffers between processors. In Section 5.4.3, we
propose an additional scheme that processes multiple frames together to further reduce

energy consumption.

5.4.1 Super DVS

We first partition the algorithm into a few independent segments such that the average

speed can be found for each segment. Then, the partitioned code can be pipelined in

104

a multi-processor architecture. Finally, DVS is applied to each processor to achieve

energy and power reduction.

Partitioning: finding a constant speed for each partition

With intra-task DVS, the code of the whole algorithm is divided into segments that
are executed at different speeds. It is sometimes preferable to find a constant speed to
reduce energy consumption. Although such a goal is normally difficult for the entire
algorithm, finding the average speed for a portion of the algorithm is possible. We
observe that such possibility is largely dependent on the way in which the algorithm is
composed.

When intra-task DVS is applied to the ATR algorithm, due to the frequency changes
at A and B, many different speeds will be applied to run the algorithm. Even the same
code segment can be executed at different speeds. For example, if there are 5 targets
detected for a given frame, module FFT will be executed 5 times, possibly at different
speeds. However, because there is no loop-carried dependency across different itera-
tions of the outer loop (as well as the inner loop), we can reorder the execution of the
loops to execute those 5 instances of FFT together at a single speed. Similarly, the
potential constant speeds can also be applied to IFFTCambPUTE DISTANCE

The ATR algorithm must be reconstructed to apply this technique. In the two-
level nested loop, the iterations on both inner loop and the outer loop are executed to
completion. Although this is the natural way to exercise loops, we have to partition
the loop and reorder the sequence to access FFT, IFFTameéUTE DISTANCEfor
finding the average speed for each segment.

We reconstruct the algorithm and partition the two-level nested loop into three
stages. INSTAGEL, the algorithm finishes FFT for aM ROIls. Then, IFFT foiv
ROIs with different templates is performed $TAGE2. Finally, thoseK ROIs whose

target distances need to be calculated are processed toge#®da3. The modi-

105

N frames

|

STAGE 0:
TARGET
DETECTION

M

and ROIs

targets L

Y

STAGE 1:
FFT for all ROIs

M ROls

Y

all templates
e

STAGE 2:
MUL and IFFT
for all ROIs
and all templates

K ROIs

that n

compute distance‘

eed to

y

STAGE 3:
COMPUTE
DISTANCE
for all ROIs

(when necessary)

- L
~

ROIs and \
distances

previously the
2-level nested loop

Figure 5.4: Partition the nested loop into stages.

106

fied block diagram is shown in Fig. 5.4. At the beginnihg targets are detected in
STAGEOQ. Thereafter, the ROIs for these targets flow through the three following stages.

After the code transformation, the entire algorithm can be executed at four constant
speeds (actually three speed3AGE2 andsSTAGE3 can be executed in the same speed
since there is no conditional branch between them) for four stages. Special treatment
must be applied t@TAGE3 to achieve a constant speed. Theondition can be re-
solved atSTAGE2 after IFFT by attaching some flags to each ROI indicating whether
computing distance is needed. Therefore, the remaining workM@C of STAGE3
(WCIC(stage3) = K x IC(COMPUTEDISTANCEHE) is known before it is executed
such that the average speed can be calculated at the beginramgax3.

Through analysis, we observed this code partitioning and transformation technique
can moderately reduce energy by 5% - 15%. The reduction largely depends on the
input data set and the size of each partition. The detailed discussion is outside the
scope of this chapter. We still present the sketch of this technique because it naturally

leads to a parallel version of the algorithm.

Parallelization through pipelining

Parallelization on the algorithm can be helpful for power management. For example, if
an algorithm can be parallelized into two processors with each processing half work-
load and running at half speed, an approximatetyehergy reduction will be achieved
even after one new processor is added. However, in general it is quite difficult to par-
allelize an algorithm that has already been implemented in a serial style.

In the ATR algorithm, we observed that there is no data dependency between dif-
ferent image frames. Therefore, the code partition in Fig. 5.4 is ready to be executed in
parallel, by pipelining the execution of all stages on different processors. After pipelin-
ing the algorithm, each stage itself will have the execution time of one entire frame

delay, while all four stages together consume one frame delay previously. As a result,

107

more energy saving is available by slowing down the speeds of all processors. Ide-
ally, if all four stages are perfectly balanced, that is, they have the same workload, the
optimal energy reduction could be expected. However, this is generally not possible.
For example, the workload &fTAGE2 is about three times as much as thas 0AGEL,
since there will be three IFFSIfor each FFT. Also, the workload &fTAGEO is fixed;

while in other stages the workload will vary.

Super DVS: reducing energy in parallel

The final step is to apply DVS to each pipelined processor to improve energy efficiency.
We call the new technique super DVS since it applies DVS to a smaller partition of the
code. In Section 5.4.1 we already constructed the code partition for each stage such
that the code can be executed at a constant speed. In Section 5.4.1 we extended the
time slot for each stage as one frame delay for all processors. Therefore, we can find
an optimal speed for each stage that maximally utilizes the extended time slot.

Fig. 5.5 describes the parallel super DVS algorithms for four pipeline stages, re-
spectively. At the beginning of each stage, the processor speed is set according to the
W CICto be executed, which is always known ahead of time. Therefore, each processor
can set a near-optimal speed such that the execution of the code completes just in one

frame delay.

1. ForsTAGED, the workload is set 18/ CIC(STAGH). The actualC(STAGH) is
only slightly different fromW CIC(STAGB) since the modul@ARGET DETEG
TION is most computation intensive, while the instructions in the small loop to
handle buffers are trivial. Therefore, when the speed of its processor is decided
by the frame delayelayandWCIC(STAGH), the time slot with a duration
delayis almost fully utilized. The speed to execieaGEQ fixed for all frames
if the samedelayis given. StageO computes the number of targets in varidble

and putM ROIs into bufferROIO0.

108

STAGEO(timedelay imageim, buf ROIO)
setProcessorSpeel#{ay/W CIC(STAGEO))
TARGET:= TARGET DETECTIONim)
M:=0
for each (targete TARGET $loop
ENQUEUEROIO, getRoi{m,target))
M =M+1

end loop

return M

STAGEL(timedelay buf ROIO, bufROI1, int M)
setProcessorSpeei#ay/ (M «WCIC(L1)))
fori:=1,Mloop L1

roi := DEQUEUEROIO)
ENQUEUEROIL, FFT(oi))

L1: end loop

return M

STAGE2(timedelay, buf ROI1, bufROI2, int M,
arrayT EMPLATE floatValy,)
setProcessorSpeel#{ay/ (M = siz€ TEMPLAT B «WCIC(L2)))
K=0
for i=1,M loop
roi0 := DEQUEUKROIL1)
for each (templatec TEMPLATE$loop L2
roil = IFFT(oi0 x templaté
if roil.Val > Vakp then
K:=K+1
ENQUEUEROI2,roil)
end if L2end loop
end loop
return K

STAGE3(timedelay, buf ROI2, bufROI3, intK)
setProcessorSpeetiay/ (K «WCIC(L3)))
for i=1,Kloop L3

roi := DEQUEUEROI2)
roi.distance= COMPUTE DISTANCHIOI)
ENQUEUEROI3, roi)

L3: end loop

return K

Figure 5.5: Parallel algorithms for super DVS.

109

2. For STAGEL, the processor speed is set accordingtowhich is the number
of ROIs in bufferROIO, delay and the workload in loop LWCIC(L1). This
is because loop L1 will be executdd times during one frame delay, and the
WCIC of this loop can be analyzed staticallsTAGEL generate$M ROIs in

space-frequency domain after FFT, and puts them into bfgd.

3. In STAGE2, the processor speed is set based on the pararivetdesay, WCIC(L2),
andsiz§ TEMPLAT B, sincesTAGE2 will execute loop L2 ifM «siz§ TEMPLAT B
times. Although there is aifi block inside loop L2, the variance is trivial com-
pared with computation-intensive IFFT. Therefore, usWgIC(L2) to compute
the average speed is almost optimal. This stage prodU&&lIs to bufferROI2,

based on whether it is necessary to compute their distances.

4. Finally, in STAGE3, the processor speed is decidedydelayandW CIC(L3).
K ROIs are extracted from the input buffROI2 and distances are computed

accordingly in loop L3. The results are queued to an output bE@B.

The power profile for super DVS is shown in Fig. 5.6. During each period of one
frame delay, each processor is running at a constant speed. Therefore, the overall power
profile of all four processors is also constant during each period. Super DVS produces
a much smoother power profile compared to intra-task DVS by eliminating the high
peak spike. Significant savings on both power and energy are achieved by running the

new parallel algorithms.

5.4.2 Implementation related issues: buffer management

In this section we discuss a few implementation related issues. As the parallel algo-
rithm shown in Fig. 5.5, the four parallel processors communicate via FIFO buffers
containing data to be produced and consumed. Our assumption is a shared memory

organization, shown in Fig. 5.7.

110

OStage 3
% 3 O Stage 2
Iy H Stage 1
M Stage 0

Time

Figure 5.6: Power profile of super DVS.

In this memory organization, each stage produces new ROIs and appends them to
the tail of its output buffer, which is the same as the input buffer of the next stage.
Because the buffer size to be consumed next is passed to the consumer stage as the
boundary of the input buffer, when the consumer stage fetches data from the head of
the buffer, it will not access the data that is currently being generated by the producer.
The variables to indicate worklodd andK can be directly passed through to the next
processor, or they can be organized in some other buffers in the same manner. The
variabledelayis a constant or it can be set by external events, e.g. a user interface. It

also can be accessed in separate FIFO buffers to avoid simultaneous access.

This buffer management scheme significantly simplifies the communication be-
tween parallel processors. Fig. 5.7 shows that, at any moment during the execution of
this multi-processor system, any data in ROI buffers is accessed exclusively by at most
one processor. Simultaneous accesses to the same data from two or more processors
will never happen. (If variableM, K delayare also organized by separate buffers,
there is no simultaneous access to these variables as well.) This suggest the data access

is simplified to an extent that the processor does not need to acquire and release locks

111

buffer

read buffer:
v No images to
be consumed

write buffer:
Mo ROls to
be produced

Y

vy read buffer:
M1 ROls to
be consumed

write buffer:
M1 ROls to
be produced

Y

vy read buffer:
M2 ROls to
be consumed

write buffer:
K2 ROIs to
be produced

\4

No: IMAGE
number of
input frames l head
DEQUEUE
frame delay STAGE O: (_ |
TARGET
DETECTION
ENQUEUE I
Mo: tail
number of >
output ROI
A 4
——_——_——a -
| buffer or : buffer
I _di_refztlin_k N ROIO
M1q:
number of head
input ROI »
Y
DEQUEUE |
frame delay STAGE 1: (
> FFT for all ROIs
ENQUEUE
My: tail
number of >
output ROI
A 4
-—_——e -
, bufferor ! buffer
1 directlink ROI1
Mo:
number of head
input ROI >
v
frame delay STAGE 2: (DEQUEUE |
—>| MULand IFFT
TEMPLATE for all ROIs
and all templates
Val th ENQUEUE
K2: tail
number of >
output ROI
oy __
, buffer or
i
K3:
number of head
input ROI >
Y
STAGE 3: DEQUEUE |
frame delay COMPUTE (
DISTANCE
for all ROIs
(when necessary)

K3:

number of
output ROI

Figure 5.7: Pipelined processors with shared memory buffers.

ENQUEUE I
tail R

>

buffer

ROI3

112

v read buffer:
K3 ROIs to
be consumed

write buffer:
K3 ROIs to
be produced

\4

STAGEO(timedelay, buf IMAGE, buf ROIO, int N)
setProcessorSpeetiay/ (N +WCIC(LO)))
M:=0
for i :=1,N loop

im=DEQUEUE(IMAGE)

TARGET:= TARGET DETECTIONim)

for each (targete TARGET) loop LO
ENQUEUEROIO, getRo{im,target)
M:=M+1

LO: end loop
end loop
return M

Figure 5.8: ModifiedsTAGEQ to procesd frames at a time.

to access critical sections, since their is no critical section at all. For the same reasons,
the cache coherence protocol is not necessary to implement such a system, if each write
to the buffers will always commit to the shared memory. In fact, in many embedded

DSP applications, the processor may not have caches.

By this simple buffer managing technique, we can avoid some sophisticated data
handling mechanisms in general-purpose multi-processor systems, since they are not
necessary in this specific application. The implementation of such a system is also

easier than a general-purpose multi-processor system.

Although this parallel solution can reduce the energy of the processors, it may in-
crease the energy in the memory system. For example, the memory must be designed
to be multi-ported, which will increase the energy consumption. As many DVS stud-
ies do not consider the impact ofco the memory system, we also focus on the energy

reduction to the processors.

DVS control is made very easy for this multi-processor system. Since all processors
are working on totally independent data sets, the DVS control of each processor is
independent to each other, as far as they all finish in allocated time slots with the same
durationdelay In the shared memory organization, the four running processors with

different speeds pose some challenges to the memory designer. The memory system

113

must accommodate simultaneous accesses from processors at different speeds.

One alternative solution is to use some processors that can directly pass its pro-
duced data to the consuming processor. Each processor has built-in input and output
buffers to hold its local data set. The entire content of the buffer can be read/written
from/to other processors. If applicable, this type of processor is an appropriate choice
to implement ATR algorithm with super DVS technique. A sketch of directly linked

data communication is shown in Fig. 5.9

5.4.3 Coarser granularity: processing multiple frames together

Our super DVS scheme reduces the energy and power of the processors by introducing
a 3-frame delay for each frame. If more delay is allowed, we have an additional scheme
that can save even more energy.

We have discussed previously that it is preferred to find an average processor speed
at a coarser granularity (more workload). We have already applied this technique in
Section 5.4.1. We observed that different frames will be processed at different speeds
in STAGEL, STAGE2 andSTAGE3 (STAGEO always has the same speed), if we can
find out the average speeds to process multiple frames, we can expect more energy
reduction.

Such an addition is a straight-forward extension to the existing scheme. The only
change is thas TAGEO will now fetch N frames from its input buffer, which contains
multiple frames; and thdelaywill be changed accordingly by times forN frames.
(BothN and updatedelayare set externally.) The delay for each frame is now ranging
from 3N to AN — 1 frame delay. The modified algorithm f&TAGEO is shown in
Fig. 5.8. No change to the other stages is necessary.

In this chapter we present two types of techniques: |. parallelization (Section 5.4.1),
and Il. averaging the processor speed at a coarser grain (Section 5.4.1, 5.4.3). Our new

super DVS technique is a combination of these two techniques, plus DVS. Itis notable

114

N frames, N l

input buffer
frame delay STAGE O:
TARGET DETECTION
output buffer
M ROIs, M
\ 4
input buffer
frame delay STAGE1:
> FFT for all ROIs
output buffer
M ROIs, M
Y
input buffer
frame delay
—> STAGE 2:
all templates MUL and IFFT
for all ROIs and all templates
output buffer
K ROIs, K
Y
input buffer
frame delay STAGE 3:
—_ COMPUTE DISTANCE
for all ROIs
output buffer

Figure 5.9: Pipelined ATR with directly linked data connection.

K ROIs, K

115

Parameter Description Value
Vmax the maximum supply voltage 3.3V
Vth the threshold voltage 0.8v
Fmax the maximum frequency 1GHz
Pmax the maximum power consumption normalized to 100 when Nsw = 1
Tmax the time overhead to swith between on and off| 50 ps, 50k cycles at full speed
V,F, P, |current voltage, frequency and power to be calculated

Table 5.1: An abstract model of a voltage-scalable processor.

that these new techniques and the existing power management techniques, including
DVS (intra-task, and inter-task), static voltage scaling (SVS), shutting down idle com-
ponents, and etc., are orthogonal techniques such that they can be applied either in-
dividually, or in combination. For example, if another parallel partition is available
without finding an average speed for each processor, power and energy savings are still
available. If DVS is not allowed, SVS can be applied to pipelined processors.

We will present some analytical results on energy reduction of super DVS technique

in next section.

5.5 Analytical Results on Energy Reduction

In this section we present an analytical study to the new super DVS technique. We

compare the results with the best-known existing technique, which is intra-task DVS.

5.5.1 An empirical processor model

We assume an abstract processor model for our analysis. A parameterized voltage-
scalable processor is shown in Table 5.1. The peak power value is normalized to 100
to simplify the comparison. We also assume all the four processors running pipelined

ATR algorithms with super DVS are the same type of the processor as the one which is
running the serial algorithm with intra-task DVS, although in practical concerns they

will probably be different types of processors.

116

Segment WCIC . Nsw
(1000 instruction) Series | Numbe of | Numbe of targets Frame
LO 400 1 Frames per frame delay
L1 170 1 A 200 0 - 2 (light workload) 16.7ms
L2 194 1 B 200 5-7 (heavy workload) | 16.7ms
L3 377 1 C 200 random 16.7ms
(a) parameters of code segments (b) parameters of input data series

Table 5.2: Parameters of the code and input data.

We use the following equations to compute param@terV.

N2
F—C \Y VVth) (5.1)
P = CoNswV2F (5.2)

Ct andC, are processor dependent constants. They can be computed by applying
maximum values o¥, F, P. Nsy is a factor indicating the number of switching activities

per cycle, it depends on the program.

5.5.2 Properties of the algorithm and data set

Table 5.2(a) gives the instruction count of the loops in each stage. These numbers are
used in both intra-task DVS and super DVS to update the workload. The four code
segments do not show a large variance in power consumption, indicating that the factor
Nsw is about the same for all segments. For simplicity we set them all to 1. We assume
the frame rate is 60 frames per second. Therefore the frame delay is 16.7ms.

We apply three series of input images. The first series A has very few targets in
each frame, ranging from 0-2. That is, the workload of the algorithm is far less than
the worst case. The second series B has a heavy workload with 5-7 targets per frame.
In set C, the number of targets is random. The input data sets are summarized in

Table 5.2(b)

117

. Energy Peak Power
Technique - -
value * % reduction value * | % reduction
Intra-task DVS 11.7 63.7
Super DVS (N =1 frame) 4.53 61.3% 3.17 95.0%
Super DVS (N = 2 frames) 4.45 62.0% 3.17 95.0%
Super DVS (N = 4 frames) 4.38 62.6% 2.89 95.5%
Super DVS (N = 8 frames) 4.34 62.9% 2.10 96.7%
Input image data: series A (light workload)
) Energy Peak Power
Technigue - -
value * % reduction value * | % reduction
Intra-task DVS 84.4 63.7
Super DVS (N =1 frame) 33.4 60.4% 14.9 76.6%
Super DVS (N = 2 frames) 33.2 60.7% 12.8 80.0%
Super DVS (N = 4 frames) 33.1 60.8% 11.3 82.3%
Super DVS (N = 8 frames) 33.1 60.8% 10.7 83.2%
Input image data: series B (heavy workload)
) Energy Peak Power
Technique - -
value * | % reduction value * | % reduction
Intra-task DVS 49.5 63.7
Super DVS (N = 1 frame) 19.7 60.2% 18.8 70.5%
Super DVS (N = 2 frames) 17.9 63.8% 11.9 81.3%
Super DVS (N = 4 frames) 17.0 65.7% 10.9 82.9%
Super DVS (N = 8 frames) 16.4 66.9% 9.46 85.1%

Input image data: series C (random workload)

Table 5.3: Energy and power saving achieved by super DVS.

from the analytical results.

1. Intra-task DVS is not quite “low-power” in the sense that its peak power is always

118

* energy and power values
are normalized

5.5.3 Power and energy reduction by super DVS

Table 5.3 shows both energy and (peak) power reduction of super DVS compared with
intra-task DVS. We also vary the number of frames per image group to examine the
effect of an increased granularity by averaging the larger workload among multiple
frames. In all three input series, super DVS exhibits a 60% energy reduction;and the

peak power can be reduced by as much as 80%-90%. We make following observations

the same (the high-power spike) regardless of the workload, because it always
starts from the worst case. On the other hand, super DVS adapts both energy and

power to the workload very well.

2. Super DVS can significantly reduce both power and energy compared with intra-
task DVS. The percentage reduction to peak power is more than the saving on
energy. This is because super DVS produces a more smoothed power profile,

while the power profile of intra-task DVS always has high peaks and sharp jitters.

3. When the workload does not vary too much (series A and B), processing mul-
tiple frames together may not yield extra gains. This is due to the fact that the
average speed in multiple frames is not quite different from speeds in individ-
ual frames. While in series C, where the workload varies in a diverse range,

additional savings can be achieved at a coarser granularity.

5.5.4 The impact of DVS overhead

Not every DVS study has considered the DVS overhead, the overhead to change the
voltage of the processor. Mostly they assume it is either free, that is, the frequency and
voltage of the processor can be changed in zero time and zero energy, or the overhead
is trivial. These assumptions are generally not true.

We propose an abstract model for an analytical study to see how much the overhead
can impact the energy cost of DVS techniques. Our model is simple: we assume a
parameteinax Which is the maximum time overhead when the processor is switched
between off F = 0) and full speedqnax Tmax iS @ processor dependent constant. It
indicates how quickly the processor can switch from one voltage/frequency setting to
another. We assunig,ax= 50us equivalent to 50,000 cycles at maximum clock speed.

For a frequency/voltage change from settiAgF; to V»/F,, the time overhead is

scaled by the frequency differenEgandF,, that is,

119

DVS granularity Coarse-grain Fine-grain Very-fine-grain
100% workload 50% workload 10% workload
Techniques 100% frame delay | 50% frame delay | 10% frame delay

Intra-task DVS 3.87% 7.52% 29.5%
Super DVS (N = 1 frame) 0.002% 0.004% 0.02%
Super DVS (N = 2 frames) 0.001% 0.001% 0.01%
Super DVS (N = 4 frames) <0.001% 0.001% 0.005%
Super DVS (N = 8 frames) <0.001% <0.001% 0.003%

Table 5.4: Energy overhead vs. different DVS granularity.

|F — Fyf

Fm ax

TV]_/F]_*VZ/FZ = Tmax (53)

For simplicity, we also assume during the switching time, the average power over-
head is the average & andP,, which refer to the power consumption before and
after the change. The energy overhead can be computed accordingly. In reality, the en-
ergy spent on DVS may be even higher. Some other models of the overhead to change
processor voltage can be found in [13, 28].

We present the impact of voltage-changing overhead to intra-task DVS and super
DVSin Table 5.4. Data series A is applied for this study. The first column of the results
shows that intra-task DVS spends up to 4% of energy on changing voltage, which may
not be considered as “trivial”’; while such overhead for super DVS is less than trivial.
We could try to increas@nax and see how sharply the overhead grows on intra-task
DVS. However, because it may not be meaningful to have very large valUgs,dbr
recent processors, we consider the equivalent cases by working on a smaller data set
while fixing Tmax This refers to fine-grained DVS, in which cases the voltage changes
are made quite frequently such that the DVS overhead is comparable to the slack time
being saved by DVS.

In the ATR algorithm, suppose we want the algorithm to work on images with
smaller size or less pixels. Therefore, W& IC of the program segments in Table 5.2

will all decrease. We assume they will decrease by the same factor, approximately.

120

On the other hand, since the algorithm is dealing with less amount of data, its frame
delay should be also decreased accordingly such that the performance of the algorithm
is sustained (it is still processing the same amount of data in unit time). For example, if
the image size is reduced by half (50% pixels), alMW€ICin Table 5.2 should reduce

by a factor of 50%, while the frame delay also reduces to its half. This is a reasonable
assumption for fine-grained DVS.

In Table 5.4 these cases are studied to examine the impact of overhead when DVS
is applied in finer granularities. It indicates that intra-task DVS may not be scalable
very well to finer granularities with the sharply growing energy overhead. For exam-
ple, in the third column, intra-task DVS will spend 30% of the energy on changing
voltage. This is because intra-task DVS potentially have more frequent and more dra-
matic voltage changes. Especially, during each frame the processor must be switched
from low-power to high-power once with larger time and energy overhead; and this
overhead will be even more expensive in fine-grained cases. In contrast, the DVS over-
head still remains trivial for super DVS. Super DVS incurs four voltage changes per
frame, and these changes are quite smooth with small overhead. The overhead can
be further amortized by processing multiple frames together where only four voltage
changes are applied dframes. As a result, intra-task DVS (and potentially inter-task
DVS) may not be scalable to finer-grained applications, and will suffer more from the
overhead on slowly-switched processors. On the other hand, super DVS will be still
applicable to finer-grained applications or on processors that switch between different

voltage/frequency settings slowly.

5.6 Chapter Summary

Increasing the level of parallelism is known to be beneficial for power management.
However, this area is often overlooked in recent studies due to the difficulty to par-

allelize serial algorithms. In this chapter we present a new technique that effectively

121

parallelizes an image processing algorithm such that it could be pipelined in a four-
processor system. The energy efficiency is improved by slowing down each processor;
meanwhile the performance requirement is compensated by increased parallelism. We
propose a super DVS technique that combines the parallel approach with DVS. We
successfully discover an optimal voltage setting for each processor to minimize both
energy and peak power. The new technique will enable the existing DVS techniques to
further reduce energy by the next order of magnitude. It also reduces the DVS overhead
and is proven to be more scalable to finer-grained applications, where the overhead to
change the processor’s voltage setting is very costly. We believe our new technique is
generally applicable to a large class of signal processing applications with regular data
access patterns. The work proposed in this chapter represents one of the core CAD

tools in a larger design framework for energy efficient embedded systems.

122

Chapter 6

Communication Speed Selection

and Partitioning

High-speed serial network interfaces are becoming the primary way for modern em-
bedded systems and systems-on-chip to connect with each other and with peripheral
devices. Modern communication interfaces are capable of operating at multiple speeds
and are opening a new dimension of trade-offs between computation and communica-
tion. Unfortunately, today’s CPU-centric techniques often fail to consider multi-speed
communication and the balance between communication and computation for time and
energy; as a result, they yield sub-optimal if not incorrect designs.

This chapter presents a new technique for global energy optimization through co-
ordinated functional partitioning and speed selection for the processors and their com-
munication interfaces. We propose a multi-dimensional dynamic programming for-
mulation for energy-optimal functional partitioning with CPU/communication speed
selection for a class of data-regular applications under performance constraints. We
demonstrate the effectiveness of our optimization techniques with an image processing

application mapped onto a multi-processor architecture with a multi-speed Ethernet.

123

6.1 Introduction

Towards High-Speed Serial Busses on SoC

A key trend in systems-on-chip is towards the use of high-speed serial busses for
system-level interconnect. Serial busses offer many compelling advantages, including

modularity, composability, scalability, form factor, and power efficiency [11, 40, 57].

Modularity and composability are extremely important, because the sheer complex-
ity of these chips forces designers to raise the level of abstraction. Most SoC designs
are done by integration of intellectual property (IP) components as a way to manage
complexity while meeting time-to-market deadlines. Serial protocols are well under-
stood and have long been used in in automotive control (e.g., CAN from Bausch) and
consumer electronics (e.g2Q from Philips). More recent protocols such as FireWire
(IEEE 1394) and USB are commonly used not only for peripheral devices but also
for connecting multiple embedded processors. They provide a simple, standardized,
efficient, and scalable way of building loosely coupled systems. High-speed serial con-

trollers such as Ethernet are now an integral part of many embedded processors.

Serial busses also have power and form factor advantages. From automobiles to
computer peripherals, serial interconnects such as FireWire and USB are compact and
low power compared to SCSI or parallel, which are bulky, high power, and limited in
length. This is especially important for systems-on-chip, where gates are virtually free,
but wires are the most expensive part of the chip real estate. Long, parallel, shared
wires are not only high power but also suffer from clock skews and even cross talks
as the feature size shrinks. Serial controllers provide a clean abstraction by shielding
components from these low-level concerns. Moreover, modern protocols also support
plug-and-play and power management features such as subnet shutdown or link sus-
pension. These features and more make high-speed serial protocols an attractive choice

for rapid integration of SoC architectures.

124

Power/Performance Issues with Serial Networks

Of course, serial controllers come at a price. The area and IP licensing will have a cost,
but this cost might be justified by time-to-market or other overriding business concerns.
In fact, it might be even less of an issue for future IP, which will likely have these serial
controllers integrated. For example, AMD’s newly announced Aul100 [1] is a MIPS
based microcontroller with integrated 10/100-base T Ethernet, USB, and many other
I/0. However, power and performance will become the critical issues, as they directly
affect the correctness of the design.

For power optimization, previous efforts focused on the processor for several rea-
sons. The CPU was the main consumer of power, and it also offered the most options
for power management, including voltage scaling. However, recent advances in both
processors and communication interfaces are driving a shift in how power should be
managed.

CPU-centric power management has given rise to a new generation of processors
with dramatically improved power efficiency, and the CPU is now drawing a smaller
percentage of the overall system power. The insatiable demand for bandwidth has also
resulted in high-speed communication interfaces. Even though their power efficiency
(i.e., energy per bit transmitted) has also been improved, communication power now
matches or surpasses the CPU, and is thus a larger fraction of the system power. For
instance, the Intel XScale processor consumes 1.6W at full speed, while a GigaBit

Ethernet interface consumes 6W.

System Power Management with Speed Selection

Many communication interfaces today support multiple data rates. However, the scal-
ing effects tend to be opposite those of voltage scalable CPUs. For CPUs, slower speed
generally means lower power and lower energy per instruction; but for communication,

faster speed means higher power but often less energy per bit. This is highly dependent

125

on the specific controller. Few research works to date explored communication speed

as a key parameter for power optimization.

Speed selection cannot be performed for just communication or computation in iso-
lation, because a local decision can have a global impact. One reason is that communi-
cation now goes through a shared medium rather than point-to-point. The CPUs cannot
all be run at the slowest, most power-efficient speeds, because they must compete for
the available time and power with each other and with the communication interfaces.
A faster communication speed, even at a higher energy-per-bit, can save energy by cre-
ating opportunities for subsystem shutdown or voltage scaling the processors. Greedily
saving communication power may actually result in higher overall energy. At the same
time, functional partitioning must be an integral part of the optimization loop, because
different partitioning schemes can dramatically alter the communication payload and

computation workload for each node.

Approach

For a given workload on a networked architecture, our problem statement is to generate
a functional partitioning scheme and to select the speeds of communication interfaces
and processors, such that the total energy is minimized. In general, such a problem is
extremely difficult. Fortunately, for a class of systems with pipelined tasks under an
overall latency constraint, efficient, exact solutions exist. This chapter presents a multi-
dimensional dynamic programming solution to such a problem. It formulates the en-
ergy consumed by the processors and communication interfaces with their power/speed
scaling factors within their available time budget. We demonstrate the effectiveness of
this technique with an image processing algorithm mapped onto a multi-processor ar-
chitecture interconnected by a GigaBit Ethernet. This technique is also applicable as a

heuristic to general dataflow problems.

126

6.2 Related Work

Previous works have explored communication synthesis and optimization in distributed
multi-processor systems. [72] presents communication scheduling to work with rate-
monotonic tasks, while [23] assumes the more deterministic time-triggered protocol
(TTP). [49] distributes timing constraints on communication among segments through
priority assignment on serial busses (such as control-area network) and customization
of device drivers. While these assume a bus or a network protocol, LYCOS [37] inte-
grates the ability to select among several communication protocols (with different de-
lays, data sizes, burstiness) into the main partitioning loop. Although these and many
other works can be extended to SoC architectures, they do not specifically optimize for

energy minimization by exploiting the processors’ voltage scaling capabilities.

Related techniques that optimize for power consumption of processors typically as-
sume a fixed communication data rate. [10] uses simulated heating search strategies to
find low-power design points for voltage scalable embedded processors. [45] performs
battery-aware task post-scheduling for distributed, voltage-scalable processors by mov-
ing tasks to smooth the power profile. [69, 68] propose partitioning the computation
onto a multi-processor architecture that consumes significantly less power than a single
processor. [17] reduces switching activities of both functional units and communica-
tion links by partitioning tasks onto a multi-chip architecture; while [29] maximizes
the opportunity to shut down idle processors through functional partitioning. All these
techniques focus on the computational aspect without exploring the speed/power scal-

ability of the communication interfaces.

Existing techniques cannot be readily combined to explore many timing/power
trade-offs between computation and communication. The quadratic voltage scaling
properties for CPU’s do not generalize to communication interfaces. Even if they
do, these techniques have not considered the partitioning of power and timing bud-

gets among computation/communication components across the network. Selecting

127

communication attributes by only considering deadlines without power will lead to

unexpected, often incorrect results at the system level.

6.3 System Model

This section defines a system-level performance/energy model for both computation
and communication components in a networked on-chip multi-processor architecture.
In this chapter, a system consistsMfprocessing nodel;,i = 1,2,...,M connected
by a shared communication medium. Eacbcessing nodéor nodefor short) consists
of a processor, a local memory, and one or more communication interfaces that send

and/or receive data from other nodes.

6.3.1 Jobs and Tasks

A processing jolassigned to a node has thtasks RECV, PROG andSEND which

must be executed serially in that ordRECV andSENDare communication tasks on
the interfaces, anBROCis a computation task on the processor. Tarkload for

each task is defined as follows. For communication t&Kk€VandSEND workload

W andW; indicate the number of bits to be received and sent, respectively. For the
computation tasPROG the workload/\ is the number of cycles. L&, Ty, Ts denote

the delaysof tasksPROG RECV and SEND respectively. Lef, denote the clock
frequency of the processdf; andFs the respective data bit rates for receiving and

sending. We have

W, W
:J; Tr:%; Ts= >

T =
TR F Fs

(6.1)

(6.1) is reasonable for processors executing data-dominated programs, where the

total cyclesW, can be analyzed and bounded statically. However, it does not hold true

128

in general if the effective data rate can be reduced by collisions and errors on the shared
communication medium. We present the collision-free condition of the shared medium
in Section 6.4.

To model the non-ideal aspect of the medium, we introducectimemunication

efficiencyterms,p, andps,

W W
0< <1, such thafl; = andTs= .
S Pr,Ps< 1, Su r orFs s OoFs

Note thatp, and ps need not be constants, but may be functions of communication
speedd~,Fs. For brevity, our experimental results assume an ideal communication
medium p; = ps = 1) without loss of generality. A more practical communication
model can be directly applied, sinpeandps can be very well bounded for a collision-
free medium.

D is adeadlineon each processing job, which requirkst Tp + Ts < D for the
three serialized tasks. If any slack time exists, then we can slow dowfPROKCby
voltage scaling to reduce energy. Therefore, we assume the job finishes at the deadline.

That is,

6.3.2 Power Scaling

On each node, we assume only the processor and the communication interfaces are
power-manageable by speed selection. The power consumption by the communication
medium is interpreted to be the total power consumed by all active communication in-
terfaces. We assume a processor’s voltage-scaling characteristics can be expressed by
a scaling functiorScalg, that maps the CPU frequency to its power level. A communi-
cation interface also has scaling functions that characterize the power levels at different

communication data rates for sending and receiving. (6.2) imfiede, is continu-

129

ous, while communication interfaces support only a few discrete scaling points. Let
Pp, Pr, andPs denote the power levels of tasRROG RECVandSEND respectively,

then,

Pp = Scalg(Fp); P =Scale(F); Ps= Scalg(Fs) (6.3)

Let Poyh denote the power overhead when introducing an additional node into the
system. It captures the power of the memory, minimum power of the CPU and commu-
nication interface, CPU’s power durifiRECVandSEND(DMA), and communication

interfaces’ power durinfROC

The energy consumption of a taskthe power-delay product. L&y, E,,Es, and
Eovh denote the energy consumption of taB#®0OC RECV, SEND and overhead of a

node,

Ep=PpTp; Er=RT; Es=PsTs; Eovh=PownD (6.4)

For one nod&\;, with tasksPROG, RECYV, andSEND, thetotal energy of node;N

En = Ep +Er, + Es +Eowy (6.5)

Fig. 6.1 shows the structure of a processing node. The gray bar represents the
overhead and white bars represent t&BE€V, PROCandSEND The area of the bars

refers to the energy contribution of the tasks and overhead.

Finally, thetotal energy of the systeim the sum of energy consumption on each

node,

130

delay:

Power 4 _ delay: -
Tr=Wr/ FL,‘ delay: — Ts=ws/Fs —

. Tp=Wp/Fp _. N

Wp cycles on processor

| Recv [T proc SEND g,
PROC T power: Pr Pp power: Pp power:PSJ

receiving sending speed: Fr | | speed: Fp speed: Fs l
Wr bits Ws bits OVERHEAD power:|Povh
‘ D ‘ Time
(a) block digram (b) timing-power digram
Figure 6.1: Timing and power properties of a processing node.
M
Esys: ZiENi (6.6)
i=

6.3.3 M-Node Pipeline

This chapter considers a special case callellarode pipelinelt consists of identical
nodesN;,i = 1,2,...,M as characterized b$calg,Scale,Scalg,Eon. Each node

N; receivesW, bits of data from the previous nod¢_; (exceptN;), processes the
data inWj, cycles, and sends the; -bit result to the next nodi 1 (exceptNy). Each
SEND — RECV. 1 communication pair sends and receives same amount of data at the
same communication speed, with the same communication delay, and we assume they
start and finish at the same time. ThaMg, =W, _,,Fs = F,,,,Ts = Tr, ;. Allnodes

have the same deadliite and each node acts as a pipeline stage with d2ldsig. 6.2
shows an example of a three-node pipeline. For brevity, the overhead is not shown.
Fig. 6.2(c) shows the pipelined timing diagram by folding the tasks in Fig. 6.2(b) into
a common interval with duratioB, which is the delay of each pipeline stage. During
each time interval with a duratidb, the first node of the pipeline will be fed with one

set of incoming data; meanwhile one set of resulting data will be produced by the last
node. Section 6.4 presents the schedulability conditions féMl-aiode pipeline based

on collision and utilization of the shared communication medium.

An M-node pipeline can be partitioned and mapped ontd‘anode pipelinef’ <

131

Wp1 cycles on processor Wp?2 cycles on processor Wp3 cycles on processor

o

N1 ’ N2 [:>’ N3

receiving communicating communicating sending
Wrl bits Ws1 =Wr2 bits Ws2 =Wr3 bits WSs3 bits
(a) block diagram
Power 10 = Ts1=Tr2
Trl 1 -
—— Tpl —
N1 IRE SE
cvi PROC1 ND1
oo D | Time
Power T1= Ts2 = Tr3
Trzszl [
P Tp2 —
N2 RE
V2 PROC2 PEND2
Time T3 =
Power ‘ D T2 = ! Ts3
T3=Ts? L
- o Tp3 |
N3 SE
RECV3]
PROC3 D3
[D | Time
(b) serialized timing-power diagram
Power T1
TO, 4 -
. Tpl |
N1 |RE SE
cv1 PROC1 ND1
| D | Time
Power
-T2 |11
— Tp2 — -
N2 SEND2| RE
PROC2 cvol
feonono—— D | Time
Power T3
L
—r _~4Tm
— Tp3-T1 - 1Ly
N3 PROC3 SE |RECV3|PR
ND3 bca
[D | Time

(c) pipelined timing-power diagram

Figure 6.2: A 3-node pipeline.

132

M) by merging adjacent nod@§,Ni;1,...,Ni,j(j > 1) into a new nodé\;. The new
nodeN; combines all computation workload, receilds bits of data, and sencwSj

bits of data. Communication within a node become local data accesses. Wigtis,
lezowpi+| , andW =W, W, =W, . The newM’-node pipeline is calledpartitioning

of the initial M-node pipeline.

6.4 Schedulability Conditions

This section presents the schedulability conditions for the pipelined on-chip multi-
processor system. In the pipelined timing diagram Fig. 6.2(c) of the three-node pipeline,
we fold the tasks in Fig. 6.2(b) into a common interval with duratiyrwhich is the

delay of each pipeline stage. Note that there appear to be two instances BR@gk

on nodeNs. This does not mean that taBIROCon nodeNs is preempted. In fact, each
instance is a part of an integrated td8ROC across the boundary between pipeline
stages. In other words, the boundary between pipeline stages resides in the middle

during the execution of tadRROC

Fig. 6.2(c) shows that due to the common deadlihbecommunication activities
are shifted to different time slots, such that at any given time, there is at most one ac-
tive communication instance @END — RECV,1 pair, e.g.SEN® — RECV3 and
SENDOL — RECV2 are serialized). This is especially meaningful if all nodes share the
communication medium such as Ethernet instead of point-to-point connections. If col-
lision does not occur, then our estimation on both performance and energy of the whole
system can be well bounded. Collision is always undesirable because retransmission
costs both time and energy. Communication activities should be scheduled such that

the system is collision-free.

Lemma 5 (Collision-free Condition) In an M-node pipeline with a deadlinB, let

133

T,i=0,1,...,M indicate the delays d¥l + 1 instances of data communication.

The system does not have collision on the shared communication médtium
the utilization of the shared communication medium is less than or equal to 1. That is,
&

Jq (6.7)

U:
=1

Note that for a general multi-processor, Lemma 5 expresses/gréoadcondition
and can be only a necessary condition for a collision-free schedule. However, it is also
a sufficient condition foM-node pipelines as defined in Section 6.3.3, because this
special case of pipelining has the property of serializing all communication instances.

Lemma 5 is also the schedulability condition for the shared communication medium.

Lemma 6 (Schedulability Condition of One Node) In anM-node pipeline with a dead-
line D, V nodesN;,i =1,2,...,M, N; is able to meet the deadlimiff

N; is notoverloadedthat is,

n%a\tiv(ﬁi:pi) <D-T,;—Ts (6.8)
Lemma 6 states theverload condition of one node: given the communication
speeds (that determine communication del&ysls), if its computation task cannot
be completed before the time buddet- T, — Ts by operating at the maximum CPU
clock rate, then this node will fail to meet the deadld@nd thus the whole pipeline
will be malfunctioning. If Lemma 6 cannot be satisfied, then the only way to meet the

deadline is to select higher communication speeds to refjudg, in order to allocate

134

Wrl = N1: Ws1 N2: Ws2 N3: Ws3 N4: Ws4 N5: Ws5 =
128Kb =Wr2 =Wr3 =Wr4 =Wr5 14Kb
patection 21460 | g (7190 | o [eKe| e |zex Dretinoe

— N,
—> > — — > —>
Wpl= Wp2 = Wp3 = Wp4 = Wp5 =
400K 1190K 504K 3570K 2639K
cycles cycles cycles cycles cycles

Figure 6.3: Functional blocks of the ATR algorithm.

additional time budget for computation. High-speed communication can also reduce

communication collision to satisfy Lemma 5.

Lemma 7 (Schedulability Condition of the System)An M-node pipeline is schedu-
lable to meet a deadline iff
(1) V nodeN;,i =1,2,...,M, N; meets the deadline (Lemma 6), and (2) The shared

communication medium is collision-free (Lemma 5).

Lemma 7 says that the system’s schedulability is determined by the schedulability
of all resources, including! nodes and the communication medium. If and only if
none of them is overloaded, the system can be pipelined by the delBdliremma 7
holds true only for thisM-pipeline organization; it is a necessary but not sufficient

condition for a general multi-processor system.

6.5 Motivating Example

We use an automatic target recognition (ATR) algorithm (Fig. 6.3) as our motivating
example. Originally it is a serial algorithm. We reconstructed a parallel version and
mapped it onto pipelined multiple processors. Pipelining allows each processor to run
at a much slower speed with a lower voltage level to reduce overall computation en-
ergy, while parallelism compensates for the performance. Of course, a multi-processor
platform incurs energy for inter-processor communication, extra processors, memaory,

and other overhead.

135

Power

Node N1

SEND1
RECV1
10 Mbps PROCT @ 10 Mbps
@300MHz
| OVERHEAD
‘ b ‘ Time
Power
Node N2
RECV2 SEND2
10 Mbps PROC2 @ 10 Mbps
@300MHz
| OVERHEAD
| b | Time

(a) A fine-grain partitioning scheme reduces energy on computation, at the
cost of inter-proessor communication and overhead of additional nodes.

Power Power RECVL SEND2
Merge N1 and N2 @ 100 Mbps @ 100 Mbps
into a combined node N Node N
PROC (increased workload) SEND2
Fi%?\;/t} < @600MHz @ 10 Mbps
P PROC @300MHz
1 OVERHEAD OVERHEAD
‘ D 1 Tlmel D 4" Time
(b) The combined node reduces (c) The computation energy can be reduced
communication and overhead, by increasing communication speeds,
but it requires more energy which leaves more time on computation.

for computation.

Figure 6.4: The impact of different partitioning schemes and communication speed
settings.

136

Mapping Task to Node through Partitioning

Given the five functional blocks (tasks) of the ATR algorithm, several partitioning
schemes are possible for mapping the tasks to a number of pipelined nodes. Fig. 6.4
shows an example by considering how they map the first two tasks onto nodes. In
Fig. 6.4(a), they are mapped onto two no8idsandN2 that are both allowed to oper-
ate at a lower speed (300MHz) for computation. This scheme has lower computation
energy than if they were mapped onto one node, but it requires energy on communi-
cation taskSENDL — RECV2, plus overhead. Fig. 6.4(b) shows a mapping onto one
node. It eliminates the communicati&kE NOL — RECV2 and the overhead of an extra
node. However, the combined node has much more computation workload and must
run at a faster clock rate (600MHz), a less energy-efficient level.

Zooming out, many partitioning schemes are possible, even when limited to a
pipelined organization. For example, one partitioniNdg, N2][N3, N4, N5] may be op-
timal for nodesN1 andN2; but it will preclude another solutidiN1], [N2, N3], [N4,N5]

that may lead to lower energy for the whole system.

Speed Selection for CPU and Communication

In additional to partitioning, the selection of communication speed is an equally critical
issue. For example we consider a 10/100/1000Base-T Ethernet interface. It consumes
more power than the CPU at high (100/1000Mbps) speeds, but less power than the CPU
at the slower, 10Mbps data rate. In Fig. 6.4(b), the processor must operate at a high
clock rate due to the low-speed communication at 10Mbps. Because of the déadline
communication and computation compete for this budget. Low-speed communication
leaves less time for computation, thereby forcing the processor to run faster to meet
the deadline. Conversely, high-speed communication could free more time budget for
computation, shown in Fig. 6.4(c), where the CPU’s clock rate is dropped to 300MHz

with 200Mbps communication. Although extra energy could be allocated to communi-

137

cation, if the energy saving on the CPU could compensate for this cost, then (c) would
be more energy-efficient than (b).

The communication-computation interaction becomes more intricate in a multi-
processor environment. Any data dependency between different nodes must involve
their communication interfaces. The communication speed of a sender will not only
determine the receiver’s communication speed but also influence the choice of the re-
ceiver's computation speed. The communication speed on the first node of the pipeline
will have a chain effect on all other nodes in the system. A locally optimal speed for

the first node will not necessarily lead to a globally optimal solution.

Combining Partitioning and Speed Selection

Partitioning and communication speed selection are mutually enabling each other. Given
a fixed partitioning scheme, the designers can always find the corresponding optimal
speed setting that minimizes energy for that scheme. However, energy-optimal speed
selection for a partitioning is not necessarily optimal over all partitionings. Instead, par-
titioning and speed selection are mutually enabling. In this chapter, we take a multi-
dimensional optimization approach that considers performance requirement, schedu-
lability, load balancing, communication-computation trade-offs, and multi-processor

overhead in a system-level context.

6.6 Problem Formulation

Given anM-node pipeline, the choices of partitioning and communication speed set-
tings will lead to different energy consumption at the system level. This section formu-
lates the energy minimization problems by means of partitioning and communication
speed selection. In both cases, the optimal solutions can be obtained by dynamic pro-
gramming. Finally, the combined optimization problem with both partitioning and

communication speed selection can be addressed synergistically by multi-dimensional

138

dynamic programming.

Problem 1 (Optimal Partitioning) Given

(a) M pipelined noded; with workloadWy, ,\ W, Wy, i =1,2,....M,

(b) a deadliné for all nodes, and

(c) the constraint that the speed settings of all communication instance must match:
Fo,Fs =F ., Fsy,fori=12,....M—-1,

find a partitioning scheme that minimizes eneBys

To avoid exhaustive enumeration in t¢2M-1) solution space, we construct a
series of sub-problems as follows. We consider a sub-proBignj] that maps the
first j original nodesN;, Ny,...,N; onto a sub-partitioningnodesN;,N,...,N/. The
optimal solution ofP[i, j] has the minimum enerd(i, j]. It can be decomposed into
two parts shown in Fig. 6.5: (a) a sub-partitioniRf — 1,1] that maps first origi-
nal nodes td — 1 new nodes, plus (b) tH&" new nodeN/ that combines the original
nodesN 1 1,...,N;j with its energy denoted &5y;. In order to achieve the minimum
energyEli, j], the energy consumption of (a) must also be an optimal sub-solution
E[i —1,1]. Sincel can be any value in a rande- 1 <| < j—1, E[i, j] must also
be the minimum value oE[i — 1,1] + Ey over all these possible values of That
is, Efi, j] = mini_1<i<j—1{E[i — 1,I] + Eyy}. Any optimal sub-solutiorE[i, j] can be
derived from other optimal sub-solutiosi — 1,1]. Therefore, the problem has an
optimal sub-structureand adynamic programmingpproach is appropriate. It is il-
lustrated in Fig. 6.6. MatriE[i, j] is initialized toe for 0 <i < j <M. We define
E[0,0] =0 and it can be used to compute the first i6{4, j], j = 1,2,...,M. For any
entryE[i, j], its value can be computed by entries in the previousE@w 1,1],i —1 <
| < j—1. These entries are shaded in Fig. 6.6. Thus, a series of optimal sub-solutions
E[2,j],E[3,]],...,E[M, j] in each row of the matrix can be computed subsequently. Fi-
nally, these sub-solutions lead to the global optimal solution s { E[i, M]}, which

maps allM original nodes onto a new partitioning with minimum energy. Note that the

139

j original

i-node optimal
sub-partitioning :
. L ' ' — il
with minimum energy
E[i, j] ;
(a) a sub-partitioning that maps | nodes N1, ..., N| (b) the last new node N'i combines nodes
on to i-1 new nodes N'1, ..., N'i-1 with minimum energy ' NI+1, ..., Nj with energy

E[i-1, 1] ENi

Figure 6.5: The optimal sub-structure of Problem 1.

same algorithm can also solve the optimal partitioning onto a fixed number of nodes.
For exampleE[i,M] is the optimal energy for mappin§l nodes onto an arbitrary
i-node new partitioning.

To summarize, the optimal cost functi@nis defined as follows:

0 fori=j=0
o _Uli—-1,1]
Efi,j] = _ _ it W (6.9)
min Eli—1,1] +e5<1
]
i—1<i<j—1 +En for 1<i<
<M

To guarantee each optimal sub-solution is schedulable, by Lemma 7, the commu-
nication medium must be collision-free, and any node in the new sub-partitioning must
not be overloaded. We defineuilization matrix U[i, j] indicating the utilization of
the communication medium corresponding to the optimal solution of a sub-problem
P[i, j], which is guarded bW i, j] <1 (Lemma 5).U is initialized to, while setting
u[o0,0] = % (= % in(6.7)), indicating the bandwidth used by the first communication
instanceREC\,. We also define the energy consumption of a nedesEy that refines

(6.5) by Lemma 6. If a node is overloaded, then its energy consumptéeinidicating

an invalid solution.

140

~
iNJo|1]2 j M
E[00]| o0 | o0 | 00 | o0 | c0o | 00 | o0 | 00 | 00 | oo
oo |E[11]|E[1.2] E[1,M]
2 | o | oo |E[22] E[2,M]
(o] o0
1] - © |5 by
i | o 00 Efi.i] E[i,M]
(o] (o]
(o] (o]
[oe] [ee]
o © E'\[AMl]l E[m}-l,
M| o | o0 | c0o | ©0 | 0 | c0 | o0 | 00 | cO | 0 E,\[,I"]A

Eopt = MIN {EQi, M1} ﬁ

Figure 6.6: The dynamic programming approach to solve Problem 1. EactEntry
can be computed by the shaded entries in the previous row. The global optimal energy
is the minimum value of the last column.

141

partitioningi [1 : M],Wg[1 : M],Wp[1 : M], R [1 : M], Fg[1 : M],
scalg,scale,scalg, D, Poyh)
fori:=0toM do
for j:=itoM do
Eli,j]:=Uli,j]:=P[i,j]:=00
E[0,0]:=0
U[0,0] :=W[1]/F[1]/D
fori:=1toM do
for j:=itoM do
forl:=i—1toj—1do
e=E[i-1I]+Ey
ui=Uli—1,1]+Ws[j] /Fs[j]/D
if u<lande<E[,]j] then

Eli,j]:=e
Uli,jl:==u
Pli, j] =1

Eopt, Popt := retrieve from matriceg, P
return Eopt, Popt

Figure 6.7: Optimal partitioning algorithm.

Uli,jl= _ for | that achieves (6.10)
Uli—11]
w, min{E[i, j]} in (6.9),
+5b
! forl<i<j<M
scalg (Fr)Tr+
scalg(Fs)Ts+ i Fp= %ﬁ_n < Fmax
i
En=1< scalg(Fy)To+ (To=FTs= ‘l/:lss) (6.11)
PoviD
0 otherwise

Fig. 6.7 shows the optimal partitioning algorithm derived from (6.9) and (6.10).
Thepartitioning matrix Hi, j] records the previous optimal sub-solutions for each sub-

problem. This information can be used to retrieve the optimal partitioRipg The

142

time complexity of this algorithm i©(M?) determined by the three-level nested loop.

Problem 2 (Optimal Speed Selection)Given

(a) a fixed partitioning scheme witl pipelined nodes\; with workloadWy, , W, , W,
i=1,2,....M,

(b) a deadlind for all nodes, and

(c) the available choices for communication speed setfiggk =1,2,...,C,

find all processor speeds, and communication speeélg, Fg that minimize energy

Esys«

We also perform dynamic programming as opposed to exhaustive se@¢®Mri!)
solution space. Since communication speeds decide processor speeds, we only se-
lect communication speeds for each node. Given that the sending speed and receiving
speed are equal for each communication instance, selecting only sending speed is suf-
ficient. We define a sub-proble8ii, k| that selects communication speeds for the first
i nodes, with the last nodsi’s sending speed selected to be #fechoice of speed
settings,Fs = F,. Its optimal sub-solution has minimum energyi,k]. As illus-
trated in Fig. 6.8, a sub-proble8ii, k] consists of two parts: (a) another sub-problem
Si — 1, m| that selects speed settings for the firstl nodes with nod&_;'s send-
ing speedrs_, = F,,, combined with (b) nod&j; with receiving speedr, = F, and
sending speels = F,. (a) must be an optimal sub-solution with minimum energy
E[i —1,m]. (b) has only one nodi; that receives data from (a) through spégg and
its sending speed i&,. Its energy is denoted &, (F = Fc,,,Fs = F,). Therefore,

Efi,k] =E[i —1,m +En (F = Fg,,, Fs=Fg,). In the sub-probler§]i — 1, m|, F,, can be
any choice among,,Fc,,...,Fe.. In order to achieve the minimum energyi, k], it
must be the minimum value among all possiBig. That is, the optimal sub-structure
of this problem can be defined B§i, k] = mini<m<c{E[i —1,m +Ex (F = Fg,,,Fs =

Fo)}

143

sending receiving sending

speed | speed speed
first i nodes where the last Fsii=Fecm | Fri=Fem Fs =Fck
! SF =S = N /> —
with minimum energy _'-' ' Ni
E[i, k] :
(a) a sub speed selection problem (b) the last node Ni
where node Ni -1's sending speed : whose receiving speed is Fcm
selected as Fsj.1 = Fcm : and sending speed is Fck
with minimum energy with energy
E[i-1, m] : ENi(Fr = Fem, Fs = Fck)

Figure 6.8: The optimal sub-structure of Problem 2.

SKkl1 |2 k| .. |cC
E[0,1] | E[0,2] E[0.C]
E[11] | E[1,2] E[1,C]
E[2.1] | E[2,2] E[2,C]
i-1 | Eli-1,1] Ei-1,i1] E[i-1,C]
i Eli K] E[i,C]
M | Ema EIM.C] <::|

Copt £ I (2040

Figure 6.9: The dynamic programming approach to solve Problem 2. Eact=Enidy
can be computed by the shaded r&jv— 1,1]. The global optimal energy is the mini-
mum value of the last row.

The dynamic programming algorithm is illustrated in Fig. 6.9. Since &dclk]
can be derived from the previous rd#fi —1,m,m=1,2,...,C, the algorithm can
compute all rows of matrbE from E[0,k],E[1,K],..., to E[M,k],k =1,2,...,C se-
quentially. The global optimal energy is the minimum value in the last rows fRite { E[M, K] }.
Theenergy matrix B, k] andutilization matrix UJi, k] are defined as followdJ [i, k] <
1 guarantees that each optimal sub-solutidnk is schedulable. Botk andU are
initialized toco, exceptE[0,k] = 0, U0, K] is set to the utilization of the first communi-

cation instanc®EC\ using communication spedd,, fork=1,2,...,C.

144

i:
0 for
1<k<C
Eli,k] = _Uli—-1,m] (6.12)
Eli—1,m+ if m
min +FC7D <1,
ENi(Fr = I:Cma K .
1<m<C 1<i<M,
Fs=Fg) for
1<k<C
| =
!Cv'lD for
« 1<k<C
Ui,k = for mthat achieves (6.13)
Uli—1,m min{E[i,K]} in (6.12),
B H <i<
+FckD o 1<i <M,
1<k<C

The algorithm is shown in Fig. 6.10. Thepeed matrix Secords the previous
optimal sub-solutions. The optimal speed settfg will be retrieved fromS. The
time complexity of this algorithm i©(MC?). Note that the algorithm can be modified
trivially to if the first communication spee#, and the last communication spefg
are fixed. This refers to the situation where the pipelined multi-processor has a fixed
communication speed setting to other components while its "internal” communication

speeds can be selected to optimal.

Problem 3 (Optimal Partitioning and Speed Selection)Given
(a) M pipelined noded; with workloadWy, ,\ W, Wy, i =1,2,....M,

(b) a deadliné for all nodes, and

145

speedselectiol [1 : M],Ws[1 : M],W,[1 : M], F[1:C],
scalg,scale,scalg, D, Poyh)
fori:=1toM do
for k:=1toCdo
E[i,k :=U]Ji,k] :=5i,k] := 0
for k:=1toCdo
E[0,k] :=0
U[0,K| :=W[1]/F:[k]/D
fori:=1toM do
for k:=itoCdo
for m:=itoCdo
e:=E[i—1,m +En(F = F[m],Fs = R[K])
u:=U[i—1,m +Wsli]/Fc[K]/D
if u<lande< E[i,m then

Eli.kl:=e
Ui,k :=u
Si, k] :=m

Eopt, Sopt := retrieve from matriceg, S
return Eopt, Sopt

Figure 6.10: Optimal speed selection algorithm.

(c) the available choices for communication speed settiggk=1,2,...,C,
find a partitioning scheme and corresponding communication speed settings that mini-

mize energyEsys

Due to the inter-dependency between speed settings and partitioning schemes, the
optimal solution cannot be achieved by solving two previous problems individually.
Exhaustively enumerating over one dimension and dynamic programming over the
other is quite expensive with the time complexity as eit"'~1MC?) or O(CM+1M3),

We proposed anulti-dimensional dynamic programmiradgorithm given the fact that
the two previous problems are all characterized by optimal sub-structures. Based on
the dynamic programming approaches in previous problems, we define a sub-problem
PSi, j, k] that maps original nodesN;, Ny, ..., Nj onto ani-node new sub-partitioning
Ni, N3, ..., N/, with the last nodé\’s sending speeB; = F,. The optimal sub-solution

has minimum energg]i, j,K].

146

j original
nodes

e

i-node optimal
sub-partitioning
where the last sending
speed F's = Fck
with minimum energy
E[i, j, k]

=

(a) a sub-partitioning that maps | nodes N1, ..., N|

on to i-1 new nodes N', ..., N'i-1
where node N'i-1 's sending speed
selected as F'sj-1 = Fcm
with minimum energy
E[i-1,1]

sending receiving sending
speed ! speed speed
F'si-1=Fcm F's = Fck

i Fri=Fem

(b) the last new node N'i combines nodes
Ni+1, ..., Nj
whose receiving speed is Fcm
and sending speed is Fck
with energy
ENi(Fr = Fem, Fs = Fek)

Figure 6.11: The optimal sub-structure of Problem 3.

Similar to the previous problems, a sub-probl&8i, j,k] can be decomposed

with an optimal sub-structure, shown in Fig. 6.11. (a) is a previous sub-problem

PSi — 1,1, m|, which maps the firdtoriginal nodesN;, Ny, ..., N, ontoi — 1 new nodes

with nodeN/_;'s sending speed selectedfag. (b) is the new nodéy that combines

original nodesN, 1, ...,N; with receiving speed, and sending speef,. (a) must

be an optimal sub-solution with the minimum enefgly — 1,I,m]. Note that (b) has

only one nodé\/, and its energy is denoted E,si/ (Fr = Fe, Fs = F,). For sub-solution

E[i—1,I,m], | can be any value in range-1 <1 < j — 1 andF,, is one ofC speed

choicesFg,,F,,...,Fe.. E[i, j,kl must be derived from all possible pairs @fm) to

achieve the minimum value. Therefokj, j,k| =mini_1<j<j_11<m<c{E[i—1,I,m|+

ENi/(Fr == ch,':s == Fck)}

The algorithm is illustrated in Fig. 6.12. The three-dimensional mé&fixj,k| is

represented by a series of two-dimensional sub-matrix indexeéa=y;1,...,C. Any

EJi, j,k|] can be computed from entries in a sub-mafex— 1,1, m,i—1 <1< j—

1,1 <m<C. The algorithm constructs all optimal sub-solutions figf9, j, k], E[1, j, K], ...

toE[M, j,K|,1<j<M,1<k<C. The global minimum energy is mifi<m 1<k<c{E[i,M,K]}.

It refers to the minimum value of the last rows in all sub-matrices.

147

o i
<J 1 l2].[.[c] <[1] - [« -]c
0 B i k 1 ‘ 2 ‘ ‘ ‘ C { 0 E[-1,0,1] | E[i-1,02] E[i-1.0.C] c
1 |
0 <[1 ‘ 2 ‘ ‘ ‘ c { 1 © © © © © 100 <
2 1 0 1 2 w o | =
A 2 . c ®_||ei100
- 2 ! . ® o o o o [
e} 1 0 |ei1o1|eit02 Ei-100) © -
- 2 1 © ® © w « o -
i-1
] 2 w w s
i-1
1 .. o © o o w
i-1 E[i-1i-1,1]| E[i-1,i-1,2]| E[i-1,i-1,C))
— Y [j Efij k) I
— m=12..c E—
i1 . [
:> M . :> M | Eima | Eim2) EliMC L |
v Jrl E[j-1,j-1,1]| E[j-1,j-1,2]| E[i-1,j-1,C)) T
= = T N
= ™ . = M [evava] emmal ‘ emmc
:> M [Eiama) [Eamz) Eli-LmCl

Eopt = MiN{E[i, M, k]}
i=1,2,.,M
k=12..,C

Figure 6.12: The multi-dimensional dynamic programming approach to solve Prob-
lem 3. Each entnEli, j,k] can be computed by the shaded entries in the previous
sub-matrix. The global optimal energy is the minimum value in the last row of all

sub-matrices.

Theenergy matrix H, j,k] and theutilization matrix Ui, j, k] is defined as follows.

i=j=0,
0 for :
1<k<C
.. Uli—1,I,m
Efi,j,K = min i [WS_] (6.14)
E[I 717|7m}+ +Fckb <1
i-1<I En (Fr = Fep, 1<i<
<ji-% Fo=Fg) for j<m,
1<m<C
1<k<C

148

| = | = R
;/CV”D for :
“ 1<k<C
Uli,j.K = for (I, m) that achieve (6.15)
Uli—1,1,m min{E[i, j,K} in (6.14),
THRD for 1<i<j<M,
1<k<C

The algorithm is shown in Fig. 6.13. It combines two previous algorithms by
two-dimensional dynamic programming. The time complexity of the algorithm is
O(M3C?). It also applies to situations where the new partitioning has a fixed num-
ber of nodes, or the pipeline has a fixed communication interface to other components

while only internal communication speed can be selected.

6.7 Analytical Results

To evaluate our energy optimization technique, we experimented with mapping the
ATR algorithm [61] (Fig. 6.3) onto two fixed partitioning schemes: (a) a single-node
that combines all blocks, and (b) a five-node pipeline that maps each block onto an
individual node. (a) and (b) are two extremes representing serial vs. parallel schemes.
For both (a) and (b) we apply optimal speed selection. We also find the optimal par-
titioning with speed selection as (c) and compare with (a) and (b) under three types
of performance requirements: (1) high performarize; 10ms (2) moderate perfor-
manceD = 15ms and (3) low performanc® = 20ms

Each node consists of an XScale processor and an LXT-1000 Ethernet interface
from Intel. TheScalg andScalg (same as$calg) functions, which indicate the power

vs. performance characteristics of a node, are extracted from their data sheets [2, 3]

149

partitioning-speedselectionf[1 : M],Ws[1 : M],Wp[1 : M],
Fe[1:C],scale,scale,scalg, D, Poyr)
fori:=0toM do
for j:=itoMdo
for k:=1toCdo
E[i,j,K :=Uli,j,k :=P[i,j,K =9, j,k ;==
for k:=1toCdo
E[0,0,k]:=0
U[0,0,k] :=W[1]/F:[k]/D
fori:=1toM do
for j:=itoM do
for k:=1toCdo
forl:=i—1toj—1do
for m:=1toC do
e:=E[i—1,1,m + EnogdmergéNi 1, ..., Nj),
Wlth Fr = Fc[mLFS: Fc[k])
u:=Ul[i—1,1,m +W[j]/Fc[k]/D
if u<lande<El[,j,kl then

Eli,j,ki=e
Ufi,j,kl:=u
Pli,j,K =1
Si,j,k :=m

Eopt, Popt, Sopt := retrieve from matriceg, P, S
return Eopt, Popt, Sopt

Figure 6.13: Combined partitioning with speed selection.

150

1L Intel® ¥Scale™ e,
Microarchitecture

MIPS

Power Consumption (Watts)

ppppppp

150 Mz 400 MHz 600 Mz BOO MH 1 GHz
@) 75V @100 1.3V 1.6V 1.8V
. MIPS .Wau-s

Figure 6.14: Power vs. performance of the XScale processor.

Mode Power consumption
10M bps 800 mW
100M bps 1.5W
1000M bps 6W

Figure 6.15: Power modes of the Ethernet interface.

and are shown in Fig. 6.14 and 6.15. Besides the power draw from the CPU and
communication interfaces, we assume each node has a constant powe,graw
100mW.

The results are presented in Fig. 6.16. In all cases, 1000Mbps is always the optimal
speed setting for communication. The low-power, 10Mbps communication speed re-
sults in the highest energy. This is because it leaves so little time for computation such
that the processors must run faster with more energy to meet the deadline, and it has the

highest energy-per-bit rating. The low-speed communication also tends to violate the

151

12 12 — 12] Overhead

s R s [l Communication

Il Computation

Energy / frame (mJ)

o o o
(a) 1-node (b) 5-node (c) Optimal (a) 1-node (b) 5-node (c) Optimal (a) 1-node (b) 5-node

NIN2 | N3 N4 | N5 NIN2N3N4 | N5 (optimal)
(1) high performance (2) moderate performance (3) low performance
D =10ms D =15ms D =20ms

Figure 6.16: Analytical results.

schedulability conditions (Lemma 7). Given properties of this particular Ethernet in-
terface, 1000Mbps communication will always lead to the lowest energy consumption
since it requires the least amount of energy per bit and leaves the maximum amount of
time budget for reducing CPU energy. However, in cases where the energy-per-bit rat-
ing does not decrease monotonically with the communication speed, the optimal speed
setting may involve some combinations of low-speed and high-speed settings between
different nodes. For example, the nademay communicate witlN;_; at 1000Mbps

and withN;_; at 100Mbps.

Fig. 6.16(1) shows the energy consumption per image frame in three partitioning
schemes. With a tight performance constraint, the single-node (a) is heavily loaded
with computation. Therefore it is desirable to reduce CPU energy by pipelining. As a
result, the five-node pipeline (b) is more energy-efficient at the cost of additional com-
munication and overhead. However, the optimal partitioning is (c) with three nodes:
[N1,N2],[N3,N4], [N5]. It consumes more CPU energy than (b), but overall it is opti-
mal with less energy on communication and overhead.

In case of the moderate performance constraint (Fig. 6.16(2)), (a) is still dominated
by computation but it is not heavily loaded due to the relaxed deadline. The reduction of
CPU energy by (b) cannot compensate for the added overhead of new nodes and com-
munication. Therefore (a) is better than (b) and pipelining seems inefficient. However,

the optimal partitioning (c) is still a pipelined solution. It combiél N2, N3, N4 into

152

one node and mapé5 to another node. (c) achieves minimum energy by appropriately
balancing computation, communication with pipelining overhead.

In cases where the performance is not critical, pipelining is not efficient and the
serial solution (a) is optimal. Fig. 6.16(3) shows that the computation load on (a) is
very light. Introducing additional nodes will only save marginal CPU energy that will

be offset by extra communication and overhead.

6.8 Chapter Summary

We present a combined partitioning and speed selection technique for the energy op-
timization of embedded multiprocessor-on-chip architectures with high-speed on-chip
networks. As communication power approaches or surpasses that of processor power,
communication must be treated as a primary concern in system-level energy optimiza-
tion. We exploit the multi-speed feature of modern high-speed communication inter-
faces as an effective way to complement and enhance today’s CPU-centric power opti-
mization approaches. In such systems, communication and computation compete over
opportunities for operating at the most energy-efficient points. It is critical to not only
balance the load among processors by functional partitioning, but also to balance the
speeds between communication and computation on each node and across the whole
system.

Our multi-dimensional dynamic programming formulation is exact and is of poly-
nomial time complexity. It produces energy-optimal solutions as defined by a parti-
tioning scheme and by the speed selections for all computation and communication
tasks. We expect this technique to be applicable to a large class of data dominated

systems-on-chip that can be structured in a pipelined organization.

153

Part IV

Mode Selection

154

Chapter 7

Power Mode Selection

Among the techniques for system-level power management, it is not currently possible
to guarantee timing constraints and have a comprehensive system model supporting
multiple components at the same time. We propose a new method for modeling and
selecting the power modes for the optimal system-power management of embedded
systems under timing and power constraints. First, we not only model the modes and
the transitions overhead at the component level, but we also capture the application-
imposed relationships among the components by introduaingde dependency graph

at the system level. Second, we propose a mode selection technique, which determines
when and how to change mode in these components such that the whole system can
meet all power and timing constraints. Our constraint-driven approach is a critical
feature for exploring power/performance tradeoffpawer-awareembedded systems.

We demonstrate the application of our techniques to a low-power sensor and an au-

tonomous rover example.

155

7.1 Introduction

Recent trends in mobile and autonomous embedded systems are giving rise to a new
class ofpower-awaresystems. Unlike low-power systems, whose goal is to minimize
power usage, power-aware systems are more general in that they must make the best
use of the available power by adapting their behavior to the constraints imposed by
the environment, user requests, or their power sources. Power-aware systems must
use components that are capable of multiple modes of operation. Many of these com-
ponents offer modes for power management, while other components allow the user
to control the voltage or frequency as other forms of power modes. The selection of
mode is thus the primary means of controlling power usage, and it is often done in
conjunction with scheduling.

New off-the-shelf components are offering increasingly sophisticated modes for
power management. However, the system-level power manager has only limited con-
trol over the modes. Some modes can be set by writing commands to a control register
of a device. However, the power manager may not be able to arbitrarily select the
modes it wishes at all times. It may be forced to wait or request a change through a
sequence of intermediate modes. Even if a desired mode is available, changing mode
can incur nontrivial overhead both in terms of time and power. The overhead translates
into penalty in performance or power, and it can cause a system to miss an important
deadline.

Another key issue for power management is that mode selection cannot be done
in isolation. The choice of mode in one component must be coordinated with that in
other components, or else the whole system may not function correctly. For example,
if the mode selection involves a particular encoding scheme, then the rest of the system
that depends on the data representation must also change mode in order to handle the

encoding correctly.

It can be difficult for designer to track details with modes. The problem is further

156

exacerbated by the fact that the number of components and the available modes are
increasing rapidly. Today’s methodologies either limit the complexity by using only a
small subset of the available modes (e.g., on, sleep, off), or they are unable to guarantee

timing or power constraints.

Power management of embedded systems must consider all components in the sys-
tem. Significant power reduction in one components may not translate into desirable
power reduction for the whole system. In mission critical applications, peripheral de-
vices including mechanical and thermal devices can actually dominate power consump-

tion and must be an integral part of power management.

We believe that a new methodology for mode modeling and selection is sorely
needed in order to effectively manage the power of the next generation embedded sys-
tems. We first introduce a nemode dependency gragbr modeling theenabling
relationships among modes within a component and between components in a system.
Second, we present a new mode selection algorithm that produces a mode schedule
that satisfies timing and power constraints on multiple processors and devices. It takes
advantage of the mode dependency graph in effectively pruning the search space, mak-
ing it practical to incorporate into an on-line power manager. The advantage with our
constraint-driven approach is that it is not hardwired to a specific objective such as
power minimization. This is a crucial feature for power-aware embedded systems, for
which the ability to make power/performance tradeoffs is more important than just

power reduction.

This chapter is organized as follows. Section 7.2 reviews related work. Section
7.3 presents the mode dependency graph, while Section 7.4 describes a mode selec-
tion algorithm that takes advantage of mode dependency modeling. We discuss the

experimental results in Section 7.5.

157

7.2 Related Work

Many low-power techniques have been developed at all levels. For system-level de-
signs, since the components are largely off-the-shelf or already designed, the applicable
techniques include dynamic voltage scaling (DVS) and dynamic power management

(DPM).

7.2.1 Dynamic Voltage Scaling (DVS)

Developed for variable-voltage processors, DVS can achieve significant energy saving
while still enabling the processor to continue making progress [74, 25]. Although DVS
means running slower, they typically slow down just enough without violating timing

constraints, and many are based on real-time task scheduling cores [25, 59, 60, 54].

It has been shown that maximal energy saving is achieved by running the processor
at the slowest possible constant speed, rather than running tasks at full processor speed
and changing the processor to a lower power mode when idle [14]. Hong et al [25]
proposed a heuristic for scheduling real-time tasks on a variable voltage processor.
Shin [59] exploited both execution time variation and idle time intervals for fix-priority
tasks. Shin’s algorithm in [60] determines the lowest maximum processor speed for
each job to achieve power reduction. Quan and Hu [54] further greedily determine the

lowest voltage for a set of tasks to achieve more energy savings.

What these DVS techniques have in common is that they are greedy and assume a
single processor. A power-aware embedded system, however, consists of multiple re-
sources, which may be one or more processors and peripheral devices. Unfortunately,
greedy DVS techniques are not generalizable to multiple resources under power con-

straints, as shown in the following example.

158

R1
R3)

80 100 120 140 20 40 60 80 100 120 140

6
aw|

3w| Pmax 2 Pmax
2w

! 1

80 100 120 140 20 40 60 80 100 120 140

@

Pmax

3W
2.4W
iw

Figure 7.1: An application scenario that has resource dependency.

120 140

Example: (DVS fails in multi-resource)

Fig. 7.1(a) shows a Gantt chart (top) and the power profile (bottom) for a system with
three resources}, is capable of voltage scaling, whie andR3 are not. The task on

R; has a deadline at 110. The system has a max power constraim df\@thermore,

the behavior of the application dictates th&t and R; be co-active Co-activation
means the execution of one task requires the power consumption of other dependent
services or tasks. A simple example is that when the CPU is running, it imposes a
co-activation dependency on the memory, but co-activation can be much more general
between sets of tasks.

Fig. 7.1(b) shows the schedule and the power profile obtained by greedily slowing
downR;. Even though all timing constraints are satisfied, it violates power constraints
and it is not minimum energy. When it is stretched augverlapst, during time 70-

110, and their total power exceeds the max power constraint. It is not minimum energy

due to the co-activation dependency betwBgmndR3: the energy saving b, due

159

Schedule | Timing violation | Power violation| Energy cost
Fig. 7.1(a) No No 300
Fig. 7.1(b) No Yes 320
Fig. 7.1(c) No No 288

Figure 7.2: Comparison of three schedules.

to voltage scaling is more than offset By, whose execution is prolonged By.

The optimal schedule and power profile are shown in Fig. 7.1(c). Res®uyrise
slowed down without overlappintg on R,. No max power is violated. Althoudf is
stretched with; and therefore consumes more energy than in Fig. 7 ti(saves even
more energy due to voltage scaling of resouRge As a result, the system achieves
minimal energy while satisfying all constraints. Fig. 7.2 summarizes the energy costs.

Another problem not highlighted with this example is that mode changes may incur
nontrivial power or timing overhead. If so, overhead must be considered in determining
the feasibility of the mode schedule.

Luo and Jha [45] presents scheduling for multiple processing elements by reorder-
ing tasks and applying voltage scaling in this post-processing step after scheduling.
Our approach is similar in that it can also be a post processing step, and handles prece-
dence and timing constraints, but we treat power as a hard constraint. Furthermore, we

handle co-activation and other mode-dependency relationships.

7.2.2 Dynamic power management (DPM)

Previous work on DPM mainly aimed to achieve power reduction by predicting the

system idle time or event distribution and shutting down resources when idle. The
simplest power management policy is time-out based on a fixed or predicted amount
of time before the system'’s shutdown or powerup [30]. Stochastic model [12] is used
to address the uncertainty in system behaviors. DPM techniques can be effective for
minimizing energy and time penalties on average, but they have several limitations.

First, most treat either power or timing as abjectiveor penalty, rather than eon-

160

straint In real systems, the max power is a real, hard constraint, whose violation can
lead to malfunction. Second, they have not considered inter-component dependency
in a system, with the exception of Qiu, Qu and Pedram in [53], which models mul-
tiple service providers and their GSPN model can capture some dependencies among
resources. However, their model is mainly for the request/dispatch behavior of servers
rather than dependency among the servers themselves.

Our new approach, mode selection, combines the advantages of existing approaches.
It is entirely constraint driven, enabling us to make power/performance tradeoffs with-

out hardwiring any specific goal or policy in the algorithm.

7.3 Modeling Resource Dependency

Selecting (or not selecting) a mode of a resource may impact the modes that other
resources are allowed to select. The impact may be co-activation, exclusion, en-
abling, and many other possible types of dependency. These dependencies may be
extracted from application level specifications or policies for safety, security, fault-
tolerant, power-saving. In any casdgegal mode combination of the resources is one

that respects all of these dependencies, afesiblemode combination is one that is

legal and satisfies all the constraints (namely timing and power). We use a data struc-
ture called the mode dependency graph (MDG) that enables efficient generation of legal
mode combinations in an order that facilitates the search for feasible combinations that

are also low cost.

7.3.1 Definitions

Definition 15 (Resourcey € I') A resourcey is defined as a grapR,(My, Hy), where
My is a set of vertices, andy C My x My is a set of edges. A vertemc My is a
power mode of resourae An edge(m, n) € Hy represents a mode change from mode

m to moden. We define the timing and energy function for a mode changd-as:

161

My x My — T x E, whereMy is the set of modes of resourgeandT, E are time
and energy, respectively. The average power can be obtained from energy and time

information.

Definition 16 (Power and delay functions) Power consumption of a resourgis rep-
resented as a functiom, mapping from power mode to a power number. Formally,
T: My — R™. Delay of a mode transition is defined as a funct@mapping from start

mode and end mode of a transition to a delay number. Forndallyly x My — R

Definition 17 (Mode combinationA € A) GivenN resourcegyi,Yz,.-.,Yn), @ mode

combination ish € My, x My, x,...,My.

7.3.2 Mode Dependency Graph

A mode dependency graph (MD®&(M, D) characterizes the inter-resource depen-
dency relationships, wheM = [J,.r My is a set of vertices representing power modes,
andD is a set of edges standing for dependencies. A vertex is represented by a circle
with a label in the format ofy.m,” wherey € I is a resource anth € M is a mode of

the resource. If two vertices have the same labels, we considered them identical.

Thevalueof a vertexv € M is defined as:

True if yis in modem,
V=< False if yis in other mode (7.0)

Undetermined if y has not been selected a mode
An edge in the MDG represents dependency between two modes. Suppose an
edge(u,v) € E, u=y;.my, v=yo.mp. The two modesm andm, satisfy the mode
dependency graph if:

ulis Trueonly if |v|is True(--»),
|ul y if v] (=) (7.2)

|v| is Falseimplies|u] is False(«<).

162

u v Violation
True | False YES
True | True NO
False | True NO
False | False NO

Figure 7.3: A table for violation checking.

CheckMDG(mode dependency gra$) resourcey, modem):

1 V < find all verticesv € V that contain resourcg

2 foreachveV {

3 find vertexu such thau points tov, if any

4 if violation checking for g, v) according to Fig. 7.3 is YE$
5 return False

6}

7}

8 return True

Figure 7.4: Check satisfaction of an MDG.

In other words, ifiu| is True |v| maybeTrue but if |v| is Falsg |u] mustbeFalse
For example, we represent the dependency between a CPU and a memory chip such
that the memory i®n only if the CPU is inactive mode. If the CPU is not irctive
mode, then the memory must notde. If both of the above conditions are met, we say
that the CPU and the memory satisfy the mode dependency. Otherwise, they violate the
mode dependency. Fig. 7.3 summarizes the conditions that (do not) violate the mode
dependency.

To expand the capability of mode dependency graph, we introduce the logic oper-
ators as another kind of vertices. An operator vertex is represented by a square with
an operator label in it. For the operator vertex with multiple outgoing edges,-the
direction combines disjunctively, and tke direction combines conjunctively. For ex-
ample, a vertexs, whose valugu| is True, points two vertices; andvy. If eithervy
or Vi, or both, areTrue, then they satisfy mode dependency. Whemandv, are both

false, they violate mode dependency. The value of an operator vertex can be obtained

163

A: processor
M: memory

‘—»‘ S: sonsor
@@i}
®>ﬂ® @ ”

ONOFO 0
O OB IOIOIOIO)

(b)

Figure 7.5: (a) An MDG example: microsensor. (b) Reduce the MDG to a resource
list.

by evaluating the logic function it represents. We define the operAfdi3 OR and
XOR The functions of the operators follow the normal boolean functions in the same
names except when any input is “undetermined,” the output is “undetermined.” Given
an MDG, a resourcg and one of its moden, we can use the routine in Fig. 7.4 to

check whether modm satisfies the MDG.

7.3.3 Generating Mode Combinations

This section shows how to efficiently generate legal mode combinations using the
MDG.

We transform and reduce an MDG to a resource list. The purpose is to sequence
the resources so that the modes of a resource do not depend on those of the succeeding

resources. From the MDG, we shrink each operator vertex to a point, and remove mode

164

name in each mode vertex. We then remove the redundant vertices and edges, break
the cycle by removing one edge in the cycle, and apply topological sort to obtain a
resource list.

If the MDG is acyclic, then legal mode combinations can be generated by a special
version of topological traversal. Starting from the first resource of the list, we check
modes of each resource against the MDG and identify the legal modes. We keep them
and select one for the current resouyc@and move to the next resource. We are able
to determine a mode of because upon checking the resource, all the modes of its
dependent resources have been already determined since they are all located before
y. We progressively generate a mode combination as we check legality of modes and
select one at each resource. As we reach the end of the list, we obtain a legal mode
combination. We enumerate the rest of legal modes at the end resource, backtrack
to previous resources, and enumerate their legal modes to generate other legal mode
combinations.

Note that there may be cycles in an MDG, which implies that in the resource list
obtained above, modes of a resource may depend not only on preceding resources, but
also on succeeding resources. We call such resodiggsresource In this scenario,
we keep track of which resources the current resoyrme dependent on. When the
modes of all dependent resources are determined, we evaluate a nyddelefermine
whether the mode satisfies the MDG. Fig. 7.6 shows the detailed algorithm, which is

the general case for both acyclic and cyclic MDGs.

7.3.4 Example: Microsensor

A microsensor system is a node in a distributed microsensor network [63]. It consists
of a sensor, a processor, memory chips, radio frequency module and other auxiliary
parts. The microsensor obtains information from environment and sends processed

data to a base station. The sensor and the memory each has two waes] off.

165

MODEGEN_FROM_CycLIC_MDG(mode dependency gra®):

1 resetthe list of mode combinatioNs— 0

2 reset a mode combinatidn— 0

3 transformGinto a resource list[0...N—1

4 mark dirty-resources ih

5 p<0

6 whilep>0{

7 while0< p<N {

8 if L[p] is not a dirty-resourcé

9 if found an unmarked moda for taskL[p] {
10 if checkMDG(G, y, m) = True{

11 if L[p].cachedis not empty{

12 if all cached resources satigBy/{
13 Apl<m p«—p+1}

14 }else{A[p] —m, p—p+1}

15

16 mark the moden

17 } else{unmark all modes of[p], p— p—1}
18 } else{

19 locate the last resourt4g] thatL[p] is dependent on
20 L[g].cached— L[p]

21

22 p—p+1

23

}
24 if p=length() { pushh into A}
25 p—p-1

26 if found an unmarked moda for the resourcé [p| {
27 unmark all modes for current resource

28 p—p-1

29 } else{

30 if checkMDG(m, G) =True{

31 Alp] < m, pushA intoA, p— p+1}

32 }

33 }

34 return A

Figure 7.6: Generate mode combinations for cyclic MDG.

166

The processor has three modastive, idle andsleep. The radio has three modes,
transmit-and-receivet{_rx), receive-only Kx), andoff. There are a total of 36 mode
combinations for these components.

The behavior and dependencies of the devices in this system can be derived from
high-level power management policies: the sensor and the radio may befbotty
if the processor is isleep mode; either of them may kan only if the processor is in
sleep mode oridle mode; both the sensor and the radio mapbenly if the processor
is in active mode; the memory ien if and only if the processor iactive. Fig. 7.5(a)
shows the MDG of the microsensor.

Using the MDG, our algorithm automatically generate eight mode combinations
that satisfy the given MDG (see Fig. 7.7). Suppose we want the microsensor to work
in a proactive way: when it is off, the system can only be waken up by the sensor when
it senses information from environment. The radio cannot wake up the system, for
example, by receiving a remote command. We add another item “the radio noety be
only if the sensor i®n” (in dashed box in Fig. 7.5(a)) to the MDG in Fig. 7.5(a). Then
we run our algorithm on the new MDG and obtain five mode combinations (without *
in Fig. 7.7). This result exactly matches the mode combinations in manually designed
results [63].

Through this simple example, we show our algorithm is able to systematically gen-
erate legal mode combinations, and by editing the mode dependency graph, we can
obtain mode combinations without manually going through all possible mode combi-

nations.

7.4 Mode Selection

Mode selection works as a post-processing stage after scheduling. It validates and
improves the schedule with more architectural knowledge than the scheduler. Our ap-

proach is a constraint-driven search algorithm that considers resource/task dependency

167

mode| S R A M
M1 on | tx_rx | active | on
M2 on rx idle | off
M3 on rx sleep | off
M4 on | off sleep | off
*M5 off | tx.tx | active | on
*M6 off rx idle | off
*M7 | off rx sleep | off
M8 off | off sleep | off

Figure 7.7: Mode combinations of microsensor.

and mode change overhead, and tries to find a mode schedule that satisfies system

timing and power constraints.

7.4.1 Problem Statement

The input to the problem consists of a set of ta¥ka schedule, a mode dependency
graphG, power constraint®nax andPnin, and timing constraints represented by con-
straint graphG, [44]. The output is a mode schedwiéthat meets system power and

timing constraints by means of legal mode combinations.

Definition 18 (Taskx € X) A task xis defined by a tupletg, wy), wherety is a task
identifier, andwy € Q is the workload of the task. In the context of this chapter, we
assume each taskhas already been mapped to a resoyrc&he operation delagl
and power profild(t) of a taskx depend on the workloady and the selected modes

m of resourcey.

Depending on the nature of the resource, workl@agdan be the number of cycles
for a processor, the number of atomic actions for a device, e.g., the number of steps for

a step motor, or simply the time to perform a task.

Definition 19 (Schedules) A schedules maps each task to its start time. Adie

interval with respect to a scheduteand a resourcgis a time interval during which

168

no task is scheduled to run gnNote that during an idle interval, the resource can still

consume nonzero power, depending on the mode.

Definition 20 (Mode schedules’) A mode schedule’ maps each taske X’ (which
is mapped to resourgg to the task’s start time and a mooe= My, whereX’ = XU Xo.
X, is a set ofoverhead taskswvhich are inserted whenever there is a mode change on a

given resource.

A mode schedule’ is feasibleif all mode combinations are legal (Section 7.3) and

all timing and power constraints are satisfied at all times:

Pmin < Z Py(t) < Pmax 0 <t< tend (7-3)
ye

Tmin(U, V) < 0’ (V) — 0’ (U) < Tmax(U,V) VU,V € task seX (7.4)

wheretenq is the overall schedule length, amdin and Pyax are the minimum and
maximum power constraints, respectively. The reason for a minimum power constraint
has been discussed elsewhere [44]. It can be used for not only power/performance

tradeoffs but also for jitter control.

7.4.2 Algorithm

Our Mode Selection algorithm contains a loop with two steps. First we find modes for
tasks that satisfy task dependency and timing constraints. Second we determine modes
for the idle intervals on each resource. Note that after the first step, the operation delay
for certain tasks may be changed due to certain mode selected (i.e., modes of different
clock rate due to voltage scaling) or task dependency. An advantage of selecting task
modes and idle interval modes separately is that we can apply different kinds of system
constraints, which help prune outillegal mode combinations efficiently. We reorder the

modes for each resource by their power consumption in increasing order and search

169

MODE_SELECTION(T, G, Pmax Pmin, Gc):

0 /*input: schedule */

1 power constraints fRax and Ryin */

2 timing constraint graph G*/

3 mode dependency graph*G

4 /* output: a feasible mode schedute*/

5 MODEGEN_FROM_CycLIC_MDG(G)

6 foreachAin A {

7 mapA to tasksT in o, geto;

8 if checktiming(oy, G¢) = True{

9 decompose; into time intervalsS

10 for eachse S{

11 select modes for idle intervals

12 while Pmaxand Pmin not satisfied

13 select other modes for idle intervals
14

15 } I* So far we obtain a mode schedale*/

16 add mode change overhead as new tasksintgeto,
17 if checktiming(oy, G¢) = Trueand

18 checkpower@z, Pmax Pmin) = True{

19 return AU { modes selected for idle intervajs
20 }

21 }

22 }

Figure 7.8: Top level Mode Selection algorithm.

170

i or I
S T
(=)

Figure 7.9: The MDG for the Microrover.

from the smallest one. By doing so we both speed up our search process and find
solutions very close to the energy-optimal solution. The top level algorithm is shown

in Fig. 7.8.

Selecting modes for tasks

We select modes for tasks by generating legal mode combinations of tasks that satisfy
the MDG. Note that the MDG used for a schedule may be a mix of resource dependency
and task dependency, which represent time-invariant and time-variant dependency of
resources. For example, in Fig. 7.9, the sub-graph in the dashed box representse
dependency, whereas the rest of the graph showstkelependency. We can still use

the algorithm introduced in last section to generate legal mode combinations of tasks.
Once a legal mode combination is determined, we can obtain a new schedule since
the operation delay of tasks become known under their selected modes and under their
co-activation dependency. We check timing constraints for the new schedule. If it fails,
we generate another legal mode combinations and check again; if it passes, we use the

mode combination for mode selection of idle intervals.

171

Scenario| Task sequence Cost Relative energy
simple | greedy| modesel| (simple / greedy /
modesel)
A CAM/MOV/SCI | 19002 | 18442 | 17935 | 100% /97.0%/93.4%
B MOV/CAM/SCI | 16381 | 15013 | 14667 | 100% /91.6%/89.5%
C CAM/SCI/MOV | 20294 | 19505 | 19014 | 100%/96.1%/93.6%
Mission tasks: CAM: shoot images; MOV: move to another location; SCI: perform
scientific experiments.
Approaches: simple: assume two modes; greedy: greedily voltage scaling; modesel:
our algorithm.

Figure 7.10: Comparison among different working scenarios.

Selecting modes for idle intervals

On each resource, overhead may incur on mode changes. We find a set of modes for
each idle interval such that the time overhead of the mode changes is less than the
length of the idle interval. We sort the modes in each set in an ascending order, and
use modes in these sets to select modes for idle intervals and check power constraints.
We treat overhead as additional tasks to the schedule we obtained. We characterize
those overhead tasks with time and average power, which can be derived from time
and energy information. We decompose the new scheduldiméintervalssuch that

within each time interval there is no task event (start or end event). The decomposition
is done in the following way: We find the start and end events of all tasks. All the
events cut the time axis into non-overlapping segments. Each segment forms a time
interval. We check system power constraints in each time interval. If the schedule
fails power constraints, we attempt a mode change on resources that currently have
an idle interval, and check power constraints again. If all the modes fail the power
constraints, we backtrack to the previous time interval. If we backtrack to the beginning
of the schedule and still cannot find feasible modes, we attempt the next legal mode

combination and select modes for idle intervals again.

172

7.5 Experimental Results

We apply our algorithm to an example based on the Mars rover [66]. The rover trav-
els on the surface of Mars to perform scientific experiments and shoot images. Its
resources consist of a camera (CAM), scientific devices (SCI), a radio-frequency mo-
dem (RF), a microprocessor (PPC), a hazard detector (HAZ), driving motors (DRV)
and steering motors (STR). CAM takes a picture, sends the picture data to PPC for
processing, PPC outputs to RF, and then the rover moves to another location (HAZ,
DRV, STR) to perform scientific experiments (SCI, PPC, RF).

PPC can work at a number of different clock rates (with a full speed of 500MHz)
and can be set tdoze, nap or sleep modes. RF can be irx only mode, tx-rx
mode andsleep modes. The other resources have only two modes eechnd off.
Mode-change overhead is significant for some resources. Due to the low temperature
on Mars, DRV must be pre-heated for some time before turned on. Similar reason
applies to STR, RF, and SCI. The inter-resource relationships are shown in Fig. 7.9.
For example, when HAZ is working, neither DRV nor STR should be working. RF
may be intx-rx mode if and only if the processor is operating.

Fig. 7.11 shows a feasible mode schedule, in both time view and power view. Task
pp on PPC cannot be further slowed down because PPC and RF must be co-active.
If PPC is greedily slowed down, it will violate max power constraint during the interval
500 - 560. Tasklirvl, hazl andstrl are not overlapped due to the system requirement
specified in the mode dependency graph. STR and SCI need significant time to pre-
heat, which is adequately considered (the light gray areas in their tracks). Idle interval
betweerr f 1 andrf 2 on RF is set tox only rather tharoff because the timing overhead
of mode changes (including pre-heating) is larger than the length of the interval. The

idle interval before f 1 is set tarx only for the same reason.

We compared our algorithm with two other approaches: approach one assumes

only two modeson and offapproach two greedily applies voltage scaling technique

173

cam[canl (op) (sleep) |
drv (off) [aviem]l (off) |
haz (off) D (off) |
opc[PICRE] w® | eeso |

rf (receive) | rfl (transmit) | (receive) | rf2 (transmit) |

s [@] [e |

str {(of] [stri (on)| (off) |

200 400 600 800 1000 1200 1400

30W,;

24W|

Pmax

18w, 1

12w

Pmin

6W

Figure 7.11: A mode schedule for microrover.

oW ———x

174

whenever possible (we allow power constraint violation in this approach). The results
are shown in Fig. 7.10. Approach one gives the worst results because it never utilizes
available modes. Approach two is better than approach one since it saves energy by
applying voltage scaling technique, but its greediness pays the cost since its saving
by slowing down the processor is more than offset by the extra energy consumed on
the RF modem. And in all the scenarios, approach two violates max power constraint.
Our algorithm gives the best results because we utilize multiple modes of resources and
apply voltage scaling on the processor. At the same time, we avoid extra energy cost on
RF by identifying co-activation dependency between the two resources and performing

mode selection to find the feasible solution.

7.6 Chapter Summary

This chapter presents a method for capturing mode dependency and an algorithm for
mode selection in power-aware embedded systems. The mode dependency graph intro-
duced in this chapter enables legal combinations of modes to be systematically derived.
Today’s designers perform this task manually. However, as components offer increas-
ingly sophisticated modes for power management, while at the same time imposing
even more restrictions on mode changes, the complexity will grow quickly beyond
what humans can handle. Our MDG represents a structured approach to controlling
the complexity of power management. We also present a search algorithm that takes
advantage of the MDG. By considering power/timing constraints and overhead on tran-
sitions, this technique gives designers more confidence in the feasibility of the synthe-
sized results in real-life applications. Furthermore, our algorithm incorporates heuristic
ordering to optimize for the energy cost of the solution, and it shows reabgstem-
levelimprovements over previous techniques that either do not handle constraints or

multiple components.

175

Chapter 8

Topology Selection

The trend towards distributed, networked embedded systems is changing the way power
should be managed. Power consumed by bus and network interfaces now matches if
not surpasses that of the CPU and is thus becoming a prime candidate for reduction.
This chapter explores the energy-efficient bus topologies as a new technique for global

power optimization of embedded systems that are interconnected by high-speed se-
rial network-like busses such as FireWire and a new generation of SoC busses. Our
grammar-based representation for these networks enables the modeling and facilitates
selection of energy-efficient bus topology. Experimental results show 15-20% energy

saving on the network interfaces without sacrificing system performance.

8.1 Introduction

A recent trend in power-aware designE@nmunication centripower management.

In both embedded systems and system-on-chip (SoC) architectures, much of the re-
search work in the past decade has gone into making the CPU very power efficient, and
the CPU is now consuming a much smaller fraction of the system power. At the same

time, bus and network interfaces are consuming the same if not more power. Higher

176

level integration helps alleviate the situation somewhat, but even processors with built-
in network interfaces often require two supply voltages: a lower voltage for the core,
and a higher voltage for the off-chip I/O. System-on-chip architectures will also face
similar issues, as IP components are increasingly being integrated using on-chip net-

works for power and modularity advantages.

Communication-centric power management schemes can be divideduistiom
protocolsvs. standard protocols Custom protocols that utilize application-specific
coding schemes [65, 47, 38, 24, 6], custom bus voltages [39], or custom bus segmen-
tation schemes [76, 36, 16] can potentially achieve much better energy efficiency, but
they are applicable mainly to closed systems. Most embedded systems and IP compo-
nents must be interoperable with existing standards, and this limits the types of opti-
mization possible. We do not attempt to propose a hew standard to compete against the
more established ones [7, 21, 22, 31, 33]; instead, it is intended to demonstrate how
an existing standard can incorporate energy efficient optimizations. Some of the most
important parameters include communication speed and bus topology. We investigate
topology selection for FireWire, a hot-pluggable, low-power, high-speed serial bus that
can support real-time streaming (isochronous) and asynchronous transfer modes. It is

widely available on many embedded systems and computers today.

FireWire requires a tree topology. Furthermore, each FireWire component has a
limited number of ports and a maximum transfer speed available. Our approach to
achieve energy reduction is a grammar-driven, constraint-based searching process for
low energy network topology. The advantages are: a) the formal method is a systematic
way of modeling and generating topologies; b) our technique is extensible to other
buses/networks and is beneficial to system-on-chip design with on-chip networks; c)
it is orthogonal to most of the existing CPU-centric power management techniques,
thus enabling additive energy savings by combining our techniques with existing ones.

Our experimental results show up to 15% to 20% energy savings for network interfaces

177

without sacrificing system performance.

This chapter is organized as follows. Section 8.2 provides background informa-
tion on FireWire and reviews related work. Section 8.3 presents a formal problem
formulation, while Section 8.4 describes the algorithms we used to select optimal tree

topologies. We discuss the experimental results in Section 8.5.

8.2 Background and Related Work

8.2.1 FireWire Bus

FireWire (IEEE1394) [8] is a high-speed serial bus standard. 1394a currently sup-
ports transmission speeds up to 400Mbps, and the new 1394b standard [5] will support
transmission speeds of 800Mbps and 1600Mbps. FireWire was designed to connect a
computer to peripherals such as hard disks, scanners, and consumer electronics such
as video cameras. It is now widely available on many computers, set-top boxes, and
embedded systems in automotive and aerospace domains. FireWire supports two data
transfer types: asynchronous and isochronous transfer modes. Asynchronous mode
guarantees the data delivery with acknowledgment. Isochronous mode guarantees data
bandwidth without acknowledgment, and it is suitable for real-time streams such as
video.

FireWire is hot-pluggable and can connect up to 63 devices. 1394a cables can run
as long as 4.5 meters, and packets can take up to 16 hops for a maximum total distance
of 72 meters. Future standard extends the single hop distance to up to 100 meters and
use fiber optics as the physical medium. When a new node is attached to the bus, or
an existing node is unplugged, the bus will go through bus reset. First, a root will be
elected, followed by tree identification and self identification processes, after which
the new topology map and speed map is broadcast to every node. Unlike the Universal

Serial Bus (USB), which is host-based, FireWire is peer-to-peer.

178

FireWire imposes a number of restrictions. First, the network must be acyclic.
This implies that there is a unique path between any pair of communicating nodes.
Second, all intermediate nodes on the path must be powered on (at least the physical
layer controller) to act as repeaters. Third, all the intermediate nodes must support the
transfer speed of the communicating nodes, otherwise the transaction cannot be started.
Fourth, the fan-out of each node is constrained by the number of ports available on the

physical interface.

8.2.2 Power Management with FireWire

Power management opportunities with a standard protocol like FireWire are at higher
level than most previous works. Circuit-level bus voltage scaling techniques, including
[39, 70], which make the bus voltage and frequency track the bus traffic, or voltage
swing reduction [55], would not be applicable due to interoperability reasons. Bus
coding that minimizing the transition activities on buses [65, 47, 38, 24, 6] would
not be applicable, either. Buses segmentation to reduce bus load and improve latency
[76, 36, 16] may be applicable in principle, but they must be adapted to the specific ca-
pabilities of the bus standard. Our technigue is similar to bus segmentation in the sense
that both try to localize the bus traffic so that the high-cost global bus activities are
minimized. While traditional bus segmentation techniques mainly partition and cluster
the bus nodes into segments, our approach works with the constraints imposed by the
bus standard on the topology, port count, and transfer speed. To accomplish this, we
model the legal topologies using a tree grammar, and we use the constraints to prune
the search space. We present an algorithm that finds a topology that minimizes total
energy consumption for the same communication traffic. The experimental results are

validated using a FireWire snooper.

179

string tree
a(b)(o)
AR
b(a(c)) b ¢ a
c
AN
a(b(c)(d))(e&(f) /K °
cdf

Figure 8.1: Examples of tree strings.

8.3 Problem Formulation

We generate tree topologies for FireWire by incrementally attaching new nodes to ex-
isting trees. We have developed a formal representation for modeling trees and gener-
ating tree topologies. In this section we give several definitions, followed by the cost

function and our problem statement.

8.3.1 Definitions

Definition 21 (Node u= U) A nodeu is a component in the system that has bus inter-
faces ready to connect to other componeptsis the number of ports available far

S, is a finite set of speeds that nodean work at.

Definition 22 (Tree) A tree is a connected componddtC U with exactly |C| — 1

undirected edges.

Definition 23 (Transactiont € ') Atransactiort = (us,uy,s,w) is a data transfer be-
havior between two nodeg andu; at the transfer speexdwith non-zero workloadv,

wheres e §;; NS,, andw is the amount of data (in byte) transfered.

180

We require that the transactions in the system be peer-to-peer. Multicast or broadcast

transactions are not considered.

Definition 24 (Tree stringt) A tree string is a string representation of a tree. It is ob-
tained by in-order traversal of the tree. The root of the tree is traversed first, then
recursively each child is traversed. For example, in Fig. 8.1, the sa{ig(c)
represents a tree of three nodes, watlthe root node and andc leaf nodes. A
matched pair of parentheses with the substring inside represents a subtree. The string
a(b(c)(d))(e(f)) represents atree of six nodesandd are two subtrees (also leaf

nodes) ob, andb(c)(d) ande(f) are two subtrees &.

Definition 25 (Tree grammar G) Let X be an alphabeX = {ujucU}U{(,) },anda
nodeu is denoted by a lower-case Roman letter. A tree is represented by a tree string
t that can be generated from gramntae (V,Z,P,S), whereV = {B,E} is a set of

variables Sis a start symbolR is a set of productiong —V UZ :

E—u
B—(E)
E—EB
S—E

and if a nodeu appears i, it appears exactly once.

Definition 26 (Tree languagel) A languagd (X) = {t|t isin Z* andS=-t} is a set of

tree strings generated by gramn@rWe also usé.(v) = {t|t is in ¥* andv=-t} to de-

note the set of strings generated with the start symalgoV/, andL(v*) = {t*|t is in Z*

andv =t} to denote the set of strings that has zero or one or more concatenated sub-

strings each of which is generated with a start synwoeV .

Let |t| represent the length of the tree string It is easy to see that for a tree

containingn nodes,

t|=3n-2.

181

A tree topology can be represented by multiple tree strings. For exaaffi}, c)
andb(a(c)) inFigure 8.1 represent the identical topology with different roots. Even
with the same root, tree strirgf b)(¢) anda(¢)(b) represent the same tree. Since
any node (capable of bus management) on a FireWire bus can be the root, we can pick
one node as the root and order the rest so that we are able to obtain a canonical form of

atree string.

Definition 27 (Transforming function H) A transforming functiorH converts a tree
string to its canonical form by the means of in-order traversal with sorting of labels.
The canonical form of a tree strirtgis: Yu in t, u and its all children are sorted in

a lexicographical order. Tree stririg=a(b(c)(d))(e(f)) in Figure 8.1 is in its
canonical form. Tree string=a(e(f))(b(c)(d)) is notin its canonical form since

aand its childrere andb are not sorted. Thus we hatie= H (t).

New trees can be formed by adding a nod® an existing tree. The node can
be either attached as a leaf node or inserted as a non-leaf node. We define a growing

patternF (t,X) to help incrementally generate larger trees from smaller ones.

Definition 28 (Growing function F) L(XU{x}) =L(X)-F(t,x), forallt € L(Z). Tree

strings inL(ZU{x}) can be derived from trees ir{Z) according to the following rules:

d(%) if t =d,
Flt.x) = d(x)(B) yud(x(B)) yJ (8.1)

d(F(B,x)) yUd(B) F'(v.x) ift=d(P)y.

0 if a =g,

Fllax) = (8.2)
(F(B.X)y U(B) F'(v.x) ifa=(p)y.

wherede U represents the root of tréegf3 € L(E) andy € L(B*).

Definition 29 (Tree string setT) A tree string sefll for a node seU is a set of tree

strings generated by gramm@rand:

182

vt e T,Vvue U,uisint,

2)Vt e T,t =doD,dp € U,D € L(B*),

Vi, tr €T, if tg #to, thenH (1) # H(tz), and

4) for any tree string = doD,dg € U,D € L(B*), |t| =3|U| -2,
I’ eT,H(t) =H(').

In other words, each tree string Thcontains all nodes iy. All the tree strings have

the same root nods. No two tree strings i have the same canonical representation.

Tree sefl represents a complete set for all the tree topologies for the notle set

We assume that all the nodeslhare connected to form a single tree topology. A

forest consisting of multiple trees is not allowed.

Lemma 8 (Tree generation) Given a tree string sef for a node set, a new tree
string sefT’ for the node set o) U {x} is derived fromT without producing identical
topologies by applying growing functioh to each tree ifT: T’ =T - F(t,x), for all

teT.

Definition 30 (Port count constraint) A tree can be represented in the formdi¥,
whered represents the root of the tree, @8¢B € L(B)) represents all of itk subtrees.

The port count constraint i§u € U,

>k+1 if pisanon-root node,
Pu P (8.3)

pu >k if pis the root node.
wherep, is the port count for node.

For example, in Figure 8.1, the tree stris(do(c)(d))(e(f)) satisfied8.3) if fy,fe>
2, f, > 3 andf.,fgq,fs > 1.

183

Corollary 1 (Connectivity condition) Given a node sdfl of n nodes, a tree topology

that connects all the nodes exists, iff

Z) pu>2n-2 (8.4)
ue!

wherep, is the port count of node.

A tree islegal if every node inU satisfies the port count constraint (8.3) and con-

nectivity condition (8.4).

8.3.2 Cost Function

Given a transaction= (u, v, S, Wy), all the nodesi € U can be categorized into three
sets:M, My, andM;. M; = {u, v} consists of communicating nodd, consists of
all the nodes that repeat the transactiam the routing pathM; consists of the nodes
not involved in the transaction We say the working modews, for the nodeu in the
above sets each are transferring, repeating, and idle, respectively.

For a given nodel, the power functiorP is a function of the port numbeg, and
working modem,, denoted a®(p,,m,). Power function can be a lookup table whose
data entries come from manufacture’s data sheets [67].

We define the power function of a transactioand a tred as:

P(T,t) = % P(pu, my) + % P(pu, my) % P(pu, my) (8.5)

Power functiorP(t,t) represents the total bus power of the whole systems during the
transactiornt. It consists of power of nodes involved the transaction (both transferring
and repeating node) and power of idle nodes.

For a transaction, Effective transaction times defined as:

w
D= —.
s

(8.6)

184

wherew is the workload and is the transmission speed.

Note that effective transaction time may not be equal to the actual time to complete
a transaction. Consider two transactions start at the same time, both transferring data
at the same speed and both taking one minute to complete. Assume they equally share
the total bandwidth, the effective transaction time for each transaction is only half a

minute.

During a given time perio®, we suppose there akéransaction instanceds; } (i =

1,...,k). The total effective transaction time is:
mzzm. (8.7)
We defineutilization of the transaction is:
A=—. (8.8)
Finally for a given tree string, we define our cost function as:

cC= ZP(T,t)AT (8.9)

CostC represents the average energy consumption on the bus in unit time. However it
does not include the energy consumption when the bus is completely idle (no transac-

tion occurs).

8.3.3 Problem Statement

Given a tred and a set of transactioll§ the tree is deasibleone if it satisfies the

speed constraint:

YV 1(Ug, Vi, S,We) € M andV xe M, s € S (8.10)

185

That is, for a transaction, all the intermediate nodes on a routing path should support
the transfer speed. We aim to find trees that has the minimum cost defined by (8.9).
The input to the problem is a set of nodeand a set of transactidn The output of

the problem is a tree (or a set of trees) with minimum cost.

In case the input node setdoes not satisfies the connectivity condition (8.4), we
addhubsto connect the nodes so that the connectivity condition is satisfied. A hub is
a special node that can repeat transactions but cannot be a peer node in a transaction.
Several types of hubs are available, which are differentiated by their port count. The
more ports a hub has, the more power it consumes when repeating packets. Part of the

topology selection problem is to select different hub types for energy optimality.

8.4 Algorithm

Tree topologies are incrementally generated using our grammar-based growing func-
tion. In this section we present the tree generation algorithm and the top level search
algorithm. A brief discussion on complexity shows that asymptotically our algorithm

generate much fewer trees than exhaustive approach, and in practice, our technique

produce even much fewer trees by applying system-level constraints.

8.4.1 Approach

We take an incremental approach to obtaining the tree detdfnodes from a tree set

of k nodes. We use our growing functiénto add a node to an existing tree either as

a leaf node or as a non-leaf node. At each incremental step, if a tree topology fails to
satisfy the port count constraint or the transfer speed constraint, it will not be included
into the tree set. After obtaining a tree set for all the nodes, we calculate cost for each

tree to search for optimal topologies.

186

TREEGEN(V, I, h)
#input : node set U, transaction sef hub type h
#output: tree set T
Preprocess: add hub nodes if necessary
V' « preprocesd/, h), #sort nodes in decreasing order by thgjr
for eachvin U’ { p[v] — py } # p|v]: port count ofV.
V < pop up the first node i’
T «—{u}
while U’ not empty{
U« pop up the first node i)’
T T
for each tregin T {
for each nodein t {
Tj < ADDASLEAF(t,u,I")
Ty < ADDASBRANCH(t,u,I")
T 1UTy

O©CoOo~NOOOUTD WNEO

e ol
O WNRO

}
}
17 T-T

}
19 return T

=
(e}

[EnY
o

Figure 8.2: The tree enumeration algorithm.

8.4.2 Algorithms

The tree generation algorithm is shown in Figure 8.2. The inputs to the algorithm are
a node seU and hub typeh. The output of the algorithm is a tree set containing all

the feasible trees. In the pre-process procedure in Line 3, we check whether the node
setU satisfies the connectivity condition (8.4). If port count is not enough, we add
an adequate number of hubs of typéto the node set, thus forming a new node set

U’. We also sort the nodes ' by their port counts to facilitate the tree generation
described below. Array[n] (Line 4) keeps the port count information of all nodes

in U’ during the process of tree generation. Lines 5-6 gets the first nddé and
initialize the tree sef. The while loop (Lines 7-18) incrementally generates new
trees and expands tree set. Two main steps aeAsL EAF() and ADDASBRANCH()

which add a new node to the existing tree set as a leaf node and as a non-leaf node,

respectively.

187

ADDASLEAF(t, X, ©)

#input : tree t, node X, transaction set

#output: tree set|T

T <0

ptr —0

while ptr <len(t) {

while t[ptr] ¢ D { ptr «— ptr+ 1} #find next node id
if plt[ptr]] > 0 { #if port available

Tsup < Subtreét[ptr]) # Tqp a set of subtrees ofptr|
insertXTsup,’ (X)') # so that elements ins§, are sorted

10 t’ « join(Tsyp) # concatenate elements igyfinto a string

11 t” « insertSulft, t’) # substitute fptr]'s subtrees for't

12 updatePo(p) # update port count information

13 tag—1

14 for eacht € © {

15 if not checkSpeed”, 1) {

16 tag < 0; break }

17 }

18 iftag==1{ T — TTU{t"}}

19 }

20 ptr — ptr+1

21 }

22 return T,

©oO~NOOOLD WNPE

Figure 8.3: The ADASLEAF routine.

MINTREE(V, ©, H)
#input : node set V, transaction s@ hub type setH
#output: optimal tree set minTreeSet, minimum cost minCost
minTreeSet— 0
minCost— oo
for eachhin H {
T «— TREEGEN(V, h)
for eachtin T {
cost— getCosft,©)
if cost< minCost{
10 minCost— cost minTreeSet— {(t,h)}
11 } else ifcost==minCost{
12 minTreeSet— minTreeSet {(t,h)}
13 }
14 }
15 }
16 if minCost< « {print minCost minTreeSe}
17 else{ print “no solution found?}

©CoO~NOULD WNBE

Figure 8.4: The top level topology selection algorithm.

188

Figure 8.3 shows the procedur@BASsLEAF(). When adding a new nodeto an

existing tred as a leaf node, we try attachimgo each node if it has a port available.

In the string of treet, we insert(x) after a nodeu to the right position so that the

new tree remains in its canonical form. We identify the routing path between two
communicating nodesandv, check speed constraints for every intermediate nodes (if
any), and return whether the tree satisfies the speed constraint. If for all transactions,
the tree satisfies speed constraints, we append it to the tree set.

The other step, similar to BDASLEAF(), is to addx as a branch node. A connec-
tion between a node and one of its subtrees is identifiedis inserted as the child of
u while the subtree as the child ®f Thusx becomes a non-leaf node. We repeat this
for all the subtrees af. The procedure ADASBRANCH() is implemented similarly to
ADDASLEAF() as string manipulation and it not shown.

A top level algorithm is shown in Figure 8.4. We assume the connectivity condition
(8.4) is not satisfied thus we try different types of hubs in the outmost loop (Lines 5 and
15). Otherwise the loop can be safely removed. Line 6 generates all feasible trees and
stores them in sel. In the loop of Lines 11-19, we check to see whether the speed
constraint is satisfied. If yes, we then calculate its cost and save it if it is minimum
cost. Finally we output the optimal tree set with hub type or no solution message if all

topologies fails to satisfy the constraints.

8.4.3 Complexity

The complexity of an exhaustive approach is prohibitive. Given a node s#tn
nodes, we can permute the nodes and obitagtrings, each consisting ofnodes. For
each string, we need to aad- 1 pairs of parenthesis to form a tree string. For each
parentheses pair, we hame- 1 locations to add, and adding parentheses pairs is inde-
pendent with each other. Thus we have20f ways to addch — 1 pairs of parentheses.

Altogether, we can obtain!2"~! trees from a node set ofnodes. Note that among

189

Port/mode| Transfer| Repeat| Idle

1 158.4 | 138.6 | 125.3
2 234.3 | 217.7 | 174.7
3 379.5 | 320.1 | 247.5
4 676.5 | 498.3 | 412.5
6 924.0 | 673.2 | 541.2

Table 8.1: Power data of FireWire interface (in mW).

those trees, there are trees that topologically identical but differ in root nodes, trees that
are not in their canonical forms, and trees that do not satisfy constraints.

Our algorithm assumes a node to be the root node and trees differ only in the root
will not be repetitively generated. Our algorithm generates tree strings in their canoni-
cal forms and does not generated topologically identical tree strings.

In the ADDASSLEAF() routine, the if-branch (Lines 8-18) produces at mosew
strings k is the number of nodes in current ttgeADDA SBRANCH() routine produces
at most(k— 1) new strings. Thus we obtains at m¢2k — 1) tree strings for a tree of
(k+ 1) nodes. Theoretically, our algorithm may produce at ngast- 3)!! patterns for
a node set of size, which sets a very loose upper bound of generated tree strings. This
is already asymptotically smaller than the exhaustive approach. In reality, our algo-
rithm generates much fewer trees since we apply constraints at each incremental step.
This greatly reduces the generated trees in that step and avoids fast growing of trees in
the succeeding steps. For example, when8, theoretically the exhaustive approach
produces 5160960 trees and our algorithm may produce at most 135135 strings, only
2.6% of the former approach. In reality, we only generated as few as 90 trees (see

Section 8.5), due to the constraints we applied.

8.5 Experimental Results

We apply our algorithm to two FireWire bus examples. We use FireBug [9], a software

bus snooping tool, to monitor the bus traffic and obtain the workload information. In

190

Device | Max speed(Mbps) port #
Macl 400 2
Mac2 400 2

PC1 400 2
HD1 200 2
Cam 100 1
iBotl 200 1
ibot2 200 1
Hub 400 3/4/6

Table 8.2: A list of FireWire devices

Trans.| ul u2 | Speed(Mb/s)| Workload (x1000Mb)
1 Macl | HD1 200 13
2 Macl| PC1 400 25
3 Macl | Cam 100 80
4 Macl | iBotl 200 46
5 Mac2 | HD1 200 5
6 PC1 | iBot2 200 46

Table 8.3: A list of transactions

Hub type p=3|p=4| p=6
of trees 90 269 376
MaxCost 270.6 | 306.2 | 338.9
MinCost 213.2| 267.5| 290.8
diff(%) 12.2 | 145 | 16.6
of optimal trees| 4 1 1

Table 8.4: Experiment results for Example | (eight nodes).

191

HUB HUB
! !

MTCl PC1 Hlfl MTC1MTC2 Hlfl
CamiBot2 MTCZ Cam PC1 iBotl
iBotl iBot2
HUB
e AN
/ Macl PC1 iBotl
MaclMac2 PC1 T
T T Cam HD1
Cam HD1 iBot2 ?
T Mac2
iBotl |
iBot2

Figure 8.5: Example Ip = 3, four trees found.

N

MTC1 PC1 Hlﬁl iBotl
CamiBot2 Mac?2

Figure 8.6: Example Ip = 4, one tree found.

N

MTCZ PC1 iBotl iBot2
HD1 MTCI
Cam

Figure 8.7: Example Ip = 6, one tree found.

192

the first example we have eight nodes to be connected. The second example has the
similar setup but in a larger scale, which makes it almost impossible for the exhaus-
tive approach to find out a solution in a practical time period. Our algorithm generates
optimal tree sets efficiently. Our experimental results show that the optimal solutions
we found save up to 15%—-20% energy compared to an arbitrarily generated topology.
Furthermore, workload balanceness and hub types have perceivable influences on en-
ergy cost. We have built a web-based tool to facilitate the user to interact with the core

algorithm on the server side.

Example |

We have seven devices to be connected with FireWire bus interfaces, as listed in table
2: Mac1 and Mac? are two desktop Mac computers, PC1 is a notebook computer, HD1
is a FireWire hard drives, Cam is a Camcorder, iBotl and iBot2 are two web cameras.
A hub is added to the device list in order to satisfy the connectivity condition.

We use FireBug to capture the workload information. FireBug can keep track of
all the activity on the FireWire bus and report to the user the desired events by filtering
out the irrelevant ones. We first arbitrarily interconnect all the devices and turn on
FireBug to mornitor and record the traffic on the bus, and extract transaction-related
information from FireBug log file. For example, we obtain the nodes involved in a
transaction, the data transfer speed and the number of packets transferred. Then we
obtain the transaction table shown in Table 8.3.

Table 8.4 shows the experiment results. Although this experiment looks simple, to
find the optimal solution is not trivial. Exhaustive enumeration will produce 5,160,960
trees (see the last section). Our algorithm shrinks the tree set sizes down to less than
400 (first line of Table 8.4) using our grammar-driven tree generation.

MaxCostand MinCost are the maximum and minimum cost value for all gener-

ated feasible trees. In three casés=£ 3,4,6), the differences betweaviinCostand

193

MaxCostare ranging from 12% to 166%, representing the potential energy savings

by selecting the trees witklinCost It is interesting to see that the more ports the hub
has, the more energy the tree consumes. The reason is that the hub with more ports
consumes more energy to repeat packets. Therefore for this example, a three-port hub
is the optimal solution.

Figs. 8.5, 8.6, and 8.7 show the optimal tree sets when using hubs of three, four, and
six ports, respectively. When using a three-port hub, four trees are found (see Fig. 8.5).
When using a six-port hub, only four ports of the hub are used. This is because for some
transactions, it costs less when the two peer nodes are directly connected (if possible)
instead of going through a hub. Trees in Fig. 8.6 and Fig. 8.7 are different even in both
cases four ports are used. The reason is that different hub types in the two cases causes
different energy consumption.

To see whether the potential energy savings are sensitive to the workload balance-
ness, we change the workload on transaction 3 (betWki andCam) and generate
optimal topology for each workload value. Transaction 3 originally has the largest
workload among all transactions. We change its workload value from the average of
all transactions to positive infinity (disabling all other transaction). Fig. 8.8 shows
the curve of the workload percentage vs. the potential energy savings. The workload
percentage is the ratio between the workload of the selected transaction to the total
workload of all transactions. The curve shows that the higher the workload percentage
is, the higher the potential energy saving becomes. This implies that the more unbal-
anced the workload is, the more significant the potential energy saving becomes, by up

to nearly 20% in this example.

Example Il

We use three Mac computers, four FireWire hard drives, one printer, one scanner and

one camcorder, totally ten devices. To satisfy the connectivity condition, we add three,

194

12 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 60 70 80 90 100
Workload percentage (%)

Figure 8.8: Workload balanceness vs. potential energy saving.

hub type p=3| p=4| p=6
of hubs 3 2 1

of total devices| 13 12 11
of trees 45761 | 17001 | 2013
MaxCost 332.8 | 304.4 | 270.4

MinCost 300.9 | 268.8 | 236.7
diff(%) 10.1 | 133 | 14.2
of optimal trees| 3 2 1

Table 8.5: The number of devices with different hub types.

195

two, and one hub when using three-port, four-port, six-port hubs, respectively (first
two rows in Table 8.5). For the exhaustive approach, the problem of up to thirteen
nodes becomes intractable in practice. Out algorithm generated highly compact tree
sets (Row 3 of Table 8.5). Potential energy savings range from 10.1%—-14.2%.

Note that in our cost function, we only consider the time periods when there is
traffic on bus. When the bus is complete idle, part or all the bus nodes can be potentially
disabled, resulting more energy savings. In the implementation of FireWire bus drivers,
the link layer and above layers can be disabled for low power if no transaction is on the
node. This is in contrast to our examples, where we assume all the layers are on all the
time. Even for the physical layer controller, dynamic power management techniques
can be applied to disable it when there is no traffic passing through it. All the above
conditions are orthogonal to our techniques. It is conceivable that additive energy
saving can be achieved by combining our technique with other power management

techniques.

8.6 Chapter Summary

This chapter presents a method for optimizing peer-to-peer serial bus topology for en-
ergy reduction. To represent trees, we use a canonical string form that is both concise
and easy to manipulate. We purpose an incremental approach to enumerating valid tree
topologies. By applying a number of constraints in each enumeration step, we are able
to obtain both complete and compact tree sets without producing redundant trees. We
capture the bus workload information by monitoring the bus traffic and factor it into
the cost function for energy optimization.

Workload distribution has an impact on the potential energy savings. The more
imbalanced the workload is, the more energy saving opportunities exist. Hub type
selection influences the optimal solution points due to variations in their individual

power behavior.

196

Although we use FireWire bus to demonstrate the effectiveness of our technique,
our approach is general enough to apply to many other tree-like architectures. As low
power serial busses become more popular in computer systems and system-on-chip,
we believe our technique can be applied to more applications and will show significant
energy savings.

Current topology optimization is static, requiring the bus to reconfigure at least
once to form an optimal topology. It is possible to construct a bus topology with re-
dundant physical links while dynamically configuring it to form new tree topologies

for performance, energy-saving, and fault tolerance.

197

Part vV

Conclusion

198

Chapter 9

Conclusions and Future Work

This document presents the IMPACCT tool and methodology for system-level power
management of power-aware embedded systems. The primary goal of the tool is to
greatly expand the range of power/performance trade-offs, so that the system can most
effectively adapt to the wide range of power availability in different operating scenar-
ios. This can be accomplished by leveraging existing low-power and high-performance
techniques, but a naive technique integration have led to incorrect results because im-
portant system-level properties were not properly considered. One of our contribu-
tions is precisely in modeling the important system-level dependencies including co-
activation and inter-component modes. We have also developed power-aware schedul-
ing and mode selection as two core tools for computing system-level power manage-
ment policies. Our scheduler not only generates different schedules whose parallelism
tracks the power availability, but also more aggressively increases the dynamic range
by task motion while preserving timing and power constraints. Our mode selection
methodology systematically exploits novel power management features in new compo-
nents with a much richer set of power modes while considering all timing/power over-

head associated with mode changes. All of these were made possible by our system-

199

level dependency modeling methodology. Also supported is a system-level simulation
engine that coordinates the execution of heterogeneous models that can range from na-
tive code to detailed simulation models and even emulators. They comprise a powerful
framework to aid the quick exploration and validation of power management decisions.
We believe this work represents a major step towards a framework that will be able to
effectively integrate the best power management techniques developed by others and
by us.

We are currently pursuing several directions for future work. One ongoing project
is to augment the library with a richer collection of components to include not only
processor models but also more types of memory modules, peripheral devices, and
battery models. To make our methodology practical and usable by engineers, we are
also investigating automatic extraction techniques to reduce the effort in constructing
the models needed as input to the IMPACCT tool. On scheduling, we are develop-
ing on-line, battery-aware algorithms under not opbyverconstraints but alsenergy
constraints. This will be supported by models for batteries and other energy sources
[43, 51, 73]. Some initial work was recently proposed [46, 50], but we believe energy
constraints must be considered in the context of the battery discharge and even recharge
characteristics. Schedulers that are aware of battery discharge characteristics have been
proposed [45, 51] but they do not treat power as constraints. On mode selection, it is
being generalized to algorithm selection (e.g., between alternative image compression
algorithms), which must be accompanied by data structure selection. Switching be-
tween algorithms and data structures will incur even larger timing and power overhead
but the potential payoff will be tremendous. Together, we expect all these features will

make IMPACCT a compelling tool for power-aware designs in the near future.

200

Bibliography

(1]

(2]

(3]

[4]

5]

[6]

(7]

(8]

The Alchemy Au1100 from AMD: Internet edge processor. http://www.alchemy-

semi.com/producinfo/au1100/index.html.

INTEL ethernet PHYs/transceivers. http://developer.intel.com/design/network/-

products/ethernet/linecampt.htm.

INTEL XScale microarchitecture. http://developer.intel.com/design/intelxscale/.

NASA/JPL’'s Mars Pathfinder home page. http://mars3.jpl.nasa.gov/IMPF/-
index0.html.

1394 Trade Association. P1394b draft standard for a high performance serial bus
(high speed supplement). Imttp://www.zayante.com/p1394b/drafts/p1394bl-
33.pdf 2001.

Y. Aghaghiri, F. Fallah, and M. Pedram. Irredundant address bus encoding for
low power. InProc. of Int. Symposium on Low Power Electronics and Design

pages 182-187, August 2001.

V. Alliance. On chip bus attributes version 1. In

http://mwww.vsi.org/library/specs/summary.hth®98.

D. Anderson. FireWire System ArchitectureMindShare Inc., Reading, Mas-

sachusetts, second edition, 1999.

201

9]

(10]

(11]

[12]

(13]

(14]

(15]

(16]

Apple Inc. Apple’s firewire sdk 2.8.1. In
ftp://ftp.apple.com/developer/Developmdits/FireWire 2.8.1. SDK.sit.bin
2000.

N. K. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler. Hybrid global/local
search strategies for dynamic voltage scaling in embedded multiprocessors. In
Proc. International Symposium on Hardware/Software Codegigges 243248,

2001.

L. Benini and G. De Micheli. Networks on chips: a new soc paradigBEE

Computer 35(1):70-78, Jan 2002.

L. Benini, G. Paleologo, A. Bogliolo, and G. De Micheli. Policy optimization
for dynamic power managemenEEE Transactions on Computer Aided Design

18:813-833, June 1999.

T. Burd and R. Brodersen. Design issues for dynamic voltage scalingromn
International Symposium on Low Power Electronics and Degigges 9-14, July

2000.

A. Chandrakasan, S. Sheng, and R. Brodersen. Low-power CMOS digital design.
IEEE Journal of Solid-State Circuit27(4):473—-484, April 1992.

L.-F. Chao, A. LaPough, and E. H.-M. Sha. Rotation scheduling: A loop pipelin-
ing algorithm. IEEE Transactions on Computer Aided Desid6(3):229-239,
March 1997.

J. Chen, W. Jone, J. Wang, H.-I. Lu, and T. Chen. Segmented bus design for low-
power systems.IEEE Trans. on Very Large Scale Integration (VLSI) Systems

7(1):25-29, March 1999.

202

[17]

(18]

[19]

(20]

[21]

(22]

(23]

(24]

(25]

R. Cherabuddi, M. Bayoumi, and H. Krishnamurthy. A low power based system
partitioning and binding technique for multi-chip module architecturefrte.

Proc. Great Lakes Symposium on Vj®iges 156-162, 1997.

P. Chou and G. Borriello. Software scheduling in the co-synthesis of reactive real-

time systems. IProc. Design Automation Conferengemges 1-4, June 1994.

P. Chou and G. Borriello. Interval scheduling: Fine grained code scheduling for
embedded systems. Proc. Design Automation Conferengeages 462-467,
June 1995.

E.-Y. Chung, L. Benini, and G. De Micheli. Dynamic power management using
adaptive learning tree. IRroc. International Conference on Computer-Aided

Design pages 274-279, 1999.

H. Consortium. Hypertransport /O link specification 1.03. In

http://www.hypertransport.org/downloads/HDLink_Spec.pdf2001.

W. J. Dally and B. Towles. Route packets, not wires: On-chip interconnection

networks. InProc. of DAG pages 684—-689, June 2001.

P. Eles, A. Doboli, P. Pop, and Z. Peng. Scheduling with bus access optimiza-
tion for distributed embedded system$EEE Transactions on VLS| Systems
8(5):472-491, 2000.

J. Henkel and H. LekatsasA?BC: adaptive address bus coding for low power
deep sub-micron designs. Rroc. of the 38th Design Automation Conference

pages 744-749, June 2001.

I. Hong, D. Kirovski, G. Qi, M. Potkonjak, and M. B. Srivastava. Power op-
timization of variable voltage core-based systemsPioc. Design Automation

Conferencepages 176-181, June 1998.

203

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

I. Hong, D. Kirovski, G. Qu, and M. Potkonjak. Power optimization of variable-
voltage core-based systemH=EE Transactions on Computer-Aided Design of

Integrated Circuits and Systent8(12):1702—-1714, 1999.

I. Hong, M. Potkonjak, and M. B. Srivastava. On-line scheduling of hard real-
time tasks on variable voltage processor.Phoc. International Conference on

Computer-Aided Desigmpages 653—656, November 1998.

I. Hong, G. Qu, M. Potkonjak, and M. Srivastavas. Synthesis techniques for
low-power hard real-time systems on variable voltage processoRom IEEE

Real-Time Systems Symposipages 178-187, December 1998.

E. Huwang, F. Vahid, and Y.-C. Hsu. FSMD functional partitioning for low power.
In Proc. Design, Automation and Test in Eurgpages 22—-28, 1999.

C.-H. Hwang and A. Wu. A predictive system shutdown method for energy sav-
ing of event-driven computation. IAroc. 1997 Design Automation Conference

November 1997.

IBM. Coreconnect bus architecture. In

http://lwww.chips.ibm.com/products/coreconnect/index,t899.

C. Im, H. Kim, and S. Ha. Dynamic voltage scaling technique for low-power
multimedia applications using buffers. Broc. International Symposium on Low

Power Electronics and Desigiugust 2001.

Intel. Third generation I/0 architecuture. In

http://developer.intel.com/technology/3GIZD01.

T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically variable
voltage processors. Rroc. International Symposium on Low Power Electronics

and Designpages 197-202, August 1998.

204

[35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

M. Jacome, G. de Veciana, and C. Akturan. Resource constrained dataflow re-
timing heuristics for vliw asips. IrProc. International Symposium on Hard-

ware/Software Codesigpages 12-16, May 1999.

J. Kim and A. EI-Amawy. Performance and architectural features of segmented
multiple bus system. IRroc. of International Conference on Parallel Processing

pages 154-161, 1999.

P. V. Knudsen and J. Madsen. Integrating communication protocol selection with
hardware/software codesighEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systent3(8):1077-1095, August 1999.

S. Komatsu, M. Ikeda, and K. Asada. Low power chip interface based on bus data
encoding with adaptive code-book method.Froc. Ninth Great Lakes Sympo-

sium on VLSIpages 368—-371, March 1999.

L.-S. P. L. Shang and N. Jha. Power-efficient interconnection networks: Dynamic

voltage scaling with linksComputer Architecture Letter4(2), May 2002.

K. Lahiri, A. Raghunathan, and G. Lakshminarayana. LOTTERYBUS: a new
high-performance communication architecture for system-on-chip designs. In

Proc. Design Automation Conferengages 15—-20, June 2001.

K. Lalgudi and M. Papaefthymiou. Fixed-phase retiming for low power design.
In Proc. International Symposium on Low Power Electronics and Degigges

259-264, August 1996.

C. Leiserson and J. Saxe. Retiming synchronous circuMigorithmica 6(1):5—

35, 1990.

H. Linden. Handbook of BatteriedVicGraw-Hill, 1995.

205

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

J. Liu, P. H. Chou, N. Bagherzadeh, and F. Kurdahi. Power-aware scheduling
under timing constraints for mission-critical embedded systemBrdo. Design

Automation Confereng@ages 840-845, June 2001.

J. Luo and N. K. Jha. Battery-aware static scheduling for distributed real-time
embedded systems. Iroc. Design Automation Conferengeages 444—449,
June 2001.

T.-L. Ma and K. Shin. A user-customizable energy-adaptive combined
static/dynamic scheduler for mobile applicationsPhceedings 21st IEEE Real-

Time Systems Symposiymages 227—-236, November 2000.

E. Musoll, T. Lang, and J. Cortadella. Working-zone encoding for reducing
the energy in microprocessor address bues&EE Trans. on VLS| Systems

6(4):568-572, December 1998.

T. Okuma, T. Ishihara, and H. Yasuura. Real-time task scheduling for a variable
voltage processor. IRroc. International Symposium on System Synthpaiges

24-29, November 1999.

R. Ortega and G. Borriello. Communication synthesis for distributed embedded
systems. IrProc. International Conference on Computer-Aided Desiggges

437-444, 1998.

A. Parikh, M. Kandemir, N. Vijaykrishnan, and M. Irwin. Energy-aware instruc-
tion scheduling. IrProc. International Conference on High Performance Com-

puting, pages 335-344, December 2000.

M. Pedram, C.-Y. Tsui, and Q. Wu. An integrated battery-hardware model for
portable electronics. IRroc. Asia and South Pacific Design Automation Confer-

ence pages 109-112, January 1999.

206

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

T. Pering, T. Burd, and R. Brodersen. The simulation and evaluation of dynamic
voltage scaling algorithms. [Rroc. International Symposium on Low Power

Electronics and Desigrpages 76-81, August 1998.

Q. Qiu, Q. Wu, and M. Pedram. Dynamic power management of complex systems
using generalized stochastic petri netsPhoc. Design Automation Conference

pages 352-356, 2000.

G. Quan and X. S. Hu. Energy efficient fixed-priority scheduling for real-time
systems on variable voltage processorsPioc. Design Automation Conference

pages 828-833, 2001.

A. Rjoub, S. Nikolaidis, O. Koufopavlou, and T. Stouraitis. An efficient low-
power bus architecture. Froc. of IEEE Int. Symposium on Circuits and Systems

pages 1864-1867, June 1997.

F. Sanchez and J. Cortadella. Time-constrained loop pipelinirgroa. Interna-

tional Conference on Computer-Aided Desigages 592-596, November 1995.

M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vincentelli. Addressing the system-on-a-chip interconnect woes
through communication-based design.Proc. Design Automation Conference

pages 667—672, June 2001.

D. Shin, J. Kim, and S. Lee. Low-energy intra-task voltage scheduling using
static timing analysis. IfProc. Design Automation Conferenqeages 438—443,

June 2001.

Y. Shin and K. Choi. Power conscious fixed priority scheduling for hard real-time

systems. IrProc. Design Automation Conferengeges 134-139, June 1999.

207

[60]

(61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-time embedded
systems on variable speed processors. Pioc. International Conference on

Computer-Aided Desigmpages 365—368, November 2000.

R. Sims. Signal to clutter measurement and atr performanderoln of the SPIE
- The International Society for Optical Engineeringplume 3371, pages 13-17,
April 1998.

T. Simunic, L. Benini, and G. De Micheli. Event-driven power management of
portable systems. IRroc. International Symposium on System Synthpsiges

18-23, 1999.

A. Sinha and A. Chandrakasan. Operating system and algorithmic techniques for
energy scalable wireless sensor network$riceedings of the 2nd International

Conference on Mobile Data Managemgedanuary 2001.

M. Srivastava, A. Chandrakasan, and R. Brodersen. Predictive system shutdown
and other architectural techniques for energy efficient programmable computa-

tion. IEEE Transactions on VLS| System§l):42-55, March 1996.

M. Stan and W. Burleson. Bus-invert coding for low-power I\@EE Trans. on

VLSI Systems(1):49-58, March 1995.

H. Stone. Mars pathfinder microrover: A low-cost, low-power spacecraft. In
Proc. the 1996 AIAA Forum on Advanced Developments in Space Rol#atics
gust 1996.

Texas Instruments. IEEE 1394 products: Integrated devices, link layer controllers

and physical layer controllers. http://www.ti.com/sc/1394002.

A. Wang and A. Chandrakasan. Energy efficient system partitioning for dis-
tributed wireless sensor networks. MPmoc. IEEE International Conference on

Acoustics, Speech and Signal Processpapges 905-908, May 2001.

208

[69]

[70]

[71]

[72]

(73]

[74]

(78]

[76]

E. F. Weglarz, K. K. Saluja, and M. H. Lipasti. Minimizing energy consump-
tion for high-performance processing. Btoc. Asian and South Pacific Design

Automation Confereng@ages 199-204, 2002.

G.-Y. Wei, J. Kim, D. Liu, S. Sidiropoulos, and M. Horowitz. A variable-
frequency parallel 1/O interface with adaptive power-supply regulatifEE

Journal of Solid-State Circuit85(11):1600-1610, November 2000.

M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU
energy. INUSENIX Symposium on Operating Systems Design and Implementa-

tion, pages 13-23, 1994.

W. Wolf. An architectural co-synthesis algorithm for distributed embedded com-

puting systemslEEE Transactions on VLSI Systemages 218—-229, June 1997.

Q. Wu, Q. Qiu, and M. Pedram. An interleaved dual-battery power supply for
battery-operated electronics. Rroc. Asia and South Pacific Design Automation

Conferencepages 387-390, January 2000.

F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy.
IEEE Annual Foundation of Computer Scienpages 374-382, 1995.

T. Z. Yu, F. Chen, and E. H.-M. Sha. Loop scheduling algorithms for power
reduction. InProc. IEEE International Conference on Acoustics, Speech and

Signal Processingpages 3073—-6, May 1998.

Y. Zhang, W. Ye, and M. Irwin. An alternative architecture for on-chip global
interconnect: segemented bus power modelin@dnf. Record (Signals, Systems

& Computers) of 32nd. Asilomar Conpages 1062—-1065, 1998.

209

Appendix A

Tool

A.1 Introduction

A.1.1 An Overview of IMPACCT tool

IMPACCT tool consists ofSchedulerand Mode Selectar It performs power-aware
scheduling and mode selection in order to ensure that all timing/power constraints of
the system are satisfied and that all overheads are taken into account. The tool combines
the state-of-the-art techniques at the system level, saving designers from many possible
pitfalls of system-level power management. The goal of the tool is to expand the range
of power/performance trade-offs, so that the system can most effectively adapt to the
wide range of power availability in different operating scenarios.

The integrated view of the tool is shown in Figurel. Tiyguts are theTiming Con-
straint Graphand Component Library with Mode Dependency graph, both of which
should be manually extracted from the system specification. The scheduler and mode
selector work together with a feed back loop, converging the initial raw schedule to
the final optimal schedule. The output is the final schedule that considers all the power

and timing constraints, and includes feasible mode selection that saves the total system

210

energy consumption.

Timing Constraint Graph Component Library

with MDG

Initial Schedule —» Input Schedule

v v
Mode Selector

Final
Schedule

*MDG = Mode Dependency Graph

211

A.1.2 Features of IMPACCT tool version 1.0

e The tool is cross-platform, though examples in this appendix were run on MAC

oS X.

e The current version of the tool is not fully integrated yet. In other words, the
Scheduler and the Mode Selector are two separate tools. Therefore, the output
of the Scheduler has to be manually converted into the input format of the Mode

Selector. This procedure will be automated in the future version.

e The Scheduler tool performs a battery simulation in addition to scheduling, which

enables to see the battery behavior corresponding to a specific schedule.

This appendix will explain Scheduler and Mode Selector as two independent tools.

A.2 Scheduler

A.2.1 Software Installation

Python
You need Python 2.0.1 or higher to run the tool. Python can be obtained for free from
http://www.python.org. Find an appropriate package for your platform (Mac, Win-

dows, Unix, or Linux), follow their instructions to unpack and install on your machine.

Jython

You need Jython 2.0 or higher to run the Scheduler. Jython could be downloaded for
free from http://www.jython.org/download.html. Find an appropriate package for your
platform (Mac, Windows, Unix, or Linux), follow their instructions to unpack and in-

stall on your machine.

Scheduler

212

1) Download the Scheduler from

http://embedded.ece.uci.edu/cgi-bin/cvsweb.cgi/tool/scheduler/scheduler.tar.gz

2) Unpack by typing (in the system shell)

%tar zxvf scheduler.tar.gz

For the older versions of tar, you should type,

%gzcat scheduler.tar.gz | tar xvf scheduler.tar

3) Type the following to compile the battery simulator, which is written in fortran.

%cd batsim

%./compile.bat

A.2.2 Getting Started

There are several ways to start the scheduler. The choice depends on the usage of
daemorfor running the scheduler and the battery simulator. The scheduler can either
run on a built-in Jython, or on a daemon. However, the battery simulation MUST run
on a daemon. The location of the daemons could be local or remote. The following are

three typical ways, though other combinations are also possible.

1) Running the scheduler as a built-in method, and running the battery simulation

on a localdaemon. (default)
2) Running both on local daemon

3) Running both on remote daemon

213

The following is the explanation of each method. Choose one of them, and follow

the steps.

1) Thisis the simplest way. Open the shell, go to the directory where you unpacked

the scheduler, and type

%python run.py [-x] sd bd gui

sd : Scheduler daemon
bd : Battery simulation daemon
gui : GUI

-x : If current terminal window supports xterm, the specified daemon(s)/GUI
will be started in new xterms. If not, it is preferred to start each dae-

mon/GUI in a separate terminal window without -x switch.

The Scheduler GUI will pop up.

Power-aware Scheduling Tool
File Scheduler Daemons

(Renew

Input Output

Command

Schedule { Timing) (" Pmax) { Pmin

Power

o e
Diaplay Both Coloring: © Mono ® Colored Pattern: = Colors: | aliceblue) (Createps

Battery { Simulate) Type: ® 1 Cycle © Whole life Veh/vo: 0.90) Live update every 1 1 sec

Profile

Scale @ Auto O Custom X min: Auto &0 X max: Auto ¥ min: Auto * Y max: Auto

214

2) Open the shell, go to the directory where you unpacked the scheduler, and type
%python run.py [-x] sd bd gui
When the Scheduler pops up, open Daem@&theduler. Choose Local, specify

the Port number, and press OK.
80686

File Scheduler I:m

Simulation ‘
S

&) Select Scheduler Daemon
O Built-in
'@ Local Port: [50007

) Remote Port: 5000

onal.ece.uci.edu emotional.ece.uci.edu

*‘ Send b

{ oK { Cancel)

|Host:
\Cmd:

Running the programs on local daemon could be faster than running on built-in

Jython.

3) Open the shell, go to the directory where you unpacked the scheduler, and type
%python run.py [-x] sd bd gui
When the Scheduler pops up, open Daem@&@theduler. Choose Remote, spec-
ify the Port, type in the Host or select from the list, and press OK. If you type in

the host, then the selected list is disabled.
006

File Scheduler Im
| scheduler [‘

Simulation
T
e Select Scheduler Daemon
| Built-in
/O Local Port: 50007
(™ Remote Port: [50007
Host: emotional.ece.uci.edu emotional.ece.uci.edu I
(Cmd: C Send

{ OK } { cancel)

Then, open DaemenSimulator. Choose Remote, specify the Port, type in

215

the Host or select from the list, and press OK. If you type in the host, then

the selected list is disabled. (The example below specifies the host as beauti-

ful.ece.uci.edu)

ece
File _Scheduler [EYRIINN
Scheduler
T — \
5] Select Simulation Daemon
) Built=in
O Local Port: 5000:
|® Remote Port: 50008
Host: [beautiful.ece.uciedd | emotional.ece.uciedu %]
‘Cmd: Send

{ OK Cancel

Note: When you are running on Daemon, you must remember to close it when
you finish running the tool, before closing the Scheduler GUI. Otherwise, the
Daemon will run forever. In order to close a daemon, type exit on the command

box(Cmd), press Send button, and press OK.

[&] Select Scheduler Daemon
[© Built-in
|® Local Port: 50007
|©) Remote Port: 500(
{Host: riotional.ece. uel.edi emotional.ece.uci.edu 3
| | "_ Send

{Cmd: exit
4 oK { Cancel

A.2.3 Running the tool

Loading the Input

There are two possible ways to load the input. You can (1) load it from file or (2)

directly type in the input.

(1) If you want to load the input from file, you must first create an input text file
that that contains the representation of timing constraint graph. See Section A.4
to get the reference of input format. Save your input file in the directory named

input, which you will find under the directory where you unpacked the tool.

216

Go back to the Scheduler GUI and open Fieoad graph. Choose your input

file and click on Open.

806

Scheduler
Load graph
Save graph
Save result
Quit

Daemons

p ¥

(6] ; Open schedule file

[input r'ﬁ

Date Modified
e

fg.txt

Format: | Scheduling input file (*.txt) |‘ﬂ

{ cancel)

3/25/02
3/25/02
3/25/02
3/25/02
3/25/02
3/25/02
3/25/02

2ar nn

i

You will see your input file loaded in the input text box on Scheduler GUI.

File Scheduler Daemons

part &
format d [deadlineg]
Input

d 5@

deadline for the whole schedule

C

Execution

(1) Scheduler

(2) You can also directly type the input into the input text box on Scheduler GUI.

When the input is loaded onto the Input box, you can run three programs that

output schedules meeting: i) Timing constraint, ii) Max power constraint, iii)

217

Min power constraint, respectively. In order to execute, either click on each cor-

responding button,

Schedule (Timing) £ pmax) r Pmin)

or select from the menu.

Time
Pmax
Pmin

After running three programs sequentially, you will get the output schedule.
The graphical result will be shown in the middle box labeled Power, and the out-

put text will be shown on the Output text box on the top right side.

e E;: Total energy

Pmax Maximum power constraint

Prin: Minimum power constraint

U;: Resource Utilization

218

E.: Energy cost (Area of boxes above the minimum power constraint)

8006 ‘Power-aware Scheduling Tool
File Scheduler Daemons
prozo = — v e wor
i 144 4.00 0.00
Max power: 20.00 Min power: 10.08
part 6 Energy total : 156.80 Energy cost : 26.00
deadline for the whole schedule Power spike : ©.00 Poner gap : 20.08 Util
INPUt # format d [deadline] OUIPUT pegk power profile : 15.00 Peak poner cost
0 Mean power profile : 10.46 Mean poner cost
d se e Stdv power profile : 0.94 Stdv poner cost 4
N —— CEE———
Command
Schedule { Timing) € Pmax) € Pmin)
c
W i
B e [a
A N ;
o 1 2 3 4 g € 7 [] 8 10 1 12 13 14 15 e
Power
o et 15600
o 1 Prmax: 20.00
b 1 e B i
in i
& wsee7
5%1 f c d
o 1 2 3 4 5 6 7 8 g 10 11 12 13 14 1B
= = FonTa
Display _Both) Coloring: © Mono @ Colored Pattern: Colors: | aliceblue ™ Create PS

(2) Battery simulator

After running the scheduler, you can run the Battery simulator.

i) Specify the feature of simulation on GUI.

Coloring: ® Mono O Colored Pattern: {8 Filled (O Line Colors: | brown Ra

— 1 Cycle simulates only one period time of the schedule, whereas Whole

Life simulates the whole battery life.

— Vth/VO is the ratio of the threshold voltage to the initial output voltage
of the battery. This ratio determines the length of the profile, since the

simulation continues until the Voltage reaches the threshold voltage.

— If you check Live update and specify the second, you will be able to
see the profile at the run-time of simulation. Otherwise, you will see

the profile at the end of simulation.

i) Run the simulator.
Press the Simulate button. You will see the output in the Profile box on
the bottom of GUI. On the right end of the graph, the total time of the pro-
file(T) and the threshold voltage(V) will appear. The example below is the
profile of the whole battery lifetime, with default Vth/V0 Ratio, 0.9, which

was run without live update.

Scale @ Auto O Custom X min: Custom = =F) X max: _Custom s Y min: _Custom : Y max: Custom

iii) Scale
You can perform custom scale for analysis. Check Custom radio button,

and type any minimum and maximum numbers into each text box, and

219

press Return key on keyboard.

Other features

(1) Display

You can change the display of the graphical output of scheduling.

i) View
— Time - This option shows the component level graph of the schedule
and power consumption.
— Power - This option shows the system level graph of the schedule and
power consumption.
— Both - This option shows both graphs.

— T & P-curve - This option shows a graph that combines both graphs.

On the Time graph, the Power graph is overlapped as an outline curve.

i) Color scheme
You can change the color scheme of the Power graph. Mono enables other
options of color scheme.
— You can specify a color from the color list.
— Choosing Filled fills the whole block with the specified color, which
makes it easier to see the total energy consumption.

— Choosing Line shows only a silhouette of the power consumption.

(2) Reload
You can load a new input and re-execute. Load the input with the same method
as before, and press the Reload button, which is next to the Input box on GUI.

Then, repeat the steps explained in the previous section.

220

Saving the result

To save the current timing constraint graph(the input), open+8ave graph, and save

the file.

806

Scheduler Daemons
Load graph
Save graph
Save result
Quit ‘,
"EsES Save constraint graph
|3 input F’i
Name Date Modified '=
= ﬁ
=l -
.
1=l 5
Name: i E New [0)
Format: | Scheduling input file (*.txt) Pﬂ

To save the output as a text file, open Fil8ave result, and save the file.

e0e

Scheduler Daemons
Load graph |
Save graph |
é SEz Save result
| [output F!'ﬁ
Name Date Modified ' =
. (New (53
Format: Scheduling output file (*.0... fﬂ
t Cancel :| Save -
s

To save the output graphs as PostScript, press the Create PS button on the GUI.

This will automatically create two files under output directory.

o [file] _sch.ps, this is the .ps for the scheduling result. If the input file is "exam-

ple.txt”, this file will be "examplesch.ps”.

e [file] _sim.ps, this is the .ps for the simulation result. If the input file is "exam-

ple.txt”, this file will be "examplesim.ps”.

Note: Do not forget to close the daemon, before closing the GUI.

222

A.3 Mode Selector

A.3.1 Software Installation

Python

You need Python 2.0.1 or higher.

Tkinter

To display the graphical interface, the Mode Selector uses the Tkinter module in Python.
To test whether the Tkinter module is properly installed, open the shell, and type
%python

%import Tkinter

As an alternative way, you can run either python.exe or idle.pyw by double clicking the
icon, and type

>>>import Tkinter

If no error message comes up, then the Tkinter is properly installed.

Mode Selector

1) Download the Mode Selector from

http://embedded.ece.uci.edu/cgi-bin/cvsweb.cgi/tool/modesel/ms071302.tar.gz

2) Unpack by typing (in the system shell)
%tar zxvf ms071302.tar.gz
For the older verson of tar, type

%gzcat ms071302.tar.gz | tar xvf ms071302.tar

A.3.2 Getting Started

To start the Mode Selector, open the shell, go to the directory where you unpacked the
Mode Selector, and type
%python ms _gui.py

The Mode Selector window will pop up.

223

eoce Mode Selector 1.0
File View Window Tools Help

Schdedule info:

Component info:

Command line: | RUN

A.3.3 Running the tool
Loading the input

Before running the tool, two input files must be saved in the same directory the mode
selector is installed. These are the Component library with MDG, and the input sched-
ule. The input schedule is the output file of the Scheduler with converted file format(py}.
The input formats could be found in [2] in Section A.4.

When the input is ready, go back to the Mode Selector GUI.

To load the Component Library with MDG, open Fitld.oad Component Library.
Choose your input file, for example, lib1.py, and click Open.

File | View Window Tools

Load Component Library...
Load Time Schedule...
Save Time Schedule...

Save Mode Schedule...
Exit

224

eece

Open Component Library

Directory: {Users/fjiwon/Deskiop/modesel —-|
£ others [Hblpy
£ psfiles El ms_gui.py
7 reslib El s_ems.py
3 schd
El d_ems.py
El dy.py
El ems.py
[
File name: [lib1.py Open
Files of type: Python Code (*.py) — | Cancel |

To load the initial schedule, open Fild_.oad Time Schedule

file in ./schd, for example, schdlc.py, and click Open.

File | View Window Tools
Load Component Library...
Load Time Schedule...
Save Time Schedule...
Save Mode Schedule...

Exit

~

®66

Open Schedule

Directory:

tusersfi K

I hd _.|

Els1.py

[El schdia.py
E) schd1b.py
B s

B schdid.py
[E] schaz.py
[E] schd3.py

. Choose your input

File name: |schdlc.py

_open |

Files of type: Python Code (*.py)

— | Cancel |

You will see the input graph with random color scheme, loaded on your GUI.

8ee Mode Selector 1.0
File View Window Tools Help
info:
cam
haz]
e ez] e]
o == =]
str
= 5 S
200 400 600 &00 1000 1200 1400
=]
Command line: | RUN
>

225

Execution

To run the Mode Selector, select ToelRkun Mode Selection.

Tools |

Run Mode Selection

Generate Postscript

You will see the result on your GUI. It contains (1) the mode schedule graphs on the
left, (2) schedule information on the top right, and (3) component information on the

bottom right.

r

| 6 O 6 Mode Selector 1.0]
Fle View Window Tools Help
T ; ‘ 5 info:
cean (fophi (sleey
M i5h) AEIEE Energy: 17146.28
' Cost: 17146.28
e & [o T (e | |
E v Pmax: 72
haz o e off | | |eminc 0
e e Real maxp: 20.39
i Real minp: 7.07
o [ecarve) TR
sci (sleep) [| scil (op) [fsleepy |
str (o] (o |
P 5
Z00 200 1000 T200 7400 : LS
anw task: str1
Resource: str
Mode: on
24 !
mal |POVWeEr: 6.0
18w i
N N
y WE
nw = Frii
Command line: | RUN
z

(1) The Mode Schedule graphs
The upper graph shows the time view of mode schedules of each component.
The boxes with chromatic colors are the tasks, labeled with task name and mode
name. The gray boxes are idle intervals, labeled by the mode name. The light
gray boxes are the mode change intervals, which have no label, and the mode is
non-determined.
The lower graph shows the power profile, which is the time view of total power
consumption. The red lines show the maximum and minimum power constraints.

(In the picture above, the minimum power constraint is zero, so the line is on the

226

bottom)

(2) Schedule info

It shows the energy consumption(Joule), energy cost(Joule), total execution time(sec),
maximum power constraint(Watt), minimum power constraint(Watt), real max-
imum power(Watt), and real minimum power(Watt). The energy cost is the en-
ergy consumption above the minimum power constraint. Real maximum and

minimum powers are the peak powers that the mode schedule reaches.

(3) Component info
The information of the tasks appears on this box dynamically, as you move
around the mouse on Mode Selector GUI, and point to any component. It shows

the task name, allocated resource, mode, and the power consumption(Watt).

Other features

(1) You can change the view of the result with three options: Task Only, Show All,

and Power profile.
\.‘iew! Window Tools
a—omy

Show All

Power profile

Change color scheime
Refresh

(Note: Change color scheme and Refresh are not implemented yet.)

— Task Only shows the result excluding the idle and mode change intervals.

227

File View Window Tools

sci scil

200 400 600 oo 1oan 1z00 1400

Z9W

ma
20

15%W
0%

Y @ = | =

i Pil

— Show All gives the original output graph, including all intervals.

File View Window Tools

sl (eleep) | [s e
str (@] [| o, '

o0 400 GO0 a0n 1000 . 1z00 1400

a0

24

18

T2W

AW

W

— Power profile gives the monochromatic view of power, which makes it eas-

ier to see the energy consumption and the fluctuation of power.

228

Fle View Window Tools

(sleen) |
I @ |
fom |
(sleap) | [epcdenson) |
(raceive) [vdefensmn |
e [seiiop || Gees |
str [{E] [o] | (o] -
200 400 600 oo 1000 1200 1400
30W
24W
ma
1EW
TEWm

B

i == Fmii

(2) You can also disable and enable the view of the graphs by selecting among win-

dow options.

— Time window shows the upper graph
— Power window shows the lower graph

— Both shows both(default).

Saving the result

You can save the output graphs in PostScript format. SelectFgdenerate Postscript,

choose the desired directory (default is schd), type the file name and press Save.

Tools

Run Mode Selection
Generate Postscript x

229

866 Export EPSF

Directory: fUsersfjiwon/Desktop - |

{7 .FBCLockFolder 7 scheduler
7 Course

£ Demo

£7 Desktop (Mac 0S 9)

7 IMPACCT

£1 modesel

£7 paf

~

P

File hame: |uutpuﬂ | Save |

Files of type: Encapsulated PS (*.eps) - | Cancel |
o

Note: Saving the input and output as text files will be implemented in the next
version.

230

A.4 Input formats

The Timing Constraint Graph is represented in a text file. You can find example.txt
in the package as an example. Component library with MDG and the Input schedule
are represented as a dictionary data structure in Python. lib1l.py and schdlc.py are the
examples, respectively. More information about the inputs Timing Constraint Graph
and Mode Dependency Graph could be found in the reference papers.

The following are some partial examples for the demonstration of input formats. For
complete examples, please look into the example files.

Input for the Scheduler

This file is the timing constraint description
of a scheduling problem.

It is used as the input file to the IMPACCT scheduler.
part 1

the header of the constraint graph description

format: graph [name]

graph test

part 2

resources

format: r [resource ID] [1 (currently not used)]
r A 1
r 1
r C 1

231

part 3
tasks

format: t [task ID] [delay] [power] [resource ID]

—
o))

,_,
o

o R R O N R R N

® »5 e ® N ®

O 0w P w > > > >

part 4

timing constraint

format: c [eventl ID] [event2 ID] [constraint]
event can be start and end of a task,

represented by task.s and task.e

c as bs 7
c as cs 8
c b.s gs 3

c bs is 3

232

H O OHF O H OH O

cs ds 2
ds g.s -6
es bs 3
fs ds 4
gs ds 2
h.s cs 5

h.s is 2

part 5
system-level power constraint

format: p [min power] [max power]

10 20

part 6
deadline for the whole schedule

format: d [deadline]

50

Input for the Mode Selector: Component library

‘'c_componentname’ is a dictionary for a component
imode stands for idle modes
wmode stands for working modes

however, all working modes apply for the idle time also.

233

power is the power consumption of the mode, unit is Watt.
speed is the performance of the component in Spec95int number
cost is the mode change overhead,

both time and power overhead are included

c.mc = {
'imode’: ['sleep’, 'idle’],

‘'wmode’: ['op,30’, 'op,50’, 'op,75’, 'op,1007],

‘power’: {
'sleep”: 1.6e-4,
‘idle’: 0.05,
‘'op,30’: 0.1,
‘'op,50’: 0.2,
‘'op, 75’ 0.3,
‘'op,100’: 0.4
h

'speed”: {
'30": 4.1,
‘50 6.0,
75" 9.7,
100 14.2
h

‘cost’ : {

('sleep’, 'op’): (10, 0.4),
('sleep’, 'idle”): (5, 0.05),
Cidle’, 'op’): (3, 0.4),

234

(op’, 'idle’): (1, 0.4),
(op’, 'sleep’): (1, 0.4)
}

time-variant resource/mode functions

T is the temperature

functions = {
(drv’, 'on’):
'-0.1225 * T + 1.0,
(drv’, (off',on’), 'time’):
'(-1.875 * T +10)*(T < 0) + 10* T >=0),
(str, 'on’):

-0.09 * T + 24

time to temperature mapping

use interpolation to obtain the intermediate values

temperatureProfile = {

0: 0.0,
300: -20.0,
500: -40.0,

235

800: -40.0,

1000: -60.0,
1400: -80.0
}

component instance name: component type name

components = {
‘cam’: c_cam,
'drv’: c_drv,
'haz’. c¢_haz,

}

colorlib = [
'"AQUAMARINE3Z’,
'"AQUAMARINEZ4’,
'‘BISQUE4’,
'BLUE’,
]

Input for the Mode Selector: Input schedule

schedule = {

'hazl.s” 500,
'hazl.e’: 560,
'strl.s’: 560,
'strl.e”; 700,

236

'drvl.s’”;

‘drvl.e’:

‘caml.s’:

‘caml.e’

‘ppcl.s’:
‘ppcl.e”
'ppc2.s’:
‘ppc2.e”.
'ppc3.s’:
'ppc3.e”:
rfl.s”:
'rfl.e’
'rf2.s":
'rf2.e’:
'scil.s”

'scil.e’:

allocation

allocation = {

720,
900,

60,
0,
100,
200,
400,
1000,
1400,

200,
500,
1000,
1400,
900,
1200

is a mapping from task to

‘ppcl’: 'ppc’,
'ppC2’: "ppc’,
'ppC3’ 'ppc’,
1l
'hazl: ’'haz’,
‘caml’: 'cam’,
'drvl’: ‘drv’,

237

resource

'strl’: ’str,

2 rf,
'scil’: 'sci’
}

functional modes setting

functional_mode_settings = [('caml’, 'op_high")]

functional modes constraints
functional_mode_constraints = {
(caml’, 'op_high’): [
(ppcl’, 'op,500),
(ppcl’, 'op,466),
(ppcl’, 'op,450),
(ppcl’, 'op,433),
(ppcl’, 'op,400),
(ppcl’, 'op,375),
(ppcl’, 'op,366),
(ppcl’, 'op,350)

1,

(rfl’, ‘transmit’): [
(ppcl’, 'op,500),
(ppcl’, 'op,466’)
]

timing constraints

238

timing_constraints = {
(caml.s’, 'ppcl.e’): -200,
(ppc2.e’, 'scil.s’): 0,
(ppc2.e’,’rfl.e’): O
}

deadline = 1400
maxPowerConstraint = 22

minPowerConstraint = 0

239

