
AFRL-IF-WP-TR-2004-1516

INTEGRATED MANAGEMENT OF
POWER AWARE COMPUTATION AND
COMMUNICATION (IMPACCT)

Dr. Pai Chou and Dr. Nader Bagherzadeh

University of California, Irvine
160 Administration
Irvine, CA 92697-1875

MAY 2003

Final Report for 08 May 2000 – 07 May 2003

Approved for public release; distribution is unlimited.

STINFO FINAL REPORT

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

N aTI CE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA
INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN
GOVERNMENT PROCUREMENT DOES "NOT IN ANY WAY OBLIGATE THE US
GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR
SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT
LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR
CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL
ANY PATENTED INVENTION THAT MA Y RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL
INFORMATION SERVICE (NTIS). AT NTIS, IT WILL BE A V AILABLE TO THE
GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

~~4~.
ALFRED}. SCARPELLI
Team Leader
Embedded Info Systems Engineering Branch
Information Systems Technology Division

KERRY L. HILL
Project Engineer
Embedded Info Sys Engineering Branch
Information Systems Technology Division

~..I~
JAMES S. WILLIAMSON, Chief
Embedded Info Systems Engineering Branch
Information Systems Technology Division
Information Directorate

Do not return copies of this report unless contractual obligations or notice on a
specific document requires its return.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

May 2003 Final 05/08/2000 – 05/07/2003
5a. CONTRACT NUMBER

F33615-00-1-1719
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

INTEGRATED MANAGEMENT OF POWER AWARE COMPUTATION AND
COMMUNICATION (IMPACCT)

5c. PROGRAM ELEMENT NUMBER
69199F

5d. PROJECT NUMBER

ARPI
5e. TASK NUMBER

FT

6. AUTHOR(S)

Dr. Pai Chou and Dr. Nader Bagherzadeh

5f. WORK UNIT NUMBER

 0K
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

University of California, Irvine
160 Administration
Irvine, CA 92697-1875

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
ACRONYM(S)

AFRL/IFTA Information Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson AFB, OH 45433-7334

DARPA/IPTO
3701 Fairfax Drive
Arlington, VA 22203-1714

11. SPONSORING/MONITORING AGENCY
REPORT NUMBER(S)

 AFRL-IF-WP-TR-2004-1516
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The IMPACCT, or Integrated Management of Power Aware Computation and Communication, program objectives are to
enhance the power/performance tradeoff range and to correctly compose different component level power management
techniques at the system level. Power and timing constraints can be used as knobs to tune the system for performance or
power, without hardwiring to either goal. To maximize performance and resolve power “hot spots,” we exploit system-
level task motion under pair-wise timing and total power as constraints. A distinguishing feature of our work is our ability
to handle co-activation, an essential property for the correct operation of these embedded systems. Furthermore, we
propose mode selection as a generalized way for fully exploiting novel power management features provided by an
increasingly intelligent class of power-aware components. They are capable of managing power and provide many more
power modes. However, today’s power management techniques often cannot take full advantage of these rich features, but
instead they use only two or three modes (e.g., on/off). Our mode selection methodology models the dependency and
produces a mode schedule that considers restricted transitions and overhead amortization.

15. SUBJECT TERMS
Power Aware Computing and Communications (PAC/C), power management, power scheduling, voltage scaling

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 246
 Kerry L. Hill
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-7698 x3604
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

Acknowledgement

This research was sponsored by DARPA under contract F33615-00-1-1719. It repre-

sents a collaboration between the University of California at Irvine and the NASA/Cal

Tech Jet Propulsion Laboratory. Special thanks to Dr. N. Aranki, Dr. B. Toomarian, Dr.

M. Mojarradi and Dr. J. U. Patel at JPL and Kerry Hill at AFRL for their discussion

and assistance.

1

Contents

Contents 2

List of Figures 8

List of Tables 12

I Introduction and Overview 14

1 Introduction 15

2 Overview of Capabilities 19

2.1 Impacct overview .19

2.2 Input: Application Model and Constraints20

2.3 Target Architecture and Mapping .22

2.4 Power-Aware Scheduling .23

2.5 Mode Selection .23

2.6 Simulation Support .24

II General Scheduling 26

3 Power Aware Scheduling 27

2

3.1 Introduction . 27

3.1.1 Power-aware vs. low-power28

3.1.2 System-level power-aware design29

3.1.3 Approach: design tools .29

3.2 Related Work .30

3.2.1 Subsystem shutdown .30

3.2.2 Real-time scheduling .31

3.2.3 Power awareness .31

3.3 Motivating Example . 32

3.4 Problem Formulation .35

3.4.1 Constraint graph and properties35

3.4.2 Power characteristics of a schedule40

3.4.3 Power-aware Gantt chart .43

3.5 Algorithm . 45

3.5.1 Algorithm for timing scheduling 47

3.5.2 Algorithm for max power scheduling47

3.5.3 Algorithm for min power scheduling52

3.6 Experimental Results .56

3.7 Chapter Summary .61

4 Power Aware Task Motion 62

4.1 Introduction . 62

4.2 Related Work .65

4.3 DVS Anomaly . 67

4.4 Task Motion under Timing and Power Constraints69

4.4.1 Constraint graph and schedule70

4.4.2 Task motion under timing constraints71

4.4.3 Utilization constraints . 76

3

4.5 Scheduling Algorithms .79

4.5.1 Construction of the iteration graph80

4.5.2 Task promotion algorithm80

4.5.3 Algorithm for power-aware task motion/scheduling82

4.6 Experimental Results .82

4.6.1 A system-level constraint model of the Mars rover84

4.6.2 Scheduling results .87

4.7 Chapter Summary .93

III Data Regular Scheduling 94

5 SuperDVS 95

5.1 Introduction . 96

5.1.1 Limits of DVS . 96

5.1.2 Beyond DVS limit . 97

5.2 Related Work .98

5.3 Motivating Example: ATR . 99

5.4 Super DVS: Energy Efficiency through Parallelism104

5.4.1 Super DVS .104

5.4.2 Implementation related issues: buffer management110

5.4.3 Coarser granularity: processing multiple frames together . . .114

5.5 Analytical Results on Energy Reduction116

5.5.1 An empirical processor model116

5.5.2 Properties of the algorithm and data set117

5.5.3 Power and energy reduction by super DVS118

5.5.4 The impact of DVS overhead119

5.6 Chapter Summary .121

4

6 Communication Speed Selection and Partitioning 123

6.1 Introduction .124

6.2 Related Work .127

6.3 System Model .128

6.3.1 Jobs and Tasks .128

6.3.2 Power Scaling .129

6.3.3 M-Node Pipeline .131

6.4 Schedulability Conditions .133

6.5 Motivating Example .135

6.6 Problem Formulation .138

6.7 Analytical Results .149

6.8 Chapter Summary .153

IV Mode Selection 154

7 Power Mode Selection 155

7.1 Introduction .156

7.2 Related Work .158

7.2.1 Dynamic Voltage Scaling (DVS)158

7.2.2 Dynamic power management (DPM)160

7.3 Modeling Resource Dependency .161

7.3.1 Definitions .161

7.3.2 Mode Dependency Graph162

7.3.3 Generating Mode Combinations164

7.3.4 Example: Microsensor .165

7.4 Mode Selection .167

7.4.1 Problem Statement .168

7.4.2 Algorithm .169

5

7.5 Experimental Results .173

7.6 Chapter Summary .175

8 Topology Selection 176

8.1 Introduction .176

8.2 Background and Related Work .178

8.2.1 FireWire Bus .178

8.2.2 Power Management with FireWire179

8.3 Problem Formulation .180

8.3.1 Definitions .180

8.3.2 Cost Function .184

8.3.3 Problem Statement .185

8.4 Algorithm .186

8.4.1 Approach .186

8.4.2 Algorithms .187

8.4.3 Complexity .189

8.5 Experimental Results .190

8.6 Chapter Summary .196

V Conclusion 198

9 Conclusions and Future Work 199

Bibliography 201

A Tool 210

A.1 Introduction .210

A.1.1 An Overview of IMPACCT tool210

A.1.2 Features of IMPACCT tool version 1.0212

6

A.2 Scheduler .212

A.2.1 Software Installation .212

A.2.2 Getting Started .213

A.2.3 Running the tool .216

A.3 Mode Selector .223

A.3.1 Software Installation .223

A.3.2 Getting Started .223

A.3.3 Running the tool .224

A.4 Input formats .231

7

List of Figures

2.1 The IMPACCT system-level design tool for power-aware embedded

systems. .20

3.1 Constraint graph of a scheduling problem.38

3.2 Power-aware Gantt chart of a time-valid schedule.45

3.3 Algorithm for timing scheduling. 48

3.4 Algorithm for max power scheduling.49

3.5 A valid schedule after max power scheduling.52

3.6 Algorithm for min power scheduling.53

3.7 The improved schedule after min power scheduling.55

3.8 Constraint graph of the Mars rover.56

3.9 Schedule for the best case. .57

3.10 Schedule for the typical case. .57

3.11 Schedule for the worst case. .58

3.12 Adaptive speedup in power-aware scheduling.60

4.1 An example where DVS fails to reduce power and energy at system

level, while our new technique will succeed.68

4.2 Task motion under timing constraints.72

4.3 Task motion under utilization constraints.72

8

4.4 Algorithm to construct the iteration graph.80

4.5 Algorithm to decide whether a taskv is promotable. 81

4.6 Task promotion algorithm. .81

4.7 Power-aware task motion algorithm.83

4.8 Constraint graph of the Mars rover.85

4.9 Schedule for Scenario 1 (highest power budget).88

4.10 Schedule for Scenario 2 (moderate power budget).90

4.11 The serial schedule for Scenario 3 (lowest power budget).90

5.1 Block diagram of the ATR algorithm.100

5.2 The ATR algorithm. .102

5.3 Power profile of intra-task DVS. .103

5.4 Partition the nested loop into stages.106

5.5 Parallel algorithms for super DVS.109

5.6 Power profile of super DVS. .111

5.7 Pipelined processors with shared memory buffers.112

5.8 ModifiedSTAGE0 to processN frames at a time.113

5.9 Pipelined ATR with directly linked data connection.115

6.1 Timing and power properties of a processing node.131

6.2 A 3-node pipeline. .132

6.3 Functional blocks of the ATR algorithm.135

6.4 The impact of different partitioning schemes and communication speed

settings. .136

6.5 The optimal sub-structure of Problem 1.140

6.6 The dynamic programming approach to solve Problem 1. Each entry

E[i, j] can be computed by the shaded entries in the previous row. The

global optimal energy is the minimum value of the last column.141

9

6.7 Optimal partitioning algorithm. .142

6.8 The optimal sub-structure of Problem 2.144

6.9 The dynamic programming approach to solve Problem 2. Each entry

E[i,k] can be computed by the shaded rowE[i−1, l]. The global opti-

mal energy is the minimum value of the last row.144

6.10 Optimal speed selection algorithm.146

6.11 The optimal sub-structure of Problem 3.147

6.12 The multi-dimensional dynamic programming approach to solve Prob-

lem 3. Each entryE[i, j,k] can be computed by the shaded entries in

the previous sub-matrix. The global optimal energy is the minimum

value in the last row of all sub-matrices.148

6.13 Combined partitioning with speed selection.150

6.14 Power vs. performance of the XScale processor.151

6.15 Power modes of the Ethernet interface.151

6.16 Analytical results. .152

7.1 An application scenario that has resource dependency.159

7.2 Comparison of three schedules. .160

7.3 A table for violation checking. .163

7.4 Check satisfaction of an MDG. .163

7.5 (a) An MDG example: microsensor. (b) Reduce the MDG to a resource

list. .164

7.6 Generate mode combinations for cyclic MDG.166

7.7 Mode combinations of microsensor.168

7.8 Top level Mode Selection algorithm.170

7.9 The MDG for the Microrover. .171

7.10 Comparison among different working scenarios.172

7.11 A mode schedule for microrover. .174

10

8.1 Examples of tree strings. .180

8.2 The tree enumeration algorithm. .187

8.3 The ADDASLEAF routine. .188

8.4 The top level topology selection algorithm.188

8.5 Example I:p = 3, four trees found.192

8.6 Example I:p = 4, one tree found.192

8.7 Example I:p = 6, one tree found.192

8.8 Workload balanceness vs. potential energy saving.195

11

List of Tables

3.1 Timing constraints in Mars rover’s operations.33

3.2 Power consumption of Mars rover’s operations.34

3.3 Performance of the rover under existing schedule.58

3.4 Performance of the rover under power-aware schedules.58

3.5 Comparison of existing schedule to power-aware schedules under a

mission scenario. .59

4.1 Timing constraints of the Mars rover.86

4.2 Power sources and consumers of the Mars rover.86

4.3 Comparison of schedules in a three scenarios.91

4.4 Comparison of schedules in a comprehensive scenario.91

5.1 An abstract model of a voltage-scalable processor.116

5.2 Parameters of the code and input data.117

5.3 Energy and power saving achieved by super DVS.118

5.4 Energy overhead vs. different DVS granularity.120

8.1 Power data of FireWire interface (in mW).190

8.2 A list of FireWire devices .191

8.3 A list of transactions .191

12

8.4 Experiment results for Example I (eight nodes).191

8.5 The number of devices with different hub types.195

13

Part I

Introduction and Overview

14

Chapter 1

Introduction

Recent years have seen the emergence ofpower-awareembedded systems. They are

characterized by not only low power consumption, but more generally by their ability to

support a wide range of power/performance trade-offs. These systems can be viewed

as providing “knobs” that can be turned one direction to reduce power consumption

or the other direction to increase performance. The ability to maximize the range of

power-performance trade-offs is driven by new applications that demand very high

performance while operating under stringent timing and power constraints. One such

application can be found in the space domain in the form of a rover.

Let us consider the Mars Pathfinder rover from NASA/JPL [4]. It was designed

to roam on Mars to take digital photographs and perform scientific experiments over

several hundred days. Its energy sources consist of a battery pack and a solar panel,

and future versions are expected to incorporate a nuclear generator or other energy

scavenging devices. The initial version was designed to be low-power, and this was ac-

complished by serializing all tasks, including mechanical and heating as well as com-

putation. However, low-power also means low performance in this case, as the rover

could move at most 10cm per minute, and shoot and wirelessly transmit at most three

15

high-resolution photos in a day. Even though during daytime the solar panel could

output more power than could be consumed by the rover, the rover was unable to take

advantage of this power; instead, the extra heat was redirected to heating the wheels.

This is an instance where a low-power design may be correct, but a power-aware

version can do much better. We have proposed a power-aware version of the rover:

by allowing power usage and performance to track power availability, the power-aware

system with more system-level parallelism achieved 33% speedup while saving 33%

battery energy [44].

Encouraged by the initial success, we explored additional power management op-

portunities at the system level. Since the goal is to increase the dynamic range of

power/performance curves, we sought ways to increase performance in one direction

and to reduce power in the other. To increase performance when more power (such

as solar) is available, we attempted system-level task motion, a class of effective tech-

niques that have been developed for many different domains ranging from VLIW in-

struction scheduling to hardware synthesis. To reduce energy consumption, we also

attempted to incorporate other researchers’ new power management techniques that are

power-aware. These include a variety of dynamic voltage scaling (DVS) and schedul-

ing algorithms for modern embedded processors, whose voltage and frequency can be

controlled.

However, a somewhat surprising result was that many of these performance en-

hancement and power reduction techniques yield incorrect and rather counterintuitive

results when applied together at the system level. Existing scheduling techniques that

treat the power budget as a resource constraint (e.g., mapping power to the total reg-

ister count) fail to correctly satisfy the power constraints. On the other hand, DVS

techniques, which slow down processors in order to achieve quadratic energy savings,

actually end up consuming more energy at the system level.

The main reason these techniques fail is that many important system-level depen-

16

dencies are not properly modeled or considered. In a system, the components do not

work independently; instead, they work very much together with each other, and power

management decisions made on one component can have a chain of effects on the

power usage of the other components. This is further complicated by the fact that dif-

ferent components are built with different power management capabilities. In the Mars

rover, not all components are power manageable. In fact, some components include

motors for steering and driving the rover, heating elements for melting the frozen lu-

bricants on the wheels, and the R/F module. Many of these components cannot scale

their voltage or frequency the same way a processor can. Furthermore, mode changes

are seldom instantaneous or free; instead, they incur nontrivial timing and power over-

head that cannot always be amortized. As a result, the combined effect of these power

management techniques can often contradict the designer’s intuition and even cancel

each other’s effects.

It is clear that an integrated design tool is sorely needed to help designers man-

age such a multi-dimensional problem: functional correctness, timing constraints, and

power awareness. To address these difficult problems, we develop a tool-based design

methodology called IMPACCT, for Integrated Management of Power-Aware Comput-

ing and Communication Technologies. As with most system-level design tools, IM-

PACCT starts with high-level modeling of the application, separate from the target

architecture. The designer then uses IMPACCT to transform and refine the high-level

model towards implementation. IMPACCT also supports power-aware functional sim-

ulation to help with design validation.

This report focuses on two of the core design tasks in IMPACCT: power-aware

scheduling and mode selection. The objectives are to enhancing the power/performance

trade-off range and to correctly compose different component level power management

techniques at the system level. Power and timing constraints can be used as knobs to

tune the system for performance or power, without hardwiring to either goal. To max-

17

imize performance and resolve power “hot spots,” we exploit system-level task mo-

tion under pair-wise timing and total power as constraints. A distinguishing feature

of our work is our ability to handleco-activation, an essential property for the cor-

rect operation of these embedded systems. Furthermore, we propose mode selection

as a generalized way for fully exploiting novel power management features provided

by an increasingly intelligent class of power-aware components. They are capable of

managing power and provide many morepower modes. However, today’s power man-

agement techniques often cannot take full advantage of these rich features, but instead

they use only two or three modes (e.g., on/off). Our mode selection methodology mod-

els the dependency and produces a mode schedule that considers restricted transitions

and overhead amortization. Together these techniques not only form the foundation

for integrating many power management techniques, but more importantly they help

even experienced designers avoid many pitfalls with composing these components at

the system-level.

This report is a compilation of research work done by the IMPACCT project. Its

main contribution is that, by taking an integrated, global perspective in managing

power, it addresses the pitfalls of many of today’s local, component-level techniques.

The rest of Part I presents an overview of IMPACCT capabilities, including specifi-

cation, architecture, simulation, and power management techniques. Parts II and III

present two important classes of scheduling techniques. Part II present general time-

constrained, power-constrained scheduling, compile-time scheduling techniques, while

Part III exploits specialization to data-regular applications. Part IV investigates more

architecture details with techniques we call mode selection and topology selection.

18

Chapter 2

Overview of Capabilities

2.1 Impacct overview

IMPACCT is a system-level design tool for exploring power/performance trade-offs in

hard real-time systems by means of power-aware scheduling and architectural config-

uration. The current implementation includes an interactive graphical tool for schedul-

ing, mode selection, and an interface to a simulation back-end for integrated evaluation

of the system under design. Amdahl’s law applies to power as well as performance.

That is, the power saving of a given component must be scaled by its percentage con-

tribution to an entire system. Furthermore, a system in the broad sense includes not

only computational components but also those in the non-computational domains (e.g.,

mechanical and thermal subsystems), which are equally important in many mission-

critical applications. IMPACCT is the first tool to correctly address all of these system-

level power management issues. Fig. 2.1 shows the main components of the IMPACCT

framework, and this chapter will highlight each box in order. The combination of these

features in IMPACCT presents a compelling design-time tool for engineers to explore

a wide range of system-level power/performance trade-offs with confidence.

19

Testbed

software

architectural

timing
analysis

mode
selection

selective focus
simulation

power source
models

Library Composition Transformation Synthesis

Validation

Architecture

mapping

buffer
sizing

Manger
synthesis

Compilation

Interface
synthesis

Figure 2.1: The IMPACCT system-level design tool for power-aware embedded sys-
tems.

2.2 Input: Application Model and Constraints

To use IMPACCT, the designer must construct a model for the application and con-

straints. Although the detailed application behavior is ultimately written in one of the

system programming languages (such as C, C++, Ada, Java, etc), IMPACCT does not

process these files directly; instead, they are passed to power/timing analysis or simu-

lation tools for estimation or validation. IMPACCT expects the designer to construct

a higher-level model for the application in our custom language. This description in-

cludes ports and channels for expressing data dependencies, and it supports timing and

power constraints. Note that timing and power are not necessarily intrinsic to the appli-

cation problem itself, but they should really be viewed as “budgets” whose values are

selected based on engineering decisions. One main purpose of the tool is to help de-

signers with constraint refinement or adjustment (re-budgeting) by giving them a quick

estimate. This approach allows the designer to start working with the power/timing

budget for various tasks to be performed long before the program or component is de-

signed. As these pieces become available, they will then be used to refine these budgets

20

with more accurate estimation.

We currently support power constraints and timing constraints.Power constraints

are the min/max bounds on the power dimension of the power profile. Themax-power

constraint requires that the system never draw more than the specified amount of power

at any given moment. It may be derived from the maximum current rating of the

power supply and can be a hard constraint. Even though most systems to date could

assume sufficient power by design, the next generation power-aware embedded systems

will need to work with a much more diverse set of power sources with much lower

power budgets and reduced availability. This will make max-power a hard constraint.

On the other hand, we believemin-powerwill be an important constraint, especially

for systems with renewable energy sources. One reason is that as heat becomes an

important issue in embedded systems, unused power must be carefully dissipated or

else the system risks overheating. Rechargeable batteries have finite capacities and will

contribute to the heat when overcharged. In the case of the rover, it would require extra

heat dissipation hardware to handle unused min-power. This would add extra weight

and cost to the rover. Another reason is that the min and max constraints together

will be a way to explore power/performance trade-offs without being hardwired to the

low-power goal. Both min and max power constraints may be functions over time.

Timing constraints are in the form ofmin/max timing separationbetween pairs of

events, where an event can be the start or end of a task. This is a general way for

expressing precedence, absolute and relative deadlines, and also co-activation. Tasks

assigned to different resources may run in parallel. We currently use a simple custom

language to capture these timing constraints. The syntax of this high-level file is not

important; it just has to be expressive enough to construct a graph description of the

pair-wise timing constraints.

21

2.3 Target Architecture and Mapping

The input to IMPACCT consists of a model for the target architecture and application-

to-architecture mapping. The target system architecture provides the primitives for

power management as well as the power/timing attributes needed for scheduling and

mode selection. The elements of the application model are mapped to those of the target

architecture: that is, the tasks are mapped to the processors, and channels mapped to

the busses. IMPACCT provides acomponent libraryand asystem architecture template

to aid the description of the target architecture.

The component library consists of models for components and busses in the target

architecture. They include processors, memory modules, bus controllers, communica-

tion modules, sensors and actuators, digital cameras, and various peripheral devices.

The designer instantiates and configures these components from the library. The com-

ponent models will provide an interface for the rest of the design tool to ask questions

about the power/timing attributes needed to synthesize or for simulation. Some of these

attributes such as modes, clock rates, or voltage may be stored as fixed values, but oth-

ers such as the execution delay or the power consumption may need to be derived

by either evaluating a formula or by simulation. Each component model may encap-

sulate any number of detailed models (RTL, SPICE, power-macromodel), but they are

abstracted from the designer. IMPACCT augments these low-level models with higher-

level models for supporting system-level power management. These features include

the power modes, the allowed transitions between modes, the power/timing coeffi-

cients associated with each mode and the transitions, and the interface description for

controlling these power management features. This mode model will be described in

more detail in the Mode Selection chapter.

Unlike traditional hardware/software co-design that is more about free-form ex-

ploration of an optimal architecture, we take a platform-based approach for practical

reasons. IMPACCT provides architectural templates for configurable platforms, and

22

currently supported is a symmetric multiprocessor architecture interconnected with a

two-tier bus. It can be configured for different numbers of processors and components

from the library. The two-tier bus includes the IEEE 1394 (“FireWire”) for high-speed,

real-time data and the I2C for low-speed control. Both are power efficient and sup-

port dynamically adding/removing or powering up/down individual nodes for the pur-

pose of power management. The software runs on WindRiver vxWorks, a commercial

real-time OS for embedded systems. Scheduling and mode selection are performed

statically but the run-time system can switch between different schedules.

2.4 Power-Aware Scheduling

Our scheduler enhances the dynamic range of power/performance trade-offs. The core

scheduler handles both timing and power as constraints, not just goals. Power and tim-

ing are both treated as min/max constraints. The advantage is that these constraints be-

come the knobs for tuning the system’s power/performance trade-offs. By making the

constraints track the available solar power, the IMPACCT scheduler has been shown to

accelerate the system while saving energy at the same time for a Mars rover. This fea-

ture will be critical to also systems that use alternative energy sources such as thermal

batteries as well as those with thermal management concerns. In addition, we explore

system-level task motion as a way to vary the level of parallelism to further increase

the dynamic range of these systems. Scheduling will be discussed in Chapter 3.

2.5 Mode Selection

Another complementary feature in IMPACCT is mode selection. It is the task of de-

riving a schedule for mode changes in the components of the system, such that all

architectural effects are properly considered. It takes as input a schedule from the pre-

vious step, and it decides what power modes in which each component should operate

23

over time. Mode selection addresses issues that fail to be handled by today’s greedy

dynamic voltage schedulers by considering the transition overhead and dependencies.

It will not change mode if the time/power overhead involved cannot be amortized over

the tasks to be performed, and it also prevents system-level power spikes due to greedy,

isolated voltage scaling. More importantly, IMPACCT’s mode selection properly mod-

els and handles co-activation dependencies. For example, when the processor is on,

the memory must be on, too. By modeling these dependencies in the mode selection

step, IMPACCT will ensure that the resulting power management policy considers all

features critical to the correct operation of the entire system. Mode Selection will be

described in more detail in Chapter 7.

2.6 Simulation Support

IMPACCT supports simulation at various stages of the design flow. The high-level

application description can be simulated functionally without mapping to an architec-

ture. The IMPACCT high-level simulator has been integrated into the scheduler. It not

only computes the ordering of the tasks to run on generic resources, but also invokes

the compiled application files via native calls to simulate their functionality. The high-

level simulator is also responsible for implementing the inter-process communication

mechanisms using buffer management.

This setup also enables the integration of heterogeneous simulation and emulation

models with a uniform user interface. Because the simulation models are externalized,

the IMPACCT simulation coordinator can replace the external, native calls with any

other calls, as long as they conform to a compatible application programming inter-

face. For example, hardware-in-the-loop simulation can be accomplished by replacing

these external calls with calls to device drivers that control emulation hardware. Sim-

ilarly, these calls can also be made to detailed simulation models when accuracy or

controllability is required. The back-end is completely decoupled from the front-end,

24

which provides a uniform user interface including visualization support.

25

Part II

General Scheduling

26

Chapter 3

Power Aware Scheduling

Power-aware systems are those that must make the best use of available power. They

subsume traditional low-power systems in that they must not only minimize power

when the budget is low, but also deliver higher performance when required. This chap-

ter presents a new scheduling technique for supporting the design and evaluation to a

class of power-aware systems in mission critical applications. It computes a schedule

that satisfies stringent min/max timing and max power constraints at all times. Further-

more, it also makes the best effort to satisfy min power constraint in an attempt to fully

utilize free solar power or to control power jitter. Experimental results show that our

automated technique yields designs that improve performance and reduce energy cost

simultaneously compared to hand-crafted designs used in previous missions. This tool

forms the basis of the IMPACCT system-level framework that will enable designers to

aggressively explore many more power-performance trade-offs with confidence.

3.1 Introduction

Power management is becoming one of the central issues in embedded systems. They

are particularly critical to systems that must carry their own power source and cannot

27

rely on a power outlet on the wall. Without power, the system is useless. In the con-

sumer space, the consequence may mean not being able to make an emergency call

or other minor inconveniences; but in mission-critical systems, such a failure can cost

millions and even human lives.

This chapter investigates key issues in power management for mission-oriented sys-

tems. Our motivating example comes from the NASA Mars Pathfinder rover developed

at JPL [4]. It features several interesting properties that were not adequately addressed

by previous work. First, such a system must be designed to be power-aware, rather

than low-power. Second, it is critical that power management decisions be made at the

system level, rather than only at the component level.

3.1.1 Power-aware vs. low-power

Traditionally, many components and systems have been designed to be low-power.

However, we believe there is a critical difference between power-aware and low-power

systems. Power-aware systems must make the best use of their available power, and

they subsume low-power as a special case.

In the Mars rover case, its designers constructed a low-power design. It incorpo-

rated some of the best low-power design techniques at all levels of abstraction. The

rover has two power sources: a solar panel and a non-rechargeable battery. To strictly

control power draw, the designers serialized all tasks, including driving, steering, ob-

stacle detection, and heating motors. This low-power design allows the rover to operate

for hundreds of days during daylight, and it sleeps at night. However, full serialization

also means the rover moves as slowly as 10cm per minute, and it can only take a total

of three pictures per day.

A power-aware design can greatly improve the utility of the rover. We observe

that the battery is non-rechargeable, and thus solar power would be wasted if not used

while it is available. In the existing design, the rover follows the same serial schedule

28

regardless of the solar power level, and simply directs the excess energy to heating

the wheels. A rover with more parallelism in its schedule can perform better (more

tasks, more quickly) while saving even more battery energy than the existing low-

power design if it can take advantage of the free power, as validated by our experiments

in the results section.

3.1.2 System-level power-aware design

We believe that power-aware designs must be done at the system-level, not just at the

component level. Amdahl’s law applies to power as well, not just performance. That is,

the power saving of a given component must be scaled by its percentage contribution

in an entire system. If a component only draws 2% of the power in a system, a 50%

reduction in its power amounts to merely 1% saving to the system. Therefore, it is

critical to identify where power is being consumed in the context of a system, not just

the components in isolation.

In the case of the Mars rover, it turns out that some of the biggest consumers are

not even in the digital computer, but they also include the wheel motors, the steering

motors, laser-guided obstacle detection, and the heaters. A successful power-aware

design must consider these non-computation domains and coordinate their power usage

as a whole system.

3.1.3 Approach: design tools

Our approach is to support power-aware design with a system-level design tool. One

of the lessons learned from the Mars rover was that, without a tool, the designer had

no choice but to embed many power-management decisions in the implementation. As

a result, they were forced to design conservatively and could not consider more than

one or two design alternatives. The purpose of our tool is to enable the exploration of

many more points in the design space, so that additional knowledge about the mission

29

can be incorporated to refine the design without requiring dramatic redesign.

The work presented in this chapter represents one of the core tools in a larger design

framework, called IMPACCT. The designers input a high-level behavioral specification

of the design in terms of communicating processes and constraints. These processes

have been assigned to run on specific execution resources, either interactively or semi-

automatically by the design tool. The scheduling tool in this chapter constructs a con-

straint graph and performs power-aware scheduling. The output is then fed to another

tool that performs optimizations and synthesis of power managers at the architectural

level.

This chapter is organized as follows. Section 3.2 reviews related work, and Sec-

tion 3.3 describes the application example in more detail. We present the problem for-

mulation in Section 3.4 and graph-based scheduling algorithms in Section 3.5. Then,

we discuss experimental results in Section 3.6 followed by our concluding remarks and

future work.

3.2 Related Work

Prior works have addressed minimization of power usage at the system level. Their

common goal is to minimize power usage while maintaining a satisfactory level of

performance or meeting real-time constraints. However, these low-power techniques

often cannot be directly adapted in power-aware systems.

3.2.1 Subsystem shutdown

Shutting down idle subsystems such as network interfaces, hard disks, and displays

can save a significant amount of power in a system. The shutdown decision can be

based on idle times of individual subsystems, although such approaches are less than

satisfactory. Proposed improvements either attempt to make the timeout adaptive to the

30

actual usage pattern, or use profiling to help predict the proper time to shutdown and

power up subsystems [62, 20, 64].

While it is important to manage the power of subsystems, unfortunately these tech-

niques have several limitations. First, they do not handle timing constraints, including

deadlines and min/max separation. Second, they are not power-aware in the sense

that they do not distinguish between free power (such as solar sources) vs. expensive

power (non-rechargeable battery). These power managers do not control their work-

load; instead, they make the best effort to minimize power consumption by treating the

workload as a given.

3.2.2 Real-time scheduling

Many real-time scheduling techniques have been proposed to date, but only recently

have researchers started to address power issues with the objective of minimizing

power usage. For example, rate-monotonic scheduling has been extended to scheduling

variable-voltage processors. The idea is to save power by slowing down the processor

just enough to meet the deadlines [48].

Such techniques have several limitations. First, they are CPU schedulers that mini-

mize CPU power, rather than power managers that control subsystems and task execu-

tions. Second, in practice, it is difficult to tune the voltage or frequency scale to such a

fine precision. As a result, the risk of missing deadlines may be high, even if context

switching overhead is taken into account. Also, while these schedulers meet timing

constraints, they do not handle constraints on power usage.

3.2.3 Power awareness

We believe power-aware scheduling must have several key features. First, they must

handle both timing and power stringently as hard constraints. This is unlike previous

work that treats them as desirable by-products but cannot always make strong guar-

31

antees. Second, domain-specific knowledge about the power source, battery model,

and other operating conditions must be expressible in terms of supported types of con-

straints on the timing and power. The types of constraints that are sufficiently expres-

sive for our application are min and max timing constraints on tasks, as well as min

and max power constraints on the system. Min/max timing constraints subsume dead-

lines and precedence dependencies and can express dependencies across subsystems

[18, 19]. Max power would track the budget imposed by the current power sources.

Min power constraints, strictly speaking, may be counter-intuitive in that it forces the

power manager to maintain a certain level of activity. The primary motivation is that

power from solar panels or other free sources that cannot be stored should be fully

utilized greedily, or else they will be wasted. Another motivation is to control the jit-

ter in the system-level power curve in an attempt to optimize battery usage. However,

min power constraints are not imperatively enforced, and we assume that they may be

violated occasionally or be met by scheduling background tasks.

3.3 Motivating Example

To demonstrate the effectiveness and applicability of our power-aware scheduling tech-

niques, we choose the NASA/JPL Mars rover as our motivating example. Its mission is

to perform scientific experiments and imaging on Mars surface. The rover is deployed

and operated for at least 7 sols (days on Mars). If it keeps performing well at the end of

the designated period, an extended mission may continue. The rover’s power sources

consist of a non-rechargeable battery pack and a solar panel. Clearly, the duration of

a mission is limited by the amount of remaining battery energy. Thus, a careful man-

agement of power usage may yield potential energy savings, as well as performance

speedup.

The rover travels between different target locations before experiments and imag-

ing can be performed. Since the temperature on Mars surface can be as low as−80◦C,

32

Operation Duration Timing constraints
Heating steering motors 5

(s)
At least 5s, at most 50s before steering

Heating wheel motors 5 At least 5s, at most 50s before driving
Hazard detection 10 At least 10s before steering

Steering 5 At least 5s before driving
Driving 10 At least 10s before next hazard detection

Table 3.1: Timing constraints in Mars rover’s operations.

driving in low temperature requires more power and energy consumption because the

motors must be heated periodically. This fact indicates that mechanical and thermal

subsystems are the major power consumers. Therefore, our model targets the mechan-

ical and thermal subsystem under a typical mission scenario when the rover is moving

to the next location.

We give a high-level description of the rover’s operations. The rover drives about

7cm in distance in one single step of movement. During each step, it must first detect

any obstacles in the moving direction and choose a safe angle to move. Then the four

steering motors are started to turn to the right direction. Finally, the six wheel motors

are driven to perform one step of movement. Therefore, hazard detection - steering -

driving must operate in sequence. The other set of timing constraints comes from the

requirement to heat the motors before steering and driving. All four steering motors and

six wheel motors must be heated within a certain period prior to mechanical operations.

The timing constraints are summarized in Table 3.1. The power consumption of each

operation varies with environmental temperature. We assume that the temperature is

closely related to the sunlight density that can be measured by power output from the

solar panel. In order to examine how the power-aware scheduling techniques handle

different constraints, we investigate three cases of solar power output: best case is

14.9W at noon time; the typical case is 12W; and the worst case is at dusk. The

maximum supply power is limited by the threshold of battery power output, which

we assume to be 10W. Therefore, in all cases, the rover can be safely operated only

33

@-40 C

Solar panel 14.9 12 9
Battery pack 10 max

CPU constant 2.5 3.7

Heating two motors 5 7.6 9.5 11.3

Driving 10 7.5 10.9 13.8

Steering 5 4.3 6.2 8.1

Hazard detection 10 5.1 6.1 7.3

Power (W)Power sources Duration
(s)& tasks

3.1
10 max 10 max

Best case
o

Worst caseTypical case

@-60 C
o

@-80 C
o

Table 3.2: Power consumption of Mars rover’s operations.

if its instantaneous power consumption is less than available solar power plus 10W

maximum battery power output, which constitutes the max power constraint. We also

extract the solar power level as the min power constraint to distinguish such free power

from the costly power. Table 3.2 illustrates the power sources and consumers in three

cases.

The goal of a scheduler is to assign tasks to time slots such that all timing and

power constraints are satisfied. Without an automated tool, the existing solution by

JPL had to be hand-crafted. It serializes all operations to minimize power draw from

the non-rechargeable battery. The existing design is very low-power, but is also very

slow and can possibly incur additional energy cost in some bad cases.

By introducing power-aware scheduling, not only could we improve performance,

but also save non-rechargeable energy by better utilization of solar energy. This is

in contrast to the conventional trade-off between energy and performance, where im-

provement on one is done at the expense of each other. A power-aware approach can

win both at the same time. Section 3.6 provides a detailed analysis to a case study on

the Mars rover example.

34

3.4 Problem Formulation

Our problem formulation is based on an extension to a constraint graph used in a pre-

vious time-driven scheduling problem [18]. Section 3.4.1 reviews the base formula-

tion and our extension on parallel execution and slack properties. Section 3.4.2 de-

fines power characteristics of the scheduling problem including the power profile of

a schedule and new properties by applying the max and min power constraints. Sec-

tion 3.4.3 presents a new way of viewing the time/power scheduling problem as a two-

dimensional constraint problem by drawing analogies from the Gantt chart.

3.4.1 Constraint graph and properties

We formally define the concepts in our model as we construct the constraint graph

formulation for a scheduling problem. These concepts include tasks, timing constrains,

schedules and the slack properties of a schedule.

Definition 1 (Tasksu∈ T) Given T as the set of all tasks and a set of execution re-

sourceR, a tasku ∈ T is characterized by a set of functions,u = {r(u),d(u), p(u)},

wherer(u) ∈ R is the execution resource onto which the task is mapped,d(u) is its

execution delay, andp(u) is its power consumption.

To handle parallel execution resources that consume power, the functionr : T→ R

maps each task to a resource setR. Examples of execution resources include not only

computing resources such as an embedded microprocessor, but also other consumers

of power, e.g. mechanical subsystems and heaters. We further assume that if two tasks

u andv are mapped to the same resource (r(u) = r(v)), thenu andv must be serialized

in the final schedule to eliminate resource conflicts.

The execution of tasku takesd(u) time units. We also assume the availability of

the power consumption function,p : T → R > 0, which returns the estimated power

consumption by all tasks. As a result, the energy consumption of tasku is d(u)× p(u).

35

In practice, the power consumption can be either in the form of (min, typical, max), or

a function over time, rather than an exact value. Since our formulation can be extended

to handling these cases, we will assume a single value to simplify the discussion.

Definition 2 (Timing constraints) A timing constraint specifies the timing relation-

ship between two tasksu,v∈ T, in one of the two forms:

(1) A min timing constraint u→ v : δ,δ≥ 0 indicates thatv must start at leastδ time

units afteru starts, formallytv− tu≥ δ.

(2) A max timing constraint u← v : δ,δ > 0 indicates thatv must start at mostδ time

units afteru starts, formallytv− tu≤ δ.

A min timing constraintu→ v : δ implies tasku precedesv, sincetv− tu ≥ δ ≥ 0;

while a max constraintu← v : δ does not imply any precedence relationship between

u andv. This min-max timing separation handles more general timing relationships

between tasks. For example, a tasku with a deadlineτ to finish its execution (τ≥ d(u))

is a special case of a max timing constraint:a← u : τ−d(u), wherea, theanchor, is a

virtual task that starts the schedule,ta = 0.

Definition 3 (Scheduleσ, Finish time τσ) Given a task setT,

(1) A scheduleσ assigns start timetu to every tasku ∈ T. Without ambiguity, we

further overload theσ notation to map any tasku to its assigned start time ac-

cording toσ, that is,σ(u) = tu.

(2) Thefinish timeof a scheduleσ is the time when all tasks inT finish their execu-

tion. It is defined asτσ = max(σ(u)+d(u)),∀u∈ T.

We construct a constraint graph based on the tasks, their resource mapping and

the corresponding constraints among the tasks in a scheduling problem. A schedule

36

as the solution to the problem can be computed based on the constraint graph and its

properties.

Definition 4 (Constraint graph G(V,E)) Given a task setT, a resource setR to which

all tasks inT are mapped, and a timing constraint setC specifying the timing constraints

between tasks inT, aconstraint graph G(V,E) can be constructed as follows.

(1) The verticesV represent all tasks,V = {a}∪ {u|∀u ∈ T}. Each vertexu ∈ V

has three attributes:r(u),d(u), p(u) representing its resource mapping, execution

delay and power consumption of tasku, respectively.r(a) = nil ,d(a) = 0, p(a) =

0.

(2) The edgesE ⊆V×V represent timing constraints between tasks. For two ver-

ticesu,v∈V, an edge(u,v) with weightw(u,v) is denoted as(u,v) : w(u,v). It

specifies a timing constraint between tasku andv, such thattv− tu≥ w(u,v).

(2.a) A min timing constraintu→ v : δ,δ≥ 0 is represented by an edge(u,v) : δ with

non-negative weightδ≥ 0, called aforward edge.

(2.b) A max timing constraintu← v : δ,δ > 0 is represented by an edge(v,u) : −δ

with negative weight−δ < 0, called abackward edge.

An example of a constraint graph is shown in Fig. 3.1. Nine tasks nameda . . .i are

mapped into three resources,A, B andC. Each vertexu is denoted with a name and its

attributes in the form ofr(u)/d(u)/p(u).

Lemma 1 (Schedulability property) Given a scheduling problem with a task setT, a

resource setRand a timing constraint setC formulated as a constraint graphG(V,E), a

scheduleσ that satisfies all timing constraints can be computed as the SINGLE SOURCE

LONGESTPATH lengths froma∈V. A positive cycle in the graph indicates a conflict-

ing set of timing constraints that cannot be satisfied.

37

A/4/8
a

cb

d

e

f

g

h

i

7 8

3

-3
2

-6

3

4

2

5

2

B A C

C/3/8

A/3/2 A/3/8

A/2/4

B/2/7

B/3/8

B/2/6

C/2/6

Figure 3.1: Constraint graph of a scheduling problem.

A schedule computed by Lemma 1 must satisfy all timing constraints. In addition,

a feasible schedule must not have any resource conflict, that is, tasks that share the

same resource must be serialized.

Definition 5 (Time-validity of a schedule) Given a scheduling problem with a task

setT, a resource setRand a timing constraint setC, a scheduleσ is time-validif

(1) σ satisfies all timing constraints inC, and

(2) ∀ tasksu,v ∈ T such thatr(u) = r(v) ∈ R, u andv must be serialized, that is,

eitherσ(u)+d(u)≤ σ(v) or σ(v)+d(v)≤ σ(u) holds.

Lemma 1 indicates the way to use graph algorithms to solve scheduling problems

with timing constraint. The constraint graph can also be used to serialize tasks on

shared resources, as required by Definition 5 to obtain a time-valid schedule. Se-

rialization can be performed by adding extra edges to constraint graphG. For ex-

ample, to serialize taskv after u, an edge(u,v) : d(u) can be added toG, such that

σ(u)+d(u)≤ σ(v) is guaranteed.

38

Given a time-valid scheduleσ, there are alternative choices for start time assign-

mentσ(u) to a tasku. We extract these available time slots as slacks of tasks. Slack is

a measure of how much a task can be delayed without invalidating the schedule.

Definition 6 (Constraint slack ∆c
σ) Given a time-valid scheduleσ computed from a

constraint graphG(V,E),

(1) ∀ edge(u,v) : δ ∈ E, theedge slackof edge(u,v) is defined as∆c
σ(u,v) = σ(v)−

σ(u)−δ.

(2) For any tasku represented by a vertexu∈V, theconstraint slackof u is the mini-

mum among all edge slacks ofu’s outgoing edges, that is,∆c
σ(u) = min(∆c

σ(u,v)),

∀ vertexv such that(u,v) ∈ E.

(3) If u does not have any outgoing edges,∆c
σ(u) = τσ−σ(u)−d(u).

Lemma 2 If a scheduleσ is time-valid, then a modified scheduleσ′ does not violate

any timing constraints if it is identical toσ, except that the start time of tasku is delayed

until another timeσ′(u) within its constraint slack∆c
σ(u), that is 0< σ′(u)−σ(u) ≤

∆c
σ(u), for a specific tasku.

The constraint slack of a tasku defines the maximum time unit by which it can be

delayed without violating any timing constraint. It is calculated by the outgoing edges

from u. If there is no outgoing edges,u can be delayed all the way until it completes at

the finish time of the schedule. Such a delay will maintain the satisfaction of all timing

constraints, but it may introduce new resource conflicts.

Definition 7 (Resource slack∆r
σ) Given a time-valid scheduleσ computed from a

constraint graphG(V,E), for any tasku represented by a vertexu∈V,

(1) If ∃ a taskv that is mapped to resourcer(u) and v is scheduled afteru, task

u’s resource slackis defined as∆r
σ(u) = min(σ(v))−σ(u)−d(u), ∀v such that

r(v) = r(u) andσ(v) > σ(u).

39

(2) If suchv does not exist,∆r
σ(u) = τσ−σ(u)−d(u).

Lemma 3 If a scheduleσ is time-valid, then a modified scheduleσ′ does not have any

resource conflicts if it is identical toσ, except that the start time of tasku is delayed until

another timeσ′(u) within its resource slack∆r
σ(u), that is 0< σ′(u)−σ(u) ≤ ∆r

σ(u),

for a specific tasku.

The resource slack of a tasku represents the vacant time slots betweenu’s com-

pletion and the start of the next task on resourcer(u). If u is the last task scheduled

on r(u), then it can be delayed all the way until it completes at the finish time of the

schedule. The new schedule remains time-valid if the delay onu does not exceed both

its constraint slack and resource slack.

Definition 8 (Slack ∆σ) Given a time-valid scheduleσ computed from a constraint

graphG(V,E), for any tasku represented by a vertexu∈V, its slackis defined as the

minimum of its constraint slack and its resource slack,∆σ(u) = min(∆c
σ(u),∆r

σ(u)).

Lemma 4 (Slack-bounded time-validity) If a scheduleσ is time-valid, then a modi-

fied scheduleσ′ is also time-valid if it is identical toσ, except that the start time of task

u is delayed until another timeσ′(u) within its slack∆σ(u), that is 0< σ′(u)−σ(u)≤

∆σ(u), for a specific tasku.

Given a time-valid schedule, Lemma 4 allows some tasks to be delayed while yield-

ing new schedules that are also time-valid. The slack properties of tasks form the basis

of our power-aware scheduling algorithms for power/performance trade-offs.

3.4.2 Power characteristics of a schedule

We extend the power properties to schedules based on the constraint graph formulation.

A schedule has a power profile representing the power consumption of task execution.

40

We introduce max and min power constraints and extract some new properties by ap-

plying power constraints to a schedule.

Definition 9 (Power profile Pσ, Total energyEσ) Given a time-valid scheduleσ,

(1) The power profileof σ is defined as a function of time. At any given timet,

its value is the total power consumption of all tasks that are being executed att.

That is,Pσ(t) = ∑ p(u), ∀ tasku∈ T such thatσ(u)≤ t ≤ σ(u)+d(u).

(2) The total energyof σ is the integral of its power profile over time, that is,Eσ =∫ τσ
0 Pσ(t)dt.

Definition 10 (Max and min power constraintsPmax and Pmin) The power profilePσ

is constrained by two parameters,Pmax,Pmin∈ R, Pmax≥ Pmin≥ 0.

(1) The max power constraint Pmax specifies the maximum level of supply power

that can be provided to support task execution.

(2) Themin power constraint Pmin specifies the level of power consumption to main-

tain a preferred magnitude of activity.

We treat the max power constraint as a hard constraint. At any given moment, the

total power consumption by all running tasks must not exceedPmax. The min power

constraint is a soft constraint. The scheduler should make the best effort to meet the

min power goal, in order to fully utilize free power such as solar, as well as to control

the amount of jitter in power profile.

Definition 11 (Power spike, power gap)Given a scheduleσ with its power profile

Pσ(t), and power constraintsPmax andPmin,

(1) At any given timet1, if the power profilePσ(t1) exceeds max power constraint,

that is,Pσ(t1) > Pmax, then the power profile at timet1 is called apower spike.

41

(2) At any given timet2, if the power profilePσ(t2) is below min power level, that

is, Pσ(t2) < Pmin, then the power profile at timet2 is called apower gap.

Power spikes and power gaps are the times slots where the power constraints are

violated. Since only the max power constraint is treated as a hard constraint, a schedule

with any power spikes must not be considered as a valid one. However, power gaps

will not invalidate a schedule. Accordingly, a valid schedule is defined as follows.

Definition 12 (Power-validity of a schedule) Given a time-valid scheduleσ computed

from a constraint graphG with the task setT, constraint setC, and resource setR, for

a max power constraintPmax, scheduleσ is power-validif,

(1) σ is time-valid by Definition 5, and

(2) Its power profile does not exceed max power constraint, that is,Pσ(t)≤ Pmax, for

0≤ t ≤ τσ.

Definition 12 incorporates the power usage of a schedule as a constraint in addition

to the existing constraints on the time dimension. Only max power constraint is used

to qualify the validity of a schedule. (In the ensuing text, if not explicitly specified, a

“valid” schedule means it is power-valid, which implies its time-validity.) Min power

usage, which refers to the utilization to free power sources, is not enforced. Such

separation distinguishes different power sources as expensive power and free power.

It forms some new perspectives on power/performance trade-offs in a power-aware

system, as described in the following definitions.

Definition 13 (Power costPcσ(Pmin), Energy costEcσ(Pmin)) Given a time-valid sched-

ule σ with a min power constraintPmin reprsenting free power level,

(1) The power costof σ is the power usage above the min power levelPmin. It is

42

defined as a function of time andPmin,

Pcσ(Pmin, t) =

 Pσ(t)−Pmin whenPσ(t) > Pmin

0 whenPσ(t)≤ Pmin

 for 0≤ t ≤ τσ

(2) Theenergy costis the integral of the power cost function,

Ecσ(Pmin) =
∫ τσ

0 Pcσ(Pmin, t)dt.

Definition 14 (Min power utilization ρσ(Pmin)) Given a time-valid scheduleσ with a

min power constraintPmin > 0 reprenting free power level, itsmin power utilizationis

defined as the ratio of its energy drawn from free power source over the total available

free energy,ρσ(Pmin) = Eσ−Ecσ(Pmin)
Pmin×τσ

.

We do not limit the power and energy costs and min power utilization in Def-

initions 13 and 14 to only a power-valid schedule, since these properties are also

meaningful to schedules that are not power-valid. They further highlight the differ-

ence between costly power and free power. Any power consumption below the min

power level does not contribute to the energy consumption from non-renewable en-

ergy sources. In fact, the free power should be utilized greedily to preserve the costly

power. This new perspective subsumes the conventional power or energy minimization

techniques as a special case, wherePmin = 0. A power-aware design should explore

different trade-offs betweenperformance vs. costly power, while making the best ef-

fort to fully utilize the free energy for performance speedup. This forms the basis of

our power-aware scheduling techniques presented in Section 3.5.

3.4.3 Power-aware Gantt chart

There exist various visual representations for real-time scheduling problems, e.g. Gantt

chart. However, very few of them have the capability to express power properties of

a schedule, regardless of any power constraints. We introduce ourpower-aware Gantt

43

chart as a new visual representation for power-aware scheduling problems. It presents

a schedule in two different views:time viewand power view. Each view is a two

dimensional diagram whose horizontal axis represents time and vertical axis represents

power. In the time view, tasks are displayed as bins placed on several rows that denote

parallel execution resources. The power view shows the power profile of the schedule

with min and max power constraints and some corresponding power properties.

In the time view for a scheduleσ computed from a constraint graphG with task set

T and resource setR, the execution of a tasku∈ T is represented by a horizontal bin

beginning with its start timeσ(u) and whose length corresponds to its durationd(u).

We scale the vertical size of the bin to denote power consumptionp(u). As a result, the

area of the bin indicates its energy expenditure. Each execution resourceRi ∈ R takes

one row denoted byRi . All tasks that are mapped on this resource, that is,∀u∈ T such

that r(u) = Ri , are displayed in rowRi in timing order. The empty time slots between

adjacent bins represent the resource slacks. Timing constraints, and slacks in the time

dimension, though normally not shown, can also be intuitively visualized by selectively

attaching annotation on the bins.

By collapsing all bins in the time view to the lowest horizontal axis, the expected

power profilePσ(t) can be shown in the power view of the power-aware Gantt chart. It

also illustrates the composition of the power profile from every power consumer’s con-

tribution at each time. With annotation of max and min power level, power spikes and

power gaps can be directly observed; the power/energy cost vs. free power usage are

clearly separated; and power properties such as power/energy cost,Pcσ(Pmin, t),Ecσ(Pmin)

and min power utilizationρσ(Pmin) can be visualized with the corresponding annota-

tions.

Fig. 3.2 shows the power-aware Gantt chart of a time-valid schedule to the example

problem in Fig. 3.1. In addition to a graphical representation to schedules, the power-

aware Gantt chart also serves as the underlying model for a power-aware design tool

44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

ih

gfe

d
c

b

a

Time

A

B

C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

5.00

10.00

15.00

20.00

25.00

0.00

a
b

c
d

e f

f

g

h

i

i

Time

Power

Pmin: 10.00

Pmax: 20.00

Util: 72.00%

E_cost: 48.00

E_total: 156.00

Figure 3.2: Power-aware Gantt chart of a time-valid schedule.

that allows the designers to evaluate different power/performance trade-offs visually.

The designers can manually intervene with the automated scheduling process by drag-

ging and locking the bins to alternative time slots in the time view, while observing the

results in the power view interactively.

3.5 Algorithm

Based on the constraint graph formulation, we develop graph algorithms for power-

aware scheduling. Given a scheduling problem, the goal of the power-aware scheduler

is to find a valid scheduleσ with following properties. (1)σ must be time-valid, that is,

it satisfies all timing constraints and can arrange all tasks to corresponding execution

resources without any resource conflicts. (2)σ must satisfy the max power constraint,

that is, no power spikes can be found in the schedule. By qualifying (1) and (2) the

schedule is a valid one that meets all hard constraints. (3)σ could have power gaps

according to the min power constraint, but the scheduler should make its best efforts

to remove power gaps, by reducing power/energy cost or improving min power utiliza-

tion.

Power-aware scheduling is a multi-constraint solving problem. Our approach is to

first examine different constraints in our model defined in Section 3.4. We find that

45

the constraints on timing and resource sharing are the most critical ones that must be

considered first as necessary conditions. Next, we consider max power constraints after

after a time-valid schedule is found. The scheduler must eliminate all power spikes

while keeping the schedule time-valid to generate a valid schedule. Finally, the min

power constraint can be applied after a valid schedule is given. The analysis suggests

an incremental approach by solving one type of constraint at a time in the following

three steps.

First, based on the constraint graph of the problem, we try to find a schedule that

is time-valid. Power constraints and power consumption of tasks are not considered

in this step. The algorithm is presented in Section 3.5.1. It extends previous work

on a time-driven serial scheduling for a single execution resource to handling parallel

execution on multiple resources.

Second, after a time-valid schedule is computed from the first step, the max power

constraint is applied to constrain its power profile. Section 3.5.2 explains the algorithm

to remove power spikes by using heuristics based on slack properties of the schedule.

Tasks that contribute to a power spike are partially reordered by a slack-based order-

ing function. To avoid exhaustive search in the solution space, we apply heuristics to

examine more reasonable solutions first.

Finally, given a valid schedule provided by the previous step, we apply the min

power constraint and reorder tasks within their slacks to reduce power gaps and im-

prove the min power utilization. The algorithm is illustrated in Section 3.5.3. It does

not guarantee full utilization of the min power level. Also, the final schedule should

not have a longer finish time with a loss of performance, since min power is a soft

constraint that is not critical to the applicability of the schedule.

46

3.5.1 Algorithm for timing scheduling

The time-constrained scheduling algorithm is shown in Fig. 3.3. It is a extension to

a previous serialization algorithm [18].G is the constraint graph for the scheduling

problem.anchoris the source vertex that is used in SINGLE SOURCELONGESTPATH

algorithm. It represents a virtual task that starts at time 0.c is called the candidate ver-

tex that is being visited at each step as the algorithm traverses graphG topologically.

The start time of candidatec is assigned as the distance from theanchor to c in the

longest path. The next candidatev is selected fromc’s successors. Tasks that share

the same resources are serialized by adding edges between vertices. If these additional

edges for serialization produce any positive loops in the graph, they are then removed

by the algorithm and another topological ordering is attempted. The first invocation

to the algorithm starts fromanchoras the first candidate. Then the algorithm is recur-

sively invoked at each step when a new candidate is selected. A time-valid schedule is

returned when all vertices are scheduled.

This algorithm can be proved to always find a time-valid schedule if one exists,

since it will traverse all possible topological orderings of the graph before it terminates

with a failure.

Based on the problem shown in Fig. 3.1, its time-valid schedule is illustrated in

Fig. 3.2 in the form of a power-aware Gantt chart. There are one power spike and

several power gaps left for the remaining steps of our power-aware scheduler.

3.5.2 Algorithm for max power scheduling

The approach to meeting max power constraint is to eliminate the power spikes of a

time-valid schedule computed by the previous step. The algorithm is shown in Fig. 3.4.

It has three parameters: graphG, vertexanchor, and max power constraintPmax. The

timing scheduler is always called first to obtain a time-valid schedule. The algorithm

examines the power profilePσ of the returned scheduleσ to find the first power spike

47

TimingScheduler(GraphG, vertexanchor, vertexc)
La := SINGLE SOURCELONGESTPATH(G,anchor)
if (positive cycle found)then

return FAIL
C := set of topological successors of candidatec
if (C = /0) then

return σ with σ(c) := La
while (C 6= /0) do

v := one topological successor ofC
C := C−{v}

B: foreachu∈C do
if u /∈ v’s successors

then addu to v’s successors
if (r(c) = r(u)) then

serializeu afterc
w := the most recently scheduled task, such that (r(w) = r(v))
if (w 6= nil) then

serializev afterw
σ = TimingScheduler(G,anchor,v)
if (σ 6= FAIL) then

return σ with σ(c) := La
undo added edges toG since step B

return FAIL

Figure 3.3: Algorithm for timing scheduling.

48

MaxPowerScheduler(GraphG, vertexanchor, Pmax)
σ := TimingScheduler(G, anchor, anchor)
if (σ = FAIL) then

return FAIL
for (t := 0; t ≤ τσ; t := t + 1) do

S := set of all active tasks att, ordered by slack∆σ
power:= Pσ(t)
reschedule:= FALSE
while (power> Pmax or reschedule= TRUE)do

B: repeat
v := EXTRACT MAX (S)
if (reschedule= FALSEand ∆σ(v) = 0) then

reorder tasks inSby constraint slack∆c
σ

reschedule:= TRUE
delayv by some time units (heuristically determined)
power:= power− p(v)
S := S−{v}

until (power≤ Pmax or S= /0)
if (S= /0) then

return FAIL
if (reschedule= TRUE) then

lock start time of all tasks inS
σ := MaxPowerScheduler(G,anchor,Pmax)
if (σ 6= FAIL) then

return σ
undo added edges toG since step B

return σ

Figure 3.4: Algorithm for max power scheduling.

at timet. To eliminate the spike, several simultaneous tasks att are delayed so that the

height of the power curve is less thanPmax. The algorithm itself is called recursively

after the spike att is eliminated by delaying tasks. A valid scheduleσ is found if there

is no power spike inσ; and the time-validity ofσ is always guaranteed. If no solution

can be found after the recursive call, a failure notice is returned suggesting that either

additional tasks att need to be delayed, or one or more tasks already delayed have been

incorrectly chosen.

The key issues in this algorithm are properly selecting and delaying tasks for spike

49

elimination. We do not attempt exhaustive enumeration to all possible partial orders

of tasks which would take exponential orders of total number of tasks. Therefore,

some heuristics must be applied. The badly chosen tasks could have several impacts.

First, the total execution timeτσ may be extended unnecessarily, leading to a loss of

performance. Second, the algorithm may evaluate some invalid schedules repeatedly

before approaching a valid one, so that the scheduler requires extra computation time

needlessly. Finally, the algorithm may fail to find a valid schedule even if one exists.

We propose slack-based heuristics for selecting and delaying tasks. First, a slack-

based heuristic function is used to order simultaneous tasks. When a power spike

is detected at timet, the algorithm orders tasks that are active att by their slacks

∆σ(Definition 8), and then selects tasks to delay based on the following conditions. (1)

If there are tasks with non-zero slacks, the task with the largest slack is always selected

first. The algorithm continues selecting tasks to delay until the power spike att is re-

moved. (2) If no tasks with non-zero slack is available while the power spike att is still

present, the remaining tasks are reordered by their constraint slacks∆c
σ(Definition 6).

Tasks with larger constraint slacks will be delayed. (3) If the power spike cannot be

removed until all the remaining tasks have zero constraint slack, tasks are randomly

selected to be delayed.

After a task is selected to be delayed, the second question is by how long it should

be delayed, which is referred to as thedelay distance. To delay a tasku based on an

existing scheduleσ, we add an edge fromanchor to u, with positive weightt ′ as the

lower bound on its new start time. Therefore, the delay distance ist ′−σ(u). Clearly,

making a small delay distance is not efficient. On the other hand, we do not expect the

delay distance to be too large such that the finish time of the schedule may be unnec-

essarily increased. We currently heuristically set the upper bound of the delay distance

to the execution time of the task. In addition, in case (1) where the selected tasku has

some slack, the delay distance is further bounded by its slack∆σ(u). According to the

50

slack-bounded time-validity (Lemma 4), if the delay distance ofu is less than its slack,

the new schedule is still time-valid. Therefore, in case (1), we put this extra bound

to reduce the effort for rescheduling for time-validity. The algorithm can still proceed

with a time-valid schedule. While in cases (2) and (3), since the new schedule after

the delay is no longer time-valid, the timing scheduler must be invoked to make the

schedule time-valid again by asserting the Boolean variablereschedule. In case (2),

the selected tasku has some constraint slack but no resource slack, the delay distance

is further bounded by its constraint slack∆c
σ(u), so that all timing constraints are pre-

served thus the scheduler only needs to eliminate the resource conflict caused by the

delay. All of these constraints can actually serve the purpose of pruning out the search

space tremendously. Finally, in case (3), which eliminates a power spike at the cost of

introducing new timing violations, some significant timing adjustment to the schedule

is expected.

After enough tasks are delayed and the power spike att disappears, we lock the start

time of the remaining tasks. The start time of a tasku is locked by adding two edges to

graphG, a forward edge(anchor,u) : σ(u) , and a backward edge(u,anchor) :−σ(u).

As a result, tasku is forced to start at timeσ(u) by the SINGLE SOURCE LONGEST

PATH algorithm. These locks are especially meaningful to case (3). When the scheduler

delays a tasku to eliminate a power spike at timet, it is desirable to keep all tasks that

are scheduled beforet intact. While in case (3), if the delayed tasku has an outgoing

backward edge(u,v) such that taskv is scheduled beforet, the delay tou will force v

to be also delayed. In fact, an attempt to remove a power spike starting at timet by

delaying a tasku may cause a new power spike beforet. Such a result will certainly

complicate the scheduler. The algorithm could spend much more time dealing with the

unexpected spikes before it converges to a valid schedule. By locking the tasks that do

not form a power spike att, no further delays can be applied to these tasks. However,

if delays to these tasks are necessary for a valid schedule, the algorithm will fail in its

51

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

ih

gfe

d
c

b

a

Time

A

B

C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00

0.00

a
b

c
d

e

f

gh i

Time

Power

Pmin: 10.00

Pmax: 20.00

Util: 74.67%

E_cost: 44.00

E_total: 156.00

Figure 3.5: A valid schedule after max power scheduling.

next recursions and these locks will be undone. Then the algorithm will choose one

task from them to make further delay and continue recursion.

It is notable that in some extreme cases, the max power constraint scheduler may

not be able to find a valid schedule even though one exists . The reason is that the al-

gorithm does not enumerate all possible combinations in partially ordered tasks. How-

ever, in practice, our heuristics perform very well in finding a valid solution without

sacrificing performance. Our slack-based heuristics tend to examine more reasonable

schedules first. Also, the heuristic to lock the tasks before the recursion can help reduce

the computation of the scheduler.

The schedule shown in Fig. 3.2 does not satisfy the max power constraint. Fig. 3.5

show the valid schedule after applying the max power scheduler. Tasksh and f are

delayed to remove the power spike.

3.5.3 Algorithm for min power scheduling

The goal of the min power constraint scheduler is to reduce the energy cost by im-

proving min power utilization for a given valid schedule. The algorithm is shown in

Fig. 3.6. Four parameters are passed to the algorithm: graphG, vertexanchor, power

constraintsPmax andPmin. A valid scheduleσ is obtained from the power-valid sched-

uler at the beginning of the algorithm. Ifσ already has full min power utilization,

52

MinPowerScheduler(GraphG, vertexanchor, Pmax,Pmin)
σ := MaxPowerScheduler(G,anchor,Pmax)
if (σ = FAIL) then

return FAIL
if (ρσ(Pmin) = 1) then

return σ
improvement:= TRUE
while (improvement= TRUE)do

improvement:= FALSE
for (t in a heuristic order of range (0,τσ)) do

if (Pσ(t) < Pmin) then
S := set of tasks that start beforet
foreachu∈ Ssuch that∆σ(u)≥ t−σ(u)−d(u) do

σ′ := σ
B: delayu some time units such thatu is active att

if (σ is validand ρσ(Pmin) > ρσ′(Pmin)) then
improvement:= TRUE
if (ρσ(Pmin) = 1) then

return σ
else

undo added edges toG in step B
σ := σ′

return σ

Figure 3.6: Algorithm for min power scheduling.

53

then no further improvement is necessary, and the algorithm completes. Otherwise, it

tries to find a power gap at timet to and delay some tasks scheduled beforet to fill

this power gap. These tasks must have enough slacks to be delayed untilt such that

the new schedule is time-valid. The algorithm also checks whether the new schedule

has any power spikes, and whether its min power utilization is better than the existing

schedule. If so, it is a better schedule and the algorithm continues searching for further

improvement. Otherwise, the delay is cancelled and the previous schedule is restored.

In order to find an “optimal” schedule whose energy cost is the minimized, the algo-

rithm should examine all valid partial orderings of tasks, which will increase the com-

plexity of computation to an exponential order of tasks. Therefore, we apply heuristics

based on following observations. First, the scheduler may need to scan the schedule

multiple times. This is because delaying tasks to fill a power gap at timet may create

new power gaps beforet. Also, since delaying one tasku will change the slacks of

other tasks that are constrained byu, there may be new opportunities for reordering

those tasks that are not eligible for delay previously. As a result, either new power gaps

or new tasks to fill other power gaps can be found after the algorithm scans the sched-

ule again. Moreover, the order in which to visit the power gaps will lead to different

final schedules because different partial reorderings of tasks are applied. This suggests

that better schedules could be found if we scan the schedule in various orders in time

dimension, e.g. incremental order, reverse order, or random order. Finally, when a task

u is selected to fill a power gap att, we consider alternative time slots to reschedule

u, rather than just startingu at t. It is difficult to determine the “best” time slot for

reschedulingu since it alters not only the power profile but also the slacks of some

other tasks. We also address this issue by heuristics. Some available heuristics are:

startingu at t, finishingu at the end of the power gap starting fromt, or a randomly

chosen time slot. In practice, we can scan the schedule multiple times while altering

some of the heuristics during each scan and take the best results.

54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

ih

gfe

d
c

b

a

Time

A

B

C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00

0.00

a
b

c
d

e
f

gh

h

i

i

Time

Power

Pmin: 10.00

Pmax: 20.00

Util: 90.00%

E_cost: 21.00

E_total: 156.00

Figure 3.7: The improved schedule after min power scheduling.

The Boolean variableimprovementrefers to whether the scheduler finds a better

schedule during one scan to the existing schedule. If no further delay can improve the

schedule, the algorithm terminates successfully. Each scan (except the last one) will

improve the schedule by delivering the same performance with a reduced energy cost.

Since min power constraint is a soft constraint, the schedule tolerates the existence of

power gaps after it makes the best efforts to remove them.

In this algorithm, tasks are delayed within their slacks during schedule improve-

ment. This guarantees that the delays always result in time-valid schedules. The al-

gorithm also never introduces delays that either create power spikes or incur a higher

energy cost. Therefore, no additional rescheduling will be necessary after delaying

these tasks. Furthermore, the min power scheduler can possibly reduce the height of

the power profile. This indicates the same schedule can be applied to different power

constraints without any extra effort to reschedule the problem.

Fig. 3.7 shows a better schedule that improves on the valid schedule in Fig. 3.5.

Energy cost is reduced while the height of the power profile curve is also reduced. In

fact, the same schedule can be directly applied to all cases with a range of constraints

where 15≤ Pmax≤ 20,2≤ Pmin≤ 15, without recomputing a schedule for each case.

This feature makes our statically computed power-aware schedules directly adaptable

to a run-time scheduler that schedules tasks according to the dynamically changing

55

Heat
wheel
1 & 2

HW12 / 5

Step 1: Hazard
detection
HAZARD / 10

Step 1: Steer
STEER / 5

Step 1: Drive
DRIVE / 10

-50

Heat steer
1 & 2

HS12 / 5

5
10

5

10

Step 2: Hazard
detection

Step 2: Steer

Step 2: Drive

10

5

Heat
wheel
3 & 4

HW34 / 5

Heat
wheel
5 & 6

HW56 / 5

Heat steer
3 & 4

HS34 / 5

-50

5

-50

5

-50

5

-50

5

-50

5

-50

5

-50

5

-50

5

-50

5

STEER / 5

DRIVE / 10

HAZARD / 10

Figure 3.8: Constraint graph of the Mars rover.

constraints imposed by the environment.

3.6 Experimental Results

This section presents scheduling results for the Mars rover operations and a case study

for evaluating our power-aware scheduling algorithms in a mission scenario.

The constraint graph for the Mars rover is shown in Fig. 3.8. Since the power

consumption varies in three different cases, the power attributes of tasks are not shown

in the graph. To simplify the problem, we assume all heaters are independent resources

and one heater can heat two motors at a time. Therefore there are a total of five thermal

heaters. Four steering motors are considered a single steering mechanical resource.

The six wheel motors are modeled as one mechanical unit for driving. There is also a

laser guided digital component for hazard detection.

Fig. 3.9, 3.10 and 3.11 show the results for three cases after applying power-aware

56

5 10 15 20 25 30 35 40 45 500

5.00

10.00

15.00

20.00

25.00

0.00
CPU

Hd1 Hd2

Hs12

Hs34

Hw12

Hw34

Hw56

St1

St2
Dr1 Dr2

Time

Power

Pmin: 14.90

Pmax: 24.90

Util: 71.28%

E_cost: 79.00

E_total: 610.00

Figure 3.9: Schedule for the best case.

5 10 15 20 25 30 35 40 45 50 55 600

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

0.00
CPU

Hd1 Hd2

Hs12Hs34

Hw12Hw34 Hw56

St1

St2

Dr1 Dr2

Time

Power

Pmin: 12.00

Pmax: 22.00

Util: 94.24%

E_cost: 147.00

E_total: 825.50

Figure 3.10: Schedule for the typical case.

scheduling algorithms. Fig. 3.9 gives first two iterations of the loop in the best case.

To utilize the available free energy, we manually unroll the loop and insert two heating

tasks to improve loop efficiency through better solar energy utilization. Therefore the

second iteration can be repeated without too much energy cost. In other cases only one

iteration is shown since loop unrolling is not necessary. In the best case, because the

power budget is sufficient, a fast schedule is given by allowing operations to overlap.

In the typical case, parallel operations are still possible while some heating tasks are

serialized. In the worst case, a tight power budget forces all operations to be serialized,

leading to a slow schedule.

The existing schedule used in the past mission was designed to be low-power. To

avoid exceeding max power supply, JPL uses a serialized schedule that is fixed in all

situations, regardless of available solar power and power consumption in different con-

ditions. The existing schedule is identical to our power-aware schedule computed with

57

5 10 15 20 25 30 35 40 45 50 55 60 65 70 750

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0.00

CPU

Hd1 Hd2

Hs12Hs34 Hw12Hw34 Hw56

St1 St2

Dr1 Dr2

Time

Power

Pmin: 9.00

Pmax: 19.00

Util: 100.00%

E_cost: 388.00

E_total: 1063.00

Figure 3.11: Schedule for the worst case.

Solar power (W) Battery energy (J) Solar energy (J) % of solar energy Time (s) Moving distance
14.9 0 672.5 60% 75 2 steps - 14cm
12 55 817 91% 75 2 steps - 14cm
9 388 675 100% 75 2 steps - 14cm

Table 3.3: Performance of the rover under existing schedule.

the lowest min and max power constraints. The fundamental difference is that, our

schedule is completely constraint-driven; whereas the existing solution is hardwired

and does not track the power availability. The performance and energy cost of our

schedules and the existing schedule are compared in Table 3.3 and Table 3.4.

We use finish timeτσ and energy costEcσ(Pmin) to the non-rechargeable battery

as the metrics. The existing scheme only schedules for the worst case; while in other

cases, solar energy is under-utilized and opportunities to performance improvement are

overlooked. However, JPL’s low-power schedule appears “economic” since its energy

cost is low. Our schedules, on the other hand, speeds up the rover’s movement by up

to 50% in the best case and 25% in the typical case, while drawing more costly energy

from the battery. To evaluate this trade-off, we apply our schedules and the existing

Solar power (W) Battery energy (J) Solar energy (J) % of solar energy Time (s) Moving distance
14.9 79.5 / 6 534 70% 50 2 steps - 14cm
12 147 679 94% 60 2 steps - 14cm
9 388 675 100% 75 2 steps - 14cm

Table 3.4: Performance of the rover under power-aware schedules.

58

Travel
distance

Time Energy
cost

Travel
distance

Time Energy
cost

0-599 14.9 16 600 0 24 600 145.5
600-1199 12 16 600 440 20 600 1470

1200 - 9 16 600 3114 4 160 776
Total 48 1800 3554 48 1360 2391.5

Improve
ment

24.4% 32.7%

Power-awareJPLTime frame Solar power
(W)(s) (s) (s)(J) (J)

Table 3.5: Comparison of existing schedule to power-aware schedules under a mission
scenario.

schedule to a mission scenario when the available solar power varies over time, and

then evaluate the performance vs. energy cost in this bigger picture.

Suppose the mission is to travel to the next target location, which is 48 steps away

from the current location. The mission starts around noon when maximum solar power

is present. While the mission is in progress, the power output from the solar panel drops

from 14.9W to 12W after 10 minutes, then falls to the worst case at 9W 10 minutes

later. If the existing schedule is applied, the rover will spend 10 minutes evenly in

the best case, typical case, and worst case since it has a fixed moving speed (16 steps

per 10 minutes). This results in a long execution time (30 minutes) and considerable

energy cost in the worst case. When our schedules are used, the rover finishes 50%

of its work (24 steps) in the first 10 minutes, 42% of work (20 steps) in the next 10

minutes, leaving the remaining 8% (4 steps) in the worst case for less than 3 minutes.

Since our schedules accelerate execution at the best and typical cases, the rover can

finish the mission earlier before having to work in the costly worst case. The results of

this case study are shown in Table 3.5. The analysis shows our schedules win both on

performance and energy savings considerably.

Fig. 3.12 highlights the property of the power-aware scheduler in a geometrical

view. The top chart illustrates how the power-aware scheduler adjusts the execution

speed adaptively with available power budget, while the existing scheme ignores the

power constraint and always operates at the lowest speed. The workload is represented

by the integral of the speed curve over time. Therefore our curve reaches the given

59

Execution speed scales with power source
in power-aware scheduling

6

8

10

12

14

16

10 20 30 Time

Solar power /
Relative speed

Solar
power

Speed
(JPL)

Speed
(Power-
aware)

Reduced energy cost in power-aware scheduling

0

4

8

12

16

10 20 30
Time

Solar power /

Power draw
from battery

Solar
power

Battery
power -
(JPL)

Battery
power -

(Power-
aware)

Figure 3.12: Adaptive speedup in power-aware scheduling.

workload earlier because of higher execution speed before operating in the worst case.

The bottom chart shows the power cost from battery over time and how it alters as

power constraint varies. The energy expenditure is symbolized by the integral of power

curve over time. When the mission is completed, both the speed curve and power curve

also end. Although our power curve is higher in most time during the mission, by com-

pleting earlier we avoid further energy cost from integrating a high power curve with a

longer execution time. Therefore, given the same workload, the power-aware scheduler

is capable of achieving performance speedup less energy cost simultaneously.

60

3.7 Chapter Summary

Power-aware design becomes a more important issue in mission-critical systems that

require best use of available power sources and deliver high performance at the same

time. We target the scheduling algorithms to embedded systems with variable power

constraints and various types of power consumers, as well as different energy sources

that are classified as costly power vs. free power. In these systems, power-aware tech-

niques have potentials for both performance improvement and energy savings.

In this chapter, we present a constraint-driven model that incorporates power and

timing constraints in a system-level context. We propose three core algorithms that

decompose the power-aware scheduling problems into steps. Via this incremental ap-

proach, we distinguish the properties of each sub-problem and apply heuristics to solve

the constraints by different methods. The case study to a real application demonstrates

that our power-aware method is capable of improving performance while saving ex-

pensive energy.

Several interesting issues in this dimension need further attention. To expand the

applicability of our algorithms, more effective heuristics need to be discovered. We

would also like to incorporate more novel power management techniques including

voltage/frequency scaling into this tool to support more effective power-aware de-

signs.

61

Chapter 4

Power Aware Task Motion

New embedded systems are being built with new types of energy sources, including

solar panels and energy scavenging devices, in order to maximize their utility when

battery and A/C power are unavailable. The large dynamic range of these unsteady

energy sources is giving rise to a new class ofpower-awaresystems. They are similar to

low-powersystems when energy is scarce; but when energy is abundant, they must be

able to deliver high performance and fully exploit the available power. To achieve the

wide dynamic range of power/performance trade-offs, we propose a newtask motion

technique, which tunes the system-level parallelism to the power/timing constraints

as an effective way to optimize power utility. Results on real-life examples show an

energy reduction of 24% with a 49% speedup over best previous results on the entire

system.

4.1 Introduction

Recent years have seen the emergence ofpower-awareembedded systems. They are

characterized by not only low power consumption, but more generally by their ability

to support a wide range of power/performance trade-offs. That is, these systems can

62

be viewed as providing “knobs” that can be turned one direction to reduce power con-

sumption, or the other direction to increase performance. The ability to adapt the range

of power/performance trade-offs is driven by new applications that demand very high

performance while under stringent timing and power constraints.

One example that fits this description is the Mars rover by NASA/JPL [4]. It was

designed to roam on Mars to take digital photographs and perform scientific experi-

ments over several hundred days. Its energy sources consist of a battery pack and a

solar panel, and future versions are expected to incorporate nuclear generators, thermal

batteries, and energy scavenging devices. Besides the Mars rover, many new emerging

embedded systems are also following this trend towards new types of heterogeneous,

renewable energy sources. Future personal digital assistants (PDAs) will likely include

solar panels as found in many calculators today. Yet another example is the distributed

sensors. They are being built today to draw energy from solar power, wind power,

or even ocean waves. They represent a great improvement because they enable the

system’s continued operation for useful or critical tasks when the traditional energy

sources like battery and A/C become unavailable.

These new types of energy sources are posing new challenges to designers of

power-aware systems. What they all have in common is that many of these new energy

sources are far from being ideal power supplies. For example, the output of a portable

solar panel today can be up to 15W under direct sunlight, or down to 1mW under in-

candescent light. Similarly, other sources will be determined by the wind or ocean

wave, which can also cause the available power to vary by several orders of magnitude.

Embedded systems powered by such sources must be designed to operate in as wide

a range as possible. Indeed, new emerging components such as the Intel XScale are

able to scale their power/performance over 20×, and this dynamic range will likely to

increase.

While low power operation is clearly important, the ability to fully exploit the avail-

63

able power when energy is abundant is equally important. However, today’s systems

let much free energy go to waste, because they are designed for fixed budgets. For

example, a system with an XScale draws approximately 1W of power, but when the

solar panel outputs 15W in direct sunlight, up to 1400% of the power will be wasted.

Even if there is a rechargeable battery, when it becomes fully charged, the extra power

turns into waste heat. This is also the case with the Mars rover, which accomplishes its

low-power property by serializing all tasks, including mechanical and heating as well

as computation. However, it also discards excess power as waste heat.

One way to take advantage of the excess power is to increase parallelism. In fact,

parallelism is in general an effective way for both high performance and low power. By

operating additional processors at their peak rate, they will be able to take advantage

of the abundant energy. Parallelism can also enable a set of processors to operate at a

lower power level than a single processor with the same performance. Although it is

difficult to parallelize algorithms in general, systems with many concurrent activities

present many opportunities for parallelism-based trade-offs.

Peak-power poses new challenges to such a power-aware architecture with multiple

processors. Today’s systems satisfy the peak-power constraint by construction, that is,

each component is given a budget that is guaranteed never to be exceeded according

to their data sheet. However, by using multiple processors to fully utilize the available

power when abundant, a multiple processor architecture would risk exceeding the total

budget when the supply power is low, if it is not designed carefully. Therefore, it is

of utmost importance that the proposed scheme be able to fully respect the maximum

power as a hard constraint.

In this chapter, we propose to enhance the dynamic range of these embedded sys-

tems by means oftask motionand power-aware scheduling. It transforms tasks within

their timing constraints and their precedence dependency in order to match the par-

allelism to the available power level. Furthermore, we exploit domain-specific knowl-

64

edge about the power-consuming tasks to achieve additional significant power/performance

improvements over existing schedulers. The enhanced dynamic range and power-

awareness enable the system to accomplish more tasks in a shorter amount of time

while respecting all timing constraints. The benefits must ultimately be translated into

application-specific metrics, but as power-aware systems are deployed in more mission-

critical applications, the saving from reduced mission time or enhanced quality may

translate into a saving of millions of dollars.

Section 4.2 reviews related work. Section 4.3 uses an example showing a counter-

intuitive result when some of the well-known techniques will fail at the system level.

However, this problem can be successfully addressed by our new technique, which is

presented in Section 4.4. We discuss experimental results in Section 4.6.

4.2 Related Work

To explore the power/performance range in power-aware embedded systems, we can

draw from many techniques developed for low power and high performance. This

section surveys related works in these areas with a discussion on their integration at the

system level.

Low power can be achieved by many ways. For system-level designs, where the

components are largely off-the-shelf or already designed, the applicable techniques

include subsystem shutdown and dynamic voltage scaling (DVS). In the first case,

subsystem shutdown decision can be based on fixed idle times, adaptive timeout, or

predictive based on a mix of profile and runtime history [64, 62, 20]. Similarly, power-

up may be either event-driven or predictive in an attempt to minimize timing or power

penalty. In the second case, DVS techniques have been developed for variable-voltage

processors (introduced by [74], with follow-up by [26, 48] and more). Because energy

is a quadratic function of voltage, lowering the voltage can result in significant saving

while still enabling the processor to continue making progress, unlike the shutdown

65

case. Lowering the voltage will also require reduction in frequency, which has the

effect of reducing dynamic switching power.

In addition to low power, the power/performance range can also be increased to-

wards high performance by drawing from previous works on retiming or pipelining

and applying them to the system level. Leiserson et al. first established the theoreti-

cal foundation for retiming synchronous circuits [42], and this has been extended to

loop scheduling for VLIW processors [56, 15, 35]. Shifting tasks in a data flow graph

(DFG) across the iteration boundary can result in a shorter execution time or alleviate

the resource pressure (e.g. number of registers and functional units). Such techniques

are also used in power minimization by reducing switching activities [41, 75].

Existing techniques need significant enhancements before they can be correctly

applied to a system-level power management problem. First, most techniques to date

treat either power or timing as anobjective, rather than aconstraint. In real systems, the

max power budget is a real, hard constraint, whose violation can lead to malfunction.

Max power was not of central concern previously, but as we consider additional power

sources such as solar whose power output can vary, max power constraints must be

strictly enforced. This becomes especially important as we increase the range of power

and performance trade-offs by tuning the parallelism. Second, the tasks to be sched-

uled are related to each other not only by precedence, data dependency or deadline,

but also related across different components by dependencies likeco-activation, which

must be correctly modeled for system-level power management, or else anomalies can

occur. Co-activation means the execution of one task requires the power consumption

of other dependent services or tasks. A simple example is that when the CPU is run-

ning, it imposes a co-activation dependency on the memory. Techniques such as DVS

are designed mainly for minimizing CPU power, but they have not considered other

components that have dependencies on the CPU. In fact, energy saved on the CPU

may be more than offset by the increased energy consumed by the rest of the system.

66

The following section presents a simple example to illustrate such an anomaly with

applying DVS without system-level considerations.

4.3 DVS Anomaly

We present a simple example in Fig. 4.1 to illustrate an anomaly with applying DVS

without considering system-level dependencies, resulting in a suboptimal and incorrect

system. It will be further used to explain our new system model and scheduling tech-

nique in the ensuing text. In this example, five tasksa,b,c,x,y are to be scheduled on

four execution resourcesA,B,X,Y. The constraints are:

1. The overall deadline is at time 3.

2. The max power budget is 10W.

3. Tasksa,b andc must be serialized.

4. The execution resourcesA,B are not voltage-scalable.

5. Only taskx can be voltage-scaled on resourceX (e.g. a processor), and it has

some slack time to finish before time 2.

6. Tasky must be co-activate with taskx, and its resourceY is also not voltage-

scalable (e.g. memory, I/O).

Note that tasky need not start and finish at the same time asx, but it mustenvelop

x, i.e., start no later thanx starts and finish no sooner thanx finishes. For simplicity,

this example assumesx andy start and finish together.

We present schedules as power-aware Gantt charts, where the horizontal and ver-

tical axes represent time and power, respectively. Each chart also consists of a pair of

views: time vieworganizes tasks by horizontal tracks that correspond to power con-

suming resources (processors, peripherals), andpower viewstacks the tasks over time

67

1 2 30

b

x

a

c

y
Time

Y

X

B

A

1 2 30
2
4
6
8

10
12

0
y
x

b
c

a

Time

Power

Pmax: 10

Energy: 19

task x has deadline 2

task y co-activates with task x

exceeding max power budget

(a) The schedule is not valid since max power budget is exceeded at
 time slot [0,1] due to parallel tasks x, y and a.

1 2 30

b

a

c

y

Time

Y
X

B

A

1 2 30
2
4
6
8

10
12

0
y

b

c

a

Time

Power

Pmax: 10
Energy: 21

x is slowed down to
save power/energy

y's execution delay increases
by co-activating with x

(b) DVS technique reduces power and energy consumption of task x.
 However, it fails to produce a valid schedule to the entire system.
 The energy comsumption of the whole system is increased by co-activation.

exceeding max power budget

more
energyx

x

1 2 30

b

x[1] from next iter.

a

c

Time
Y

X

B

A

1 2 30
2
4
6
8

10
12

0
b

c

a
Time

Power
Pmax: 10

Energy: 19

x

y

y
x

x

y

shift tasks x, y to previous iteration

(c) Our task motion technique shifts task x and its co-activated task y
 to the previous iteration such that the max power budget is satisfied.

prolog loop body can be iterated after time 1

4

4

y[1] from next iter.

x[1] from next iter.
y[1] from next iter.

Figure 4.1: An example where DVS fails to reduce power and energy at system level,
while our new technique will succeed.

68

to show the power breakdown by tasks. The curve that traces the height of the power

view is thepower profilefor the entire system.

Fig. 4.1(a) shows a time-valid schedule with a max-power violation during time

[0,1]. Reschedulingx andy in [1,2] will be time-valid but still violates max power.

Fig. 4.1(b) shows the case when DVS was used to slow down taskx until its deadline

of time 2. Intuitively, reducing both power and energy of taskx should eliminate the

max power violation, but instead it not only does not reduce max power, but actually

increases total energy at the system level. Because DVS slows down the processor,

now the execution ofx overlaps with taskb, thereby leading to higher system-level

power. Furthermore, becausex runs more slowly, its co-activated tasky must also

consume power for longer but on a device that is not voltage scalable. Thus, energy

saved by slowing downx is more than offset by the additional energy consumed by

the lengthenedy. This anomaly is an example where DVS should not be applied in

isolation.

Fig. 4.1(c) shows a feasible solution obtained by our newpower-aware task motion

technique on iterative tasks. Taskx andy are shifted (orpromoted) to the previous

iteration to overlap taskc instead ofa or b. As a result, both the max power and

the deadline are satisfied. However, the optimal solution cannot be obtained unless

we exploit domain-specific knowledge about the task set by eliminating a precedence

dependency and replacing it with autilization constraint. The details will be explained

in later sections.

4.4 Task Motion under Timing and Power Constraints

We present a new power-aware task motion technique for evaluating power/performance

trade-offs in embedded systems. We first define our constraint model and introduce our

representations: a timing constraint graphG for scheduling, and theiteration graph G′

for task motion. We also defineutilization constraintsto support more aggressive but

69

provably correct design space exploration.

4.4.1 Constraint graph and schedule

The input to the scheduler is a(timing) constraint graph G(V,E), where the verticesV

represent tasks, and the edgesE ⊆V×V represent timing constraints between tasks.

Each vertexv ∈ V has three attributes,d(v), p(v) and r(v), representing taskv’s ex-

ecution delay, power consumptionand resource mappingrespectively. Each edge

(u,v) ∈ E has two attributes,δ(u,v) andλ(u,v). δ(u,v) specifies themin/max timing

constraints[18]. For any functionσ that assigns the start times to tasksu andv asσ(u)

andσ(v), σ(v)−σ(u)≥ δ(u,v). If δ(u,v)≥ 0, edge(u,v) is called aforward edgethat

specifies amin timing constraint. If δ(u,v) < 0, it is abackward edgeindicating amax

timing constraint. λ(u,v) is called thedependency depth, which specifies constraints

across iterations. Aniteration is a full pass of executing of each of the tasks once in a

valid order.δ(u,v) andλ(u,v) indicate that the execution of tasku in iterationi must

precede taskv in iteration i + λ(u,v) by δ(u,v) time units. Ifλ(u,v) = 0, edge(u,v)

specifies anintra-iteration constraint. Otherwise, it is aninter-iteration constraint.

We assume that inter-iteration constraints are only precedence dependencies (forward

edges) and their dependency depths are positive integers. For backward edges, their

dependency depths are always zero.

A scheduleσ assigns a start timeσ(v) to each taskv ∈ V. It has afinish timeτσ

when all tasks complete their execution. Scheduleσ is calledtime-validif all the start

time assignments satisfy all timing constraints, and tasks that share the same resource

are serialized. IfG represents an iteration of a loop,σ must also satisfy inter-iteration

constraints such that they must hold across iterations when multiple instances ofσ are

concatenated.

A scheduleσ has apower profilefunction of timePσ(t),0≤ t ≤ τσ representing the

instantaneous power consumption of all tasks during the execution ofσ (illustrated by

70

the power view of the Gantt-chart in Fig. 4.1). The power profile is constrained by two

parameters:Pmax,Pmin, such thatPmax≥ Pσ(t) ≥ Pmin≥ 0. Themax powerconstraint

Pmaxspecifies the maximum budget of supply power that can be provided by the power

sources. Themin powerconstraintPmin specifies the level of power consumption to

maintain a preferred level of activity.

The max power constraint is a hard constraint. At any given timet, the value of the

power profile functionPσ(t) must not exceedPmax. Scheduleσ is calledpower-valid

(or simply,valid) if it is time-valid and its power profile does not exceed the max power

constraint. However, we treat the min power constraint as a soft constraint that could

be violated occasionally in a valid schedule.

In cases where the min power constraintPmin represents the free power level (e.g.

solar), the energy drawn from the non-renewable energy sources is defined as theen-

ergy cost Ecσ(Pmin) of a scheduleσ. It distinguishes between costly power and free

power in such a way that any power consumption below the free power level does not

contribute to the energy cost on non-renewable energy sources, and therefore should

be utilized maximally.

4.4.2 Task motion under timing constraints

Task motion obtains different versions of a scheduling problem by converting between

intra-iteration and inter-iteration constraints. We first construct aniteration graph

G′(V,E′): it has the same vertices as those of the constraint graphG(V,E), but edges

E′ consist of only intra-iteration constraints. Formally,E′ = {(u,v) : (u,v) ∈ E such

thatλ(u,v) = 0,δ′(u,v) = δ(u,v)}. The edges inE′ will not have dependency depthsλ,

since they are always zero. The expected loop durationτ is obtained from the original

schedule computed from the initial iteration graphG′.

Our work differs from previous works in several ways. First, existing techniques ei-

ther do not consider timing constraintsδ in their data flow graphs (DFG), or the value of

71

a

b

c

(0,0) (0,1)

(0,1)(0,2)

(1,1)

a

b

c

0 1

12

-2

a

b

c

(1,0) (0,1)

(0,1)(1,2)

(0,1)

a

b

c

-3 1

1-1

-21

1 2 30

b

x

a

c

y
Time

Y

X

B

A

1 2 30

2
4
6
8

10
12

0
y
x

b
c

a

Time

Power

Pmax: 10

Energy: 19

1 2 30

b

x[1]

a

c

y[1]
Time

Y

X

B

A

1 2 30
2
4
6
8

10
12

0
y[1]
x[1]

b

c

a
Time

Power

Pmax: 10

Energy:19

Constraint graph G Iteration graph G' Schedule σ

(a) before task motion, no valid
solution can be found.

(b) after promoting task x and co-activating
task y, a valid solution is found.

(0, -2)

(0, -2)

a

b

c

(0,0) (1,1)

(0,1)(1,2)

(0,1)

a

b

c

0 -2

1-1

11

(c) after promoting task a, a variation
of solution (b) is produced.

(0, -2)
1 2 30

b

x[1]

a[1]

c

y[1]
Time

Y

X

B

A

1 2 30
2
4
6
8

10
12

0
y[1]
x[1]

b

c

a[1]
Time

Power

Pmax: 10

Energy:19

y

x x

x x

x x

co-active

y

co-active

y

co-active

y

co-active

y

co-active

y

co-active

Figure 4.2: Task motion under timing constraints.

a

b

c

(*,0) (*,1)

(0,1)(0,2)

(1,1)

a

b

c

0 1

12

-2

a

b

c

(0,1)(1,2)

(0,1)

a

b

c

-3 1

1-1

-21

1 2 30

b

x

a

c

y
Time

Y

X

B

A

1 2 30
2
4
6
8

10
12

0
y
x

b
c

Time

Power

Pmax: 10

Energy: 19

1 2 30

b

x[1]

a

c

y[1]
Time

Y

X

B

A

1 2 30
2
4
6
8

10
12

0
y[1]
x[1]

b

c

a
Time

Power

Pmax: 10

Energy:19

Constraint graph G Iteration graph G' Schedule σ

(a) before task motion, no valid solution can be found.

(*, -2)

(*,0) (*,1)

(*, -2)

a

b

c

(0,1)(1,2)

(0,1)

a

b

c

-3 -2

1-1

-21

(c) after promoting task a with utilization constraints,
 a new solution with better performance is found.

(*,0) (*,1)

(*, -2)
1 20

b

x[1]

a[*]

c

y[1]
Time

Y

X

B

A

1 20
2
4
6
8

10
12

0
y[1]
x[1]

b

ca[*]

Time

Power

Pmax: 10

Energy: 19

y

co-active

y

co-active

y

co-active

y

co-active

y

co-active

y

co-active

x x

x x

x x

(b) after promoting task x and co-activating task y,
 a valid solution is found.

a

Figure 4.3: Task motion under utilization constraints.

72

roushrv
72

δ is always 0 or 1 that only indicates precedence (data dependency). We capture more

general min/max timing constraints that are essential to correctly modeling the oper-

ation in new embedded systems, and our approach subsumes DFG as a special case.

Second, where existing schedulers use one DFG, we need two graphs: (1) the tim-

ing constraint graphG must update dependency depthsλ when transforming between

intra-iteration and inter-iteration constraints; (2) the iteration graphG′ must change the

values of corresponding timing constraintsδ′ in order to correctly reinterpret the new

constraints after task motion. Existing techniques do not handle timing constraints, and

their δ values never change.

Without loss of generality, we focus our discussion on taskpromotionby which the

execution of a task is shifted to the previous iteration of the loop, and the instance of

the same task in the next iteration is promoted into the new loop body. The inverse

procedure for taskdemotioncan be similarly defined.

A taskv is promotableif either vertexv∈V does not have any incoming forward

edges, or all ofv’s incoming forward edges inG have at least one dependency depth. If

σ is a valid schedule of one iteration, we canpromotea taskv according to theexpected

loop duration, which is the finish timeτσ of σ. Givenτ = τσ, promoting a taskv entails

the following transformations onG andG′:

1. For each ofv’s incoming forward edges(u,v) in graphG, decreaseλ(u,v) by

one. If (u,v) becomes an intra-iteration constraint, (λ(u,v) = 0), edge(u,v) is

added to graphG′ if it is not present inG′.

2. For eachv’s outgoing forward edge(v,u) in graphG, increaseλ(v,u) by one.

3. For eachv’s incoming backward edge(u,v) in graphG′, increaseδ′(u,v) by τ,

that is,δ′(u,v) = δ′(u,v)+ τ.

4. For eachv’s outgoing edge(v,u) in graphG′, decreaseδ′(v,u) by τ, that is,

δ′(v,u) = δ′(v,u)− τ.

73

Steps 1 and 2 push one dependency depth fromv’s incoming forward edges to

its outgoing forward edges. Step 1 also adds any new intra-iteration constraints after

promotion to graphG′, which tracks only intra-iteration constraints. Step 3 transforms

the incoming backward edges ofv for the promotion (its incoming forward edges are

managed in step 1). Step 4 transforms the outgoing edges ofv, for both forward and

backward edges. Steps 3 and 4 can be validated as follows.

When a taskv is promoted in graphG′, vertexv represents the execution of task

v in the next iteration. Therefore, the new start time assignmentσ′(v) = σ(v)+ τ. In

step 3, before promotingv, edge(u,v) indicatesσ(v)− σ(u) ≥ δ′(u,v). Thus after

the promotion,σ′(v)−σ(u) = (σ(v) + τ)−σ(u) ≥ δ′(u,v) + τ. Therefore, the new

constraint inG′ is δ′(u,v) + τ. Similarly in step 4, edge(v,u) meansσ(u)−σ(v) ≥

δ′(v,u) before promotion. Thus,σ(u)−σ′(v) = σ(u)− (σ(v)+ τ) ≥ δ′(u,v)− τ. The

constraint becomesδ′(u,v)− τ after the promotion.

When a taskv is being promoted, its corresponding min timing constraints (zero or

positive values) will become max timing constraints (negative values) by step 3; and

vice versa, its corresponding max timing constraints will transform into new min timing

constraints by step 4. Promotion effectively reduces the values of min constraints and

makes the problem easier to solve by exposing more scheduling opportunities. We say

that the constraint isrelaxed, and this is a key technique for increasing the system’s

dynamic range.

Fig. 4.2 illustrates task promotion on the example previously shown in Fig. 4.1.

Fig. 4.2(a) shows the initial constraint graphG consisting of five vertices representing

five tasksa,b,c,x,y. They all have the same execution delay of one time unit, and

their power consumption isp(a) = 3W, p(b) = 6W, p(c) = 2W, p(x) = p(y) = 4W.

Therefore the most power consuming task isb and the least power consuming one isc.

Tasksa,x,y have dedicated execution resourceA,X,Y (r(a) = A, r(x) = X, r(y) = Y),

respectively; while tasksb andc share the execution resourceB (r(b) = r(c) = B). For

74

brevity, these task attributes are not shown in the graph. The edges in the constraint

graphG represent timing constraints. They are denoted as(λ,δ) corresponding to the

dependency depths and the values of the timing constraints.

For example, the forward edge(a,b) represents an intra-iteration constraint with

dependency depthλ(a,b) = 0, and it is a min constraint withδ(a,b) = 1 indicating

σ(b)−σ(a) ≥ 1. Since taska’s delayd(a) = 1, this constraint can be paraphrased as

“task b cannot start until taska completes,” that is, tasksa andb must be serialized.

Similarly tasksb andc are also serialized by edge(b,c). Edge(x,a) with δ(x,a) = 0

indicates that taska cannot start before taskx starts, becauseσ(a)−σ(x) ≥ 0. Edge

(x,c) with δ(x,c) = 2 specifies a min separation between taskx and taskc, that is,

σ(c)−σ(x)≥ 2. Therefore, taskc must wait until taskx has started for two time units.

Edge(c,a) with δ(c,a) =−2 is a backward edge representing a max constraint:σ(c)−

σ(a)≤ 2. It defines the deadline to start taskc relative to the start time of taska. This

deadline is equal to the start time of taskaplus two time units. In addition to these intra-

iteration timing constraints, there is an inter-iteration timing constraint(b,x), indicating

that the start time of taskb precedes taskx in the next iteration(λ(b,x) = 1) by one

time unit (δ(b,x) = 1). Inter-iteration constraints are marked as dashed arrows. There

is a co-activation dependency between taskx and tasky. This is denoted as a pair of

special timing constraints. As mentioned previously, we assume each iteration must

finish within three time units.

The initial iteration graphG′ has the same set of vertices representing tasksa,b,c,x,y.

The edges inG′ only represent intra-iteration constraints. Therefore only constraint

valueδ′ is shown on each edge. Dependency depthλ is not shown since it is always

zero in graphG′. For example, the inter-iteration edge(b,x) does not appear in the

initial G′. The co-activation dependency is still denoted as a special constraint inG′.

The initial scheduleσ computed from the iteration graphG′ is also shown in

Fig. 4.2(a). It is the same as Fig. 4.1(a). Although all timing constraints are satis-

75

fied, the scheduleσ is not valid since during time [0, 1] the power consumption of

the whole system is 11W, exceeding the max power constraintPmax= 10W. No valid

solution is possible even if we try voltage scaling for tasksx.

In Fig. 4.2(b) taskx and its co-activated tasky are promoted to produce a new valid

schedule (same as Fig. 4.1(c), except that the prolog is not shown), which otherwise

cannot be achieved without promotion. The constraint graphG will only update the

values of dependency depthλ of the timing constraints corresponding tox. Since the

original schedule finishes at time 3, the timing constraintsδ′ in G′ will be transformed

usingτ = 3. By step 1, edge(b,x) ∈ G becomes an intra-iteration edge (solid arrow)

and is inserted toG′. By step 2, edges(x,a) and (x,c) ∈ G become inter-iteration

edges (dashed arrows). By step 4, edges(x,a) and(x,c) ∈ G′ reduce their constraint

values byτ = 3. Accordingly, taskx’s outgoing min constraints are transformed into

more relaxed max constraints (δ′(x,a) = −3,δ′(x,c) = −1, compared to 0 and 2 in

Fig 4.2(a)). As a result, tasksx can be rescheduled in time slot[2,3] without violating

any timing constraints, and the max power constraint is also satisfied. Tasksx andy

are promoted together due to co-activation, but they are scheduled as separate tasks

because they may not start and finish at the same time.

Fig. 4.2(c) further promotes taska. Both graphsG andG′ are transformed accord-

ing to steps 1 – 4. It yields another valid schedule that is a variation of the solution in

Fig. 4.2(b). If tasksb andc are promoted subsequently, the initial constraint graphG

in Fig. 4.2(a) will be restored.

4.4.3 Utilization constraints

Task motion is based on the classification of intra-iteration and inter-iteration timing

constraints. However, in some cases, it is difficult or unnecessary to decide whether

a timing constraint should be intra-iteration or inter-iteration. Such cases are present

in the Mars rover. For example, for timing constraints between a heater and a motor

76

by which the motor is heated periodically, whether to model these constraints as intra-

iteration or inter-iteration is not clear. In fact, whether the heaters and the motors stay

in the same iteration does not matter. In the computation domain, these correspond to

background, preemptible tasks that need not synchronize with the main control loop

but must be given a share of the CPU time to avoid starvation.

We call such constraintsutilization-based timing constraints. They can be ex-

pressed as either intra-iteration or inter-iteration ones. A utilization constraint between

two tasksu andv is also represented as an edge(u,v) ∈ E in constraint graphG with

its dependency depth denoted asλ(u,v) = ∗, indicating that it can be either zero or

non-zero.

Now we examine task motion under utilization constraints. It needs only minor

modifications to the procedure we defined in Section 4.4.2.

(a) The initial iteration graphG′ will include both intra-iteration constraints anduti-

lization constraintsin its edges.(Treat utilization constraints as intra-iteration).

(b) A taskv is promotable if either vertexv∈V does not have any incoming forward

edges, or the dependency depthsλ of all v’s incoming forward edges are positive

valuesor ∗. (Treat utilization constraints as inter-iteration).

(c) The modified procedure for promoting a taskv is as follows.

1. For each ofv’s incoming forward edges(u,v) in graphG, decreaseλ(u,v)

by one,if λ(u,v) 6= ∗. If λ(u,v) becomes 0, add edge(u,v) to graphG′ if it

is not present inG′. (No update for utilization constraints in step 1).

2. For eachv’s outgoing forward edge(v,u) in graphG, increaseλ(v,u) by

one,if λ(u,v) 6= ∗. (No update for utilization constraints in step 2).

3. For eachv’s incoming backward edge(u,v) in graphG′, δ′(u,v)= δ′(u,v)+

τ, if λ(u,v) 6= ∗. Otherwise,δ′(u,v) remains unchanged. (Do nothing for

utilization constraints in step 3).

77

4. For eachv’s outgoing edge(v,u) in graphG′, δ′(v,u) = δ′(v,u)− τ. (Same

as previous step 4).

Since utilization constraints can be either intra-iteration or inter-iteration, by giving

them some special treatments, the modified procedure is straightforward except steps 3

and 4 need more explanation. In step 3, if edge(u,v) represents a utilization constraint,

δ′(u,v) can be transformed into either one of the two forms:δ′(u,v) or δ′(u,v) + τ,

since it can be either intra-iteration or inter-iteration. That is, the transformation is

valid eitherσ′(v)−σ(u) ≥ δ′(u,v) or σ′(v)−σ(u) ≥ δ′(u,v) + τ holds. Obviously,

the solution to these two inequalities with anOR relation isσ′(v)−σ(u) ≥ δ′(u,v),

which means the constraint with the smaller value applies. The value of a utilization

constraint will not increase byτ. Likewise, in step 4, the value of the new constraint is

the smaller one betweenδ′(v,u)− τ andδ′(v,u), which isδ′(v,u)− τ. In summary, if

the promoted taskv has any incoming utilization-constraint edges, these edges remain

the same in the iteration graphG′ during the promotion. Forv’s outgoing utilization-

constraint edges, the values of constraints inG′ are decreased by the loop durationτ.

As a result, utilization constraints will always be relaxed to produce more scheduling

opportunities.

For example, if resourceA is a heater, a motor, or a CPU running a preemptible

background tasks, then we can model taska with utilization constraints. The modified

procedure for task motion under utilization constraints in illustrated in Fig. 4.3.

Fig. 4.3(a) shows the initial graphsG,G′ and scheduleσ. It is identical to Fig. 4.2(a),

except that utilization constraints are marked as a different type of dashed arrows in the

constraint graphG, and their dependency depthλ = ∗. Since the iteration graphG′ is

the same as the graphG′ in Fig. 4.2(a), no valid schedule could be found. To address

this problem, Fig. 4.3(b) shows promotion to tasksx andy. It is similar to Fig. 4.2(b)

except the utilization constraint(x,a) is not updated in graphG. It shows a valid sched-

ule, which is the same as schedule in Fig. 4.2(b).

78

In Fig. 4.3(c), when taska with utilization constraints is promoted, the correspond-

ing constraint values in graphG′ are different from those in Fig. 4.2(c) in comparison.

Specifically, by modified step 3, utilization constraint(c,a) will not increase its value

in G′. δ′(c,a) will remain−2 as opposed to 1 in Fig. 4.2(c). The same rule also applies

to utilization constraint(x,a) such thatδ′(x,a) = −3 instead of 0. Since the serial-

ization chain formed by min constraints is broken, tasksa,b,c (after promotinga, the

chain becomesb,c,a in Fig. 4.2(c)) no longer need to be serialized. Now taska, a small

power consumer, can overlap withb such that an unexpected solution with a shorter ex-

ecution time (τ = 2) is discovered, and it also satisfies the max power constraint. This

optimal solution could not have been obtained without using utilization constraints,

which enable more aggressive, provably correct relaxation of the time constraints.

4.5 Scheduling Algorithms

Given a scheduling problem, the scheduler to support power management decisions

must compute a scheduleσ that meets goals in multiple dimensions. First,σ must

be time-valid in that all timing constraints, including intra-iteration, inter-iteration and

utilization-based, are satisfied. Second, it must be power-valid for a max power con-

straint with a reduced energy cost for a min power constraint. Finally, the scheduler

must evaluate different versions of the loop iterations to either improve the schedule

with shorter execution time or less energy cost, or explore various power/performance

trade-offs.

We present our power-aware task motion technique as follows. In Section 4.5.1

we build an iteration graphG′ that tracks only the intra-iteration constraints from the

constraint graphG. The promotion to one task transforms both graphsG andG′, to be

presented in Section 4.5.2. Section 4.5.3 introduces the power-aware scheduler with

task motion technique that evaluates different versions of the loop by using a power-

aware scheduler to compute a single-iteration schedule for each version. We derive the

79

ITERATION GRAPH(graphG)
create graphG′(V,E), with G′.V := G.V, G′.E := /0
for eachedge(u,v) ∈G.E loop

if (λ(u,v) = 0 or λ(u,v) = ∗) then
add edge(u,v) to G′.E, with δ′(u,v) := δ(u,v)

end if
end loop
return G′

Figure 4.4: Algorithm to construct the iteration graph.

scheduling algorithms presented in [44] as the power-aware scheduler to reduce energy

cost. After the best version is selected with the minimum energy cost, the scheduler

computes a prolog and an epilog to start and finish the loop execution. Other solutions

with different loop durations, as well as those that cannot be evaluated together the

existing version, are recorded for further evaluation.

4.5.1 Construction of the iteration graph

The concept of the iteration graph is introduced in Section 4.4. The algorithm in

Fig. 4.4 constructs an iteration graphG′ based on a constraint graphG with intra-

iteration, inter-iteration and utilization-based constraints.

4.5.2 Task promotion algorithm

We present two algorithms for task promotion and the corresponding graph transfor-

mation to both constraint graphG and the iteration graphG′. The algorithm in Fig 4.5

decides whether a taskv is promotable by checkingv’s incoming forward edges. If they

consist of only inter-iteration and utilization-based constraints, or ifv does not have any

incoming forward edges, thenv is promotable. The algorithm in Fig 4.6 promotes a

taskv by transforming both graphsG andG′ with an expected loop durationτ.

80

PROMOTABLE(graphG, vertexv)
for eachv’s incoming forward edge(u,v) ∈G.E loop

if (λ(u,v) = 0) then
return FALSE

end if
end loop
return TRUE

Figure 4.5: Algorithm to decide whether a taskv is promotable.

PROMOTE(graphG, graphG′, vertexv, timeτ)
for eachv’s incoming forward edge(u,v) ∈G.E loop # step 1

if (λ(u,v) 6= ∗) then
λ(u,v) := λ(u,v)−1

end if
if (λ(u,v) = 0) then

add edge(u,v) to G′.E with δ′(u,v) := δ(u,v)
end if

end loop
for eachv’s outgoing forward edge(v,u) ∈G.E loop # step 2

if (λ(v,u) 6= ∗) then
λ(v,u) := λ(v,u)+1

end if
end loop
for eachv’s incoming edge(u,v) ∈G′.E loop # step 3

if (λ(u,v) 6= ∗ and δ(u,v) < 0) then
δ′(u,v) := δ′(u,v)+ τ

end if
end loop
for eachv’s outgoing edge(v,u) ∈G′.E loop # step 4

δ′(v,u) := δ′(v,u)− τ
end loop
return

Figure 4.6: Task promotion algorithm.

81

4.5.3 Algorithm for power-aware task motion/scheduling

The algorithm is shown in Fig. 4.7. It first constructs a iteration graphG′ from the

constraint graphG. ThenG′ is scheduled by a power-aware scheduler, which is derived

from [44]. The returned scheduleσ is kept as a temporarily best schedule and whose

durationτσ is taken as the expected loop durationτ. Then the algorithm traverses all

vertices inG.V in a topological order by extracting one promotable taskv at each step.

When a taskv is promoted, both graphsG andG′ are updated. Then the power-aware

schedule is invoked again to examine whether an improved schedule with the same

execution time and less energy cost can be found, and the better schedule is stored. In

case a schedule with a different finish time is found, it indicates that another version of

the loop. It is not appropriate to simply discard the slower schedule, because it could

represent a different power/performance trade-off. Instead, the graphs leading to the

incompatible versions are stored in setAlt, and the algorithm cancels the last promotion

and attempts another topological ordering. The algorithm completes if all tasks are

promoted, or the topological traversal cannot proceed since the next promotion always

generates an incompatible version. Finally, it computes two additional schedules, one

for the prolog and one for the epilog (algorithms not shown). Once the algorithm finds

the best scheduleσ for the loop body, it returns the full set of schedules that includes

σprolog, σ, and σepilog. The algorithm also returns the setAlt that contains graphs

leading to alternative solutions. These graphs will be examined by the same algorithm

to evaluate different power or energy vs. performance trade-offs.

4.6 Experimental Results

We use the NASA/JPL Mars rover [4] to evaluate the effectiveness our power-aware

task motion technique. We first construct a system-level representation that includes

the mechanical and thermal subsystems, as well as different energy sources. Then, we

82

POWER AWARE TASK PROMOTION(graphG, Pmax, Pmin)
G0 := G; Alt := /0
G′ := ITERATION GRAPH(G)
σ := POWER AWARE SCHEDULING(G′, Pmax, Pmin) # [44]
Ec := Ecσ(Pmin); τ := τσ
V ′ := G.V; Vprolog := /0
for eachv∈V ′ loop

if PROMOTABLE(G, v) then
V ′ = V ′−{v}

M: PROMOTE(G, G′, v, τ)
if (G∈ Alt) then

break
end if
σ′ := POWER AWARE SCHEDULING(G′, Pmax, Pmin)
if (τσ′ 6= τ) then

Alt := Alt +{G}; V ′ = V ′+{v}
undo step M

else
if (Ecσ′ < Ec) then

σ := σ′; Vprolog := V ′

end if
end if

end if
end loop
if (Vprolog = G.V or Vprolog = /0) then

return σ, /0, /0,Alt
end if
Vepilog := G.V - Vprolog

σprolog = PROLOG(G0,Vprolog, σ)
σepilog = EPILOG(G0,Vepilog, σ)
return σ,σprolog,σepilog,Alt

Figure 4.7: Power-aware task motion algorithm.

83

examine the results after applying our scheduling techniques.

4.6.1 A system-level constraint model of the Mars rover

The rover travels between different target locations on the Mars surface to perform sci-

entific experiments and shoot images. Its power sources consist of a non-rechargeable

battery and a solar panel. The life-time of its mission is limited by the amount of

remaining battery energy. Since the temperature on Mars surface can be as low as

−80◦C, the rover must heat its motors periodically as it drives them to move. Thus,

mechanical and thermal subsystems are the major power consumers.

Our model captures timing constraints across different resources including compu-

tational, thermal and mechanical subsystems. We focus on a typical operating condi-

tion when the rover is traveling. When the rover drives its six wheels for a full rotation,

it is called one step, which is about 7cm in distance. Before driving the wheels, it must

first detect any obstacles on its way and choose a safe angle to turn. Then it turns itself

in the correct direction using the four steering motors. Finally, the six wheel motors

are driven. Therefore, hazard detection, steering, and driving must operate in sequence.

Other constraints are related to heating the motors in a certain period prior to driving

them, as summarized in Table 4.1. We assume the power consumption of tasks varies

with environmental temperature that tracks the sunlight intensity, and we investigate

three scenarios with different solar power output: 14.9W (noon time), 12W, and 9W

(dusk). The max power constraint is equal to the available solar power plus 10W max-

imum battery power output. We also extract the solar power level as the min power

constraint to distinguish the free power from the costly power. Table 4.2 illustrates the

power sources and consumers in three scenarios.

The constraint graph for the Mars rover is shown in Fig. 4.8. During each iteration,

the rover moves two steps (14cm). We assume all heaters are independent resources

and one heater can heat two motors at a time. Therefore there are a total of five thermal

84

Heat
wheel
1 & 2

HW12 / 5

Step 1: Hazard
detection
HAZARD / 10

Step 1: Steer
STEER / 5

Step 1: Drive
DRIVE / 10

Heat steer
1 & 2

HS12 / 5
0, 10

0, 5

0, 10

Step 2: Hazard
detection

Step 2: Steer

Step 2: Drive

0, 10

0, 5

Heat
wheel
3 & 4

HW34 / 5

Heat
wheel
5 & 6

HW56 / 5

Heat steer
3 & 4

HS34 / 5

0/*, -50

0/*, 5

STEER / 5

DRIVE / 10

HAZARD / 10

0/*, -50

0/*, 5

0/*, -50

0/*, 5

0/*, -50

0/*, 5

0/*, -50

0/*, 5

0/*, -50

0/*, 5

0/*, -50

0/*, 5

0/*, -50

0/*, 5

1, 10

0/*, -50

0/*, 5

0/*, -50

0/*, 5

Figure 4.8: Constraint graph of the Mars rover.

85

Operation Duration Timing constraints
Heating steering motors 5

(s)
At least 5s, at most 50s before steering

Heating wheel motors 5 At least 5s, at most 50s before driving
Hazard detection 10 At least 10s before steering

Steering 5 At least 5s before driving
Driving 10 At least 10s before next hazard detection

Table 4.1: Timing constraints of the Mars rover.

@-40 C

Solar panel 14.9 12 9
Battery pack 10 max

CPU constant 2.5 3.7

Heating two motors 5 7.6 9.5 11.3

Driving 10 7.5 10.9 13.8

Steering 5 4.3 6.2 8.1

Hazard detection 10 5.1 6.1 7.3

Power (W)Power sources Duration
(s)& tasks

3.1
10 max 10 max

Best case
o

Worst caseTypical case

@-60 C
o

@-80 C
o

Table 4.2: Power sources and consumers of the Mars rover.

heaters. Four steering motors are considered a single steering mechanical resource.

The six wheel motors are modeled as one mechanical unit for driving. There is also

a laser guided digital component for hazard detection. Each taskv is denoted with

its resource mappingr(v) and its execution delayd(v). The power consumption is

not shown since it varies in different scenarios. Each edge(u,v) is denoted with its

dependency depthλ(u,v) and timing constraintδ(u,v). The timing constraints on the

heating tasks are actually utilization-based constraints. They are denoted differently

from inter-iteration constraints and intra-iteration ones. We first treat them as intra-

iteration and then change them to utilization constraints to compare the differences in

their results.

86

4.6.2 Scheduling results

We use the energy cost to non-rechargeable batteryEcσ(Pmin) and the execution time

(τσ) as metrics to examine the scheduling results by the following techniques:

(0) the existing manual solution,

(I) previous power-aware scheduling [44],

(II) power-aware task motion without utilization constraints,

(III) power-aware task motion with utilization constraints.

We first evaluate the scheduling results in three individual scenarios with different

power constraints. Then, we present a case study by combining the three scenarios into

one comprehensive scenario, where the power constraints vary over time.

Scenario 1: high power budget,Pmax = 24.9W,Pmin = 14.9W

Fig. 4.9(a) shows the power-aware schedule (I) for this scenario. In this scenario, since

the power budget is sufficient, some tasks are executed in parallel, and thus the schedule

is fast. However, some energy cost (76.5J) is drawn at the beginning of the schedule

while the solar energy is under-utilized in the latter part. Without task motion, we

cannot further exploit free solar power to reduce energy cost.

Fig. 4.9(b) shows the schedule after power-aware task motion(II), though without

exploiting utilization-based constraints. Some heating tasks are promoted such that

they consume free solar energy instead of costly battery energy. The resulting perfor-

mance is the same as the previous schedule (50s), but the energy cost is significantly

reduced (16.5J). In this schedule, the timing constraints on heaters are considered as

intra-iteration constraints.

If we consider utilization-based constraints (III), we can further improve the sched-

ule significantly, as shown in Fig. 4.9(c). The heating tasks are reordered to other slots

87

5 10 15 20 25 30 35 40 45 500

5.00

10.00

15.00

20.00

25.00

0.00
CPU

Hd1 Hd2St1 St2
Dr1 Dr2

Hs12

Hs34

Hw12Hw34

Hw56

Time

Power

Pmin: 14.9

Pmax: 24.9

Ec: 76.5

loop body

τ: 50

(a) Power-aware schedule (I)

10 20 30 40 50 60 70 80 90 1000

5.00

10.00

15.00

20.00

25.00

0.00
CPU

Hd1Hd2Hd1 Hd2St1St2St1 St2
Dr1Dr2Dr1 Dr2

Hs12
Hs12 Hw34

Hs34

Hw56Hw56

Hs34

Hw34

Hw12Hw12

Time

ower

Pmin: 14.9

Pmax: 24.9
loop bodyprolog epilog

Ec: 16.5τ: 50 Ec: 0τ: 25
Ec: 76.5
τ: 50

(b) Power-aware task promotion without utilization constraints (II)

10 20 30 40 50 60 70 80 90 1000

5.00

10.00

15.00

20.00

25.00

0.00
CPU

Hd1Hd2Hd1 Hd2St1St2St1 St2
Dr1Dr2Dr1 Dr2

Hs12Hs12 Hs34
Hs34

Hs34

Hs12
Hw56Hw56

Hw34

Hw34

Hw12Hw12

Time

ower

Pmin: 14.9

Pmax: 24.9
loop bodyprolog epilog

Ec: 4.5τ: 50 Ec: 3τ: 25
Ec: 76.5
τ: 50

(c) Power-aware task promotion with utilization constraints (III)

Figure 4.9: Schedule for Scenario 1 (highest power budget).

88

with even less energy cost to non-rechargeable battery. As a result, the schedule in

Fig. 4.9(c) is strictly better than the previous two schedules in the sense that it delivers

same performance (50s) with less energy cost (4.5J). This superior schedule could not

have been found until we converted the constraints on the heating tasks to utilization

edges. In general, utilization constraints can expose rich new scheduling opportunities

by effectively increasing the number of alternative time intervals for partially reorder-

ing tasks. They are useful for a power manager to either minimize energy cost or

evaluate different energy/performance trade-offs.

Scenario 2: moderate power budget,Pmax = 22W, Pmin = 12W

Fig. 4.10(a) shows the power-aware schedule (I) for this scenario. With a smaller power

budget and a reduced level of free (solar) power source than Scenario 1, this new sched-

ule is slower (τ = 60s) while drawing more energy from the battery (147J). It is notable

that task motion does not yield a different schedule if we model the constraints on heat-

ing tasks as intra-iteration ones. A somewhat surprising result (III) can be discovered

if the scheduler exploits the utilization constraints, as shown in Fig. 4.10(b). The re-

sulting schedule can be as fast as the schedule found in Scenario 1 (τ = 50s), if paying

a higher energy cost (208J) is acceptable. Neither solution is strictly better than the

other, since they represent alternative design points for energy/performance trade-offs.

Again, conversion to utilization constraints exposes more aggressive but safe design

points that otherwise would not be possible.

Scenario 3: low power budget,Pmax = 19W, Pmin =9W

Fig. 4.11 shows a slow schedule (0) for this scenario. A tight power budget forces all

operations to be serialized, leading to a low-performance (τ = 75s) and high-cost (Ec

= 388J) schedule. Since overlapping any two tasks will violate the max power budget,

task motion cannot yield any alternative schedule.

89

5 10 15 20 25 30 35 40 45 50 55 600

2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00
22.00

0.00
CPU

Hd1 Hd2St1 St2
Dr1 Dr2

Hs12 Hs34

Hw34

Hw12

Hw56

Time

Power

Pmin: 12.0

Pmax: 22.0

Ec: 147
loop body

τ: 60

(a) Power-aware schedule (I)

10 20 30 40 50 60 70 80 90 100 1100

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

0.00
CPU

Hd1Hd2Hd1 Hd2St1St2St1 St2

Dr1Dr2Dr1 Dr2

Hs34Hs12 Hs34Hs12Hs34 Hs12Hw12Hw34 Hw34

Hw12

Hw56

Hw56

Time

Power

Pmin: 12.00

Pmax: 22.00loop bodyprolog epilog

Ec: 127

τ: 35

Ec: 208

τ: 50

Ec: 87

τ: 25

(b) Power-aware task motion with utilization constraints (III)

Figure 4.10: Schedule for Scenario 2 (moderate power budget).

Table 4.3 summarizes the scheduling techniques that are applied to the three sce-

narios. It shows that our power-aware task motion technique and utilization constraints

can support more aggressive design space exploration effectively.

A comprehensive scenario: the available power varies over time

The existing schedule used in the past mission followed a low-power design paradigm.

To avoid exceeding max power budget, the designers at JPL implemented a fully serial-

5 10 15 20 25 30 35 40 45 50 55 60 65 70 750

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0.00
CPU

Hd1 Hd2St1 St2

Dr1 Dr2Hs12 Hs34 Hw34Hw12 Hw56

Time

Power

Pmin: 9.0

Pmax: 19.0

Ec: 388

loop bodyτ: 75

Figure 4.11: The serial schedule for Scenario 3 (lowest power budget).

90

1

2

3

(II) Power-aware +
Task motion

(I) Power-aware

S
ce

na
rio

τ = 50s Ec = 79.5J τ = 50s Ec = 16.5J τ = 50s Ec = 4.5J

τ = 60s Ec = 147J τ = 50s Ec = 208J

√

√

√
√ = keep × = drop

(III) Power-aware +
Task motion +

Utilization constraint

same as (I)

same as (0) same as (0)

τ = 75s Ec = 0J

τ = 75s Ec = 55J

τ = 75s Ec = 388J

√

√
same as (0)

××

√

(0) JPL's
Low-power
(hand-craft)

Table 4.3: Comparison of schedules in a three scenarios.

 Time Energy
cost (J)

Energy

0 - 599 1 16 600 0 24 600 129
600 - 1199 2 16 600 440 20 600 1470

1200 - 3 16 600 3114 4 150 776

Total 48 1800 3554 48 1350 2375
Improve-

ment
33% 33%

Task motion A
(III-I-0)

JPL
(0-0-0)Time

Scenario
frame (s)

(s) (s)
Time

cost (J)(step)
Distance

(step)
Distance Energy

24 600 129

23 600 2482
1 10 85

48 1210 2696

49% 24%

(s)
Time

cost (J)(step)
Distance

Task Motion B
(III-III-0)

Table 4.4: Comparison of schedules in a comprehensive scenario.

ized schedule (0) that was fixed in all conditions, without tracking the available power

budget including the solar source. It is identical to our schedule in Scenario 3 with the

lowest power budget. Without our task motion technique that aggressively explores the

design space, the designers had no alternative choices for different scenarios but over-

constrained the existing design for the worst case. However, the existing low-power

solution draws less costly energy from the battery than our solutions. Our schedules,

on the other hand, speed up the rover’s movement by up to 50% in Scenario 1 with

the maximum power budget (III). In Scenario 2, we have two alternative solutions that

improve the rover’s performance by 25% (I) and 50% (III), respectively. However, our

faster schedules draw more costly energy from the battery. To evaluate this trade-off

between performance and energy cost, we apply our schedules to a scenario where the

available solar power varies over time.

Suppose the mission is to travel to a target location in a distance of 48 steps. The

91

mission starts with maximum solar power at 14.9W (Scenario 1). Then, it drops to

12W (Scenario 2) after 10 minutes, then falls to 9W (Scenario 3) 10 minutes later. If

the existing serial schedule (0) (Fig. 4.11) is applied, the rover will spend 10 minutes

evenly in the three scenarios, since it has a fixed moving speed (16 steps per 10 min-

utes). This results in a long execution time (30 minutes) and considerable energy cost

in Scenario 3. On the other hand, our power-aware scheduler can produce two schemes.

In scheme A, the rover finishes 50% of its work (24 steps) in the first 10 minutes by

using our schedule (III) for Scenario 1 (Fig. 4.9(c)). Then it completes 42% of the work

(20 steps) in the next 10 minutes by schedule (I) for Scenario 2 (Fig. 4.10(a)), leaving

the remaining 8% (4 steps) in Scenario 3 for only 2.5 minutes. In scheme B, the rover

also finishes 24 steps in the first 10 minutes with the same schedule (III) for Scenario

1. By using the fast schedule (III) (Fig. 4.10(b)) for Scenario 2, the rover almost com-

pletes the whole mission by traveling 23 steps in the next 10 minutes, leaving the last

step in Scenario 3 for only 10 seconds (because its prolog is long). Since our sched-

ules accelerate the execution with sufficient power budget in first two scenarios, the

rover can finish the mission earlier before having to work in the costly Scenario 3. The

analysis of this case study in Table 4.4 shows that both power-aware schemes A and

B are strictly better than the existing design in that they win performance and energy

saving simultaneously. Scheme A delivers a higher performance with a 33% improve-

ment, while saving 33% of the costly energy from non-rechargeable battery. Scheme

B even further speeds up the execution by 49% with a 24% energy reduction com-

pared with the existing solution. Moreover, these two alternative designs with different

power/performance trade-offs are discovered by our automated scheduling techniques.

They cannot be extracted otherwise by the existing techniques.

92

4.7 Chapter Summary

We have presented a power-aware task motion technique for enhancing the dynamic

range of embedded systems powered by heterogeneous energy sources that include re-

newable, unsteady ones like solar panels. They must be able to not only operate as

low-power devices when the supply power is low, but equally importantly use the free

abundant energy for useful work while respecting power and timing constraints. We

used a DVS Anomaly example to show the pitfalls of applying existing power manage-

ment techniques without considering system-level dependencies like co-activation, and

this has resulted in not only higher energy consumption but also violation of max power

constraints. We then showed our constraint formulation and task motion to safely trans-

form the tasks while respecting these system-level dependencies. We further enhanced

task motion by exploiting utilization-based constraints that exposed additional schedul-

ing opportunities for preemptible, background tasks or even non-computational power

consumers such as heaters. These all served to enhance the dynamic range while ensur-

ing all transformations are safe and provably correct. Experimental results on the Mars

rover demonstrated the effectiveness of our approach for the solar- and battery-powered

system. We expect the benefits to transfer to a whole emerging class of new embedded

systems that must draw energy from many renewable but unsteady sources.

93

Part III

Data Regular Scheduling

94

Chapter 5

SuperDVS

Dynamic voltage scaling (DVS) is a popular approach to power and energy reduction

in microprocessors: it not only reduces the average power level, but also increases

the processor’s energy efficiency (i.e., lower energy per instruction). However, DVS

will not be a fruitful technique for further energy reduction based on today’s single

processor assumption. In fact, it may actually lead to higher energy consumption due to

the lack of system-level considerations. We propose to exploit system-level parallelism

as an effective means to achieving the next order of energy improvement for the entire

system. By using multiple processors to perform the same task, each processor has

reduced workload and thus can run at even more energy efficient points beyond the

limits of today’s best DVS without sacrificing performance. A secondary effect is

that the smoother power profile and reduced peak current not only reduce time/power

overhead associated with voltage scaling, but also extend battery life. Experimental

results on an image processing algorithm show a 60% reduction in energy and 80% in

power compared to the best DVS approach.

95

5.1 Introduction

Dynamic voltage scaling (DVS) is a well-studied technique for minimizing energy con-

sumption in embedded microprocessors. Many modern processors are designed to op-

erate at different voltage and frequency settings as an effective way to manage power

usage. It is advantageous to operate the processor at a lower voltage whenever possible,

because energy is proportional toV2. In other words, it takes less energy to execute an

instruction at a lower voltage, even though the total execution time is longer. DVS tech-

niques exploit slacks in the task set by slowing down the processor just enough without

violating the deadline. Many DVS techniques have been proposed to overcome the

limits in slowing down the processor, including inter-task DVS, intra-task DVS, slack

borrowing, etc.

5.1.1 Limits of DVS

DVS has been studied extensively for single processors. However, DVS is running

against several fundamental limits. Due to variation in workload, it is not always pos-

sible to run the processor at the lowest possible constant speed at all times; for example,

different types of MPEG frames require a wide range of processing. This not only pre-

vents the processor from operating at the optimal rate, but also forces the processor to

pay power and timing overhead associated with voltage scaling. In fact, as processor

performance increases, the voltage scaling granularity decreases, and as a result, as

much as 30% of the energy could be spent on scaling overhead alone. Unfortunately,

most DVS techniques proposed to date do not consider any overhead.

Another limit is DVS’s assumption about a single processor, even though many

realistic system include peripheral devices controlled by the processor, but this depen-

dency is never modeled. In fact, the power consumption at the system level may be

dominated by these peripherals, rather than the processor, and it is crucial to exploit

shutdown opportunities (especially communication interface) in peripherals. However,

96

most peripherals are not as power manageable as the processor. As a result, the DVS

approach to increasing the processor’s power efficiency at the expense of performance

can actually keep the dependent peripherals in the same high-power operating mode

for a longer period of time. That is, not only is the power saving due to DVS limited to

its percentage contribution to the entire system, it can actually result in higher overall

energy consumption.

5.1.2 Beyond DVS limit

To further improve energy efficiency beyond DVS, we break the limits of DVS de-

scribed above. First, we must improve power efficiency without sacrificing perfor-

mance; otherwise, we will repeat the pitfall of increasing energy consumed by depen-

dent peripherals. Second, we must decrease the dynamic range of the power of the

processor, even though the workload has a wide dynamic range, in order to maximize

its energy efficiency (in terms of Joules per instruction). This can be achieved by ex-

ploring thegranularity for voltage scaling, where coarser grain scaling results in lower

overhead.

In this chapter, we propose to break the DVS limits by exploring system-level

pipelining. We improve energy efficiency by applying voltage scaling to each code par-

tition, but make up for the performance loss with parallelism. We make the observation

thatn processors running at 1/n speed will be significantly more energy efficient than

a single processor running at the speed determined by today’s best DVS techniques. It

not only significantly reduces the energy consumed by the processor, but also results

in much lower peak power and a smoother power profile, both of which are attractive

features for batteries. We also determine the optimal granularity for voltage scaling so

as to balance adaptivity with the adaptation cost.

The grand challenge will be to extract parallelism in the application so that it can

be mapped onto a multi-processor architecture with a much higher power efficiency

97

as a whole system. Parallelism extraction from a sequential program like C is a very

difficult problem in general, but fortunately data regular applications can be described

in a variety of data flow models that are amenable to mapping onto architectures with

multiple processors. Another challenge is to design the architectural features to enable

the processors to compose with each other efficiently.

This chapter uses an automatic target recognition (ATR) example to demonstrate

the next order of magnitude power/energy saving beyond DVS for data regular ap-

plications. We show our parallelized code with shared memory communication, and

we discuss the software run-time support in the form of adjusting references for each

pipeline stage.

5.2 Related Work

Dynamic voltage scaling technique has been studied extensively recently. Researchers

have addressed DVS related issues in the following aspects.

Real-time scheduling has been extended to DVS scheduling on variable-voltage

processors. A few analytical models have been proposed. Weiser et al. proposed the

initial scheduling model in [71], and the aspect of energy minimization was analyzed by

Yao et al. and the optimal off-line schedule is given in [74]. Hong et al. proposed an off-

line scheduling heuristic for non-preemptive systems in [25] and an on-line algorithm

for mixed workload of both sporadic and periodic tasks in [27]. Ishihara et al. analyzed

the optimal schedule for a processor that can operate in several discrete voltages in [34]

and proposed an integer linear programming solution. Okuma et al. proposed a DVS

scheme [48] that always guarantees deadlines for all tasks, although the energy may not

be optimal. Shin et al. presented a run-time checking mechanism that can shut down the

processor or adjust the processor speed [59] and an algorithm to minimize energy for

periodic tasks [60]. Quan et al. improved this technique by finding an optimal schedule

for both periodic and sporadic tasks [54].

98

More realistic DVS models have been proposed to consider design issues, e.g. DVS

overhead and the presence of the scheduler. Hong et al. presented a synthesis design

flow for variable-voltage processor cores [28]. The impact of DVS overhead is studied

with a few scheduling schemes. It turns out that the analytical models may not be

yield optimal solutions when overhead is taken into account. Burd et al. presented an

implementation scheme for a microprocessor with DVS capability [13]. In [52] Pering

et al. simulated different DVS scheduling algorithms and considered the presence of

the scheduler as a part of the system, and the DVS overhead is also examined.

Some researchers have applied DVS to embedded applications, where the processor

only deals with one or a few specific tasks. Shin et al. proposed an intra-task DVS

scheme [58] that tries to maximally utilize the slack time within one task, as opposed to

inter-task DVS scheme that borrows slack time from finished tasks. Im et al. proposed

an inter-task DVS scheme for multi-media applications in [32] based on the observation

that the slack time cannot be utilized when no task is available. The solution is to buffer

the tasks such that the slack time can be used when the buffer is not empty.

5.3 Motivating Example: ATR

We use an automatic target recognition (ATR) algorithm [61] as our motivating exam-

ple. Its block diagram is shown in Fig. 5.1. The algorithm is described in Fig. 5.2. It

takes a sample image as the input. TheTARGET DETECTIONmodule detectsM targets

on the original image. For each target, a region of interest (ROI, which is a smaller

image surrounding the target on the original image)roi0 is extracted and Fourier trans-

formed by FFT module to space-frequency domain. The transformedroi1 is multiplied

by a few predefined templates, then Fourier transformed inversely by IFFT module

back to space domain. For each template, the resultingroi2 has a specific attributeVal

that indicates the distance of the target. If it is larger than a threshold value,roi2 is

fed to theCOMPUTE DISTANCEmodule, an image processing routine to calculate the

99

TARGET
DETECTION

FFT

IFFT

COMPUTE
DISTANCE

image

template

M targets
and ROIs

ROIs

targets and
their distances

outer loop:
for all targets

inner loop:
for all templates

Figure 5.1: Block diagram of the ATR algorithm.

100

distance.

The timing requirement to the ATR algorithm is to sustain a frame rate, the number

of images processed per unit time. Its inverse is calledframe delay, which is the maxi-

mum delay time to process each frame. The goal is to reduce the energy consumption

of the processor for a given frame delay.

One key characteristic of the algorithm is that its execution delay falls in a diverse

range with regard toM, the number of targets detected byTARGET DETECTIONmod-

ule, since FFT and IFFT are quite computation-intensive. In addition, theif state-

ment at label B also affects the distribution of the execution delay due to another

computation-intensive moduleCOMPUTE DISTANCE.

Among the current DVS techniques,intra-task DVS[58] is most suitable for this

problem. By applying this technique, static timing analysis is performed at compile

time to insert additional annotations at labels A and B to compute remaining the worst-

case workload (in worst-case instruction count,WCIC). In the beginning, the remain-

ingWCICis theWCICof the whole algorithm. At A, the remainingWCICis computed

based on number of targetsM. At B, the outcome of the conditional branch will modify

WCICby subtracting the instruction count (IC) of COMPUTE DISTANCEmodule. The

ICsof other modules are fixed for fixed-size images, e.g., 128×128. Therefore, A and

B are the only places where the remainingWCICcould decrease.

During the execution of the algorithm at run-time, when a new frame arrives, the

processor speed is set based on the frame delay and theWCICof the whole algorithm.

As the program execution reaches A or B, the remainingWCIC is updated and the

processor adjusts its frequency and voltage based on the remaining time andWCIC.

It is notable that the voltage at point B could scaled made many times for each

image frame, since B is located inside the inner loop. In our current analytical study,

we set the maximum number of targets to 7, so there might be 0-7 targets in each

frame. The number of matching templates is 3. As a result, B could be reached up to

101

ATR (imageim, arrayTEMPLATE, floatValth)
TARGET:= TARGET DETECTION(im)

A: for each (target∈ TARGET) loop
roi0 := getRoi(im, target)
roi1 := FFT(roi0)
for each (template∈ TEMPLATE) loop

roi2 = IFFT(roi1× template)
B: if roi2.Val > Valth then

COMPUTE DISTANCE(roi2)
end if

end loop
end loop
format data and return computed distance

Figure 5.2: The ATR algorithm.

21 times for one frame. Therefore, to process each frame, the processor may change

its voltage/frequency up to 23 times, including the initial maximum speed setting and

the speed drop after A.

A typical power profile for intra-task DVS is shown in Fig. 5.3. It always starts

with a high power spike at the beginning of each time slot for one frame, and then

steps down once at A, followed by a few more drops each time when theif condition

evaluates toFALSEat B.

Intra-task DVS appears to be the right solution for reducing processor energy for

application-specific algorithms. However, there are still some issues that need to be

addressed for more energy efficient designs. For example, there is a high power spike

at the beginning of each time slot, because the initial processor speed is always set at

a high speed for the worst case. In most cases the worst-case instruction countWCIC

is not a good measure of the typical workload of the application. Therefore, what is

seen in the power profile chart is a few sharp slumps after the initial spike at peak

power. By the time when one frame is about to be finished, the processor normally

operates at a very low power level; and it must switch to high power for the next frame

in anticipation for the worst-case workload.

A power profile in such a pattern has several undesirable properties. High peak

102

0

10

20

30

40

50

60

70

Time

P
ow

er

Figure 5.3: Power profile of intra-task DVS.

power is known to have many negative effects, e.g. it shortens the battery life. In

addition, frequent switching between high-power mode and low-power mode will incur

an overhead on both time and energy when the processor is changing its supply voltage

and frequency. Although most DVS studies do not consider this overhead, it can be

non-trivial when the voltage change is significant. Finally, the power profile with high

jitters is not very energy efficient compared to a smooth one.

One potential solution to this problem is to extract the parallelism in the algorithm

and distribute the workload into multiple processors. Successful parallelization can

reduce both power and energy by running only a part of the code on each processor

at a slower speed. Even though more processors are involved, the overall energy and

power consumption will still be reduced significantly. However, it is generally difficult

to parallelize serial algorithms. In addition, parallel algorithms require sophisticated

support for synchronization, communication (e.g. cache coherence), etc., which may

consume even more energy than the energy saved by parallelization.

Another solution is to find one or more “average” speeds to execute the algorithm

103

such that the power profile is smoothed by lowering the height of the power spike;

meanwhile, the energy will be also reduced. In an “ideal” solution, the minimum

energy is achieved by running the processor at a constant speed such that the task

is finished just before the end of the allocated time slot. However, the value of this

optimal speed must be determined at the beginning to process the task, but it cannot be

known until the last instruction (actually the last branch instruction) of the algorithm is

completed. Thus, such an “ideal” solution is generally not possible. A partial solution

is to partition the algorithm into several segments such that an average speed can be

found for each segment. The energy spent within the segment is reduced; and it also

helps to lower the power spike.

5.4 Super DVS: Energy Efficiency through Parallelism

We present our newsuper DVStechnique in Section 5.4.1 to improve the energy ef-

ficiency of the ATR algorithm. It explores parallelism of the algorithm by first par-

titioning the code, and then pipelining the execution of all partitions. This allows to

distribute the workload to multiple processors running at slower speeds. For each pro-

cessor, we apply DVS and derive the optimal constant speed that minimizes energy and

peak power at the same time. The new technique is called super DVS in the sense that

DVS is applied to each small partition of the code. Parallel execution normally needs

special treatment for communication. We propose a simple data handling technique

in Section 5.4.2 by managing FIFO buffers between processors. In Section 5.4.3, we

propose an additional scheme that processes multiple frames together to further reduce

energy consumption.

5.4.1 Super DVS

We first partition the algorithm into a few independent segments such that the average

speed can be found for each segment. Then, the partitioned code can be pipelined in

104

a multi-processor architecture. Finally, DVS is applied to each processor to achieve

energy and power reduction.

Partitioning: finding a constant speed for each partition

With intra-task DVS, the code of the whole algorithm is divided into segments that

are executed at different speeds. It is sometimes preferable to find a constant speed to

reduce energy consumption. Although such a goal is normally difficult for the entire

algorithm, finding the average speed for a portion of the algorithm is possible. We

observe that such possibility is largely dependent on the way in which the algorithm is

composed.

When intra-task DVS is applied to the ATR algorithm, due to the frequency changes

at A and B, many different speeds will be applied to run the algorithm. Even the same

code segment can be executed at different speeds. For example, if there are 5 targets

detected for a given frame, module FFT will be executed 5 times, possibly at different

speeds. However, because there is no loop-carried dependency across different itera-

tions of the outer loop (as well as the inner loop), we can reorder the execution of the

loops to execute those 5 instances of FFT together at a single speed. Similarly, the

potential constant speeds can also be applied to IFFT andCOMPUTE DISTANCE.

The ATR algorithm must be reconstructed to apply this technique. In the two-

level nested loop, the iterations on both inner loop and the outer loop are executed to

completion. Although this is the natural way to exercise loops, we have to partition

the loop and reorder the sequence to access FFT, IFFT andCOMPUTE DISTANCEfor

finding the average speed for each segment.

We reconstruct the algorithm and partition the two-level nested loop into three

stages. InSTAGE1, the algorithm finishes FFT for allM ROIs. Then, IFFT forM

ROIs with different templates is performed inSTAGE2. Finally, thoseK ROIs whose

target distances need to be calculated are processed together inSTAGE3. The modi-

105

STAGE 0:
TARGET

DETECTION

STAGE 1:
FFT for all ROIs

N frames

STAGE 2:
MUL and IFFT

for all ROIs
and all templates

STAGE 3:
COMPUTE
DISTANCE
for all ROIs

(when necessary)

ROIs and
distances

all templates

M targets
and ROIs

M ROIs

K ROIs
that need to

compute distance

previously the
2-level nested loop

Figure 5.4: Partition the nested loop into stages.

106

fied block diagram is shown in Fig. 5.4. At the beginning,M targets are detected in

STAGE0. Thereafter, the ROIs for these targets flow through the three following stages.

After the code transformation, the entire algorithm can be executed at four constant

speeds (actually three speeds:STAGE2 andSTAGE3 can be executed in the same speed

since there is no conditional branch between them) for four stages. Special treatment

must be applied toSTAGE3 to achieve a constant speed. Theif condition can be re-

solved atSTAGE2 after IFFT by attaching some flags to each ROI indicating whether

computing distance is needed. Therefore, the remaining workloadWCIC of STAGE3

(WCIC(stage3) = K × IC(COMPUTEDISTANCE)) is known before it is executed

such that the average speed can be calculated at the beginning ofSTAGE3.

Through analysis, we observed this code partitioning and transformation technique

can moderately reduce energy by 5% - 15%. The reduction largely depends on the

input data set and the size of each partition. The detailed discussion is outside the

scope of this chapter. We still present the sketch of this technique because it naturally

leads to a parallel version of the algorithm.

Parallelization through pipelining

Parallelization on the algorithm can be helpful for power management. For example, if

an algorithm can be parallelized into two processors with each processing half work-

load and running at half speed, an approximately 4× energy reduction will be achieved

even after one new processor is added. However, in general it is quite difficult to par-

allelize an algorithm that has already been implemented in a serial style.

In the ATR algorithm, we observed that there is no data dependency between dif-

ferent image frames. Therefore, the code partition in Fig. 5.4 is ready to be executed in

parallel, by pipelining the execution of all stages on different processors. After pipelin-

ing the algorithm, each stage itself will have the execution time of one entire frame

delay, while all four stages together consume one frame delay previously. As a result,

107

more energy saving is available by slowing down the speeds of all processors. Ide-

ally, if all four stages are perfectly balanced, that is, they have the same workload, the

optimal energy reduction could be expected. However, this is generally not possible.

For example, the workload ofSTAGE2 is about three times as much as that ofSTAGE1,

since there will be three IFFTS for each FFT. Also, the workload ofSTAGE0 is fixed;

while in other stages the workload will vary.

Super DVS: reducing energy in parallel

The final step is to apply DVS to each pipelined processor to improve energy efficiency.

We call the new technique super DVS since it applies DVS to a smaller partition of the

code. In Section 5.4.1 we already constructed the code partition for each stage such

that the code can be executed at a constant speed. In Section 5.4.1 we extended the

time slot for each stage as one frame delay for all processors. Therefore, we can find

an optimal speed for each stage that maximally utilizes the extended time slot.

Fig. 5.5 describes the parallel super DVS algorithms for four pipeline stages, re-

spectively. At the beginning of each stage, the processor speed is set according to the

WCICto be executed, which is always known ahead of time. Therefore, each processor

can set a near-optimal speed such that the execution of the code completes just in one

frame delay.

1. ForSTAGE0, the workload is set toWCIC(STAGE0). The actualIC(STAGE0) is

only slightly different fromWCIC(STAGE0) since the moduleTARGET DETEC-

TION is most computation intensive, while the instructions in the small loop to

handle buffers are trivial. Therefore, when the speed of its processor is decided

by the frame delaydelayandWCIC(STAGE0), the time slot with a duration

delayis almost fully utilized. The speed to executeSTAGE0 fixed for all frames

if the samedelayis given. Stage0 computes the number of targets in variableM

and putM ROIs into bufferROI0.

108

STAGE0(timedelay, imageim, buf ROI0)
setProcessorSpeed(delay/WCIC(STAGE0))
TARGET:= TARGET DETECTION(im)
M := 0
for each (target∈ TARGETS) loop

ENQUEUE(ROI0, getRoi(im, target))
M := M +1

end loop
return M

STAGE1(timedelay, buf ROI0, bufROI1, int M)
setProcessorSpeed(delay/(M ∗WCIC(L1)))
for i := 1,M loop L1

roi := DEQUEUE(ROI0)
ENQUEUE(ROI1, FFT(roi))

L1: end loop
return M

STAGE2(timedelay, buf ROI1, bufROI2, int M,
arrayTEMPLATE, floatValth)

setProcessorSpeed(delay/(M ∗size(TEMPLATE)∗WCIC(L2)))
K = 0
for i = 1,M loop

roi0 := DEQUEUE(ROI1)
for each (template∈ TEMPLATEs) loop L2

roi1 = IFFT(roi0× template)
if roi1.Val > Valth then

K := K +1
ENQUEUE(ROI2, roi1)

end if L2:end loop
end loop
return K

STAGE3(timedelay, buf ROI2, bufROI3, int K)
setProcessorSpeed(delay/(K ∗WCIC(L3)))
for i = 1,K loop L3

roi := DEQUEUE(ROI2)
roi.distance:= COMPUTE DISTANCE(roi)
ENQUEUE(ROI3, roi)

L3: end loop
return K

Figure 5.5: Parallel algorithms for super DVS.

109

2. For STAGE1, the processor speed is set according toM, which is the number

of ROIs in bufferROI0, delay, and the workload in loop L1WCIC(L1). This

is because loop L1 will be executedM times during one frame delay, and the

WCIC of this loop can be analyzed statically.STAGE1 generatesM ROIs in

space-frequency domain after FFT, and puts them into bufferROI1.

3. In STAGE2, the processor speed is set based on the parametersM, delay,WCIC(L2),

andsize(TEMPLATE), sinceSTAGE2 will execute loop L2 inM∗size(TEMPLATE)

times. Although there is anif block inside loop L2, the variance is trivial com-

pared with computation-intensive IFFT. Therefore, usingWCIC(L2) to compute

the average speed is almost optimal. This stage producesK ROIs to bufferROI2,

based on whether it is necessary to compute their distances.

4. Finally, in STAGE3, the processor speed is decided byK, delayandWCIC(L3).

K ROIs are extracted from the input bufferROI2 and distances are computed

accordingly in loop L3. The results are queued to an output bufferROI3.

The power profile for super DVS is shown in Fig. 5.6. During each period of one

frame delay, each processor is running at a constant speed. Therefore, the overall power

profile of all four processors is also constant during each period. Super DVS produces

a much smoother power profile compared to intra-task DVS by eliminating the high

peak spike. Significant savings on both power and energy are achieved by running the

new parallel algorithms.

5.4.2 Implementation related issues: buffer management

In this section we discuss a few implementation related issues. As the parallel algo-

rithm shown in Fig. 5.5, the four parallel processors communicate via FIFO buffers

containing data to be produced and consumed. Our assumption is a shared memory

organization, shown in Fig. 5.7.

110

0

1

2

3

4

5

6

Time

P
ow

er

Stage 3
Stage 2
Stage 1
Stage 0

Figure 5.6: Power profile of super DVS.

In this memory organization, each stage produces new ROIs and appends them to

the tail of its output buffer, which is the same as the input buffer of the next stage.

Because the buffer size to be consumed next is passed to the consumer stage as the

boundary of the input buffer, when the consumer stage fetches data from the head of

the buffer, it will not access the data that is currently being generated by the producer.

The variables to indicate workloadM andK can be directly passed through to the next

processor, or they can be organized in some other buffers in the same manner. The

variabledelayis a constant or it can be set by external events, e.g. a user interface. It

also can be accessed in separate FIFO buffers to avoid simultaneous access.

This buffer management scheme significantly simplifies the communication be-

tween parallel processors. Fig. 5.7 shows that, at any moment during the execution of

this multi-processor system, any data in ROI buffers is accessed exclusively by at most

one processor. Simultaneous accesses to the same data from two or more processors

will never happen. (If variablesM,K,delay are also organized by separate buffers,

there is no simultaneous access to these variables as well.) This suggest the data access

is simplified to an extent that the processor does not need to acquire and release locks

111

STAGE 0:
TARGET

DETECTION

STAGE 1:
FFT for all ROIs

N0:
number of

input frames

STAGE 2:
MUL and IFFT

for all ROIs
and all templates

STAGE 3:
COMPUTE
DISTANCE
for all ROIs

(when necessary)

TEMPLATE

tail

head

ENQUEUE

DEQUEUE

read buffer:
M1 ROIs to

be consumed

write buffer:
M0 ROIs to
be produced

M0:
number of
output ROI

buffer or
direct link

M1:
number of
input ROI

tail

head

ENQUEUE

DEQUEUE

read buffer:
M2 ROIs to

be consumed

write buffer:
M1 ROIs to
be produced

M1:
number of
output ROI

buffer or
direct link

M2:
number of
input ROI

tail

head

ENQUEUE

DEQUEUE

read buffer:
K3 ROIs to

be consumed

write buffer:
K2 ROIs to
be produced

K2:
number of
output ROI

buffer or
direct link

K3:
number of
input ROI

head

DEQUEUE

read buffer:
N0 images to
be consumed

tail

ENQUEUE

K3:
number of
output ROI

frame delay

frame delay

frame delay

frame delay

write buffer:
K3 ROIs to
be produced

buffer
ROI0

buffer
ROI1

buffer
ROI2

buffer
ROI3

buffer
IMAGE

Val th

Figure 5.7: Pipelined processors with shared memory buffers.

112

STAGE0(timedelay, buf IMAGE, buf ROI0, int N)
setProcessorSpeed(delay/(N∗WCIC(L0)))
M := 0
for i := 1,N loop

im = DEQUEUE(IMAGE)
TARGET:= TARGET DETECTION(im)
for each (target∈ TARGET) loop L0

ENQUEUE(ROI0, getRoi(im, target)
M := M +1

L0: end loop
end loop
return M

Figure 5.8: ModifiedSTAGE0 to processN frames at a time.

to access critical sections, since their is no critical section at all. For the same reasons,

the cache coherence protocol is not necessary to implement such a system, if each write

to the buffers will always commit to the shared memory. In fact, in many embedded

DSP applications, the processor may not have caches.

By this simple buffer managing technique, we can avoid some sophisticated data

handling mechanisms in general-purpose multi-processor systems, since they are not

necessary in this specific application. The implementation of such a system is also

easier than a general-purpose multi-processor system.

Although this parallel solution can reduce the energy of the processors, it may in-

crease the energy in the memory system. For example, the memory must be designed

to be multi-ported, which will increase the energy consumption. As many DVS stud-

ies do not consider the impact ofco the memory system, we also focus on the energy

reduction to the processors.

DVS control is made very easy for this multi-processor system. Since all processors

are working on totally independent data sets, the DVS control of each processor is

independent to each other, as far as they all finish in allocated time slots with the same

durationdelay. In the shared memory organization, the four running processors with

different speeds pose some challenges to the memory designer. The memory system

113

must accommodate simultaneous accesses from processors at different speeds.

One alternative solution is to use some processors that can directly pass its pro-

duced data to the consuming processor. Each processor has built-in input and output

buffers to hold its local data set. The entire content of the buffer can be read/written

from/to other processors. If applicable, this type of processor is an appropriate choice

to implement ATR algorithm with super DVS technique. A sketch of directly linked

data communication is shown in Fig. 5.9

5.4.3 Coarser granularity: processing multiple frames together

Our super DVS scheme reduces the energy and power of the processors by introducing

a 3-frame delay for each frame. If more delay is allowed, we have an additional scheme

that can save even more energy.

We have discussed previously that it is preferred to find an average processor speed

at a coarser granularity (more workload). We have already applied this technique in

Section 5.4.1. We observed that different frames will be processed at different speeds

in STAGE1, STAGE2 and STAGE3 (STAGE0 always has the same speed), if we can

find out the average speeds to process multiple frames, we can expect more energy

reduction.

Such an addition is a straight-forward extension to the existing scheme. The only

change is thatSTAGE0 will now fetchN frames from its input buffer, which contains

multiple frames; and thedelaywill be changed accordingly byN times forN frames.

(BothN and updateddelayare set externally.) The delay for each frame is now ranging

from 3N to 4N− 1 frame delay. The modified algorithm forSTAGE0 is shown in

Fig. 5.8. No change to the other stages is necessary.

In this chapter we present two types of techniques: I. parallelization (Section 5.4.1),

and II. averaging the processor speed at a coarser grain (Section 5.4.1, 5.4.3). Our new

super DVS technique is a combination of these two techniques, plus DVS. It is notable

114

STAGE 0:
TARGET DETECTION

STAGE1:
FFT for all ROIs

STAGE 2:
MUL and IFFT

for all ROIs and all templates

STAGE 3:
COMPUTE DISTANCE

for all ROIs

all templates

frame delay

frame delay

frame delay

frame delay

output buffer

input buffer

output buffer

input buffer

output buffer

input buffer

output buffer

input buffer

M ROIs, M

M ROIs, M

K ROIs, K

K ROIs, K

N frames, N

Figure 5.9: Pipelined ATR with directly linked data connection.

115

Vmax the maximum supply voltage

Vth the threshold voltage
Fmax the maximum frequency
Pmax the maximum power consumption

V, F, P, current voltage, frequency and power

3.3V

0.8V

1GHz
normalized to 100 when Nsw = 1

Parameter Description Value

Tmax the time overhead to swith between on and off 50 µs, 50k cycles at full speed

to be calculated

Table 5.1: An abstract model of a voltage-scalable processor.

that these new techniques and the existing power management techniques, including

DVS (intra-task, and inter-task), static voltage scaling (SVS), shutting down idle com-

ponents, and etc., are orthogonal techniques such that they can be applied either in-

dividually, or in combination. For example, if another parallel partition is available

without finding an average speed for each processor, power and energy savings are still

available. If DVS is not allowed, SVS can be applied to pipelined processors.

We will present some analytical results on energy reduction of super DVS technique

in next section.

5.5 Analytical Results on Energy Reduction

In this section we present an analytical study to the new super DVS technique. We

compare the results with the best-known existing technique, which is intra-task DVS.

5.5.1 An empirical processor model

We assume an abstract processor model for our analysis. A parameterized voltage-

scalable processor is shown in Table 5.1. The peak power value is normalized to 100

to simplify the comparison. We also assume all the four processors running pipelined

ATR algorithms with super DVS are the same type of the processor as the one which is

running the serial algorithm with intra-task DVS, although in practical concerns they

will probably be different types of processors.

116

Segment WCIC
(1000 instruction)

L0 400

L1 170
L2 194

L3 377

Nsw

1

1

1

1

Series Numbe of
Frames

A 200

B 200
C 200

Frame
delay

16.7ms

16.7ms

16.7ms

Numbe of targets
per frame

0 - 2 (light workload)
5 - 7 (heavy workload)

random

(a) parameters of code segments (b) parameters of input data series

Table 5.2: Parameters of the code and input data.

We use the following equations to compute parameterP,F,V.

F = Cf
(V−Vth)2

V
(5.1)

P = CpNswV2F (5.2)

Cf andCp are processor dependent constants. They can be computed by applying

maximum values ofV,F,P. Nsw is a factor indicating the number of switching activities

per cycle, it depends on the program.

5.5.2 Properties of the algorithm and data set

Table 5.2(a) gives the instruction count of the loops in each stage. These numbers are

used in both intra-task DVS and super DVS to update the workload. The four code

segments do not show a large variance in power consumption, indicating that the factor

Nsw is about the same for all segments. For simplicity we set them all to 1. We assume

the frame rate is 60 frames per second. Therefore the frame delay is 16.7ms.

We apply three series of input images. The first series A has very few targets in

each frame, ranging from 0-2. That is, the workload of the algorithm is far less than

the worst case. The second series B has a heavy workload with 5-7 targets per frame.

In set C, the number of targets is random. The input data sets are summarized in

Table 5.2(b)

117

Input image data: series C (random workload)

Technique
Energy

Intra-task DVS 49.5

Super DVS (N = 1 frame) 19.7
17.9

16.4

Peak Power

63.7

18.8

11.9

10.9
Super DVS (N = 2 frames)

Super DVS (N = 8 frames)

value * % reduction % reduction

60.2%

63.8%

65.7%

70.5%

81.3%

85.1%

value *

17.0Super DVS (N = 4 frames) 82.9%

9.4666.9%

Input image data: series B (heavy workload)

Technique
Energy

Intra-task DVS 84.4

Super DVS (N =1 frame) 33.4
33.2

33.1

Peak Power

63.7

14.9

12.8

11.3
Super DVS (N = 2 frames)

Super DVS (N = 8 frames)

value * % reduction % reduction

60.4%

60.7%

60.8%

76.6%

80.0%

83.2%

value *

33.1Super DVS (N = 4 frames) 82.3%

10.760.8%

Input image data: series A (light workload)

Technique
Energy

Intra-task DVS 11.7

Super DVS (N =1 frame) 4.53
4.45

4.34

Peak Power

63.7

3.17

3.17

2.89
Super DVS (N = 2 frames)

Super DVS (N = 8 frames)

value * % reduction % reduction

61.3%

62.0%

62.6%

95.0%

95.0%

96.7%

value *

4.38Super DVS (N = 4 frames) 95.5%

2.1062.9%

* energy and power values
 are normalized

Table 5.3: Energy and power saving achieved by super DVS.

5.5.3 Power and energy reduction by super DVS

Table 5.3 shows both energy and (peak) power reduction of super DVS compared with

intra-task DVS. We also vary the number of frames per image group to examine the

effect of an increased granularity by averaging the larger workload among multiple

frames. In all three input series, super DVS exhibits a 60% energy reduction;and the

peak power can be reduced by as much as 80%-90%. We make following observations

from the analytical results.

1. Intra-task DVS is not quite “low-power” in the sense that its peak power is always

118

the same (the high-power spike) regardless of the workload, because it always

starts from the worst case. On the other hand, super DVS adapts both energy and

power to the workload very well.

2. Super DVS can significantly reduce both power and energy compared with intra-

task DVS. The percentage reduction to peak power is more than the saving on

energy. This is because super DVS produces a more smoothed power profile,

while the power profile of intra-task DVS always has high peaks and sharp jitters.

3. When the workload does not vary too much (series A and B), processing mul-

tiple frames together may not yield extra gains. This is due to the fact that the

average speed in multiple frames is not quite different from speeds in individ-

ual frames. While in series C, where the workload varies in a diverse range,

additional savings can be achieved at a coarser granularity.

5.5.4 The impact of DVS overhead

Not every DVS study has considered the DVS overhead, the overhead to change the

voltage of the processor. Mostly they assume it is either free, that is, the frequency and

voltage of the processor can be changed in zero time and zero energy, or the overhead

is trivial. These assumptions are generally not true.

We propose an abstract model for an analytical study to see how much the overhead

can impact the energy cost of DVS techniques. Our model is simple: we assume a

parameterTmax, which is the maximum time overhead when the processor is switched

between off (F = 0) and full speedFmax. Tmax is a processor dependent constant. It

indicates how quickly the processor can switch from one voltage/frequency setting to

another. We assumeTmax= 50µs, equivalent to 50,000 cycles at maximum clock speed.

For a frequency/voltage change from settingV1/F1 to V2/F2, the time overhead is

scaled by the frequency differenceF2 andF1, that is,

119

Techniques

Intra-task DVS

Super DVS (N = 1 frame)

Super DVS (N = 2 frames)

Super DVS (N = 8 frames)

0.002%

0.001%

<0.001%

Coarse-grain
100% workload

100% frame delay

3.87%
0.004%

0.001%

<0.001%

Fine-grain
50% workload

50% frame delay

7.52%

0.02%

0.01%

0.003%

Very-fine-grain
10% workload

10% frame delay

29.5%

DVS granularity

Super DVS (N = 4 frames) <0.001% 0.001% 0.005%

Table 5.4: Energy overhead vs. different DVS granularity.

TV1/F1−V2/F2
= Tmax

|F2−F1|
Fmax

(5.3)

For simplicity, we also assume during the switching time, the average power over-

head is the average ofP1 andP2, which refer to the power consumption before and

after the change. The energy overhead can be computed accordingly. In reality, the en-

ergy spent on DVS may be even higher. Some other models of the overhead to change

processor voltage can be found in [13, 28].

We present the impact of voltage-changing overhead to intra-task DVS and super

DVS in Table 5.4. Data series A is applied for this study. The first column of the results

shows that intra-task DVS spends up to 4% of energy on changing voltage, which may

not be considered as “trivial”; while such overhead for super DVS is less than trivial.

We could try to increaseTmax and see how sharply the overhead grows on intra-task

DVS. However, because it may not be meaningful to have very large values ofTmax for

recent processors, we consider the equivalent cases by working on a smaller data set

while fixing Tmax. This refers to fine-grained DVS, in which cases the voltage changes

are made quite frequently such that the DVS overhead is comparable to the slack time

being saved by DVS.

In the ATR algorithm, suppose we want the algorithm to work on images with

smaller size or less pixels. Therefore, theWCICof the program segments in Table 5.2

will all decrease. We assume they will decrease by the same factor, approximately.

120

On the other hand, since the algorithm is dealing with less amount of data, its frame

delay should be also decreased accordingly such that the performance of the algorithm

is sustained (it is still processing the same amount of data in unit time). For example, if

the image size is reduced by half (50% pixels), all theWCIC in Table 5.2 should reduce

by a factor of 50%, while the frame delay also reduces to its half. This is a reasonable

assumption for fine-grained DVS.

In Table 5.4 these cases are studied to examine the impact of overhead when DVS

is applied in finer granularities. It indicates that intra-task DVS may not be scalable

very well to finer granularities with the sharply growing energy overhead. For exam-

ple, in the third column, intra-task DVS will spend 30% of the energy on changing

voltage. This is because intra-task DVS potentially have more frequent and more dra-

matic voltage changes. Especially, during each frame the processor must be switched

from low-power to high-power once with larger time and energy overhead; and this

overhead will be even more expensive in fine-grained cases. In contrast, the DVS over-

head still remains trivial for super DVS. Super DVS incurs four voltage changes per

frame, and these changes are quite smooth with small overhead. The overhead can

be further amortized by processing multiple frames together where only four voltage

changes are applied toN frames. As a result, intra-task DVS (and potentially inter-task

DVS) may not be scalable to finer-grained applications, and will suffer more from the

overhead on slowly-switched processors. On the other hand, super DVS will be still

applicable to finer-grained applications or on processors that switch between different

voltage/frequency settings slowly.

5.6 Chapter Summary

Increasing the level of parallelism is known to be beneficial for power management.

However, this area is often overlooked in recent studies due to the difficulty to par-

allelize serial algorithms. In this chapter we present a new technique that effectively

121

parallelizes an image processing algorithm such that it could be pipelined in a four-

processor system. The energy efficiency is improved by slowing down each processor;

meanwhile the performance requirement is compensated by increased parallelism. We

propose a super DVS technique that combines the parallel approach with DVS. We

successfully discover an optimal voltage setting for each processor to minimize both

energy and peak power. The new technique will enable the existing DVS techniques to

further reduce energy by the next order of magnitude. It also reduces the DVS overhead

and is proven to be more scalable to finer-grained applications, where the overhead to

change the processor’s voltage setting is very costly. We believe our new technique is

generally applicable to a large class of signal processing applications with regular data

access patterns. The work proposed in this chapter represents one of the core CAD

tools in a larger design framework for energy efficient embedded systems.

122

Chapter 6

Communication Speed Selection

and Partitioning

High-speed serial network interfaces are becoming the primary way for modern em-

bedded systems and systems-on-chip to connect with each other and with peripheral

devices. Modern communication interfaces are capable of operating at multiple speeds

and are opening a new dimension of trade-offs between computation and communica-

tion. Unfortunately, today’s CPU-centric techniques often fail to consider multi-speed

communication and the balance between communication and computation for time and

energy; as a result, they yield sub-optimal if not incorrect designs.

This chapter presents a new technique for global energy optimization through co-

ordinated functional partitioning and speed selection for the processors and their com-

munication interfaces. We propose a multi-dimensional dynamic programming for-

mulation for energy-optimal functional partitioning with CPU/communication speed

selection for a class of data-regular applications under performance constraints. We

demonstrate the effectiveness of our optimization techniques with an image processing

application mapped onto a multi-processor architecture with a multi-speed Ethernet.

123

6.1 Introduction

Towards High-Speed Serial Busses on SoC

A key trend in systems-on-chip is towards the use of high-speed serial busses for

system-level interconnect. Serial busses offer many compelling advantages, including

modularity, composability, scalability, form factor, and power efficiency [11, 40, 57].

Modularity and composability are extremely important, because the sheer complex-

ity of these chips forces designers to raise the level of abstraction. Most SoC designs

are done by integration of intellectual property (IP) components as a way to manage

complexity while meeting time-to-market deadlines. Serial protocols are well under-

stood and have long been used in in automotive control (e.g., CAN from Bausch) and

consumer electronics (e.g., I2C from Philips). More recent protocols such as FireWire

(IEEE 1394) and USB are commonly used not only for peripheral devices but also

for connecting multiple embedded processors. They provide a simple, standardized,

efficient, and scalable way of building loosely coupled systems. High-speed serial con-

trollers such as Ethernet are now an integral part of many embedded processors.

Serial busses also have power and form factor advantages. From automobiles to

computer peripherals, serial interconnects such as FireWire and USB are compact and

low power compared to SCSI or parallel, which are bulky, high power, and limited in

length. This is especially important for systems-on-chip, where gates are virtually free,

but wires are the most expensive part of the chip real estate. Long, parallel, shared

wires are not only high power but also suffer from clock skews and even cross talks

as the feature size shrinks. Serial controllers provide a clean abstraction by shielding

components from these low-level concerns. Moreover, modern protocols also support

plug-and-play and power management features such as subnet shutdown or link sus-

pension. These features and more make high-speed serial protocols an attractive choice

for rapid integration of SoC architectures.

124

Power/Performance Issues with Serial Networks

Of course, serial controllers come at a price. The area and IP licensing will have a cost,

but this cost might be justified by time-to-market or other overriding business concerns.

In fact, it might be even less of an issue for future IP, which will likely have these serial

controllers integrated. For example, AMD’s newly announced Au1100 [1] is a MIPS

based microcontroller with integrated 10/100-base T Ethernet, USB, and many other

I/O. However, power and performance will become the critical issues, as they directly

affect the correctness of the design.

For power optimization, previous efforts focused on the processor for several rea-

sons. The CPU was the main consumer of power, and it also offered the most options

for power management, including voltage scaling. However, recent advances in both

processors and communication interfaces are driving a shift in how power should be

managed.

CPU-centric power management has given rise to a new generation of processors

with dramatically improved power efficiency, and the CPU is now drawing a smaller

percentage of the overall system power. The insatiable demand for bandwidth has also

resulted in high-speed communication interfaces. Even though their power efficiency

(i.e., energy per bit transmitted) has also been improved, communication power now

matches or surpasses the CPU, and is thus a larger fraction of the system power. For

instance, the Intel XScale processor consumes 1.6W at full speed, while a GigaBit

Ethernet interface consumes 6W.

System Power Management with Speed Selection

Many communication interfaces today support multiple data rates. However, the scal-

ing effects tend to be opposite those of voltage scalable CPUs. For CPUs, slower speed

generally means lower power and lower energy per instruction; but for communication,

faster speed means higher power but often less energy per bit. This is highly dependent

125

on the specific controller. Few research works to date explored communication speed

as a key parameter for power optimization.

Speed selection cannot be performed for just communication or computation in iso-

lation, because a local decision can have a global impact. One reason is that communi-

cation now goes through a shared medium rather than point-to-point. The CPUs cannot

all be run at the slowest, most power-efficient speeds, because they must compete for

the available time and power with each other and with the communication interfaces.

A faster communication speed, even at a higher energy-per-bit, can save energy by cre-

ating opportunities for subsystem shutdown or voltage scaling the processors. Greedily

saving communication power may actually result in higher overall energy. At the same

time, functional partitioning must be an integral part of the optimization loop, because

different partitioning schemes can dramatically alter the communication payload and

computation workload for each node.

Approach

For a given workload on a networked architecture, our problem statement is to generate

a functional partitioning scheme and to select the speeds of communication interfaces

and processors, such that the total energy is minimized. In general, such a problem is

extremely difficult. Fortunately, for a class of systems with pipelined tasks under an

overall latency constraint, efficient, exact solutions exist. This chapter presents a multi-

dimensional dynamic programming solution to such a problem. It formulates the en-

ergy consumed by the processors and communication interfaces with their power/speed

scaling factors within their available time budget. We demonstrate the effectiveness of

this technique with an image processing algorithm mapped onto a multi-processor ar-

chitecture interconnected by a GigaBit Ethernet. This technique is also applicable as a

heuristic to general dataflow problems.

126

6.2 Related Work

Previous works have explored communication synthesis and optimization in distributed

multi-processor systems. [72] presents communication scheduling to work with rate-

monotonic tasks, while [23] assumes the more deterministic time-triggered protocol

(TTP). [49] distributes timing constraints on communication among segments through

priority assignment on serial busses (such as control-area network) and customization

of device drivers. While these assume a bus or a network protocol, LYCOS [37] inte-

grates the ability to select among several communication protocols (with different de-

lays, data sizes, burstiness) into the main partitioning loop. Although these and many

other works can be extended to SoC architectures, they do not specifically optimize for

energy minimization by exploiting the processors’ voltage scaling capabilities.

Related techniques that optimize for power consumption of processors typically as-

sume a fixed communication data rate. [10] uses simulated heating search strategies to

find low-power design points for voltage scalable embedded processors. [45] performs

battery-aware task post-scheduling for distributed, voltage-scalable processors by mov-

ing tasks to smooth the power profile. [69, 68] propose partitioning the computation

onto a multi-processor architecture that consumes significantly less power than a single

processor. [17] reduces switching activities of both functional units and communica-

tion links by partitioning tasks onto a multi-chip architecture; while [29] maximizes

the opportunity to shut down idle processors through functional partitioning. All these

techniques focus on the computational aspect without exploring the speed/power scal-

ability of the communication interfaces.

Existing techniques cannot be readily combined to explore many timing/power

trade-offs between computation and communication. The quadratic voltage scaling

properties for CPU’s do not generalize to communication interfaces. Even if they

do, these techniques have not considered the partitioning of power and timing bud-

gets among computation/communication components across the network. Selecting

127

communication attributes by only considering deadlines without power will lead to

unexpected, often incorrect results at the system level.

6.3 System Model

This section defines a system-level performance/energy model for both computation

and communication components in a networked on-chip multi-processor architecture.

In this chapter, a system consists ofM processing nodesNi , i = 1,2, . . . ,M connected

by a shared communication medium. Eachprocessing node(or nodefor short) consists

of a processor, a local memory, and one or more communication interfaces that send

and/or receive data from other nodes.

6.3.1 Jobs and Tasks

A processing jobassigned to a node has threetasks: RECV, PROC, andSEND, which

must be executed serially in that order.RECVandSENDare communication tasks on

the interfaces, andPROC is a computation task on the processor. Theworkload for

each task is defined as follows. For communication tasksRECVandSEND, workload

Wr andWs indicate the number of bits to be received and sent, respectively. For the

computation taskPROC, the workloadWp is the number of cycles. LetTp,Tr ,Ts denote

the delaysof tasksPROC, RECV andSEND, respectively. LetFp denote the clock

frequency of the processor,Fr andFs the respective data bit rates for receiving and

sending. We have

Tp =
Wp

Fp
; Tr =

Wr

Fr
; Ts =

Ws

Fs
(6.1)

(6.1) is reasonable for processors executing data-dominated programs, where the

total cyclesWp can be analyzed and bounded statically. However, it does not hold true

128

in general if the effective data rate can be reduced by collisions and errors on the shared

communication medium. We present the collision-free condition of the shared medium

in Section 6.4.

To model the non-ideal aspect of the medium, we introduce thecommunication

efficiencyterms,ρr andρs,

0≤ ρr ,ρs≤ 1, such thatTr =
Wr

ρrFr
andTs =

Ws

ρsFs
.

Note thatρr and ρs need not be constants, but may be functions of communication

speedsFr ,Fs. For brevity, our experimental results assume an ideal communication

medium (ρr = ρs = 1) without loss of generality. A more practical communication

model can be directly applied, sinceρr andρs can be very well bounded for a collision-

free medium.

D is a deadlineon each processing job, which requiresTr + Tp + Ts ≤ D for the

three serialized tasks. If any slack time exists, then we can slow down taskPROCby

voltage scaling to reduce energy. Therefore, we assume the job finishes at the deadline.

That is,

D = Tr +Tp +Ts (6.2)

6.3.2 Power Scaling

On each node, we assume only the processor and the communication interfaces are

power-manageable by speed selection. The power consumption by the communication

medium is interpreted to be the total power consumed by all active communication in-

terfaces. We assume a processor’s voltage-scaling characteristics can be expressed by

a scaling functionScalep that maps the CPU frequency to its power level. A communi-

cation interface also has scaling functions that characterize the power levels at different

communication data rates for sending and receiving. (6.2) impliesScalep is continu-

129

ous, while communication interfaces support only a few discrete scaling points. Let

Pp, Pr , andPs denote the power levels of tasksPROC, RECVandSEND, respectively,

then,

Pp = Scalep(Fp); Pr = Scaler(Fr); Ps = Scales(Fs) (6.3)

Let Povh denote the power overhead when introducing an additional node into the

system. It captures the power of the memory, minimum power of the CPU and commu-

nication interface, CPU’s power duringRECVandSEND(DMA), and communication

interfaces’ power duringPROC.

Theenergy consumption of a taskis the power-delay product. LetEp,Er ,Es, and

Eovh denote the energy consumption of tasksPROC, RECV, SEND, and overhead of a

node,

Ep = PpTp; Er = PrTr ; Es = PsTs; Eovh = PovhD (6.4)

For one nodeNi with tasksPROCi , RECVi , andSENDi , thetotal energy of node Ni

is

ENi = Epi +Er i +Esi +Eovhi (6.5)

Fig. 6.1 shows the structure of a processing node. The gray bar represents the

overhead and white bars represent tasksRECV, PROCandSEND. The area of the bars

refers to the energy contribution of the tasks and overhead.

Finally, thetotal energy of the systemis the sum of energy consumption on each

node,

130

D

RECV SENDPROC

Time

Power

Pr
Ps

Pp

delay:
Tr = Wr / Fr

delay:
Ts = Ws / Fsdelay:

Tp = Wp / Fp

PROC

Wp cycles on processor

sending
Ws bits

receiving
Wr bits

power: Pr
speed: Fr

power: Pp
speed: Fp

power: Ps
speed: Fs

OVERHEAD power: Povh

RECV SEND

(a) block digram (b) timing-power digram

Figure 6.1: Timing and power properties of a processing node.

Esys=
M

∑
i=1

ENi (6.6)

6.3.3 M-Node Pipeline

This chapter considers a special case called anM-node pipeline. It consists of identical

nodesNi , i = 1,2, . . . ,M as characterized byScalep,Scaler ,Scales,Eovh. Each node

Ni receivesWr i bits of data from the previous nodeNi−1 (exceptN1), processes the

data inWpi cycles, and sends theWsi -bit result to the next nodeNi+1 (exceptNM). Each

SENDi→RECVi+1 communication pair sends and receives same amount of data at the

same communication speed, with the same communication delay, and we assume they

start and finish at the same time. That is,Wsi = Wr i+1,Fsi = Fr i+1,Tsi = Tr i+1. All nodes

have the same deadlineD, and each node acts as a pipeline stage with delayD. Fig. 6.2

shows an example of a three-node pipeline. For brevity, the overhead is not shown.

Fig. 6.2(c) shows the pipelined timing diagram by folding the tasks in Fig. 6.2(b) into

a common interval with durationD, which is the delay of each pipeline stage. During

each time interval with a durationD, the first node of the pipeline will be fed with one

set of incoming data; meanwhile one set of resulting data will be produced by the last

node. Section 6.4 presents the schedulability conditions for anM-node pipeline based

on collision and utilization of the shared communication medium.

An M-node pipeline can be partitioned and mapped onto anM′-node pipeline (M′≤

131

D

RE
CV1

SE
ND1PROC1

Time

Power T0 =
Tr1

Ts1= Tr2

Tp1

N1

Wp1 cycles on processor

communicating
Ws1 =Wr2 bits

receiving
Wr1 bits

N2

Wp2 cycles on processor

communicating
Ws2 =Wr3 bits

D

RE
CV2

SEND2PROC2

Time

Power T1=
Tr2=Ts1

Ts2 = Tr3

Tp2

N3

Wp3 cycles on processor

sending
Ws3 bits

D

RECV3 SE
ND3

PROC3

Time

Power T2 =
Tr3 =Ts2

T3 =
Ts3

Tp3

(a) block diagram

(b) serialized timing-power diagram

D

RE
CV1

SE
ND1PROC1

Time

Power

T0

T1

Tp1

D

RE
CV2

SEND2PROC2

Time

Power
T1

T2

Tp2

D

RECV3 SE
ND3

PROC3

Time

Power
T2

T3

Tp3

(c) pipelined timing-power diagram

SEND2PROC2

T2

Tp2

RECV3 SE
ND3

PROC3

T2
T3

Tp3 - T1

SE
ND3

PROC3

T3

Tp3 - T1

PR
OC3

T1

N1

N2

N3

N1

N2

N3

Figure 6.2: A 3-node pipeline.

132

M) by merging adjacent nodesNi ,Ni+1, . . . ,Ni+ j(j ≥ 1) into a new nodeN′k. The new

nodeN′k combines all computation workload, receivesWr i bits of data, and sendsWsj

bits of data. Communication within a node become local data accesses. That is,W′pk
=

∑ j
l=0Wpi+l , andW′rk

=Wr i ,W
′
sk

=Wsj . The newM′-node pipeline is called apartitioning

of the initialM-node pipeline.

6.4 Schedulability Conditions

This section presents the schedulability conditions for the pipelined on-chip multi-

processor system. In the pipelined timing diagram Fig. 6.2(c) of the three-node pipeline,

we fold the tasks in Fig. 6.2(b) into a common interval with durationD, which is the

delay of each pipeline stage. Note that there appear to be two instances of taskPROC

on nodeN3. This does not mean that taskPROCon nodeN3 is preempted. In fact, each

instance is a part of an integrated taskPROCacross the boundary between pipeline

stages. In other words, the boundary between pipeline stages resides in the middle

during the execution of taskPROC.

Fig. 6.2(c) shows that due to the common deadlineD, communication activities

are shifted to different time slots, such that at any given time, there is at most one ac-

tive communication instance (aSENDi → RECVi+1 pair, e.g.SEND2→ RECV3 and

SEND1→ RECV2 are serialized). This is especially meaningful if all nodes share the

communication medium such as Ethernet instead of point-to-point connections. If col-

lision does not occur, then our estimation on both performance and energy of the whole

system can be well bounded. Collision is always undesirable because retransmission

costs both time and energy. Communication activities should be scheduled such that

the system is collision-free.

Lemma 5 (Collision-free Condition) In an M-node pipeline with a deadlineD, let

133

Ti , i = 0,1, . . . ,M indicate the delays ofM +1 instances of data communication.

Ti =


Tr1 (i = 0)

Tsi = Tr i+1 (i = 1,2, . . . ,M−1)

TsM (i = M)

The system does not have collision on the shared communication mediumiff

theutilizationof the shared communication medium is less than or equal to 1. That is,

U =
M

∑
i=0

Ti

D
≤ 1 (6.7)

Note that for a general multi-processor, Lemma 5 expresses theoverloadcondition

and can be only a necessary condition for a collision-free schedule. However, it is also

a sufficient condition forM-node pipelines as defined in Section 6.3.3, because this

special case of pipelining has the property of serializing all communication instances.

Lemma 5 is also the schedulability condition for the shared communication medium.

Lemma 6 (Schedulability Condition of One Node) In anM-node pipeline with a dead-

line D, ∀ nodesNi , i = 1,2, . . . ,M, Ni is able to meet the deadlineD iff

Ni is notoverloaded, that is,

Wpi

max(Fpi)
≤ D−Tr i −Tsi (6.8)

Lemma 6 states theoverloadcondition of one node: given the communication

speeds (that determine communication delaysTr i ,Tsi), if its computation task cannot

be completed before the time budgetD−Tr i −Tsi by operating at the maximum CPU

clock rate, then this node will fail to meet the deadlineD and thus the whole pipeline

will be malfunctioning. If Lemma 6 cannot be satisfied, then the only way to meet the

deadline is to select higher communication speeds to reduceTr i ,Tsi , in order to allocate

134

N1:
Target

Detection

Wp1 =
400K
cycles

Ws1
= Wr2
= 14Kb

Wr1 =
 128Kb

N2:

FFT

Wp2 =
1190K
cycles

Ws2
= Wr3
= 14Kb

N3:

Filter
Wp3 =
504K
cycles

N4:

IFFT

Wp4 =
3570K
cycles

Ws4
= Wr5
= 42Kb

N5:
Compute
Distance

Wp5 =
2639K
cycles

Ws5 =
14Kb

Ws3
= Wr4
= 42Kb

Figure 6.3: Functional blocks of the ATR algorithm.

additional time budget for computation. High-speed communication can also reduce

communication collision to satisfy Lemma 5.

Lemma 7 (Schedulability Condition of the System)An M-node pipeline is schedu-

lable to meet a deadlineD iff

(1) ∀ nodeNi , i = 1,2, . . . ,M, Ni meets the deadlineD (Lemma 6), and (2) The shared

communication medium is collision-free (Lemma 5).

Lemma 7 says that the system’s schedulability is determined by the schedulability

of all resources, includingM nodes and the communication medium. If and only if

none of them is overloaded, the system can be pipelined by the deadlineD. Lemma 7

holds true only for thisM-pipeline organization; it is a necessary but not sufficient

condition for a general multi-processor system.

6.5 Motivating Example

We use an automatic target recognition (ATR) algorithm (Fig. 6.3) as our motivating

example. Originally it is a serial algorithm. We reconstructed a parallel version and

mapped it onto pipelined multiple processors. Pipelining allows each processor to run

at a much slower speed with a lower voltage level to reduce overall computation en-

ergy, while parallelism compensates for the performance. Of course, a multi-processor

platform incurs energy for inter-processor communication, extra processors, memory,

and other overhead.

135

D

RECV1
@ 10 Mbps

SEND1
@ 10 MbpsPROC1

@300MHz

(a) A fine-grain partitioning scheme reduces energy on computation, at the
cost of inter-proessor communication and overhead of additional nodes.

Time

Power

OVERHEAD

D

RECV2
@ 10 Mbps

SEND2
@ 10 MbpsPROC2

@300MHz

Time

Power

OVERHEAD

Node N1

Node N2

D

RECV1
@ 10 Mbps

SEND2
@ 10 Mbps

PROC (increased workload)
@600MHz

Time

Power

OVERHEAD

Merge N1 and N2
into a combined node N

(b) The combined node reduces
communication and overhead,

but it requires more energy
for computation.

D

RECV1
@ 100 Mbps

SEND2
@ 100 Mbps

PROC @300MHz

Time

Power

OVERHEAD

Node N

(c) The computation energy can be reduced
by increasing communication speeds,

which leaves more time on computation.

Figure 6.4: The impact of different partitioning schemes and communication speed
settings.

136

Mapping Task to Node through Partitioning

Given the five functional blocks (tasks) of the ATR algorithm, several partitioning

schemes are possible for mapping the tasks to a number of pipelined nodes. Fig. 6.4

shows an example by considering how they map the first two tasks onto nodes. In

Fig. 6.4(a), they are mapped onto two nodesN1 andN2 that are both allowed to oper-

ate at a lower speed (300MHz) for computation. This scheme has lower computation

energy than if they were mapped onto one node, but it requires energy on communi-

cation tasksSEND1→ RECV2, plus overhead. Fig. 6.4(b) shows a mapping onto one

node. It eliminates the communicationSEND1→RECV2 and the overhead of an extra

node. However, the combined node has much more computation workload and must

run at a faster clock rate (600MHz), a less energy-efficient level.

Zooming out, many partitioning schemes are possible, even when limited to a

pipelined organization. For example, one partitioning[N1,N2][N3,N4,N5] may be op-

timal for nodesN1 andN2; but it will preclude another solution[N1], [N2,N3], [N4,N5]

that may lead to lower energy for the whole system.

Speed Selection for CPU and Communication

In additional to partitioning, the selection of communication speed is an equally critical

issue. For example we consider a 10/100/1000Base-T Ethernet interface. It consumes

more power than the CPU at high (100/1000Mbps) speeds, but less power than the CPU

at the slower, 10Mbps data rate. In Fig. 6.4(b), the processor must operate at a high

clock rate due to the low-speed communication at 10Mbps. Because of the deadlineD,

communication and computation compete for this budget. Low-speed communication

leaves less time for computation, thereby forcing the processor to run faster to meet

the deadline. Conversely, high-speed communication could free more time budget for

computation, shown in Fig. 6.4(c), where the CPU’s clock rate is dropped to 300MHz

with 100Mbps communication. Although extra energy could be allocated to communi-

137

cation, if the energy saving on the CPU could compensate for this cost, then (c) would

be more energy-efficient than (b).

The communication-computation interaction becomes more intricate in a multi-

processor environment. Any data dependency between different nodes must involve

their communication interfaces. The communication speed of a sender will not only

determine the receiver’s communication speed but also influence the choice of the re-

ceiver’s computation speed. The communication speed on the first node of the pipeline

will have a chain effect on all other nodes in the system. A locally optimal speed for

the first node will not necessarily lead to a globally optimal solution.

Combining Partitioning and Speed Selection

Partitioning and communication speed selection are mutually enabling each other. Given

a fixed partitioning scheme, the designers can always find the corresponding optimal

speed setting that minimizes energy for that scheme. However, energy-optimal speed

selection for a partitioning is not necessarily optimal over all partitionings. Instead, par-

titioning and speed selection are mutually enabling. In this chapter, we take a multi-

dimensional optimization approach that considers performance requirement, schedu-

lability, load balancing, communication-computation trade-offs, and multi-processor

overhead in a system-level context.

6.6 Problem Formulation

Given anM-node pipeline, the choices of partitioning and communication speed set-

tings will lead to different energy consumption at the system level. This section formu-

lates the energy minimization problems by means of partitioning and communication

speed selection. In both cases, the optimal solutions can be obtained by dynamic pro-

gramming. Finally, the combined optimization problem with both partitioning and

communication speed selection can be addressed synergistically by multi-dimensional

138

dynamic programming.

Problem 1 (Optimal Partitioning) Given

(a)M pipelined nodesNi with workloadWpi ,Wr i ,Wsi , i = 1,2, . . . ,M,

(b) a deadlineD for all nodes, and

(c) the constraint that the speed settings of all communication instance must match:

Fr1,Fsi = Fr i+1,FsM , for i = 1,2, . . . ,M−1,

find a partitioning scheme that minimizes energyEsys.

To avoid exhaustive enumeration in theO(2M−1) solution space, we construct a

series of sub-problems as follows. We consider a sub-problemP[i, j] that maps the

first j original nodesN1,N2, . . . ,Nj onto a sub-partitioningi nodesN′1,N
′
2, . . . ,N

′
i . The

optimal solution ofP[i, j] has the minimum energyE[i, j]. It can be decomposed into

two parts shown in Fig. 6.5: (a) a sub-partitioningP[i − 1, l] that maps firstl origi-

nal nodes toi−1 new nodes, plus (b) theith new nodeN′i that combines the original

nodesNl+1, . . . ,Nj with its energy denoted asEN′ i . In order to achieve the minimum

energyE[i, j], the energy consumption of (a) must also be an optimal sub-solution

E[i − 1, l]. Since l can be any value in a rangei − 1 ≤ l ≤ j − 1, E[i, j] must also

be the minimum value ofE[i − 1, l] + EN′i
over all these possible values ofl . That

is, E[i, j] = mini−1≤l≤ j−1{E[i−1, l] + EN′i
}. Any optimal sub-solutionE[i, j] can be

derived from other optimal sub-solutionsE[i − 1, l]. Therefore, the problem has an

optimal sub-structureand adynamic programmingapproach is appropriate. It is il-

lustrated in Fig. 6.6. MatrixE[i, j] is initialized to∞ for 0≤ i ≤ j ≤ M. We define

E[0,0] = 0 and it can be used to compute the first rowE[1, j], j = 1,2, . . . ,M. For any

entryE[i, j], its value can be computed by entries in the previous rowE[i−1, l], i−1≤

l ≤ j−1. These entries are shaded in Fig. 6.6. Thus, a series of optimal sub-solutions

E[2, j],E[3, j], . . . ,E[M, j] in each row of the matrix can be computed subsequently. Fi-

nally, these sub-solutions lead to the global optimal solution min1≤i≤M{E[i,M]}, which

maps allM original nodes onto a new partitioning with minimum energy. Note that the

139

N1 N2 Nl Nl+1 Nj

N'1 N'i-1 N'i

j original
nodes

i-node optimal
sub-partitioning

with minimum energy
E[i, j]

(a) a sub-partitioning that maps l nodes N1, ..., Nl
on to i-1 new nodes N'1, ..., N'i-1 with minimum energy

E[i-1, l]

(b) the last new node N'i combines nodes
Nl+1, ..., Nj with energy

EN'i

Figure 6.5: The optimal sub-structure of Problem 1.

same algorithm can also solve the optimal partitioning onto a fixed number of nodes.

For example,E[i,M] is the optimal energy for mappingM nodes onto an arbitrary

i-node new partitioning.

To summarize, the optimal cost functionE is defined as follows:

E[i, j] =



0 for i = j = 0

min

i−1≤l≤ j−1

 E[i−1, l]

+EN′i


if

U [i−1, l]

+
Wsj
Fsj D
≤ 1,

for
1≤ i ≤

j ≤M

(6.9)

To guarantee each optimal sub-solution is schedulable, by Lemma 7, the commu-

nication medium must be collision-free, and any node in the new sub-partitioning must

not be overloaded. We define autilization matrix U[i, j] indicating the utilization of

the communication medium corresponding to the optimal solution of a sub-problem

P[i, j], which is guarded byU [i, j]≤ 1 (Lemma 5).U is initialized to∞, while setting

U [0,0] =
Wr1
Fr1D (= T0

D in(6.7)), indicating the bandwidth used by the first communication

instanceRECV1. We also define the energy consumption of a nodeN asEN that refines

(6.5) by Lemma 6. If a node is overloaded, then its energy consumption is∞ indicating

an invalid solution.

140

∞∞…

∞∞

∞∞

∞

∞

∞

E[i-1,
j-1]

∞

∞

∞

E[i,j]

∞

j

E[M-1,
M]

E[M-1,
M-1]∞

E[M,
M]∞∞∞∞∞∞∞M

E[i,M]∞∞i

E[i-1,
i-1]∞∞i-1

∞∞…

E[2,M]E[2,2]∞∞2

E[1,M]E[1,2]E[1,1]∞1

∞∞∞∞∞∞∞E[0,0]0

M………210

l = i-1, ..., j-1

ji

Eopt = min {E[i, M]}
i = 1, 2, ..., M

Figure 6.6: The dynamic programming approach to solve Problem 1. Each entryE[i, j]
can be computed by the shaded entries in the previous row. The global optimal energy
is the minimum value of the last column.

141

partitioning(Wr [1 : M],Ws[1 : M],Wp[1 : M],Fr [1 : M],Fs[1 : M],
scaler ,scales,scalep,D,Povh)

for i := 0 toM do
for j := i to M do

E[i, j] := U [i, j] := P[i, j] := ∞
E[0,0] := 0
U [0,0] := Wr [1]/Fr [1]/D
for i := 1 toM do

for j := i to M do
for l := i−1 to j−1 do

e := E[i−1, l]+EN′i
u := U [i−1, l]+Ws[j]/Fs[j]/D
if u≤ 1 and e< E[i, j] then

E[i, j] := e
U [i, j] := u
P[i, j] := l

Eopt,Popt := retrieve from matricesE,P
return Eopt,Popt

Figure 6.7: Optimal partitioning algorithm.

U [i, j] =



Wr1
Fr1D for i = j = 0

U [i−1, l]

+
Wsj
Fsj D

for l that achieves

min{E[i, j]} in (6.9),

for 1≤ i ≤ j ≤M

(6.10)

EN =



scaler(Fr)Tr+

scales(Fs)Ts+

scalep(Fp)Tp+

PovhD

if
Fp = Wp

D−Tr−Ts
≤ Fmax

(Tr = Wr
Fr

,Ts = Ws
Fs

)

∞ otherwise

(6.11)

Fig. 6.7 shows the optimal partitioning algorithm derived from (6.9) and (6.10).

Thepartitioning matrix P[i, j] records the previous optimal sub-solutions for each sub-

problem. This information can be used to retrieve the optimal partitioningPopt. The

142

time complexity of this algorithm isO(M3) determined by the three-level nested loop.

Problem 2 (Optimal Speed Selection)Given

(a) a fixed partitioning scheme withM pipelined nodesNi with workloadWpi ,Wr i ,Wsi ,

i = 1,2, . . . ,M,

(b) a deadlineD for all nodes, and

(c) the available choices for communication speed settingsFck,k = 1,2, . . . ,C,

find all processor speedsFpi and communication speedsFr i ,Fsi that minimize energy

Esys.

We also perform dynamic programming as opposed to exhaustive search inO(CM+1)

solution space. Since communication speeds decide processor speeds, we only se-

lect communication speeds for each node. Given that the sending speed and receiving

speed are equal for each communication instance, selecting only sending speed is suf-

ficient. We define a sub-problemS[i,k] that selects communication speeds for the first

i nodes, with the last nodeNi ’s sending speed selected to be thekth choice of speed

settings,Fsi = Fck. Its optimal sub-solution has minimum energyE[i,k]. As illus-

trated in Fig. 6.8, a sub-problemS[i,k] consists of two parts: (a) another sub-problem

S[i− 1,m] that selects speed settings for the firsti− 1 nodes with nodeNi−1’s send-

ing speedFsi−1 = Fcm, combined with (b) nodeNi with receiving speedFr i = Fcm and

sending speedFsi = Fck. (a) must be an optimal sub-solution with minimum energy

E[i−1,m]. (b) has only one nodeNi that receives data from (a) through speedFcm; and

its sending speed isFck. Its energy is denoted asENi (Fr = Fcm,Fs = Fck). Therefore,

E[i,k] = E[i−1,m]+ENi (Fr = Fcm,Fs = Fck). In the sub-problemS[i−1,m], Fcm can be

any choice amongFc1,Fc2, . . . ,FcC. In order to achieve the minimum energyE[i,k], it

must be the minimum value among all possibleFcm. That is, the optimal sub-structure

of this problem can be defined asE[i,k] = min1≤m≤C{E[i−1,m]+ENi (Fr = Fcm,Fs =

Fck)}

143

N1 N2 Ni-1 Ni

first i nodes where the last
sending speed Fsi= Fck

with minimum energy
E[i, k]

(a) a sub speed selection problem
where node Ni -1's sending speed

selected as Fsi-1 = Fcm
 with minimum energy

E[i-1, m]

(b) the last node Ni
whose receiving speed is Fcm

and sending speed is Fck
with energy

ENi(Fr = Fcm, Fs = Fck)

sending
speed

Fsi-1 = Fcm

receiving
speed

Fri = Fcm

sending
speed

Fs = Fck

......

Figure 6.8: The optimal sub-structure of Problem 2.

…

E[M,C]E[M,1]M

E[i,C]E[i,k]i

E[i-1,C]E[i-1,i-1]E[i-1,1]i-1

…

E[2,C]E[2,2]E[2,1]2

E[1,C]E[1,2]E[1,1]1

E[0,C]E[0,2]E[0,1]0

C…k…21i
k

Eopt = min {E[M, k]}
k = 1, 2, ..., C

Figure 6.9: The dynamic programming approach to solve Problem 2. Each entryE[i,k]
can be computed by the shaded rowE[i−1, l]. The global optimal energy is the mini-
mum value of the last row.

The dynamic programming algorithm is illustrated in Fig. 6.9. Since eachE[i,k]

can be derived from the previous rowE[i − 1,m],m = 1,2, . . . ,C, the algorithm can

compute all rows of matrixE from E[0,k],E[1,k], . . . , to E[M,k],k = 1,2, . . . ,C se-

quentially. The global optimal energy is the minimum value in the last row, min1≤k≤C{E[M,k]}.

Theenergy matrix E[i,k] andutilization matrix U[i,k] are defined as follows.U [i,k]≤

1 guarantees that each optimal sub-solutionE[i,k is schedulable. BothE andU are

initialized to∞, exceptE[0,k] = 0,U [0,k] is set to the utilization of the first communi-

cation instanceRECV1 using communication speedFck, for k = 1,2, . . . ,C.

144

E[i,k] =



0 for
i = 0,

1≤ k≤C

min

1≤m≤C


E[i−1,m]+

ENi (Fr = Fcm,

Fs = Fck)


if

U [i−1,m]

+ Wsi
FckD ≤ 1,

for
1≤ i ≤M,

1≤ k≤C

(6.12)

U [i,k] =



Wr1
FckD for

i = 0,

1≤ k≤C

U [i−1,m]

+ Wsi
FckD

for m that achieves

min{E[i,k]} in (6.12),

for
1≤ i ≤M,

1≤ k≤C

(6.13)

The algorithm is shown in Fig. 6.10. Thespeed matrix Srecords the previous

optimal sub-solutions. The optimal speed settingSopt will be retrieved fromS. The

time complexity of this algorithm isO(MC2). Note that the algorithm can be modified

trivially to if the first communication speedFr1 and the last communication speedFsM

are fixed. This refers to the situation where the pipelined multi-processor has a fixed

communication speed setting to other components while its ”internal” communication

speeds can be selected to optimal.

Problem 3 (Optimal Partitioning and Speed Selection)Given

(a)M pipelined nodesNi with workloadWpi ,Wr i ,Wsi , i = 1,2, . . . ,M,

(b) a deadlineD for all nodes, and

145

speedselection(Wr [1 : M],Ws[1 : M],Wp[1 : M],Fc[1 :C],
scaler ,scales,scalep,D,Povh)

for i := 1 toM do
for k := 1 toC do

E[i,k] := U [i,k] := S[i,k] := ∞
for k := 1 toC do

E[0,k] := 0
U [0,k] := Wr [1]/Fc[k]/D

for i := 1 toM do
for k := i to C do

for m := i to C do
e := E[i−1,m]+ENi (Fr = Fc[m],Fs = Fc[k])
u := U [i−1,m]+Ws[i]/Fc[k]/D
if u≤ 1 and e< E[i,m] then

E[i,k] := e
U [i,k] := u
S[i,k] := m

Eopt,Sopt := retrieve from matricesE,S
return Eopt,Sopt

Figure 6.10: Optimal speed selection algorithm.

(c) the available choices for communication speed settingsFck,k = 1,2, . . . ,C,

find a partitioning scheme and corresponding communication speed settings that mini-

mize energyEsys.

Due to the inter-dependency between speed settings and partitioning schemes, the

optimal solution cannot be achieved by solving two previous problems individually.

Exhaustively enumerating over one dimension and dynamic programming over the

other is quite expensive with the time complexity as eitherO(2M−1MC2) orO(CM+1M3).

We proposed amulti-dimensional dynamic programmingalgorithm given the fact that

the two previous problems are all characterized by optimal sub-structures. Based on

the dynamic programming approaches in previous problems, we define a sub-problem

PS[i, j,k] that mapsj original nodesN1,N2, . . . ,Nj onto ani-node new sub-partitioning

N′1,N
′
2, . . . ,N

′
i , with the last nodeN′i ’s sending speedF ′si

= Fck. The optimal sub-solution

has minimum energyE[i, j,k].

146

N1 N2 Nl Nl+1 Nj

N'1 N'i-1 N'i

j original
nodes

i-node optimal
sub-partitioning

where the last sending
speed F's = Fck

with minimum energy
E[i, j, k]

(a) a sub-partitioning that maps l nodes N1, ..., Nl
on to i-1 new nodes N'1, ..., N'i-1

where node N'i-1 's sending speed
selected as F'si-1 = Fcm

with minimum energy
E[i-1, l]

(b) the last new node N'i combines nodes
Nl+1, ..., Nj

whose receiving speed is Fcm
and sending speed is Fck

with energy
EN'i(Fr = Fcm, Fs = Fck)

sending
speed

F'si-1 = Fcm

receiving
speed

F'ri = Fcm

sending
speed

F's = Fck

Figure 6.11: The optimal sub-structure of Problem 3.

Similar to the previous problems, a sub-problemPS[i, j,k] can be decomposed

with an optimal sub-structure, shown in Fig. 6.11. (a) is a previous sub-problem

PS[i−1, l ,m], which maps the firstl original nodesN1,N2, . . . ,Nl onto i−1 new nodes

with nodeN′i−1’s sending speed selected asFcm. (b) is the new nodeN′i that combines

original nodesNl+1, . . . ,Nj with receiving speedFcm and sending speedFck. (a) must

be an optimal sub-solution with the minimum energyE[i−1, l ,m]. Note that (b) has

only one nodeN′i , and its energy is denoted asEN′i
(Fr = Fcm,Fs = Fck). For sub-solution

E[i−1, l ,m], l can be any value in rangei−1≤ l ≤ j −1 andFcm is one ofC speed

choicesFc1,Fc2, . . . ,FcC. E[i, j,k] must be derived from all possible pairs of(l ,m) to

achieve the minimum value. Therefore,E[i, j,k] = mini−1≤l≤ j−1,1≤m≤C{E[i−1, l ,m]+

EN′i
(Fr = Fcm,Fs = Fck)}.

The algorithm is illustrated in Fig. 6.12. The three-dimensional matrixE[i, j,k] is

represented by a series of two-dimensional sub-matrix indexed byi = 0,1, . . . ,C. Any

E[i, j,k] can be computed from entries in a sub-matrixE[i− 1, l ,m], i− 1≤ l ≤ j −

1,1≤m≤C. The algorithm constructs all optimal sub-solutions fromE[0, j,k],E[1, j,k], . . .

toE[M, j,k],1≤ j ≤M,1≤ k≤C. The global minimum energy is min1≤i≤M,1≤k≤C{E[i,M,k]}.

It refers to the minimum value of the last rows in all sub-matrices.

147

∞

∞

∞

∞

…

∞∞2

∞∞∞∞

E[i-1,i-1,C]E[i-1,i-1,2]E[i-1,i-1,1]i-1

E[j-1,j-1,C]E[j-1,j-1,2]E[j-1,j-1,1]j-1

∞∞…

∞∞∞∞M

∞∞∞∞…

∞∞∞∞1

E[i-1,0,C]E[i-1,0,2]E[i-1,0,1]0

C…210
j

k

∞

∞

∞

∞

…

∞∞2

∞∞∞∞

E[i-1,i-1,C]E[i-1,i-1,2]E[i-1,i-1,1]i-1

E[j-1,j-1,C]E[j-1,j-1,2]E[j-1,j-1,1]j-1

∞∞…

∞∞∞∞M

∞∞∞∞…

∞∞∞∞1

E[i-1,0,C]E[i-1,0,2]E[i-1,0,1]0

C…211
j

k

l = i-1, ..., j-1
m = 1, 2, ..., C

∞

∞

∞

∞

…

∞∞2

∞∞∞∞

E[i-1,i-1,C]E[i-1,i-1,2]E[i-1,i-1,1]i-1

E[j-1,j-1,C]E[j-1,j-1,2]E[j-1,j-1,1]j-1

∞∞…

∞∞∞∞M

∞∞∞∞…

∞∞∞∞1

E[i-1,0,C]E[i-1,0,2]E[i-1,0,1]0

C…21...
j

k

∞

∞

…

∞∞2

E[i-1,i-1,C]E[i-1,i-1,2]E[i-1,i-1,1]i-1

E[i-1,j-1,C]E[j-1,j-1,2]E[j-1,j-1,1]j-1

…

M

∞∞∞∞…

∞∞∞∞1

E[i-1,0,C]E[i-1,0,2]E[i-1,0,1]0

C…21i-1
j

k

E[i-1,M,C]E[i-1,M,2]E[i-1,M,1]

E[i,j,k]

∞

∞

k

∞∞2

j

…

E[M,M,C]E[M,M,2]E[M,M,1]M

∞∞∞∞…

∞∞∞∞1

E[i-1,0,C]E[i-1,0,2]E[i-1,0,1]0

C……1i
j

k

Eopt = min{E[i, M, k]}
i=1, 2, ..., M
k = 1, 2, ..., C

E[i,j,k]

∞

∞

k

∞∞2

j

…

..................M

∞∞∞∞…

∞∞∞∞1

E[i-1,0,C]E[i-1,0,2]E[i-1,0,1]0

C……1i
j

k

E[i,j,k]

∞

∞

k

∞∞2

j

…

E[i,M,C]E[i,M,2]E[i,M,1]M

∞∞∞∞…

∞∞∞∞1

E[i-1,0,C]E[i-1,0,2]E[i-1,0,1]0

C……1i
j

k

Figure 6.12: The multi-dimensional dynamic programming approach to solve Prob-
lem 3. Each entryE[i, j,k] can be computed by the shaded entries in the previous
sub-matrix. The global optimal energy is the minimum value in the last row of all
sub-matrices.

Theenergy matrix E[i, j,k] and theutilization matrix U[i, j,k] is defined as follows.

E[i, j,k] =



0 for
i = j = 0,

1≤ k≤C

min

i−1≤ l

≤ j−1,

1≤m≤C


E[i−1, l ,m]+

EN′i
(Fr = Fcm,

Fs = Fck)


if

U [i−1, l ,m]

+
Wsj

FckD ≤ 1,

for

1≤ i ≤

j ≤M,

1≤ k≤C

(6.14)

148

U [i, j,k] =



Wr1
FckD for

i = j = 0,

1≤ k≤C

U [i−1, l ,m]

+
Wsj
FckD

for (l ,m) that achieve

min{E[i, j,k]} in (6.14),

for
1≤ i ≤ j ≤M,

1≤ k≤C

(6.15)

The algorithm is shown in Fig. 6.13. It combines two previous algorithms by

two-dimensional dynamic programming. The time complexity of the algorithm is

O(M3C2). It also applies to situations where the new partitioning has a fixed num-

ber of nodes, or the pipeline has a fixed communication interface to other components

while only internal communication speed can be selected.

6.7 Analytical Results

To evaluate our energy optimization technique, we experimented with mapping the

ATR algorithm [61] (Fig. 6.3) onto two fixed partitioning schemes: (a) a single-node

that combines all blocks, and (b) a five-node pipeline that maps each block onto an

individual node. (a) and (b) are two extremes representing serial vs. parallel schemes.

For both (a) and (b) we apply optimal speed selection. We also find the optimal par-

titioning with speed selection as (c) and compare with (a) and (b) under three types

of performance requirements: (1) high performance,D = 10ms, (2) moderate perfor-

mance,D = 15ms, and (3) low performance,D = 20ms.

Each node consists of an XScale processor and an LXT-1000 Ethernet interface

from Intel. TheScalep andScales (same asScaler) functions, which indicate the power

vs. performance characteristics of a node, are extracted from their data sheets [2, 3]

149

partitioning-speedselection(Wr [1 : M],Ws[1 : M],Wp[1 : M],
Fc[1 :C],scaler ,scales,scalep,D,Povh)

for i := 0 toM do
for j := i to M do

for k := 1 toC do
E[i, j,k] := U [i, j,k] := P[i, j,k] := S[i, j,k] := ∞

for k := 1 toC do
E[0,0,k] := 0
U [0,0,k] := Wr [1]/Fc[k]/D

for i := 1 toM do
for j := i to M do

for k := 1 toC do
for l := i−1 to j−1 do

for m := 1 toC do
e := E[i−1, l ,m]+Enode(merge(Nl+1, . . . ,Nj),

with Fr = Fc[m],Fs = Fc[k])
u := U [i−1, l ,m]+Ws[j]/Fc[k]/D
if u≤ 1 and e< E[i, j,k] then

E[i, j,k] := e
U [i, j,k] := u
P[i, j,k] := l
S[i, j,k] := m

Eopt,Popt,Sopt := retrieve from matricesE,P,S
return Eopt,Popt,Sopt

Figure 6.13: Combined partitioning with speed selection.

150

Figure 6.14: Power vs. performance of the XScale processor.

Mode

10M bps 800 mW

100M bps 1.5W

1000M bps 6W

Power consumption

Figure 6.15: Power modes of the Ethernet interface.

and are shown in Fig. 6.14 and 6.15. Besides the power draw from the CPU and

communication interfaces, we assume each node has a constant power drawPovh =

100mW.

The results are presented in Fig. 6.16. In all cases, 1000Mbps is always the optimal

speed setting for communication. The low-power, 10Mbps communication speed re-

sults in the highest energy. This is because it leaves so little time for computation such

that the processors must run faster with more energy to meet the deadline, and it has the

highest energy-per-bit rating. The low-speed communication also tends to violate the

151

0

2

4

6

8

10

12

14

(a) 1-node (b) 5-node (c) Optimal
N1N2 | N3 N4 | N5

E
ne

rg
y

/
fr

am
e

 (
m

J)

0

2

4

6

8

10

12

14

(a) 1-node (b) 5-node (c) Optimal
N1N2N3N4 | N5

0

2

4

6

8

10

12

14

(a) 1-node
(optimal)

(b) 5-node

Overhead

Communication

Computation

(1) high performance
D = 10ms

(2) moderate performance
D = 15ms

(3) low performance
D = 20ms

Figure 6.16: Analytical results.

schedulability conditions (Lemma 7). Given properties of this particular Ethernet in-

terface, 1000Mbps communication will always lead to the lowest energy consumption

since it requires the least amount of energy per bit and leaves the maximum amount of

time budget for reducing CPU energy. However, in cases where the energy-per-bit rat-

ing does not decrease monotonically with the communication speed, the optimal speed

setting may involve some combinations of low-speed and high-speed settings between

different nodes. For example, the nodeNi may communicate withNi−1 at 1000Mbps

and withNi+1 at 100Mbps.

Fig. 6.16(1) shows the energy consumption per image frame in three partitioning

schemes. With a tight performance constraint, the single-node (a) is heavily loaded

with computation. Therefore it is desirable to reduce CPU energy by pipelining. As a

result, the five-node pipeline (b) is more energy-efficient at the cost of additional com-

munication and overhead. However, the optimal partitioning is (c) with three nodes:

[N1,N2], [N3,N4], [N5]. It consumes more CPU energy than (b), but overall it is opti-

mal with less energy on communication and overhead.

In case of the moderate performance constraint (Fig. 6.16(2)), (a) is still dominated

by computation but it is not heavily loaded due to the relaxed deadline. The reduction of

CPU energy by (b) cannot compensate for the added overhead of new nodes and com-

munication. Therefore (a) is better than (b) and pipelining seems inefficient. However,

the optimal partitioning (c) is still a pipelined solution. It combinesN1,N2,N3,N4 into

152

one node and mapsN5 to another node. (c) achieves minimum energy by appropriately

balancing computation, communication with pipelining overhead.

In cases where the performance is not critical, pipelining is not efficient and the

serial solution (a) is optimal. Fig. 6.16(3) shows that the computation load on (a) is

very light. Introducing additional nodes will only save marginal CPU energy that will

be offset by extra communication and overhead.

6.8 Chapter Summary

We present a combined partitioning and speed selection technique for the energy op-

timization of embedded multiprocessor-on-chip architectures with high-speed on-chip

networks. As communication power approaches or surpasses that of processor power,

communication must be treated as a primary concern in system-level energy optimiza-

tion. We exploit the multi-speed feature of modern high-speed communication inter-

faces as an effective way to complement and enhance today’s CPU-centric power opti-

mization approaches. In such systems, communication and computation compete over

opportunities for operating at the most energy-efficient points. It is critical to not only

balance the load among processors by functional partitioning, but also to balance the

speeds between communication and computation on each node and across the whole

system.

Our multi-dimensional dynamic programming formulation is exact and is of poly-

nomial time complexity. It produces energy-optimal solutions as defined by a parti-

tioning scheme and by the speed selections for all computation and communication

tasks. We expect this technique to be applicable to a large class of data dominated

systems-on-chip that can be structured in a pipelined organization.

153

Part IV

Mode Selection

154

Chapter 7

Power Mode Selection

Among the techniques for system-level power management, it is not currently possible

to guarantee timing constraints and have a comprehensive system model supporting

multiple components at the same time. We propose a new method for modeling and

selecting the power modes for the optimal system-power management of embedded

systems under timing and power constraints. First, we not only model the modes and

the transitions overhead at the component level, but we also capture the application-

imposed relationships among the components by introducing amode dependency graph

at the system level. Second, we propose a mode selection technique, which determines

when and how to change mode in these components such that the whole system can

meet all power and timing constraints. Our constraint-driven approach is a critical

feature for exploring power/performance tradeoffs inpower-awareembedded systems.

We demonstrate the application of our techniques to a low-power sensor and an au-

tonomous rover example.

155

7.1 Introduction

Recent trends in mobile and autonomous embedded systems are giving rise to a new

class ofpower-awaresystems. Unlike low-power systems, whose goal is to minimize

power usage, power-aware systems are more general in that they must make the best

use of the available power by adapting their behavior to the constraints imposed by

the environment, user requests, or their power sources. Power-aware systems must

use components that are capable of multiple modes of operation. Many of these com-

ponents offer modes for power management, while other components allow the user

to control the voltage or frequency as other forms of power modes. The selection of

mode is thus the primary means of controlling power usage, and it is often done in

conjunction with scheduling.

New off-the-shelf components are offering increasingly sophisticated modes for

power management. However, the system-level power manager has only limited con-

trol over the modes. Some modes can be set by writing commands to a control register

of a device. However, the power manager may not be able to arbitrarily select the

modes it wishes at all times. It may be forced to wait or request a change through a

sequence of intermediate modes. Even if a desired mode is available, changing mode

can incur nontrivial overhead both in terms of time and power. The overhead translates

into penalty in performance or power, and it can cause a system to miss an important

deadline.

Another key issue for power management is that mode selection cannot be done

in isolation. The choice of mode in one component must be coordinated with that in

other components, or else the whole system may not function correctly. For example,

if the mode selection involves a particular encoding scheme, then the rest of the system

that depends on the data representation must also change mode in order to handle the

encoding correctly.

It can be difficult for designer to track details with modes. The problem is further

156

exacerbated by the fact that the number of components and the available modes are

increasing rapidly. Today’s methodologies either limit the complexity by using only a

small subset of the available modes (e.g., on, sleep, off), or they are unable to guarantee

timing or power constraints.

Power management of embedded systems must consider all components in the sys-

tem. Significant power reduction in one components may not translate into desirable

power reduction for the whole system. In mission critical applications, peripheral de-

vices including mechanical and thermal devices can actually dominate power consump-

tion and must be an integral part of power management.

We believe that a new methodology for mode modeling and selection is sorely

needed in order to effectively manage the power of the next generation embedded sys-

tems. We first introduce a newmode dependency graphfor modeling theenabling

relationships among modes within a component and between components in a system.

Second, we present a new mode selection algorithm that produces a mode schedule

that satisfies timing and power constraints on multiple processors and devices. It takes

advantage of the mode dependency graph in effectively pruning the search space, mak-

ing it practical to incorporate into an on-line power manager. The advantage with our

constraint-driven approach is that it is not hardwired to a specific objective such as

power minimization. This is a crucial feature for power-aware embedded systems, for

which the ability to make power/performance tradeoffs is more important than just

power reduction.

This chapter is organized as follows. Section 7.2 reviews related work. Section

7.3 presents the mode dependency graph, while Section 7.4 describes a mode selec-

tion algorithm that takes advantage of mode dependency modeling. We discuss the

experimental results in Section 7.5.

157

7.2 Related Work

Many low-power techniques have been developed at all levels. For system-level de-

signs, since the components are largely off-the-shelf or already designed, the applicable

techniques include dynamic voltage scaling (DVS) and dynamic power management

(DPM).

7.2.1 Dynamic Voltage Scaling (DVS)

Developed for variable-voltage processors, DVS can achieve significant energy saving

while still enabling the processor to continue making progress [74, 25]. Although DVS

means running slower, they typically slow down just enough without violating timing

constraints, and many are based on real-time task scheduling cores [25, 59, 60, 54].

It has been shown that maximal energy saving is achieved by running the processor

at the slowest possible constant speed, rather than running tasks at full processor speed

and changing the processor to a lower power mode when idle [14]. Hong et al [25]

proposed a heuristic for scheduling real-time tasks on a variable voltage processor.

Shin [59] exploited both execution time variation and idle time intervals for fix-priority

tasks. Shin’s algorithm in [60] determines the lowest maximum processor speed for

each job to achieve power reduction. Quan and Hu [54] further greedily determine the

lowest voltage for a set of tasks to achieve more energy savings.

What these DVS techniques have in common is that they are greedy and assume a

single processor. A power-aware embedded system, however, consists of multiple re-

sources, which may be one or more processors and peripheral devices. Unfortunately,

greedy DVS techniques are not generalizable to multiple resources under power con-

straints, as shown in the following example.

158

R1

20 40 60 80 100 120 140

t3

t1

20 40 60 80 100 120 140
t3

t2
t1

1W

3W

R2

R3

t2

Pmax

(a)

R1

R2

R3

20 40 60 80 100 120 140

t3

t1

20 40 60 80 100 120 140
t3

t1
2W

4W

6W

t1

t2 Pmax

t2

(b)
R1

R2

R3

20 40 60 80 100 120 140

t3

t1

20 40 60 80 100 120 140

t2
t1

1W

2.4W
3W

t1

t2

t2
t3

Pmax

(c)

Figure 7.1: An application scenario that has resource dependency.

Example: (DVS fails in multi-resource)

Fig. 7.1(a) shows a Gantt chart (top) and the power profile (bottom) for a system with

three resources:R1 is capable of voltage scaling, whileR2 andR3 are not. The taskt1 on

R1 has a deadline at 110. The system has a max power constraint of 3W. Furthermore,

the behavior of the application dictates thatR1 and R3 be co-active. Co-activation

means the execution of one task requires the power consumption of other dependent

services or tasks. A simple example is that when the CPU is running, it imposes a

co-activation dependency on the memory, but co-activation can be much more general

between sets of tasks.

Fig. 7.1(b) shows the schedule and the power profile obtained by greedily slowing

downR1. Even though all timing constraints are satisfied, it violates power constraints

and it is not minimum energy. When it is stretched out,t1 overlapst2 during time 70-

110, and their total power exceeds the max power constraint. It is not minimum energy

due to the co-activation dependency betweenR1 andR3: the energy saving byR1 due

159

Schedule Timing violation Power violation Energy cost
Fig. 7.1(a) No No 300
Fig. 7.1(b) No Yes 320
Fig. 7.1(c) No No 288

Figure 7.2: Comparison of three schedules.

to voltage scaling is more than offset byR3, whose execution is prolonged byR1.

The optimal schedule and power profile are shown in Fig. 7.1(c). ResourceR1 is

slowed down without overlappingt2 on R2. No max power is violated. Althought3 is

stretched witht1 and therefore consumes more energy than in Fig. 7.1(a),t1 saves even

more energy due to voltage scaling of resourceR1. As a result, the system achieves

minimal energy while satisfying all constraints. Fig. 7.2 summarizes the energy costs.

Another problem not highlighted with this example is that mode changes may incur

nontrivial power or timing overhead. If so, overhead must be considered in determining

the feasibility of the mode schedule.

Luo and Jha [45] presents scheduling for multiple processing elements by reorder-

ing tasks and applying voltage scaling in this post-processing step after scheduling.

Our approach is similar in that it can also be a post processing step, and handles prece-

dence and timing constraints, but we treat power as a hard constraint. Furthermore, we

handle co-activation and other mode-dependency relationships.

7.2.2 Dynamic power management (DPM)

Previous work on DPM mainly aimed to achieve power reduction by predicting the

system idle time or event distribution and shutting down resources when idle. The

simplest power management policy is time-out based on a fixed or predicted amount

of time before the system’s shutdown or powerup [30]. Stochastic model [12] is used

to address the uncertainty in system behaviors. DPM techniques can be effective for

minimizing energy and time penalties on average, but they have several limitations.

First, most treat either power or timing as anobjectiveor penalty, rather than acon-

160

straint. In real systems, the max power is a real, hard constraint, whose violation can

lead to malfunction. Second, they have not considered inter-component dependency

in a system, with the exception of Qiu, Qu and Pedram in [53], which models mul-

tiple service providers and their GSPN model can capture some dependencies among

resources. However, their model is mainly for the request/dispatch behavior of servers

rather than dependency among the servers themselves.

Our new approach, mode selection, combines the advantages of existing approaches.

It is entirely constraint driven, enabling us to make power/performance tradeoffs with-

out hardwiring any specific goal or policy in the algorithm.

7.3 Modeling Resource Dependency

Selecting (or not selecting) a mode of a resource may impact the modes that other

resources are allowed to select. The impact may be co-activation, exclusion, en-

abling, and many other possible types of dependency. These dependencies may be

extracted from application level specifications or policies for safety, security, fault-

tolerant, power-saving. In any case, alegal mode combination of the resources is one

that respects all of these dependencies, and afeasiblemode combination is one that is

legal and satisfies all the constraints (namely timing and power). We use a data struc-

ture called the mode dependency graph (MDG) that enables efficient generation of legal

mode combinations in an order that facilitates the search for feasible combinations that

are also low cost.

7.3.1 Definitions

Definition 15 (Resourceγ ∈ Γ) A resourceγ is defined as a graphRγ(Mγ,Hγ), where

Mγ is a set of vertices, andHγ ⊆ Mγ×Mγ is a set of edges. A vertexm∈ Mγ is a

power mode of resourceγ. An edge(m,n) ∈ Hγ represents a mode change from mode

m to moden. We define the timing and energy function for a mode change as:F :

161

Mγ×Mγ → T ×E, whereMγ is the set of modes of resourceγ, andT, E are time

and energy, respectively. The average power can be obtained from energy and time

information.

Definition 16 (Power and delay functions)Power consumption of a resourceγ is rep-

resented as a function,π, mapping from power mode to a power number. Formally,

π : Mγ→R+. Delay of a mode transition is defined as a function,δ, mapping from start

mode and end mode of a transition to a delay number. Formally,δ : Mγ×Mγ→ R+.

Definition 17 (Mode combinationλ ∈ Λ) GivenN resources(γ1,γ2, . . . ,γN), a mode

combination isλ ∈Mγ1×Mγ2×, . . . ,MγN .

7.3.2 Mode Dependency Graph

A mode dependency graph (MDG)G(M,D) characterizes the inter-resource depen-

dency relationships, whereM =
⋃

γ∈Γ Mγ is a set of vertices representing power modes,

andD is a set of edges standing for dependencies. A vertex is represented by a circle

with a label in the format of “γ.m,” whereγ ∈ Γ is a resource andm∈M is a mode of

the resource. If two vertices have the same labels, we considered them identical.

Thevalueof a vertexv∈M is defined as:

|v|=


True if γ is in modem,

False if γ is in other mode,

Undetermined if γ has not been selected a mode.

(7.1)

An edge in the MDG represents dependency between two modes. Suppose an

edge(u,v) ∈ E, u = γ1.m1, v = γ2.m2. The two modesm1 andm2 satisfy the mode

dependency graph if:

|u| is Trueonly if |v| is True(99K),

|v| is Falseimplies|u| is False(⇐).
(7.2)

162

u v Violation
True False YES
True True NO
False True NO
False False NO

Figure 7.3: A table for violation checking.

CheckMDG(mode dependency graphG, resourceγ, modem):
1 V← find all verticesv∈V that contain resourceγ
2 for eachv∈V {
3 find vertexu such thatu points tov, if any
4 if violation checking for (u, v) according to Fig. 7.3 is YES{
5 return False
6 }
7 }
8 return True

Figure 7.4: Check satisfaction of an MDG.

In other words, if|u| is True, |v|maybeTrue; but if |v| is False, |u|mustbeFalse.

For example, we represent the dependency between a CPU and a memory chip such

that the memory ison only if the CPU is inactive mode. If the CPU is not inactive

mode, then the memory must not beon. If both of the above conditions are met, we say

that the CPU and the memory satisfy the mode dependency. Otherwise, they violate the

mode dependency. Fig. 7.3 summarizes the conditions that (do not) violate the mode

dependency.

To expand the capability of mode dependency graph, we introduce the logic oper-

ators as another kind of vertices. An operator vertex is represented by a square with

an operator label in it. For the operator vertex with multiple outgoing edges, the99K

direction combines disjunctively, and the⇐ direction combines conjunctively. For ex-

ample, a vertexu, whose value|u| is True, points two verticesv1 andv2. If either v1

or v2, or both, areTrue, then they satisfy mode dependency. Whenv1 andv2 are both

false, they violate mode dependency. The value of an operator vertex can be obtained

163

S.off

R.off

AND A.sleep

R.rx

R.rx_tx

XOR

XOR

A.sleep

A.idle

M.onA.active

S.off

M.on A.active

A: processor
M: memory
R: radio
S: sensorR.on S.on

(a)

S

R

A

M

SR

R

A

A

A

M A

=>
S

R

A M

S R A M

||
V

I

II

III

(b)

Figure 7.5: (a) An MDG example: microsensor. (b) Reduce the MDG to a resource
list.

by evaluating the logic function it represents. We define the operatorsAND, OR and

XOR. The functions of the operators follow the normal boolean functions in the same

names except when any input is “undetermined,” the output is “undetermined.” Given

an MDG, a resourceγ and one of its modem, we can use the routine in Fig. 7.4 to

check whether modem satisfies the MDG.

7.3.3 Generating Mode Combinations

This section shows how to efficiently generate legal mode combinations using the

MDG.

We transform and reduce an MDG to a resource list. The purpose is to sequence

the resources so that the modes of a resource do not depend on those of the succeeding

resources. From the MDG, we shrink each operator vertex to a point, and remove mode

164

name in each mode vertex. We then remove the redundant vertices and edges, break

the cycle by removing one edge in the cycle, and apply topological sort to obtain a

resource list.

If the MDG is acyclic, then legal mode combinations can be generated by a special

version of topological traversal. Starting from the first resource of the list, we check

modes of each resource against the MDG and identify the legal modes. We keep them

and select one for the current resourceγ, and move to the next resource. We are able

to determine a mode ofγ because upon checking the resource, all the modes of its

dependent resources have been already determined since they are all located before

γ. We progressively generate a mode combination as we check legality of modes and

select one at each resource. As we reach the end of the list, we obtain a legal mode

combination. We enumerate the rest of legal modes at the end resource, backtrack

to previous resources, and enumerate their legal modes to generate other legal mode

combinations.

Note that there may be cycles in an MDG, which implies that in the resource list

obtained above, modes of a resource may depend not only on preceding resources, but

also on succeeding resources. We call such resourcesdirty-resource. In this scenario,

we keep track of which resources the current resourceγ are dependent on. When the

modes of all dependent resources are determined, we evaluate a mode ofγ to determine

whether the mode satisfies the MDG. Fig. 7.6 shows the detailed algorithm, which is

the general case for both acyclic and cyclic MDGs.

7.3.4 Example: Microsensor

A microsensor system is a node in a distributed microsensor network [63]. It consists

of a sensor, a processor, memory chips, radio frequency module and other auxiliary

parts. The microsensor obtains information from environment and sends processed

data to a base station. The sensor and the memory each has two modes,on andoff.

165

MODEGEN FROM CYCLIC MDG(mode dependency graphG):
1 reset the list of mode combinationsΛ← /0
2 reset a mode combinationλ← /0
3 transformG into a resource listL[0. . .N−1
4 mark dirty-resources inL
5 p← 0
6 while p≥ 0 {
7 while 0≤ p < N {
8 if L[p] is not a dirty-resource{
9 if found an unmarked modem for taskL[p] {
10 if checkMDG(G, γ, m) = True{
11 if L[p].cachedis not empty{
12 if all cached resources satisfyG {
13 λ[p]←m, p← p+1 }
14 } else{λ[p]←m, p← p+1 }
15 }
16 mark the modem
17 } else{unmark all modes ofL[p], p← p−1 }
18 } else{
19 locate the last resourceL[q] thatL[p] is dependent on
20 L[q].cached← L[p]
21 }
22 p← p+1
23 }
24 if p = length(L) { pushλ into Λ}
25 p← p−1
26 if found an unmarked modem for the resourceL[p] {
27 unmark all modes for current resource
28 p← p−1
29 } else{
30 if checkMDG(m, G) =True{
31 λ[p]←m, pushλ into Λ, p← p+1 }
32 }
33 }
34 return Λ

Figure 7.6: Generate mode combinations for cyclic MDG.

166

The processor has three modes,active, idle andsleep. The radio has three modes,

transmit-and-receive (tx rx), receive-only (rx), andoff. There are a total of 36 mode

combinations for these components.

The behavior and dependencies of the devices in this system can be derived from

high-level power management policies: the sensor and the radio may be bothoff only

if the processor is insleep mode; either of them may beon only if the processor is in

sleep mode oridle mode; both the sensor and the radio may beon only if the processor

is in active mode; the memory ison if and only if the processor isactive. Fig. 7.5(a)

shows the MDG of the microsensor.

Using the MDG, our algorithm automatically generate eight mode combinations

that satisfy the given MDG (see Fig. 7.7). Suppose we want the microsensor to work

in a proactive way: when it is off, the system can only be waken up by the sensor when

it senses information from environment. The radio cannot wake up the system, for

example, by receiving a remote command. We add another item “the radio may beon

only if the sensor ison” (in dashed box in Fig. 7.5(a)) to the MDG in Fig. 7.5(a). Then

we run our algorithm on the new MDG and obtain five mode combinations (without *

in Fig. 7.7). This result exactly matches the mode combinations in manually designed

results [63].

Through this simple example, we show our algorithm is able to systematically gen-

erate legal mode combinations, and by editing the mode dependency graph, we can

obtain mode combinations without manually going through all possible mode combi-

nations.

7.4 Mode Selection

Mode selection works as a post-processing stage after scheduling. It validates and

improves the schedule with more architectural knowledge than the scheduler. Our ap-

proach is a constraint-driven search algorithm that considers resource/task dependency

167

mode S R A M
M1 on tx rx active on
M2 on rx idle off
M3 on rx sleep off
M4 on off sleep off
*M5 off tx tx active on
*M6 off rx idle off
*M7 off rx sleep off
M8 off off sleep off

Figure 7.7: Mode combinations of microsensor.

and mode change overhead, and tries to find a mode schedule that satisfies system

timing and power constraints.

7.4.1 Problem Statement

The input to the problem consists of a set of tasksX, a scheduleσ, a mode dependency

graphG, power constraintsPmax andPmin, and timing constraints represented by con-

straint graphGc [44]. The output is a mode scheduleσ′ that meets system power and

timing constraints by means of legal mode combinations.

Definition 18 (Taskx∈ X) A task xis defined by a tuple (τx, ωx), whereτx is a task

identifier, andωx ∈ Ω is the workload of the task. In the context of this chapter, we

assume each taskx has already been mapped to a resourceγ. The operation delaydx

and power profilePx(t) of a taskx depend on the workloadωx and the selected modes

m of resourceγ.

Depending on the nature of the resource, workloadωx can be the number of cycles

for a processor, the number of atomic actions for a device, e.g., the number of steps for

a step motor, or simply the time to perform a task.

Definition 19 (Scheduleσ) A scheduleσ maps each task to its start time. Anidle

interval with respect to a scheduleσ and a resourceγ is a time interval during which

168

no task is scheduled to run onγ. Note that during an idle interval, the resource can still

consume nonzero power, depending on the mode.

Definition 20 (Mode scheduleσ′) A mode scheduleσ′ maps each taskx∈ X′ (which

is mapped to resourceγ) to the task’s start time and a modem∈Mγ, whereX′ = X∪Xo.

Xo is a set ofoverhead tasks, which are inserted whenever there is a mode change on a

given resource.

A mode scheduleσ′ is feasibleif all mode combinations are legal (Section 7.3) and

all timing and power constraints are satisfied at all times:

Pmin≤ ∑
γ∈Γ

Pγ(t)≤ Pmax 0≤ t ≤ tend (7.3)

Tmin(u,v)≤ σ′(v)−σ′(u)≤ Tmax(u,v) ∀u,v∈ task setX (7.4)

where tend is the overall schedule length, andPmin and Pmax are the minimum and

maximum power constraints, respectively. The reason for a minimum power constraint

has been discussed elsewhere [44]. It can be used for not only power/performance

tradeoffs but also for jitter control.

7.4.2 Algorithm

Our Mode Selection algorithm contains a loop with two steps. First we find modes for

tasks that satisfy task dependency and timing constraints. Second we determine modes

for the idle intervals on each resource. Note that after the first step, the operation delay

for certain tasks may be changed due to certain mode selected (i.e., modes of different

clock rate due to voltage scaling) or task dependency. An advantage of selecting task

modes and idle interval modes separately is that we can apply different kinds of system

constraints, which help prune out illegal mode combinations efficiently. We reorder the

modes for each resource by their power consumption in increasing order and search

169

MODE SELECTION(σ, G, Pmax, Pmin, Gc):
0 /* input : scheduleσ */
1 /* power constraints Pmax and Pmin */
2 /* timing constraint graph Gc */
3 /* mode dependency graph G*/
4 /* output: a feasible mode scheduleσ′ */
5 MODEGEN FROM CYCLIC MDG(G)
6 for each λ in Λ {
7 mapλ to tasksT in σ, getσ1
8 if checktiming(σ1, Gc) = True{
9 decomposeσ1 into time intervalsS
10 for eachs∈ S{
11 select modes for idle intervals
12 while Pmax and Pmin not satisfied{
13 select other modes for idle intervals
14 }
15 } /* So far we obtain a mode scheduleσ′ */
16 add mode change overhead as new tasks intoσ1, getσ2
17 if checktiming(σ2, Gc) = Trueand
18 checkpower(σ2, Pmax, Pmin) = True{
19 return λ∪ { modes selected for idle intervals}
20 }
21 }
22 }

Figure 7.8: Top level Mode Selection algorithm.

170

drv.on

str.on

OR haz.off

ppc1.oncam1.on

ppc2.on rf1.on

ppc3.on rf2.on

rf1.on ppc2.on

rf2.on ppc3.onsci

Figure 7.9: The MDG for the Microrover.

from the smallest one. By doing so we both speed up our search process and find

solutions very close to the energy-optimal solution. The top level algorithm is shown

in Fig. 7.8.

Selecting modes for tasks

We select modes for tasks by generating legal mode combinations of tasks that satisfy

the MDG. Note that the MDG used for a schedule may be a mix of resource dependency

and task dependency, which represent time-invariant and time-variant dependency of

resources. For example, in Fig. 7.9, the sub-graph in the dashed box representsresource

dependency, whereas the rest of the graph shows thetaskdependency. We can still use

the algorithm introduced in last section to generate legal mode combinations of tasks.

Once a legal mode combination is determined, we can obtain a new schedule since

the operation delay of tasks become known under their selected modes and under their

co-activation dependency. We check timing constraints for the new schedule. If it fails,

we generate another legal mode combinations and check again; if it passes, we use the

mode combination for mode selection of idle intervals.

171

Scenario Task sequence Cost Relative energy
simple greedy modesel (simple / greedy /

modesel)
A CAM/MOV/SCI 19002 18442 17935 100% /97.0%/93.4%
B MOV/CAM/SCI 16381 15013 14667 100% /91.6%/89.5%
C CAM/SCI/MOV 20294 19505 19014 100%/96.1%/93.6%

Mission tasks: CAM: shoot images; MOV: move to another location; SCI: perform
scientific experiments.
Approaches: simple: assume two modes; greedy: greedily voltage scaling; modesel:
our algorithm.

Figure 7.10: Comparison among different working scenarios.

Selecting modes for idle intervals

On each resource, overhead may incur on mode changes. We find a set of modes for

each idle interval such that the time overhead of the mode changes is less than the

length of the idle interval. We sort the modes in each set in an ascending order, and

use modes in these sets to select modes for idle intervals and check power constraints.

We treat overhead as additional tasks to the schedule we obtained. We characterize

those overhead tasks with time and average power, which can be derived from time

and energy information. We decompose the new schedule intotime intervalssuch that

within each time interval there is no task event (start or end event). The decomposition

is done in the following way: We find the start and end events of all tasks. All the

events cut the time axis into non-overlapping segments. Each segment forms a time

interval. We check system power constraints in each time interval. If the schedule

fails power constraints, we attempt a mode change on resources that currently have

an idle interval, and check power constraints again. If all the modes fail the power

constraints, we backtrack to the previous time interval. If we backtrack to the beginning

of the schedule and still cannot find feasible modes, we attempt the next legal mode

combination and select modes for idle intervals again.

172

7.5 Experimental Results

We apply our algorithm to an example based on the Mars rover [66]. The rover trav-

els on the surface of Mars to perform scientific experiments and shoot images. Its

resources consist of a camera (CAM), scientific devices (SCI), a radio-frequency mo-

dem (RF), a microprocessor (PPC), a hazard detector (HAZ), driving motors (DRV)

and steering motors (STR). CAM takes a picture, sends the picture data to PPC for

processing, PPC outputs to RF, and then the rover moves to another location (HAZ,

DRV, STR) to perform scientific experiments (SCI, PPC, RF).

PPC can work at a number of different clock rates (with a full speed of 500MHz)

and can be set todoze, nap or sleep modes. RF can be inrx only mode, tx-rx

mode andsleep modes. The other resources have only two modes each,on andoff.

Mode-change overhead is significant for some resources. Due to the low temperature

on Mars, DRV must be pre-heated for some time before turned on. Similar reason

applies to STR, RF, and SCI. The inter-resource relationships are shown in Fig. 7.9.

For example, when HAZ is working, neither DRV nor STR should be working. RF

may be intx-rx mode if and only if the processor is operating.

Fig. 7.11 shows a feasible mode schedule, in both time view and power view. Task

ppc2 on PPC cannot be further slowed down because PPC and RF must be co-active.

If PPC is greedily slowed down, it will violate max power constraint during the interval

500 - 560. Taskdrv1, haz1 andstr1 are not overlapped due to the system requirement

specified in the mode dependency graph. STR and SCI need significant time to pre-

heat, which is adequately considered (the light gray areas in their tracks). Idle interval

betweenr f 1 andr f 2 on RF is set torx only rather thanoff because the timing overhead

of mode changes (including pre-heating) is larger than the length of the interval. The

idle interval beforer f 1 is set torx only for the same reason.

We compared our algorithm with two other approaches: approach one assumes

only two modes,on andoffapproach two greedily applies voltage scaling technique

173

cam

drv

haz

ppc

rf

sci

str
200 400 600 800 1000 1200 1400

ppc2 (op,375)

haz1 (on)

rf2 (transmit)

sci1 (op)

cam1 (op)

(sleep)

(off) (off)

str1 (on)

(sleep)

(nap)
ppc3 (op,500)ppc1 (op,300)

drv1 (on)

(doze,500)

(off)

(off)

(sleep)

(off)

(off)

rf1 (transmit) (receive)(receive)

Pmin

Pmax

0W

6W

12W

18W

24W

30W

Figure 7.11: A mode schedule for microrover.

174

whenever possible (we allow power constraint violation in this approach). The results

are shown in Fig. 7.10. Approach one gives the worst results because it never utilizes

available modes. Approach two is better than approach one since it saves energy by

applying voltage scaling technique, but its greediness pays the cost since its saving

by slowing down the processor is more than offset by the extra energy consumed on

the RF modem. And in all the scenarios, approach two violates max power constraint.

Our algorithm gives the best results because we utilize multiple modes of resources and

apply voltage scaling on the processor. At the same time, we avoid extra energy cost on

RF by identifying co-activation dependency between the two resources and performing

mode selection to find the feasible solution.

7.6 Chapter Summary

This chapter presents a method for capturing mode dependency and an algorithm for

mode selection in power-aware embedded systems. The mode dependency graph intro-

duced in this chapter enables legal combinations of modes to be systematically derived.

Today’s designers perform this task manually. However, as components offer increas-

ingly sophisticated modes for power management, while at the same time imposing

even more restrictions on mode changes, the complexity will grow quickly beyond

what humans can handle. Our MDG represents a structured approach to controlling

the complexity of power management. We also present a search algorithm that takes

advantage of the MDG. By considering power/timing constraints and overhead on tran-

sitions, this technique gives designers more confidence in the feasibility of the synthe-

sized results in real-life applications. Furthermore, our algorithm incorporates heuristic

ordering to optimize for the energy cost of the solution, and it shows realistic,system-

level improvements over previous techniques that either do not handle constraints or

multiple components.

175

Chapter 8

Topology Selection

The trend towards distributed, networked embedded systems is changing the way power

should be managed. Power consumed by bus and network interfaces now matches if

not surpasses that of the CPU and is thus becoming a prime candidate for reduction.

This chapter explores the energy-efficient bus topologies as a new technique for global

power optimization of embedded systems that are interconnected by high-speed se-

rial network-like busses such as FireWire and a new generation of SoC busses. Our

grammar-based representation for these networks enables the modeling and facilitates

selection of energy-efficient bus topology. Experimental results show 15-20% energy

saving on the network interfaces without sacrificing system performance.

8.1 Introduction

A recent trend in power-aware designs iscommunication centricpower management.

In both embedded systems and system-on-chip (SoC) architectures, much of the re-

search work in the past decade has gone into making the CPU very power efficient, and

the CPU is now consuming a much smaller fraction of the system power. At the same

time, bus and network interfaces are consuming the same if not more power. Higher

176

level integration helps alleviate the situation somewhat, but even processors with built-

in network interfaces often require two supply voltages: a lower voltage for the core,

and a higher voltage for the off-chip I/O. System-on-chip architectures will also face

similar issues, as IP components are increasingly being integrated using on-chip net-

works for power and modularity advantages.

Communication-centric power management schemes can be divided intocustom

protocolsvs. standard protocols. Custom protocols that utilize application-specific

coding schemes [65, 47, 38, 24, 6], custom bus voltages [39], or custom bus segmen-

tation schemes [76, 36, 16] can potentially achieve much better energy efficiency, but

they are applicable mainly to closed systems. Most embedded systems and IP compo-

nents must be interoperable with existing standards, and this limits the types of opti-

mization possible. We do not attempt to propose a new standard to compete against the

more established ones [7, 21, 22, 31, 33]; instead, it is intended to demonstrate how

an existing standard can incorporate energy efficient optimizations. Some of the most

important parameters include communication speed and bus topology. We investigate

topology selection for FireWire, a hot-pluggable, low-power, high-speed serial bus that

can support real-time streaming (isochronous) and asynchronous transfer modes. It is

widely available on many embedded systems and computers today.

FireWire requires a tree topology. Furthermore, each FireWire component has a

limited number of ports and a maximum transfer speed available. Our approach to

achieve energy reduction is a grammar-driven, constraint-based searching process for

low energy network topology. The advantages are: a) the formal method is a systematic

way of modeling and generating topologies; b) our technique is extensible to other

buses/networks and is beneficial to system-on-chip design with on-chip networks; c)

it is orthogonal to most of the existing CPU-centric power management techniques,

thus enabling additive energy savings by combining our techniques with existing ones.

Our experimental results show up to 15% to 20% energy savings for network interfaces

177

without sacrificing system performance.

This chapter is organized as follows. Section 8.2 provides background informa-

tion on FireWire and reviews related work. Section 8.3 presents a formal problem

formulation, while Section 8.4 describes the algorithms we used to select optimal tree

topologies. We discuss the experimental results in Section 8.5.

8.2 Background and Related Work

8.2.1 FireWire Bus

FireWire (IEEE1394) [8] is a high-speed serial bus standard. 1394a currently sup-

ports transmission speeds up to 400Mbps, and the new 1394b standard [5] will support

transmission speeds of 800Mbps and 1600Mbps. FireWire was designed to connect a

computer to peripherals such as hard disks, scanners, and consumer electronics such

as video cameras. It is now widely available on many computers, set-top boxes, and

embedded systems in automotive and aerospace domains. FireWire supports two data

transfer types: asynchronous and isochronous transfer modes. Asynchronous mode

guarantees the data delivery with acknowledgment. Isochronous mode guarantees data

bandwidth without acknowledgment, and it is suitable for real-time streams such as

video.

FireWire is hot-pluggable and can connect up to 63 devices. 1394a cables can run

as long as 4.5 meters, and packets can take up to 16 hops for a maximum total distance

of 72 meters. Future standard extends the single hop distance to up to 100 meters and

use fiber optics as the physical medium. When a new node is attached to the bus, or

an existing node is unplugged, the bus will go through bus reset. First, a root will be

elected, followed by tree identification and self identification processes, after which

the new topology map and speed map is broadcast to every node. Unlike the Universal

Serial Bus (USB), which is host-based, FireWire is peer-to-peer.

178

FireWire imposes a number of restrictions. First, the network must be acyclic.

This implies that there is a unique path between any pair of communicating nodes.

Second, all intermediate nodes on the path must be powered on (at least the physical

layer controller) to act as repeaters. Third, all the intermediate nodes must support the

transfer speed of the communicating nodes, otherwise the transaction cannot be started.

Fourth, the fan-out of each node is constrained by the number of ports available on the

physical interface.

8.2.2 Power Management with FireWire

Power management opportunities with a standard protocol like FireWire are at higher

level than most previous works. Circuit-level bus voltage scaling techniques, including

[39, 70], which make the bus voltage and frequency track the bus traffic, or voltage

swing reduction [55], would not be applicable due to interoperability reasons. Bus

coding that minimizing the transition activities on buses [65, 47, 38, 24, 6] would

not be applicable, either. Buses segmentation to reduce bus load and improve latency

[76, 36, 16] may be applicable in principle, but they must be adapted to the specific ca-

pabilities of the bus standard. Our technique is similar to bus segmentation in the sense

that both try to localize the bus traffic so that the high-cost global bus activities are

minimized. While traditional bus segmentation techniques mainly partition and cluster

the bus nodes into segments, our approach works with the constraints imposed by the

bus standard on the topology, port count, and transfer speed. To accomplish this, we

model the legal topologies using a tree grammar, and we use the constraints to prune

the search space. We present an algorithm that finds a topology that minimizes total

energy consumption for the same communication traffic. The experimental results are

validated using a FireWire snooper.

179

string tree
a(b)(c)

b(a(c)) b c

a

c

a

b

a(b(c)(d))(e(f))

c d

b

f

e

QQ
a

Figure 8.1: Examples of tree strings.

8.3 Problem Formulation

We generate tree topologies for FireWire by incrementally attaching new nodes to ex-

isting trees. We have developed a formal representation for modeling trees and gener-

ating tree topologies. In this section we give several definitions, followed by the cost

function and our problem statement.

8.3.1 Definitions

Definition 21 (Node u∈U) A nodeu is a component in the system that has bus inter-

faces ready to connect to other components.pu is the number of ports available foru.

Su is a finite set of speeds that nodeu can work at.

Definition 22 (Tree) A tree is a connected componentC ⊆ U with exactly |C| − 1

undirected edges.

Definition 23 (Transaction τ ∈ Γ) A transactionτ = (u1,u2,s,w) is a data transfer be-

havior between two nodesu1 andu2 at the transfer speedswith non-zero workloadw,

wheres∈ Su1 ∩Su2 andw is the amount of data (in byte) transfered.

180

We require that the transactions in the system be peer-to-peer. Multicast or broadcast

transactions are not considered.

Definition 24 (Tree string t) A tree string is a string representation of a tree. It is ob-

tained by in-order traversal of the tree. The root of the tree is traversed first, then

recursively each child is traversed. For example, in Fig. 8.1, the stringa(b)(c)

represents a tree of three nodes, witha the root node andb and c leaf nodes. A

matched pair of parentheses with the substring inside represents a subtree. The string

a(b(c)(d))(e(f)) represents a tree of six nodes.c andd are two subtrees (also leaf

nodes) ofb, andb(c)(d) ande(f) are two subtrees ofa.

Definition 25 (Tree grammar G) Let Σ be an alphabetΣ = {u|u∈U}∪{(,) }, and a

nodeu is denoted by a lower-case Roman letter. A tree is represented by a tree string

t that can be generated from grammarG = (V,Σ,P,S), whereV = {B,E} is a set of

variables, S is a start symbol,P is a set of productionsV→V ∪Σ :

E→ u

B→(E)

E→ EB

S→ E

and if a nodeu appears int, it appears exactly once.

Definition 26 (Tree languageL) A languageL(Σ) = {t|t is in Σ∗ andS⇒ t} is a set of

tree strings generated by grammarG. We also useL(v) = {t|t is in Σ∗ andv⇒ t} to de-

note the set of strings generated with the start symbolv∈V, andL(v∗) = {t∗|t is in Σ∗

andv⇒ t} to denote the set of strings that has zero or one or more concatenated sub-

strings each of which is generated with a start symbolv∈V.

Let |t| represent the length of the tree stringt. It is easy to see that for a tree

containingn nodes,|t|= 3n−2.

181

A tree topology can be represented by multiple tree strings. For example,a(b)(c)

andb(a(c)) in Figure 8.1 represent the identical topology with different roots. Even

with the same root, tree stringa(b)(c) anda(c)(b) represent the same tree. Since

any node (capable of bus management) on a FireWire bus can be the root, we can pick

one node as the root and order the rest so that we are able to obtain a canonical form of

a tree string.

Definition 27 (Transforming function H) A transforming functionH converts a tree

string to its canonical form by the means of in-order traversal with sorting of labels.

The canonical form of a tree stringt is: ∀u in t, u and its all children are sorted in

a lexicographical order. Tree stringt1=a(b(c)(d))(e(f)) in Figure 8.1 is in its

canonical form. Tree stringt2=a(e(f))(b(c)(d)) is not in its canonical form since

a and its childreneandb are not sorted. Thus we havet1 = H(t2).

New trees can be formed by adding a nodex to an existing tree. The node can

be either attached as a leaf node or inserted as a non-leaf node. We define a growing

patternF(t,x) to help incrementally generate larger trees from smaller ones.

Definition 28 (Growing function F) L(Σ∪{x}) = L(Σ) ·F(t,x), for all t ∈ L(Σ). Tree

strings inL(Σ∪{x}) can be derived from trees inL(Σ) according to the following rules:

F(t,x) =


d(x) if t =d,

d(x)(β) γ∪d(x(β)) γ∪

d(F(β,x)) γ∪d(β) F ′(γ,x) if t =d(β) γ.

(8.1)

F ′(α,x) =

 /0 if α = ε,

(F(β,x)) γ ∪ (β) F ′(γ,x) if α =(β) γ.
(8.2)

whered∈U represents the root of treet, β ∈ L(E) andγ ∈ L(B∗).

Definition 29 (Tree string setT) A tree string setT for a node setU is a set of tree

strings generated by grammarG and:

182

1) ∀t ∈ T,∀u∈U,u is in t,

2) ∀t ∈ T, t = d0D,d0 ∈U,D ∈ L(B∗),

3) ∀t1, t2 ∈ T, if t1 6= t2, thenH(t1) 6= H(t2), and

4) for any tree stringt = d0D,d0 ∈U,D ∈ L(B∗), |t|= 3|U |−2,

∃t ′ ∈ T, H(t) = H(t ′).

In other words, each tree string inT contains all nodes inU . All the tree strings have

the same root noded0. No two tree strings inT have the same canonical representation.

Tree setT represents a complete set for all the tree topologies for the node setU .

We assume that all the nodes inU are connected to form a single tree topology. A

forest consisting of multiple trees is not allowed.

Lemma 8 (Tree generation) Given a tree string setT for a node setU , a new tree

string setT ′ for the node set ofU ∪{x} is derived fromT without producing identical

topologies by applying growing functionF to each tree inT: T ′ = T ·F(t,x), for all

t ∈ T.

Definition 30 (Port count constraint) A tree can be represented in the form ofdBk,

whered represents the root of the tree, andBk(B∈ L(B)) represents all of itsk subtrees.

The port count constraint is:∀u∈U ,

 pu≥ k+1 if p is a non-root node,

pu≥ k if p is the root node.
(8.3)

wherepu is the port count for nodeu.

For example, in Figure 8.1, the tree stringa(b(c)(d))(e(f)) satisfies(8.3) if fa, fe≥

2, fb≥ 3 and fc, fd, f f ≥ 1.

183

Corollary 1 (Connectivity condition) Given a node setU of n nodes, a tree topology

that connects all the nodes exists, iff

∑
u∈U

pu≥ 2n−2 (8.4)

wherepu is the port count of nodeu.

A tree islegal if every node inU satisfies the port count constraint (8.3) and con-

nectivity condition (8.4).

8.3.2 Cost Function

Given a transactionτ = (uτ,vτ,sτ,wτ), all the nodesu∈U can be categorized into three

sets:Mt , Mr , andMi . Mt = {uτ,vτ} consists of communicating nodes.Mr consists of

all the nodes that repeat the transactionτ on the routing path.Mi consists of the nodes

not involved in the transactionτ. We say the working modesmu for the nodeu in the

above sets each are transferring, repeating, and idle, respectively.

For a given nodeu, the power functionP is a function of the port numberpu and

working modemu, denoted asP(pu,mu). Power function can be a lookup table whose

data entries come from manufacture’s data sheets [67].

We define the power function of a transactionτ and a treet as:

P(τ, t) = ∑
u∈Mt

P(pu,mu)+ ∑
u∈Mr

P(pu,mu) ∑
u∈Mi

P(pu,mu) (8.5)

Power functionP(τ, t) represents the total bus power of the whole systems during the

transactionτ. It consists of power of nodes involved the transaction (both transferring

and repeating node) and power of idle nodes.

For a transactionτ, Effective transaction timeis defined as:

Dτ =
w
s
. (8.6)

184

wherew is the workload ands is the transmission speed.

Note that effective transaction time may not be equal to the actual time to complete

a transaction. Consider two transactions start at the same time, both transferring data

at the same speed and both taking one minute to complete. Assume they equally share

the total bandwidth, the effective transaction time for each transaction is only half a

minute.

During a given time periodD, we suppose there arek transaction instances{τi}(i =

1, . . . ,k). The total effective transaction time is:

Dτ = ∑
i

Dτi . (8.7)

We defineutilizationof the transactionτ is:

λτ =
Dτ

D
. (8.8)

Finally for a given tree stringt, we define our cost function as:

C = ∑
τ∈Γ

P(τ, t)λτ (8.9)

CostC represents the average energy consumption on the bus in unit time. However it

does not include the energy consumption when the bus is completely idle (no transac-

tion occurs).

8.3.3 Problem Statement

Given a treet and a set of transactionsΓ, the tree is afeasibleone if it satisfies the

speed constraint:

∀ τ(uτ,vτ,sτ,wτ) ∈ Γ and∀ x∈Mr , sτ ∈ Sx. (8.10)

185

That is, for a transaction, all the intermediate nodes on a routing path should support

the transfer speed. We aim to find trees that has the minimum cost defined by (8.9).

The input to the problem is a set of nodeV and a set of transactionΓ. The output of

the problem is a tree (or a set of trees) with minimum cost.

In case the input node setU does not satisfies the connectivity condition (8.4), we

addhubsto connect the nodes so that the connectivity condition is satisfied. A hub is

a special node that can repeat transactions but cannot be a peer node in a transaction.

Several types of hubs are available, which are differentiated by their port count. The

more ports a hub has, the more power it consumes when repeating packets. Part of the

topology selection problem is to select different hub types for energy optimality.

8.4 Algorithm

Tree topologies are incrementally generated using our grammar-based growing func-

tion. In this section we present the tree generation algorithm and the top level search

algorithm. A brief discussion on complexity shows that asymptotically our algorithm

generate much fewer trees than exhaustive approach, and in practice, our technique

produce even much fewer trees by applying system-level constraints.

8.4.1 Approach

We take an incremental approach to obtaining the tree set ofk+1 nodes from a tree set

of k nodes. We use our growing functionF to add a node to an existing tree either as

a leaf node or as a non-leaf node. At each incremental step, if a tree topology fails to

satisfy the port count constraint or the transfer speed constraint, it will not be included

into the tree set. After obtaining a tree set for all the nodes, we calculate cost for each

tree to search for optimal topologies.

186

TREEGEN(V, Γ, h)
0 # input : node set U, transaction setΓ, hub type h
1 #output: tree set T
2 #Preprocess: add hub nodes if necessary
3 V ′← preprocess(V,h), #sort nodes in decreasing order by theirpu.
4 for eachv in U ′ { p[v]← pu } # p[v]: port count ofV.
5 v← pop up the first node inU ′

6 T←{u}
7 while U ′ not empty{
8 u← pop up the first node inU ′

9 T ′← T
10 for each treet in T {
11 for each nodev in t {
12 Tl ← ADDASLEAF(t,u,Γ)
13 Tb← ADDASBRANCH(t,u,Γ)
14 T ′← Tl ∪Tb
15 }
16 }
17 T← T ′

18 }
19 return T

Figure 8.2: The tree enumeration algorithm.

8.4.2 Algorithms

The tree generation algorithm is shown in Figure 8.2. The inputs to the algorithm are

a node setU and hub typeh. The output of the algorithm is a tree set containing all

the feasible trees. In the pre-process procedure in Line 3, we check whether the node

setU satisfies the connectivity condition (8.4). If port count is not enough, we add

an adequate number of hubs of typeh into the node set, thus forming a new node set

U ′. We also sort the nodes inU ′ by their port counts to facilitate the tree generation

described below. Arrayp[n] (Line 4) keeps the port count information of all nodes

in U ′ during the process of tree generation. Lines 5–6 gets the first node inU ′ and

initialize the tree setT. The while loop (Lines 7–18) incrementally generates new

trees and expands tree set. Two main steps are ADDASLEAF() and ADDASBRANCH()

which add a new node to the existing tree set as a leaf node and as a non-leaf node,

respectively.

187

ADDASLEAF(t, x, Θ)
1 # input : tree t, node x, transaction setΓ
2 #output: tree set Tl
3 Tl ← /0
4 ptr← 0
5 while ptr < len(t) {
6 while t[ptr] /∈ D { ptr← ptr +1} # find next node id
7 if p[t[ptr]] > 0 { # if port available
8 Tsub← Subtree(t[ptr]) # Tsub: a set of subtrees oft[ptr]
9 insertx(Tsub,

′ (x)′) # so that elements in Tsub are sorted
10 t ′← join(Tsub) # concatenate elements in Tsub into a string
11 t ′′← insertSub(t, t ′) # substitute t[ptr]’s subtrees for t′

12 updatePort(p) # update port count information
13 tag← 1
14 for eachτ ∈Θ {
15 if not checkSpeed(t ′′,τ) {
16 tag← 0; break }
17 }
18 if tag== 1{ Tl ← Tl ∪{t ′′} }
19 }
20 ptr← ptr +1
21 }
22 return Tl

Figure 8.3: The ADDASLEAF routine.

M INTREE(V, Θ, H)
1 # input : node set V , transaction setΘ, hub type set H
2 #output: optimal tree set minTreeSet, minimum cost minCost
3 minTreeSet← /0
4 minCost← ∞
5 for eachh in H {
6 T← TREEGEN(V,h)
7 for eacht in T {
8 cost← getCost(t,Θ)
9 if cost< minCost{
10 minCost← cost; minTreeSet←{(t,h)}
11 } else ifcost== minCost{
12 minTreeSet←minTreeSet∪{(t,h)}
13 }
14 }
15 }
16 if minCost< ∞ {print minCost, minTreeSet}
17 else{ print “no solution found”}

Figure 8.4: The top level topology selection algorithm.

188

Figure 8.3 shows the procedure ADDASLEAF(). When adding a new nodex to an

existing treet as a leaf node, we try attachingx to each node if it has a port available.

In the string of treet, we insert(x) after a nodeu to the right position so that the

new tree remains in its canonical form. We identify the routing path between two

communicating nodesu andv, check speed constraints for every intermediate nodes (if

any), and return whether the tree satisfies the speed constraint. If for all transactions,

the tree satisfies speed constraints, we append it to the tree set.

The other step, similar to ADDASLEAF(), is to addx as a branch node. A connec-

tion between a nodeu and one of its subtrees is identified.x is inserted as the child of

u while the subtree as the child ofx. Thusx becomes a non-leaf node. We repeat this

for all the subtrees ofu. The procedure ADDASBRANCH() is implemented similarly to

ADDASLEAF() as string manipulation and it not shown.

A top level algorithm is shown in Figure 8.4. We assume the connectivity condition

(8.4) is not satisfied thus we try different types of hubs in the outmost loop (Lines 5 and

15). Otherwise the loop can be safely removed. Line 6 generates all feasible trees and

stores them in setT. In the loop of Lines 11–19, we check to see whether the speed

constraint is satisfied. If yes, we then calculate its cost and save it if it is minimum

cost. Finally we output the optimal tree set with hub type or no solution message if all

topologies fails to satisfy the constraints.

8.4.3 Complexity

The complexity of an exhaustive approach is prohibitive. Given a node setU of n

nodes, we can permute the nodes and obtainn! strings, each consisting ofn nodes. For

each string, we need to addn−1 pairs of parenthesis to form a tree string. For each

parentheses pair, we haven−1 locations to add, and adding parentheses pairs is inde-

pendent with each other. Thus we have 2n−1 of ways to addn−1 pairs of parentheses.

Altogether, we can obtainn!2n−1 trees from a node set ofn nodes. Note that among

189

Port/mode Transfer Repeat Idle
1 158.4 138.6 125.3
2 234.3 217.7 174.7
3 379.5 320.1 247.5
4 676.5 498.3 412.5
6 924.0 673.2 541.2

Table 8.1: Power data of FireWire interface (in mW).

those trees, there are trees that topologically identical but differ in root nodes, trees that

are not in their canonical forms, and trees that do not satisfy constraints.

Our algorithm assumes a node to be the root node and trees differ only in the root

will not be repetitively generated. Our algorithm generates tree strings in their canoni-

cal forms and does not generated topologically identical tree strings.

In the ADDASLEAF() routine, the if-branch (Lines 8–18) produces at mostk new

strings (k is the number of nodes in current treet). ADDASBRANCH() routine produces

at most(k−1) new strings. Thus we obtains at most(2k−1) tree strings for a tree of

(k+1) nodes. Theoretically, our algorithm may produce at most(2n−3)!! patterns for

a node set of sizen, which sets a very loose upper bound of generated tree strings. This

is already asymptotically smaller than the exhaustive approach. In reality, our algo-

rithm generates much fewer trees since we apply constraints at each incremental step.

This greatly reduces the generated trees in that step and avoids fast growing of trees in

the succeeding steps. For example, whenn = 8, theoretically the exhaustive approach

produces 5160960 trees and our algorithm may produce at most 135135 strings, only

2.6% of the former approach. In reality, we only generated as few as 90 trees (see

Section 8.5), due to the constraints we applied.

8.5 Experimental Results

We apply our algorithm to two FireWire bus examples. We use FireBug [9], a software

bus snooping tool, to monitor the bus traffic and obtain the workload information. In

190

Device Max speed(Mbps) port #
Mac1 400 2
Mac2 400 2
PC1 400 2
HD1 200 2
Cam 100 1
iBot1 200 1
ibot2 200 1
Hub 400 3/4/6

Table 8.2: A list of FireWire devices

Trans. u1 u2 Speed(Mb/s) Workload (x1000Mb)
1 Mac1 HD1 200 13
2 Mac1 PC1 400 25
3 Mac1 Cam 100 80
4 Mac1 iBot1 200 46
5 Mac2 HD1 200 5
6 PC1 iBot2 200 46

Table 8.3: A list of transactions

Hub type p = 3 p = 4 p = 6
of trees 90 269 376
MaxCost 270.6 306.2 338.9
MinCost 213.2 267.5 290.8
diff(%) 12.2 14.5 16.6

of optimal trees 4 1 1

Table 8.4: Experiment results for Example I (eight nodes).

191

Cam

Mac1

iBot2

PC1

iBot1

Mac2

HD1

""" ��
bbb

HUB

Cam

Mac1

iBot2

PC1

Mac2

iBot1

HD1

"""
�
�
bbb

HUB

Cam

Mac1

iBot1

HD1

Mac2

iBot2

PC1

""" ��
bbb

HUB

Cam

Mac1

iBot2

Mac2

HD1

PC1 iBot1

"""
�
�
bbb

HUB

Figure 8.5: Example I:p = 3, four trees found.

Cam

Mac1

iBot2

PC1

Mac2

HD1 iBot1

!!!! �� SS
aaaa

HUB

Figure 8.6: Example I:p = 4, one tree found.

HD1

Mac2

Cam

Mac1

PC1 iBot1 iBot2

!!!! �� JJ
aaaa

HUB

Figure 8.7: Example I:p = 6, one tree found.

192

the first example we have eight nodes to be connected. The second example has the

similar setup but in a larger scale, which makes it almost impossible for the exhaus-

tive approach to find out a solution in a practical time period. Our algorithm generates

optimal tree sets efficiently. Our experimental results show that the optimal solutions

we found save up to 15%–20% energy compared to an arbitrarily generated topology.

Furthermore, workload balanceness and hub types have perceivable influences on en-

ergy cost. We have built a web-based tool to facilitate the user to interact with the core

algorithm on the server side.

Example I

We have seven devices to be connected with FireWire bus interfaces, as listed in table

2: Mac1 and Mac2 are two desktop Mac computers, PC1 is a notebook computer, HD1

is a FireWire hard drives, Cam is a Camcorder, iBot1 and iBot2 are two web cameras.

A hub is added to the device list in order to satisfy the connectivity condition.

We use FireBug to capture the workload information. FireBug can keep track of

all the activity on the FireWire bus and report to the user the desired events by filtering

out the irrelevant ones. We first arbitrarily interconnect all the devices and turn on

FireBug to mornitor and record the traffic on the bus, and extract transaction-related

information from FireBug log file. For example, we obtain the nodes involved in a

transaction, the data transfer speed and the number of packets transferred. Then we

obtain the transaction table shown in Table 8.3.

Table 8.4 shows the experiment results. Although this experiment looks simple, to

find the optimal solution is not trivial. Exhaustive enumeration will produce 5,160,960

trees (see the last section). Our algorithm shrinks the tree set sizes down to less than

400 (first line of Table 8.4) using our grammar-driven tree generation.

MaxCostandMinCost are the maximum and minimum cost value for all gener-

ated feasible trees. In three cases (fn = 3,4,6), the differences betweenMinCost and

193

MaxCostare ranging from 12.2% to 16.6%, representing the potential energy savings

by selecting the trees withMinCost. It is interesting to see that the more ports the hub

has, the more energy the tree consumes. The reason is that the hub with more ports

consumes more energy to repeat packets. Therefore for this example, a three-port hub

is the optimal solution.

Figs. 8.5, 8.6, and 8.7 show the optimal tree sets when using hubs of three, four, and

six ports, respectively. When using a three-port hub, four trees are found (see Fig. 8.5).

When using a six-port hub, only four ports of the hub are used. This is because for some

transactions, it costs less when the two peer nodes are directly connected (if possible)

instead of going through a hub. Trees in Fig. 8.6 and Fig. 8.7 are different even in both

cases four ports are used. The reason is that different hub types in the two cases causes

different energy consumption.

To see whether the potential energy savings are sensitive to the workload balance-

ness, we change the workload on transaction 3 (betweenMac1 andCam) and generate

optimal topology for each workload value. Transaction 3 originally has the largest

workload among all transactions. We change its workload value from the average of

all transactions to positive infinity (disabling all other transaction). Fig. 8.8 shows

the curve of the workload percentage vs. the potential energy savings. The workload

percentage is the ratio between the workload of the selected transaction to the total

workload of all transactions. The curve shows that the higher the workload percentage

is, the higher the potential energy saving becomes. This implies that the more unbal-

anced the workload is, the more significant the potential energy saving becomes, by up

to nearly 20% in this example.

Example II

We use three Mac computers, four FireWire hard drives, one printer, one scanner and

one camcorder, totally ten devices. To satisfy the connectivity condition, we add three,

194

10 20 30 40 50 60 70 80 90 100
12
13

14

15

16

17

18

19

20

Workload percentage (%)

En
er

gy
 s

av
in

g
(%

)

Figure 8.8: Workload balanceness vs. potential energy saving.

hub type p = 3 p = 4 p = 6
of hubs 3 2 1

of total devices 13 12 11
of trees 45761 17001 2013
MaxCost 332.8 304.4 270.4
MinCost 300.9 268.8 236.7
diff(%) 10.1 13.3 14.2

of optimal trees 3 2 1

Table 8.5: The number of devices with different hub types.

195

two, and one hub when using three-port, four-port, six-port hubs, respectively (first

two rows in Table 8.5). For the exhaustive approach, the problem of up to thirteen

nodes becomes intractable in practice. Out algorithm generated highly compact tree

sets (Row 3 of Table 8.5). Potential energy savings range from 10.1%–14.2%.

Note that in our cost function, we only consider the time periods when there is

traffic on bus. When the bus is complete idle, part or all the bus nodes can be potentially

disabled, resulting more energy savings. In the implementation of FireWire bus drivers,

the link layer and above layers can be disabled for low power if no transaction is on the

node. This is in contrast to our examples, where we assume all the layers are on all the

time. Even for the physical layer controller, dynamic power management techniques

can be applied to disable it when there is no traffic passing through it. All the above

conditions are orthogonal to our techniques. It is conceivable that additive energy

saving can be achieved by combining our technique with other power management

techniques.

8.6 Chapter Summary

This chapter presents a method for optimizing peer-to-peer serial bus topology for en-

ergy reduction. To represent trees, we use a canonical string form that is both concise

and easy to manipulate. We purpose an incremental approach to enumerating valid tree

topologies. By applying a number of constraints in each enumeration step, we are able

to obtain both complete and compact tree sets without producing redundant trees. We

capture the bus workload information by monitoring the bus traffic and factor it into

the cost function for energy optimization.

Workload distribution has an impact on the potential energy savings. The more

imbalanced the workload is, the more energy saving opportunities exist. Hub type

selection influences the optimal solution points due to variations in their individual

power behavior.

196

Although we use FireWire bus to demonstrate the effectiveness of our technique,

our approach is general enough to apply to many other tree-like architectures. As low

power serial busses become more popular in computer systems and system-on-chip,

we believe our technique can be applied to more applications and will show significant

energy savings.

Current topology optimization is static, requiring the bus to reconfigure at least

once to form an optimal topology. It is possible to construct a bus topology with re-

dundant physical links while dynamically configuring it to form new tree topologies

for performance, energy-saving, and fault tolerance.

197

Part V

Conclusion

198

Chapter 9

Conclusions and Future Work

This document presents the IMPACCT tool and methodology for system-level power

management of power-aware embedded systems. The primary goal of the tool is to

greatly expand the range of power/performance trade-offs, so that the system can most

effectively adapt to the wide range of power availability in different operating scenar-

ios. This can be accomplished by leveraging existing low-power and high-performance

techniques, but a naive technique integration have led to incorrect results because im-

portant system-level properties were not properly considered. One of our contribu-

tions is precisely in modeling the important system-level dependencies including co-

activation and inter-component modes. We have also developed power-aware schedul-

ing and mode selection as two core tools for computing system-level power manage-

ment policies. Our scheduler not only generates different schedules whose parallelism

tracks the power availability, but also more aggressively increases the dynamic range

by task motion while preserving timing and power constraints. Our mode selection

methodology systematically exploits novel power management features in new compo-

nents with a much richer set of power modes while considering all timing/power over-

head associated with mode changes. All of these were made possible by our system-

199

level dependency modeling methodology. Also supported is a system-level simulation

engine that coordinates the execution of heterogeneous models that can range from na-

tive code to detailed simulation models and even emulators. They comprise a powerful

framework to aid the quick exploration and validation of power management decisions.

We believe this work represents a major step towards a framework that will be able to

effectively integrate the best power management techniques developed by others and

by us.

We are currently pursuing several directions for future work. One ongoing project

is to augment the library with a richer collection of components to include not only

processor models but also more types of memory modules, peripheral devices, and

battery models. To make our methodology practical and usable by engineers, we are

also investigating automatic extraction techniques to reduce the effort in constructing

the models needed as input to the IMPACCT tool. On scheduling, we are develop-

ing on-line, battery-aware algorithms under not onlypowerconstraints but alsoenergy

constraints. This will be supported by models for batteries and other energy sources

[43, 51, 73]. Some initial work was recently proposed [46, 50], but we believe energy

constraints must be considered in the context of the battery discharge and even recharge

characteristics. Schedulers that are aware of battery discharge characteristics have been

proposed [45, 51] but they do not treat power as constraints. On mode selection, it is

being generalized to algorithm selection (e.g., between alternative image compression

algorithms), which must be accompanied by data structure selection. Switching be-

tween algorithms and data structures will incur even larger timing and power overhead

but the potential payoff will be tremendous. Together, we expect all these features will

make IMPACCT a compelling tool for power-aware designs in the near future.

200

Bibliography

[1] The Alchemy Au1100 from AMD: Internet edge processor. http://www.alchemy-

semi.com/productinfo/au1100/index.html.

[2] INTEL ethernet PHYs/transceivers. http://developer.intel.com/design/network/-

products/ethernet/linecardept.htm.

[3] INTEL XScale microarchitecture. http://developer.intel.com/design/intelxscale/.

[4] NASA/JPL’s Mars Pathfinder home page. http://mars3.jpl.nasa.gov/MPF/-

index0.html.

[5] 1394 Trade Association. P1394b draft standard for a high performance serial bus

(high speed supplement). Inhttp://www.zayante.com/p1394b/drafts/p1394b1-

33.pdf, 2001.

[6] Y. Aghaghiri, F. Fallah, and M. Pedram. Irredundant address bus encoding for

low power. InProc. of Int. Symposium on Low Power Electronics and Design,

pages 182–187, August 2001.

[7] V. Alliance. On chip bus attributes version 1. In

http://www.vsi.org/library/specs/summary.htm, 1998.

[8] D. Anderson. FireWire System Architecture. MindShare Inc., Reading, Mas-

sachusetts, second edition, 1999.

201

[9] Apple Inc. Apple’s firewire sdk 2.8.1. In

ftp://ftp.apple.com/developer/DevelopmentKits/FireWire 2.8.1 SDK.sit.bin,

2000.

[10] N. K. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler. Hybrid global/local

search strategies for dynamic voltage scaling in embedded multiprocessors. In

Proc. International Symposium on Hardware/Software Codesign, pages 243–248,

2001.

[11] L. Benini and G. De Micheli. Networks on chips: a new soc paradigm.IEEE

Computer, 35(1):70–78, Jan 2002.

[12] L. Benini, G. Paleologo, A. Bogliolo, and G. De Micheli. Policy optimization

for dynamic power management.IEEE Transactions on Computer Aided Design,

18:813–833, June 1999.

[13] T. Burd and R. Brodersen. Design issues for dynamic voltage scaling. InProc.

International Symposium on Low Power Electronics and Design, pages 9–14, July

2000.

[14] A. Chandrakasan, S. Sheng, and R. Brodersen. Low-power CMOS digital design.

IEEE Journal of Solid-State Circuits, 27(4):473–484, April 1992.

[15] L.-F. Chao, A. LaPough, and E. H.-M. Sha. Rotation scheduling: A loop pipelin-

ing algorithm. IEEE Transactions on Computer Aided Design, 16(3):229–239,

March 1997.

[16] J. Chen, W. Jone, J. Wang, H.-I. Lu, and T. Chen. Segmented bus design for low-

power systems.IEEE Trans. on Very Large Scale Integration (VLSI) Systems,

7(1):25–29, March 1999.

202

[17] R. Cherabuddi, M. Bayoumi, and H. Krishnamurthy. A low power based system

partitioning and binding technique for multi-chip module architectures. InProc.

Proc. Great Lakes Symposium on VLSI, pages 156–162, 1997.

[18] P. Chou and G. Borriello. Software scheduling in the co-synthesis of reactive real-

time systems. InProc. Design Automation Conference, pages 1–4, June 1994.

[19] P. Chou and G. Borriello. Interval scheduling: Fine grained code scheduling for

embedded systems. InProc. Design Automation Conference, pages 462–467,

June 1995.

[20] E.-Y. Chung, L. Benini, and G. De Micheli. Dynamic power management using

adaptive learning tree. InProc. International Conference on Computer-Aided

Design, pages 274–279, 1999.

[21] H. Consortium. Hypertransport I/O link specification 1.03. In

http://www.hypertransport.org/downloads/HTIOLink Spec.pdf, 2001.

[22] W. J. Dally and B. Towles. Route packets, not wires: On-chip interconnection

networks. InProc. of DAC, pages 684–689, June 2001.

[23] P. Eles, A. Doboli, P. Pop, and Z. Peng. Scheduling with bus access optimiza-

tion for distributed embedded systems.IEEE Transactions on VLSI Systems,

8(5):472–491, 2000.

[24] J. Henkel and H. Lekatsas.A2BC: adaptive address bus coding for low power

deep sub-micron designs. InProc. of the 38th Design Automation Conference,

pages 744–749, June 2001.

[25] I. Hong, D. Kirovski, G. Qi, M. Potkonjak, and M. B. Srivastava. Power op-

timization of variable voltage core-based systems. InProc. Design Automation

Conference, pages 176–181, June 1998.

203

[26] I. Hong, D. Kirovski, G. Qu, and M. Potkonjak. Power optimization of variable-

voltage core-based systems.IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 18(12):1702–1714, 1999.

[27] I. Hong, M. Potkonjak, and M. B. Srivastava. On-line scheduling of hard real-

time tasks on variable voltage processor. InProc. International Conference on

Computer-Aided Design, pages 653–656, November 1998.

[28] I. Hong, G. Qu, M. Potkonjak, and M. Srivastavas. Synthesis techniques for

low-power hard real-time systems on variable voltage processors. InProc. IEEE

Real-Time Systems Symposium, pages 178–187, December 1998.

[29] E. Huwang, F. Vahid, and Y.-C. Hsu. FSMD functional partitioning for low power.

In Proc. Design, Automation and Test in Europe, pages 22–28, 1999.

[30] C.-H. Hwang and A. Wu. A predictive system shutdown method for energy sav-

ing of event-driven computation. InProc. 1997 Design Automation Conference,

November 1997.

[31] IBM. Coreconnect bus architecture. In

http://www.chips.ibm.com/products/coreconnect/index.html, 1999.

[32] C. Im, H. Kim, and S. Ha. Dynamic voltage scaling technique for low-power

multimedia applications using buffers. InProc. International Symposium on Low

Power Electronics and Design, August 2001.

[33] Intel. Third generation I/O architecuture. In

http://developer.intel.com/technology/3GIO, 2001.

[34] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically variable

voltage processors. InProc. International Symposium on Low Power Electronics

and Design, pages 197–202, August 1998.

204

[35] M. Jacome, G. de Veciana, and C. Akturan. Resource constrained dataflow re-

timing heuristics for vliw asips. InProc. International Symposium on Hard-

ware/Software Codesign, pages 12–16, May 1999.

[36] J. Kim and A. El-Amawy. Performance and architectural features of segmented

multiple bus system. InProc. of International Conference on Parallel Processing,

pages 154–161, 1999.

[37] P. V. Knudsen and J. Madsen. Integrating communication protocol selection with

hardware/software codesign.IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 18(8):1077–1095, August 1999.

[38] S. Komatsu, M. Ikeda, and K. Asada. Low power chip interface based on bus data

encoding with adaptive code-book method. InProc. Ninth Great Lakes Sympo-

sium on VLSI, pages 368–371, March 1999.

[39] L.-S. P. L. Shang and N. Jha. Power-efficient interconnection networks: Dynamic

voltage scaling with links.Computer Architecture Letters, 1(2), May 2002.

[40] K. Lahiri, A. Raghunathan, and G. Lakshminarayana. LOTTERYBUS: a new

high-performance communication architecture for system-on-chip designs. In

Proc. Design Automation Conference, pages 15–20, June 2001.

[41] K. Lalgudi and M. Papaefthymiou. Fixed-phase retiming for low power design.

In Proc. International Symposium on Low Power Electronics and Design, pages

259–264, August 1996.

[42] C. Leiserson and J. Saxe. Retiming synchronous circuitry.Algorithmica, 6(1):5–

35, 1990.

[43] H. Linden.Handbook of Batteries. McGraw-Hill, 1995.

205

[44] J. Liu, P. H. Chou, N. Bagherzadeh, and F. Kurdahi. Power-aware scheduling

under timing constraints for mission-critical embedded systems. InProc. Design

Automation Conference, pages 840–845, June 2001.

[45] J. Luo and N. K. Jha. Battery-aware static scheduling for distributed real-time

embedded systems. InProc. Design Automation Conference, pages 444–449,

June 2001.

[46] T.-L. Ma and K. Shin. A user-customizable energy-adaptive combined

static/dynamic scheduler for mobile applications. InProceedings 21st IEEE Real-

Time Systems Symposium, pages 227–236, November 2000.

[47] E. Musoll, T. Lang, and J. Cortadella. Working-zone encoding for reducing

the energy in microprocessor address bueses.IEEE Trans. on VLSI Systems,

6(4):568–572, December 1998.

[48] T. Okuma, T. Ishihara, and H. Yasuura. Real-time task scheduling for a variable

voltage processor. InProc. International Symposium on System Synthesis, pages

24–29, November 1999.

[49] R. Ortega and G. Borriello. Communication synthesis for distributed embedded

systems. InProc. International Conference on Computer-Aided Design, pages

437–444, 1998.

[50] A. Parikh, M. Kandemir, N. Vijaykrishnan, and M. Irwin. Energy-aware instruc-

tion scheduling. InProc. International Conference on High Performance Com-

puting, pages 335–344, December 2000.

[51] M. Pedram, C.-Y. Tsui, and Q. Wu. An integrated battery-hardware model for

portable electronics. InProc. Asia and South Pacific Design Automation Confer-

ence, pages 109–112, January 1999.

206

[52] T. Pering, T. Burd, and R. Brodersen. The simulation and evaluation of dynamic

voltage scaling algorithms. InProc. International Symposium on Low Power

Electronics and Design, pages 76–81, August 1998.

[53] Q. Qiu, Q. Wu, and M. Pedram. Dynamic power management of complex systems

using generalized stochastic petri nets. InProc. Design Automation Conference,

pages 352–356, 2000.

[54] G. Quan and X. S. Hu. Energy efficient fixed-priority scheduling for real-time

systems on variable voltage processors. InProc. Design Automation Conference,

pages 828–833, 2001.

[55] A. Rjoub, S. Nikolaidis, O. Koufopavlou, and T. Stouraitis. An efficient low-

power bus architecture. InProc. of IEEE Int. Symposium on Circuits and Systems,

pages 1864–1867, June 1997.

[56] F. Sanchez and J. Cortadella. Time-constrained loop pipelining. InProc. Interna-

tional Conference on Computer-Aided Design, pages 592–596, November 1995.

[57] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and

A. Sangiovanni-Vincentelli. Addressing the system-on-a-chip interconnect woes

through communication-based design. InProc. Design Automation Conference,

pages 667–672, June 2001.

[58] D. Shin, J. Kim, and S. Lee. Low-energy intra-task voltage scheduling using

static timing analysis. InProc. Design Automation Conference, pages 438–443,

June 2001.

[59] Y. Shin and K. Choi. Power conscious fixed priority scheduling for hard real-time

systems. InProc. Design Automation Conference, pages 134–139, June 1999.

207

[60] Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-time embedded

systems on variable speed processors. InProc. International Conference on

Computer-Aided Design, pages 365–368, November 2000.

[61] R. Sims. Signal to clutter measurement and atr performance. InProc. of the SPIE

- The International Society for Optical Engineering, volume 3371, pages 13–17,

April 1998.

[62] T. Simunic, L. Benini, and G. De Micheli. Event-driven power management of

portable systems. InProc. International Symposium on System Synthesis, pages

18–23, 1999.

[63] A. Sinha and A. Chandrakasan. Operating system and algorithmic techniques for

energy scalable wireless sensor networks. InProceedings of the 2nd International

Conference on Mobile Data Management, January 2001.

[64] M. Srivastava, A. Chandrakasan, and R. Brodersen. Predictive system shutdown

and other architectural techniques for energy efficient programmable computa-

tion. IEEE Transactions on VLSI Systems, 4(1):42–55, March 1996.

[65] M. Stan and W. Burleson. Bus-invert coding for low-power I/O.IEEE Trans. on

VLSI Systems, 3(1):49–58, March 1995.

[66] H. Stone. Mars pathfinder microrover: A low-cost, low-power spacecraft. In

Proc. the 1996 AIAA Forum on Advanced Developments in Space Robotics, Au-

gust 1996.

[67] Texas Instruments. IEEE 1394 products: Integrated devices, link layer controllers

and physical layer controllers. Inhttp://www.ti.com/sc/1394, 2002.

[68] A. Wang and A. Chandrakasan. Energy efficient system partitioning for dis-

tributed wireless sensor networks. InProc. IEEE International Conference on

Acoustics, Speech and Signal Processing, pages 905–908, May 2001.

208

[69] E. F. Weglarz, K. K. Saluja, and M. H. Lipasti. Minimizing energy consump-

tion for high-performance processing. InProc. Asian and South Pacific Design

Automation Conference, pages 199–204, 2002.

[70] G.-Y. Wei, J. Kim, D. Liu, S. Sidiropoulos, and M. Horowitz. A variable-

frequency parallel I/O interface with adaptive power-supply regulation.IEEE

Journal of Solid-State Circuits, 35(11):1600–1610, November 2000.

[71] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU

energy. InUSENIX Symposium on Operating Systems Design and Implementa-

tion, pages 13–23, 1994.

[72] W. Wolf. An architectural co-synthesis algorithm for distributed embedded com-

puting systems.IEEE Transactions on VLSI Systems, pages 218–229, June 1997.

[73] Q. Wu, Q. Qiu, and M. Pedram. An interleaved dual-battery power supply for

battery-operated electronics. InProc. Asia and South Pacific Design Automation

Conference, pages 387–390, January 2000.

[74] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy.

IEEE Annual Foundation of Computer Science, pages 374–382, 1995.

[75] T. Z. Yu, F. Chen, and E. H.-M. Sha. Loop scheduling algorithms for power

reduction. InProc. IEEE International Conference on Acoustics, Speech and

Signal Processing, pages 3073–6, May 1998.

[76] Y. Zhang, W. Ye, and M. Irwin. An alternative architecture for on-chip global

interconnect: segemented bus power modeling. InConf. Record (Signals, Systems

& Computers) of 32nd. Asilomar Conf., pages 1062–1065, 1998.

209

Appendix A

Tool

A.1 Introduction

A.1.1 An Overview of IMPACCT tool

IMPACCT tool consists ofSchedulerand Mode Selector. It performs power-aware

scheduling and mode selection in order to ensure that all timing/power constraints of

the system are satisfied and that all overheads are taken into account. The tool combines

the state-of-the-art techniques at the system level, saving designers from many possible

pitfalls of system-level power management. The goal of the tool is to expand the range

of power/performance trade-offs, so that the system can most effectively adapt to the

wide range of power availability in different operating scenarios.

The integrated view of the tool is shown in Figure1. Theinputs are theTiming Con-

straint Graphand Component Library with Mode Dependency graph, both of which

should be manually extracted from the system specification. The scheduler and mode

selector work together with a feed back loop, converging the initial raw schedule to

the final optimal schedule. The output is the final schedule that considers all the power

and timing constraints, and includes feasible mode selection that saves the total system

210

energy consumption.

Timing Constraint Graph

Scheduler

Initial Schedule

Mode Selector

Component Library
with MDG

Final
Schedule

Input Schedule

*MDG = Mode Dependency Graph

211

A.1.2 Features of IMPACCT tool version 1.0

• The tool is cross-platform, though examples in this appendix were run on MAC

OS X.

• The current version of the tool is not fully integrated yet. In other words, the

Scheduler and the Mode Selector are two separate tools. Therefore, the output

of the Scheduler has to be manually converted into the input format of the Mode

Selector. This procedure will be automated in the future version.

• The Scheduler tool performs a battery simulation in addition to scheduling, which

enables to see the battery behavior corresponding to a specific schedule.

This appendix will explain Scheduler and Mode Selector as two independent tools.

A.2 Scheduler

A.2.1 Software Installation

Python

You need Python 2.0.1 or higher to run the tool. Python can be obtained for free from

http://www.python.org. Find an appropriate package for your platform (Mac, Win-

dows, Unix, or Linux), follow their instructions to unpack and install on your machine.

Jython

You need Jython 2.0 or higher to run the Scheduler. Jython could be downloaded for

free from http://www.jython.org/download.html. Find an appropriate package for your

platform (Mac, Windows, Unix, or Linux), follow their instructions to unpack and in-

stall on your machine.

Scheduler

212

1) Download the Scheduler from

http://embedded.ece.uci.edu/cgi-bin/cvsweb.cgi/tool/scheduler/scheduler.tar.gz

2) Unpack by typing (in the system shell)

%tar zxvf scheduler.tar.gz

For the older versions of tar, you should type,

%gzcat scheduler.tar.gz | tar xvf scheduler.tar

3) Type the following to compile the battery simulator, which is written in fortran.

%cd batsim

%./compile.bat

A.2.2 Getting Started

There are several ways to start the scheduler. The choice depends on the usage of

daemonfor running the scheduler and the battery simulator. The scheduler can either

run on a built-in Jython, or on a daemon. However, the battery simulation MUST run

on a daemon. The location of the daemons could be local or remote. The following are

three typical ways, though other combinations are also possible.

1) Running the scheduler as a built-in method, and running the battery simulation

on a localdaemon. (default)

2) Running both on local daemon

3) Running both on remote daemon

213

The following is the explanation of each method. Choose one of them, and follow

the steps.

1) This is the simplest way. Open the shell, go to the directory where you unpacked

the scheduler, and type

%python run.py [-x] sd bd gui

sd : Scheduler daemon

bd : Battery simulation daemon

gui : GUI

-x : If current terminal window supports xterm, the specified daemon(s)/GUI

will be started in new xterms. If not, it is preferred to start each dae-

mon/GUI in a separate terminal window without -x switch.

The Scheduler GUI will pop up.

214

2) Open the shell, go to the directory where you unpacked the scheduler, and type

%python run.py [-x] sd bd gui

When the Scheduler pops up, open Daemon→Scheduler. Choose Local, specify

the Port number, and press OK.

Running the programs on local daemon could be faster than running on built-in

Jython.

3) Open the shell, go to the directory where you unpacked the scheduler, and type

%python run.py [-x] sd bd gui

When the Scheduler pops up, open Daemon→Scheduler. Choose Remote, spec-

ify the Port, type in the Host or select from the list, and press OK. If you type in

the host, then the selected list is disabled.

Then, open Daemon→Simulator. Choose Remote, specify the Port, type in

215

the Host or select from the list, and press OK. If you type in the host, then

the selected list is disabled. (The example below specifies the host as beauti-

ful.ece.uci.edu)

Note: When you are running on Daemon, you must remember to close it when

you finish running the tool, before closing the Scheduler GUI. Otherwise, the

Daemon will run forever. In order to close a daemon, type exit on the command

box(Cmd), press Send button, and press OK.

A.2.3 Running the tool

Loading the Input

There are two possible ways to load the input. You can (1) load it from file or (2)

directly type in the input.

(1) If you want to load the input from file, you must first create an input text file

that that contains the representation of timing constraint graph. See Section A.4

to get the reference of input format. Save your input file in the directory named

input, which you will find under the directory where you unpacked the tool.

216

Go back to the Scheduler GUI and open File→Load graph. Choose your input

file and click on Open.

You will see your input file loaded in the input text box on Scheduler GUI.

(2) You can also directly type the input into the input text box on Scheduler GUI.

Execution

(1) Scheduler

When the input is loaded onto the Input box, you can run three programs that

output schedules meeting: i) Timing constraint, ii) Max power constraint, iii)

217

Min power constraint, respectively. In order to execute, either click on each cor-

responding button,

or select from the menu.

After running three programs sequentially, you will get the output schedule.

The graphical result will be shown in the middle box labeled Power, and the out-

put text will be shown on the Output text box on the top right side.

• Et : Total energy

• Ec: Energy cost (Area of boxes above the minimum power constraint)

• Pmax: Maximum power constraint

• Pmin: Minimum power constraint

• Ut : Resource Utilization

218

(2) Battery simulator

After running the scheduler, you can run the Battery simulator.

i) Specify the feature of simulation on GUI.

– 1 Cycle simulates only one period time of the schedule, whereas Whole

Life simulates the whole battery life.

– Vth/V0 is the ratio of the threshold voltage to the initial output voltage

of the battery. This ratio determines the length of the profile, since the

simulation continues until the Voltage reaches the threshold voltage.

– If you check Live update and specify the second, you will be able to

see the profile at the run-time of simulation. Otherwise, you will see

the profile at the end of simulation.

ii) Run the simulator.

Press the Simulate button. You will see the output in the Profile box on

the bottom of GUI. On the right end of the graph, the total time of the pro-

file(T) and the threshold voltage(V) will appear. The example below is the

profile of the whole battery lifetime, with default Vth/V0 Ratio, 0.9, which

was run without live update.

iii) Scale

You can perform custom scale for analysis. Check Custom radio button,

and type any minimum and maximum numbers into each text box, and

219

press Return key on keyboard.

Other features

(1) Display

You can change the display of the graphical output of scheduling.

i) View

– Time - This option shows the component level graph of the schedule

and power consumption.

– Power - This option shows the system level graph of the schedule and

power consumption.

– Both - This option shows both graphs.

– T & P-curve - This option shows a graph that combines both graphs.

On the Time graph, the Power graph is overlapped as an outline curve.

ii) Color scheme

You can change the color scheme of the Power graph. Mono enables other

options of color scheme.

– You can specify a color from the color list.

– Choosing Filled fills the whole block with the specified color, which

makes it easier to see the total energy consumption.

– Choosing Line shows only a silhouette of the power consumption.

(2) Reload

You can load a new input and re-execute. Load the input with the same method

as before, and press the Reload button, which is next to the Input box on GUI.

Then, repeat the steps explained in the previous section.

220

Saving the result

To save the current timing constraint graph(the input), open File→Save graph, and save

the file.

To save the output as a text file, open File→Save result, and save the file.

221

To save the output graphs as PostScript, press the Create PS button on the GUI.

This will automatically create two files under output directory.

• [file] sch.ps, this is the .ps for the scheduling result. If the input file is ”exam-

ple.txt”, this file will be ”examplesch.ps”.

• [file] sim.ps, this is the .ps for the simulation result. If the input file is ”exam-

ple.txt”, this file will be ”examplesim.ps”.

Note: Do not forget to close the daemon, before closing the GUI.

222

A.3 Mode Selector

A.3.1 Software Installation

Python

You need Python 2.0.1 or higher.

Tkinter

To display the graphical interface, the Mode Selector uses the Tkinter module in Python.

To test whether the Tkinter module is properly installed, open the shell, and type

%python

%import Tkinter

As an alternative way, you can run either python.exe or idle.pyw by double clicking the

icon, and type

>>>import Tkinter

If no error message comes up, then the Tkinter is properly installed.

Mode Selector

1) Download the Mode Selector from

http://embedded.ece.uci.edu/cgi-bin/cvsweb.cgi/tool/modesel/ms071302.tar.gz

2) Unpack by typing (in the system shell)

%tar zxvf ms071302.tar.gz

For the older verson of tar, type

%gzcat ms071302.tar.gz | tar xvf ms071302.tar

A.3.2 Getting Started

To start the Mode Selector, open the shell, go to the directory where you unpacked the

Mode Selector, and type

%python ms gui.py

The Mode Selector window will pop up.

223

A.3.3 Running the tool

Loading the input

Before running the tool, two input files must be saved in the same directory the mode

selector is installed. These are the Component library with MDG, and the input sched-

ule. The input schedule is the output file of the Scheduler with converted file format(.txt→.py).

The input formats could be found in [2] in Section A.4.

When the input is ready, go back to the Mode Selector GUI.

To load the Component Library with MDG, open File→Load Component Library.

Choose your input file, for example, lib1.py, and click Open.

224

To load the initial schedule, open File→Load Time Schedule. Choose your input

file in ./schd, for example, schd1c.py, and click Open.

You will see the input graph with random color scheme, loaded on your GUI.

225

Execution

To run the Mode Selector, select Tools→Run Mode Selection.

You will see the result on your GUI. It contains (1) the mode schedule graphs on the

left, (2) schedule information on the top right, and (3) component information on the

bottom right.

(1) The Mode Schedule graphs

The upper graph shows the time view of mode schedules of each component.

The boxes with chromatic colors are the tasks, labeled with task name and mode

name. The gray boxes are idle intervals, labeled by the mode name. The light

gray boxes are the mode change intervals, which have no label, and the mode is

non-determined.

The lower graph shows the power profile, which is the time view of total power

consumption. The red lines show the maximum and minimum power constraints.

(In the picture above, the minimum power constraint is zero, so the line is on the

226

bottom)

(2) Schedule info

It shows the energy consumption(Joule), energy cost(Joule), total execution time(sec),

maximum power constraint(Watt), minimum power constraint(Watt), real max-

imum power(Watt), and real minimum power(Watt). The energy cost is the en-

ergy consumption above the minimum power constraint. Real maximum and

minimum powers are the peak powers that the mode schedule reaches.

(3) Component info

The information of the tasks appears on this box dynamically, as you move

around the mouse on Mode Selector GUI, and point to any component. It shows

the task name, allocated resource, mode, and the power consumption(Watt).

Other features

(1) You can change the view of the result with three options: Task Only, Show All,

and Power profile.

(Note: Change color scheme and Refresh are not implemented yet.)

– Task Only shows the result excluding the idle and mode change intervals.

227

– Show All gives the original output graph, including all intervals.

– Power profile gives the monochromatic view of power, which makes it eas-

ier to see the energy consumption and the fluctuation of power.

228

(2) You can also disable and enable the view of the graphs by selecting among win-

dow options.

– Time window shows the upper graph

– Power window shows the lower graph

– Both shows both(default).

Saving the result

You can save the output graphs in PostScript format. Select Tools→Generate Postscript,

choose the desired directory (default is schd), type the file name and press Save.

229

Note: Saving the input and output as text files will be implemented in the next

version.

230

A.4 Input formats

The Timing Constraint Graph is represented in a text file. You can find example.txt

in the package as an example. Component library with MDG and the Input schedule

are represented as a dictionary data structure in Python. lib1.py and schd1c.py are the

examples, respectively. More information about the inputs Timing Constraint Graph

and Mode Dependency Graph could be found in the reference papers.

The following are some partial examples for the demonstration of input formats. For

complete examples, please look into the example files.

Input for the Scheduler

This file is the timing constraint description

of a scheduling problem.

It is used as the input file to the IMPACCT scheduler.

part 1

the header of the constraint graph description

format: graph [name]

graph test

part 2

resources

format: r [resource ID] [1 (currently not used)]

r A 1

r B 1

r C 1

231

part 3

tasks

format: t [task ID] [delay] [power] [resource ID]

t a 4 8 A

t b 3 2 A

t c 3 8 A

t d 2 4 A

t e 2 7 B

t f 3 8 B

t g 2 6 B

t h 2 6 C

t i 3 8 C

part 4

timing constraint

format: c [event1 ID] [event2 ID] [constraint]

event can be start and end of a task,

represented by task.s and task.e

c a.s b.s 7

c a.s c.s 8

c b.s g.s 3

c b.s i.s 3

232

c c.s d.s 2

c d.s g.s -6

c e.s b.s 3

c f.s d.s 4

c g.s d.s 2

c h.s c.s 5

c h.s i.s 2

part 5

system-level power constraint

format: p [min power] [max power]

p 10 20

part 6

deadline for the whole schedule

format: d [deadline]

d 50

Input for the Mode Selector: Component library

’c_componentname’ is a dictionary for a component

imode stands for idle modes

wmode stands for working modes

however, all working modes apply for the idle time also.

#

233

power is the power consumption of the mode, unit is Watt.

speed is the performance of the component in Spec95int number

cost is the mode change overhead,

both time and power overhead are included

c_mc = {

’imode’: [’sleep’, ’idle’],

’wmode’: [’op,30’, ’op,50’, ’op,75’, ’op,100’],

’power’: {

’sleep’: 1.6e-4,

’idle’: 0.05,

’op,30’: 0.1,

’op,50’: 0.2,

’op,75’: 0.3,

’op,100’: 0.4

},

’speed’: {

’30’: 4.1,

’50’: 6.0,

’75’: 9.7,

’100’: 14.2

},

’cost’ : {

(’sleep’, ’op’): (10, 0.4),

(’sleep’, ’idle’): (5, 0.05),

(’idle’, ’op’): (3, 0.4),

234

(’op’, ’idle’): (1, 0.4),

(’op’, ’sleep’): (1, 0.4)

}

}

time-variant resource/mode functions

T is the temperature

functions = {

(’drv’, ’on’):

’-0.1225 * T + 1.0’,

(’drv’, (’off’,’on’), ’time’):

’(-1.875 * T +10)*(T < 0) + 10*(T >=0)’,

(’str’, ’on’):

’-0.09 * T + 2.4’

}

time to temperature mapping

use interpolation to obtain the intermediate values

temperatureProfile = {

0: 0.0,

300: -20.0,

500: -40.0,

235

800: -40.0,

1000: -60.0,

1400: -80.0

}

component instance name: component type name

components = {

’cam’: c_cam,

’drv’: c_drv,

’haz’: c_haz,

}

colorlib = [

’AQUAMARINE3’,

’AQUAMARINE4’,

’BISQUE4’,

’BLUE’,

]

Input for the Mode Selector: Input schedule

schedule = {

’haz1.s’: 500,

’haz1.e’: 560,

’str1.s’: 560,

’str1.e’: 700,

236

’drv1.s’: 720,

’drv1.e’: 900,

’cam1.s’: 0,

’cam1.e’: 60,

’ppc1.s’: 0,

’ppc1.e’: 100,

’ppc2.s’: 200,

’ppc2.e’: 400,

’ppc3.s’: 1000,

’ppc3.e’: 1400,

’rf1.s’: 200,

’rf1.e’: 500,

’rf2.s’: 1000,

’rf2.e’: 1400,

’sci1.s’: 900,

’sci1.e’: 1200

}

allocation is a mapping from task to resource

allocation = {

’ppc1’: ’ppc’,

’ppc2’: ’ppc’,

’ppc3’: ’ppc’,

’rf1’: ’rf’,

’haz1’: ’haz’,

’cam1’: ’cam’,

’drv1’: ’drv’,

237

’str1’: ’str’,

’rf2’: ’rf’,

’sci1’: ’sci’

}

functional modes setting

functional_mode_settings = [(’cam1’, ’op_high’)]

functional modes constraints

functional_mode_constraints = {

(’cam1’, ’op_high’): [

(’ppc1’, ’op,500’),

(’ppc1’, ’op,466’),

(’ppc1’, ’op,450’),

(’ppc1’, ’op,433’),

(’ppc1’, ’op,400’),

(’ppc1’, ’op,375’),

(’ppc1’, ’op,366’),

(’ppc1’, ’op,350’)

],

(’rf1’, ’transmit’): [

(’ppc1’, ’op,500’),

(’ppc1’, ’op,466’)

]

}

timing constraints

238

timing_constraints = {

(’cam1.s’, ’ppc1.e’): -200,

(’ppc2.e’, ’sci1.s’): 0,

(’ppc2.e’,’rf1.e’): 0

}

deadline = 1400

maxPowerConstraint = 22

minPowerConstraint = 0

239

