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ABSTRACT 
 Airborne radar Space-Time Adaptive Processing (STAP) in a heterogeneous, target-rich 
environment is addressed.  An efficient Kalman Filter implementation of the normalized form of 
the Parametric Adaptive Matched Filter (NPAMF) is introduced and shown to perform well 
against a detailed simulation of a site-specific, dense-target environment, Ground Moving Target 
Indication (GMTI) scenario.  The number of secondary data range cells in a Coherent Processing 
Interval (CPI) required by NPAMF is much smaller than the product of spatial channels and 
pulses and, thus, NPAMF is attractive for low sample support applications.  Other promising 
methods for low sample support applications are introduced and studied, as well.  These include 
a Generalized Likelihood Ratio Test (GLRT)-based PAMF (ParaGLRT) [shown to perform 
about as well as the matched filter when used in combination with Multiple Pass Processing 
(MPP)], Sub-CPI Smoothing and a GLRT variant called Severely Non-homogeneous 
Interference Processing (SNIP).  These methods are shown also to perform much better than 
conventional STAP methods such as Joint Domain Localized (JDL).  An optimized variant of 
MPP called T-SNIP (the “T” is for “target-rich environment”) is introduced, as well.  Beam 
space variants of the above methods also are evaluated and found to require less processing time 
than element space counterparts while performing at least as well. 
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1.0 INTRODUCTION 
 It is well known that nonstationary clutter exacerbates the Space-Time Adaptive Processing 
(STAP) secondary data selection problem.  This is because it limits the number of range cells 
suited for approximating the space-time (angle-Doppler) matched filter that corresponds to the 
range cell under test. Typical contributors to nonstationary clutter are severely varying terrain, high 
platform altitude, bistatic geometry, and conformal (non-planar) array antenna.  The target-rich 
environment is a condition that further stresses secondary data selection.  Targets contained within 
secondary data range cells cause degradation in the adaptive estimation procedure.  Highway 
traffic is the typical contributor to a target-rich environment. 

 STAP methods that are compatible with low sample support work well in nonstationary 
clutter.  This is because they can be applied in a sliding window architecture whereby the relatively 
few required secondary data cells are always in the neighborhood of the range cell under test.  
Variants of the Parametric Adaptive Matched Filter (PAMF) [1]-[3] and of Sub-CPI Smoothing are 
particularly promising such methods.  This report describes a comprehensive effort with the goal of 
developing and evaluating such methods, as well as introducing new methods. 

 The methods were evaluated by application to the Knowledge Aided Sensor Signal 
Processing Expert Reasoning (KASSPER) Challenge data cube. This data cube was simulated by 
ISL, Inc. and made available at the KASSPER workshop held on 3 April 2002 in Washington, 
DC [4].  The data cube results from detailed modeling of site-specific clutter and ground vehicles 
as viewed by an airborne multichannel monostatic Ground Moving Target Indicator (GMTI) 
radar.  The data cube spans 1000 range cells and 32 Doppler resolution cells, and contains a large 
number of ground targets within the transmit pattern mainlobe: 226 “cluster” (as in convoys) and 
52 background (highway vehicle).  Because of the large number of resolution cells (32,000) and 
of targets (278), the measure of performance chosen was detection count versus false alarm 
count.  Another feature of this data set was the availability of the true interference covariance 
matrix for every range cell so that the matched filter detector was available for comparison. 

 The detectors and methods explored here assume a sliding window architecture.  With 
this architecture, range cells under test (“test cells”) are processed consecutively each with 
secondary data limited to that from a “window” of range cells centered at the test cell; thus the 
term “sliding window.”  Usually, several guard cells immediately neighboring the test cell 
separate the test cell from secondary data cells.  The window extent often is fixed for all test cells 
processed.  For test cells near the limits of the data cube range swath, the window may become 
skewed with respect to the test cell in order to maintain a fixed number of secondary data range 
cells with which to process the test cell. 

 The PAMF developed here included a Kalman Filter solution for the requisite prediction 
error filter (PEF).  The normalized form of the PAMF (NPAMF) [13], based on the scale 
invariant Normalized Matched Filter (NMF), also was further developed.  The NMF is referred 
to as the Constant False Alarm Rate (CFAR) Matched Subspace Detector [5].  In addition, a 
Generalized Likelihood Ratio Test (GLRT) version of the PAMF, called ParaGLRT was 
developed and found to be a particularly powerful detector. 

 The effectiveness of Sub-CPI Smoothing derives from a characteristic that is similarly 
found in the PAMF: temporal smoothing.  With either method, one range cell provides the 
equivalent of more than one data vector for detector parameter estimation.  Another detector that 
employs the Sub-CPI Smoothing architecture is Severely Nonstationary Interference Processing 
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(SNIP).  SNIP is also based on an extended form of Kelly’s GLRT detector [6].  The extended 
form is Kelly’s GLRT modified to allow for target presence in multiple data vectors; this 
modification is essential because the SNIP test range cell provides several data vectors, each 
containing target.  This modification should not be confused with the “range spread-target 
GLRT” formulations of Conte, et al. [7] and Gerlach, et al [8].  The extended form of Kelly’s 
GLRT applied in SNIP retains the premise of a lone point target.  The target, however, appears in 
multiple data vectors associated not only with the test range cell but also with neighboring range 
cells that otherwise would be treated as guard cells and omitted from secondary data.  SNIP 
avoids the need for guard cells; all range cells within a small window about the test range cell are 
valid sources of data vectors. 

 Several Multiple Pass Processing (MPP) methods also were developed for dealing with 
target rich environments.  With MPP, the secondary data selection associated with the sliding 
window is modified by exchanging secondary data range cells within the window that had been 
tagged in preceding passes as contributing to statistical outliers, either because they contain target 
signal, or otherwise, with untagged range cells outside of, but closest to, the window.  Thus, the 
MPP method tries to maintain a constant number of secondary data range cells by including range 
cells from outside the sliding window in order to make up for those cells within the window tagged 
as containing outliers.  One problem with MPP is that the more distant the secondary data range 
cells are from the test cell, the greater is the potential for degraded performance in severely 
nonstationary scenarios, as with bistatic radar or severely varying terrain.  An alternative, GLRT-
based, method to MPP that also keeps the number of secondary ranges fixed, but does so without 
requiring that secondary range cells be drawn from outside the sliding window, called T-SNIP, was 
introduced to avoid this problem. 

 Beam space channels as well as element space channels were applied in the evaluations.  
Sidelobe target rejection methods were also explored.  

 A maximum likelihood angle estimation method was developed that is compatible with 
the STAP methods presented here, and was applied to the KASSPER Challenge data, as well. 

 Several other potential STAP enhancements resulted from the studies conducted here.  
They could not be explored in great depth in this effort, but are considered worth pursuing in 
future efforts.  One, T-SNIP, mentioned above, promises to be particularly effective in severely 
non-homogeneous and target-rich scenarios.  Another, High Resolution STAP (HRSTAP), 
promises to optimize sidelobe target suppression with minimal sacrifice in Doppler resolution.  
Still another, Discrete Scatterer Signal Injection (DSSI), offers an optimal way of introducing 
known interference discretes into the STAP processing (with potential application to knowledge 
assisted STAP). 
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2.0  LOW SAMPLE SUPPORT DETECTORS 
 Before introducing several adaptive detectors suited for non-homogeneous scenarios, two 
important nonadaptive detectors are reviewed.  Let the test cell data vector, denoted by x, be a 
column matrix of NMp elements where N is the number of spatial channels and Mp is the number 
of pulses in the coherent processing interval (CPI).  The matched filter (MF) [9]-[11] detector for 
a signal with known steering vector and unknown amplitude in additive Gaussian interference is 
GLRT and the detection statistic is given by 

 
( )

2H 1

H 1MFΛ
−

−
=

s R x

s R s
 (2-1) 

where s is the steering vector and R is the known interference plus noise covariance matrix.  The elements 
of the steering vector usually are chosen to “match” the signal responses for a target assumed to be in the 
look direction and exhibiting Doppler velocity v.  Usually ΛMF is recomputed for a set of Doppler 
velocities within a Doppler ambiguity cell and the process is repeated for each test range cell.  The 
resulting values of ΛMF are compared to a threshold to determine target presence.  The elements of the 
vectors are ordered by channel and then by pulse. 
 If only the structure of the interference covariance matrix is known, that is, the matrix is 
known within a simple scale factor, the GLRT detection statistic, for additive Gaussian 
interference, becomes [12] 

 
( )( )

2H 1

H 1 H 1NMFΛ
−

− −
=

s R x

s R s x R x
 (2-2) 

where R  now refers to the interference covariance matrix structure.  This statistic is referred to 
as the CFAR Matched Subspace Detector [5] and here as the Normalized Matched Filter (NMF).  
One advantage, among others, of the NMF over the MF, is that, even when the exact covariance 
matrix is known, the NMF detector is effective at excluding high Doppler sidelobes from 
detection.  This can be explained by the factor in the denominator of (2-2) that is absent in (2-1).  
If the test cell contains a strong target, this factor increases roughly in proportion to target signal 
power; the statistic thus decreases in the same proportion, and the chance of detecting target 
sidelobes is reduced.  This point is further discussed in Section 3.2 and demonstrated in Section 
7.2. 

 

2.1  PAMF 
 The PAMF is based on a fixed-model-order representation of the upper triangular matrix 
form of the interference covariance matrix inverse [1]-[3].  The filter is determined by solving 
for the coefficient matrices of an appropriate fixed order prediction error filter (PEF) and the 
corresponding error covariance matrix.  Excellent performance had been demonstrated with the 
number of secondary data range cells much less than the number of available Degrees of 
Freedom (DOF) [3].  Various implementations of the PAMF (and likewise for the NPAMF) are 
obtained using specified coefficient estimators.  The version of the PAMF developed for the 
current effort is based on a Kalman Filter model as described below following a summary of the 
underlying principles of the PAMF. 
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 The input data process, x(m),  for the PAMF is a Nx1 matrix of received pulses of 
interference (including noise), where m denotes the pulse number.  The N elements of x(m) 
correspond to the N spatial channels.  Let R denote the NMp x NMp process interference 
covariance matrix.  R-1/2 is a whitening operation.  Let A-1 denote the matrix of coefficient 
matrices of the finite order multichannel PEF of x(m) for the test range cell, and D denote the 
corresponding supermatrix of error covariance matrices.  Then, because it can be shown that 

R -1= (A-1)H D -1 A -1 = (D-1/2A-1)H(D-1/2A-1) 

 it follows by substitution into the Matched Filter (MF) detector (2-1) that D-1/2A-1 also is a 
whitening operation.  The development of the PAMF recognizes this whitening function and 
applies two approximations to determining the PEF coefficient matrices and error covariance 
matrices.  First, the Mp PEFs, of orders ranging from 0 through Mp-1, are replaced with one PEF 
of order P.  Second, the coefficient matrices and error covariance matrices are estimated from 
secondary range cell data.  The first approximation (fixed-order filter approximation) results in a 
slow-time pulse sequence temporal averaging of the filter parameters.  This averaging augments 
the fast-time averaging associated with the multiple range cell processing in the second 
approximation.  The result is that fewer secondary data range cells are required for the PAMF to 
achieve the same detection performance required by conventional STAP methods. 

 Now, A -1 is lower-block triangular and can be expressed as [3] 
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where  is the N x N identity matrix and the block element matrices (m), (m-1), ..., 

(1) are the matrix coefficients of the m

I H
mA H

mA
H
mA th order multichannel PEF of x(m).  For future 

reference, the mth matrix Dm of the main block diagonal of D  is the error covariance matrix of 
the mth order PEF.  Following [3], the (m) are approximated by retaining only the vector 
sequence for the PEF of order P, for 1

H
mA

< P < Mp -1, and the moving average filtering step is 
replaced with a moving window.  Within this approximation, the output of the PEF is given by 
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where s(m) is the mth N x 1 spatial subvector of the NMp x 1 steering vector s, and ( )'s m and 

( )'x m symbolize mth N x 1 block vectors, and (0) is given by .  Application of the pA I
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corresponding approximation for R-1 to the MF detector (2-1) results in the PAMF detector [1]-
[3] 

 

2M P 1
H

m 0
M P 1

H

m 0

' (m) '(m)

' (m) '(m)
PAMFΛ

− −

=
− −

=

=
⎡ ⎤
⎢ ⎥⎣ ⎦

∑

∑

s x

s s
 

 Several methods had been investigated for estimating the and, of these, the Least 
Mean Square (LMS) algorithm had been found to be particularly effective [3].  A Kalman Filter 
implementation is considered that appears to offer the fast run times associated with Kalman 
Filter recursive algorithms.  The relevant equations are given below.  The Kalman Filter 
implementation is compared with the LMS algorithm in Section 7.3.3. 

H
PA

 The Kalman Filter method of estimating the PAMF coefficients, for model order P and 
number of secondary range cells K, is given here.  Define the Kalman Filter state “vector” 
(which is actually a matrix in this case) as 
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where each  is N x N, where N is the number of spatial channels, and the derivative of F is 
the null matrix; i.e.,  . 

PA
0=F&

 The mth predicted measurement is defined as 
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where xk(i) is the  N x 1 kth secondary range cell data vector for the ith pulse and .  Kk ...,2,1=

The innovation becomes 
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where  is the measurement error covariance matrix and  is the estimation error covariance 
matrix.  The Kalman gain becomes 

vR P̂
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and the update becomes 
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 Initial values of FP  and ˆ  are required for this approach.  Performance was found to be 
insensitive to initial values for the simulations exercised to date. 

2.2  NPAMF 
 Application of the PAMF approximation for R-1 to the NMF detector statistic (2-2) 
results in the NPAMF detector statistic [13] 
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This detector exhibits the sidelobe target rejection benefits discussed in Section 2.0, among other 
benefits associated with the NMF. 

 

2.3  Sub-CPI Smoothing 

 The basic architecture of Sub-CPI Smoothing (Figure 2.3-1) is that of Pre-Doppler 
STAP.  The major difference between Pre-Doppler STAP and Sub-CPI Smoothing is that the 
Sub-CPI Smoothing steering vector is Doppler dependent and thus Sub-CPI Smoothing is neither 
a pre-Doppler method nor a post-Doppler method, but a hybrid. 
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Figure 2.3-1.  Sub-CPI Smoothing Architecture 
 

 In Pre-Doppler STAP, the first M pulses within the Mp-pulse coherent processing interval 
(CPI) are grouped into a subset of pulses called a sub-CPI.  Pulses 2 through M+1 form a second 
sub-CPI that partially overlaps the first, and so on, resulting in Mp-M+1 partially overlapping 
sub-CPIs.  Usually, a separate STAP procedure is conducted for each sub-CPI, or the procedure 
is applied to only one sub-CPI and the resulting STAP weights applied to all other sub-CPIs.  
Alternatively, all sub-CPIs are used as data vectors in obtaining one set of weights, which is 
applied, in turn, to all sub-CPIs.  In either case, with Pre-Doppler STAP, a binomial weighted 
steering vector is employed that instills a null at the Doppler introduced by the ground in the 
peak of the spatial mainlobe.  In a variant of Pre-Doppler STAP, called Optimized Pre-Doppler 
STAP (OPDS) [14], Baranoski introduces a Doppler independent steering vector that results 
from minimizing the clutter throughout the entire radiation sphere.  In contrast with Pre-Doppler 
STAP, Sub-CPI Smoothing “points” the steering vector toward the Doppler of interest. 

 Pre-Doppler STAP usually performs well only for a small number (2 or 3) of temporal 
DOFs (equal to M).  Otherwise, the Doppler null created by the binomial weighted steering 
vector is overextended and detection of subclutter targets is denied.  ODPS is thought to suffer 
from the same condition.  Baranoski found ODPS superiority to Pre-Doppler STAP limited to 
conditions of high backlobe clutter and antenna crab [14].)  With Sub-CPI Smoothing, on the 
other hand, STAP performance can be improved with increased M because the steering vector is 
Doppler dependent and the STAP solution is recomputed for each Doppler of interest.  
Furthermore, because all Mp-M+1 partially overlapping sub-CPIs are employed as data vectors 
in a STAP solution in arriving at one set of weights, Sub-CPI Smoothing trades DOFs for 
covariance matrix temporal smoothing (slow-time averaging), which supplements the fast-time 
averaging afforded by averaging over range cells.  Thus, Sub-CPI Smoothing requires fewer 
secondary data range cells than do standard STAP methods with the same number of degrees of 
freedom.  Treating each overlapping sub-CPI as a STAP data vector effectively increases the 
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number of uncorrelated data vectors with identical interference spectra, by at most Mp-M+1, for 
each secondary data range cell. Because a data vector is composed of the complex amplitudes of 
the pulses in all spatial channels corresponding to one sub-CPI and one range cell, the number of 
secondary data vectors available for STAP parameter estimation is L*(Mp-M+1) where L is the 
number of secondary data range cells. 

 Overlapping subarrays can, in principle, be formed in the spatial domain as well [15].  
The subarrays must be identical, however, and this is difficult to realize because antenna array 
elements usually are not precisely matched due to mutual coupling and near field platform 
scattering.  On the other hand, identical subarrays are easily formed in the temporal domain 
because of the excellent pulse stability achievable with modern radars. 

 Consider, as an example, the KASSPER Challenge data set.  Here, the CPI is Mp = 32 
pulses and the number of channels is N = 11.  The sub-CPI size of M = 6 works well (Section 7); 
thus, Mp-M+1 = 27.  The number of DOFs is MN = 66 and the number of secondary data range 
cells required to meet a “three times DOFs” criteria is 3*66/27 ≈ 8.  For “six times DOFs,” the 
number is approximately 16.  These numbers of secondary data range cells for Sub-CPI 
Smoothing are more than twelve times smaller than the 100 to 200 required by element-space 
post-Doppler STAP methods such as Three-Pulse PRI-Staggered, even though the latter employs 
fewer degrees of freedom. 

 The effective number of uncorrelated data vectors per range cell, however, may be less 
than Mp-M+1 if the PRI is too small with respect to the Doppler spread. The degree of 
decorrelation is a function of several parameters, the most important being Doppler spread.  It is 
shown in Section 2.3.1 that adjacent sub-CPIs (separated by one PRI) are nearly decorrelated if the 
PRI exceeds the wavelength divided by four times the platform velocity.  For example, for a 1240 
MHz radar aboard an aircraft cruising at 100 m/s (KASSPER example) the PRF (1/PRI) would be 
restricted to less than 1,650 Hz or so. 

 Another criterion for effective Sub-CPI Smoothing is that the interference processes in 
the sub-CPIs have identical spectra or at least highly correlated spectra.  A necessary condition 
for this requirement is the excellent pulse stability achievable with modern radars.  It is important 
to note, however, that the correlation between sub-CPI interference spectra deteriorates with 
severe high frequency platform vibration combined with long CPIs. 

 Sub-CPI Smoothing is more computationally demanding than pre-Doppler STAP 
methods because Sub-CPI Smoothing recomputes the STAP solution at each Doppler frequency.  

 Details underlying Sub-CPI Smoothing follow.  Assume an array of N channels (elements 
or beams). As defined above, Mp is the number of pulses within the CPI, M is the number of 
digital time delay taps, and L is the number of range cells contributing secondary data vectors.  
The number of degrees of freedom is NDOF = MN.  Data vectors are formed by collecting 
partially overlapping subsets (“sub-CPIs”) of M contiguous pulses for each channel and ordering 
first by channel.  The indices of the pulses of one sub-CPI are offset by one from those 
corresponding to a neighboring sub-CPI.  The number of data vectors per range cell is given by 
K = Mp - M + 1.  The total number of data vectors is the product LK. 

 Let xlk denote the kth sub-CPI data vector of the lth secondary data range cell.  Although 
the data vectors are dependent, they are reasonably decorrelated under certain conditions.  
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Section 2.3.1 addresses this issue.  The associated sample interference covariance matrix and 
steering vector are given by 
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For linear uniformly spaced arrays of spacing d, dn is given by . nd = nd

 The adaptive weight vector is given by 

sRw 1-ˆc=  

where c is a constant.  Let zk denote the kth sub-CPI data vector of the test cell (an NMx1 matrix).  
The ouput signal is given by 
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where * denotes the complex conjugate and 
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 The normalization constant c is determined to satisfy a CFAR condition.  Under the 
interference-only hypothesis, the test cell vectors zk contain interference only and c is chosen 
to satisfy  
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 Assuming temporal wide-sense stationarity over range cells, the double summation in 
(2-3) contains the covariance matrices 
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and the Sub-CPI Smoothing detector is approximated by 
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Following (2-2), the “Normalized” Sub-CPI Smoothing detector is approximated by 
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 (2-7) 

Equations (2-6) and (2-7) were applied in the simulations of Section 7. 

 The following derivation of B is not restricted by (2-5) but results in a more 
computationally demanding expression. 

 The covariance matrices given by (2-4) can be estimated in terms of the sub-matrices of 
R̂ . First note that for  kk =′

  { }HzzRR kkE==0  

and that 
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with sub-matrices given by 
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where the N element qm vectors are sub-vectors of the general sub-CPI data vector given by 
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 The covariance sub-matrices of (2-8) are estimated from 
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By assuming that data sub-vectors separated by M or more pulses are uncorrelated, the remaining 
cross-correlation covariance matrices can be estimated from the sub-matrices of R̂ .  These 
matrices are block Toeplitz.  Define Qi=0 (null matrix) for i > M-1.  Then, for k′-k = 1,  is 
given by 
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In general, 
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The matrix B of (2-3) is given by 
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The latter equation results from the index interchange in the second double summation of the 
previous equation. Because becomes  and ,let  , Bkklkk −′=>′  
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This expression for B was not exercised in this work. Instead, the simpler, less accurate 
expression based on (2-4) was employed and found to work reasonably well. 

 

2.3.1  Sub-CPI Temporal Decorrelation 
 For Sub-CPI Smoothing, the data vectors, one for each sub-CPI, ideally should be 
independent samples of identically distributed interference.  An incremental source of 
interference, at a given angle, imparts signals in two sub-CPIs that differ only by a phase shift 
that corresponds to the Doppler of the source and the time delay between the sub-CPIs.  Thus, 
the distribution functions of the interference are identical between sub-CPIs, and Sub-CPI 
Smoothing is expected to work reasonably well if the delay between sub-CPIs is that for which 
the total interference (from all angles) is decorrelated. 

 Consider a CPI of Mp pulses transmitted with uniform PRI.  Construct partially 
overlapping sub-CPIs of M pulses each.  Consider also, element spatial channels so that the 
interference associated with a sub-CPI is widely distributed in angle.  The problem is to 
determine the minimum (temporal) separation between adjacent sub-CPIs such that the 
interference is decorrelated. 

 Consider a clutter patch at angle θ from broadside (assume a linear array with axis 
aligned with the platform velocity vector).  Consider, also, one element channel.  The 
contribution to the mth pulse is given by 

 ( ) ( )
⎩
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⎧ ≤≤−

=
otherwise0

2/2/cos sin2 02
1 πθπθθθ

θTkmvj

m
eas  

where T = PRI, v0 = platform velocity, k = 2π/λ, and a(θ) is the interference distribution.  A cosθ 
element gain pattern, as well as a monostatic mode of operation are assumed.  No allowance is 
made for clutter dependence on the transmit pattern.  Although the transmit pattern often has a 
narrow beam, its sidelobes usually are high.  Furthermore, if bistatic radar was of interest, the 
transmit mainlobe illumination of a range cell could be especially broad. 

 Let  x0(θ) dθ  denote the contribution at θ of clutter within an angular increment dθ  to 
the data vector for one sub-CPI, and xi(θ) dθ  that for a sub-CPI delayed by i PRIs.  Then 

 ( ) ( ) ( )i 0exp j2kiv Tsinθ = θ θx x0  
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Let R(i) denote the correlation between sub-CPIs separated by i pulses.  Then 
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where C is a constant.  Consequently, 
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The sub-CPI vectors are decorrelated when  = 0 or T = λ/(4v)(iR 0i).  Two vectors separated by 
one PRI are reasonably decorrelated for 

T > λ/(4v0) = 1/(2fd) 

where fd = 2v0/λ.  Thus fdT > 1/2.  Sufficient decorrelation may require a larger separation 
between sub-CPI vectors if the transmit pattern, including high sidelobes, only illuminates a 
narrow angular extent of the range cell. Beam space channels also lead to larger separations for 
decorrelation, but the number of degrees of freedom is then correspondingly smaller. 

 

2.4  SNIP 
 Severely Nonstationary Interference Processing (SNIP), as introduced above, is a flexible 
STAP detector that is an extension of Sub-CPI Smoothing. In SNIP, as in Sub-CPI Smoothing, 
DOFs are traded for secondary data by forming partially overlapping sub-CPIs.  SNIP, however, 
even further reduces the size of the required secondary data range window.  SNIP is based on an 
extended form of Kelly’s Generalized Likelihood Ratio Test (GLRT) detector [6].  This 
extension allows for the data vectors to include target signal and may include the test range cell 
as well as immediate neighborhood range cells.  (With most STAP methods, including Sub-CPI 
Smoothing, guard cells are identified within the sliding window of secondary data range cells.  
These cells are located in the immediate neighborhood of the test cell and are excluded from use 
as sources of secondary data vectors to ensure that the secondary data do not contain target 
signal.  This is important to avoid undue cancellation of the target signal.  SNIP employs a 
method of extracting target signal from data vectors so that guard cells are not needed and, in 
fact, the test cell provides secondary data vectors, as well. 
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 Thus, SNIP further increases the effective number of STAP data vectors without 
increasing the secondary data range window by allowing the sub-CPIs of the test range cell and 
what otherwise would be guard cells to contribute interference estimation data vectors.  If Sub-
CPI Smoothing requires 28 secondary data range cells, and 4 (+/-2) guard cells are required to 
ensure that a signal from a test cell target is amply suppressed in the secondary data vectors, the 
secondary data range window is +/-16 cells about the test cell.  For SNIP, the window reduces to 
+/-14 cells or, perhaps even smaller because the test cell data vectors are employed in 
interference estimation, as well.  The penalty is that SNIP is several times more computationally 
intensive than Sub-CPI Smoothing.  In very non-homogeneous environments, such as some 
urban and littoral, this may shift the problem from whether or not key targets can be detected at 
all to one of increased processing load. 

 In addition to a detection statistic, SNIP provides the maximum likelihood estimate of a 
signal at each range/Doppler cell within a processing window.  The signal estimate is useful for 
target cross section measurement. 

 The details underlying the SNIP approach follow. As with Sub-CPI Smoothing, let N be 
the number of channels (elements or beams), Mp be the number of pulses within the CPI, M be 
the number of digital time delay taps, and L be the number of range cells contributing data 
vectors.  However, these range cells include the test cell and its immediate neighbors.  Typically, 
L is odd.  Also, as with Sub-CPI Smoothing, the number of degrees of freedom is NDOF = MN, 
and data vectors are formed by collecting partially overlapping subsets (“sub-CPIs”) of M 
contiguous pulses for each channel.  Here, however, the ordering is first by pulse and then by 
channel.  The indices of the pulses of one sub-CPI are offset by one from those corresponding to 
a neighboring sub-CPI. The number of data vectors per range cell is given by 

K = Mp - M + 1 

The total number of data vectors is the product LK. 

 A target at range (r), Doppler velocity (v), azimuth and elevation direction cosines (ua, 
ue), and of complex strength (b) evokes a response in the l th range cell and kth data vector given 
by bα βl k s where 
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 αl  =  α (r - l ρ) 

 ρ  denotes the range cell width 

 α is the pulse compression waveform 
 tr denotes “transpose” 
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and γn = γn (ua, ue) is either the nth beam or nth element (subarray) complex pattern function. 
These patterns are assumed to include the spatial factors associated with element (or beam) phase 
center offsets from a common point. 

 A monostatic mode of operation is assumed.  If a bistatic mode is assumed, the “4” in βm’ 
is replaced with “2” and v is understood to be the sum of two Doppler velocities.  One velocity is 
that of the target with respect to the transmitter platform and the other is that with respect to the 
receiver platform. 

 Under the target present hypothesis and assuming independent samples of Gaussian 
interference plus noise and non-fluctuating target, the likelihood function is given by 
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where R= MN x MN interference plus noise covariance matrix; x kl  is the thl  range cell, kth sub-
CPI data vector; and 
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The likelihood function under the target absent hypothesis is given by 
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 The quantities R, b, ua, ue, v, and r are unknown parameters in f1 that ideally would be 
estimated by the corresponding quantities that maximize f1, and R is the unknown parameter in f0 
that is estimated by maximizing f0. The generalized likelihood ratio test statistic (η) is obtained 
as the LKth root of the ratio of maximized values of f1 and f0. T1 is the matrix that maximizes f1 
with respect to R for fixed b, ua, ue, v, and r, and T0 is the matrix that maximizes f0 with respect 
to R.  Consequently, the LKth root of the likelihood ratio after maximizing f1 and f0 with respect 
to the covariance matrix becomes [6] 

1

0
max T

T
R

=η  

 Note that this statistic is an extended form of Kelly’s GLRT [6].  As indicated in Section 
1, it differs from Kelly by allowing for target presence in multiple data vectors.  This 
modification is essential because the SNIP test range cell provides several data vectors (sub-
CPIs), each possibly containing target.  This modification should not be confused with the “range 
spread-target GLRT” formulations of Conte, et al. [7] and Gerlach, et al [8].  The extended form 
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of Kelly’s GLRT applied in SNIP retains the premise of a lone point target.  The target, however, 
appears in multiple data vectors associated not only with the test range cell but also with 
neighboring range cells that otherwise would be treated as guard cells and omitted from 
secondary data.  As indicated above, SNIP avoids the need for guard cells.  All range cells within 
a small window about the test range cell are valid sources of data vectors. 

 It can be shown that the expression for b that maximizes 
R

maxη  for fixed ua, ue, v, and r is 

given by [16] 
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and that for the maximized 
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maxη  is given by 
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and * denotes “conjugate.” 

 It is often adequate to approximate ua, ue, v, and r by the beam center (uao, ueo), Doppler 
cell center (v0), and range cell center (r0) in determining the detection statistic. The ua, ue, and v 
that maximize f1 can be determined after detection, thus yielding superresolution in angle 
(“monopulse”) and in Doppler. By following this procedure, the considerable computation 
required in determining ua, ue, and v is limited only to range cells at which detections occur. 

 

2.5  ParaGLRT 
 Recall that the derivation of the PAMF begins with the Matched Filter Detector (MF).  
From the form of the MF, R-1/2 is shown to be a whitening operation where R is the interference 
covariance matrix.  Let A-1 denote the supermatrix of coefficient matrices of the finite order 
multichannel moving average (MA) linear predictor filters of the data process x(m) of the test 
range cell, and D denote the corresponding matrix of error covariance matrices.  The data 
process is a Nx1 matrix of received pulses of interference (including noise) at the mth PRI, and 
the N elements of x(m) correspond to the N spatial channels. 
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 Because 

R-1= (D-1/2A-1)H(D-1/2A-1) 

it follows by substitution into the MF that D-1/2A-1 also is a whitening operation.  The PAMF is 
based on this whitening function and the application of two approximations to determining the 
MA filter coefficient matrices and error covariance matrices.  First, the Mp MA filters, of orders 
ranging from 0 through Mp-1, where Mp is the number of pulses in the coherent processing 
interval (CPI), are replaced with one MA filter of order P.  Second, the coefficient matrices and 
error covariance matrices are estimated from secondary range cell data.  The first approximation 
(fixed order filter) results in a slow-time temporal smoothing of the filter parameters.  This 
smoothing augments the fast-time smoothing associated with the multiple range cell processing 
in the second approximation.  The result is that the PAMF requires fewer secondary data range 
cells than do conventional STAP methods to achieve the same detection performance. 

 This whitening function underlying the PAMF and the independent-sample assumption 
underlying Kelly’s Generalized Likelihood Ratio Test (GLRT) suggests the basis for a powerful 
GLRT detector, called ParaGLRT, that performs well with only a small number of secondary 
data range cells.  First, the Pth order MA coefficient matrices are determined from secondary data 
range cells, as mentioned above, and the data vectors of the test range cell and secondary data 
range cells are passed through the filter yielding corresponding whitened data vectors.  These 
whitened data vectors satisfy the independent sample assumption of Kelly’s GLRT.  The steering 
vector is passed through the filter, as well. 

 Next, the whitened data vectors and filtered steering vector are combined into an 
extended form of Kelly’s GLRT.  This form is identical to that developed for SNIP, as described 
in Section 2.4, if each sub-CPI is only one pulse long.  It has been observed, however, that 
sometimes detection performance can be improved if more than one pulse is used to form data 
vectors; i.e., if overlapping sub-CPIs are formed, as in SNIP.  Although overlapping sub-CPIs 
violates the independent sample assumption underlying the GLRT formulation applied here, it 
was shown in Section 2.3.1 that the sub-CPI data vectors from the same range cell of data at least 
contain nearly uncorrelated samples of interference.  The examples of applying the ParaGLRT 
described later in this report employed sub-CPIs larger than one pulse. 

 Strictly speaking, the “whitening” resulting from the PAMF part of the ParaGLRT is not 
complete.  It is temporal but only partially spatial.  Specifically, the original data vectors and 
steering vector are only passed through the fixed model order filter but not premultiplied by the 
estimated D-1/2 matrix.  As indicated above, the complete whitening operation is given by D-1/2A-

1, where the A-1 operation reflects temporal-spatial whitening and the D-1/2 operation spatial 
whitening.  The latter spatial whitening is intrinsically included in the GLRT formulation part of 
ParaGLRT and need not be included in the PAMF part. 

 Furthermore, a consequence of limiting the whitening to that of a fixed order filter, 
inherent in the PAMF, is that after passing Mp test cell data vectors through the Pth order filter, 
only Mp-P whitened data vectors are available on output.  The CPI for the GLRT operation is 
effectively shortened by P pulses. 
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3.0  SIDELOBE TARGET REJECTION 
 High Doppler or angle sidelobes from strong targets can seriously degrade detection 
performance because of the propensity to count sidelobes as detections.  Several methods for 
dealing with high sidelobes are briefly described below.  Only Doppler sidelobes will be 
addressed directly, but the methods discussed apply equally well to the spatial domain. 

 

3.1  Low Sidelobe Weighting 
 Low sidelobe weighting is typically applied in reduced degree of freedom (DOF) post 
Doppler STAP methods.  One disadvantage with this method is that the 3 dB Doppler beamwidth 
broadens by about 50 percent resulting in decreased resolution.  The signal-to-noise ratio reduces 
by about 1 dB, as well.  Two typical such STAP methods are Joint Domain Localized (JDL) and 
PRI-Staggered.  With JDL, Doppler bins and spatial beams are adaptively combined.  Several 
combinations of beams and bins have been considered.  A typical JDL configuration is one that 
employs three Doppler bins (the center bin and immediate adjacent bins) and three similarly 
deployed beams, for a total of nine DOFs. 

 The architecture of PRI-Staggered is similar to that of Sub-CPI Smoothing.  The major 
difference is that with PRI-Staggered, the sub-CPIs are typically large and few and each sub-CPI 
is Doppler filtered.  With both methods, the spatial channels can be beams or elements.  It is 
interesting also to compare JDL with Beam Space PRI-Staggered.  Whereas both these methods 
are characterized as “post Doppler beam space and small DOF,” the methods are quite different.  
With JDL, one Doppler filter is applied to each of several adjacent beam channels and several 
adjacent Doppler frequency bins from each filter are combined adaptively with the 
corresponding bins from all the filters.  With PRI-Staggered, several Doppler filters are applied 
to each beam channel, the filters differing by a one (or more) pulse delay applied to the pulse 
stream they operate on, and one corresponding Doppler bin from all the filters are adaptively 
combined.  The point here is that JDL combines several Doppler bins (frequencies) in generating 
adaptive weights, whereas PRI-Staggered uses only one bin (the target bin) from Doppler filters 
that operate on delayed pulse streams.  PRI-Staggered takes advantage of a favorable Displaced 
Phased Center Array (DPCA) condition, if present. 

 JDL was selected as the baseline method with which to compare the low sample support 
methods developed here.  The comparisons are given in Section 7. 

 

3.2  NPAMF and GLRT Based Detectors 
 The NPAMF (and the normalized form of Sub-CPI Smoothing, as well) are based upon 
the NMF, as given by  (2-2).  One advantage, among others, of the NMF over the MF, is that, 
even when the exact covariance matrix is known, the NMF detector is effective at excluding high 
Doppler sidelobes from detection.  One likely explanation for this is as follows.  Consider two 
range cells, one cell with a strong target and the other with a weak target.  The NMF differs from 
the MF by the xHR-1x term in the denominator of the NMF.  This term is constant for a given 
range cell; it simply raises or lowers the MF Doppler response curve.  This term also is likely to 
be relatively large for a range cell with a strong target and relatively weak for one with a weak 
target.  The consequential pronounced attenuation of the test statistic corresponding to the 
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strong-target range cell is the reason that a threshold can be determined that enables detection of 
both the strong target and the weak target without detecting the strong target sidelobes. 

 The GLRT, as derived by Kelly [6], also is effective at rejecting sidelobe targets [11].  
This benefit is especially true when the number of secondary data range cells is not very large, as 
is usually the case. 

 

3.3  High Resolution STAP (HRSTAP) 
 High Resolution STAP was conceived during this effort as another method of reducing 
the detrimental effects of sidelobes that usually are associated with uniformly weighted steering 
vectors.  Although HRSTAP can be easily generalized to the joint angle-Doppler domain, for 
expediency, only the Doppler sidelobe problem is addressed here.  In fact, a method similar in 
principle to HRSTAP is the CLEAN algorithm, and CLEAN was developed originally for 
addressing antenna sidelobes [17], [18].  With CLEAN, the level and Doppler (or angle) of the 
strongest response is assumed to be a good estimate of the strength and Doppler (or angle) of the 
strongest target.  This information then is used to subtract the strong target from the data, 
unmasking the relatively weak targets. The procedure is repeated until no responses exceed 
threshold.  The performance of CLEAN is sensitive to the accuracy of estimating the level and 
location of the strongest target remaining in a given step.  Consider a location containing the 
peak of a strong target and the sidelobe of a weak target.  CLEAN can be expected to perform 
poorly for when the weak target response is within 15 to 20 dB of the strong target response. 

 With HRSTAP, a STAP detection statistic is computed over a range-Doppler window of 
interest.  A threshold is determined and applied to the resulting amplitude data.  Detections are 
identified with the caveat of at most one detection per range cell, and the corresponding range, 
Doppler, angle, and RCS of the “targets” are estimated and placed in a target detection file.  The 
detection process then is reapplied at each range cell at which detections were identified. The 
corresponding secondary data, however, is augmented by generating a signal corresponding to 
the detected target and injecting it into the secondary data.  In this way, adaptivity will null the 
already detected target and thus allow other, perhaps smaller cross section, targets to appear.  
The parameters associated with these additional targets are determined and these targets are 
added to the target detection table.  The process is repeated until no additional targets arise.  The 
same threshold value is applied throughout the process. 

 It remains to be seen if the nulling that results from target injection into the secondary 
data will sufficiently suppress sidelobes.  Otherwise, the method is optimal in that it relies on 
adaptivity to introduce simultaneously the optimal amount of interference suppression and 
injected target suppression.  (This optimality is one advantage of HRSTAP over deterministic 
processing of CLEAN.)  The potential benefits of High Resolution STAP are that it: 

1. Removes false alarms due to large RCS target sidelobes, 

2. Preserves maximum target resolution and gain, 

3. Detects small targets that are close to large targets in Doppler (and/or angle), and 

4. Is completely compatible with all STAP methods. 

Implementation and validation of HRSTAP awaits a future effort. 
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4.0  TARGET-RICH ENVIRONMENT METHODS 
 The low sample support STAP methods above are particularly effective for scenarios 
where the selection of STAP secondary data range cells is necessarily limited to the immediate 
neighborhood of the test range cell (small secondary data range windows) because of non-
homogeneous conditions associated with rapidly varying terrain or range dependent clutter ridge 
loci and/or transmit beam illumination.  The target rich environment is a condition that further 
stresses secondary data selection.  Targets are “moving discretes” that, when contained within 
secondary data range cells, cause errors in the noise covariance estimation.  Highway vehicle 
traffic is a major contributor to a target rich environment. 

 

4.1  Multiple Pass Processing (MPP) 
 One method developed to improve interference estimation that is seriously degraded by 
outliers (including target signals contained in the secondary data) is Multiple Pass Processing 
(MPP).  It refers to a particular succession of outlier detection processing steps.  The entire data 
set is processed in each step or “pass.”  Range cells at which outlier detections are found in a 
given pass are tagged as containing discretes (possibly targets) and are excluded from use as 
secondary data cells in successive passes.  The range cells corresponding to strong targets, in 
particular, which are detected in a pass, are removed from secondary data in successive passes. 

 A non-homogeneity detector, such as the Generalized Inner Product (GIP) [19] or the 
Innovations Inner Product (IIP) [20], is applied in the first pass.  A sliding window (centered 
about the test range cell) “detection pass” using the detection test statistic follows the first pass, 
whereby range cells within the secondary data sections of the sliding window that were tagged as 
containing an outlier in the first pass are replaced with range cells that have not been so tagged 
and that are nearest to, but outside of, the sliding window.  The third pass is another detection 
pass whereby range cells within the secondary data sections of the sliding window that were 
tagged as containing outliers in the second pass are replaced with range cells that have not been 
so tagged and that are nearest to, but outside of, the sliding window.  The process is repeated 
until no new targets are detected. 

 Consequently, MPP helps alleviate the target rich environment problem by simply 
eliminating range cells as sources of secondary data if those range cells are tagged as containing 
outliers in preceding passes. The number of secondary data vectors is kept constant by adding 
vectors, as needed, from the next available range cells that are closest to the test range cell. 

 If only the first two passes of MPP are applied, rather than continuing until convergence 
of detections is observed, the method is referred to as Two-Pass Processing (TPP).  The passes 
are limited to outlier extraction via a nonhomogeneity detector in the first pass followed by a 
detection pass. 

 A potential problem with MPP is that the more distant the secondary data range cells are 
from the test cell, the greater is the potential for degraded estimation performance in severely 
nonstationary scenarios.  An alternative, Generalized Likelihood Ratio Test-based (GLRT-based) 
method, to MPP that also keeps the number of secondary ranges fixed, but does so without 
requiring that secondary range cells be drawn from outside the sliding window, is presented in 
Section 4.2. 
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4.2  T-SNIP 
 A STAP method that addresses the performance deteriorating effects of a target-rich 
environment was developed as an extension of SNIP.  As such, it is labeled “T-SNIP.”  To 
understand T-SNIP, first consider that the STAP detection statistic in SNIP is an extended form 
of GLRT.  This statistic is most effective if the interference in the data vectors is Gaussian.  
Moving discretes (“movers”), which may be targets in secondary data range cells, distort the 
distribution.  In T-SNIP the movers are appropriately treated as interference parameters in both 
the target present and target absent likelihood functions.  In principle, the complex amplitudes, 
Doppler velocities, and range cells of the movers must be estimated by maximizing the 
likelihood functions.  This is very difficult to do exactly.  Alternatively, T-SNIP employs an 
iterative method of estimating these parameters.  The method is based on MPP.  In MPP, data is 
successively processed for targets until no additional detections arise.  In each processing “pass,” 
range cells are removed from secondary data if they contain detections identified in a previous 
pass.  MPP, thus, essentially “avoids” the moving discretes problem by simply eliminating range 
cells as secondary data sources if those range cells contained detections in earlier passes.  The 
number of secondary data vectors is kept constant by substituting vectors, as needed, from the 
next available range cells that are closest to the test range cell. 
 Although MPP, described in Section 4.1, was found to perform extremely well in a 
monostatic radar linear array application, as shown in the results of Section 7, MPP is not ideal 
for many nonlinear array, bistatic radar, or severely heterogeneous terrain scenarios because, in a 
target rich environment, MPP may be forced to select substitute secondary data range cells that 
are distant from the test cell, whereas the secondary data range cells are preferably limited to 
those in the near vicinity of the test cell.  T-SNIP, on the other hand, is potentially more 
attractive here.  T-SNIP, as mentioned above, is also a multiple pass process.  The difference, 
however, is that the detections from previous passes are subtracted out of the data applied to the 
maximum likelihood functions of the GLRT detection statistic of the current pass.  Thus, 
substitute secondary data range cells are not required, and the secondary data range window is 
not enlarged.  Details follow. 

 Here, let R denote the true interference plus noise covariance matrix for the test range 
cell, N, the number of degrees of freedom, x(k), the kth range cell data vector (k assumes values 
0,1, …, K-1 where  k = 0 denotes the test range cell, and K denotes the number of range cells 
providing data vectors for processing a given test range cell), s, the steering vector, and t(k, p), 
the signal vector of the pth mover in the kth secondary data range cell where p assumes values 
0,…, P(k)-1 and P(k) denotes the number of targets within the kth secondary data range cell. 

 The interference plus noise hypothesis likelihood function maximized with respect to R is 
given by 
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and e denotes the natural logarithm base.  The signal plus interference plus noise hypothesis 
likelihood function maximized with respect to R is given by  
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where b = target complex signal voltage. 1T  must be minimized with respect to b, and 0T  and 

1T  must be minimized with respect to all t(k,P); k = 1, …, K-1 and p = 0,…, P(k)-1. Closed form 
solutions for the b and t are difficult to determine. An iterative solution follows. 

 Initially, set t(k,P) = 0 for all k = 1, …, K-1; p = 0,…, P(k)-1. The solution for b that 
minimizes 1T  is given by [6] 
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is the sample covariance matrix with respect to the secondary data.  Now, the kth root of the 
generalized likelihood ratio is given by 
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 The t for the second iteration is set equal to the sb̂  of the first iteration. The procedure 
continues until the nth and n-1st iterations result in identical values. 

 

4.3  Closely Spaced Targets 
 One problem with T-SNIP is that a cluster of targets of nearly identical Doppler 
velocities and angles that occupy a number of adjacent, or nearly so, range cells, may  avoid 
detection.  This problem is at least partially alleviated in MPP by application of a power sorting 
nonhomogeneity detector, such as the GIP or the IIP.  It could be alleviated in T-SNIP by 
applying “single-cell-processing SNIP” in the first pass.  With single-cell processing, all data 
vectors come from the test cell.  There are no secondary data range cells (or guard cells).  
Although single-cell processing suffers reduced nulling resolution, application of it in the first 
pass improves the probability of detecting cluster targets. Single-cell-processing SNIP performs 
similarly to direct data domain approaches [21], although it is cast in a statistical framework.  
MPP can be applied with a single-cell-processing first pass, and, conversely,  T-SNIP can be 
applied with a nonhomogeneity detector first pass. 
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 5.0  ANGLE ESTIMATION 
 Post adaptive sum and difference beams generally are severely distorted by the adaptive 
interference suppression process (i.e., STAP), rendering conventional monopulse angle 
estimation methods unsuitable.  Two maximum likelihood azimuth angle estimators that are 
compatible with STAP were developed.  One estimator applies to element-space STAP methods 
and the other to beam-space STAP methods.  Sub-CPI Smoothing, SNIP, and T-SNIP can be 
formulated for element-space channels or for beam-space channels.  For both estimators, the log 
likelihood function is expanded in a Taylor series and the first three terms (constant, linear and 
quadratic) are applied in deriving closed-form solutions for the azimuth angle estimate.  These 
methods have yielded good results with simulated data as shown in Section 7.3.6.  A detailed 
derivation of the beam-space angle estimator follows.  The derivation for the element-space 
estimator is similar.   

 Let  be the i,l( )izl′
th temporarily whitened data vector obtained in the “PAMF step” of 

ParaGLRT. Here, i assumes values 1, 2, …, LP where LP = MP-P is the number of vectors per 
range cell, and l assumes values 1, 2, … L where L is the number of secondary data range cells 
from which the vectors are obtained. Let ( )is′  be the corresponding steering vectors. The 
number of elements in each vector equals the number of channels, N. Consider beam space 
STAP with N = 4 low-sidelobe weighted beams: sum (Σ), difference (∆), and two offset sum 
beams (A1, A2).  Define 
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Here, u is the pattern direction cosine, u0 is the boresight direction cosine, M is the number of 
array elements, Xm is the mth element location (a linear array is assumed), and k is given by 2π /λ.  
Also, the parameters ( ) ( )21  and  , ,  , mmmm AABT  are the weights for the corresponding beams. 

 Let  be the result of passing s through the temporal whitening filter and 
 where  is defined in Section 2.4.  The sample “noise” covariance matrix is: 
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and under the target present hypothesis, the likelihood function is given by 
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where the  refer to the test range cell vectors and b is the complex target signal strength.  
Given 
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with respect to b, which results in 
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Now, with b̂ substituted for b in Q, minimizing Q with respect to u implies maximizing Q̂  with 
respect to u, where 
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The second order Taylor series expansion of Q̂  about  is  0u

 
( ) ( ) ( )

( ) ( ) ( )2
00000

2
02

2

00

)(
2
1)(ˆ

ˆ

2
1ˆˆ~

00

uuuBuuuAuQ

uu
u
Quu

u
QuQQ

uuuu

−+−+=

−
∂
∂

+−
∂
∂

+=
==  

Setting 0=
∂
∂

u
Q~  results in 

)(
)(

0

0
0 uB

uA
uu −= , where 

 
 

26



 
 

( ) ( )

( ) ( )

( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′′
′′

+′′−′′+′•

⎪⎩

⎪
⎨
⎧

′′
′′

−′−
′′

′
=

∂
∂

=

⎥⎦
⎤

⎢⎣
⎡ ′−′′=

∂
∂

=

−

−
−−−

−

−
−

−

−

=

−−

=

0
1

0

21
0112

00
1

0

0
1

1
01

0
0

1

21
2

2

2

1
0

1
0

2

0

4

42

2

0

0

sRs
sRs

sRssRsbsRgb

sRs
sRs

sRgb
sRs

gRs
k

u
QB

sRgbsRsbk
u
QA

H
u

H

u
H

uuu
H

o
H

H
u

H

uu
H

H
o

H
u

uu

u
H

u
H

uu

ˆ
)ˆ(ImˆˆReˆˆˆIm

ˆ
ˆImˆˆReˆ

ˆˆ

ˆˆImˆImˆˆ

 

Re denotes real part, Im denotes imaginary part, 

0
1

0

1
0

0

0

0

0

sRs
gRs

bb

ss

H

H

uu

uu

′′
′

==

′=′

−

−

=

=

ˆ
ˆˆˆ

 

refilter whe whitening
  temporalhe through tly,respective , and  passing of outputs  theare  and  and uuuuuu ssss ′′  

( )

( )

( )

( )
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=
∂
∂

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=
∂
∂

=

∑

∑

∑

∑

∑

∑

∑

∑

==

22

21

2

2

2

2

2

2

1
00

11

m
m

m

m
mm

m
m

m

m
m

m

uu
uu

m
m

m

m
mm

m
m

m

m
m

m

uu
u

XA

XA

XB

XT

ss

XA

XA

XB

XT

ss
ul

,
uil

 

 

 
 

27



 
 

6.0  KNOWLEDGE BASED STAP
 Knowledge based STAP refers to the use of map data, Intelligence, assets deployment 
information, etc. to supplement radar data in optimizing STAP systems.  Section 6.1 describes 
the potential of using terrain knowledge to optimize sample support size.  Section 6.2 describes 
an optimal means of implementing knowledge of potentially strong scattering structures (that 
give rise to “discretes”) into STAP. 

 

6.1  Optimal Parameter Selection 
 A correlation between range cell sub-windows and environment type has been explored 
with the KASSPER Challenge data described in Section 7.1.  Such a correlation would enable a 
knowledge processor to identify the optimal secondary data size commensurate with a given region 
of the environment.  The example described in Section 7.5 suggests that detectability might be 
improved with knowledge-assisted selection of secondary data size. For the NPAMF (“One Pass”), 
106 targets were detected using the optimum secondary data size for each subwindow versus 104 
targets detected using K=4 sample support throughout, and for the NPAMF with Innovations 
Power Sorting (“Two-Pass”), 125 targets detected versus 119.  Similarly, other parameters. such as 
PAMF model order, P, have considerable impact on detection and interference rejection 
performance and are worth investigating. 

 A particularly active area of research involves scenarios in which the sample support 
available for training the adaptive processor is limited.  Monostatic radars at short range (relative 
to platform altitude) exhibit clutter Doppler profiles that are variable with range.  Similarly, 
bistatic radars can have clutter Doppler profiles that may be highly variable, not only in range, 
but in azimuth angle as well.  Thus, the support for adaptive weight training is limited to range 
swaths in which the clutter Doppler does not change significantly.  Other related problems 
include scenarios in which the clutter itself is not homogeneous over significant ranges, e.g., 
conditions where the terrain type is highly variable, urban environments, etc.  Finally, and of 
particular interest, is the environment in which targets are potentially so dense (relative to the 
sample support requirements) that they bias the weight training, causing degraded performance 
of the STAP processor.  Such environments include those containing busy highways in a ground 
moving target indicator (GMTI) mode. 

 

6.2  Discrete Scatterer Signal Injection (DSSI) 
 It is well known that strong localized scatterers degrade STAP performance.  The 
associated scattered signals are often referred to as “discretes.”  Discretes in secondary data 
create additional unwanted nulls in the STAP detector.  Further, discretes in the test range cells 
avoid being nulled by the STAP detector.  Both phenomena degrade detector performance.  The 
first phenomenon usually is dealt with by identifying range cells containing discretes and 
excising these from secondary data.  The range cells containing discretes are identified either by 
data processing or from map databases.  A common data processing method of identifying 
discretes is power sorting, whereby an inner product statistic is determined for all range cells, the 
statistic is amplitude sorted, a threshold is applied, and range cells corresponding to amplitudes 
exceeding threshold are proclaimed as unsuited for secondary data.  One advantage of data 
processing is that statistical outliers (“clutter spikes”) are excised from training data as well as 
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range cells containing sources of discretes.  Excising statistical outliers is of benefit when the 
number of appropriate secondary range cells is severely limited as is usually the case with 
nonhomogenous terrain scenarios and where processing is limited to small “sliding” windows 
centered about the test cells.  This procedure was discussed further in Section 4.0.  The 
advantage of using mapping data, however, is that weaker RCS scatterer discretes are excised as 
well as stronger ones. 

 The second phenomenon is more difficult to deal with.  Because a discrete in a test cell is 
absent from the associated secondary data cells, STAP will not suppress the corresponding 
interference, and the discrete, especially if strong, could mask smaller RCS targets that are not 
well separated in angle or Doppler from that of the discrete.  The conventional approach for 
suppressing the discrete is to first preprocess the primary and secondary data by deterministically 
combining elements (or PRIs) to form beam or subarray patterns in space (or time) with nulls in 
the direction of the discrete (or at the Doppler of the discrete) [22].  STAP is then applied with 
space-time data vectors formed from the preprocessed data.  One disadvantage with this 
approach is that it limits the applicable STAP methods to those consistent with DOFs derived 
from spatial (or temporal) beams or large subarrays.  Another disadvantage of preprocessing with 
deterministic nulling is the likely excessive reduction in DOFs available for the subsequent 
STAP. 

 A new method was identified that does not suffer these drawbacks.  The method is 
referred to as Discrete Scatterer Signal Injection (DSSI).  With DSSI, first the angle, Doppler, 
and estimated RCS parameter values of a known potential source of discrete for a given range 
cell under test is determined from map databases and the scenario geometry, platform velocity, 
antenna beam direction, and so forth.  Second, a signal is generated from the parameter values 
and injected into the secondary data vectors associated with the test cell.  Finally, these 
augmented secondary data vectors are applied in the STAP processing of the test cell.  Thus, a 
full DOF STAP method, such as PAMF, can be applied.  Also, the adaptivity inherent in STAP 
automatically optimizes the trade between mainlobe gain loss and suppression of clutter, 
discrete, and other interference (jamming, etc.) within the limits of the available DOFs.  DSSI 
was not pursued further during this effort. 
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7.0  PERFORMANCE EVALUATIONS 
7.1  KASSPER Data Cube 
 The detectors developed here were evaluated by application to the KASSPER Challenge 
data cube.  This data cube was simulated by ISL, Inc. and made available at the KASSPER 
workshop held on 3 April 2002 in Washington, DC [4].  The scenario included an airborne 
multichannel monostatic GMTI platform traveling at 100 m/s.  The radar had 11 subarray 
channels, wherein each subarray was composed of eight vertical elements.  The data cube 
contained extremely dense ground targets in site-specific clutter.  The scenario locale was from the 
southwest United States.  Figure 7.1-1 displays the detailed clutter modeling and indicates the 
range limits of the data cube and the transmit pattern beam width.  The data cube spanned 1000 
range cells and 32 Doppler resolution cells.  The data cube contained a large number of targets 
within the transmit pattern mainlobe: 226 “cluster” (as in convoys) and 52 background (highway 
vehicle).  Figure 7.1-2 shows the cluster and background traffic.  In addition, a number of 
stationary discrete scatterer sources were included in the data.  These pertained to buildings 
clustered around towns and towers located on large mountain peaks.  Antenna errors were 
modeled, as well.  Range sidelobes and adjacent range cell correlation associated with finite 
bandwidth waveforms were not modeled.  However, guards were included in the processing 
reported here nevertheless.  The radar parameters are listed in Table 7.1-1. 

 

Figure 7.1-1.  Clutter Map  

(Courtesy ISL, Inc.) 
 

 

Figure 7.1-2. Close-up view of the data cube 
region. Yellow dots are background traffic. 
Green dots are clustered vehicles; arrows 
indicate their general direction of travel.  

Red line is major highway 

(Courtesy ISL, Inc.) 
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Table 7.1-1.  Radar Parameters  

(Courtesy ISL, Inc.) 

Parameter Value 

Carrier frequency 1,240 MHz

Bandwidth 10 MHz

Number of pulses 32

Minimum range (one way 35 km

Maximum range (one way) 50 km

Pulse repetition frequency  1,984 Hz

Peak power 15 kW

Duty factor 10%

Noise figure 5 dB

System losses 9 dB

 

 Figures 7.1-3 and 7.1-4 show range/Doppler response diagrams resulting from 
processing range cells 1-250 and range cells 501-750, respectively, with a low sidelobe weighted 
Doppler filter.  In each case, the threshold commensurate with about 55 total detections was 
determined and the results plotted such that black indicates exceeding threshold and yellow 
below threshold.  Crosses indicate true cluster targets and zeros indicate true background traffic.  
A “t” denotes a tower and a “b” a building.  Clearly, most of the targets are sub-clutter and not 
detectable with only deterministic filtering. 
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Figure 7.1-3.  Nonadaptive 
oppler Processed Data; Range 

Cells 1-250 
 32
Figure 7.1-4.  Nonadaptive 
Doppler Processed Data; 

Range Cells 501-750 



 

7.2  Matched Filter Detectors 
 Results of applying the matched filter detector (MF) and the normalized matched filter 
detector (NMF) to the first 250 range cells of the KASSPER Challenge data cube are shown in 
Figures 7.2-1 and 7.2-2.  These detectors are realizable because the KASSPER Challenge Data 
includes the true interference covariance matrix for all range cells.  The threshold is set for about 
55 target detections.  Almost all targets are detected with both detectors.  Clearly, however, the 
NMF does a far better job of rejecting sidelobe targets.  The probable reason for this was 
discussed in Section 3.2. 

    
 Figure 7.2-1.  Matched Filter (MF) 

Detector Performance 
Figure 7.2-2.  Normalized Matched 
Filter (NMF) Detector Performance  

 

 

7.3  Sidelobe Target Rejection Adaptive Detectors 

7.3.1  NPAMF 
 The Normalized Parametric Adaptive Matched Filter (NPAMF) detector was applied to 
the KASSPER Challenge data cube in a sliding window architecture.  The Kalman filter method 
of computing the error predictive filter coefficients was used.  The model order was 6, the 
number of guard cells was 4 (2 on each side of the test cell), and the number of secondary data 
cells was 4 (2 on each side of the test cell).  For comparison, the NMF and the Normalized Joint 
Domain Localized (NJDL) STAP detector were also applied.  NJDL was applied with three 
spatial beams and three Doppler beams resulting in nine degrees of freedom; spatial beams were 
weighted for 30 dB sidelobes and Doppler beams for 60 dB sidelobes.  NJDL employed a test 
statistic of form similar to that of NMF.  NMF was applied instead of MF because of its superior 
sidelobe target rejection capability.  NPAMF was applied twice, once with elements as spatial 
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channels and again with beams.  For the latter, four beams were formed: three 30 dB sidelobe 
Taylor weighted sum beams and one 30 dB sidelobe Bayliss weighted difference beam. 

 Figures 7.3.1-1, 7.3.1-2, and 7.3.1-3 show results of applying NMF, Element Space 
NPAMF, and NJDL, respectively, to the first 250 range cells of the data.  In each case, the 
threshold commensurate with 55 “total” detections (targets plus false alarms) was determined 
and the results plotted such that black indicates exceeding threshold and yellow below threshold.  
As before, crosses indicate true cluster targets and zeros indicate true background traffic.  A “t” 
denotes a tower and a “b” a building.  The NMF detector, which makes use of the exact 
covariance matrix, did extremely well, as expected.  The NPAMF appeared to do somewhat 
better than NJDL in terms of reducing the number of false alarms. 

 

 
Figure 7.3.1-1.  Normalized Matched Filter Processing of KASSPER Data 
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Figure 7.3.1-2.  NPAMF Processing of KASSPER Data 

 

 
Figure 7.3.1-3.  NJDL Processing of KASSPER Data 

 35



 

 The detection ratio versus false alarm ratio for the three detectors and, also, the Beam 
Space NPAMF detector are shown in Figure 7.3.1-4.  All 1000 range cells were used in 
generating these curves.  The detection ratio is the ratio of the number of targets detected to the 
total number present (as provided by the KASSPER data ground truth).  The false alarm ratio is 
the ratio of the number of false detections to the number of possible outcomes (32,000 
range/Doppler resolution cells).  These curves were generated to provide a quantitative measure 
of comparison between the various detectors.  As indicated previously, this measure was feasible 
because of the large number of resolution cells (32,000) and targets (278).  Because a target may 
impact more than one Doppler resolution cell, a local maxima test was applied in order to avoid 
over counting detections. Clearly, NPAMF performance exceeded that of NJDL, but fell 
substantially short of that of NMF. (The dashed line refers to the Beam Space NPAMF.) 

 Next, TPP (Two-Pass Processing as defined in Section 4.1) was combined with 
NPAMF(KF) and NJDL and applied to the data.  The IIP nonhomogeneity detector was applied 
in the first pass for both cases.  Note that a model order is associated with IIP, just as with PAMF 
[20].  The model order applied for the IIP pass was 2 and the number of secondary range cells for 
the IIP pass was 128.  The results are shown in Figure 7.3.1-5.  Little difference in performance 
is evident with respect to the “single-pass” results. 

 Next, MPP was combined with the various detectors and applied to the data.  
Convergence, defined as no change in detections between successive passes, was usually 
achieved in about four passes.  The number of reference data range cells for NPAMF was 
increased to 20.  It is important to note that without MPP, the number of secondary range cells 
could not be increased beyond 4 or so without observing a drop in performance and increasing 
the number of secondary range cells is important if the adaptive detector performance is to 
approach that of the matched filter detector.  As is evident in Figures 7.3.1-6, NPAMF with 
MPP performs almost as well as NMF and much better than NJDL with MPP. 

 
Figure 7.3.1-4.  Algorithm Comparison with KASSPER Data 
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Figure 7.3.1-5.  Two Pass Processing Algorithm Comparison 

 
Figure 7.3.1-6.  Multiple Pass Processing Algorithm Comparison 
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7.3.2  ParaGLRT 
 Figures 7.3.2-1 and 7.3.2-2 show the performance of ParaGLRT with element spatial 
channels and beam spatial channels, respectively.  The NMF, NPAMF, and NJDL are shown for 
comparison.  Model order 6, +/-2 guard cells, four secondary data cells, and sub-CPI size 3 are 
the relevant parameter values for ParaGLRT.  As before, and in all results given in this report, 
these parameter values were determined to be nearly optimal by observing the results of varying 
the parameters through limited ranges.  Model order 6, +/-2 guard cells, and 4 secondary data 
cells are the parameter values for NPAMF, and 3 spatial beams by 3 Doppler beams, +/-2 guard 
cells, and 20 secondary data cells are those for NJDL.  As is evident from these figures, NPAMF 
performs a little better than ParaGLRT for element space and the performance is about the same 
for beam space.  Both methods perform substantially better than NJDL.  These comparisons may 
not be very meaningful because of the propensity for secondary data range cell targets and for 
these targets to impart signals at angles and Dopplers almost equal to those of test cell targets. 

 Figures 7.3.2-3 and 7.3.2-4 show the performance of these adaptive detectors in 
conjunction with Two-Pass Processing.  As before, the Innovations Inner Product nonhomogeneity 
detector with model order 2 and with 128 secondary range cells was applied in the first pass for these 
detectors.  These detectors demonstrate improved performance over the conventional “One-Pass 
Processing” case. 

 Figures 7.3.2-5 and 7.3.2-6 show the performance of these adaptive detectors in 
conjunction with Multiple Pass Processing.  The performance improvement over conventional 
processing and over Two-Pass Processing is dramatic. Apparently MPP thoroughly eliminates 
range cells containing detections from secondary data range cell windows.  The dramatic 
improvement is thought to be a consequence of the scenario wherein major highways are 
predominantly aligned parallel to radials from the radar.  This results in many vehicles in 
different range cells imparting signals with nearly equal Dopplers and angles.  Note that with 
MPP, Beamspace ParaGLRT is superior to the other adaptive detectors and performs about as 
well as the Matched Filter. 
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Figure 7.3.2-1. Element Space ParaGLRT 

 

 
Figure 7.3.2-2. Beam Space ParaGLRT 
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Figure 7.3.2-3. Element Space ParaGLRT with Two-Pass Processing 

 

 
Figure 7.3.2-4. Beam Space ParaGLRT with Two-Pass Processing 
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Figure 7.3.2-5. Element Space ParaGLRT with Multiple Pass Processing 

 
Figure 7.3.2-6. Beam Space ParaGLRT with Multiple Pass Processing 
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7.3.3  PAMF Model Comparison 
 The LMS algorithm method for computing PAMF coefficient matrices and error 
covariance matrix was compared with the Kalman Filter method.  For LMS, correlation 
matrices are computed using x(m)x(n)H, where, as before, the index refers to PRI number.  
These matrices are averaged over the secondary data range cells, and the resulting averaged 
matrices are used to estimate the coefficient and error covariance matrices.  The potential 
advantage of the Kalman Filter method is that, because it is recursive, it can lead to a fast 
running code.  Figure 7.3.3-1 shows the performance of NPAMF with MPP on the KASSPER 
data for three methods of implementing the LMS algorithm.  First, the correlation matrices are 
averaged over the secondary data range cells and the coefficient matrices and error covariance 
matrix are computed from the averaged values.  Second, the coefficient matrices are averaged 
and the error covariance matrix is computed from the averaged coefficient matrices.  Third, the 
coefficient matrices and error covariance matrix are averaged.  Clearly, averaging the 
correlation matrices yields the best performance. 

 
Figure 7.3.3-1. Element Space “LMS” NPAMF with MPP (KASSPER Data) 

 
 Figures 7.3.3-2, 7.3.3-3, and 7.3.3-4 compare two of the LMS variants with the Kalman 
Filter method for “one pass” processing, “two pass” processing, and MPP.  Because of the target 
rich environment, the MPP result is the most meaningful.  LMS (with averaging correlation 
matrices) and Kalman Filter perform about the same. 
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Figure 7.3.3-2. Element Space ParaGLRT “One Pass” (KASSPER Data) 

 

 
Figure 7.3.3-3. Element Space ParaGLRT “Two-Pass” (KASSPER Data) 
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Figure 7.3.3-4. Element Space ParaGLRT with MPP (KASSPER Data) 

 

7.3.4  Normalized Sub-CPI Smoothing 
 The detection ratio versus false alarm ratio for the normalized forms of the matched filter, 
Sub-CPI Smoothing, and the Optimal Pre-Doppler STAP (OPDS), as well as JDL, as applied to 
the KASSPER Challenge data are shown in Figure 7.3.4-1.  Clearly Sub-CPI Smoothing with 
only four secondary data range cells is superior to OPDS with four secondary data range cells, 
and both are superior to JDL with 20 secondary data range cells.  OPDS performance was found 
to deteriorate for M>3, when applied to the KASSPER Challenge data.  Also, the number of 
targets detected for the same false alarm rate was almost 50 percent greater for Sub-CPI 
Smoothing with M=6 than for OPDS with M=3.  The performance of Sub-CPI Smoothing with 
Multiple Pass Processing (MPP) is presented in the following subsection. 

 

7.3.5  SNIP 
 Figure 7.3.5-1 shows that SNIP performs about as well as Sub-CPI Smoothing with the 
same number of secondary data range cells (4), but of course, the range window for SNIP is 
potentially smaller. 
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Figure 7.3.4-1.  Sub-CPI Smoothing, Opt. Pre-Doppler  

STAP Comparison (KASSPER Data ) 

 

 
Figure 7.3.5-1.  Sub-CPI Smoothing, SNIP Comparison (KASSPER Data) 
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 The results of combining MPP with SNIP and again with JDL are shown in Figure 7.3.5-2.  
SNIP/MPP performs almost as well as the matched filter (MF), whereas JDL/MPP shows only 
modest improvement over JDL alone.  These results are not surprising because the number of 
secondary data range cells for SNIP/MPP is increased to 20 (same as for JDL/MPP), which 
amounts to an effective number of secondary data vectors that is about eight times the number of 
DOFs for SNIP/MPP (as computed per the discussion in Section 2.4 for N = 11, M=6, Mp=32, and 
L=20) but only about twice for JDL/MPP (20 secondary data vectors divided by 9 DOFs).  It is 
important to note that without MPP it was found that the number of secondary range cells could 
not be increased beyond about 4 without observing a drop in performance, and increasing the 
number of secondary range cells is important if the adaptive detector performance is to approach 
that of the matched filter detector.  Convergence for MPP, defined as no change in detections 
between successive passes, is achieved with about 4 passes. 

 

 
Figure 7.3.5-2.  SNIP with Multiple Pass Processing (KASSPER Data) 

 

 Element space and beam space SNIP and Sub-CPI Smoothing detectors, in conjunction 
with MPP, are compared in Figures 7.3.5-3 and 7.3.5-4.  SNIP and Sub-CPI Smoothing 
detectors perform comparably and almost as well as the matched filter.  It is noted, again, 
however, that SNIP potentially employs a smaller secondary data range cell window for the same 
performance because SNIP does not depend on guard cells. 
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Figure 7.3.5-3.  Element Space SNIP and Sub-CPI Smoothing with MPP (KASSPER Data) 

 
Figure 7.3.5-4.  Beam Space SNIP and Sub-CPI Smoothing with MPP (KASSPER Data) 
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7.3.6  Angle Estimation 
 Application of the beam-space Maximum Likelihood Angle Estimator derived in Section 
5 to the KASSPER Challenge data resulted in the detections plotted in the PPI in Figure 7.3.6-1, 
where the green dots are background traffic, the blue dots are the 15 dBsm (average) clustered 
targets, the cyan dots are the 5 dBsm (average) clustered targets, the black dots are the clutter 
discretes, and the red circles are the detections.  All of the dots represent truth data.  In addition, 
black lines indicate roadways.  The detections show good agreement with the truth data.  Almost 
all the detections can be associated with truth to within a range (15 m) and Doppler resolution 
cell (7.5 m/s).  There does appear to be a westward bias in the location of the detections, but it is 
less than 1/10th of a beamwidth. 

 

 
Figure 7.3.6-1. PPI of KASSPER Data Cube Detections 

 

7.4  Sidelobe Target Sensitive Adaptive Detectors 

 Some detectors result in high false alarm rates because they count high sidelobes as 
detections.  Several methods of avoiding the sidelobe problem are addressed in Section 3, the 
results of Section 3 pertain to sidelobe target rejection detectors.  Here, results of two detectors, 
PAMF and Sub-CPI Smoothing, are given.  Because the corresponding steering vectors are not 
low sidelobe weighted and the detectors are based upon the MF statistic, they are prone to high 
sidelobe induced false alarms.  One method of evaluating the detectors, however, without having 
to suffer the sidelobe problem, at least in the Doppler domain is to count at most, one detection 
in a range cell.  Although range cells with multiple targets then will be undercounted and the 
absolute performance of a method will be undervalued, the relative performance of methods will 
be accurate.  Promising methods could be combined with HRSTAP (Section 3.3) as an effective 
means of dealing with sidelobes. 
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7.4.1  PAMF 
 Detection performance (counting at most one detection per range cell) of element space 
and beam space versions of PAMF are shown in Figures 7.4.1-1 and 7.4.1-2, respectively.  The 
detectors are compared with the corresponding versions of MF, NPAMF, ParaGLRT, and JDL.  
Also, Multiple Pass Processing was employed for all detectors (except MF).  Detector 
parameters (number of guard cells, Model Order, etc.) are similar to those of Section 7.3.   
Clearly, NPAMF and PAMF performed nearly identically.  This result suggests that the principal 
advantage of introducing the normalized statistic to PAMF, thus forming NPAMF, is to alleviate 
the sidelobe target problem, as seen with the KASSPER Challenge data.  Note, also, that 
ParaGLRT performed better than PAMF or NPAMF. 

 

 
Figure 7.4.1-1  Element Space PAMF (KASSPER Data) 

 

7.4.2  Sub-CPI Smoothing 
 Figures 7.4.2-1 and 7.4.2-2 show Sub-CPI Smoothing detection performance for element 
space and beam space implementations, respectively.  As in Section 7.4.2, these results were 
obtained with at most one detection per range cell.  Also, detector parameters (number of guard 
cells, sub-CPI size, etc.) were similar to those of Section 7.3.  Results for both normalized and 
un-normalized versions of Sub-CPI Smoothing are included, as well as for SNIP, JDL, and MF.  
Multiple Pass Processing was employed for all detectors (except MF).  Sub-CPI Smoothing and 
SNIP detectors performed comparably well and much better than JDL. 
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Figure 7.4.1-2  Beam Space PAMF (KASSPER Data)

 

 
Figure 7.4.2-1  Element Space Sub-CPI Smoothing (KASSPER Data) 
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Figure 7.4.2-2 Beam Space Sub-CPI Smoothing (KASSPER Data) 

 

7.5  Sample Support Dependence on Terrain 
 The NPAMF “One-Pass” and the NPAMF with Innovations Power Sorting (“Two-Pass”) 
were applied to the KASSPER Challenge data with three sample support levels: 4, 10, and 20 
secondary range cells symmetrically placed on each side of the test cell.  Four guard cells were 
applied to separate the secondary data cells from the test cell in the sliding window processor.  
The 1000 range cell data window was divided into four sub-windows of 250 range cells each.  
For a given sub-window and a given support size, the number of targets detected commensurate 
with 50 total detections was determined.  Multiple detections within one range cell were counted 
as a single detection, as discussed in Section 7.4.  The results for the NPAMF (without power 
sorting) are shown in Figure 7.5-1.  The smallest sample support size (K=4) yielded 
substantially better performance than those of the larger sizes for the first 250-cell sub-window 
and performance was similar for all sizes for the other sub-windows with the exception of sub-
window 2 (Range Cells 251-500) where K=20 sample support performed best. 

 The results for the NPAMF with Innovations Power Sorting are shown in Figure 7.5-2.  
These results demonstrated a similar trend.  Again, K= 4 sample support was superior for the 
first, third, and forth sub-windows, and K=20 was superior for the second sub-window.  The 
impact of this observation was addressed in Section 6.1. 
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Figure 7.5-1. Sample Support Size 
Evaluation using NPAMF 
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Figure 7.5-2. Sample Support Size 
Evaluation Using NPAMF with 

Innovations Power Sorting 



 

8.0  CONCLUSIONS 
 The main objective of this work was to develop and evaluate Space-Time Adaptive 
Processing (STAP) detectors that are effective in secondary-data-limited scenarios.  Such 
scenarios are characterized by rapidly varying terrain, localized strong scattering structures, a 
traffic rich environment, bistatic radar, nonlinear antenna array radar, and high PRF radar.  Many 
new concepts were pursued.  These included the Kalman Filter Parametric Adaptive Matched 
Filter (PAMF) (as well as the Normalized PAMF (NPAMF)), Generalized Likelihood Ratio Test 
PAMF (ParaGLRT), Sub-CPI Smoothing (normalized and un-normalized), Severely 
Nonhomogeneous Interference Processing (SNIP), Multiple Pass Processing (MPP), T-SNIP 
(optimizes secondary data selection of MPP), High Resolution STAP (promises to eliminate high 
sidelobe problems without consequence), and Discrete Scatterer Signal Injection (optimizes 
implementation of some knowledge based STAP approaches).  Also, a STAP compatible 
Maximum Likelihood Angle Estimation method was introduced.  Furthermore, beam space 
variants of the STAP detectors were explored as well as element space variants.  The KASSPER 
Challenge simulated data cube was used exclusively for algorithm evaluation. 

 Tentative conclusions drawn from application to the KASSPER Challenge data cube 
included the following.  NPAMF and the normalized form of Sub-CPI Smoothing exhibited good 
sidelobe target rejection.  MPP with ParaGLRT performed about as well as the matched filter.  
MPP with Sub-CPI Smoothing and SNIP performed almost as well as the matched filter.  All 
new methods performed substantially better than Joint Domain Localized (JDL).  Beamspace 
variants slightly outperformed element space methods. 

 Much work remains.  Many promising new concepts conceived as part of this effort 
could not be adequately explored.  It is recommended that subsequent studies be initiated for this 
purpose.  The studies should include execution against a myriad of data sets, including those 
involving bistatic geometries, conformal arrays, and Airborne Moving Target Indication (AMTI) 
scenarios, as well as, other Ground Moving Target Indication (GMTI) scenarios. 
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