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ABSTRACT 
 
 

 

Many weapon effectiveness tools are implemented using a Monte Carlo simulation 

approach since closed form solutions are too mathematically intractable to compute. A 

question that usually arises in connection with such simulations is to ask how many 

iterations of a particular Monte Carlo simulation are needed. This report proposed the 

probability-based approach to computing effectiveness measures for better feedback to 

the user regarding the relationship between the number of iterations executed and 

confidence measures associated with the result. 
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1. Introduction  
 

Many weapon effectiveness tools are implemented using a Monte Carlo 

simulation approach since closed form solutions are too mathematically intractable to 

compute. A question that usually arises in connection with such simulations is to ask how 

many iterations of a particular Monte Carlo simulation are needed?  This question may 

only be answered if it is qualified by some performance measure expected of the 

simulation. For example, a common output of such a simulation might be the average 

damage a target sustained when attacked by a specific weapon with a known accuracy of 

delivery. If the simulation were allowed to run for an extremely large number of 

iterations we would expect the average damage to be reasonably accurate whereas for a 

smaller number of iterations we would expect a different result. The question asked 

above may be re-phrased in the form; how many iterations need to be performed in order 

to obtain a specified accuracy in the result? 

This issue is relevant to a number of Weaponeering tools currently used in JAWS 

(BAM, BAS, TARCOM, HTM), JWES (PVTM, FBAR) and IMEA.  

 

2. Population and Sample 
 

The discussion above illustrates the concept of population and sample. If a Monte 

Carlo simulation were run an infinite number of times each damage value computed 

would be one data point, x,  of the population, and we could compute statistics such as 

the mean µx and standard deviation σx. Usually however we cannot let a simulation run 

an infinite number of trials and we are limited to just n trials, each providing one damage 

value. This limited collection of data is known as the sample. We can still compute the 

sample mean, although it is called the average and denoted by x , and the sample standard 

deviation Sx. Clearly of interest is how close are the population and sample statistics? 
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3. Weaponeering example 
 

In order to illustrate concepts to be discussed later, we will consider a specific 

example. This is the case of a unitary target attacked by a weapon described by a 

Carleton damage function with known delivery accuracy. It is the example given in the 

writers Weaponeering textbook chapter 7, and the issue is to compute the amount of 

damage caused by a single weapon (SSPD), where for simplicity only the range direction 

is considered. This example is dealt with in detail in appendix A and has the advantage 

that a closed form solution for the SSPD is mathematically tractable as shown in the 

appendix. Also shown in the appendix is a Monte Carlo simulation approach to solving 

for the SSPD, and therefore this allows us to compare both the closed form and 

simulation approaches to computing weapon effectiveness. This example should be 

studied carefully before proceeding.  

The Monte Carlo results shown in the table illustrate one way to determine how 

many iterations are needed to compute the correct SSPD to three decimal places, at least 

for this model and the specific inputs used. Two issues of interest are: 

(i) Can we determine the number of iterations needed without running the model 

many times? 

(ii) Given a specified number if iterations, how close is the computed damage to the 

true answer? 

Both of these questions are addressed by estimation theory in general, and 

confidence levels and limits in particular. 

 

4. Mean, Variance and Standard Deviation 
 

The mean of a sample comprising n numbers is defined by 

1 2
1

1 1 ( ... )
n

i n
i

x x x x x
n n=

= = + + +∑       (1) 
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The variance, defined by 

2 2 2 2 2
1 2

1

1 1( ) ( ) ( ) ... ( )
1 1

n

x i n
i

VAR S x x x x x x x x
n n=

⎡ ⎤= = − = − + − + + −⎣ ⎦− −∑  (2) 

The square root of the variance Sx is known as the standard deviation. 

 

5. Confidence Level, Confidence Limits and Intervals  
 

 From tables of the cumulative distribution function for a normally distributed 

random variable it may be seen that about 68% of the impacts should lie in the range ±σ, 

95.5% will lie in the range ± 2σ, and 99.7% in the range ± 3σ. This allows us to illustrate 

the use of confidence limits and levels in the following manner: 

(i) We can be 68% confident that a random sample of the variable x will lie within 

plus or minus one sigma of the mean. 

(ii) We can be 95.5% confident that a random sample of the variable x will lie within 

plus or minus two sigma of the mean. 

(iii) We can be 99.7% confident that a random sample of the variable x will lie within 

plus or minus three sigma of the mean. 

The percentage value is the confidence level, and the interval within which the value 

of x is expected to fall is the confidence limit. 

This range may be expressed in the form of an upper (U) and lower bound (L) 

where 

cU x z σ= +      (3) 

and  

cL x z σ= −      (4) 

 

Values of confidence coefficients zc for different confidence levels are given in Table 1. 
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Table 1. Values of zc for different confidence levels. 
Confidence 

Level % 
99.75 99 98 96 95.5 95 90 80 68 50 

zc 3 2.58 2.33 2.05 2 1.96 1.645 1.28 1 0.6745 

 

 

6. Confidence Intervals for the Mean 

 

The confidence interval (for a given confidence level) described above is an 

estimation of the variable x, a member of the population. It is also possible to generate 

confidence intervals for the mean of a population. 

Suppose we have a normally distributed random variable x where the population 

mean is µx and variance σx
2, and a sample size n is drawn from the population where the 

sample mean is x  and variance Sx
2. If we do this a large number of times we have a 

distribution of x  and SX
2. What can we say about the distribution of means? It is possible 

to show that: 

(i) The expected1 mean of x  is µx the population mean 

(ii) The expected variance of x  may be expressed in terms of the variance of x, 

and is given by 

2
2 x

x n
σσ =      (5) 

 

We are now able to define a confidence limit and level for the mean x . If the 

confidence level is selected at say 95%, then the confidence interval of the mean is  

 

0.95( , ) 1.96x xL U µ σ= ±    (6) 

                                                 
1 The usual interpretation of the expected value is the mean, therefore the expected value of the mean 

reads “ the mean of the means” 
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This is stated as: we are 95% confident that a sample of the mean  x  will be 

within (L,U) of the true mean, or stated another way, we are 95% confident that the true 

mean is within (L,U) of a sample of the mean x . 

However, using equation (6) we write 

0.95( , ) 1.96 1.96 x
x x xL U

n
σµ σ µ= ± = ±   (7) 

Since the population mean and variance are unknown, the unbiased estimators x  

and Sx are used giving 

0.95( , ) 1.96 xSL U x
n

= ±    (8) 

The more general expression is 

( , ) x
c

SL U x z
n

= ±     (9) 

In terms of the Weaponeering test case in the appendix, the variable x is the value 

of damage probability for a single iteration, i.e. selecting a random weapon impact point 

and computing the damage to the unitary target. The population statistics µx and variance 

σx
2 would be obtained by repeating this process an infinite number of times, where µx is 

the SSPD. If the simulation is run for a finite number if iterations (n) the sample statistics 

x  and variance Sx
2 are estimates of the population statistics and x  is the best estimate of 

the SSPD. We can use equation (9) however to estimate the confidence interval 

associated with a particular confidence level for the SSPD. 

Consider the following example. Suppose the Weaponeering example in the 

appendix is run once each for 100, 1000 and 100,000 iterations and we are interested in a 

95% confidence level for the mean. The results may be summarized in the following 

table. 
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Table 2. Single run of weaponeering example. 
n x  Sx Half Interval 

100 0.153 0.785 0.154 

1,000 0.172 0.302 0.019 

100,000 0.177 0.308 0.002 

 

Taking the example for 1000 iterations, we may state that we are 95% confident 

that the true SSPD (mean) is within 0.172±0.019, i.e. in the range 0.153 to 0.191. Clearly 

as we take more iterations the half interval decreases and the sample mean approaches the 

population mean, and the sample variance approaches the population variance. Note that 

for a fixed number of iterations we will in general get different sample means and 

confidence limits for the same confidence level. 

It may be concluded that for any Monte Carlo simulation of the type described 

above a confidence interval for a specified confidence limit may be calculated, but that 

these values apply only to the simulation completed and will be different if the simulation 

is run again for the same inputs. 

 

7. Confidence Interval Estimates for Small Samples of the Mean 

 

If the number of samples of the mean is small, typically less than about 25, then 

the confidence coefficients given in Table 1 cannot be used. Instead of using the normal 

distribution, the so-called t distribution has to be used. This distribution has a similar 

shape to the normal distribution, but is a function of an additional parameter called the 

degrees of freedom, ν. The probability density function for different degrees of freedom 

is shown in Figure 1. 
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Figure 1.   The normal and t-distributions. 

 
 

As may be seen, the t-distribution tends to the normal distribution as the number 

of degrees of freedom increases. In fact, the number of degrees of freedom is determined 

as the number of samples minus one, so this why for small sample sizes the t distribution 

has to be used instead of the normal distribution. Just as the integral of the normal 

probability density function (the CDF) is tabulated, so is the integral of the t-distribution. 

The confidence level and limits work the same way as for the normal distribution. 

Shown in Figure 2 is a t-distribution for a specific number of degrees of freedom together 

with a confidence limit (L,U) for a sample of the random variable x. 

 

 f(x)

x 

UL 

 
Figure 2.   Confidence limits for a t-distribution. 
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For a normal distribution, the range (L,U) would be given by equation (9), but for 

a t-distribution it is given by 

 

( , )
1

x
c

SL U x t
n

= ±
−

     (10) 

 

Here the mean and variance are calculated from the small sample. As before the 

confidence coefficient tc is obtained from the area beneath the PDF, but this time it will 

dependent on the number of degrees of freedom for which Figure 2 is drawn. It is usual to 

tabulate the area under the PDF for a single “tail” i.e. tc is given only for the upper 

interval, U. What this means is that if we require for example the 95% confidence 

interval, then the sum of the area under the PDF less than L and grater than U must be 5% 

of the total area, hence the confidence coefficient needed in equation (10) is t0.975. Table 3 

shows values of the confidence coefficients for different confidence levels and degrees of 

freedom. 

 

Table 3. Confidence coefficients tc for t-distribution. 
ν 90% 95% 97.5% 99.5% 

1 3.08 6.31 12.71 63.66 

2 1.89 2.92 4.30 9.93 

3 1.64 2.35 3.18 5.84 

4 1.53 21.3 2.78 4.60 

5 1.48 2.01 2.57 4.03 

10 1.37 1.81 2.23 3.17 

30 1.31 1.70 2.04 2.75 

∞ 1.28 1.65 1.96 2.58 
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From this point on we will assume we are dealing with “large” samples so the 

normal distribution is reasonable, however this section provides the necessary tools to 

make the adjustments if the sample size is small. 

 

8. Number of Iterations for a Specified Error Bound 

 

Reconsider the Weaponeering example. The true SSPD is known from the closed 

form solution to be 0.176, so Table 2 could include a column that shows the percentage 

error between the estimated SSPD and the true value. 

 

Table 4. Percentage error as a function of iterations. 
 

n x  % error 

100 0.153 13.1 

1,000 0.172 2.3 

100,000 0.177 0.1 

 

It is also noted that the population standard deviation is not known, but may be 

accurately estimated by running the simulation a large number of times, say 107. The 

result of doing this is 

 

0.3073x xSσ ≈ =     (11)  

 

The question suggested by Error! Reference source not found.Table 4 is 

whether we can specify a maximum acceptable percentage error for the mean and 

determine the required number of iterations. 
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By considering the confidence interval to represent twice this maximum error we 

can write 

maxerror c xz S
n

=     (12) 

The percentage error of the mean becomes 

 

100E c xz S
x n
×

=     (13) 

Transforming for n yields 

 

2
100 c xz Sn

E x
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

    (14) 

 

So, for the example used where the confidence level is 95%, zc=0.196, x =0.176, 

Sx=0.3073 and E=5, the required number of iterations becomes 4684. 

 

In words this reads: If the simulation is run for 4684 iterations, we are 95% 

confident that the calculated SSPD will not differ by more than 5% from the true SSPD. 

 

Running the simulation ten times for 4684 trials produced percentage errors of 

4.89, 4.99, 4.92, 4.92, 5.1, 5.0, 4.95, 4.98, 5.00 and 4.94, so it appears to work. The only 

problem is that the separately calculated population statistics µx and σx were used in 

equation (14) and these are not known.  
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9. Estimating the Number of Iterations Required 

 

Consider an iterative Monte Carlo simulation that has no upper bound to the 

number of iterations to be performed. As the iterations proceed, the damage estimates 

accumulate into a sample of increasing size. As more iterations take place the sample 

approaches the population. Table 2 shows the estimates of the sample statistics approach 

that of the population. It is proposed to calculate the sample mean and variance and use 

these values in equation (14) to determine how many iterations are needed to achieve a 

specified maximum percentage error with a specified confidence level. It has been 

observed that this number of iterations converges quickly and even for sample sizes an 

order of magnitude lower than the number required, the calculation of that number is 

quite stable. 

 

Consider the previous example where the exact number of iterations was 

determined to be 4684. We can calculate this number as a function of the number of 

iterations actually performed. This estimation is shown in Figure 3. 
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Figure 3.    Number of iterations required vs. iteration number. 
 

This shows how the number of iterations needed stabilizes within about 500-1000 

iterations, and within about 100 iterations it is accurate to 20%. 

 
 

10. Conclusions and Recommendations 
 

It is proposed that Weaponeering programs that utilize Monte Carlo simulation 

approaches to computing effectiveness measures provide better feedback to the user 

regarding the relationship between the number of iterations executed and confidence 

measures associated with the result. Specifically, selected programs can use the methods 

outlined in this paper to provide the following user assistance. 

 

(1.) For a given number of iterations give the confidence limits associated with a user 

supplied confidence level(s) at the end of the run. 
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(2.) While the run is executing, provide the user with the number of iterations needed 

to achieve a bounded error on the result subject to a user specified confidence 

level. 

 

Neither of these features has a computational overload of any significance and 

should be easily incorporated into any simulation for which the source code or interface 

program is available. An example of a dialog box incorporating the features above is 

shown in Figure 4, and would be displayed during program execution. 

 

 
Figure 4.    Suggested dialog box to display confidence levels. 

 

If this dialog box were displayed during the Monte Carlo simulation it would 

enable the user to determine how accurate the simulation is so far, and give an estimate of 

how many iterations are required to achieve a specific error with known confidence 

levels. The user may then stop the simulation if sufficient accuracy has been achieved, or 

let it run to a specific terminal error criterion. 
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