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Abstract

The initial intent of this research was to develop a better burst communication

signal detector for high interference environments. Current burst detectors, whether

of the radiometric or cyclostationary variety, are ineffective in these environments

due to their lack of resistance to burst interference. This lack of resistance can be

traced to the assumptions underlying the development of each of these detectors.

Radiometers follow a development for stationary signals, which assumes that the

statistics of a signal are independent of time. This assumption is not valid for com-

munications signals. Cyclostationary feature detectors, on the other hand, assume

that the statistics are periodic with time. While this is true of many communica-

tions signals, it is not true of burst communications signals. Therefore, this work

derives, from first principles, a linear subspace approach to deriving signal processing

algorithms for burst communications signals. Unlike stationary or cyclostationary

approaches, this method assumes that the signal of interest is finite in length, rather

than infinite. This new approach is then applied to three different application areas:

Binary Phase Shift Keyed (BPSK) signal demodulation, Time Difference of Arrival

(TDOA) estimation, and finally to the original signal presence detection problem.

Improvements demonstrated in each area validate this method.

Given that statistical detection techniques require estimates of the unknown

parameters, the first application of this new approach was estimating the unknown

message symbols. When applied to BPSK signals, this approach led to two new

results. The first is the derivation and specification of an optimal, minimum mean

square error, linear filter appropriate for demodulating burst communications re-

ceived by one or more sensors. Performance bounds were then calculated for both

this new filter as well as an arbitrary demodulator. The second new result is a

method of demodulator performance prediction capable of predicting the degrada-

tion resulting from a non–optimal receiver configuration.
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Other parameters, such as the TDOA between two sensors, are also well es-

timated by this approach. This is demonstrated by developing first a maximum

likelihood TDOA estimator for burst communications signals, and then a Cramér–

Rao bound appropriate for bounding the performance of this estimator. Unlike other

developments, these methods are derived under strong interference assumptions. The

result is an estimator that outperforms other “optimal” TDOA estimators in simu-

lated interference environments by 15–20% for white noise, and by up to 70% in one

wideband interference environment. While this demonstrated performance does not

achieve the new Cramér–Rao bound, it compares favorably to it.

Returning to the detection problem, applying this new approach resulted in a

new class of signal detector: the cyclic ratio detector. Unlike previous selective de-

tectors whose false alarm rates approach 100% in strong burst interference, this new

detector maintains a low false alarm rate even in the presence of burst interference.

This allows it to distinguish high energy interference bursts from either high or low

energy signal bursts—a capability not found in other burst detectors.

All of these algorithms are simple consequences of the new linear subspace

approach to burst communications signal processing.
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A Linear Subspace Approach to Burst Communication Signal

Processing

I. Problem Introduction

When this research began, there were only two types of burst signal detectors

in the literature. The first type of detector, a radiometer or energy detector, had

been well studied for over thirty years [67]. Since it used the energy within the signal

to detect the signal’s presence, it was highly susceptible to burst interference [60].

The second type of detector, a cyclostationary feature detector, was introduced to

overcome these limitations [17]. Yet while cyclostationary detectors offer more selec-

tivity than their energy detector counterparts, long observation times are necessary

for selectivity. These deficiencies became the reason for re–examining burst signal

processing.

As a result, this study began by focusing on the assumptions underlying each

detection method. The most common assumption, that the statistics of the waveform

under examination do not change with time, leads to stationary signal processing.

Since stationary signal processing underlies all measurements of signal frequency

usage, it is central to both system design, performance analysis, and frequency allo-

cation [4]. This stationary assumption has also been central to statistical algorithm

development. Without it, a waveform cannot be analyzed in a time independent fash-

ion, and the time when the observation is made becomes important—complicating

algorithm development. Indeed, the analytical problems solved by this one assump-

tion have simplified algorithm development for years.

The biggest problem with stationary signal processing comes from common

communications signals which have underlying periodicities not accounted for if the
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observation time is irrelevant. Indeed, the statistics of these waveforms often vary

in a periodic fashion. While this periodic variation has been known since Nyquist

[46], only advances in signal processing over the last three decades have begun to

take advantage of these underlying periodicities. In particular, new techniques that

leverage these cyclostationary properties, as they are called, have outperformed older

techniques based upon the stationary assumption alone. The reason for the success

of these new techniques is quite simple: cyclostationary statistics model more of

the properties inherent in digital communication signals than stationary statistics

alone [21].

Yet cyclostationary techniques, while superior, are often difficult to derive. The

primary difficulty is that, by definition, a cyclostationary signal must have an infinite

length. Therefore, the application of cyclostationary signal processing techniques has

been typically confined to long duration signals.1 A second difficulty comes from the

fact that cyclostationary techniques theoretically achieve complete immunity to noise

and interference when applied to infinite length signals. Thus they are commonly

derived for benign interference environments, and then applied in high interference

environments.

Despite these difficulties, previous authors have exploited cyclostationary prop-

erties in digital communications signals to demonstrate improved demodulators [2],

time difference of arrival estimators [61, 23], and signal presence detectors [17]. In

addition, certain approximations to these methods have resulted in signal selective

methods. The desire for optimality, together with a desire for improved interference

resistance, drives the search for better methods.

All these problems developing cyclostationary algorithms are resolved, how-

ever, when the signal is described using classical linear subspace theory instead of

either stationary or cyclostationary signal models. This dissertation will demon-

1See Sec. 2.1 for a more detailed description of the problems associated with applying classical
cyclostationary approaches to burst communication signal processing.
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strate this by showing how linear subspace theory can be used to derive optimal

signal processing algorithms. By using a linear subspace approach, known cyclo-

stationary features will be shown to be consequences of the method, rather than

the definition of it. Further, building interference resistance into an algorithm is a

natural consequence of the linear subspace framework.

1.1 Specific Application Areas of Interest

To show the validity of a linear subspace approach to communications signal

processing, it is applied to three application areas within burst signal processing:

Binary Phase Shift Keyed (BPSK) signal demodulation, Time Difference of Arrival

(TDOA) estimation, and signal presence detection. As this research will demon-

strate, this approach confirms known optimal algorithms when it is applied under

previously studied conditions. What makes this approach special are the new signal

processing techniques derived under more difficult conditions, such as burst signals

in high interference environments. In particular, each of the signal processing tech-

niques developed here will exploit knowledge of the noise covariance, a parameter

describing the nature of the interference environment, which may be estimated when

the signal is absent and then used when the signal is present. This covariance is then

used to limit the impact of the interference in each of the three application areas.

1.1.1 BPSK Signal Demodulation. The first application area, symbol es-

timation, is perhaps the most fundamental2. Statistically, this is equivalent to esti-

mating the signal component of the received waveform. Since a good signal estimate

underlies every other application, developing this estimate needs to be pursued first.

Such estimation includes receiver synchronization, filtering and channel equalization.

In particular, special attention is paid here to the filtering and equalization problem.

The filtering problem is quite easily stated: what filter should be applied prior to

2Many texts refer to this problem as a “detection” problem. [53]. The term “symbol estimation”
has been used here instead of “symbol detection” to avoid confusion with “signal presence detection”
later.
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symbol estimation in order to get the “best” results. Past research has shown that

this optimal filter always consists of a matched filter, followed by a sampler and a

Tapped Delay Line (TDL) equalizer [12]. The importance of this equalizer is high-

lighted by the fact that, “The revolution in data communication technology can be

dated to the invention of automatic and adaptive channel equalization in the late

1960’s” [28].

Yet the common approach to receiver filtering is to apply a matched filter

designed under white noise conditions, followed by an adaptive equalizer to clean up

any residual distortion. While this technique is appropriate for dealing with signals

in a benign interference environment [30], it is inappropriate for burst signals in

high interference environments. The reason for this is twofold. First, no attempt is

made to remove or mitigate the interference in the demodulator. Second, in burst

signal environments, the signal may not last long enough for an adaptive equalizer

to converge.

An alternate approach is to design a fixed filter to achieve a Minimum Mean

Square Error (MMSE) between the estimated symbols at the output of the demodu-

lator and the values sent by the transmitter [2]. This method works by first excising

any narrow–band interference from the input of the demodulator, and then by apply-

ing a fixed equalizer to the output to remove the resulting intersymbol interference.

While this approach has potential, it has only been applied to baseband and complex

signals. As a result, previous MMSE filters do not exploit all of the spectral redun-

dancies found in a BPSK signal (see Sec. 3.1). Additionally, while able to predict

the minimum mean square error [2], this technique has not been used to predict

the performance of an arbitrary, non–optimal receiver. An improvement in either of

these areas could facilitate receiver design and, in some cases, improve performance.

1.1.2 Time Difference of Arrival Estimation. The second application area

of interest is that of TDOA estimation—a fundamental parameter used to locate
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a radio transmitter. In civilian contexts, locating transmitters is commonly used

for search and rescue, as well as unintentional interference mitigation. In military

contexts, locating such a transmitter has been historically used to find both the

location of foreign spies as well as the locations of opposing military forces [36].

This problem has been so extensively studied in the literature [37, 52, 6] un-

der stationary assumptions that standard solutions are readily available to solve it.

Methods have already been developed which achieve the theoretical performance

limit. As with filtering, these optimal methods first filter out interference, and then

enhance the signal before estimating the TDOA.

Having said that, certain recent papers have reported cyclostationary TDOA

estimates that beat this same theoretical limit under the justification that the limit

was invalid since the signals in question were not truly stationary but cyclostation-

ary in nature [24, 61]. While these estimators appear to work well, they have not

been benchmarked in the open literature against optimal stationary algorithms to

properly demonstrate their value. Rather, they have often been derived for white

noise conditions, tested in high interference environments, and never compared to

optimal stationary estimators. Further, no new limit has been developed to bound

the performance of a cyclostationary TDOA estimator.

What a linear subspace framework offers is the ability to derive cyclostationary

TDOA estimators in a rigorous manner. Even better, the theoretical limit for cyclo-

stationary TDOA estimation, the Cramér–Rao bound which could not be calculated

before, falls out naturally from a proper model. Both of these results, new estima-

tors and Cramér–Rao bounds for digital communications signals, will be presented

in Sec. 3.3.

1.1.3 Signal Presence Detection. This brings us back to the application

area that motivated this research, signal presence detection. This is defined as

determining whether or not a communications signal, burst or otherwise, is present in
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a given environment.3 Since this problem is closely tied to military communications

and radar signal processing, it has been thoroughly studied for both known and

unknown waveforms [43,54].

The simplest method of determining whether or not a burst signal is present

is to look for an increase in the energy in the channel. Although this method is

highly effective, it suffers a lack of selectivity in changing interference environments

[17]. While pre–filters can improve the performance of these methods [59], strong

interference bursts can still create 100% false alarm rates, rendering all such energy

detection techniques difficult to use when burst interference is present.

Cyclostationary detection techniques, on the other hand, exploit known fea-

tures unique to the signals of interest, such as the baud rate or the carrier frequency,

to selectively detect signals of interest only [17]. The problem with these techniques

is the implicit assumption that the signal has an infinite length [20]. As a result, they

lose their selectivity when applied to short bursts in a rapidly changing background

environment (see Sec. 3.4.2). Indeed, Sec. 4.4 will show that, even with cyclostation-

ary methods, strong interference bursts can still cause a 100% false alarm rate.

Dealing with rapidly changing interference environments requires more selec-

tivity than either of these methods, energy detection and cyclostationary feature

detection, provide. A new alternative, presented in Sec. 3.4.2, is a cyclic ratio de-

tector. This new detector offers exactly the type of discrimination required in high

interference environments containing both stationary and burst interference.

1.2 Problem Definition

Before beginning, some comments on problem definition and scope are in order

regarding first the signal of interest, second the noise environment, and finally the

3Hereafter, the term “presence” will often be dropped and this will be referred to as simply a
“detection” problem.

6



extensions that will be used to describe the multi–sensor reception problem required

for TDOA estimation.

As far as this research is concerned, the signal of interest, s (t), will be a Pulse

Amplitude Modulated (PAM) signal with a finite number of symbols, Ns. Such a

signal, upon reception, would produce a measurable voltage, x (t), in a receiver. This

voltage may be considered a random process and described by,4

x (t) = A<
{

Ns−1∑

n=0

dnψ (t− nTs − τ) ej(2πfct+θ)

}

︸ ︷︷ ︸

s (t)

+n (t) . (1)

The finite number of symbols assumption sets this work apart from other cyclosta-

tionary developments [18, 17, 19], making it relevant to burst communication. This

PAM model is broad and general enough to describe most modern modulation types,

such as BPSK signals, Quadrature Phase Shift Keyed (QPSK) signals [58], Quadra-

ture Amplitude Modulation (QAM) signals [58], and many binary Coherent Phase

Modulation (CPM) signaling types [39].5 Every one of these modulation types will

result in a received signal described by Eqn. (1) above [58].

Each of the terms in this equation may be understood in the context of how

the signal is created. As an example, consider the Ns = 12 symbol PAM burst shown

in Fig. 1. As you can see from the figure, this burst is created from a sum of pulses,

ψ (t− nTs − τ), each shown in gray. The sum of these pulses is then shown in black.

These pulses are separated from each other by the symbol length, Ts, and scaled by

a system gain, A, from their initial height. Further, a time delay, τ , has caused this

signal to shift to the right. For simplicity in this example, the carrier frequency, fc,

and carrier phase, θ, are shown as zero.

4The function, <{·}, is the real operator and returns the real portion of its complex argument.
5Appendix C extends this model to Offset QPSK (OQPSK) signals and Minimum Shift Keyed

(MSK) signals.
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Figure 1. A Sample PAM Signal Burst

In terms of what is known within Eqn. (1), ψ (t) is the received pulse shape

and assumed to be a known real function,6 Ts is the duration of one symbol,7 and

fc is the carrier frequency of the signal. The data symbols, dn, are constant weights

chosen according to the modulation type and the message content. As the message is

unknown at the receiver, these data symbols are also assumed to be unknown under

all circumstances. The rest of the signal parameters may or may not be known

depending on the application area of interest. These are the phase of the carrier,

θ, the time the first symbol arrives, τ , and the strength of the received signal, A.

In particular, this work assumes that these parameters are known during signal

demodulation and unknown otherwise.

From the standpoint of linear algebra, if we consider the set of all functions

of time defined over some observation period containing the signal to be a vector

6Appendix A presents several common pulse shapes. In particular, the pulse shape shown in
Fig. 1 is given by Eqn. (196) on page 187.

7A common related quantity, 1

Ts

, is the symbol rate of the communications system. It is pro-

portional to, but not necessarily equal to, the data rate of the system.
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space, then this burst signal lies within a subspace of that vector space. This may

be seen by observation by noting that the signal is simply a linear combination of

pulses whose weights are given by the dn values. These pulses then form the basis of

the linear subspace. This subspace idea will become the foundation, in Chapt. III,

for a new approach to burst signal processing.

Returning the the equation that describes a received signal, the second part of

this equation is the noise plus interference term, n (t), often called just noise for short.

This represents a random process that is assumed to be stationary, independent from

the signal, and having a known Power Spectral Density (PSD), Sn (f).8

These assumptions are then modified slightly for multi–sensor problems. For

such problems, the noise process, n (t), the carrier phase, θ, and the signal time delay,

τ , may be different on each sensor. Further, the noise may have a separate power

spectral density for each sensor. Two cases are treated here, depending upon the

problem. For the multi–sensor demodulation problem, the carrier phase and time

delay will be assumed known and the noise may be correlated across the sensors.

These assumptions are different from the TDOA estimation problem, which is first

simplified by assuming that the noise sources are uncorrelated and then made more

complex by assuming that the carrier phase and time delay parameters are unknown

for each sensor.

From these assumptions, the problem description is easy to state. For BPSK

demodulation, what is the ideal way to recover the data symbols, dn, from the

received signal, x (t)? For TDOA estimation, what is the difference between time

delay on one sensor, τi, and the time delay on another sensor, τj? Finally, for signal

detection, is the received signal composed of noise alone, or does it contain some

amount of signal, A > 0? These problems will become the focus of the next several

chapters.

8See Eqn. (3) in Sec. 2.1 for a definition of this function.
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1.3 Organization of this Dissertation

This dissertation is organized into five chapters. This Introduction forms the

first chapter, outlining the motivation, scope and focus of this problem. The next

chapter is the Background, providing a brief review of the relevant literature to these

three application areas and to the problem of cyclostationary signal processing in

general. This review will start with a short introduction to stationary and cyclosta-

tionary signals, and be followed by a short synopsis of previous techniques that have

been applied to similar problems. The third chapter, the Theoretical Development,

presents the linear subspace description of a digital communications signal. Then,

classical statistical techniques are used to yield new algorithms for of the problems

of filtering, TDOA estimation, and detection that exploit the periodic structure in-

herent in a digital communications signal. Once these algorithms are developed, the

Analysis by Simulation chapter presents the performance of these new algorithms

under simulated conditions. Finally, Chapt. V draws some conclusions regarding

how well this new approach to burst signal processing works.
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II. Background

By summarizing existing statistical models of communication signals, as well

as how these models have been applied in the past, this chapter presents the need

for a new look at burst signal processing. This need is shown not just for signal

analysis, but for each of the three application areas of this research as well. Since

this summary is quite brief, an interested reader may find additional information

on each of these topics in such articles as [46, 2, 54, 19, 23, 24]. Each section within

this summary presents both stationary and cyclostationary solutions. A summary

at the end of each section discusses how well, or poorly, these solutions apply to the

problem of burst signal processing in high interference environments.

2.1 Signal Modeling

Prior to discussing algorithm development, a discussion of the underlying ap-

proach used both to describe the signal and to derive signal processing algorithms

will provide the background for understanding previous algorithms. Therefore this

section describes previous models and statistics that have been used to describe both

the signals of interest and the interference environment. Since both will be described

in the frequency domain, the first part of this section describes the reasons for doing

so, followed by the statistics of interest in the frequency domain. After that, two

general approaches will be presented for deriving signal processing algorithms. The

first approach treats the signal as a Gaussian stationary random process, and the

second as a non–Gaussian cyclostationary process. After discussing each of these

models in turn, this section will conclude with a short critique of each approach as

it might be applied to burst signal processing.

For two primary reasons, all of the models discussed in this research will be

discussed in the frequency domain. The first reason is that stationary signals that are

correlated in time become uncorrelated in frequency for sufficiently long observation
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intervals. This allows the covariance of a stationary signal to be approximated as a

diagonal matrix [49]. The second reason is that unknown delay terms in the signal of

interest, such as τ and θ, become complex constant multipliers in frequency, making

them easier to deal with.

Within the frequency domain, the first two moments of the signal of interest,

noise, and interference have been studied extensively by others. The first moment,

the mean, is typically assumed to be zero for both the received signal and the in-

terference, E {X (f)} = 0.1 The second moment is more interesting, and somewhat

depends upon how x (t) is defined. If x (t) represents a time–limited signal, then the

infinite time Fourier transform,

X (f) ,

∫ ∞

−∞
x (t) e−j2πftdt, (2)

converges. From here, the variance inX (f) can be expressed directly as E
{
|X (f)|2

}
.

For signals of infinite length, this transform does not converge. An alternate method

must be used to describe the variance of an infinite length signal in the frequency

domain. Commonly, this is done with the power spectral density (PSD), Sx (f),

defined as,2

Sx (f) , lim
T→∞

1

T
E
{
|XT (f)|2

}
, (3)

where XT (f) ,

∫ T
2

−T
2

x (t) e−j2πftdt. (4)

This function describes the distribution, in power, of the signal as a function of

frequency.

1E {·} is used throughout this work to refer to the expected value of its argument.
2A related quantity, the autocorrelation function, describes the second moment of a

zero mean signal in time. This function is defined for stationary signals as Rx (∆t) =
E
{
x∗
(
t− ∆t

2

)
x
(
t+ ∆t

2

)}
.
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When signals are received across multiple sensors, correlations between these

sensors may also be of interest. For arbitrary finite time signals, x (t) and y (t), this

correlation is just E {X∗ (f)Y (f)}. Likewise, the cross spectral density,

Sxy (f) = lim
T→∞

1

T
E
{
X∗

T (f)YT (f)
}
, (5)

is defined to describe this correlation for infinite length signals.3

One particular feature of uncorrelated signals is that their second moments

sum together. Therefore, the PSD of the received signal, including both signal of

interest and noise, is equal to the PSD of the signal plus the PSD of the noise [57],

Sx (f) = Ss (f) + Sn (f) . (6)

2.1.1 The Stationary Approach. Developing algorithms under this ap-

proach starts with the assumption that the signal is stationary, that is its probabil-

ity distribution function is independent of absolute time [57]. By this definition, the

only signals that are truly stationary are infinite in length. Yet hypotheses made re-

garding these signals are typically made surrounding some time limited observation

by assuming that it has a multivariate Gaussian probability distribution. Using this

approach, all received signals are treated as Gaussian random vectors, whose ele-

ments are independent in frequency [37]. Since it is Gaussian, the first two moments

completely specify the distribution. The first moment, the mean, has already been

assumed to be zero. The second moment in frequency, the variance, is described by

the PSD of the signal. Thus all of the parameters of a stationary signal, under this

model, are contained in the power spectral density.

3In general, the notation Sxy (f) is used to represent this spectral density function between
signals x and y. A similar notation, Rxy (τ), is used to represent their cross correlation function.
This notation will be used throughout.
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In particular, the PSD of a Pulse Amplitude Modulated (PAM) signal, such

as the one in Eqn. (1) of interest to this research, with uncorrelated dn values is well

known [21],

Ss (f) =
A2

4Ts

∣
∣Ψ (f − fc)

∣
∣
2E
{
|dn|2

}
, (7)

where Ψ (f) is the Fourier transform of the pulse function, ψ (t). Notice that the

only parameters affecting this PSD are A, Ψ (f), fc, and Ts. The symbol epoch,

τ , and carrier phase, θ, are not important since the statistics of stationary signals

are independent of absolute time and these parameters require an absolute time

reference. Some common derivations treat these two parameters, τ and θ, as random

parameters instead of deterministic ones [57]. As one author puts it,

The most common approach to modeling signals for interception stud-
ies is to ignore cyclostationarity by . . . introducing a random phase vari-
able θ uniformly distributed over one period of the cyclostationarity . . .
so that x (t+ θ) becomes stationary. [17, p. 899]

This subtle change, from τ and θ being unknown to random, mathematically forces

the theoretical probability distribution of the underlying signal to be truly station-

ary. This mathematical sleight of hand, however, does nothing to change the true

properties of an observed signal.

The biggest problem with treating a PAM signal as a stationary process is

that PAM signals are not truly stationary. Indeed, PAM signals possess significant

properties not captured by this model [16, 21]. Exploiting these properties requires

a different approach.

2.1.2 The Cyclostationary Approach. A second approach is to treat the

signal of interest as cyclostationary. A cyclostationary signal is one whose probability

distribution function is a periodic or a polyperiodic function of time [57]. As with

stationary signals, any signal that meets this definition must also have an infinite
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length.4 In addition, the time of the observation is now important, since it will

determine which phase of the period the observation lies within. This gives rise

to unknown phase parameters, often only nuisance parameters, which need to be

estimated as part of any cyclostationary signal processing algorithm.

To apply classical statistical techniques to any signal, some probability distri-

bution function needs to be chosen to describe the signal. To date, an appropriate

probability distribution has not been found for cyclostationary signals [23]. Further,

the comment has been made that digital signals are not Gaussian in general [23]

and therefore cannot be treated as such.5 Without a known probability distribution,

the cyclostationary algorithm designer is left to examining known moments only for

properties of interest.

The advantage of cyclostationary signal processing lies in the difference be-

tween the moments of a stationary signal and those of a cyclostationary one. Cy-

clostationary signals have the property that particular pairs of frequencies are corre-

lated [19,18], while stationary signals exhibit no such correlation [49]. This correla-

tion is called the cyclic spectral density function or the spectral correlation function

(SCF) [19],

Sα
x (f) , lim

T→∞

1

T
E
{

X∗
T

(

f − α

2

)

XT

(

f +
α

2

)}

. (8)

The variable α in this equation is the cycle frequency, or the separation in frequency

between two correlated frequency pairs. It corresponds to one of the time periods

found within the probability distribution function. Only man–made signals have

non–zero spectral correlations when α 6= 0. Of these man–made signals, only a finite

number of values for α yield non–zero spectral correlations. Typical values for α that

4One consequence of this definition is that burst signals are neither truly stationary nor truly
cyclostationary. A more appropriate description will be introduced in Sec. 3.1 that maintains the
properties of interest.

5See Sections 3.1 and 4.1 for a demonstration of the contrary.
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Figure 2. The Bifrequency Plane

produce non–zero spectral correlations are zero, resulting in the PSD, multiples of

the symbol rate, k
Ts

, twice the carrier rate, 2fc, and linear combinations of these [21].

For PAM signals, the cyclic spectral density at multiples of the baud rate, k
Ts

,

is known to be [21]

S
k

Ts
s (f) = e−j2π kτ

Ts
A2

4Ts

Ψ∗
(

f − k

2Ts

− fc

)

Ψ

(

f +
k

2Ts

− fc

)

E
{
|dn|2

}
, (9)

for all integer values of k. In addition, PAM signals with real dn values have a

correlation surrounding twice their carrier frequency,

S2fc

s (f) = ej2θ A
2

4Ts

∣
∣Ψ (f − fc)

∣
∣
2E
{
|dn|2

}
. (10)

These functions are commonly plotted above a two dimensional plane with axes for

the frequency, f , and the cycle frequency, α, known as the “bifrequency plane” [19].

An example bifrequency plane is shown in Fig. 2, demonstrating the cyclic correlation
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functions for a BPSK signal having a Nyquist pulse shape, defined in Appendix A,

with a data rate of one symbol per second, and a carrier frequency of 2.5 Hz.

To use these moments in practice, one simple assumption is made: only the

signal of interest is correlated at a particular value of α, implying that the α chosen

is non–zero. Mathematically, the cyclic spectral density of the received signal is

then identically equal to the cyclic spectral density of the signal of interest, Sα
x (f) =

Sα
s (f). This assumption justifies the philosophy that estimating this value will

separate the signal from all other interference in the environment. This is how

signal selectivity is achieved, and it forms the basis for the common cyclostationary

approach to signal processing. If the estimate of this value is non–zero, the signal

is present [17]. In TDOA, the value of a similar quantity will result in the TDOA

associated with the signal of interest only [23].

The two biggest disadvantages with this technique are first the noise, and

second the assumption that the cyclic correlation function is unknown and needs to

be estimated. The problem with the noise is that it increases the variance in any

estimate of the cyclic correlation function, Ŝα
x (f). Thus, despite the assumption that

only the signal will contribute, random variations caused by noise can easily create

other apparent contributions. This extra variation can be dealt with by averaging

the statistic over longer and longer observations while requiring some amount of

smoothness in the estimated SCF [18]. While this may be an appropriate method

for working with signals of exceptionally long duration buried in noise, it is not

appropriate for developing algorithms for short duration signals of interest. For

short duration signals, other methods are required.

Table 1 may be helpful here to understand the difference between the stationary

and cyclostationary approaches to signal processing. Under stationary assumptions,

the PSD of the received signal may be measured, but the contribution due to the

noise cannot be separated from the contribution due to the signal. Cyclostationary

signal processing, on the other hand, focuses on the non–zero values of α where only
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Table 1. The Problem with Classical Burst Signal Analysis

Statistic Stationary Cyclostationary Burst

α
=

0 Sn (f) Measurable, Measurable

Ss (f) but inseparable. Cannot be measured

α
6=

0 Sα
n (f) Assumed to be zero

Sα
s (f) Zero Measurable Cannot be measured

the signal contributes. By measuring these properties, and smoothing them out over

time, an estimate may be made for the signal which is theoretically independent of

the noise. Neither of these approaches, however, works for burst signal processing

since the spectral correlation functions are only defined for infinite signals—making

it impossible to measure or estimate these functions for burst signals only. The fact

that the noise can be measured, however, will be discussed in more detail in the

following chapter.

2.1.3 Discussion on the Fundamental Approach. Each of these two ap-

proaches, the stationary approach and the cyclostationary signal approach, has ad-

vantages and disadvantages. While the stationary approach does not use all of the

properties in the signal of interest [19], the fact that a useful probability density func-

tion can be constructed for stationary signals makes classical statistical techniques

plausible. This makes the development of detection and estimation techniques for

stationary signals quite straightforward. On the other hand, cyclostationary statis-

tics account for more of the true properties within a signal. Thus, it is only reasonable

to assume that techniques properly based upon this extra information would be more

capable. The problem with the cyclostationary approach, however, is that it lacks a

probability distribution function, which makes it difficult to apply classical statisti-

cal techniques [23]. As a result, cyclostationary algorithms have often been derived

in an ad-hoc manner and validated through performance tests alone [14].
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Confusing the question of which model is more appropriate is the fact that

cyclostationary algorithms have rarely been compared to their optimal stationary

counterparts. Two examples will illustrate this. First, single cycle detectors in [17]

are only compared against standard radiometers, even though the “optimal radiome-

ter” is well known [17, p. 903]. Second, TDOA estimates are compared in [24]

and elsewhere to the Generalized Cross Correlation method rather than the opti-

mal Eckart filter, even though the problems with the Generalized Cross Correlation

method have been known for years [52]. This leaves the true relative capabilities of

cyclostationary methods obscure.

For these reasons it makes sense to return to classical statistical principles, such

as likelihood ratios and maximum likelihood estimation to derive optimal algorithms.

The fact that these classical statistical principles have proven optimality properties

associated with them makes them even more desirable. The one missing link, a

workable signal model, will be presented in Sec. 3.1.

The rest of this chapter will describe standard approaches to each of three

application areas—symbol estimation, TDOA estimation, and presence detection.

In each case, the choice of the underlying approach will dictate the form of the

solution. While a stationary approach will yield one algorithm, the cyclostationary

approach will often yield a superior algorithm. This justifies the need to re–examine

whether or not the cyclostationary properties contained within a burst signal may

be used in a more rigorous manner to achieve even better results.

2.2 Optimal Filtering

Of the three application areas in this dissertation, optimal filtering is perhaps

the oldest. The problem can be stated quite simply: what filter should be applied

prior to symbol estimation in order to get the “best” results. This optimal filter is

known to consist of an overwhitener, a matched filter for white noise, followed by a

sampler and a Tapped Delay Line (TDL) equalizer, as shown in Fig. 3, regardless of
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xBB (t) -

Matched Filter for Colored Noise
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White Noise t = nTs + τ

- Equalizer - d̂n

Figure 3. The Structure of an Optimal Filter

the criteria used to determine “best” [12]. In this figure, xBB (t) represents a signal

with a zero carrier, fc = 0, t denotes the time the sample is taken, and d̂n is the

estimated symbol at the output of the filter. The structure of this section will follow

the form of this optimal filter, as first the matched filter will be discussed followed

by the combination of a matched filter with an equalizer.

2.2.1 Matched Filtering. A matched filter is defined to be the unique filter

that maximizes the signal–to–noise ratio of a known input. Common developments

of this filter are presented in [58,63,66]. In each development, the signal is assumed

to be known, such as s (t) = Aψ (t), to within a constant scale factor, A. The filter,

h (t)
MF

, that maximizes the signal–to–noise ratio in white noise is [50, 63]6

h (t)
MF

= ψ∗ (−t) . (11)

This filter can be represented in frequency as

H (f)
MF

= Ψ∗ (f) . (12)

Other developments, such as [11], extend this filter to colored noise environ-

ments. In a colored noise environment, the form of the filter that maximizes the

6White noise is a random process having a constant one–sided power spectral density, Sn (f) =
No. The term No, here, is a constant used to specify the amount of power in the noise per unit
frequency.
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signal to noise ratio is

H (f)
MF

=
Ψ∗ (f)

Sn (f)
, (13)

where Sn (f) is the power spectral density of the noise. This filter for colored noise

can be understood as a two step process. The first step whitens the noise by applying

the filter

H (f)
Whitener

=
1

√

Sn (f)
, (14)

while the second step matches the whitened output to the signal of interest. The

catch is that the signal of interest no longer has the same shape—it has been distorted

by the whitening filter. The signal of interest then looks like Ψw (f) = Ψ(f)√
Sn(f)

.

Therefore, the filter in Eqn. (13) matches to the signal as distorted by the whitening

filter [66]. Since this operation can be viewed as whitening the signal twice, it is

often called overwhitening.

While the matched filter is certainly the optimal filter when only a single pulse

is transmitted, it is not necessarily the optimal filter for a communications system

where multiple pulses are transmitted in succession. When multiple pulses are trans-

mitted, the pulses may interfere with each other at the output of the filter causing

Intersymbol Interference (ISI) [58]. Such interference is especially problematic in

the case where Ψ (f) has been designed and fixed in the transmitter, prior to the

estimation of Sn (f) and the corresponding application of the overwhitener.

2.2.2 Equalization. Removing Intersymbol Interference (ISI) is accom-

plished through the use of an additional filter called an equalizer. Ericson proves,

using the spectral redundancies inherent in a modulated signal, that the optimal

receiving filter always consists of a matched filter followed by a TDL equalizer [12].
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This equalizer can be implemented as a discrete time filter operating on the symbols

that are sampled after the matched filter. Using this structure, there are two ways

of applying an equalizer: fixed and adaptive.

A fixed equalizer can be designed by minimizing the mean square error between

the output of the equalizer and the true symbols that were sent. Berger and Tufts

present one such Minimum Mean Square Error (MMSE) filter for a pulse–amplitude

modulated communication stream [2]. First, they modeled the communications sig-

nal as a sum of delayed pulses with unknown weights,

s (t) =
∞∑

n=−∞
dnψ (t− nTs) , (15)

similar to Eqn. (1). Then they derive their filter from the PSD of the noise, Sn (f), to-

gether with the PSD of the discrete pulse sequence {dn}∞n=−∞, written as Sd

(
ej2πfTs

)
.

This filter, they point out, is composed of both a periodic and a non–periodic com-

ponent,

H (f)
MMSE

=













Sd

(
ej2πfTs

)

1 + Sd

(
ej2πfTs

) A2

Ts

∞∑

n=−∞

∣
∣
∣Ψ
(

f − n
Ts

)∣
∣
∣

2

Sn

(

f − n
Ts

)













︸ ︷︷ ︸

Tapped Delay Line
Equalizer

Ψ∗ (f)

Sn (f)
.

︸ ︷︷ ︸

Matched
Filter

(16)

The non–periodic component on the right hand side of Eqn. (16) is a matched filter.

The term on the left side of Eqn. (16) represents the equalizer. This term is periodic

with period 1
Ts

, making it a TDL equalizer and matching Ericson’s prediction [12].

The second type of equalizer is an adaptive equalizer. These equalizers were

first demonstrated by Lucky [40] in 1966 and then later studied by Haykin and many
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others [30, 70]. They are in common use today because they require no knowledge

of the interference environment in order to operate. When applied following a true

matched filter, adaptive equalizers have been shown to converge to the minimum

mean square error filter solution. When the initial filter is not a true matched filter,

these solutions are less than optimal. Yet they can be ideal solutions to modern

equalization problems where little knowledge of the noise PSD or the true signal

pulse shape are available to implement the filter.

The problem with these adaptive equalizers lies in their implementation: no

knowledge is used of the noise PSD or the true signal pulse shape. Without using the

noise PSD to filter out narrow band interference, large amounts of interference may

enter into the system. Without using the true pulse shape, signal energy is arbitrarily

lost in the initial filter. While the TDL equalizer that follows may be able to reduce

any resulting distortion, it cannot fundamentally compensate for poor signal to noise

conditions in its input. Therefore, although practical, these systems are less than

optimal.

2.2.3 Optimal BPSK Filtering. From the above discussions, it would seem

that the optimal filter to use under known conditions would be a Minimum Mean

Square Error filter. This filter has known optimality properties, and is defined when

the pulse function for the signal and the PSD of the noise are both known. Yet

Berger and Tufts’ version of the MMSE filter does not exploit the extra spectral

redundancies found in a BPSK signal at bandpass frequencies [2]. In particular,

BPSK signals at bandpass frequencies are symmetric about their carrier frequency,

and this symmetry is not exploited in a real baseband filter. As this research will show

(Sec. 3.2), applying a proper filter at bandpass frequencies can improve performance

under asymmetric colored noise conditions.

What may not be apparent from this discussion is that the initial filter choice

lays the foundation for estimating other parameters associated with the signal, such
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as synchronization parameters, TDOA estimates, and ultimately signal presence

detectors. Chapt. III will highlight this connection in its development of both optimal

TDOA estimators and optimal signal detectors. This underscores the criticality of

this initial decision in all other burst communications processing steps.

2.3 Time Difference of Arrival Estimation

The second application area, time difference of arrival (TDOA) estimation,

arises from the need to locate a transmitter by using multiple receivers. The signal

of interest, arriving at each sensor, is assumed to be corrupted by additive Gaussian

noise plus interference prior to TDOA estimation. For simplicity, this corruption is

assumed to be statistically independent from sensor to sensor. From these assump-

tions, the output of the ith sensor can be expressed as [29, 37]

xi (t) = Ais (t− τi) + ni (t) , (17)

where Ai is the signal gain on the ith sensor, and τi is the propagation delay from the

transmitter to the ith receiver. The problem of time difference of arrival estimation is

to determine the parameters τi relative to an arbitrary time delay, τ0, or equivalently

to estimate τdi= τi − τ0.
7

2.3.1 Cross Correlation Methods. It is commonly known that a measure-

ment of the cross–correlation function for a zero mean signal can yield an estimate of

the time delay difference between two signals. This is clearly seen by the fact that,8

Rx0,x1
(∆t) = Rs (∆t− τd1) . (18)

7A similar problem, time delay estimation, involves estimating τi. The difference between these
two problems is whether or not the absolute, as opposed to relative, transmission time is important.

8Rxy (∆t) is defined as the cross correlation function of the two signals, and equal to

E
{

x
(
t− ∆t

2

)∗
y
(
t+ ∆t

2

)}

when x (t) and y (t) are stationary random processes.
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When the noise and the signal of interest are both white, the maximum of the cross

correlation produces a remarkably clear estimate of the time difference,

τ̂d1 = arg max
∆t

R̂x0,x1
(∆t) . (19)

Estimating this the cross correlation, R̂x0,x1
(∆t) can be done quickly in fre-

quency. As a result, the estimate in Eqn. (19) is often replaced by

R̂x0,x1
(∆t) =

∫ ∞

−∞
X0 (f)X∗

1 (f) ej2πf∆tdf, (20)

giving rise to the equivalent TDOA estimator,

τ̂d1 = arg max
∆t

∫ ∞

−∞
X0 (f)X∗

1 (f) ej2πf∆tdf, (21)

where X0 (f) and X1 (f) are the time–limited Fourier transforms of x0 (t) and x1 (t)

respectively. This method is known as the Generalized Cross Correlation (GCC)

method. Although well known, it suffers problems when the signal and the noise are

not white [37,52,6]. Specifically, R̂x0,x1
(∆t) may consist of multiple peaks or blurred

peaks making it difficult to correctly identify the true maximum.

To circumvent this problem, a filter may be applied to the cross correlation

prior to the inverse Fourier transform. This leads to a TDOA estimate of the form

τ̂d1 = arg max
∆t

∫ ∞

−∞
H (f)X0 (f)X∗

1 (f) ej2πf∆tdf, (22)

where H (f) is designed to create a clear cross–correlation spike.

Two choices for H (f) are well known. The first is the Eckart filter and the

second is the Hannan and Thompson filter, which produces the stationary Maximum
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Likelihood Estimator (MLE) [37]. Both of these methods depend upon the PSD of

the signal and the noise.

Of these two choices, the Eckart filter is the easiest to implement. It can be

constructed entirely from values already assumed known to this research, by dividing

the PSD of the signal (any sensor) by the PSDs of the noise on each of the two sensors

of interest,

H (f)
ECKART

=
Ss (f)

Sn0
(f)Sn1

(f)
. (23)

Even better, this filter is provably optimal under small input signal–to–noise condi-

tions [37].

The second choice, the Hannan Thompson filter, is said to achieve the theoret-

ical limit in TDOA estimator performance, also known as the Cramér–Rao bound

(CRB) [37].9 This filter is a function of both the expected signal PSD, and the noise

PSDs. Using Eqn. (7) for the original PSD, this estimate is,

τ̂d1,ML = arg max
∆t

∫ ∞

0

A0A1

4Ts
|Ψ (f − fc)|2

[
X0 (f)

Sn0
(f)

] [
X1 (f)

Sn1
(f)

]∗
ej2πf∆t

1 +
A2

0

4Ts

|Ψ (f − fc)|2
Sn0

(f)
+
A2

1

4Ts

|Ψ (f − fc)|2
Sn1

(f)

df. (24)

Unlike the Eckart filter, this filter requires knowledge of the unknown signal scale on

both sensors, A0 and A1, making it difficult to implement.

9The proof that the stationary MLE achieves the CRB is made following several assumptions.
When stated in 1976, experimental validation was not feasible. Experiments given in Sec. 4.3,
however, demonstrate that although the stationary MLE comes close to this bound, it does not
achieve it.
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Assuming that the correct correlation peak is identified, the Cramér–Rao

bound defining the theoretical optimal performance is, [37]

CRB (τ̂d1) =
T

∫ ∞

−∞

(2πf)2 A2
0A2

1

16T 2
s
|Ψ (f − fc)|4

Sn0 (f)Sn1 (f)
(

1 +
A2

0|Ψ(f−fc)|2
4TsSn0(f)

+
A2

1|Ψ(f−fc)|2
4TsSn1(f)

)df

. (25)

Knapp and Carter add the comment that this particular bound does not take into ac-

count any affects caused by correlation degradation as a result of a finite observation

length.

Before leaving stationary TDOA estimation, it is important to mention the

problem of subsample interpolation. In practice, TDOA estimates are created from

sampled waveforms. To get the time resolution desired, subsample interpolation

is required. The simplest and most common method of subsample resolution is to

apply a quadratic interpolating polynomial to the output samples [5],

τ̂d1 = ˆ̂τd1 +
1

2

R̂x0,x1

[

ˆ̂τd1 + 1
]

− R̂x0,x1

[

ˆ̂τd1 − 1
]

2R̂x0,x1

[

ˆ̂τd1

]

−
(

R̂x0,x1

[

ˆ̂τd1 − 1
]

+ R̂x0,x1

[

ˆ̂τd1 + 1
]) , (26)

where ˆ̂τd1 is the initial TDOA estimate. While simple and well known, minor prob-

lems have been noticed with polynomial interpolation resulting from the fact that

the true correlation peak is not a quadratic polynomial [5]. When these errors are

small, polynomial interpolation is a valid means of achieving subsample resolution.

When necessary, upsampling prior to quadratic interpolation may be used to mini-

mize these errors.

2.3.2 Cyclic TDOA Estimation. There are several algorithms for mea-

suring the TDOA of a signal using the cyclostationary properties of that signal.

According to Gardner,
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These new algorithms are tolerant to both interfering signals and
noise, and they can outperform conventional algorithms that achieve the
Cramér–Rao lower bound on variance for stationary signals because the
signals considered here are nonstationary (cyclostationary) and the al-
gorithms exploit the nonstationarity to discriminate against noise and
interference. [24, p. 1197]

Two particular estimators of interest are the Spectral Coherence Alignment method

(SPECCOA) [22,23,24], and Streight’s cyclostationary TDOA MLE [62,61].

SPECCOA is one of many algorithms published by Gardner and Chen on cyclic

TDOA estimation [22,23,24]. Fong et al. comments on this technique,

One of the most successful TDOA algorithms based upon the cyclo-
stationary model, which is referred to as spectral coherence alignment
(SPECCOA), was derived from an ad–hoc least–squares optimization
procedure. [14, p. 38]

To justify an ad–hoc algorithm, Gardner and Chen explain that,

Although classical statistical principles, such as maximum likelihood,
provide an alternative approach, we have not yet found such approaches
to be tractable for the non–Gaussian nonstationary models of interest.
[23, p. 1177]

The algorithm itself simply involves looking at the product of two spectral correlation

estimates,

τ̂d1 = arg max
τd1

∣
∣
∣
∣

∫

Ŝα
x1x0

(f) Ŝα
x0x0

(f) df

∣
∣
∣
∣
. (27)

Although it may not be apparent, this function does depend upon τd1, since

Sα
x1x0

(f) = ej2π(f− 1
2Ts

)τd1
A1

A0

S
1

Ts
s0 (f) . (28)

It is this dependence that SPECCOA exploits. Further, since this is one of the “most

successful” cyclostationary TDOA algorithms, we consider it here [14].
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One interesting thing to note about this approach is that Sα
s (f) is assumed

to be unknown. Thus, accomplishing this TDOA estimate requires first estimating

Sα
s (f) and then placing the estimate into Eqn. (27). This estimation problem, while

discussed in [18], is not discussed in either of [23] or [14], leaving the full details

of the experiments presented within these papers undefined. As a result, Chap. IV

will present comparisons with similar single cycle estimators, rather than the actual

estimators used in [23] and [14].

A second method, developed under more methodical means, is Streight’s max-

imum likelihood TDOA estimator for low signal to noise ratio (SNR) cyclostationary

signals. This estimator is given by Streight as [61, 62],

τ̂d1 = arg max
τd1

<







∑

β

∫
Ŝ

β
x1x∗

0
(f)Sβ

ss∗ (f)∗ e−jπβτd1ej2πfτd1df

+
∑

β

∫
Ŝ

β
x0x∗

1
(f)Sβ

ss∗ (f)∗ e−jπβτd1e−j2πfτd1df

+
∑

β

∫
Ŝ

β
x1x∗

1
(f)Sβ

ss∗ (f)∗ e−j2πβτd1df

+ 2
∑

α

∫
Ŝα

x0x1
(f)Sα

ss (f)∗ e−jπατd1e−j2πfτd1df

+ 2
∑

α

∫
Ŝα

x1x0
(f)Sα

ss (f)∗ e−jπατd1ej2πfτd1df

+ 2
∑

α

∫
Ŝα

x1x1
(f)Sα

ss (f)∗ e−j2πατd1df







, (29)

where β is defined like the cycle frequency parameter, α, save that β ranges over all

of those cycle frequencies where conjugation is not appropriate. As with the previous

two methods, Streight also asserts that this MLE,

. . . is in fact ideal because it requires knowledge of the ideal cyclic
correlation function of the SOI [Signal of Interest] a priori. In practice,
this cyclic correlation function is unavailable thus requiring the ideal
caveat. [61]

What is confusing from both of these references, and from similar references in [14]

and [23], is the statement that these correlations cannot be known ahead of time.

Why such a function cannot be guessed or approximated is never stated.
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The issue of whether or not Sα
s (f) can, or cannot, be known is critical to the

problem of handling bursts. If Sα
s (f) cannot be known, then it must be estimated

and smoothed through integration over time—a commodity not available in burst

signal processing. This ideal algorithm would become practical if Sα
s (f) could be

known, if only to within a complex scale factor.

A much more difficult and related problem is that of calculating the Cramér–

Rao Bound (CRB) for cyclostationary TDOA estimation. Making this problem

difficult is the fact that, under the common approach to cyclostationary signal pro-

cessing, no probability density function exists that can describe the cyclic properties

of digital signals. Without knowing the underlying probability density functions, the

gradient of the log of the probability density function, the fundamental parameter

in CRB calculation, is undefined.

Two approaches have been taken to derive CRBs for cyclostationary signals.

The first approach, taken by Gardner, abandons finding the true CRB alto-

gether, noting that

. . . the conventional [stationary] CRLB [CRB] does not apply and,
worse yet, the CRLB that does apply is exceedingly difficult to evaluate
for non–Gaussian and nonstationary SOI [Signals of Interest] and SNOI
[Signals not of Interest]. [24, p. 1193]

Instead, Gardner presents a bound based upon signal and noise energy within the

bandwidth of interest—ignoring the spectral distribution of that energy [24]. This

bound is,

CRBGARDNER =
3

8π2T

1

f 3
2 − f 3

1

[

2N0

S0

+

(
N0

S0

)2
]

(30)

where

S0 and N0 are the equivalent flat PSD’s of the SOI and SNOI within
the band of interest [f1, f2], and T is the data collection time. [24, p.
1193]
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Although ad–hoc, the resulting bound is often reasonable in white noise situations.

Indeed, it appears to be the well–known CRB, given in Eqn. (25), simplified for the

case where both signal and noise have white PSDs.

The problem with this bound is that it does not take into account the PSD of

either the noise or of the signal. For example, a narrow band interferer near the zero

frequency contributes little to the CRB in Eqn. (25) since it is scaled by (2πf)2
∣
∣
f=0

,

while the contribution of the same interferer increases as its frequency increases.

Gardner’s bound removes this dependence. Although this may be appropriate in

rare circumstances, both Gardner and Streight have used this bound to benchmark

the performance of algorithms in colored noise environments [24, 61] when it has

never been shown to be appropriate in these environments.

Schell takes a second, more mathematical, approach to calculating CRBs using

Whittle’s Theorem [56]. Whittle’s theorem states that, for stationary signals, the

Fisher Information Matrix (FIM) can be expressed in terms of a diagonal matrix.

Schell extends this result to cyclostationary signals by first mapping them to an

underlying stationary process, and then by applying Whittle’s theorem to calculate

the CRBs.

This CRB is then compared with the stationary bound for TDOA estimation

for AM and QAM modulation types. In particular, several features are noticed.

The first is that the cyclostationary CRB converges to the stationary bound in high

SNR situations. As the SNR drops, the two bounds separate by some amount, but

never by more than sixty percent. Finally, Schell presents his conclusion that when a

cyclostationary interferer is present, the Cramér–Rao bound is exceptionally low [56].

The problem with this approach lies in the nuisance parameters. By assuming

Sα
s (f) is completely known Schell ignores the related but necessary problem of esti-

mating τ and θ. Indeed, the whole concept of mapping a cyclostationary sequence

into a related stationary sequence cannot be accomplished apart from knowing (or

estimating) τ and θ. Finally, Schell does not demonstrate the performance of any
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cyclic algorithms with respect to these bounds, and so his conclusions have yet to

be validated [56].

Neither of these two approaches to developing a CRB take into account the

spectral distribution, or coloring, of the interference. In a personal communication,

Schell describes just how important this “colored noise” problem really is:

Finally, the colored noise problem may be the most interesting prob-
lem of all in this context, because it corresponds most closely to TDOA
estimation problems of practical interest. That is, in practice there are
potentially numerous interfering signals that are either stationary or have
totally different cycle frequencies from the signals of interest. By lump-
ing all of this stuff-not-of-interest along with the thermal/background
noise into the container called “colored noise,” you can define a practical
TDOA estimation problem for which the CRB might be computed (or
for which a ML estimator might be derived).

. . . The mathematical difficulty of solving this resulting problem is
hard to estimate. Basically, you would add all of the spatio–temporal
correlations of the colored noise to the list of nuisance parameters in
the problem, and then proceed to solve. The “adding to the list” part is
straightforward. The “solving” part may require super-human persistence
and very deep familiarity with analytical methods of matrix computations.
[55] [Emphasis added.]

Thus, according to Schell, the colored noise problem is the general problem that is

of the most practical interest. The CRB in white noise, discussed by both Schell

and Gardner, should follow as a consequence of the colored noise solution. It is this

colored noise problem that is of interest in this research.

Again, this highlights the need for a better approach to cyclostationary signal

properties. Previous approaches, based upon second order statistics alone, have not

yielded a practical CRB for TDOA estimation. With a useful model, it should be

possible not only to derive a maximum likelihood estimate of the TDOA parameter,

but also a CRB limiting how good any estimate might be.
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Figure 4. A Radiometer

2.4 Presence Detection

This brings us to the final application area of interest—signal presence detec-

tion, or determining whether or not a signal is present in a noisy channel. This

section presents several current methods of signal detection that have applicabil-

ity to burst signal presence detection. No attempt is made to be exhaustive, and

indeed several techniques have been left out. The interested reader is referred to

more complete and thorough approaches, such as Scharf’s text on detection and es-

timation [53], Van Trees classical text [68], or Casella and Berger’s development of

Mathematical Statistics [7].

The detection methods presented here can be broken down into energy detec-

tion, corresponding to stationary detection techniques, and cyclostationary detection

techniques. These latter are sometimes referred to as feature detectors, since they

detect a signal based upon unique features inherent in that signal.

2.4.1 Energy Detection Techniques. The simplest method for detecting an

unknown waveform corrupted by Gaussian noise is an energy detector, commonly

known as a radiometer. This detector passes the signal first through a bandpass

filter, then through a square law device, and finally integrates the result over some

amount of time as shown in Figure 4. The output of this process is compared to a

threshold to determine whether or not a signal was present.
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Energy detectors for unknown signal types test the following hypothesis for

some frequency band of interest [67]:10

H0 : X (f) ∼ N (0, NoI) (31)

H1 : X (f) ∼ N
(
0, NoI + σ2

sI
)
, and σ2

s > 0 (32)

The filter H(f) in this case is a bandpass filter that removes any noise from the

received signal outside of the frequency band where the signal of interest should

lie, potentially shapes the signal within that band, and produces a frequency vector

containing the X (f) tested above (Eqns. (31) and (32)). Urkowitz [67] develops this

method from the hypothesis test above, noting that a vector of length 2TW samples

is sufficient to accurately reconstruct a burst signal of duration T and bandwidth

W . In his development, H(f) is an ideal bandpass filter having the exact bandwidth

as the signal of interest and centered at its location in frequency. The detection

statistic resulting from this method is

yrad (x) =
N−1∑

i=0

|XT (fi)|2 , (33)

where fi ranges over all of the frequencies that the signal occupies (see Sec. 3.1.1).

Calculating the false alarm rate for this type of detector usually follows from

the assumption that yrad (x) is Gaussian by the Central Limit Theorem [45, 60].

This simplifies the analysis by requiring only that the mean and variance of the

output test statistic be computed. A Gaussian probability distribution is then fitted

to these moments and appropriate false alarm and signal detection probabilities

are calculated. This approximation is asymptotically exact as the time–bandwidth

product becomes arbitrarily large. Mills evaluates this approximation as a function of

10
I is used here, and throughout, to refer to the identity matrix. The size of this matrix is given

by the context, and in this case it is equal to 2TW [67].
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Table 2. Radiometer Output Statistics: If the output of a radiometer is modeled
as a Gaussian, the parameters of its probability distribution, both the mean µ and
variance σ2, are shown below [43].

H0 H1

µ 2TW 2TW + 2 E
No

σ2 4TW 4TW + 8 E
No

the time–bandwidth product of the signal of interest, demonstrating its convergence

for time bandwidth products larger than 105 [43].

To apply this technique to a burst detection problem, consider detecting a

burst having energy E= σ2
s (2TW ), spread evenly throughout some bandwidth, W .

In addition, let the covariance for the noise be NoI. Then, if the filter bandwidth is

set to W , and the integration time to T [10], it can be shown that the output of the

radiometer has the statistics shown in Table 2 [43].

If the assumption is then made that the variances at the output of the radiome-

ter under both hypotheses are roughly equal, so that 8 E
No

≈ 0, then a useful formula

for the probability of detecting a particular signal results [43]. Using the definition

that Q(x) is the integral of the tail of a standard Gaussian probability distribution11

from x to ∞, the probability of detection, PD, can be expressed in terms of the false

alarm rate, PFA, as [67, 45, 43]

PD = Q

[

Q−1 (PFA) − E

No

√
TW

]

. (34)

The biggest problem associated with the radiometer is its dependence upon

knowing the noise covariance, No [60]. If No is unknown, it needs to be estimated

in order to set the detection threshold to achieve a particular probability of false

11Following [58], Q (x) ,

∫ ∞

x

1√
2π

exp

{

−1

2
x2

}

dx
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alarm [45]. Errors in this estimate will either result in a detector whose false alarm

rate is too high, or whose probability of detection is too low. The solution, according

to Sonnenschein and Fishman, is an orthogonal measurement not possible via the

standard radiometer formulation.

In particular, if a measurement orthogonal to the signal can be used
to estimate the actual noise present during the detection interval, the
noise could be tracked through all of its fluctuations. The performance
of detectors, whether or not they are of the radiometric type, would be
improved by this scheme since it would effectively remove the noise-level
uncertainty. [60, p. 367]

Yet, having said this, Sonnenschein and Fishman present no method for making such

an orthogonal measurement.

Further improvements may be attained by using knowledge of the signal struc-

ture. In the particular problem of interest to this research, the modulation type

is assumed known. It should be possible to exploit this knowledge to improve the

radiometer—especially since very few signaling types truly use their whole spectral

band equally.

When the PSD associated with the modulation type of interest is known, a Zero

Cycle Detector, also known as a Spectral Matching Detector [59], may be used [17].

This detector is the locally optimal detector for wide–sense stationary signals of near

zero power. The output of this detector, expressed in terms of the PSD of the signal,

Ss (f), is realized by

ySMD(x) =
N−1∑

i=0

|X (fi)|2 Ss (fi) . (35)

The performance of this spectral matching detector exceeds that of a radiometer [59],

demonstrating the benefit of using signal information. In form and structure, this

detector is implemented in the same way as the Radiometer in Figure 4—the only

thing that has changed is the definition of the filter H(f) on the front end. In the
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case of the spectral matching detector, the filter on the front end is shaped by the

square root of the PSD of the signal, H(f) =
√

Ss(f).

Rostaing et al. extends this method to colored noise sequences in a paper on

cyclostationary detection in colored Gaussian Noise [51]. According to Rostaing, the

optimal prefilter in a colored noise environment includes an overwhitener as well,

H (f) =

√
Ss(f)

Sn(f)
, followed by detection as before. The use of the overwhitener causes

this detector to outperform both the spectral matching detector and the radiometer

in colored noise environments.

The problem with all of these improved detectors remains the fundamental

problem of the radiometer: these detectors will detect any and every burst signal

that passes through the filter with enough energy. While good filtering adds signal

selectivity by removing those signals that are outside of the frequency band of in-

terest, this is not enough discrimination for large interference environments where

interference bursts may occupy the same band as the signal.

2.4.2 Cyclostationary Detection Techniques. If signal selectivity is desired,

cyclostationary detection techniques promise it. These techniques center around

Sα
s (f), which is assumed to be unique to the signal of interest when the cycle fre-

quency, α, is not zero. Mathematically, this spectral correlation function will only

be non–zero if a signal of interest is present—noise does not contribute at all. Thus,

these techniques measure the strength of the spectral correlation for all received

signals. If the correlation is present, the signal is declared to be present. If not,

noise alone is declared to be present. Since neither noise nor interference possess

this property, it can easily be used to discriminate between bursts of interest and

bursts that are not. (See Table 1, page 18.)

From this basis, Gardner developed a locally optimum detector based on the

weak signal approximation [15]. Applied to the task of detecting a cyclostationary
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signal in white noise of variance No, this locally optimum detector has the form [17],

yMCD (x) =
1

N2
o

∑

α

∫ ∞

−∞
Sα

s (f)∗
[

X∗
T

(

f − α

2

)

XT

(

f +
α

2

)]

df. (36)

Gardner defines this to be the multicycle cyclostationary detector, since the sum

is taken over all values of α (or cycles) where Sα
s (f) is non–zero [17]. If large

integration times are available, a suboptimal single cycle detector can be created

from the separate terms in this summation. This detector,

yα
SC

(x) =
1

N2
o

∫ ∞

−∞
Sα

s (f)∗
[

X∗
T

(

f − α

2

)

XT

(

f +
α

2

)]

df (37)

evaluates Eqn. (36) at only one particular value of α, such as twice the carrier or

the symbol rate [17]. When α = 0, this single–cycle detector is identical to the

spectral matching detector presented in the last section. As a result, the zero cycle

frequency, as α = 0 is termed, is highly susceptible to interference. The real power

of this detector lies in those terms where α 6= 0. In such cases, the expected response

of this detector is zero for all interfering signals that do not have the cycle frequency

α.

Gardner also notes, in passing, the detector that would be appropriate if the

noise plus interference were not white [17]. This detector has the form [17],

yMCD-CN (x) =
∑

α

∫ ∞

−∞

Sα
s (f)∗

Sn

(
f − α

2

)
Sn

(
f + α

2

)

[

X∗
T

(

f − α

2

)

XT

(

f +
α

2

)]

df. (38)

Rostaing et al. discusses this detector in more detail in [51].

Cyclostationary detectors are often superior in performance to radiometric

detectors because they are signal specific [17]. Thus, in the presence of interfering

signals, this detector tends to respond only when a signal is present having the cycle

frequency of interest. For signals with different carriers or symbol rates from their
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interferers, this improvement can be quite substantial. As Gardner puts it, these

detectors,

. . . have many advantages over radiometry, including the ability to
perform signal timing measurement, discriminate against signals not of
interest using sufficiently long collects, and reduce sensitivity to unknown
and changing background noise level and interference activity. [17, p. 898]

The primary problem with these techniques, as noted in the quote above, is

that they require “sufficiently long collects.” In the case of burst signal detection, it

may not be possible to obtain “sufficiently long collects.” In addition, these detectors

only “reduce” the “sensitivity to unknown and changing background noise level and

interference activity.” As this dissertation will show, other techniques can be used

to eliminate this sensitivity entirely by “making a measurement orthogonal to the

signal . . . ” [60, p. 367].

2.4.3 A Better Detector. The ideal detector depends upon both the signal

environment and the goals of the designer.

If the desire is to detect burst signals in white noise, energy detectors are highly

effective. Given that the typical burst signal has plenty of signal to noise ratio, these

detectors tend to work quite well. Even better, their simplicity makes them easy to

design and implement. The only problem with these energy detectors is their total

lack of signal selectivity.

If the desire is to selectively detect a specific signal in the presence of inter-

ference, some form of feature detection unique to the signal of interest is required.

Current state of the art feature detectors, however, do not provide this selectivity

without “sufficiently long collects” and integration times. While these techniques are

selective, they only “reduce” the impact of the changing background level. A truly

selective detector would not just reduce, but would totally eliminate the impact a

changing changing background level has on the false alarm rate.
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Section 3.4.2 presents a detector that meets all of these criteria. It is both

applicable to burst signals, and much more selective than current cyclostationary

detectors in burst interference environments. Such a detector is required in high

interference environments where both bursts of signal and of interference are present.

2.5 Summary

In this chapter, two approaches to signal processing for digital communications

were presented—a stationary approach and a cyclostationary one. In general, the

stationary approach had a more thorough development, while the cyclostationary

approach accounted for more of the properties in the signal. These extra properties

were then used by others to produce symbol estimators for PAM signals [65], interfer-

ence resistant TDOA estimators [24], and signal selective detection algorithms [17].

Yet neither approach, either stationary or cyclostationary, is truly appropriate for

burst signal communications owing to the fact that burst signals have only a finite

duration.

Several possibilities have been left open for such a new approach. For exam-

ple, the optimal symbol estimator for a real PAM waveform made no use of the fact

that such signals are typically modulated by a carrier, introducing an additional,

unexploited, spectral redundancy [65, 2]. Indeed, although Berger and Tufts’ work

continues to be referenced today [3], the assumptions underlying it have yet to be

revisited. Further, no practical TDOA estimator has been proposed for a colored

noise environment that uses all of the cycle frequencies available to it.12 In particu-

lar, the problem with the unknown Sα
x (f) value, used in all previous cyclic TDOA

estimators, gets worse in a burst situation where observation time is not available to

estimate this function. Finally, classical cyclostationary presence detectors, which

are signal selective for lengthy signals, lose their selectivity for short signals where

12Sec. 4.3.2 will demonstrate the failures of other cyclic TDOA estimators in colored noise.
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integration is not possible.13 Each of these problems leaves open the potential of a

new approach to burst communication signal processing that removes the limitations

associated with longer duration signals.

The next chapter, therefore, will address these problems by returning to first

principles and developing a linear subspace approach to each of these problems. This

approach will lead to improvements in every one of these application areas.

13Sec. 4.4 demonstrates this.
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III. Theoretical Development

Since this research focuses on extending cyclostationary theory to time–limited

signals, a proper theoretical development cannot start where other cyclostationary

developments have started—with the definition of a cyclostationary random process.

This definition assumes an infinitely long signal, and burst signals are not quite that

long. Instead, a finite length signal will be assumed from the beginning. Linear

subspace theory, which is much more appropriate to describing burst signals of a finite

length, will be used instead to both describe the signal and to develop algorithms

appropriate for it.

This chapter will first present a new way of analyzing the received signal.

Then, the remaining discussion will be built upon this analysis. The first step,

then, will be to determine the unknown parameters. Estimates of these unknowns

will then lead to both optimal filters and a maximum likelihood TDOA estimation

algorithms. Finally, hypotheses tests will derived from this development to test for

the presence of a signal. Each of these three application areas will build upon the

received signal analysis derived in the first section, demonstrating a new approach

to burst communication signal processing.

3.1 Spectral Subspace Theory

The first step to developing a linear subspace approach to burst signal pro-

cessing is to describe the subspace that a PAM signal fits within. The fact that a

subspace approach is possible is easily seen by considering the basis vectors,

vki = ψ (t− kTs − τ) cos (2πfct+ θ) (39)

and vkq = ψ (t− kTs − τ) sin (2πfct+ θ) , (40)

42



corresponding to the in–phase and quadrature components of the signal respectively.

These basis vectors span a vector subspace containing every possible signal. The

problem with this subspace lies in the fact that these basis vectors depend upon the

unknown delay, τ , and carrier phase, θ, making them difficult to use in practice.

Therefore, this section presents an appropriate basis for the signal in frequency

together with a probability distribution function which can be used to describe the

received signal in terms of the signal of interest, the interference, and the noise.

Demonstrating the subspace that a signal resides within, in frequency, means

that the signal model presented in Eqn. (1) on page 7,

x (t) = n (t) + A

Ns−1∑

n=0

<{dn}ψ (t− nTs − τ) cos (2πfct+ θ)

− A

Ns−1∑

n=0

={dn}ψ (t− nTs − τ) sin (2πfct+ θ) ,

(41)

must first be transformed into frequency by the Fourier transform. Since burst

communications are of interest, the signal may be assumed to be time limited and

therefore must fall within some observation window, t ∈
(
−T

2
, T

2

)
. In such cases, the

infinite time Fourier transform of the signal is identical to the time–limited Fourier

transform of the signal. However, the time–limited transform is still required because

the noise term, n (t), may or may not be time limited. The time–limited Fourier

transform of this signal shall be defined as before, in Eqn. (4), by the integral,

XT (f) ,

∫ T
2

−T
2

x (t) e−j2πftdt. (42)
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If we define NT (f) to be the time–limited Fourier transform of the noise plus inter-

ference term, and exploit the linearity of the Fourier transform we get the following:

XT (f) = NT (f) +
A

2

Ns−1∑

n=0

<{dn}
∫ ∞

−∞
ψ (t− nTs − τ)

[
ej2πfct+jθ−j2πft + e−j2πfc−jθ−j2πft

]
dt

+ j
A

2

Ns−1∑

n=0

={dn}
∫ ∞

−∞
ψ (t− nTs − τ)

[
ej2πfct+jθ−j2πft − e−j2πfc−jθ−j2πft

]
dt.

Letting u = t− nTs − τ , du = dt

= NT (f) +
A

2
ejθ

Ns−1∑

n=0

e−j2π(f−fc)τ
[
dne

−j2π(f−fc)nTs
]
∫ ∞

−∞
ψ (u) e−j2π(f−fc)udu

+
A

2
e−jθ

Ns−1∑

n=0

e−j2π(f+fc)τ
[
d∗ne

−j2π(f+fc)nTs
]
∫ ∞

−∞
ψ (u) e−j2π(f+fc)udu

At this point it makes sense to simplify this transform by defining some terms.

First, let Ψ (f) be the Fourier transform of the pulse shape,1

Ψ (f) ,

∫ ∞

−∞
ψ (t) e−j2πftdt. (43)

Second, define D (z) to be the z–Transform of the transmitted data symbols,

D (z) ,

Ns−1∑

n=0

dnz
−n. (44)

Now, if we substitute these definitions into our development, they simplify the ex-

pression for XT (f),

XT (f) = NT (f) +
Aejθ

2
e−j2π(f−fc)τΨ (f − fc)D

(
ej2π(f−fc)Ts

)

+
Ae−jθ

2
e−j2π(f+fc)τΨ (f + fc)D

∗ (e−j2π(f+fc)Ts
)
.

1See Appendix A for a discussion of some common pulse shapes and their Fourier transforms.
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In practical applications Ψ (f) is band-limited and so only the first term contributes

for positive frequencies.2 Thus when f > 0,

XT (f) =
Aejθ

2
e−j2π(f−fc)τΨ (f − fc)D

(
ej2π(f−fc)Ts

)
+NT (f) . (45)

Two redundancies can be seen from this equation. This first results from the

fact that D
(
ej2π(f−fc)Ts

)
is periodic, and the second from the fact that it is conjugate

symmetric. To see this, let Xs (f) refer to that portion of the received signal caused

by signal alone, Xs (f) , XT (f) −NT (f), ignoring the noise for a moment.

The first redundancy is found between any two positive frequencies, f and

f + k
Ts

for integers k. For two such frequencies,




Xs (f)

Xs

(

f + k
Ts

)



 = A
ejθe−j2π(f−fc)τ

2




Ψ (f − fc)

e−j2π kτ
Ts Ψ

(

f + k
Ts

− fc

)



D
(
ej2π(f−fc)Ts

)
,

(46)

and the Fourier transform of the data within the signal is completely redundant. This

is caused by the fact that the signal was created by linearly modulating an impulse

stream and thus D
(
ej2π(f−fc)Ts

)
is a periodic function of f . This phenomenon was

first noticed by Nyquist [46], and subsequently exploited by Berger and Tufts in

their filter development [2, 65]. The implication, presented by Nyquist, is that any

bandwidth larger than 1
Ts

contains redundancies [46]. Therefore, this is commonly

known as the Nyquist Minimum Bandwidth of a complex signal.

The second redundancy can be seen about the carrier frequency when dn is a

real–valued sequence. Using the fact that the z–transform of a real sequence, and

similarly the Fourier transform of the real signal ψ (t), are both conjugate symmetric

2Fig. 60 in Appendix A shows that several common pulse–shapes are limited to a bandwidth on
the order of 2

Ts

. That means that as long as fc � 1

Ts

this approximation holds.
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about zero [63], we have




Xs (f)

X∗
s (2fc − f)



 = A
ejθe−j2π(f−fc)τ

2




Ψ (f − fc)

e−j2θΨ (f − fc)



D
(
ej2π(f−fc)Ts

)
. (47)

This redundancy was also noticed by Nyquist, yet not exploited by Tufts. When

combined with Eqn. (46), this equation implies that the minimum bandwidth of an

underlying communications signal having real symbols is 1
2Ts

[46].

From these two equations, Eqns. (46) and (47), a subspace can be described

in frequency within which the underlying signal must lie. This subspace includes a

periodic redundancy and, for real–valued signals, a redundancy about the carrier as

well. This is best illustrated by two examples, one for BPSK signaling and a second

one for QPSK signaling.

Example 1 (Redundancies within a BPSK Signal) Consider a signal

constrained to lie within a baseband bandwidth of W ≤ 1
Ts

, and having symbols in the

BPSK symbol set D = {±1}. In this case the spectral redundancies associated with

the frequency f can be written as











Xs (f)

Xs

(

f + 1
Ts

)

X∗
s (2fc − f)

X∗
s

(

2fc − f − 1
Ts

)











= A
ejθe−j2π(f−fc)τ

2
(48)

×











Ψ (f − fc)

e−j2π τ
Ts Ψ

(

f + 1
Ts

− fc

)

e−j2θΨ (f − fc)

e−j2θe−j2π τ
Ts Ψ

(

f + 1
Ts

− fc

)











D
(
ej2π(f−fc)Ts

)
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whenever f is constrained to lie within the first half of the bandwidth of this signal,

fc − 1
Ts

≤ f ≤ fc.

Remember that Xs (f) only refers to that component of the received signal due

to signal alone. The actual received vector includes appropriate noise terms as well,

even though those terms have been dropped for the moment.

Example 2 (Redundancies within a QPSK Signal) Quadrature Phase Shift

Keyed (QPSK) signals are defined as those having a symbol set D = {±1,±j}. If

the pulse shape, Ψ (f), is bandlimited to a width of W ≤ 1
Ts

, then the redundancy

present in this system is seen by




Xs (f)

Xs

(

f + 1
Ts

)



 =
A

2
ejθe−j2π(f−fc)τ




Ψ (f − fc)

e−j2π τ
Ts Ψ

(

f + 1
Ts

− fc

)



D
(
ej2π(f−fc)Ts

)

(49)

for fc − 1
Ts
< f < fc.

Unlike the real baseband example where the signal existed within a one dimen-

sional vector subspace of a four dimensional space for each frequency, Eqn. (49)

describes the signal lying within a one dimensional subspace of a two dimensional

vector space only.

The one thing that separates these signal representations from being true vector

subspaces is the fact that θ and τ are unknown at the receiver. This was the problem

with defining these subspaces in time, such as in Eqns. (39) and (40). By switching to

frequency, the θ and τ terms have become constant multipliers that can be factored

out of these expressions. This will allow us to use these vector subspaces in frequency,

even though they are not fully specified.

The rest of this dissertation assumes that the signal can be described by ei-

ther Eqn. (48) or Eqn. (49). Signals that cannot be described by one of these two
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equations can often be described in a similar manner. Once an appropriate basis set

is specified, many of the methods presented in this chapter will still follow for other

signaling types as well.

3.1.1 Compact Representation. While the equations above describe redun-

dancies associated with one particular frequency, many frequency components are

required to describe a signal of interest. Indeed, it is readily proved that a complete

basis for the signal requires a minimum of Ns elements for a real signal and 2Ns

elements for a complex one, not just the single vectors describing an arbitrary fre-

quency, f , presented above. This subsection, therefore, presents the transition from

examining a single frequency to examining a set of frequencies. This subsection also

introduces the transition to vector notation that comes with this switch.

In order to represent the whole frequency bandwidth containing the signal,

we need to somehow sample the Fourier transform of the received signal across its

bandwidth. But how many samples are necessary? If we define Nf to be the mini-

mum number of complex frequency samples required to span the Nyquist minimum

bandwidth of the signal, then Nf = 1
2
Ns samples would be required to reconstruct

D
(
ej2π(f−fc)Ts

)
when the {dn} are real, and Nf = Ns samples would be required

when they are complex. The factor of two difference between the number of fre-

quency samples required to span the vector space and the size of the basis comes

from the fact that frequency samples are complex, whereas the {dn} values may or

may not be complex.

The next step is to go from this unspecified basis which can represent

D
(
ej2π(f−fc)Ts

)
in frequency to one that can represent the entire signal bandwidth.

From the redundancy equations presented in the last subsection, every value of

D
(
ej2π(f−fc)Ts

)
directly determines the signal component of m frequencies, where m

is determined by the bandwidth of the signal and by the redundancy equations appro-

priate to it. For example, using the BPSK redundancy equation given in Eqn. (48),
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m = 4 frequency samples are required for each D
(
ej2π(f−fc)Ts

)
sample, while only

m = 2 would be required for the QPSK example in Eqn. (49). That means that

mNf complex frequency samples are sufficient to describe the received signal across

its entire frequency band. This is equivalent to describing m copies of the signal’s

Nyquist minimum bandwidth.

As for which mNf frequencies need to be chosen, the simplest option is just

to uniformly sample all of the frequencies in the signal at a spacing of 1
T

Hz apart

in frequency—corresponding to the resolution of a discrete Fourier transform. The

first Nf of these frequency samples, or equivalently the first non–redundant set, shall

be denoted by f1, f2, . . . , fi, . . . , fNf
. The rest of the (m− 1)Nf frequencies will be

specified as linear functions of these first Nf frequencies.

Next, organize the Fourier transform of the data, XT (f), into a vector, x, of

length mNf . For the BPSK example, this vector would look something like,

x =





























X (f1)

X (f2)
...

X
(
fNf

)

X
(

f1 + 1
Ts

)

...

X∗ (2fc − f1)
...

X∗
(

2fc − f1 + 1
Ts

)

...





























. (50)

Note that the second half of this vector was conjugated. This is only appropriate

for BPSK systems where the real baseband redundancy, given in Eqn. (47), applies.

In all other cases conjugation is not necessary. The noise vector, n, is defined
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identically, with the exception that it refers to the noise plus interference component

of the received signal and not the received signal itself. Both of the vectors, x and

n, have the same dimension, mNf × 1.

To deal with the data component, organize the data D (z) into a similar vector,

d, having only Nf dimensions, such as

d ,

[

D
(
ej2π(f1−fc)Ts

)
D
(
ej2π(f2−fc)Ts

)
D
(
ej2π(f3−fc)Ts

)
· · ·

]T

. (51)

This data component is first shaped by a pulse weight matrix formed from the

Ψ (fi − fc) terms in the redundancy equations. This shaping matrix shall be referred

to as Ψ. The contributions of τ and θ are then grouped into the unitary, and diagonal,

matrix Rφ, where φ refer to these complex phase values. (Examples of all of these

matrices, for a BPSK system, can be found in Appendix B.) This leaves only the

amplitude, A
2
, scaling the whole expression.

Putting all of these vector and matrix quantities together, the received data

vector may be written as,

x =
A

2
RφΨd + n. (52)

As defined, the dimensions of these terms are,

x : mNf × 1,

n : mNf × 1,

d : Nf × 1,

Ψ : mNf ×Nf ,

and Rφ : mNf ×mNf .
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These vector and matrix expressions will make it simpler to manipulate the under-

lying redundancies in the following sections.

It should be stressed, before going any further, that Rφ is not fully specified.

Rφ contains the unknown carrier phase angle, θ, together with the unknown symbol

epoch, τ . These values will need to be estimated as part of any algorithm that uses

this model.

3.1.2 The Distribution of x. In Eqn. (52) above, there are three un-

known quantities, n, φ, and d. Proper statistical analysis will depend upon knowing

whether each of these quantities is random or deterministic and, if random, what its

probability distribution is.

The probability distribution of the noise plus interference term, n, is con-

strained by the problem statement to be a multi–variate Gaussian random variable.

In particular, it has zero mean and a known, (approximately) diagonal covariance

matrix Rn,

(Rn)ii , E







∣
∣
∣
∣
∣

∫ T
2

−T
2

n (t) e−j2πftdt

∣
∣
∣
∣
∣

2





≈ TSn (f) . (53)

The approximation in Eqn. (53) introduces a bias into Rn that becomes significant

when Sn (f) changes “rapidly” [8]. Since this research assumes this matrix is known,

there are two ways of dealing with this problem. The first is to estimate this co-

variance from the received data when the signal is absent. Such estimates are easily

constructed in an unbiased manner, yet all such estimates suffer from uncertainty

resulting from the estimation process. An alternative is to use the biased approxi-

mation in Eqn. (53), and to allow T to be large enough that this bias is negligible.
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This latter approach will be used for the experiments in Chapt. IV to avoid the

estimation uncertainty.3

The probability distribution of φ is also constrained—it must be a determin-

istic, but unknown, parameter. Should φ be treated as random, then x (t) becomes

a stationary process rather than a cyclostationary one [32,17].

This leaves the probability distribution of d.

Prior to the z–transform, the probability distribution of {dn} is usually well

specified by the modulation type of interest. In digital modulation schemes dn is

chosen from some finite set of elements, D, where each element has some known

probability. The dn’s may be entirely independent, or they may have some known

correlation. They may be biased towards some values within D, or uniformly dis-

tributed. The correlation in this data sequence can be expressed spectrally as,

Sd

(
ej2πf

)
, lim

Ns→∞

1

Ns

E







∣
∣
∣
∣
∣

Ns−1∑

n=0

dne
−j2πfn

∣
∣
∣
∣
∣

2





(54)

In general, however, most communications systems transmit uncorrelated symbols,

leaving this value constant. Either way, the probability distribution of {dn} is easily

known from the modulation parameters.

The probability distribution of d, the z–transform of {dn}, is not so obvious.

A first order approximation would be to treat this probability distribution as a mul-

tivariate Gaussian. Looking a little further, since d is constructed from a sum of

random numbers, it may actually be Gaussian for reasonably large number of sym-

bols, Ns, by the Central Limit Theorem. If d is truly Gaussian, all that is required

to specify its probability distribution is its mean, 0 for most modulation types of

interest, and its variance, Rd= NsI for statistically independent values of dn having

3Appendix I, where application is made for small values of T , is the one exception to this rule.
In that appendix, the diagonal is calculated in an exact manner.
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unity magnitude. If the dn are not statistically independent, an (approximately)

diagonal matrix with elements,

(Rd)ii ≈ NsSd

(
ej2π(fi−fc)Ts

)
, (55)

may be used instead.

The following theorem is introduced to demonstrate that the central limit

theorem does apply to d as Ns → ∞, justifying the assumption that d is Gaussian.

Theorem 1 (The Data Vector is Asymptotically Gaussian) Consider a mes-

sage composed of Ns symbols, dn, where dn is drawn randomly from some finite set

of symbols, D, each having finite energy. Assume also that the dn have zero mean.

Then the discrete time Fourier transform of the data, examined from any angle, φ,

and any radian frequency, ω= 2π (f − fc)Ts,

<
{
ejφD

(
ejω
)}

, <
{

ejφ

Ns−1∑

n=0

dne
−jωn

}

,

is asymptotically Gaussian as Ns → ∞ as long as E
{

<
{
dne

jφe−jωn
}2
}

> 0 for each

n.

Proof: To prove this, start by letting gn be defined as one term of the sum com-

posing <
{
ejφD (ejω)

}
,

gn , <
{
dne

jφe−jωn
}
, (56)

and let σ2
n equal the variance of gn, σ

2
n , E {g2

n}. Then the variance of the sum,

defined as VNs
, is

VNs
, E

{
Ns−1∑

n=0

g2
n

}

=
Ns−1∑

n=0

σ2
n (57)
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According to the Lindeberg–Feller Central Limit Theorem [38],
∑
gn will be

asymptotically Gaussian as Ns → ∞ if and only if for all ε > 0 there exists N such

that, for all Ns > N ,

lim
Ns→∞

1

V 2
Ns

Ns−1∑

n=0

∫

|gn|≥εVNs

g2
ndFn (gn) = 0. (58)

Thus, to prove Gaussian convergence, one need only find this value of N that satisfies

Eqn. (58) for every ε > 0.

Using the fact that each symbol has a finite energy, there exists a limit, G, such

that |dn| < G with probability 1. Then, given this limit, the value of N that makes

Eqn. (58) hold is G
ε minn σn

. To see that this is true, consider that, whenever Ns > N ,

G = εN min
n
σn < εNs min

n
σn < εVNs

. (59)

Looking at the integral, we know that

∫

|gn|≥G

g2
ndFn (gn) = 0, (60)

since |gn| < G with probability one. Further, since εVNs
> G,

∫

|gn|≥εVNs

g2
ndFn (gn) ≤

∫

|gn|≥G

g2
ndFn (gn) (61)

= 0 (62)

Q.E .D.

While most digital communications systems meet the assumptions of this proof,

there is one important exception that needs to be mentioned here: BPSK systems.

That is, when D = {±1} or equivalently when D ( R, then any particular σ2
n can
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always be made to be zero by examining φ = π
2

+ ωn. A corollary to this theorem,

that D (ejω) is Gaussian when a limited portion of the σ2
n values are zero, can be

made to apply in these cases.

The problem remains when σ2
n is zero for all n, such as when φ = π

2
and

ω = ±nπ. In this particular case, the theorem and general method breaks down and

<
{
ejφD (1)

}
is only asymptotically Gaussian for φ 6= π

2
. This latter exception results

in a discontinuity in the probability distribution of D
(
ej2π(f−fc)Ts

)
as Ns → ∞ for

these signals. For this one exception, we shall approximate D
(
ej2π(f−fc)Ts

)
as a

Gaussian, and ignore the discontinuity as though it were non–existent. While this

is not quite accurate, applying this assumption leaves the probability distribution

simple to work with. Therefore this approximation shall be applied as necessary for

BPSK signals in this research.

Other than this one exception, this proof shows that d is asymptotically Gaus-

sian for large Ns. But what about small values of Ns, such as are appropriate in

burst communications? In this case, d may not be Gaussian at all. However, it shall

be approximated as a Gaussian. Sec. 4.1 will present some measures of how good this

approximation is. In particular, for a QPSK system, this approximation is shown to

be reasonable for bursts as short as Ns = 8 symbols.

Putting all of these probability distributions together, and given that d is

approximately a multivariate Gaussian random variable, having variance Rd and

mean 0, the probability density function of a received signal can be written as,4

f (x,d) =

(
1

2π

)mNf +Nf
2

det |Rn|−
1
2 det |Rd|−

1
2

× exp

{

−1

2

(

x − A

2
RφΨd

)†
R−1

n

(

x − A

2
RφΨd

)

− 1

2
d†R−1

d d

}

(63)

4The notation, x†, is used throughout to refer to the conjugate transpose of a vector or matrix
x.
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When x is either known or measured, this probability density function is referred

to as the likelihood function [7]. To the extent that this probability distribution, or

one similar, applies when a signal is present all of the algorithms presented in this

chapter will follow.

Before leaving this discussion, it remains to be shown that previous cyclosta-

tionary properties are consequences of this new model. Since all of these properties

are associated with the second moment signal, a look at that moment is provided

here. For any particular observation length, T , the second moments are,

Ex,d

{
xx†} = Ed

{(
A

2
RφΨd

)(
A

2
RφΨd

)†
}

+ En

{
nn†} (64)

=
A2

4
RφΨRdΨ

†R†
φ + Rn. (65)

Normalizing these moments by the observation length, T = NsTs, and assuming

uncorrelated symbols, Rd = NsI,

1

T
E
{
xx†} =

A2

4Ts

RφΨΨ†R†
φ +

1

T
Rn, (66)

produces the familiar moments of interest. Since the signal contribution does not

change as T increases towards infinity, taking the limit as T → ∞ is a trivial matter.

Looking at the terms following such a limit, the diagonal of the first term is the

power spectral density of the signal,

Ss (f) =
A2

4Ts

|Ψ (f − fc)|2 . (67)

56



Likewise, the off–diagonals correspond to the spectral correlation functions for α =

1
Ts

,

S
1

Ts
s (f) = e−j2π τ

Ts
A2

4Ts

Ψ∗
(

f − 1

2Ts

− fc

)

Ψ

(

f +
1

2Ts

− fc

)

, (68)

and, for real signals, for α = 2fc,

S2fc

s (f) = ej2θ A
2

4Ts

|Ψ (f − fc)|2 . (69)

These are the properties that have been exploited previously to produce cyclostation-

ary algorithms. That they are identical to previous results can be seen from [16,21].

Preserving the first two moments of x is one of the key requirements of this

new model. All other moments are of no consequence, since all of the moments of a

Gaussian are completely specified by the first two. As an added benefit, these are the

same moments which drove the development of previous cyclostationary algorithms

cited in Chapt. II. By preserving these moments, it may be possible to gain some

insight into these previous algorithms, and perhaps even to improve upon them.

The best part, however, is that these known moments are now consequences of this

model, rather than the definition of it.

3.1.3 Consequences. The relevance of these subspace formulas lies in the

fact that the signal of interest resides within a smaller subspace than the time–

bandwidth product typically used [67, 43]. This means that, for a known Rφ, a

projection operator can be immediately created, P = RφΨ
(
Ψ†R−1

n Ψ
)−1

Ψ†R†
φR

−1
n ,

which will project the received waveform into the signal’s subspace [54]. Likewise,

an alternate projection operator, I − P, will project the received waveform onto a

noise only subspace.
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As applied to symbol estimation, a filter similar to this projection operator

will be shown to achieve the minimum mean square error among all other filters.

What’s new about this filter is that it can easily be applied to any modulation type

of interest, not just baseband or QPSK signals. Sec. 3.2, next, will develop this

filter, and then Sec. 4.2, in the next chapter, will present its capability through

several examples.

Next, the probability density function in Eqn. (63) allows the application of

classical statistical principles while designing maximum likelihood TDOA estimation

routines for burst communication signals. Previous attempts to do this have been

unsuccessful, as Gardner highlights,

Although classical statistical principles, such as maximum likelihood,
provide an alternative approach, we have not yet found such approaches
to be tractable for the non–Gaussian nonstationary models of inter-
est. [23, p. 1177]

Indeed, since only unbiased maximum likelihood estimators achieve the Cramér–Rao

bound in estimation error, one might anticipate that a maximum likelihood estimator

derived from this model would outperform all other estimators [53]. Sec. 3.3 derives

such an estimate, while Sec. 4.3 shows that it does indeed outperform all other

leading estimators.

Finally, when applied to the detection problem, this projection operator allows

the measurement of signal energy within one subspace, leaving all other received

energy in an orthogonal subspace. This was the one capability energy detection

lacked, which made it fail when the amount of background noise plus interference

changed. The relevance of this technique increases further with the prediction of

Sonnenschein and Fishman that,

In particular, if a measurement orthogonal to the signal can be used
to estimate the actual noise present during the detection interval, the
noise could be tracked through all of its fluctuations. The performance
of detectors, whether or not they are of the radiometric type, would be
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improved by this scheme since it would effectively remove the noise-level
uncertainty. [60, p. 367]

A detector using this scheme will be derived in Sec. 3.4, and likewise tested in Sec. 4.4

of the next chapter to illustrate its potential.

From these three applications alone, the power of the probability density func-

tion given by Eqn. (63) should be obvious.

3.2 Optimal Filters for Symbol Estimation

The first order of business in dealing with any probability model is to estimate

the unknown parameters. Chief among the unknown parameters in a communica-

tions problem is the data vector, d. While this may not necessarily be the first order

of business chronologically, optimal estimates of d are required to develop TDOA

estimation and presence detection algorithms. Therefore, all other application areas

are dependent upon this first one.

This section, therefore, examines several estimates for d. The first estimate is

a single sensor estimate, presented in Sec. 3.2.1. This estimate underlies the appro-

priate filter for demodulating a communications signal, and so it leads to optimal

demodulation filters. The communications symbol estimation problem is then ex-

amined in detail for BPSK signals, since the form of the filter differs from Berger

and Tufts’ work [2]. From this examination, Sec. 3.2.2 presents a new result showing

how to predict the consequences of either a poor receiving filter or poor carrier and

bit synchronization. After predicting performance, theoretical bounds for estimating

d are then derived in Sec. 3.2.3. Finally, Sec. 3.2.4 shows how to extend this single

sensor estimate for d to multi–sensor estimates.

3.2.1 Single Sensor MMSE Filters. There are two ways to derive estimates

for d, each having a different purpose in this work. The first is to derive a maximum

likelihood estimate. This is the estimate of d that maximizes the likelihood function,
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or equivalently that maximizes the probability density function once the random

data, x, has been measured. This maximum likelihood estimate is later used in

TDOA estimation and presence detection to derive optimal algorithms based upon

maximum likelihood principles. The second method of deriving an estimate for d

is to derive a Minimum Mean Square Error (MMSE) estimate. This latter estimate

is provably optimal in a Mean Square Error (MSE) sense, and is therefore useful in

developing optimal filters. As this section will show, these two estimates are identical.

To derive the maximum likelihood estimate, let’s start with the logarithm of

the likelihood function, L, and consider everything but d to be known. Because the

logarithm function is monotonic, maximizing the likelihood is equivalent to maxi-

mizing its log, given by

L , ln f (x,d)

= −Nf +mNf

2
ln (2π) − 1

2
ln detRd −

1

2
ln detRn

−1

2

(

x − A

2
RφΨd

)†
R−1

n

(

x − A

2
RφΨd

)

− 1

2
d†R−1

d d. (70)

Next, take the gradient of this likelihood function with respect to the conjugate of

the unknown vector d† as described in [64],5

∇d†L =
A

2
Ψ†R†

φR
−1
n x −

(
A2

4
Ψ†R†

φR
−1
n RφΨ + R−1

d

)

d. (71)

Using the fact that Rφ and Rn are diagonal, and that Rφ is unitary, the Rφ terms

inside the parentheses cancel each other out. Once simplified, we set the gradient to

5Since there has been some question as to the validity of the methods presented in [64], this
solution is validated in App. E via more conventional techniques.
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0 and solve for d,

d̂MLE =
A

2

(
A2

4
Ψ†R−1

n Ψ + R−1
d

)−1

︸ ︷︷ ︸

Equalizer

Matched Filter
︷ ︸︸ ︷

Ψ†R†
φR

−1
n x. (72)

This produces the maximum likelihood estimate of d, d̂MLE.

Before proceeding to the MMSE estimate, notice that this ML estimate can be

broken into two pieces. The first piece, Ψ†R†
φR

−1
n , maps the received data, x, onto

a vector space having Nf dimensions. As further investigation will show, this part is

equivalent to applying a matched filter for colored noise followed by a downconverter

and sampler. Using this portion of the estimator alone results in symbol estimates

corrupted by some amount of Intersymbol Interference (ISI). The second piece of this

estimate,
(

A2

4
Ψ†R−1

n Ψ + R−1
d

)−1

, operates on a vector space the size of the signal.

Equivalently, it operates on the symbol estimates themselves—just as a Tapped

Delay Line (TDL) equalizer does. Indeed, this portion of the estimate will be shown

to produce a TDL equalizer, having one tap per symbol estimate. Following this

portion, the resulting symbol estimates would have as much ISI removed as the

signal strength allows.

Proceeding, the second estimator of interest is the minimum mean square error

estimate. That is we desire d̂MMSE such that

d̂ (x)
MMSE

, arg min
d̂(x)

E
{(

d̂ (x) − d
)† (

d̂ (x) − d
)}

(73)

The solution to this minimization problem is the conditional expectation, or

d̂ (x)
MMSE

= E {d|x}, which is known for minimizing the mean square error when

an a–priori probability distribution for d is known [53, p. 286]. Since d and x

are Gaussian, the conditional probability distribution of d given x is also Gaussian
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having mean,

E
{

d

∣
∣
∣
∣
x

}

=
A

2

(
A2

4
Ψ†R−1

n Ψ + R−1
d

)−1

Ψ†R†
φR

−1
n x, (74)

and variance,

E
{

dd†
∣
∣
∣
∣
x

}

=

(
A2

4
Ψ†R−1

n Ψ + R−1
d

)−1

. (75)

Therefore, the MMSE estimate of d is identical to the maximum likelihood estimate,

d̂ (x)
MMSE

=
A

2

(
A2

4
Ψ†R−1

n Ψ + R−1
d

)−1

Ψ†R†
φR

−1
n x. (76)

What may not be so obvious is that this minimum mean square error estimate

for d defines an optimal filter for recovering d. To see this, the operation of the

downconverter and sampler, which maps the mNf × 1 vector onto an Nf × 1 vector,

needs to be separated from the operation of the filter which applies a scale factor

to each input value. It is this latter operation that we are interested in. These

two operations may be separated by rewriting Eqn. (76) in terms of the individual

elements composing the data estimate, d̂ (x)
MMSE

.

For example, if {dn} is a complex valued sequence, then only the symbol rate

redundancy given in Eqn. (46) applies. From this redundancy, the matrices Rφ, Ψ

and Rn are defined. Using these matrices, then, we solve for D̂
(
ej2π(f−fc)Ts

)
in terms

of the operation applied to each individual input frequency component of XT (fi),

D̂
(
ej2π(fi−fc)Ts

)
= e−jθej2π(fi−fc)τ · H (fi)XT (fi)

+ e−jθej2π(fi−fc)τ · ej2π τ
TsH

(

fi + 1
Ts

)

XT

(

fi + 1
Ts

)

.

(77)
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While the complex constants in Eqn. (77) refer to the downconversion and sampling

process, the operator, H (f), applied to the input waveform is the filter of interest.

Using Eqn. (76) to define H (f), and solving, we get the optimal filter for a complex

baseband signal,

H (f) =













1

1 +
A2

4Ts

bfTsc∑

n=−∞

∣
∣
∣Ψ
(

f − n
Ts

− fc

)∣
∣
∣

2

Sn

(

f − n
Ts

)













AΨ∗ (f − fc)

2TsSn (f)
. (78)

When the signal is bandlimited, this filter is equivalent to Berger and Tufts’ filter

in Eqn. (16). Since all practical signals are bandlimited, this filter is equivalent for

all practical purposes. However, this filter is only optimal for systems of complex

symbols, where there are no redundancies other than the symbol rate. It is not the

optimal filter for a BPSK system.

For a bandlimited BPSK system the optimal filter is still given in Eqn. 76, only

the forms of Rφ and Ψ have changed. These matrices, Rn, Rφ, Ψ, and Rd are given

by Eqn. (48) earlier, and samples of them are provided in App. B. To calculate the

form of this filter, we again arrange Eqn. (76) in terms of the individual components

composing one data frequency estimate,

D̂
(
ej2π(fi−fc)Ts

)
= e−jθej2π(fi−fc)τ ·H (fi)XT (fi)

+ e−jθej2π(fi−fc)τ ·ej2π τ
TsH

(

fi + 1
Ts

)

XT

(

fi + 1
Ts

)

+ ejθej2π(fi−fc)τ ·H∗ (2fc − fi)X
∗
T (2fc − fi)

+ ejθej2π(fi−fc)τ ·ej2π τ
TsH∗

(

2fc − fi − 1
Ts

)

X∗
T

(

2fc − fi − 1
Ts

)

.

(79)
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⊗
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- LPF - HB (f)
t = nTs + τ

- d̂n

Figure 5. Baseband MMSE (Berger’s) System Diagram

Then, expanding Eqn. (76) to solve for H (f), we see that the minimum mean square

error filter for real digital modulations is

HMMSE (f) =

A
2

Ψ∗(f−fc)
TsSn(f)

1 + A2

4
|Ψ(f−fc)|2

TsSn(f)
+ A2

4

|Ψ(f+ 1
Ts

−fc)|2
TsSn(f+ 1

Ts
)

+ A2

4
|Ψ(fc−f)|2

TsSn(2fc−f)
+ A2

4

|Ψ(fc−f− 1
Ts

)|2
TsSn(2fc−f− 1

Ts
)

,

(80)

for f ∈
(

fc − 1
Ts
, fc

)

.

Both similarities and differences exist between this filter and Berger and Tufts’

MMSE filter in Eqn. (16). Both of these filters meet the structure required by an

optimal receiver filter—they each factor into a matched filter followed by an equalizer

that is periodic in frequency [12]. Each of the equalizers can be implemented by a

TDL. The matched filter in each case is identical to the one presented in Sec. 2.2.

The difference between these two filters lies in the equalizer. The MMSE filter for

BPSK signals has an equalizer that is symmetric about the carrier frequency. This

means it can be implemented with a real valued TDL equalizer, while Berger and

Tufts’ equalizer is not necessarily real valued.

The difference between these two filters can be seen in the design of a system

that would implement them. Fig. 5 shows a block diagram of a system imple-

menting Berger’s MMSE filter. In this diagram, the signal is first multiplied by a

cosine matching its carrier frequency and phase, followed by a low–pass filter (LPF).

Together, these two components downconvert the signal and remove its carrier fre-

quency. Following this downconverter, Berger’s filter is then applied prior to the
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Figure 6. Bandpass MMSE System Diagram

sampler. The alternative, shown in Fig. 6, applies the filter prior to downconvert-

ing the signal. As Sec. 4.2.1 will demonstrate, this arrangement allows the filter to

mitigate narrowband interference before the downconverter makes that interference

worse.

If the MMSE filter specified in Eqn. (80) truly has the minimum mean square

error property, it should be possible to compare its results to other filters that are

known to achieve the minimum mean square error, such as a true matched filter

followed by a linear, adaptive, decision–directed feedback system [25]. Such adaptive

equalizers are driven by the MSE performance criterion and have been shown to

achieve the minimum MSE [30]. If the MMSE filter derived above and described

in Eqn. (76) truly has the minimum mean square error then an adaptive algorithm

will converge to the TDL portion of Eqn. (76). In the next chapter, Sec. 4.2 will

demonstrate that the form of the filter above is identical to a matched filter followed

by a linear adaptive equalizer.

Berger and Tufts’ development did not stop when they specified the filter,

they continued their development by determining the mean square error that one

might measure at the output of the filter between the estimated symbol and the true

symbol. Since the variance in d̂MMSE is given by Eqn. (75), the inverse z–transform

of the variance of d yields the variance of dn [2, 57]. Thus, in the case of a BPSK
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signal, the mean square error at the output of the BPSK MMSE filter should be,

ξ2 , E
{∣
∣
∣dn − d̂n

∣
∣
∣

2
}

= 2Ts

∫ 1
2Ts

0

1





1 + A2

4
|Ψ(f)|2

TsSn(fc+f)
+ A2

4

|Ψ(f− 1
Ts

)|2
TsSn(fc+f− 1

Ts
)

+ A2

4
|Ψ(−f)|2

TsSn(fc−f)
+ A2

4

|Ψ(−f+ 1
Ts

)|2
TsSn(fc−f+ 1

Ts
)






df.

(81)

Again, it is worth pointing out the assumptions that have been used so far.

First, while the MMSE filter may be used for a number of signal types under a large

variety of conditions, assuming the redundancy for bandlimited BPSK signals given

in Eqn. (48), together with equiprobable independent bits, Rd = NsI, led us to the

conclusions in Eqn. (80) and Eqn. (81). Breaking either of these assumptions would

invalidate these two equations but not the equation for the general MMSE filter

given by Eqn. (76).

3.2.2 Predicting Demodulator Performance. The structure used in the

previous section provides insight into how a receiver operates when it determines the

underlying bit sequence. In particular we see from Eqn. (79) how each component of

the signal is used to determine the underlying bits. This section will take that same

equation one step further by using it to estimate the performance of an arbitrary

filter. This performance will first be estimated in terms of mean square error, and

then these estimates will be extended to bit error rates.

The approach that accomplishes this is straightforward: calculate the mean

square error between D̂
(
ej2π(f−fc)Ts

)
and D

(
ej2π(f−fc)Ts

)
as a function of frequency,

f , in terms of the filter, H (f), the pulse function, Ψ (f) and the synchronization

parameters τ and θ. Integrating this mean square error across frequency, together

with some appropriate normalizations, results in an estimate of the mean square

error between the input and output symbols.
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Before starting, a couple of new terms need to be introduced, together with

some simplifying assumptions. H (f) will be used to refer to the demodulation filter,

which will be allowed to be arbitrary. Next, we shall assume that the difference

between the estimated symbol epoch and the true symbol epoch, also known as

the synchronization error τδ , τ̂ − τ , is small in comparison to a symbol interval.

Likewise, the difference between the estimated carrier phase and the true carrier

phase, the carrier synchronization error θδ , θ̂ − θ, is also assumed to be small.

Finally, all parameters save the data symbols are assumed known for this analysis.

Starting at the top, the fundamental quantity in this section is the mean square

error. In particular, the mean square error as a function of frequency, ξ2
(
ej2π(f−fc)Ts

)
,

is defined to be,

ξ2
(
ej2π(f−fc)Ts

)
, E

{∣
∣
∣D̂
(
ej2π(f−fc)Ts

)
−D

(
ej2π(f−fc)Ts

)
∣
∣
∣

2
}

. (82)

This mean square error expression can be simplified by using the fact that the signal

and the noise are independent and zero mean. That means that this expression,

containing signal and noise contributions, can be broken into two components, cor-

responding to the mean square error due to the noise plus interference process, n (t),

which shall be denoted ξ2
n

(
ej2π(f−fc)Ts

)
, and the mean square error due to intersym-

bol interference and mis–synchronization ξ2
i

(
ej2π(f−fc)Ts

)
,

ξ2
(
ej2π(f−fc)Ts

)
= ξ2

n

(
ej2π(f−fc)Ts

)
+ ξ2

i

(
ej2π(f−fc)Ts

)
(83)

Having broken this expression into two components, each can be examined separately.

The first component, the error due to the noise, is given by plugging the expres-

sion for D̂
(
ej2π(f−fc)Ts

)
given by Eqn. (79) into Eqn. (82) and paying attention to the

terms containing Sn (f) only. Then, using the definition for Rn given in Eqn. (53),
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this expression becomes,

ξ2
n

(
ej2π(f−fc)Ts

)
= κ2 |H (f)|2 TSn (f)

+ κ2
∣
∣
∣H
(

f + 1
Ts

)∣
∣
∣

2

TSn

(

f + 1
Ts

)

+ κ2 |H (2fc − f)|2 TSn (2fc − f)

+ κ2
∣
∣
∣H
(

2fc − f − 1
Ts

)∣
∣
∣

2

TSn

(

2fc − f − 1
Ts

)

,

(84)

where κ has been introduced to represent an automatic gain adjustment in the

demodulator necessary to minimize the mean square error in case of a filter gain

mismatch. This requirement is driven by the fact that most filters, the matched

filter prominent among them, are specified in a gain independent fashion. Defining κ

makes it possible to compare filters with different gains by allowing the demodulator

to optimally adjust the gain following the filter.

The second component, the error due to intersymbol interference and mis–

synchronization is given similarly. As before, Eqn. (79) is placed into Eqn. (82),

only this time the signal terms are examined instead of the noise terms. In this case,

however, each of the four redundant frequencies is dependent upon the same data

value, D
(
ej2π(f−fc)Ts

)
. Thus, using the expression for Rd given by Eqn. (55), this

expression becomes,

ξ2
i

(
ej2π(f−fc)Ts

)
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

κe−jθδej2π(f−fc)τδ · AH (f) Ψ (f)

+ κe−jθδej2π(f−fc)τδ · Aej2π
τδ
TsH

(

f + 1
Ts

)

Ψ
(

f + 1
Ts

)

+ κejθδej2π(f−fc)τδ · AH∗ (2fc − f) Ψ∗ (2fc − f)

+ κejθδej2π(f−fc)τδ · Aej2π
τδ
TsH∗

(

2fc − f − 1
Ts

)

Ψ∗
(

2fc − f − 1
Ts

)

− 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

× NsSd

(
ej2π(f−fc)Ts

)
. (85)
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In the case of random, uncorrelated, data of unit magnitude which we’ve been con-

sidering,

Sd

(
ej2π(f−fc)Ts

)
= 1.

What we wish to know is the mean square error in an arbitrary element, dn, of

the sequence being demodulated. Eqn. (83) gives the mean square error in all of the

elements as a function of frequency. Thus we divide it by the number of elements

that this error is spread over, or Ns, and then take the inverse Fourier transform.

The result,

ξ2 (κ) = 2Ts

∫ 1
2Ts

0

ξ2
(
ej2πfTs

)

Ns

df, (86)

is still a function of the unknown gain, κ.

The best performance that this filter can achieve is given by the gain, κ, that

gives the smallest mean square error. To find this value of κ, we note that both

Eqns. (84) and (85) are quadratic functions of κ. That means that there exist con-

stants, c1, c2, and c3, such that the mean square error can be written as a quadratic

function of κ using these constants,

ξ2 (κ) = c1κ
2 + c2κ+ c3. (87)

These constants can be found by first factoring the ξ2
(
ej2π(f−fc)Ts

)
term in Eqn. (86)

into a quadratic function of κ, and then by integrating the scalar, linear, and

quadratic coefficients that result separately. The minimum of this quadratic, cor-

responding to the optimal MSE, is found when κ = − c2
2c1

. At this point, the MSE
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is,

ξ2 = c3 −
c22
4c1

. (88)

While this is an interesting, and useful, performance measure—the bottom line

in any communication system is always the bit error rate (BER) at the output of the

receiver. When the mean square error is the result of a Gaussian, or approximately

Gaussian, disturbance this BER can be calculated. To get there, however, the mean

and variance of each symbol estimate need to be determined in order to describe this

disturbance.

The mean of the symbol estimate is equivalent to the gain throughout the

entire system. This system gain is defined by,

γ ,
E
{

d̂n

}

dn

, (89)

and calculated by taking the inverse Fourier transform of H (f) Ψ (f − fc), after

adjusting for phase and symbol synchronization errors,

γ = 2κTs

∫ fc+
1

Ts

fc− 1
Ts

<
{

e−jθδej2π(f−fc)τδH (f) Ψ (f − fc)

}

df. (90)

Since the system gain is not necessarily unity, the variance is not necessarily the

mean square error, ξ2. Instead this variance is given by,

E
{∣
∣
∣d̂n − E

{

d̂n

}∣
∣
∣

2
}

= E
{∣
∣
∣d̂n − γdn

∣
∣
∣

2
}

= ξ2 − (1 − γ)2
. (91)

These two values, the mean at the output of the filter, γdn, and the variance at

the output of the filter, ξ2 − (1 − γ)2, fully specify a Gaussian probability distribu-
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tion. If the additional assumption is then applied that the symbol estimates, d̂n,

are statistically independent, calculating the probability of bit error becomes quite

straightforward. This probability is given by [58],

BER = P
[

d̂n > 0
∣
∣ dn = −1

]

P [dn = −1] + P
[

d̂n < 0
∣
∣ dn = 1

]

P [dn = 1]

= Q

(√

γ2

ξ2 − (1 − γ)2

)

, (92)

and is valid as long as the mean square error is caused by a Gaussian disturbance.

In general, however, ISI is not Gaussian and the probability of a bit error in

ISI is much more difficult to calculate. Other techniques, such as those in [34], that

use more appropriate probability distribution functions for ISI give more accurate

estimates of the bit error rate under severe ISI conditions.

The strength of these formulas may not be immediately apparent, and so an il-

lustration will help. Many modern communications systems struggle with the effects

of both colored noise and multipath interference. While both can be compensated

for using a MMSE filter, compensation is only possible when their contribution is

known. The problem is that these contributions, multipath interference and colored

noise, are difficult to estimate. Multipath interference, especially, is a well known

but difficult problem in cellular communications. Further, all communications sys-

tems struggle with some amount of imperfect synchronization. What these formulas

allow a designer to do is to estimate the impact of using a non–optimal solution prior

to implementing and testing that solution with either expensive hardware or large

quantities of computer time.

As to the validity of these formulas, simulations in Sec. 4.2.2 will compare these

estimates to simulated filter performance. From those simulations, Eqn. (88) for the

resulting MSE will be demonstrated to be valid under all circumstances tested. This

again commends the validity of this technique.
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3.2.3 Cramér–Rao Bounds. Returning to the application of a new signal

model, it would be nice not only to determine how well a receiver does work, but also

how well it can work given that several variables need to be estimated. The quantity

used to express this theoretical limit is the Cramér–Rao bound. This bound is derived

mathematically, independent of any received data, and it forms a lower limit on the

mean square error achievable by any estimator [53, 7]. Demonstrating this bound

will help to further demonstrate the potential of this signal model when applied to

communications signals.

The Cramér–Rao bound is easily specified for a single variable, such as τ , where

it is [7, 53]

CRB (τ) =
1

Ex

{
−∂2L

∂τ2

} , (93)

where Ex {·} refers to an expected value taken over the random variable x and L is

the log of the likelihood function as before. This bound, however, is dependent upon

the message content, d. To remove this dependence, we follow D’Andrea’s lead and

switch to the Modified Cramér–Rao Bound (MCRB) [9]. The difference between

the MCRB and the CRB is a second expectation taken over the random message

variable, d, as well. Thus the modified bound, for τ is,

MCRB (τ) =
1

EdEx

{
−∂2L

∂τ2

} . (94)

D’Andrea et al. prove that this bound is lower than the true CRB, and so it remains

a valid lower bound on estimation error [9].

In the case where multiple parameters need to be estimated at the same time,

these equations change somewhat. In this case, the CRB is a matrix quantity given
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by the inverse of the matrix whose elements are,

(FIM)ij = E
{

− ∂2

∂ρi∂ρj

L
}

(95)

where ρi is the ith parameter of the likelihood function. Likewise if ρ is a vector

containing all of the parameters to the likelihood function, this matrix is given by,

(FIM) = E
{
−∇2

ρL
}
. (96)

This matrix is common to multi–sensor developments and is known as the Fisher In-

formation Matrix (FIM) [53]. The ith diagonal element in this inverse is the Cramér–

Rao bound of ρi. As before, taking the expectation over the random variable x

produces the true CRB, whereas taking it over both x and d produces the MCRB.

Before demonstrating this technique, it is convenient to define a new mNf ×
mNf matrix, Fδ, to make it easier to specify the derivative of Rφ with respect to τ .

Fδ ,
1

−j2π

(
∂

∂τ
Rφ

)

R†
φ (97)

=








(f1 − fc) 0 · · ·
0 (f2 − fc) · · ·
...

...
. . .








(98)

Using this matrix, ∂
∂τ

Rφ can be expressed as − 1
j2π

FδRφ.

Fδ makes it easy to express the diagonal terms of the FIM corresponding to

partials with respect to τ , A, and d. These diagonals are derived in App. J and

73



shown here as,6

EdEx

{

−∂
2L
∂τ 2

}

= A2π2tr
{
ΨRdΨ

†R−1
n F2

δ

}
, (99)

EdEx

{

−∂
2L
∂A2

}

=
1

4
tr
{
ΨRdΨ

†R−1
n

}
(100)

and EdEx

{
−∇2

dL
}
, =

A2

4
Ψ†R−1

n Ψ + R−1
d . (101)

In addition, all of the cross terms, such as the partial with respect to A followed by

τ etc., go to zero (see App. J). That makes inverting this expression to determine

the Cramér–Rao bounds simple. The bounds are, therefore,

MCRB (τ) =
1

A22π2

1

tr {ΨRdΨ†R−1
n F2

δ}
, (102)

MCRB (A) =
4

tr {ΨRdΨ†R−1
n } , (103)

and MCRB (d) =

(
A2

4
Ψ†R−1

n Ψ + R−1
d

)−1

(104)

Of these three expressions, the last one is the most familiar. That expression

was presented earlier in Eqn. (81) to express the mean square error achieved by

the BPSK MMSE filter. That means that this MMSE filter, derived under the

assumption that the signal is Gaussian, achieves the theoretical limit in estimation

performance.

3.2.4 Dual Sensor MMSE Filters. The same principles that have been

used in the last two sections to derive optimal single sensor filters can be extended to

derive an optimal multi–sensor filter. In this subsection, we derive these multi–sensor

filters, demonstrating them through the design of a two sensor MMSE filter for BPSK

signals. This new development begins with adjusting the model so that it describes

6tr {·} is used here to represent the trace operator. This operator may be applied to a matrix,
and returns the sum of the diagonal entries of its argument.
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the multi–sensor reception problem, then the filter is derived from matrix equations

as before. Finally, the subsection ends by specifying the filter in a conventional

manner and stating the MSE achieved by this filter.

The first step, however, is to work with the model. Several minor changes are

required to the signal model presented in Eqn. 1 to accommodate multiple sensors.

The first, most obvious change, is that the signal may be present on each sensor.

It may have a time delay difference, τdi , τi − τ0 between sensors, a phase delay

between sensors, θdi, θi − θ0, and possibly a separate gain on each sensor, Ai.

xi = Ai<
{

Ns−1∑

n=0

dnψ (t− nTs − τ0 − τdi) e
j[2πfc(t−τdi)+θ0+θdi]

}

+ ni (t) . (105)

Assuming that all of these quantities are known, the Fourier transform of the signal

on the ith sensor may be written as,

Xi (f) =
Ai

2

(
ejθdie−j2πfτdi

) (
ejθe−j2π(f−fc)τ

)
Ψ (f − fc)D

(
ej2π(f−fc)Ts

)
+NT,i (f),

(106)

where θ and τ have been used instead of θ0 and τ0 respectively.

The redundancies in this model increase linearly with the number of sensors.

For a two sensor BPSK problem, for example, there are now eight received values that

might provide insight into D
(
ej2π(f−fc)Ts

)
instead of the four values we have been

using. Writing these values out, however, requires first introducing a new matrix,

Di. This matrix is very similar to Rφ in that it is complex, unitary, and diagonal.

The diagonal elements, however, are slightly different. For the four co–dependent
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frequencies of f , this matrix is,

Di (f) ,










ejθdie−j2πfτdi 0 0 0

0 ejθdie−j2π(f+ 1
Ts

)τdi 0 0

0 0 e−jθdie−j2π(2fc−f)τdi 0

0 0 0 e−jθdie−j2π(2fc−f− 1
Ts

)










.

(107)

As with Rφ and Rn, Di is formed by replicating the matrix in Eqn. (107) until it has

one row and one column for each of the mNf frequencies that the signal occupies.

Defining this matrix allows the received waveform to again be written in vector form.

Only this time the form reflects multiple sensors,




x0

x1





︸ ︷︷ ︸

x

=
1

2




Rφ 0

0 D1Rφ





︸ ︷︷ ︸

RΦ




A0Ψ

A1Ψ





︸ ︷︷ ︸

Ψm

d +




n0

n1





︸ ︷︷ ︸

n

. (108)

This equation is quite similar to Eqn. (52) (page 50). Writing it in the form of

Eqn. (52), however, requires four new definitions. First, define x and n to be the

vectors of multi–sensor inputs and noise respectively. Then define RΦ to be the

multi–sensor matrix containing all of the phase terms, including both Rφ and D1.

Finally, define Ψm to be a multi–sensor Ψ matrix, but this time one that includes

the gain terms A0 and A1. Once accomplished, a received vector can be created

describing the inputs from all of the sensors at once,

x =
1

2
RΦΨmd + n. (109)

A second change to the model is to admit cross correlations between the sensors.

These correlations, or cross spectral densities, were defined in Eqn. (5) on page 13.
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In order to use these densities, however, they need to be arranged in a matrix form

as in,

Rn ,




Rn,0 E

{

n0n
†
1

}

E
{

n1n
†
0

}

Rn,1



 , (110)

where the new off–diagonal elements are themselves diagonal matrices whose ele-

ments are given by

E
{

n0n
†
1

}

ii
= E

{
NT,0 (fi)N

∗
T,1 (fi)

}
≈ TS01 (fi) . (111)

This fundamentally changes the structure of Rn from a diagonal matrix to an M×M
block matrix with diagonal mNf ×mNf submatrices.

From this point the development is almost identical to the BPSK MMSE devel-

opment in Sec. 3.2.1. The MMSE data estimate is derived identically to the previous

development—only this time the R†
ΦR−1

n RΦ term cannot be simplified,

d̂MMSE =
1

2

(
1

4
Ψ†

mR†
ΦR−1

n RΦΨm + R−1
d

)−1

Ψ†
mR†

ΦR−1
n x. (112)

Looking at the dimensions of the components of this matrix equation, the same

structure is present that was found in the single sensor filter. This time, however,

the matched filter front end includes not only the downconverter and sampler, but

a signal combining operation as well. The TDL equalizer has the same number of

dimensions as before. This equation is factored, just like before (See Eqn. (79)), into
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a set of filters operating on the received data from each sensor,

D̂
(
ej2π(fi−fc)Ts

)

= e−jθej2π(fi−fc)τ · H0 (fi)x0 (fi)

+ e−jθej2π(fi−fc)τ · ej2π τ
TsH0

(

fi + 1
Ts

)

x0

(

fi + 1
Ts

)

+ ejθej2π(fi−fc)τ · H∗
0 (2fc − fi)x

∗
0 (2fc − fi)

+ ejθej2π(fi−fc)τ · ej2π τ
TsH∗

0

(

2fc − fi − 1
Ts

)

x∗0

(

2fc − fi − 1
Ts

)

+ e−jθej2π(fi−fc)τ · H1 (fi)x1 (fi)

+ e−jθej2π(fi−fc)τ · ej2π τ
TsH1

(

fi + 1
Ts

)

x1

(

fi + 1
Ts

)

+ ejθej2π(fi−fc)τ · H∗
1 (2fc − fi)x

∗
1 (2fc − fi)

+ ejθej2π(fi−fc)τ · ej2π τ
TsH∗

1

(

2fc − fi − 1
Ts

)

x∗1

(

2fc − fi − 1
Ts

)

,

(113)

for f ∈
(

fc − 1
Ts
, fc

)

.

All that remains is to specify the forms of these filters and their associated

equalizer. Multiplying out Eqn. (112), the optimal filters are,

H0 (f) =
1

2
HEQ (f)

A0Sn,1 (f) − A1e
−jθdej2πfτd1Sn,01 (f)

Sn,0 (f)Sn,1 (f) − |Sn,01 (f)|2
Ψ∗ (f) (114)

and

H1 (f) =
1

2
HEQ (f)

−A0S
∗
n,01 (f) + A1e

−jθdej2πfτd1Sn,0 (f)

Sn,0 (f)Sn,1 (f) − |Sn,01 (f)|2
Ψ∗ (f) . (115)
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Figure 7. Dual Sensor MMSE System Diagram

The equalizer, however, is much more complicated than the single sensor equalizer.

In this case the equalizer, HEQ (f), is given by,

HEQ (f) =
1

1 + 1
4

∣
∣
∣Ψ (f − fc)

∣
∣
∣

2

a†R−1
n (f) a

+ 1
4

∣
∣
∣Ψ
(

f + 1
Ts

− fc

)∣
∣
∣

2

a†R−1
n

(

f + 1
Ts

)

a

+ 1
4

∣
∣
∣Ψ (fc − f)

∣
∣
∣

2

a†R−1
n (2fc − f) a

+ 1
4

∣
∣
∣Ψ
(

fc − f − 1
Ts

)∣
∣
∣

2

a†R−1
n

(

2fc − f − 1
Ts

)

a

(116)

where

a†R−1
n (f) a =

A2
0Sn,1 (f) + A2

1Sn,0 (f) − 2A0A1<
{
e−jθd1ej2πfτdiSn,01 (f)

}

Sn,0 (f)Sn,1 (f) − |Sn,01 (f)|2
.

(117)

As before, this equation only specifies the filter for frequencies from fc − 1
Ts

to fc.

For frequencies from fc to fc + 1
Ts

, the sign of the 1
Ts

terms needs to flip.

Implementing this filter in practice requires some small modifications to the

system appropriate for a single sensor. In particular, each sensor is filtered separately

and then the results are summed together. This sum is then down–converted and

sampled as shown in Fig. 7.

Calculating the MSE at the output of this filter is similar to calculating the

MSE at the output of the single sensor filter given in Eqn. (81). In this case the
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MSE is,

ξ2 = 2Ts

∫ fc

fc− 1
2Ts

HEQ (f) df. (118)

Likewise the MCRB on the vector d, according to this model,7 is

MCRB (d) =

(
1

4
Ψ†

mR†
ΦR−1

n RΦΨm + R−1
d

)−1

. (119)

This implies that further improvements in symbol estimation cannot be had without

a better way of representing the true discrete probability distribution of a signal.

Further development, not presented here, could easily take this one step farther

in order to specify what the MSE would be under arbitrary receiver conditions.

Such a development would be nearly identical to that in Sec. 3.2.2, save that minor

modifications would need to be made for the non–diagonal covariance matrix, Rn.

In conclusion, this subsection has shown how the signal model first presented

in Sec. 3.1 can be extended to derive multi–sensor filters for BPSK systems. Filters

created using this model will be tested in Sec. 4.2.3 under extreme interference con-

ditions. These simulations will demonstrate that the addition of even one additional

sensor improves performance in highly correlated noise environments over the single

sensor BPSK MMSE filter. Further, this gain holds even if the signal is only present

on one sensor!

3.3 Estimating Time Difference of Arrival

Having developed several estimates of d, we now proceed to the second appli-

cation area of estimating the unknown Time Difference of Arrival (TDOA) between

7Modified Cramér–Rao bounds for the parameters τdi, and Ai will be presented in the TDOA
section, 3.3. As with the single sensor case, estimating these parameters does not reduce the
theoretical capability of the receiver in terms of MSE.
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two received signals. To estimate this TDOA, we again turn to “classical statistical

principles,” and in particular to the “maximum likelihood” estimation problem that

others have found so difficult to accomplish in the past [23, p. 1177], Streight’s

recent work excepted [61]. Using these principles, this section derives the maxi-

mum likelihood function for estimating TDOA and then presents several practical

approximations to that algorithm. Finally, this section concludes by examining the

Cramér–Rao bound for TDOA estimation.

The maximum likelihood TDOA estimator is derived from a modified version

of the model presented in Sec. 3.1 and in particular from Eqn. (52). In this modified

model, we assume the signal subspace method applies for some initial, reference,

sensor as before. All of the other sensors then have delayed versions of this signal

relative to the reference. Thus the signal received on the reference sensor, sensor 0,

can be written as

x0,SIGNAL =
A0

2
RφΨd, (120)

where the definitions of Rφ, Ψ, and d remain unchanged from the initial signal

model. The signal, as it arrives on the other sensors, differs from the reference

in two respects. The first difference is that the other sensors may experience a

different delay, τdi, with respect to the reference. The second difference is a potential

phase difference, defined as θdi , θi − θ0, where θi is the received phase on the ith

sensor. This dependence is captured by the matrix, Di, introduced in Eqn. (107)

on page 76, which contains both delay difference and phase terms and is defined so

that the received signal on the ith sensor may be written as,

xi =
Ai

2
DiRφΨd + ni, (121)
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where D0 = I and where xi is Gaussian distributed with mean, Ai

2
DiRφΨd, and

variance Rni,

xi ∼ N
(
Ai

2
DiRφΨd,Rni

)

. (122)

A similar comment needs to be made regarding the noise probability distribu-

tion on multiple sensors. The following discussion assumes that the noise contribu-

tions to each sensor, ni, are uncorrelated,

E
{

nin
†
j

}

i6=j
= 0. (123)

This simplifies the overall covariance matrix, from block diagonal to purely diagonal.

The log likelihood of receiving signals from M sensors, x0 through xM−1, then

separates into a sum,

L = − mNfM +Nf

2
ln (2π) − 1

2
ln det |Rd| −

1

2

M−1∑

i=0

ln det |Rni|

− 1

2

M−1∑

i=0

x
†
iR

−1
ni xi +

Ai

2
<
{

x
†
iR

−1
ni DiRφΨd

}

− A2
i

8
d†Ψ†R†

φD
†
iR

−1
ni DiRφΨd

− 1

2
d†R−1

d d.

(124)

Using the same method as before, the multi–sensor maximum likelihood estimate of

d can be derived:

d̂MML =

(
M−1∑

i=0

A2
i

4
Ψ†R−1

ni Ψ + R−1
d

)−1

Ψ†R†
φ

M−1∑

k=0

Ak

2
D†

kR
−1
nk xk. (125)
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If you plug this value into the log likelihood function, and drop all of the

constant terms, the result is a new equation to maximize:

τ̂d,ML = arg max
τd

(
M−1∑

i=0

Ai

2
x
†
iR

−1
ni Di

)

RφΨHEQΨ
†R†

φ

(
M−1∑

k=0

Ak

2
D†

kR
−1
nk xk

)

, (126)

where

HEQ ,

(
M−1∑

k=0

A2
k

4
Ψ†R−1

nkΨ + R−1
d

)−1

.

It is interesting to note that, in the case where no redundancy is present such that

Ψ reduces to an Nf × Nf diagonal matrix and Rφ is the identity, this equation

reduces to the optimal filter for stationary TDOA estimation presented in Eqn. (24)

of Sec. 2.3.1. This alone suggests that this estimator may have some optimality

properties associated with it.

Unfortunately, this equation depends upon the unknown received signal gains

inside a matrix inverse expression. Without simplifying this inverse in some manner,

solving this system will require some amount of numerical iteration to determine the

unknown gains, Ai. An alternate method, appropriate when the signal is weak on all

sensors, would be to approximate HEQ with Rd. If this approximation is accepted,

the low–SNR method for estimating the time–difference of arrival of a signal across

M sensors is,

τ̂d,LOW-SNR = arg max
τd

(
M−1∑

i=0

Aix
†
iR

−1
ni Di

)

RφΨRdΨ
†R†

φ

(
M−1∑

k=0

AkD
†
kR

−1
nk xk

)

.

(127)

At this point, rather than tackling this multi–variate optimization problem,

it is worth noting that this estimate alone is a new result. While it is similar to

Streight’s low–SNR approximation to the maximum likelihood two sensor TDOA

estimate given in Eqn. (29) [61], four differences separate the two estimators. The
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first difference is that Streight’s estimator was developed for white noise environ-

ments, where the covariance on the kth sensor, Rnk, was proportional to the identity

matrix, and then applied in colored noise environments, Rnk 6∝ I. It is reasonable to

assume that applying the overwhitener portion of this estimator, R−1
nk , under colored

noise conditions would provide a significant increase in performance. Second, while

Streight’s estimator expands into a sum of terms as well,
∑

i,j x
†
i · · ·xj, his estimator

does not include the term containing x0 twice. While this term does not contain

the “parameter of interest” [61, p. 75], τdi, it does contain the nuisance parame-

ters τ and θ that need to be estimated. Third, Streight assumes that the spectral

correlation functions are unknown, whereas this estimator specifies them explicitly.

The fourth difference is that this estimate can be compared with the optimal TDOA

estimator under all SNR conditions given in Eqn. (126). Given that there are so

many differences between the most similar two sensor cyclic TDOA estimator and

this one, it seems prudent to first outline and validate these differences on the sim-

pler, two–sensor problem and to reserve the multi–variate optimization problem for

future work.

The rest of this chapter, then, is divided into three subsections. The first sub-

section is devoted to a thorough solution of the two sensor TDOA estimation prob-

lem. The second subsection, following the single cycle reasoning presented in [23],

presents a single cycle approximation to this detector. Finally, the last subsection cal-

culates several Modified Cramér–Rao Bounds (MCRB) appropriate for cyclic TDOA

estimation.

3.3.1 Dual Sensor TDOA Estimation. This subsection describes a thor-

ough solution of the two sensor TDOA estimation problem, focusing in particular

on three parts that have not been addressed before. The first part is estimating

the nuisance parameters, θd1 and τ . Because the assumption has always been made

that the spectral correlation function was entirely known, these angles have always

been estimated as part of estimating the whole spectral correlation function. The
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assumption here, that this correlation function is known, necessitates estimating θd1

and τ for the first time. The second part of the two sensor problem is how to achieve

subsample TDOA resolution. This results in an interpolation problem that has not

been addressed before among cyclostationary TDOA estimators. Not interpolating,

however, has resulted in misleading results in both [24] and [61] as Sec. 4.3.1 will

demonstrate. The third part of the problem revolves around what to do with the

unknown gain terms. All of these three parts to the TDOA estimation problem can

be demonstrated with a QPSK signal alone, therefore this section will focus only on

the redundancies present in a QPSK signal.8

Determining the nuisance parameters can be done by simplifying Eqn. (127)

above. The first step is to eliminate the terms depending upon more than two

sensors,

(τ̂d)2D,LOW-SNR
= arg max

τd

max
θd,τ

A2
0x

†
0R

−1
n,0RφΨRdΨ

†R†
φR

−1
n,0x0

+ A2
1x

†
1R

−1
n,1D1RφΨRdΨ

†R†
φD

†
1R

−1
n,1x1

+ 2A0A1<
{

x
†
0R

−1
n,0RφΨRdΨ

†R†
φD

†
1R

−1
n,1x1

}

.

(128)

Then, plugging in the appropriate equations for a QPSK signal, and dropping the

power terms that contain no information regarding either the TDOA parameter of

8Application to BPSK signals will require estimating the additional reference angle θ. It also
includes 6 more cyclic spectral terms. Thus, considering QPSK only is a matter of simplification
as well.

85



interest or the nuisance parameters, the maximization problem takes the form,

τ̂d = arg max
τd

max
τ,θd

A0A1

∑

fi

|Ψ (fi − fc)|2 <
{

e−jθd
X∗

0 (fi)X1 (fi) e
j2πfiτd

Sn0
(fi)Sn1

(fi)
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∣
∣
∣
Ψ

(
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1

Ts

− fc

)∣
∣
∣
∣

2

<






e−jθd
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0

(
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Ts

)

X1

(
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)
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(
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)






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∑
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Ψ (fi − fc) Ψ∗
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
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A2
0
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1
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(fi)Sn0(fi+
1
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)

+ A2
1

X∗
1 (fi)X1(fi+

1
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)
Sn1

(fi)Sn1(fi+
1

Ts
)
ej2π

τd
Ts

+ A0A1e
−jθd

X∗
0 (fi)X1(fi+

1
Ts

)
Sn0

(fi)Sn1(fi+
1

Ts
)
ej2π(fi+

1
Ts

)τd

+ A0A1e
jθd

X∗
1 (fi)X0(fi+

1
Ts

)
Sn1

(fi)Sn0(fi+
1

Ts
)
e−j2πfiτd



















.

(129)

Several unknowns persist in this equation. These are the TDOA parameter,

τd, together with the nuisance parameters A0, A1, θd, and τ . In order to separate

the problem of solving for the TDOA, τd, from the related problem of solving for the

other parameters, we break this equation into parts corresponding to functions of τd

and functions of the nuisance parameters. This yields the expression,

τ̂d = arg max
τd

max
τ,θd

<







A0A1e
−jθdB0 [τd]

+ A0A1e
−jθdej2π τ

TsB1 [τd]

+ A0A1e
−jθde−j2π τ

TsB2 [τd]

+ A2
0e

j2π τ
TsB3

+ A2
1e

j2π τ
Ts ej2π

τd
TsB4







, (130)
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where the Bi terms are defined as,

B0 [τd] ,
∑

fi






|Ψ(fi−fc)|2
Sn,0(fi)Sn,1(fi)

X1 (fi)X
∗
0 (fi) e

j2πfiτd

+
|Ψ(fi+

1
Ts

−fc)|2
Sn,0(fi+

1
Ts

)Sn,1(fi+
1

Ts
)
X1

(

fi + 1
Ts

)

X∗
0

(

fi + 1
Ts

)

ej2π(fi+
1

Ts
)τd




 ,

(131)

B1 [τd] ,
∑

fi

Ψ (fi − fc) Ψ∗
(

fi + 1
Ts

− fc

)

Sn,0 (fi)Sn,1

(

fi + 1
Ts

) X∗
0 (fi)X1

(

fi +
1

Ts

)

ej2π(fi+
1

Ts
)τd , (132)

B2 [τd] ,
∑

fi

Ψ∗ (fi − fc) Ψ
(

fi + 1
Ts

− fc

)

Sn,0

(

fi + 1
Ts

)

Sn,1 (fi)
X∗

0

(

fi +
1

Ts

)

X1 (fi) e
j2πfiτd , (133)

B3 ,
∑

fi

Ψ (fi − fc) Ψ∗
(

fi + 1
Ts

− fc

)

Sn,0 (fi)Sn,0

(

fi + 1
Ts

) X∗
0 (fi)X0

(

fi +
1

Ts

)

, (134)

and B4 ,
∑

fi

Ψ (fi − fc) Ψ∗
(

fi + 1
Ts

− fc

)

Sn,1 (fi)Sn,1

(

fi + 1
Ts

) X∗
1 (fi)X1

(

fi +
1

Ts

)

. (135)

Of these new Bi parameters, the B0 parameter should be familiar: it corresponds

to TDOA estimation using the Eckart filter [37]. The other parameters are not as

familiar, as cyclostationary developments have generally assumed that Ψ (f) and

Sn (f) were unknown. Maximizing Eqn. (130) will provide the maximum likelihood

TDOA estimate. Even better, the Bi expressions can be calculated without knowing

the nuisance parameters.

In order to apply this formula in practice, the first step to calculating the

maximum of Eqn. (130) is to calculate the Bi functions. The first three of these,

B0, . . . , B2 are functions of τd and are calculated by three inverse Fast Fourier Trans-

forms (FFT) [48]. The last two, B3 and B4, can be calculated by simply applying

the sum in Eqns. (134) and (135).

Once these functions have been calculated, maximizing Eqn. (130) becomes a

problem of solving for the nuisance parameters at each value of τd. The first nuisance
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parameter to estimate is θd. Noting that, in general,

∣
∣
∣
∣
B0 [τd]

∣
∣
∣
∣

will be much larger

than
∣
∣
∣e

j2π τ
TsB1 [τd] + e−j2π τ

TsB2 [τd]
∣
∣
∣, a simple estimate for ejθd can be calculated from

this parameter alone,

ζ [τd] , e−jθ̂d =
B∗

0 [τd]

|B0 [τd]|
. (136)

Using this estimate for ejθ̂d to simplify the optimization problem further,

τ̂d = arg max
τd

∣
∣
∣
∣
B0 [τd]

∣
∣
∣
∣

(137)

+ max
τ

<
{

ej2π τ
Ts

[

ζ [τd]B1 [τd] + ζ∗ [τd]B
∗
2 [τd] +

A0

A1

B3 +
A1

A0

ej2π
τd
TsB4

]}

.

At this point, since the ej2π τ
Ts term can be factored out, the optimal estimate is

apparent,

τ̂d = arg max
τd

∣
∣
∣
∣
B0 [τd]

∣
∣
∣
∣
+

∣
∣
∣
∣
ζ [τd]B1 [τd] + ζ∗ [τd]B

∗
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B3 +
A1
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ej2π
τd
TsB4

∣
∣
∣
∣
.

(138)

This solves for all of the unknown nuisance angles, yielding a very usable TDOA

estimator.

This opens up the second part of this two–sensor problem: what happens when

τd is not an integer number of samples? The most obvious answer is to apply some

form of interpolation to the function in Eqn. (138) and to use that to determine

fractional delays. To do this, we define the function g [τd], to be the right hand side

of Eqn. (138) sampled at intervals of Tsamp,

g [τd] ,

∣
∣
∣
∣
B0 [τd]

∣
∣
∣
∣
+

∣
∣
∣
∣
ζ [τd]B1 [τd] + ζ∗ [τd]B

∗
2 [τd] +

A0

A1

B3 +
A1

A0

ej2π
τd
TsB4

∣
∣
∣
∣
. (139)
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Maximizing g [τd] involves two steps. The first step is a search for the maxi-

mum over all sampled values of g [τd]. Once found, some form of local interpolation

near that maximum can be used to achieve subsample resolution. The form of the

optimal interpolator is easily given from the forms of B0, . . . , B2. Each of these

functions is defined as a continuous function of τd, not a discrete one. By increasing

the size of the inverse FFT used to calculate these functions, subsample resolution

may be obtained. However, this method is computationally intensive and could be

pursued ad infinitum. A second, non–optimal, option would be to use some form of

polynomial interpolation to achieve sub–sample resolution. In that case, the value

of τd that produced a maximum in g [τd1], call this ˆ̂τd, would then be applied to the

quadratic interpolation formula given in [5] to determine an optimal TDOA value,

τ̂d = ˆ̂τd +
1

2

g
[

ˆ̂τd + Tsamp

]

− g
[

ˆ̂τd − Tsamp

]

2g
[

ˆ̂τd

]

−
(

g
[

ˆ̂τd − Tsamp

]

+ g
[

ˆ̂τd + Tsamp

]) . (140)

Perhaps the best option, however, is a combination of a larger FFT size together

with quadratic interpolation. This combination method will be tested in Chapt. IV.

The final problem of TDOA MLE implementation is what to do about the A0

A1

term in Eqn. (139). This problem can be avoided by one assumption and two approx-

imations. First, assume that it is known that A0 � A1. In this case, A1

A0
B4e

j2π
τd
Ts is a

small term that may be dropped with little loss from Eqn. (139). The remaining term

dependent on A0

A1
is dealt with by applying a less than optimal scale. This creates

a lopsided approximation to the TDOA optimization function that is appropriate

when the signal scales are unequal,

g̃ [τd] ,

∣
∣
∣
∣
B0 [τd]

∣
∣
∣
∣
+

∣
∣
∣
∣
ζ [τd]B1 [τd] + ζ∗ [τd]B

∗
2 [τd] +B3

∣
∣
∣
∣
. (141)
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In all other respects, such as interpolation, this lopsided function is optimized the

same as before.

In sum, this section has presented three new techniques to be used in TDOA es-

timation. The first new technique, presented in Eqn. (138), demonstrates a method

of dealing with the unknown nuisance parameters. Since this is the first work to

assume, in TDOA estimation, that these spectral correlation functions are known

save these nuisance parameters, this nuisance parameter estimation problem makes

a cyclic TDOA estimator practical. Further, it renders the problem of solving for the

spectral correlation functions unnecessary, thus simplifying the problem. The sec-

ond technique presented here, interpolating the likelihood function between sample

points, is necessary whenever the true TDOA is not necessarily an integer number of

samples. Since this includes all real world cases, applying this interpolation should

improve all practical results. Finally, a method for estimating TDOA when signal

scales were unknown was presented in Eqn. (141). Together, these methods cover

all of the problems associated with unknowns in the spectral correlation functions

making maximum likelihood cyclic TDOA estimation practical.

3.3.2 Single Cycle TDOA Estimators. Under the justification that co–

channel interference would corrupt the B0 [τd] from Eqn. (131), Gardner and Chen

focus on several single cycle TDOA estimators [23]. These estimators, they argue,

are immune to unknown interference after sufficient integration lengths because,

By exploiting the cyclostationary property of the signal of interest, as
reflected in the spectral correlation functions for the received data, the
effects of additive noise and interfering signals are ideally (for unlimited
data collection times) removed by these methods. [23, p. 1182]

Since all of these methods focus around a single α 6= 0 cycle frequency, this subsection

examines single–cycle TDOA estimators in light of the maximum likelihood TDOA

estimation function. Two particular single cycle estimators are presented here. The

first is a modified spectral coherence alignment method, M–SPECCOA, modified
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here to accommodate known colored noise environments. The second single cycle

estimator is developed in this section by dropping the B0 [τd] term from the ML

TDOA estimator. Both of these estimators, according to the philosophy in the

quote above, should be highly resistant to noise plus interference. Since the signal

of interest throughout this TDOA section has been a QPSK signal, only the symbol

rate cycle frequency, α = 1
Ts

, will be examined.

The first estimator of interest is SPECCOA. Under Gardner and Chen’s for-

mulation, this estimator is created from two estimated spectral correlation functions,

Ŝα
x0x1

(f) and Ŝα
x1x1

(f). If the pulse function is known, however, the second spectral

correlation function is known to within a complex constant. That is, for α = 1
Ts

,

S
1

Ts
x1x1 (f) = e−j2π

τ+τd
Ts

A2
0

4Ts

Ψ∗
(

f − 1

2Ts

− fc

)

Ψ

(

f +
1

2Ts

− fc

)

. (142)

Replacing the unknown, but estimated, value of S
1

Ts
x1x1 (f) with its true value results

in the single cycle estimator,

τ̂d1,NO-APPRX = arg max
τd

∣
∣
∣
∣
∣
∣
∣
∣
∣

e−j2π
τ+τd

Ts

∫ fc+
1

2Ts

fc− 1
2Ts

A2

4Ts
Ψ∗
(

f − 1
2Ts

− fc

)

Ψ
(

f + 1
2Ts

− fc

)

× X∗
1

(

f − 1
2Ts

)

X0

(

f + 1
2Ts

)

df

∣
∣
∣
∣
∣
∣
∣
∣
∣

= arg max
τd

∣
∣
∣
∣
B1 [τd]

∣
∣
∣
∣
, (143)

in white noise conditions. Yet SPECCOA uses more signal information than this

equation captures. In particular, the S
1

Ts
x0x0 (f) term formed from

X∗
0

(

f − 1
2Ts

)

X0

(

f + 1
2Ts

)

, contains information about e−j2π
τ+τd

Ts not captured in

this formula. Putting these two terms together results in a modified SPECCOA
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estimator,

τ̂d,M–SPECCOA , arg max
τd

<
{

ejθdB1 [τd]B
∗
3

}

, (144)

that captures most, if not all, of the information that the previous SPECCOA es-

timator captures. If the phase is unknown, the real operator, <{·} operator may

be replaced with the absolute value operator, |·|. Doing so, however, eliminates the

contribution of B3,

τ̂d,M2–SPECCOA , arg max
τd

∣
∣
∣
∣
ejθdB1 [τd]

∣
∣
∣
∣
, (145)

since |B3| is constant across all values of τd.

Two differences separate Eqn. (144) from the original definition of SPECCOA.

The first difference is that all of the terms in Eqn. (144) are well defined. Estimating

Sα
s (f) is not required, as Eqn. (144) assumes that it is known. The second difference

is found in colored noise environments. In such environments, B1 and B3 specify us-

ing an overwhitener prior to estimating τd. The importance of this overwhitener will

be demonstrated in Sec. 4.3.2, where overwhitened and non–overwhitened versions

of this estimator will be compared.

Realizing that this expression is just a subset of the maximization problem

presented in the last section in Eqn. (130), it becomes apparent that much more

single cycle information is present in the full maximum likelihood problem than

SPECCOA uses. Applying all of this information should yield better single cycle

TDOA estimators.

In an effort to use all of the terms B1, . . . , B4, two more single cycle TDOA

estimators are presented here. The first is an optimal single cycle method for use
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when θd is unknown,

τ̂d,SC-THETA , arg max
τd

{∣
∣
∣
∣
B1 [τd]

∣
∣
∣
∣
+

∣
∣
∣
∣
B2 [τd]

∣
∣
∣
∣

}

. (146)

The problem associated with not knowing θd means that the angles of these two

terms cannot be related to each other. Therefore, the absolute value sign allows the

TDOA estimator to maximize against both θd and τ in solving for τd. The second

single cycle estimator, shown below, is optimal when θd = 0. This estimator uses

only B1, . . . , B3 for the same reasons as the lopsided TDOA estimator above. In this

case,

τ̂d,SINGLE-CYCLE , arg max
τd

∣
∣
∣
∣
B1 [τd] +B∗

2 [τd] +B3

∣
∣
∣
∣

(147)

is a suboptimal single cycle TDOA estimator for use when A0 and A1 are unknown,

but A0 � A1.

Two of these single cycle TDOA estimators, the modified SPECCOA in

Eqn. (144) and the optimal single cycle method when A0 � A1 in Eqn. (147),

will be tested in Section 4.3 of the next chapter. This section will demonstrate that

their performance is much worse than the TDOA estimators presented in the pre-

vious subsection which incorporate the B0 [τd], or zero–cycle, term—even in severe

co–channel interference. This poor performance, demonstrated in Chapt. IV, leaves

little reason to discuss them further here.

3.3.3 Cramér–Rao Bounds. As a last step in discussing cyclic TDOA

estimation, we return to the modified Cramér–Rao bound discussed in Sec. 3.2.3.

Deriving this bound for the multi–sensor likelihood function that we’ve been using

is fairly straightforward but lengthy. A full presentation of this derivation can be

found in Appendix J. Instead, this section discusses the derivation in order to present
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results for three particular cases. The first two cases assume that τ , the reference

symbol epoch, is the only unknown nuisance parameter. These two cases present an

MCRB for τd1 when fc = 0 and then when fc � 0. The third case occurs when both

nuisance parameters, τ and θd are unknown and fc � 0. In all of these cases, as

with the previous TDOA algorithm development, a QPSK signal will be the basis

for the model.

The first step in any MCRB calculation involves calculating the expected values

of the second partial of the likelihood function. For the two sensor case, this second

partial involves taking partials of Di with respect to τd1. To simplify this process,

a new matrix, F∆, is introduced here. This matrix is similar to Fδ (Eqn. (98)),

introduced in Sec. 3.2.3 on page 73, only here it is applied to Di instead of Rφ. Its

definition shows that similarity,

F∆ ,
1

−j2π

(
∂

∂τdi

Di

)

D†
i =








f1 0 · · ·
0 f2 · · ·
...

...
. . .







. (148)

Moreover, when fc = 0, these two auxiliary matrices are identical, Fδ = F∆.

In order to deal with the first case, where τ is unknown and fc = 0, one minor

modification needs to be made to Eqn. (1). A baseband QPSK signal is complex,

not real. To put it another way,

xBB (t) = A0

Ns∑

n=0

dnψ (t− nTs − τ) ejθ + n (t) . (149)
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The biggest immediate consequence of this change is that there is no longer a factor

of two scaling in the vector equation, x = A
2
RφΨd + n. Instead, we have

xBB = ARφΨd + n, (150)

and xi,BB = AiDiRφΨd + ni. (151)

Once this change is made, the Fisher Information Matrix (FIM) is fairly easy

to derive. Three terms are of particular interest. These are,

E
{

−∂
2L
∂τ 2

}

=
M∑

k=0

4π2A2
ktr
{
ΨRdΨ

†R−1
nkF

2
δ

}
, (152)

E
{

−∂
2L
∂τ 2

di

}

= 4π2A2
i tr
{
ΨRdΨ

†R−1
ni F

2
δ

}
, (153)

and E
{

− ∂2L
∂τdi∂τ

}

= 4π2A2
i tr
{
ΨRdΨ

†R−1
ni F

2
δ

}
. (154)

From these three terms, the FIM is easily inverted for an arbitrary number of sensors.

This leads to the following Modified Cramér–Rao Bounds (MCRBs),

MCRB (τ) =
1

4π2A2
0tr
{
ΨRdΨ†R−1

n0 F
2
δ

} , (155)

and MCRB (τdi) =
1

4π2A2
0tr
{
ΨRdΨ†R−1

n0 F
2
δ

} +
1

4π2A2
i tr
{
ΨRdΨ†R−1

ni F
2
δ

} .

(156)

This bound is plotted in Sec. 4.3.1 together with the performance of several ML

estimators. (See Figs. 37 through 40.)

The second case, where fc � 0 and τ is the only unknown nuisance parameter,

is not quite so easy. This is primarily due to the fact that Fδ 6= F∆, and so the

multiple sensor MCRB is not as simply stated. Instead, this case will examine the

two sensor CRB for QPSK signals rather than the multi–sensor case in general.
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For two sensors, the relevant FIM terms are,

E
{

−∂
2L
∂τ 2

}

=
M∑

k=0

π2A2
ktr
{
ΨRdΨ

†R−1
nkF

2
δ

}
, (157)

E
{

−∂
2L
∂τ 2

di

}

= π2A2
i tr
{
ΨRdΨ

†R−1
ni F

2
∆

}
, (158)

and E
{

− ∂2L
∂τdi∂τ

}

= π2A2
i tr
{
ΨRdΨ

†R−1
ni FδF∆

}
. (159)

When the FIM is inverted, these terms result in the bounds,

MCRB (τ) =
1

π2

1

A2
0tr
{
ΨRdΨ†R−1

n0 F
2
δ

}
+ A2

1tr
{
ΨRdΨ†R−1

n1 F
2
δ

}
− A2

1tr{ΨRdΨ
†R

−1
n1 FδF∆}2

tr{ΨRdΨ
†R

−1
n1 F2

∆}
,

(160)

and MCRB (τd1) =
1

π2

1

A2
1tr
{
ΨRdΨ†R−1

n1 F
2
∆

}
− A4

1tr{ΨRdΨ
†R

−1
n1 FδF∆}2

A2
0tr{ΨRdΨ

†R
−1
n1 F2

δ}+A2
1tr{ΨRdΨ

†R
−1
n1 F2

δ}
(161)

This MCRB for TDOA estimation is plotted in Sec. 4.3.2 (Figs. 43 and 45) for two

colored noise test cases.

The final case, that where fc � 0 and where τ and θd1 must both be estimated,

is a little more tedious to present since it involves inverting an arbitrary 3×3 matrix.

Rather than presenting the bounds in this case, only the entries in the FIM will be

shown here. From these entries, the bounds are easily calculated numerically. These

entries are identical to the last case, with the exception that one more row needs to
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be added to the matrix. This row is composed of the terms,

E
{

− ∂2L
∂θ2

d1

}

=
A2

1

4
tr
{
ΨRdΨ

†R−1
n1

}
, (162)

E
{

− ∂2L
∂θd1∂τ

}

= −A
2
1π

2
tr
{
ΨRdΨ

†R−1
n1 Fδ

}
, (163)

and E
{

− ∂2L
∂θd1∂τd1

}

= −A
2
1π

2
tr
{
ΨRdΨ

†R−1
n1 F∆

}
. (164)

Unlike the previous two cases, plots of this latter bound are not shown in the next

chapter at all.

Further cases could be presented here for numerical solution. In particular, the

MCRBs for an arbitrary number of sensors are easily calculated from a single matrix

inverse. However, since these bounds are tedious to show analytically, they have not

been included here. An interested reader can find the FIM entries in Appendix J

and numerically invert them as desired.

3.4 Presence Detection

The same subspace framework that was used to create first optimal filters,

and then TDOA estimators, can also be used to develop detection algorithms. Two

hypotheses will be examined in this section to test for the presence of a signal. The

first hypothesis test is the standard noise alone versus signal present test. This will

lead to the well known multicycle detector. The second hypothesis tests whether or

not the signal is present when the noise has an unknown scale. This test will result

in a new cyclic ratio detector. Approximations to this latter detector will result in a

signal selective detection capability that is much more resistant to interference than

classical cyclostationary detection methods.

Making this problem more difficult than the optimal filtering problem is the

fact that several of the values used to determine d̂MLE are unknown. Chief among

these unknowns is the signal scale parameter, A. Thus, rather than starting with
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the likelihood ratio test, which is the most powerful test under known conditions, we

derive only the locally most powerful test for low SNR conditions and approximations

to that test. This test uses a detection statistic defined as,

yLO (x) =
∂

∂A2
L
∣
∣
∣
∣
A2=0

. (165)

This is the most powerful test for detecting a weak signal, such as one where A2 ≈ 0

[13].

3.4.1 Optimal Cyclostationary Signal Detection. The first test of interest

is whether or not the signal is present when the noise covariance is known. An

appropriate test can be derived from the hypotheses,

H0 : X ∼ N (0,Rn) (166)

versus H1 : X ∼ N
(
A

2
RφΨd,Rn

)

and d ∼ N (0,Rd) . (167)

Calculating the locally most powerful low SNR detector for this signal, using

Eqns. (165) and (70), yields the detection statistic,

yMCYC (x) = max
φ

x†R−1
n RφΨRdΨ

†R†
φR

−1
n x. (168)

This detection statistic reduces to the multicycle detector presented by Gardner [17]

and modified for colored noise by Rostaing [51] (see Eqn. (38) on page 38). This

should come as no surprise, since this detector was derived under identical conditions

to those under which the multicycle detector was derived [17,15].

3.4.2 Cyclic Ratio Detection. The second test of interest revolves around

determining whether or not the signal is present in burst interference. As men-

tioned in the background subsection on detection (sec. 2.4.1 on page 33), the biggest
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drawback to energy detection methods is that they will indiscriminately detect all

burst signals. Overcoming this difficulty requires deriving a signal detector that is

somehow immune to burst interference. Using the signal model presented earlier in

this chapter, together with an appropriately framed hypothesis test, it is possible

to derive a detector that will be resistant to burst interference. This subsection

presents the highlights of such a derivation. An interested reader may wish to refer

to Appendix G for a more detailed proof.

The first step is to appropriately frame the test. We are interested in testing

whether or not the signal is present in a background where the noise covariance could

change suddenly. The difficult part in deriving such a test is that the noise covariance

could change in any manner, yet in order to derive a test some manner of change

needs to be specified. While one might be able to derive a test which is invariant to

a particular type of burst interferer, such a test would need to be redesigned when

the burst interferer changed. Instead, we choose here to be as general as possible by

allowing the noise scale to change suddenly. Then, in Sec. 4.4, this result is shown

to apply even when the shape of the noise PSD changes. Therefore, we let σ refer

to this unknown and changing scale, and frame the hypothesis test as

H0 : X ∼ N
(
0, σ2Rn

)
(169)

versus H1 : X ∼ N
(
A

2
RφΨd, σ2Rn

)

, A > 0, and d ∼ N (0,Rd) . (170)

From the previous section on filtering, Sec. 3.2.1, the maximum likelihood

estimate for d is,

d̂MLE =
A

2σ2

(
A2

4σ2
Ψ†R−1

n Ψ + R−1
d

)−1

Ψ†R†
φR

−1
n x. (171)
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Similarly, the maximum likelihood estimate for σ, given that d is known, is also easy

to derive,

σ̂2
MLE

=
1

mNf

(

x − A

2
RφΨd

)†
R−1

n

(

x − A

2
RφΨd

)

. (172)

A proof of this may be found in [53]. The next step is to place these estimates

into the likelihood function to remove them as unknowns. Yet the problem with

these estimates is that they are mutually dependent. That is, the estimate for σ̂MLE

depends upon the estimate for d̂MLE, and likewise d̂MLE depends upon σ̂MLE. They

cannot be analytically separated.

To resolve this difficulty, we define a relative signal scale factor, Ao, such that

Ao , A
2σ

. This makes it possible to sufficiently decouple the estimates,

d̂MLE =
Ao

σ

(
A2

oΨ
†R−1

n Ψ + R−1
d

)−1
Ψ†R†

φR
−1
n x, (173)

and σ̂2
MLE

=
1

mNf








x†R−1
n x

− 2A2
ox

†R−1
n RφΨ

(
A2

oΨ
†R−1

n Ψ + R−1
d

)−1
Ψ†R†

φR
−1
n x

+ A4
o · · ·







.

(174)

While σ does remain in the expression for d̂MLE, this dependence is dropped when

d̂MLE is placed into the likelihood function.

Having estimated the unknown parameters in the likelihood function, these

parameters can now be plugged in and the log of the likelihood function, L, can

be evaluated. If all the terms that are independent of the data are lumped into a

constant, C, then the expression for L becomes,

L = −mNf

2
ln σ̂2

MLE
− mNf σ̂

2
MLE

2σ̂2
MLE

− d̂
†
MLER

−1
d d̂MLE

2
+ C. (175)
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Finally, using this likelihood, we develop a detector via the formula for locally

optimal detection as shown in Eqn. (165) above. This detector is,

yRATIO (x) , max
τ,θ

x†R−1
n RφΨRdΨ

†R†
φR

−1
n x

x†R−1
n x

. (176)

Because of its form, the term Cyclic Ratio Detector is applied here to describe this

detector. In particular, the term multicycle ratio detector seems appropriate since

the numerator is still the optimal multicycle detector.

Before leaving this topic, two single cycle approximations are presented to this

detector, creating single cycle ratio detectors. These detectors result when all but

one of the terms is dropped from the numerator. Two important single cycle ratio

detectors will be evaluated through simulation in Sec. 4.4. These are the symbol

rate ratio detector,

ySRD (x) ,

∣
∣
∣
∣
∣
∣

∑

fi

X∗
(

fi − 1
2Ts

)

Sn

(

fi − 1
2Ts

)

X
(

fi + 1
2Ts

)

Sn

(

fi + 1
2Ts

)S
1

Ts
s (fi)

∗

∣
∣
∣
∣
∣
∣

∑

fi

|X (fi)|2
Sn (fi)

+

∣
∣
∣X
(

fi + 1
Ts

)∣
∣
∣

2

Sn

(

fi + 1
Ts

)

(177)

and the carrier ratio detector,

yCRD (x) ,

∣
∣
∣
∣
∣

∑

fi

X∗ (fi − fc)

Sn (fi − fc)

X (fi + fc)

Sn (fi + fc)
S2fc

s (fi)
∗

∣
∣
∣
∣
∣

∑

fi

|X (fi)|2
Sn (fi)

+

∣
∣
∣X
(

fi + 1
Ts

)∣
∣
∣

2

Sn

(

fi + 1
Ts

)

. (178)
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Each of these ratio detectors possess a property not found in other detectors:

they have a constant false alarm rate (CFAR) against changes in noise scale. The

proof of this is very short, and is included here for completeness.

Theorem 2 (Cyclic Ratio Detectors are CFAR Detectors) Each of the ratio

detectors, shown in Eqns. (176), (177) and (178), have a constant false alarm rate

(CFAR) against noise of a changing scale.

Proof: Since the proof for each of the three ratio detectors is essentially identical,

only the first will be presented. To show that yRATIO (x) is CFAR, we examine the H0

case when x = n. Under this case, let η be a detection test threshold chosen based

upon the true probability distribution of yRATIO (n) such that

P [yRATIO (n) > η] = PFA. (179)

Now, suppose the noise scale changes suddenly and σn is received instead of n.

Examining yRATIO (σn) shows that this statistic is invariant to this scale change,

yRATIO (σn) = max
τ,θ

σn†R−1
n RφΨRdΨ

†R†
φR

−1
n σn

σn†R−1
n σn

= max
τ,θ

n†R−1
n RφΨRdΨ

†R†
φR

−1
n n

n†R−1
n n

= yRATIO (n) (180)

Given that yRATIO (n) = yRATIO (σn), the false alarm rate is given by,

P [yRATIO (σn) > η] = P [yRATIO (n) > η] = PFA. (181)

Thus, the false alarm rate remains constant across a changing noise scale, as re-

quired. Q.E .D.
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Looking at these two new detectors, both the multicycle ratio and the single

cycle ratio detectors, each of them uses a measurement “orthogonal to the signal,”

which is included in the total energy measurement in the denominator. This allows

them to track changes in the background noise and detect only signals of interest.

Two examples will help to illustrate this.

First, suppose a broadband signal of no interest was present during the obser-

vation interval but not during the training interval under which Rn was estimated.

This broadband signal would raise the value in the numerator of both the single cycle

and multicycle ratio detectors. Unlike the radiometric or cyclic feature detectors,

however, the denominator would also increase, eliminating the effect of the rise in

the numerator. This should render the detector immune to changes in broadband

noise.

Consider, as a second example, an interferer having a nearly identical power

spectral density to the signal of interest. In this case, the α = 0 term of the multicycle

detector would respond favorably to this signal, suggesting a signal of interest is

present. This one increase could be large enough to create an alarm in any detector

that used the α = 0 term either by itself, or as one of several in a linear combination

of terms. This is the common justification for throwing out the α = 0 term while

creating a signal selective detector. With a little foresight, one might recognize that

the other cyclic terms, such as the α = 1
Ts

or α = 2fc terms, would also measure a

corresponding increase in their variance. This increase, coupled with the necessity

of solving for τ and possibly θ, would cause detectors built from these terms, such

as all common cyclostationary detectors, to alarm as well. The response of the

cyclic ratio detector, however, would be tempered by a corresponding increase in

the denominator, preventing such false alarms. This would provide the cyclic ratio

detector a certain amount of immunity to burst interference.

Tests in the next chapter will focus on each of these scenarios in turn. As

the foregoing discussion suggests, the cyclic ratio detectors will be shown to achieve
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a signal selectivity that no other detector possesses. This fulfills Sonnenschein’s

prediction that, “the performance of detectors . . . would be improved by this scheme

since it would effectively remove the noise–level uncertainty” [60, p. 367].

This cyclic ratio detector is a fundamentally new type of detector. By its design

it is much more resistant to burst interference than either energy detectors or other

cyclostationary detectors. This exceptional resistance is demonstrated in Sec. 4.4.

3.5 Conclusions

This chapter introduced a new approach to burst signal processing based upon

a new representation of digital communications signals in frequency. This new rep-

resentation differed from other cyclostationary models in four respects. First, it ac-

counted for the underlying redundancies within a communications signal’s spectra,

allowing the communications signal to be represented as a subspace of the received

waveform. Second, by assuming that the data was Gaussian, a reasonable probabil-

ity density function was applied to represent the data. This made it possible, later

on, to apply classical statistical principles to the application areas of interest. Third,

this model allows for the easy description of noise plus interference, making noise

removal part of every initial algorithm development, rather than an afterthought.

Finally, unlike previous models for cyclostationary signals, this model is quite ap-

propriate for burst signals. Together, these differences make this model ideal for

creating signal processing algorithms applicable to burst signals in colored noise.

This new approach was then applied to three separate application areas, result-

ing first in the development of well–known algorithms when the assumptions used

were identical to those of the previous derivations. For example, Berger and Tufts’

MMSE filter was shown to be a consequence of having a complex baseband. Then,

when applied to TDOA estimation, this approach lead to the optimal stationary

TDOA estimation filter. Likewise the optimal, locally most powerful, detector for

detecting a cyclostationary signal in colored noise was shown to be the multicycle
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detector presented by Gardner and Rostaing [17,51]. By arriving at these known so-

lutions, each of these examples supports the contention that this is a valid approach

for deriving new cyclostationary signal processing algorithms.

New algorithms were then developed, through the application of classical sta-

tistical principles, but this time under new assumptions. First among these were

optimal single and multichannel demodulation filters. If truly optimal, as the next

chapter will demonstrate, these filters demonstrate the validity of the estimate of

the signal derived from this model. Not only were optimal filters derived, but by

measuring the mean square error in an estimate, the mean square error at the output

of a demodulator can be calculated under arbitrary noise and channel conditions.

Second, when applied to TDOA estimation, the full form of a maximum likelihood

TDOA estimator in colored noise was derived. Then, using this model, the first ever

Cramér–Rao bounds were derived for cyclostationary TDOA estimation. Finally,

when this model was applied to detection, new interference resistant detection al-

gorithms emerged. All of these new results, from filtering algorithms to new signal

selective detectors, are simple consequences of applying classical statistical principles

to this fundamentally new model for cyclostationary signals.

What remains to be shown in the next chapter is the performance improvement

that can be expected from using these algorithms and, equivalently, the performance

loss from using suboptimal approximations. The performance improvements, in par-

ticular, will validate that these algorithms do indeed meet or exceed the performance

of other stationary and cyclostationary algorithms when tested under conditions sim-

ilar to those they were derived under. This will be demonstrated in the next chapter.
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IV. Analysis by Simulation

Having developed a new approach to generating signal processing algorithms

for digital communications in the last chapter, this chapter takes that development

one step farther by validating the new methods derived from this framework in a

simulated environment. Given that this new approach was founded on the assump-

tion that the underlying signal had a Gaussian probability distribution in frequency,

this assumption is first examined in detail before proceeding to the new algorithms.

Once validated, the maximum likelihood estimates created from this probability dis-

tribution are then compared to other similar estimates, since these estimates will

eventually be used in any detection algorithm. Thus the second and third section

of this simulation chapter will examine the capability of the MMSE filters for gener-

ating an estimate of the data and then the two–sensor maximum likelihood TDOA

estimator. Once these estimates have been shown to outperform all others tested,

the final section examines the new detection algorithms derived under this model.

Together, these simulations will demonstrate that the linear subspace approach to

communications signal processing yields either complementary or superior results to

those methods presented in Chapt. II.

4.1 Signal Model

Before looking at any of these new algorithms, however, we first validate the

Gaussian assumption underlying all them. In particular, the fundamental assump-

tion in Chapt. III was that D
(
ej2π(f−fc)Ts

)
could be modeled as a multivariate Gaus-

sian vector in frequency. Although this assumption was justified for large numbers of

symbols by the Central Limit Theorem, it remains to be seen how well it applies to

shorter signals. As this section will show, the assumption is reasonable in essentially

all cases.
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To show how well this assumption applies, we shall compare the true probabil-

ity distribution of a very short QPSK signal in frequency compared to a Gaussian.

While one might desire to compare probability density functions, these functions do

not exist for discrete probability distributions such as those used in digital communi-

cation. Therefore, we instead compare the Cumulative Distribution Function (CDF)

of <
{
D
(
ej2π(f−fc)Ts

)}
and its moments.

Prior to examining the CDF, however, some parameters need to be chosen.

A extremely short signal, Ns = 8, was chosen to show how quickly this probability

distribution converges to a Gaussian. Second, for simplicity, only the real portion of

D
(
ej2π(f−fc)Ts

)
will be examined. This makes sense since, for a QPSK signal, both

real and imaginary portions have identical probability distributions. This leaves

open the question of what frequency values to use in this comparison.

To resolve this issue, Fig. 8 shows the CDF of <
{
D
(
ej2π(f−fc)Ts

)}
as a function

of radian frequency, ω = 2π (f − fc)Ts, and symbols, x. The radian frequency is

shown from ω = 0 to ω = π
4

only since the rest of the radian frequency band

is symmetric—repeating this same pattern. The second axis shows the range of

<
{
D
(
ej2π(f−fc)Ts

)}
in symbols. Vertically, this plot shows the probability that

<
{
D
(
ej2π(f−fc)Ts

)}
is less than x symbols at some radian frequency ω. From Fig. 8,

we see that this CDF converges quickly to a smooth function for most frequencies.

Only the middle, ω = π
8
, and edge, ω = 0 and ω = π

4
, frequencies do not to converge

as quickly to this smooth function. Of these two, convergence is worst at the edge.

What is not necessarily obvious from Fig. 8 is that this smooth function de-

scribes a Gaussian probability distribution. To see this, consider a slice of this the

CDF of <
{
D
(
ej2π(f−fc)Ts

)}
taken from somewhere in the middle, say ω = π

10
, and

compare it to the CDF of a true Gaussian having the same mean and variance

(Fig. 9). From this vantage point, the two CDFs are nearly on top of each other.

This shows that the smooth function, which the overall CDF appeared to converge

to, is indeed a Gaussian CDF.
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Yet this example only shows the best case convergence. To examine a worst

case convergence, we compare a Gaussian CDF with the CDF for <
{
D
(
ej2π(f−fc)Ts

)}

at the edge (ω = 0) in Fig. 10. In this case, the true CDF approximates a Gaussian

with step functions. While this step function behavior holds for all values of Ns,

the steps do get shorter as Ns increases. This is illustrated by Fig. 11, which shows

the same two CDF functions, only this time for a signal having Ns = 256 symbols

instead of Ns = 8.

From these three figures, we conclude that the true probability distribution of

<
{
D
(
ej2π(f−fc)Ts

)}
is roughly Gaussian for even short bursts. When the approxi-

mation is poor, such as in Fig. 10, it is at least as good as a step function converging

to a Gaussian CDF. When the approximation is good, such as in Fig. 9, it appears

to match very well. In all of these cases the approximation is quite reasonable.

The final way of demonstrating that true probability distribution is approxi-

mately Gaussian is to consider the moments or <
{
D
(
ej2π(f−fc)Ts

)}
. If this approx-

109



PSfrag replacements

True Gaussian
<
{
D
(
ej2π(f−fc)Ts

)}

C
u
m

u
la

ti
ve

P
ro

b
ab

il
it
y

Standard Deviations

−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
−4

−3 −2 −1 0 1 2 3

4
5
6
7
8
9

10
11
12
13
14

Figure 11. CDF of D
(
ej2π(f−fc)Ts
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imation is valid, one would expect the moments to resemble those of a Gaussian

distribution. Therefore, Fig. 12 examines the relative error between the fourth and

sixth moments of <
{
D
(
ej2π(f−fc)Ts

)}
for ω = 0 and the fourth and sixth moments

of a true Gaussian. As one might expect from the central limit theorem, the actual

moments of <
{
D
(
ej2π(f−fc)Ts

)}
converge to those of a Gaussian as Ns increases. In

addition, the fact that the slope of this convergence is −1 shows that this convergence

is linear as the number of symbols increases.

These two examples demonstrate that approximating the probability distribu-

tion of <
{
D
(
ej2π(f−fc)Ts

)}
as a Gaussian, while not perfect, is at least reasonable.

From Sec. 3.1.2, we expected this approximation to be valid as Ns grew large. Here,

we saw that it did in fact converge as Ns grew arbitrarily large. What was not neces-

sarily expected from Sec. 3.1.2 was that, for really short bursts, the true probability

distribution still appeared to be roughly Gaussian. Even in the worst case, when

ω = 0, the true probability distribution corresponds to the well–known binomial dis-
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tribution, which is commonly approximated by a Gaussian [7]. For all other values of

ω, the approximation is much better. This justifies the assumption, used throughout

this research, that the probability distribution of D
(
ej2π(f−fc)Ts

)
is a Gaussian.

4.2 BPSK Filtering

Having demonstrated the validity of the Gaussian approximation for even the

shortest burst signals, the next step is to look at the results of the subspace approach,

all of which were founded upon this assumption, and to evaluate them through simu-

lation. As before, the first application area needs to be filtering because appropriate

filters become the estimators used in every subsequent application area. That is to

say, if the MMSE filters developed in Sec. 3.2 fail to perform well in simulation,

then there is no reason to expect good performance from any other algorithm de-

rived from this linear subspace approach. Instead of failure, however, this section

will demonstrate that the new filters for BPSK signals outperform every other filter

tested here, from matched filters to Berger and Tufts MMSE filter.
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One by one, each of the three new demodulation related algorithms derived in

Sec. 3.2 will be demonstrated in this section. First, the single sensor BPSK MMSE

filter will be shown to outperform every other filter it is tested against in a severe

interference environment. Next, the performance prediction methods will be applied

to those same filters. The versatility of this method is demonstrated in both the

severe interference environment from the first test as well as a strong multipath

environment. In each case, this method correctly predicts the MSE degradation

resulting from not compensating properly for the environment. Finally, the multi–

sensor filters will be demonstrated on a two sensor example with both wideband and

narrowband interference. As with the single sensor results, this last subsection will

demonstrate that the optimal two sensor filter outperforms all single sensor filters.

Together, all three of these tests validate both the form of the optimal data estimator

as well as the predicted loss associated from less than optimal estimation.

4.2.1 BPSK Minimum Mean Square Error (MMSE) Filters. The devel-

opment of the single sensor BPSK MMSE filter introduced the hypothesis that this

new filter will outperform all other linear filters, in terms of MSE, when demodu-

lating BPSK signals. Demonstrating this optimality, however, requires generating

a signal in a colored noise environment, and demodulating it with several poten-

tial filters of interest. Once demodulated, comparing the resulting symbol estimates

with the original symbols yields either a mean square error metric, for which this

method should be optimal, or a bit error rate metric, which will tell more of the

capability of this method. This section, therefore, starts off with a description of

the approach used to estimate these two parameters. Then, since all tests of this

type are highly dependent upon both the signal and the interference environment,

the next step will be to describe the parameters chosen for the signal followed by

the background noise and interference. Once these have been described, simulation

results can be presented that demonstrate the capability of this filter. As a last test,

the hypothesis that an adaptive linear equalizer converges to the the equalizer in
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Eqn. (80) is tested. Such equalizers are well known and proofs of their convergence

to the MMSE solution are readily available [30]. This last comparison will do more

than validate this filter, it will in fact prove that it truly does outperform all other

BPSK demodulation filters in this environment.

Since the goal will be eventually to compare theoretical results with results

achieved via simulation, a well–calibrated simulation will be required to run these

tests. Such a simulation, outlined in Fig. 13, may be created digitally by constructing

a simulated signal, As (t), from a random symbol sequence, dn, and then by adding

the result to a simulated noise sequence. This sequence will then model what a digital

receiver might measure coming off of its antenna. The next step is to run the received

signal through the system under test, whether it be the baseband demodulator shown

in Fig. 5 on page 64 for Berger and Tufts’ filter, or the bandpass demodulator shown

in Fig. 6 on page 65. The estimated symbols at the output of this system, d̂n,

will then be compared with the original symbols which were used to generate the

signal. From this comparison, an estimate may be generated for the MSE in the

demodulator,

MSE ≈ 1

Ns

Ns−1∑

n=0

(

d̂n − dn

)2

, (182)
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and similarly for the BER at the output of the demodulator,

BER ≈ 1

Ns

Ns−1∑

n=0







0 d̂ndn ≥ 0

1 d̂ndn < 0.
(183)

This process is then repeated for multiple values of the signal gain, A. All that

remains is to describe how the noise and signal sequences are created and placed

into this test sequence.

The first step in this process, creating the signal, follows the process shown in

Fig. 13 quite literally. This process involved first generating a random data sequence,

dn ∈ {±1}, and then upsampling this data sequence by Ts, which was chosen to be

10 samples thus yielding a symbol rate of 0.1 cycles per sample (CPS). The resulting

impulses were then smoothed by the pulse shaping filter, Ψ (f), which was chosen

to be the Nyquist pulse defined in App. A, with the exception that it was tapered

to 32 symbols in length via a Hanning window [47]. Further, to simplify energy

measurement, this Nyquist pulse was normalized so that the energy transmitted per

bit was simply Eb = A2. The signal was then multiplied by an adjustable gain, A,

and a carrier, cos (2πfct+ θ). The carrier frequency for these simulations was chosen

to be 0.2 CPS. Together, these choices were made to place the signal in the center of

the normalized frequency band and to minimize any aliasing effects from sidelobes.

Finally, τ and θ were allowed to be known exactly rather than estimated, following

the assumptions in Chapt. III. These parameters are summarized in Table 3.

The noise, on the other hand, was chosen to be a combination of both a white

noise background and a colored noise spike, as shown in Fig. 14. Although other noise

environments, such as the two–sensor environment that will be used in Sec. 4.2.3, will

result in better performance of this filter over the others tested here, this environment

was chosen because it clearly illustrates the operation of the filter. The noise spike

itself was obtained by passing a second white noise sequence through a simple two
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Table 3. Signal Parameters for the Single Channel Filter Test

Signal Parameter Parameter Value

Modulation Type BPSK

Carrier Frequency, fc 0.2 CPS

Symbol Rate, 1
Ts

0.1 CPS

Pulse Shape, ψ (t) Nyquist

Carrier Phase, θ Known

Symbol Epoch, τ Known

pole, real, IIR filter. The filter was designed to place the spike just to the right of the

carrier of the BPSK signal, creating an asymmetric noise profile. The reason for this

asymmetry should be clear: had a symmetric noise profile been chosen then the true

MMSE filter would have been no different from Berger and Tufts’ filter. Finally, the

height of the spike was chosen to dwarf everything else in the environment. As the

following discussion will demonstrate, this noise spike makes it easy to see and follow

the differences between the BPSK MMSE filter and the other filters of interest.

Adding the signal into this noise environment results in a received power spec-

tral density such as the one shown in Fig. 14. This figure clearly shows that the noise

spike, for small to moderate signal energies, totally dominates the signal as desired.

Each of the four filters, shown in Fig. 15, were tested and compared in this

environment. These filters are the matched filters (MF) for white and for colored

noise, Berger and Tufts’ baseband filter, and the BPSK MMSE filter developed in

Sec. 3.2.1. Starting with the simplest, the transfer function of the matched filter

for white noise has an identical shape as the underlying pulse shape in frequency.1

Unlike all of the other filters tested, the matched filter for white noise does nothing

to compensate for the interference spike. The matched filter for colored noise, on

1Normally, the frequency response for this filter would be the conjugate of the pulse shape, but
since the Nyquist pulse defined in Appendix A is symmetric in time about zero, the corresponding
matched filter frequency response is entirely real.
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Figure 16. Unfiltered Baseband PSD

the other hand, notches out the interference as one might expect, but does nothing

to compensate for any distortion that might be introduced by such a notch. Finally,

the BPSK MMSE filter not only notches out the interference, but also boosts the

signal strength at the three other frequency locations corresponding to the same

underlying data information as the notch.

Berger and Tufts’ filter, however, needs a little more description. Since this is

a baseband filter, it has no response to the frequencies between 0.1 and 0.3 CPS like

the other filters in Fig. 15. Instead, this filter is not applied until after the signal has

been downconverted.2 As a result, its response in Fig. 15 lies between 0 and 0.1 CPS.3

This process, however, also downconverts the noise spike, placing it at ±0.015 CPS

and creating the PSD shown in Fig. 16. This downconversion merges the high SNR

2The system diagram for this filter is shown in Fig. 5 on page 64 for reference.
3Since Berger and Tufts’ filter is a real, as opposed to complex, filter, its response for negative

frequencies is the complex conjugate of its response for positive frequencies. In this case, it is just
symmetric about the zero frequency.
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signal, shown in Fig. 14, at 0.185 CPS with the poor signal at 0.215 CPS prior to

removing the noise. Only after these two components are merged, creating the PSD

shown in Fig. 16, is the noise spike notched out. Then, compensating for this notch

requires boosting the weakest redundant component of the signal at ±0.085 CPS (the

tallest spike in Fig. 15). This whole process prevents the effective application of the

strong signal component initially found at 0.185 CPS. As a result, one might expect

Berger and Tufts’ filter to perform worse than the matched filter for colored noise

which notches out this spike prior to downconversion, but better than a matched

filter for white noise which does nothing to remove this interference.

To measure the performance of these filters, we first measure the MSE in

a simulation environment since the BPSK MMSE filter was designed to minimize

MSE, just like Berger and Tufts’ filter. The MSE produced by each of the four filters

from Fig. 15 is shown in Fig. 17 as a function of the energy per bit, Eb = A2. From

this figure, it is certainly plain that the optimal filter for low SNR conditions is the
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matched filter for colored noise. The MMSE filter matches this filter in performance

simply because it converges to the matched filter as the signal strength, A, goes to

zero. Then, as predicted, Berger and Tufts’ baseband filter did not perform as well.

What may have been unexpected is the performance of the matched filter for colored

noise as the signal strength increased. This matched filter asymptotically approaches

a lower bound in performance that the other filters are not subject to.

The reason for this poor performance is actually quite straight forward. All of

the mean square error, when no noise is present, must be due to Intersymbol Interfer-

ence (ISI). Why? Consider, the Matched Filter (MF) for white noise does not suffer

from ISI since the Nyquist pulse was designed to have no ISI following a matched

filter for white noise. Therefore, as signal strength increases, the MSE decreases

for this filter. Berger and Tufts’ MMSE filter, together with the BPSK MMSE fil-

ter, each include an equalizer to remove any ISI induced by the overwhitener. The

matched filter for colored noise, however, has no such compensation for ISI. Where

did the ISI come from? It must have been from the overwhitener—the only difference

between the matched filter for white noise and the matched filter for colored noise.

To confirm the hypothesis that the poor performance of the matched filter for

colored noise was due to ISI, the ISI was calculated for each of the matched filters

and for the BPSK MMSE filter when Eb = 30 dB. Fig. 18 shows the log of the

absolute value of the contributions, from other symbols, to the current symbol of

interest. As expected, the matched filter for white noise has a minimal amount of

intersymbol interference associated with it. As hypothesized, the matched filter for

colored noise has the highest intersymbol interference. Further, if you calculate the

MSE expected from this ISI interference alone,4

ξ2
ISI

= min
κ

2Ts

Ns

∫ 1
2Ts

0

ξ2
i

(
ej2πfTs

)
df (184)

4This formula follows from Eqn. 86, save that the MSE due to noise and other interference has
been removed.
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Figure 18. Log Intersymbol Interference Function, Eb = 30 dB

you get 0.039 Units2. Looking at the 0.039 Units2 line in Fig. 17 confirms that this

is indeed the source of the poor performance found in the matched filter for colored

noise.

A much more meaningful metric, however, is the Bit Error Rate (BER). Unlike

MSE, the BPSK MMSE is not guaranteed to achieve a minimum BER among all

other filters. Yet, looking at the BER performance shown in Fig. 19, we see that the

BER performance of these filters is very similar to their MSE performance. The only

notable exception is the matched filter for colored noise again. This filter doesn’t

quite perform as poorly compared to the other filters in terms of BER as it did in

terms of MSE. This is an artifact of the non–Gaussian nature of ISI which will be

discussed in more detail in Sec. 4.2.2 on performance prediction.
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Figure 19. Bit Error Rate (BER) Comparison

The final test of this filter is to compare it against a decision–directed adaptive

linear equalizer.5 The reason for this is to prove that this filter truly does achieve

the minimum MSE among all other filters–including those not tested here. Here’s

why: According to [12], the optimal filter is always a matched filter for colored noise

followed by an equalizer. Then, according to [30], adaptive equalizers are known

to achieve the minimum MSE solution. Therefore, we test a demodulator formed

by a matched filter for colored noise followed by an adaptive equalizer, shown in

Fig. 20. The actual structure and implementation of this equalizer is described

in [30], in the sections on “Channel Equalization” and then on the “Least–Mean–

Square Algorithm,” which was used to provide the adaptation. Finally, after this

equalizer has been given a chance to converge, if the resulting equalizer is identical

5This equalizer is not to be confused with a non–linear decision–feedback equalizer. Such equal-
izers were not tested in this research.
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to the predicted equalizer derived in Sec. 3.2.1,

HEQ (f) =
1

1 + A2

4
|Ψ(f−fc)|2

TsSn(f)
+ A2

4

|Ψ(fc−f− 1
Ts

)|2
TsSn(2fc−f− 1

Ts
)

+ A2

4
|Ψ(fc−f)|2

TsSn(2fc−f)
+ A2

4

|Ψ(f+ 1
Ts

−fc)|2
TsSn(f+ 1

Ts
)

,

(185)

then we say that the BPSK MMSE filter truly achieves the minimum MSE among

all other filters in this environment.

After applying this filter to a BPSK signal of 6.4 million symbols, the filter

had converged enough to plot Fig. 21. This figure shows two lines for the adaptive

equalizer’s response. The first is an upper error bar and the second is a lower error

bar. The actual response, given complete convergence from an infinite length signal,

would lie somewhere between these two error bars. What is important to notice

from this figure, however, is that the predicted equalizer response lies right between

the error bars of the adaptive equalizer’s response. This supports the conclusion

that the BPSK MMSE filter does indeed predict the necessary equalizer to achieve

MMSE performance.

This proof, together with the first simulation, demonstrates that the BPSK

MMSE filter truly achieves MMSE performance. The second test demonstrated that,

although MSE is not equivalent to BER, the MMSE filter also had the minimum

BER among all of the filters tested here. None of the other filters tested, whether

they were matched filters or Berger and Tufts’ baseband MMSE filter, performed

better than the BPSK MMSE filter. This means that, at least for one sensor, the
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Figure 21. Predicted verses Estimated Equalizer Response. The predicted response
function goes right through the center of the estimated response function.

MMSE filter outperformed all of the other filters tested. This validates the proof in

Sec. 3.2.1 that this filter has the lowest MSE among all filters, and lends credence to

every other result following this section, all of which are founded upon this estimate.

4.2.2 Predicting BPSK Demodulator Performance. Having shown that a

MMSE filter could be applied to achieve a lower MSE than all other linear filters, this

section continues the MSE examination to demonstrate how the MSE at the output

of an arbitrary filter can be calculated. Two tests are presented to demonstrate

this concept. The first test demonstrates how the previous results could have been

predicted using the MSE performance prediction methods developed in Sec. 3.2.2.

The second test demonstrates the versatility of this method by examining the same

prediction capability in a multipath environment.

For the first test, the conditions were chosen to be identical to the filter per-

formance tests in the previous section. A large noise spike was present, and the
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Figure 22. Predicted Mean Square Error. The lines are the predictions, the points
are arrived at via simulation.

demodulator was perfectly synchronized to the signal. Likewise the filters applied to

the signal are identical save that Berger and Tufts’ filter was not tested.6

As developed, these performance prediction formulas should predict the MSE

in any BPSK demodulator exactly. To test this hypothesis, Fig. 22 shows the MSE

measured at the output of the demodulator. Lines shown in this figure result from

predictions made using Eqn. 88, while the points are the result of simulations. In

every case, the prediction matches the simulation. This confirms that the prediction

methods do in fact predict MSE as designed.

A more important metric is the BER. No claim was made regarding the pre-

diction capability of these formulas for predicting BER, save that they would be

accurate when the error disturbance was Gaussian. Since this is a more practical

6While nothing prevented Berger and Tufts’ filter from being tested, doing so would have tested
a baseband performance prediction formula that was slightly different from the formula derived in
Sec. 3.2.2. Performance for Berger and Tufts’ filter can still be predicted according to the Eqn. (24)
within [2].
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Figure 23. Predicted Bit Error Rate. The lines are the predictions, the points are
arrived at via simulation.

metric in system design, we perform a test of the BER here. Thus Fig. 23 shows the

BER resulting from the prediction method presented in Sec. 3.2.2, and in particular

in Eqn. (92) on page 71, compared to the BER measured in practice. As with the

previous figure, the lines on this figure plot the predicted performance while the

points demonstrate simulated performance. This figure shows that, when the BER

was the result of a (primarily) Gaussian disturbance, such as for the BPSK MMSE

filter and the matched filter for white noise, the prediction matches. When the BER

was primarily the result of an ISI type of disturbance, as opposed to a Gaussian one,

the BER prediction was somewhat off. This highlights the assumption underlying

this BER prediction method, that it is only valid for Gaussian disturbances. Other

methods, such as those discussed in [34], are necessary for calculating the BER in

severe ISI.

Next, in order to demonstrate the utility of this method, the experiment was re-

peated under severe multipath conditions. Since the performance prediction method
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Figure 24. Distortion Caused by Multipath

should work regardless of the multipath conditions, a simple yet severe environment

was created to distort the signal. In particular, the receiver picks up two copies of

the transmitted signal,

s (t) = sTX (t) + 0.8sTX (t− 2.5Ts) , (186)

where the second copy is arbitrarily delayed from the first by 2.5 symbols. For

simplicity, all other parameters regarding the signal were kept the same. The effect

this distortion has on the PSD of the signal can be seen in Fig. 24. This figure shows

that the multipath interference both constructively, and destructively, interferes with

the signal of interest. In the worst case, that of destructive interference, this figure

shows that sections of the signal are almost completely wiped out.

The good news is that all of the formulas developed in Sec. 3.2 apply even in

severe multipath conditions. The only thing that needs to be discussed is ψ (t). This
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multipath environment is equivalent to receiving a signal that had been constructed

with the pulse shape,

ψ (t) = ψTX (t) + 0.8ψTX (t− 2.5Ts) . (187)

The problem is that the receiver may not know what ψ (t) is. What filter

should be used in this case? If ψ (t) is unknown, there are two options. Either it can

be estimated or a filter can be generated based upon some assumed value of ψ (t).

Each method incurs a cost, the first in computational complexity and the second in

performance. What the following experiment demonstrates is the ability to predict

the performance loss associated with a non–optimal filter choice.

Four filters were tested in order to show this loss. The first two filters, called

mismatched filters here, were formed under the (incorrect) assumption that the pulse

shape had not changed since transmission. That is, they were designed under the

assumption that there was no multipath interference. These filters are the matched

filter for colored noise and the BPSK MMSE filter both shown in Fig. 15 on page 116.

A second pair of filters, called true filters here, were created from the distorted pulse

shape assuming perfect knowledge of the channel. The magnitudes of the transfer

functions for these filters are shown in Fig. 25. The performance difference between

these two pairs should highlight the importance of knowing the multipath channel.

To show this difference, we first examine the MSE at the output of the demod-

ulator for each of the four filters. Given that the prediction methods are designed to

predict MSE, this prediction should be exact. Comparing simulated results to pre-

dictions in Fig. 26, we see that the points, arrived at via simulation, do indeed match

the lines showing the performance prediction. A second conclusion from Fig. 26 is

that compensating for the multipath distortion is required in order to achieve a low

MSE. This compensation needs to include not only the matched filter and over-

whitener combination found in the True MF, but also the equalizer found in the
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True MMSE. Without this equalizer, increases in signal strength do not necessarily

decrease the error.

A more appropriate metric in system design, however, is the BER. Thus, even

though the BER prediction formula given in Sec. 3.2.2 is only valid when the de-

modulator error is Gaussian, the BER was also calculated at the output of each de-

modulator and compared against the predicted BER. This result is shown in Fig. 27

where, as before, the points are the result of simulation and the lines are the result of

the prediction formulas. Unlike the MSE predictions, however, the BER predictions

are no longer accurate in every case. The one case where they are accurate, that of

the True MMSE filter, corresponds to the one case where the disturbance is primar-

ily Gaussian for small and large signal strengths. In the other cases, it appears as

though the performance prediction is accurate for weaker signals and only departs

as the signal gets strong.
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One unusual feature of this graph is that the True MMSE filter in multipath

distortion outperforms the BPSK MMSE filter when their is no multipath distortion

(compare Fig. 27 with Fig. 23). This can be explained by the fact that multipath

distortion results in more signal power reaching the receiver, from other directions,

than could ever reach the receiver from one direction alone. Thus, if it could be

compensated for properly, multipath distortion could be constructive.

When a system needs to operate in this type of environment, a system designer

can use this performance prediction method to determine how much needs to be paid

to achieve better performance. For example, if the system needed to a maximum

10% BER, it might be possible to achieve this by simply increasing the power. If,

on the other hand, a BER less than 10−4 was required, something would need to be

done to estimate the channel.

Either way the designer looks at the problem, these performance prediction

methods provide one more tool for answering this question. The methods predicted

the MSE performance exceptionally well. In terms of BER, the method only worked

as long as the MSE was the result of a Gaussian disturbance. Even if the disturbance

were not Gaussian, however, these methods still form a valid first order approxima-

tion into the BER that might be achieved. Better still, the performance of the

true MMSE forms a lower bound on the performance achieved by any suboptimal

demodulator.

4.2.3 Multi–sensor BPSK Reception. Having demonstrated the capability

of minimizing the MSE in a single–sensor demodulator, together with the capability

of predicting the MSE from any single–sensor demodulator, we now turn to multi–

sensor reception to continue the development of minimum MSE filters. The reason

for a multi–sensor approach, or in this case a two–sensor approach, is simply to

get rid of that persistent co–channel interference that plagues any system in a high

interference environment. What a multi–sensor approach offers is the ability to
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filter the incoming signals spatially in order to maximize the signal contribution and

minimize the interference.

Yet common delay and sum beamforming methods are limited to removing

no more than M − 1 interferers, or one less than the total number of sensors. In

a high interference environment, however, the number of interferers may easily be

larger than the total number of sensors, and these interferers may arrive from any

direction. Therefore, it would be nice to have some sort of “optimum” filter, or even

graceful degradation, as the number of interferers increases beyond this bound. As

this section will demonstrate, the multi–sensor BPSK MMSE filter provides exactly

that for BPSK signals.

Demonstrating this capability, however, requires an environment with at least

as many interferers as sensors—otherwise no advantage could be shown over conven-

tional delay and sum beamforming. If we confine ourselves to the two sensor filter

presented in Sec. 3.2.4, then a minimum of two interferers are required to demon-

strate this capability. To construct this interference environment, we start with the

already familiar environment containing white noise and a narrow interference spike

used in the single sensor filter tests of the last two subsections. To these two in-

terferers, we add a broadband interferer covering the entire left half of the signal

spectrum, creating the interference PSD shown in Fig. 28. The size, strength, and

shape of these two interferers were chosen arbitrarily, save that they were designed

not to overlap spectrally.

Further, in order to measure the gain associated with a two–sensor filter over

a single sensor filter, the signal was placed on one of the two sensors only. That

sensor, here referred to as the “horizontal” sensor to highlight the utility of this

method on a cross–polarized antenna with vertical and horizontal feeds, shall receive

both the signal, the noise, and the two interferers. This results in a received PSD

equal to the one shown in Fig. 29. By placing the signal on one sensor only, the

operation of single sensor demodulation has been simplified since any single sensor
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Figure 28. Single Sensor Noise PSD
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Figure 29. Single Sensor Received PSD
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demodulation method can spatially tune into the signal by simply discarding the

second sensor. This can be thought of as an ideal beam former, tuning the antenna to

the signal alone. As a result, comparisons between single sensor filters, corresponding

to standard beamforming followed by filtering, and dual sensor filters are relatively

straightforward.

Before proceeding any further, it should be pointed out that the two sensor

filter derived in Sec. 3.2.4 is not limited to those cases where the signal is present on

one sensor only while noise and interference are present on others. This latter lim-

itation, common to most adaptive algorithms [70], is not appropriate here. Placing

the signal on only one sensor simply makes it easier to test and compare the dual

sensor filter with the equivalent single sensor filters.

Having now described an environment sufficient to design and implement single

sensor filters, we turn our attention to examining these filters. In particular, the four

filters tested earlier in Sec. 4.2.1 will form four filters for comparison in a dual sensor

environment. These filters are shown in Fig. 30, and their operation is much the

same as before even though their appearance has been altered to compensate for the

additional broadband interferer.

From here we proceed to describe the environment received on the second sen-

sor. Careful examination of the two sensor filters in Eqns. (114) and (115), shows

that without any correlation between the interferers received on each sensor the two

sensor filter is equivalent to a single sensor filter. Therefore the second sensor, or

the “vertical” sensor as it is called here, will receive both of these interferers as

well. Then, in order to keep this demonstration different from common spatial de-

velopments, these interferers will come from different spatial directions—creating a

negative correlation between the sensors for the broadband interferer, and a positive

correlation for the narrowband interferer. This creates the cross spectral density, as

defined by Eqn. (5) on page 13, shown in Fig. 31, while maintaining the previous sin-

gle sensor PSD shown in Fig. 28. Because this correlation is not constant across the
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Figure 30. Single Sensor Filters used in the Two–Sensor Test
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Figure 31. Cross Power Spectral Density
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Figure 32. Horizontal Two–sensor Filter Component

band, it is impossible to spatially notch one direction and filter out both interferers.

Indeed, any attempt at spatially notching a single direction will result in increasing

the interference from the other direction.

Having developed a two sensor signal and interference environment, the next

step is to introduce the two sensor filters applied in this environment. Two dual

sensor filters were tested here. The first filter is the two–sensor BPSK MMSE filter

derived in Sec. 3.2.4 and found in Eqns. (114) and (115). The second filter is the two

sensor matched filter, defined similar to the BPSK MMSE filter save that HEQ (f)

in Eqn. (116) is arbitrarily set to 1. This filter is derived in [35] and commonly

used in Radar applications. These two filters are shown in Fig. 32, corresponding

to the filter applied to the “horizontal” sensor containing the signal, and Fig. 33,

corresponding to the filter applied to the sensor that is not receiving the signal. The

first, and most obvious difference, between these filters and the single sensor filters

is that a filter is applied to the vertical sensor even though no signal is present on
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Figure 33. Vertical Two–sensor Filter Component

this sensor. This extra filter helps to remove the interference from the system at

the front end. Indeed, so much interference is removed at the front end that the

equalized filter, that is the two sensor MMSE, doesn’t appear significantly different

from the two sensor MF.

To understand the operation of these two multi–sensor filters, we must compare

them with the cross spectral density of the interference given in Fig. 31. Note that

when the broadband interferer is present, between 0.1 and 0.2 CPS, the filter response

is positive on both sensors. This effectively notches out the wideband interferer

spatially across that part of the spectra. Examining the narrowband interferer, at

0.215 CPS, these two filters subtract the signals as they are received from each sensor.

Like the previous response for the broadband interferer, this subtraction combines

to spatially notch out the interference. Further, as the frequency increases and the

strength of the narrowband interferer diminishes, the response on the second sensor
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Figure 34. Dual Sensor Mean Square Error. The lines for the two MMSE filters are
predictions, and the points are arrived at via simulation. All other lines are arrived
at via simulation.

goes to zero, effectively maximizing the signal strength where no interferer is present.

This is something that common beamforming alone cannot do.

To show the performance of this two sensor filter in this interference environ-

ment, we start by examining the MSE at the output of the demodulator following

each filter, as shown in Fig. 34. Starting with the single sensor filters, their ordering

and performance is similar to the performance seen in the single sensor filter test

in Sec. 4.2.1, although some differences are worth mentioning. The first difference

is that Berger and Tufts’ filter performs little better than the matched filter for

white noise. This is a result of the fact that the broadband interferer can only be

removed prior to downconversion. After downconversion, the broadband interferer

has corrupted the entire band of the signal and Berger and Tufts’ filter is helpless

to compensate. A second difference is seen in the performance of the colored noise

matched filter. The ISI suffered by this filter is about four times stronger than be-
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fore, preventing this filter from achieving good performance as the signal strength

increases. As might be predicted, the single sensor BPSK MMSE filter continues to

outperform all other single sensor filters.

Further observations may be made regarding the two–sensor filters. The first,

most obvious, observation is the these two filters see less MSE than their single

sensor counterparts. Measuring this difference shows that it is about 3.4 dB less

(see arrow in Fig. 34). Second, the performance difference between the dual sensor

matched filter and the dual sensor BPSK MMSE filter looks remarkably similar to

the difference between their single sensor counterparts. The dual sensor matched

filter clearly removes most of the noise, yet suffers from a similar limiting problem

with ISI, while the dual sensor MMSE filter apparently has no such problem with

ISI. This commends the dual sensor BPSK MMSE filter over and above the dual

sensor matched filter.

The final performance measure between these two filters is the BER perfor-

mance shown in Fig. 35. As with the MSE, the two sensor MMSE filter outperforms

all others in terms of BER as well. Likewise the BER performance of Berger and

Tufts’ filter follows its MSE performance. The matched filters are interesting here,

however, primarily because the single sensor matched filter does much worse than

it did in the single sensor experiment in Fig. 19. Knowing this suggests that, in

other environments, the performance of the two sensor matched filter may likewise

be much worse than this experiment demonstrates just as the performance of the

single sensor matched filter in Fig. 19 became much worse here as the environment

changed.

The performance seen in Figs. 34 and 35 needs to be caveatted by the fact that

the gain a MMSE filter achieves over another filter is interference dependent. For

example, in a purely white noise environment with no correlation across the sensors,

the BPSK MMSE filter and Berger and Tufts’ filter both converge to a matched filter,

providing no gain. This is why the performance prediction equations for the single
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BPSK MMSE filter in Eqn. (81) and for the dual BPSK MMSE filter in Eqn. (118)

are so important. These equations make it possible to predict the performance

of these filters in any environment. Just to show how well these equations work,

the lines corresponding to the MMSE filter performance shown in Figs. 34 and 35

correspond to the results of using the prediction formulas, while the points are the

results of simulation. The two are exactly on top of each other, validating that these

formulas are indeed accurate. That means that, given an interference environment,

these formulas may be applied to calculate the performance one might expect from

a MMSE filter without resorting to simulation.

Finally, the performance of this dual sensor MMSE filter clearly shows the ad-

vantages of MMSE filtering over delay and sum beamforming. By adding the second

sensor, this simulation demonstrates that correlated noise between the sensors can

be used to remove the interference from the channel. Further, this experiment helps

to highlight the use of an equalizer again. In this two sensor case, the performance

139



gain from the equalizer alone came close to 2 dB for the two sensor filter at a BER

of 10−5, while similar BER’s were unattainable from the single sensor matched filter.

Looking back upon every BPSK MMSE test applied in this section, they have

all demonstrated that the most important place to filter out the noise is prior to

combining the redundant components. That is, the noise needs to be mitigated

prior to combining sensors in the case of a two sensor reception problem, prior to

downconversion, and prior to sampling the output signal. Only by filtering the noise

properly at the front end is good performance obtained.

4.3 Time Difference of Arrival Estimation

Having now derived and demonstrated a valid estimate of the unknown data,

the next step is to demonstrate the utility of an estimator based upon this data

estimate: the TDOA estimator. While filtering is primarily concerned with deter-

mining what was said, TDOA estimation is a first step in determining where it was

said. In particular, the estimator derived in Sec. 3.3 will be demonstrated here in

two environments. The first is the standard white noise test environment where this

new TDOA estimator will be shown to outperform all of the estimators presented in

Chapt. II. Then, following the white noise test will be two colored noise tests, similar

to Streight’s tests in [61]. These tests are especially interesting since cyclostationary

TDOA estimates supposedly achieve their best performance in strong interference

environments. This section will show that the ML TDOA estimate derived in Sec. 3.3

would outperform Streight’s ideal MLE if it could be implemented. The final sub-

section will then present the loss associated with the suboptimal lopsided TDOA

estimator in white noise, as a function of how well its assumptions were met.

Especially important, within this section, is that this is the first cyclic TDOA

estimation work to openly compare optimal stationary TDOA estimators with op-

timal cyclostationary TDOA estimation algorithms. While previous cyclostationary

TDOA estimators have been consistently compared against the GCC, they have not
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been compared against the Eckart filter. For example, Gardner and Chen [24], as

well as Streight [61], compare their estimators against the GCC only. Neither of

these previous works, or even others following such as [14], have compared the per-

formance of their algorithms to either the stationary MLE or the Eckart filter. Not

having a proper comparison between these methods leaves their relative performance

unknown. The results presented in this section highlight just how important such

relative performance comparisons are.

4.3.1 Implementing the ML TDOA Estimator. The first step to illustrating

the performance of these estimators is to test them in a white noise environment.

While this is certainly a standard test environment, this test marks the first test

of a practical low–SNR cyclic MLE.7 In particular, two tests will be conducted in

this white noise environment. The first test will demonstrate the performance of

the cyclic TDOA estimator as a function of SNR, and the second will demonstrate

the same performance as a function of the observation length. In addition, this

second test will be used to explain performance differences between those reported

in [24] and those presented here. These differences will be traced to a failure to do

subsample interpolation in previous studies.

The first order of business, however, is to present the experimental approach

and then the signal parameters. For this experiment, one signal and two white noise

sequences will be generated. The signal will be added to one noise sequence to

create the first sensor’s input, as well as delayed by τd and then added to the other

noise sequence to create the second sensor’s input, as shown in Fig. 36. The result

of this process will then be grouped into blocks of length T = NsTs, and an FFT

will be applied to each block. This block FFT output will then be placed into the

TDOA estimator under test. Each TDOA estimator will then produce a function,

7As noted in Sec. 2.3, Streight’s low–SNR cyclic MLE was only “ideal,” and therefore could not
be implemented. The low–SNR cyclic MLE presented in Sec. 3.3, by contrast, can be implemented
since the spectral correlation function is assumed to be known to within a complex scale constant.

141



n0 (t)

As (t)

n1 (t)

-

6

?

Delay, τd

?-

⊕

⊕

-

-

Block Data,
T = NsTs

Block Data,
T = NsTs

-

-

FFT

FFT

?

6

TDOA
Estimator

-
Interpolator
and Peak
Finder

- τ̂d

Figure 36. TDOA Test Setup

such as the g [τd] function described in Eqn. (139) for the cyclic MLE, which needs

to be maximized. The location of the maximum of this function then becomes the

estimate of the TDOA. Finally, the performance of each routine will be measured

using the mean square error, which will be calculated as,

MSETDOA dB ≈ 10 log10

[

1

TsN

N−1∑

n=0

(τ̂d,n − τd)
2

]

, (188)

where N is the number of test cases examined and τ̂d,n is the TDOA estimate for

the nth test.

The last step before introducing test results is to define the signal environment

used for these tests. Starting with the signal, the signal of interest will be a burst

QPSK signal since the estimator derived in Sec. 3.3 was specific to the redundancies

found within a QPSK signal. Second, given that the cosine pulse function defined

in App. A is easy to generate and has low sidelobes, this pulse function will be

used to generate the signal. The carrier of this signal has been placed at 0 CPS

for convenience, and its symbol rate has been set to 0.125 CPS corresponding to a

symbol length of 8 samples. These parameters place the signal squarely within the

complex frequency band, while keeping the effects of sampling to a minimum. One

unintended consequence of this choice, however, is that all of the noise outside of a
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Table 4. Signal Parameters for TDOA Estimation Tests

Signal Parameter Parameter Value

Modulation Type QPSK

Carrier Frequency, fc 0 CPS

Symbol Rate, 1
Ts

0.125 CPS

Pulse Function, ψ (t) Cosine

Relative Magnitude, A0

A1
1

True TDOA, τd1 3 Ts

Phase Mismatch, θd1 0

Noise Covariance, Sn (f) Constant (white)

band between −0.125 and 0.125 CPS, will contribute to the poor quality of the GCC

estimate—which does nothing to remove this out of band noise. Finally, the phase

mismatch will be arbitrarily held to zero and the magnitudes on both sensors will

be arbitrarily kept identical. This leaves the last parameter, the true TDOA value,

which was set to 3Ts to match the test cases given in [24]. These parameters are

summarized in Table 4.

Having covered the background, the first test measured TDOA estimation er-

ror as a function of SNR. The results from this test, in terms of MSE vs. SNR, are

shown in Fig. 37, corresponding to an observation length of 128 symbols, and Fig. 38

corresponding to an observation length of 1024 symbols.8 The MSE shown is mea-

sured in dB’s with a 0 dB MSE corresponding to a MSE of one symbol, while -24 dB

corresponds to a single sample error. Table 5 summarizes the relative capability of

the algorithms shown in Figs. 37 and 38.

The first feature apparent from these figures is that there is gentle curve fol-

lowed by a sharp bend in each TDOA estimation plot. These features are common

8The results in Figs. 37 and 38 follow averages of 2,723,840 and 3,899,392 trials respectively.
This excessive number of trials was necessary to remove the effects of the high variance surrounding
the bend in the plot.
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Figure 37. TDOA Estimation Error for a 128 Symbol QPSK Burst
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Table 5. TDOA Estimator Ranking
Rank Name Equation Page
1. Cyclic MLE 126 83
2. Low–SNR Cyclic MLE 139 88
3. Stationary MLE 24 26
4. Eckart 23 26
5. GCC 21 25
6. Single cycle 147 38
7. M–SPECCOA 144 92

in maximum likelihood estimates where a search is required over the parameter of

interest, and they have been documented and studied elsewhere [69, Sec. 10.2.2]. The

curve can be explained by looking at the effect of low SNR on TDOA estimation.

For exceptionally low SNRs, the signal provides no TDOA information at all and so

the best estimator is no better than a uniform random number generator. Working

quickly from first principles, such a random number generator would have a mean

square error given by,

E
{
(τ̂d − τd)

2} =

∫ T
2

−T
2

(τ̂d − τd)
2 1

T
dτ̂d =

T 2

12
+ τ 2

d . (189)

This random chance MSE is annotated on each plot as a line near the top. As the

SNR increases, the probability of a random chance distribution lowers as it becomes

more and more likely that the estimated value is close to the true one, causing the

downward curve in the performance charts. When the probably of a totally random

result reaches near zero and the probability of being close to the true answer nears

one, the probability distribution governing the TDOA estimate becomes dominated

by the local variation instead of spurious peaks located throughout the TDOA search

range. At the point where this switch takes place, the probability distribution of τ̂d

changes fundamentally, causing the sharp bend in each curve. Following this final

change the performance appears to become linear.
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Second, the Cramér–Rao bound for stationary signals seems reasonable to the

right of the sharp bend, but for low SNRs that same bound seriously underestimates

the error. This is also a known phenomenon discussed in [69]. Knapp and Carter

explain this phenomenon with respect to TDOA estimation by saying that,

It should be pointed out that [the variance of an arbitrary estimator]
and [the Cramér–Rao bound] evaluate the local variation of the time–
delay estimate and thus do not account for ambiguous peaks which may
arise when the averaging time is not large enough for the given signal
and noise characteristics. Indeed, when T is not sufficiently large, local
variation may be a poor indicator of system performance and the envelope
of the ambiguous peaks must be considered. [37, p. 325] [Emphasis added]

Likewise the Cramér–Rao bound formulas given in Sec. 3.3.3 are only estimates of

the “local variation” in their respective estimators. When the SNR is too low or the

observation length too short, these local estimates provide no indication of the true

estimation capability. This explains why the performance of the Eckart filter and

cyclic MLE methods track closely with the CRB for high SNR, only to leave that

bound as the SNR gets much lower.

Another comparison may be made between the Low SNR Cyclic MLE and

the true Cyclic MLE, and likewise the difference between the Eckart filter and the

stationary MLE. If you will recall from Sec. 2.3 and likewise Sec. 3.3, the true MLE

estimate requires knowing the strength of the signal. Since this is not necessarily

known at the receiver, any implementation of a true maximum likelihood estimator

must either attempt to estimate the signal strength or use one of these approxima-

tions. Looking at Figs. 37 and 38, the difference between the performance of the

low–SNR approximations, as compared to the true estimators, is small. Of these

differences, the greatest difference is between the stationary MLE and the Eckart

filter. The cyclic TDOA MLE, on the other hand, does not appear visibly better

than the low–SNR approximation of it on this chart at all. Judging from these small

differences, there appears little reason to expend the resources necessary to estimate

the true amplitude of the signals in question—especially when cyclic TDOA estima-
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tion is desired. While estimating the true signal strength may provide a small gain

in TDOA estimation, the gain demonstrated here is likely to be so small that it is

insignificant. This justifies the low–SNR approximation for all SNRs.

A fourth feature worth noticing is the difference between the stationary and

cyclostationary methods. As you will recall, comparisons between these methods,

and in particular comparisons between Eckart’s filter and cyclostationary TDOA

estimators, have not previously been published. As their relative performance has

previously been unknown, Figs. 37 and 38 demonstrate for the first time that, while

the cyclic methods improve upon the Eckart filter, this improvement is minimal (15–

20%). Given that the low SNR cyclic MLE contains a term identical to the Eckart

filter term, the B0 [τd] term in Eqn. (130), it would appear as though the other terms

in this MLE are not as critical to the TDOA estimate as the Eckart filter term.

Given this information, it comes as no surprise that the two single cycle estimates,

composed of the α = 1
Ts

terms only, do much worse than the Eckart filter. These

comparisons have been missing in previous cyclostationary TDOA developments.

Finally, the performance of the GCC is decidedly worse than that of the single

cycle methods for large SNRs. This can be directly attributed to the fact that the

signal is limited to a bandwidth of 2
Ts

= 0.25 CPS, while the white noise sequence

occupies the full 1 CPS band. Since the GCC method does not use any filtering,

it accepts the whole band of noise. This is unlike the single cycle TDOA methods,

which only examine that portion of the input frequencies containing the signal of

interest. This allows the single cycle methods to outperform the GCC once they get

to the strong side of the bend.

These results contradict two conclusions presented within [24] and [61]. First,

single cycle TDOA estimators do not, in general, outperform stationary TDOA es-

timation algorithms—such as the Eckart filter which wasn’t tested in [24] or [61].

Second, these same single cycle methods do not outperform the Cramér–Rao bound

given in [37].
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Figure 39. TDOA Comparison without Interpolation

The rest of this subsection will chase down the difference between these previ-

ous results and the results presented in Figs. 37 and 38. In particular, the next test,

shown in Fig. 39, shows that similar misleading results can be achieved by repeating

a similar experiment using a 0 SNR signal without applying any form of subsample

interpolation. This test is somewhat modeled after the tests in [24] and [61], and

thus it shows MSE performance as a function of the observation length.

Fig. 39 also supports the erroneous contention that cyclostationary TDOA

estimators outperform the Cramér–Rao bound for stationary signals. This claim

was been made under the assertion that, “the conventional CRLB does not apply

. . . ” [24, p. 1193]. Because this assertion is quite valid, the new cyclic MCRB derived

in Sec. 3.3.3 is presented as well here. Although the MCRB is not the true CRB,

it is guaranteed to be lower than the true CRB. Therefore performance below this

latter bound, such as the performance shown in Fig. 39, indicates a mathematical

impossibility. Perhaps if previous results had included comparisons to the Eckart
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filter this impossibility would have been more obvious, since the conventional CRB

applies to the performance of the Eckart filter.

To Gardner and Chen’s credit, they do point out that,

Experimentation showed that 400 Monte Carlo trials yielded ade-
quately stable values of MSE up to a point, that is, as long as the
normalized MSE remained above about 40 dB. For normalized MSE
below 40 dB, a larger number of trials would be necessary, and time
interpolation between sample values in the TDOA parameter would be
advisable. [24, p. 1194] [Emphasis added.]

While it was not possible to repeat Gardner and Chen’s experiment exactly, and so

the units in this chart do not necessarily match theirs, this quote still points out

that they were uncertain of the exceptionally low MSE results they obtained.

This erroneous result can be explained by the fact that the true TDOA in this

experiment, as in [24, 61], is an integer number of samples. Each estimate of this

TDOA, without subsample interpolation, is an integer number of samples as well.

When all of the estimates land on the same sampled value, the result indicates a

zero measurement error. This leads to the measurements shown in Fig. 39, and the

potentially erroneous conclusions which accompany this figure.

Fig. 40 is offered for comparison. The only difference between Fig. 39 and

Fig. 40 is the use of the quadratic interpolation method given in Eqn. (140). From

this new figure, we see that the single cycle estimators no longer outperform the

Cramér–Rao bound. This demonstrates that both of these conclusions were the

result of a failure to do subsample interpolation. Single cycle estimators do not

outperform the CRB for stationary signals and they are not, in general, better than

stationary methods.

As an added benefit, Fig. 40 illustrates the importance of the observation

length. Improvements in observation time are roughly equivalent to improvements

in SNR. This means that there are two ways of increasing the performance of a

TDOA estimator. The first is to increase the SNR of the respective signals, while
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the second is to increase the observation length. Barring either improvement, the

best algorithmic increase possible is to use the cyclic TDOA MLE.

From all of these white noise experiments a few conclusions are in order. First,

the cyclic MLE does truly outperform the stationary MLE. However, it only out-

performs this estimator by about 15–20% in white noise. Second, the single cycle

TDOA methods, which are supposedly completely immune to noise and interference,

perform much worse than the Eckart filter—a comparison not made previously. This

suggests that, while spectral correlations for non–zero cycle frequencies are truly sig-

nal specific, such spectral correlations are not the strongest features present in the

signal. The strongest features are those in the zero cycle correlations. While cyclic

TDOA estimation offers improvements beyond what is possible with a stationary

TDOA estimator, such improvements in this case are only minimal.

4.3.2 TDOA Estimation in Interference. Having examined the perfor-

mance of several TDOA estimators in a white noise environment, and the necessity

of using some form of subsample interpolation, we now turn to examining their

performance in a high interference environment. Such comparisons are especially

important because cyclostationary methods presumably outshine all others in these

environments. In particular, the impact of the overwhitener, deemed unnecessary by

other cyclic TDOA estimator developments, will be examined here.

This section will test the algorithms from the last section in two colored noise

environments, each drawn from test cases presented by Streight [61]. The first en-

vironment contains wide band interference, while the second contains narrow band

interference. Each of these two tests forces a non–unitary overwhitener, R−1
n . Al-

though the form of this overwhitener will change from one environment to the next,

both environments will highlight its impact. The results of the simulations presented

here will clearly demonstrate that tremendous gains can be had in high interference

environments by simply using an overwhitener.
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Table 6. Simulation Parameters for Colored Noise TDOA Testing

Signal of
Interest

Wideband
Interferer

Narrowband
Interferer

Carrier Frequency, fc

63

256

54

256

54

256

Symbol Rate, 1
Ts

1

16

1

10

25

1000

The two noise environments compared here are similar to those used by Streight

[61]. The parameters he chose are shown in Table 6. Since the carrier frequencies

Streight considers are non–zero, this will mark the only set of tests within this dis-

sertation that focus on bandpass TDOA estimation. One key difference sets this

testing environment apart from Streight’s actual test cases, and that is that the Fre-

quency Difference of Arrival, also known as the Differential Doppler, for all signals

will be zero. That means that, in order to maintain the uncorrelated interference as-

sumed in Sec. 3.3 while maintaining the same interfering signals on both sensors, the

interference TDOA values need to be greater than the largest observation window.

That leaves the relative signal and interference strength parameters undefined.

To set these parameters, we again follow Streight’s lead, only we examine his worst

case scenarios only—since these are the most interesting ones anyway. Specifically,

Streight held the signal to white noise ratio constant at 0 dB, while the signal to

interference plus noise ratio, SINR, was varied upwards from -9 dB. These two values,

0 dB SNR and -9 dB SINR will be used here. This places the TDOA estimator at a

great disadvantage, having little signal strength to work with compared to the noise

and interference.

All of these parameters together combine to create the noise plus interference

and signal power spectral densities shown in Figs. 41 and 42. Because the environ-

ments are so poor, these PSD plots show the signal strength being severely dwarfed
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Figure 40. TDOA Comparison with Quadratic Interpolation
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Figure 42. Narrow Band Interference Environment, showing the PSDs of both signal
and noise plus interference

by the noise plus interference. This is in general a bad thing, but here it is used to

create worst case test environments.

Performance for the wideband environment is shown in Fig. 43 as a function

of the observation length in symbols. As before, an MSE of 0 dB corresponds to a

one symbol error in TDOA estimation, while an MSE of -24 dB corresponds to a

one sample error input error. Further, since upsampling was used in this case, an

MSE of -48 dB corresponds to a one sample error after upsampling. In general, from

this plot, the ordering shown in Table 7 is apparent, suggesting some immediate

conclusions.

The first conclusion is that the overwhitener is very important. Every algo-

rithm having an overwhitener outperformed its counterpart without. This difference

in performance can be as large as a factor of 40 dB, in the case of the cyclic MLE at

an observation length of 29 symbols. Since applying an overwhitener is fairly cheap
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Figure 43. Wide Band TDOA Performance

Table 7. TDOA Estimator Ranking
Rank Name Overwhitener Equation Page
1. Low–SNR Cyclic MLE Yes 139 88
2. Eckart Yes 23 26
3. Low–SNR Cyclic MLE (White) No
4. White Eckart No
5. GCC No 21 25
6. Color Single cycle Yes 147 38
7. Single cycle No
8. Color M–SPECCOA Yes 144 92
9. M–SPECCOA No
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computationally, this marks an easy improvement to any TDOA estimator working

in a burst signal environment.

A second conclusion is that the Eckart filter outperforms every other TDOA

estimation method shown here save the cyclic MLE. This suggests a couple of things.

First, the single cycle TDOA estimation methods are no better than they were in

the white noise case, even though they supposedly work the best in these strong

interference environments. Second, it suggests that the portion of the MLE corre-

sponding to the Eckart filter, B0 [τd1], is again the strongest component among all

the other MLE components. Indeed, no cyclic algorithm performed better than the

Eckart filter without using this component. That is to say, in order to do better than

Eckart, his filter needs to be used as a starting point.

Third, the single cycle estimates, which are supposedly immune to interference,

are hindered the most by that interference. This can be seen by the difference

between M–SPECCOA and the color M–SPECCOA, and likewise between the single

cycle and color single cycle estimator. Adding the overwhitener, as in the color

versions of these algorithms, greatly improves their performance. This disproves the

philosophy that single cycle TDOA estimators, for non–zero cycle frequencies, are

capable of entirely removing the noise. Instead, mitigating the noise through filtering

would appear to be a much better option.

A final observation can be made regarding the shape of the performance curves.

This shape is distinctly different from the shape presented earlier on page 152 in

Fig. 40. In particular, the estimation error starts out near the random chance line,

curves down towards a bend, and then curves down towards a second bend. This

is most obvious on the low–SNR cyclic MLE curve where it first curves towards 29

symbols, and then curves again towards 211 symbols. This double set of curves can

be directly attributed to the shape of the filtered cross correlation function between

the two signals, as shown in Fig. 44. In particular, that filtered cross correlation has

a peak at the true TDOA, τd1 = 24. When the signal is at bandpass frequencies,
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Figure 44. Expected value at the output of the Eckart filter

such as were used in this test, this peak is surrounded by several local maxima near

it. This explains the second curve and bend. The first curve is caused by spurious

maxima being mistaken for the true peak. The second curve and bend is caused by

local maxima near the true peak, that are mistaken for the true maximum. Once

past this extra bend, the curves can be expected to flatten out much as before.

The next interference test estimates TDOA in the presence of a large narrow

band interferer. The performance curves for this test are shown in Fig. 45. These

performance curves require a change in the algorithm ranking noted earlier in Table 7.

Two changes in particular are worth noting. The first is that the GCC algorithm

performs much worse in this test case. Second, the color M–SPECCOA method now

outperforms the single cycle estimator without the overwhitener. After noting these

differences in ranking, some other differences are also immediately apparent.

Chief among these other differences is the fact that the cyclic MLE is no

longer 15–20% better than the Eckart filter as it was in Fig. 37 in the last section.
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Figure 45. Narrow Band TDOA Performance

157



Similarly, the non–overwhitened versions of these two filters show less separation

than before. This lack of separation can be traced to the fact that the interferer

roughly covers the left half of the signal’s spectra, from 0.184 CPS to 0.246 CPS

(see Fig. 42). The problem is that extra components, B1, . . . , B4 used in the cyclic

MLE all compare the left half of the signals spectra, from 0.184 CPS to 0.246 CPS

in this case, on one sensor with the right half, 0.246 CPS to 0.309 CPS, on the other.

In this comparison, the narrowband interferer overwhelms the signal contained from

0.184 CPS to 0.246 CPS. While applying the overwhitener minimizes the impact of

this interference by notching out the left half band, it also notches out the signal—

effectively eliminating the contributions of B1, . . . , B4.

Second, we see the same double bend as in the wideband case, only this time

it is more pronounced. In both the cyclic MLE and the Eckart filter results, there

are bends at 26 samples and 210 samples. As before, this extra bend is caused by

the fact that these signals are at bandpass frequencies.

Finally, the B0 [τd1] component of the cyclic MLE still appears to contain the

majority of the information available to a TDOA estimate. This supports the conclu-

sion that while cyclic information can be used to improve TDOA estimation, it does

not necessarily improve performance by orders of magnitude over optimal stationary

methods—even in severe interference environments.

That returns the discussion back to how best to use cyclic spectral informa-

tion. Such information is certainly signal specific, allowing an algorithm designer to

create a signal specific estimator. Further, it is unique to the signal in that no other

signal contains that information. However, it is not the strongest feature available

to a TDOA estimation algorithm. The best information remains the stationary cor-

relation when properly filtered, such as the Eckart filter. Added to this correlation,

cyclic information may be used to provide a marginal improvement.
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4.3.3 Unknown Scale TDOA Approximations. The final TDOA estima-

tion test involves looking at the impact of the approximations used in the lopsided

estimator of Eqn. (141) on page 89. As you may recall, these approximations were

necessary to make the cyclic TDOA estimator practical in a real world environment

without requiring the signal strength to be estimated. The lopsided estimator that

resulted dropped one cyclic term and scaled the larger term in a non–optimal man-

ner. This section will also present the impact of dropping this term from the MLE,

as in Streight’s version of the MLE.

To accomplish this test, we return to the baseband QPSK signal in white noise

presented in Sec. 4.3.1, whose performance is shown in Fig. 37 on page 144. As with

that test, only 128 symbols of signal will be collected. Further, all of the estimators

that do not include the Eckart filter component, B0 [τd1], other than the GCC have

been dropped from this test both for clarity, and because these other estimators

performed so poorly in the last two sections.

That leaves four estimates under test. The first is the cyclic MLE, followed by

the lopsided estimator, the Eckart filter, and then the GCC. Throughout the test,

the SNR on sensor zero will be held constant at 4 dB, while the SNR on sensor one

ranges from -14 to 4 dB. The results of this test are shown in Fig. 46. Fig. 47 also

shows the same information, only it presents a zoomed–in view of the convergence

region.

A couple of things are noteworthy from this chart. First, the difference between

the lopsided estimator and the low–SNR cyclic MLE is the largest for the largest

SNRs on sensor one. This is reasonable, since such SNRs violate the assumption

underlying the lopsided estimator that the SNR on signal zero would be much larger

than the SNR on signal one. Instead the SNR on sensor zero is nearly equivalent to

the SNR on sensor one as it approaches 4 dB. A second noteworthy fact is that the

lopsided estimator outperforms the Eckart filter everywhere making it a practical

way of implementing a cyclic TDOA estimator. Third, the greater A0 is over A1, the
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Figure 46. Unknown Scale Approximation TDOA Estimation
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closer this approximation comes to the cyclic MLE. All three of these observations

suggest that this is a decent approximation to the cyclic MLE when the actual signal

amplitudes are unknown.

Of all of the cyclic TDOA estimators, this estimator is certainly the most prac-

tical. It outperforms the Eckart filter, and it does not rely on extra knowledge such

as the relative signal scales. However, the fact that this estimator does not outper-

form the Eckart filter by more than a small percentage calls into question whether

or not this gain in TDOA estimation is worth the complexity of implementing it.

4.4 Presence Detection

This brings us to the last application area: signal presence detection. Having

demonstrated the utility of this linear subspace approach to estimating parameters

in burst communications systems, this section builds upon that foundation by testing

several detectors built upon these similar estimates. In particular, three detectors

were derived in Chapt. III. Two of those detectors, the multicycle ratio detector and

the single cycle ratio detector, are new and novel. The other detector, the multicycle

detector, is well known [17]. In this section, all three of these detectors will be tested

via simulation. As these simulations will show, the new ratio detectors offer a degree

of selectivity not found in any other burst signal detector.

To do this, four separate tests of these new cyclic ratio detectors are presented

here. These simulations will first demonstrate their capability in general, and then

ultimately their signal selectivity. The first test measures a detector’s capability

under known circumstances. The second test measures a detector’s capability in a

background of randomly changing Gaussian noise. Finally, the last two tests measure

the discrimination capability of these detectors when broadband interference bursts

are present, and second when similar interference bursts are present. The guiding

question in each test is to ascertain whether or not the cyclic ratio detectors will

achieve greater signal selectivity in a changing environment than any other detector.
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Each of these tests will need to measure what the probability is of properly

detecting a signal, or accurately rejecting an interferer. This can be accomplished

using the experimental setup shown in Fig. 48. In particular, the signal of interest,

or in the last two tests an interference burst, together with noise will be grouped

into blocks the size of the observation length. Following a Fourier transform, each of

these blocks will be sent to the detector under test. In each case, the output of the

detector is a function of the signal scale of the input signal or interference burst, A.

From these outputs, the probability of correctly detecting the signal or incorrectly

detecting on the interference burst can be measured by,

PD (A) ≈ 1

N

N−1∑

n=0







1 yn (A) > η

0 yn (A) ≤ η,
(190)

where yn (A) is the output of the detector for the nth test, and η is a threshold chosen

to achieve some probability of false alarm,

η =
{
η
∣
∣PD (0) = PFA

}
. (191)

Using this approach, the first step to introducing these tests is still to introduce

the detectors and then the signal under test. Nine detectors, listed below, will be

tested and compared against each other. Of these nine, three of them will be single

cycle detectors, while another three will be single cycle ratio detectors.

162



Radiometer A detector built off of the measurement of the energy in the obser-

vation alone, and given by Eqn. (33) on page 34. The bandwidth of this

radiometer, W , has been set to 2
Ts

, the nominal null–to–null bandwidth of the

signal.

Multicycle The optimal detector for detecting a weak cyclostationary signal in a

Gaussian noise environment, given in Eqn. (168) on page 98 [17].

Zero–Cycle Also known as the Spectral Matching Detector [59], this detector is

the optimal stationary detector [17]. It is created from the α = 0 term of the

multicycle detector.

Carrier Detector An approximation to the multicycle detector, using the feature

that the signal is symmetric about the carrier frequency. (See Eqn. (37) on

page 38.)

Symbol Rate Detector Similar to the carrier detector, except this detector uses

only the redundancy found at intervals of a baud rate.

Multicycle Ratio The detector developed in Sec. 3.4.2 as the optimal detector for

detecting weak digital communications signals in a Gaussian noise environment

of unknown scale. This detector was presented in Eqn. (176) on page 101.

Zero–Cycle Ratio Similar to the multicycle ratio detector, except that only the

α = 0 terms are used.

Carrier Ratio Similar to the multicycle ratio, except only the carrier redundancy

is used. (See Eqn. (178) on page 101.)

Symbol Rate Ratio A ratio detector created by dropping all but the symbol rate

redundancy from the multicycle detector. (See Eqn. (177) on page 101.)

In order to apply all of these detectors, and in particular both the carrier and the

symbol rate detectors and their ratio counterparts, the signal in question must be
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Table 8. Signal Parameters for the Detection Tests

Signal Parameter Parameter Value

Modulation Type BPSK

Symbol Rate, 1
Ts

0.0625

Carrier Frequency, fc 0.25

Number of Symbols, Ns 256

Pulse Function, ψ (t) Rectangle

a BPSK signal.9 The symbol length for this BPSK signal was chosen arbitrarily to

be 16 samples, the carrier at 0.25 CPS, and then performance was compared for

an observation lengths of 256 symbols. Further, the pulse shape in question was a

bandlimited rectangle pulse, ψR (t) (see App. A), chosen both for its simplicity and

to match others who have tested similar signals previously [17]. As a final note, the

first several tests were conducted in a white Gaussian noise environment such that

Rn ∝ I. These signal parameters are summarized in Table 8.

Under known conditions, the probability of correctly detecting the signal with

only a 0.1% false alarm rate is shown in Fig. 49 as a function of the signal to noise

ratio. The detector shown with the highest probability of detection at the lowest

SNR is the best detector in this test. In particular, the best detector shown is the

multicycle detector. As for the new ratio detectors, they each perform slightly worse

(roughly 1 dB) than their non–ratio counterparts.

Each of these two observations can be understood by the conditions under

which these detectors were created. The multicycle detector was designed to be

the optimal detector in low SNR conditions. It should come as no surprise then

that this is the optimal detector in this test case, since the test exactly mirrors the

assumptions under which it was derived. Similarly two arguments can be made to

explain why the ratio detectors fair worse. First, the difference between the ratio

9If the signal is a complex PAM signal, all but the Carrier detectors can be used.
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Figure 49. Detection Capability when PFA = 0.01

detector and its non–ratio counterpart has an analogy in subspace detection. In

subspace detection, an F test is a ratio test derived under similar hypotheses to those

considered here, while a χ2 test is its non–ratio counterpart. These two tests, the χ2

test and the F test, are remarkably similar to the multicycle test and the multicycle

ratio test respectively. They are so similar that comparisons are made between them

in Appendix I will demonstrate little difference between their performance. Unlike

the multicycle and multicycle ratio tests, however, comparisons between χ2 tests and

F tests are well known: the F test is known to perform worse than the χ2 test [53].

Second, it only makes sense that to get the signal selectivity desired, some price must

be paid for additional mistakes. Such a mistake might be determining that a signal

is present, but that it is not the signal of interest. Standard cyclic detectors are

not designed to avoid this type of mistake, hence they have no burst differentiation

capability either.
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Figure 50. Stationary vs. Cyclostationary Detector Capability, PFA = 0.01

An interesting comparison to make here is to look at the difference between the

optimal stationary signal detector, known as the zero–cycle detector, and the optimal

cyclostationary signal detector or multicycle detector. Given that these detectors

are the best stationary and cyclostationary detectors, this comparison should help

to illustrate the performance benefits between these approaches to describing digital

communications signals. This comparison is shown in Fig. 50. Among the non–ratio

detectors, the multicycle detector shows only about a 1 dB improvement in detection

capability over the zero–cycle detector. Among ratio detectors, the improvement

increases to a 2 dB gain achieved by using cyclic methods over stationary ones.

That brings us to the second test case, where the performance of each of these

detectors is measured in a white noise background environment with a randomly

changing scale. Such an environment might be caused by either a very wideband

interferer or equivalently an automatic gain control system attempting to compensate

for energy outside of the band of interest. The new ratio detectors should perform
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quite well under these conditions, since they were created under the assumption of

an unknown or changing background scale.

The particular test presented here was introduced by Gardner as a reason for

using cyclic detectors over standard energy detectors [17]. In his paper, Gardner

demonstrates that a single cycle detector outperforms a radiometer in a changing

noise environment. The changing noise environment is created from a white noise se-

quence created such that Rn = 2σ2I. The variance parameter, σ2, is itself generated

once per test by,

σ =

√

|z|
2
, (192)

where z is selected randomly from a Gaussian probability distribution such that the

mean of z produces an SNR of -10 dB, and the variance of z is one tenth its mean.10

The only difference from this test and Gardner’s test before it is the setting of the

mean of z. Gardner’s test was accomplished for a mean that produced zero SNR

conditions, while the mean of z has been adjusted here in order to make the results

stand out more.

Figure 51 shows the probability of detection for each of these tests, compared to

its probability of false alarm. If you compare the results for the non–ratio tests with

the results in [17], you will find them to be essentially identical—confirming that this

test validly represents both the detectors and the conditions presented there. Fig. 51,

however, adds the performance of the cyclic ratio detectors to Gardner’s original

results. According to this new figure, the multicycle ratio detector outperforms

every test on the chart—having the highest probability of detection for any given

false alarm rate. This is consistent with the conditions under which it was derived: it

is the optimal detector for detecting a signal in an unknown or changing background

10While it might make more sense to select z from a probability distribution defined for positive
numbers only, this choice has been made to mimic the performance test in [17].
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Figure 51. A Repeat of Gardner’s Test

environment. A second feature worth noting is that each of the single cycle ratio

detectors outperforms its non–ratio counterpart when the probability of false alarm

is low. When the false alarm rate is much higher, the non–ratio tests perform better.

This performance difference can be directly traced to the randomly changing noise

level. Once the standard single cycle detectors suffer false alarms from all of the

tests where the random noise level was relatively high, they then outperform their

ratio counterparts.

The zero cycle component in this test, shown in Fig. 52, is particularly re-

vealing. First, the optimal stationary ratio detector, the zero–cycle ratio, performs

fairly well in this test. Indeed, it is better than all but the multicycle ratio and car-

rier based tests. Had the comparison been made between cyclostationary detectors

and the radiometer alone, leaving out the optimal stationary detectors, such results

would have presented a misleading picture of the capability of stationary detectors.

The reason for this is the same as the reason why Eckart’s filter did so well at TDOA
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Figure 52. Optimal Detector Performance in Gardner’s Test

estimation—stationary or zero–cycle statistics are much stronger than the baud rate

and symbol rate statistics used by these other detectors.

That brings us to the third test, the test of changing background levels. In

this test, the signal is not present at all. Instead, a white interference burst of

varying strength will be present in each detection interval. Under these conditions

all detections are false alarms, since nothing but interference is present. Fig. 53 shows

the results of this test. As one might expect, the ratio tests are completely resistant

to white interference bursts. All of the non–ratio detectors, however, perform poorly

under these conditions. That is because these tests are quadratic tests of the input.

If the input gets a sudden boost in noise, the detection statistic responds with the

square of the boost. This renders the threshold, which was set in order to create

a 0.1% false alarm rate on the training data, inappropriate whenever such burst

interference is present. The ratio detectors, because they take a ratio of one quadratic

test to another, are immune to this change. Thus the scale of the noise can change to
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Figure 53. Wideband Interference Resistance in Cyclic Detectors

anything, and the false alarm rates of these detectors will remain the same. This is

another way of saying that these detectors have a constant false alarm rate (CFAR)

in a changing noise environment—exactly what Theorem 2 proved.

Fig. 54 compares the interference resistance found in the optimal stationary

detectors with the same resistance found in the optimal cyclostationary detectors.

From this figure, as with Fig. 53 previously, the strength of the ratio detectors is

obvious. Unlike the radiometer or the non–ratio detectors, both of the ratio detectors

in this figure are completely resistant to changes in the background noise level.

These two tests confirm that the total energy measurement, found in the de-

nominator of the ratio detectors,11 does indeed track the noise level as it fluctuates,

as predicted by the discussion in Sec. 3.4.2. By entirely removing this noise level

uncertainty, Figs. 53 and 54 show that these new detectors no longer suffer from the

limitations of non–ratio detectors.

11See, for example, Eqns. (176), (177), and (178).
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Figure 54. Wideband Interference Resistance in Optimal Detectors

Table 9. Similar Interference Parameters
Carrier Rate, fc Symbol Rate, 1

Ts

Signal of Interest 0.25000 CPS 0.06250 CPS

Similar Interferer 0.25024 CPS 0.06274 CPS

A more interesting test would show how well this detector discriminates against

interference bursts that are similar in structure to the signal burst itself. This is the

last of the four tests and practically it is the most important. Thus, the last test

measures how a given detector responds to a burst having a slightly different carrier,

and a slightly different baud rate. In particular, the interferer is given a carrier of

1025
4096

≈ 0.25024 CPS and a baud rate of 257
4096

≈ 0.06274 CPS. See Table 9 to compare

these parameters with the signal of interest. These values were chosen since they are

one FFT bin
(

1
4096

CPS
)

off from the true values (0.25 and 0.0625 CPS). Performance

under these conditions is shown in Fig. 55. As with the last test, no signal is present

in this test. Therefore any response from a detector in this environment represents
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Figure 55. Resistance to Near–Identical Burst Interference, PFA = 0.01

an increase in the false alarm rate of the detector, or equivalently a burst interferer

that was incorrectly identified as the signal of interest. The results shown in Fig. 55

are similar to those of the wideband band burst interference test case. The obvious

conclusion is that standard cyclostationary detectors offer only minimal capability

of rejecting burst interference.

Unlike the wideband interference test, however, the multicycle ratio detector

does not discriminate against these similar interferers. The reason for this can be

traced to the zero cycle component of the multicycle detector, which exploits the

PSD of the signal to detect it. However, in this case, the PSD of the interferer was

nearly identical to the PSD of the signal (see Fig. 56). The zero cycle component

of the multicycle detector attempts to use this PSD to determine whether or not

a signal was present. Since the interfering signal has nearly the same PSD, any

examination of the PSD strongly suggests that the signal of interest is present.

172



PSfrag replacements

Signal of Interest
Burst Interference

P
ow

er
/

N
or

m
al

iz
ed

F
re

q
u
en

cy

Normalized Frequency (Cycles / Sample)

−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

-0.15
-0.10
-0.05
0.00
0.05

0.10

0.12
0.14

0.15

0.16
0.18

0.20

0.22
0.24

0.25

0.26
0.28

0.30 0.35 0.40
0.45
0.50

Figure 56. PSD of Signal, and Similar Interferer

This makes one test case where the stationary component of the signal, con-

taining the strongest piece of information, is deceptive, since every detector that uses

it here performs poorly. Perhaps this would be clearer on a chart showing only those

detectors using the zero cycle term, such as Fig. 57, where the zero–cycle component

of the multicycle detector is separated from the other components for comparison.

By using the PSD of the signal, this zero–cycle component has the highest probabil-

ity of alarming on the similar interference burst. Likewise, it has the worst resistance

among all of the ratio detectors. Although adding the other cyclic components of

the multicycle detector to the zero–cycle detector improves its resistance to burst

interference, it does not improve it much.

What the multicycle detector lacks in this similar burst interference environ-

ment, the single cycle ratio detectors pick up. The two single cycle detectors, the

carrier ratio and symbol rate ratio detectors, are the clear winners in this test. While

neither of these two detectors are the “best” under known conditions, such as Fig. 49,
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Figure 57. Zero–Cycle Resistance to Near–Identical Burst Interference, PFA = 0.01

none of the other detectors match the signal selectivity found in these two detectors

otherwise.

All told, these tests contrast the strengths of the ratio detectors against the

limitations of previous cyclostationary detectors. While it is true, mathematically,

that estimating a spectral correlation over a long period of time completely removes

the noise, that does not mean that such detectors are immune to noise after only

finite periods of time. A strong burst of interference will always trip a non–ratio

cyclostationary detector—regardless of whether or not that burst of interference has

the feature of interest or not. While mathematically such detectors may be immune

to all interfering signals as the observation length becomes infinite, practically none

of the standard cyclic detectors are immune to interference bursts at all. Instead,

only the cyclic ratio detectors show true immunity to burst interference.
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V. Conclusions

Given that the initial goal of this research was to build a better burst signal detector

for high interference environments, this research has accomplished that and more.

By returning to first principles, not only were interference resistant burst detectors

demonstrated, but also Minimum Mean Square Error (MMSE) single and dual sensor

filters, demodulator performance prediction algorithms, and maximum likelihood

interference–resistant TDOA estimators were demonstrated as well. In order to

summarize these results, this chapter is split into two sections. The first section

will present a quick summary of the capability of the algorithms developed using

the linear subspace approach. Then, motivated by the success of the algorithms

developed here, the second section will discuss some additional application areas

and recommend topics for future research.

5.1 Summary of Findings

Tracing these new algorithms from their development through simulation re-

quires looking at not only the new linear subspace approach, but at each of the three

application areas central to this research. This summary will follow that pattern by

first outlining the linear subspace approach, and then highlighting the consequences

this approach had on each of the application areas studied in this research.

The linear subspace approach followed from some simple assumptions concern-

ing the signal of interest and led to the application of classical statistical principles

to fundamental communications signal processing problems. The three fundamental

assumptions were that the signal had a Pulse Amplitude Modulation (PAM) struc-

ture, was finite in time, and that the pulse function underlying that PAM structure

was known. Then, since the signal was finite in length, it became possible to al-

low the power spectral density of the noise and interference to be known, and not

necessarily white, since it could be estimated. Further, since the signal had a PAM
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structure, the signal was shown to lie within a subspace of all possible received

waveforms. This subspace was traced through a Fourier transform, demonstrating

that the signal’s spectral content could be constructed by linear operations upon

the underlying z–transform of the signal. Then a probability distribution, that the

underlying z–transform had a Gaussian distribution, was proposed for the signal.

This distribution was then validated in Sec. 4.1—allieviating a problem which has

plagued cyclostationary signal processing development for years [23]. As a result,

classical statistical techniques such as maximum likelihood estimators, likelihood ra-

tio detectors, and Cramér–Rao bounds, became a simple matter of calculation. This

simple beginning then led to improved signal processing algorithms, which became

the topic of the rest of this research.

Since this linear subspace approach preserved the first and second moments of

the signal of interest and the interference, properties central to previous cyclosta-

tionary developments, tracing the algorithms resulting from this approach will reveal

that several methods did not change, as outlined in Table 10. Applying the linear

subspace approach under these previously studied assumptions, such as stationarity

or white noise, led to standard algorithms. Yet the methods that have changed did so

as a result of a more appropriate description of both the signal and the interference.

Further, the new methods that resulted are much more resistant to interference than

their predecessors. The rest of this summary section, therefore, follows the outline

given in Table 10 by highlighting first the algorithms that have been preserved under

this new model, followed by discussing each of the algorithms that have changed.

Starting from the beginning, Chapt. III derived several new algorithms from

the simple assumptions that the signal of interest was a finite, Gaussian, Pulse Am-

plitude Modulated (PAM) waveform corrupted by additive Gaussian interference

plus noise. Although this method did not assume that the transmitted signal was

infinite, many of the resulting algorithms are similar or even identical to known

cyclostationary algorithms derived under infinite signal conditions. Among the al-
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Table 10. Algorithms Resulting from the Linear Subspace Approach

Application Assumptions Algorithm

Demodulation Weak signal Matched filter

Complex signal Berger & Tufts filter

Real signal New BPSK MMSE filter

Arbitrary filter New MSE Performance Prediction

Many sensors New Multisensor BPSK MMSE filter

TDOA Estimation Stationary signal, Eckart’s filter

colored noise

Cyclostationary signal, New Implementable Cyclic MLE

white noise

Cyclostationary signal, New Overwhitened Cyclic MLE

colored noise New Cramér–Rao bound

Detection White noise Gardner’s Multicycle detector

Colored noise Rostaing’s modifications

Burst interference New Cyclic Ratio Detector
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gorithms that have not changed are the matched filter for colored noise, Berger and

Tufts’ MMSE filter for baseband signals [2], and Gardner’s optimal detector for weak

cyclostationary signals in known noise environments [17]. Streight’s ideal maximum

likelihood TDOA estimator for white noise environments [61], on the other hand,

was modified to include a missing term.1

The fact that these algorithms have not changed is not necessarily a failure of

the linear subspace approach, rather this fact commends the validity of this approach.

Given that some of these solutions remain unchanged after 35 years, they have

certainly stood a test of time and are not likely to be improved upon. Therefore,

the fact that the linear subspace approach leads to these already known and optimal

methods suggests that, when applied under different assumptions, it will also lead

to optimal methods.

Further, unlike previous attempts at deriving these cyclostationary algorithms,

the linear subspace approach was based upon classical statistical principles. This was

made possible by the introduction of an approximate probability density function

to describe the signal in frequency. From this probability density function, cyclosta-

tionary properties in the signal became consequences of the underlying probability

distribution, instead of an incomplete definition of the same underlying probability

distribution. Further, even though this probability density is only approximate, tests

presented in Sec. 4.1 demonstrated its validity for bursts as short as Ns = 8 sym-

bols. Everything else in this dissertation then followed from this probability density

function via classical statistical principles such as maximum likelihood estimators,

Cramér–Rao bounds, and likelihood ratio tests.

Given a probability distribution function, the first task was to estimate the

unknown message data. The reason for this is quite simple: an estimate of the mes-

sage is required in order to create TDOA estimation and signal detection algorithms.

Therefore, this linear subspace method was applied to demodulation in order to de-

1This is the B3 shown in Eqn. (134) on page 87.
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rive an optimal estimate of the underlying bits. Two filters were developed as a result

of this process. The first, equivalent to Berger and Tufts’ filter, was already known

to be optimal for signals with a complex baseband. The second filter, a MMSE filter

for BPSK signals, was a new result.

This BPSK MMSE filter was then tested in a laboratory simulation environ-

ment, in Sec. 4.2.1, and shown to outperform all other linear filters. This was true

regardless of the interference environment or the multipath distortion suffered by the

signal (Secs. 4.2.1 and 4.2.2) [26]. Further, the equalizer predicted by this method

was shown to be identical to a similar equalizer achieved under adaptive conditions

(Fig. 21). This latter fact, combined with Ericson’s proof that all optimal demodula-

tor filters can be factored into a matched filter and equalizer [12], together with the

proof that adaptive equalizers truly achieve this optimal performance [30], provides

additional validation that this filter is truly the minimum mean square error linear

filter for digital communication signals.

Yet the development and analysis of optimal data estimators did not stop with

the optimal single sensor BPSK linear filter. Three other consequences were shown

from it as well. First, the same development led to performance prediction meth-

ods appropriate for arbitrary channel conditions and arbitrary BPSK demodulators

(Sec. 3.2.2) [27]. Sec. 4.2.2 then validated these prediction methods in both col-

ored noise and multipath interference environments. Second, Modified Cramér–Rao

bounds were presented that were applicable to BPSK demodulator performance.

These bounds, which were difficult to calculate under cyclostationary developments,

were simple consequences of the linear subspace framework. Finally, the develop-

ment presented the optimal form of a multi–sensor BPSK linear filter (Sec. 3.2.4).

During performance simulations, this filter achieved 3.4 dB improvement (Fig. 35)

over the single sensor filter in a simulated high interference environment.

Estimation, however, is only the first task. Judging from the performance just

mentioned, linear subspace theory is certainly appropriate for generating estimates of
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the transmitted data sequence. These estimates of the data sequence are then central

to TDOA estimation and signal detection, as the algorithms for these two application

areas depend upon these basic estimates. Therefore, we turn our attention to these

next two application areas.

The next application area following BPSK demodulation, TDOA estimation,

has historically been difficult for cyclostationary signal processing. Without a valid

probability density function, it has been impossible to use classical statistical tech-

niques to develop optimal estimators [23]. Indeed, the first maximum likelihood esti-

mator, presented seven years after the initial cyclic TDOA developments by Streight

in [61], was limited to low–SNR signals in benign interference environments. Using

the linear subspace approach, however, things changed.

The first change to TDOA estimation was a new maximum likelihood TDOA

estimator appropriate for all SNRs and all interference environments. Unlike Streight’s

ideal cyclic MLE [61], this estimator can be implemented. It was then tested in

Secs. 4.3.1 and 4.3.2, marking the first open comparison of a cyclostationary TDOA

estimator against either the Eckart filter or the Hannan–Thompson TDOA estima-

tor. This testing demonstrated that cyclostationary TDOA estimation is indeed

more powerful than these optimal stationary TDOA estimators, although the im-

provement is limited to about 15–20%. More importantly, however, this testing

demonstrated the importance of using an overwhitener to limit the impact of the

interference prior to TDOA estimation. This overwhitening technique has not been

applied to cyclostationary TDOA estimation before, primarily because of the diffi-

culty in deriving cyclostationary algorithms. Yet it is a natural consequence of the

linear subspace approach.

The second change to TDOA estimation involved the re–examination of sin-

gle cycle TDOA estimation methods. These methods were proposed by Gardner

and Chen in [23] for improved TDOA estimation results in high interference envi-

ronments. According to Gardner and Chen, these methods should be completely
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resistant to interference after sufficient integration times. However, as Sec. 4.3.2

demonstrated, this fundamental assumption of interference removal is flawed. Sta-

tionary estimators, containing precisely the corrupted statistics that Gardner and

Chen wished to avoid, outperformed every single cycle TDOA estimator. Thus,

although these single cycle methods are valid, they are not very efficient.

The last change in TDOA estimation theory revolved around deriving Cramér–

Rao bounds for estimating the TDOA of a digital communication system received by

two separate sensors. Previous attempts at creating Cramér–Rao bounds appropriate

for digital communication signals exhibiting cyclostationary properties had failed to

account for the non–uniform power spectral densities common in high interference

environments and the cost of estimating the necessary nuisance parameters. These

new bounds solve both of these problems, making them valid and appropriate for

estimating TDOA performance in arbitrary interference environments.

Comparing the performance of all of these estimators in benign and in high

interference environments revealed several features not yet documented for cyclosta-

tionary TDOA estimators. In particular, the importance of subsample interpolation,

a topic previously ignored in cyclostationary TDOA estimation, was demonstrated

in TDOA error measurement. For example, Fig. 39 on page 148, which was gen-

erated without subsample interpolation, might falsely lead one to believe that the

performance of the TDOA estimators in it were orders of magnitude better than

their true performance, shown in Fig. 40 on page 152 which uses interpolation. In

the past, this failure to do subsample interpolation has resulted in misleading re-

sults regarding cyclostationary estimator performance [24, 61]. Second, comparing

the performance of these estimators in colored noise conditions demonstrated that

the previous Cramér–Rao bound for stationary signals remains a valid estimate of

the performance a cyclostationary algorithm might achieve. This contradicts perfor-

mance shown in [24] and [61], where the subsample interpolation problem, together
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with an overly simplified Cramér–Rao bound, combined to generate results that ap-

peared orders of magnitude better than the Cramér–Rao bound on estimation error.

Following TDOA estimation, we finally returned to the problem that initially

motivated this research: signal presence detection. Prior to this research, two classes

of detection algorithms existed for burst signals. The first class detected signals based

upon their energy. Detectors of this variety are well known for being susceptible to

noise fluctuations [60], or equivalently to burst interference. The second class of de-

tector, cyclostationary feature detectors, is well known for its signal selectivity, but

its performance in a burst interference environment suffers in a similar manner to the

energy detection methods (see Fig. 53). To overcome this problem of selectivity in

the presence of burst signal interference, a new class of signal selective detector, the

cyclic ratio detector, was developed using the linear subspace approach (Sec. 3.4.2).

This detector is similar to previous cyclostationary detectors, save that it is normal-

ized by the total energy within the band. This extra normalization, similar to the

normalization found in an F–test [53], is the key to the interference resistance that

this detector achieves (see the discussion concluding Sec. 3.4.2).

Then, in a simulation environment, this detector was compared against both

energy detectors and cyclostationary detectors. When the interference environment

was constant, these ratio detectors performed about 1 dB worse than the standard

cyclostationary detectors (Fig. 49).

When these same detectors were tested in a burst interference environment, the

new cyclic ratio detectors outperformed every other burst signal detector (Figs. 53

and 55). Each of the other detectors performed as expected in this environment: the

energy detector tripped on the energy of the interference, and the cyclostationary

detectors, after offering more resistance to the interference, eventually tripped on the

strong interference bursts as well. Only the cyclic ratio detectors seemed immune to

this interference. Indeed, as the interference increased, the baud–rate ratio and the
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carrier rate ratio detectors saw a decrease in the number of false alarms, rather than

the increase seen by every other detector.

Achieving this interference resistance was the ultimate goal and purpose of

this work. The fact that it was achievable using a linear subspace approach certainly

commends the utility of this new approach. Looking back over the simulation results,

the performance of the methods derived using this approach was always as good as

or better than the performance of previous methods. There was never a time when

an optimal method derived using this approach performed worse.

5.2 Recommendations for Future Study

This brings us to the question of future research, given that this linear subspace

method is now fairly well validated for digital communication signals. All that

remains is to derive and demonstrate further algorithms using this model. While

there is room for additional development within each of the three application areas,

as discussed below, new algorithms need not be limited to these three applications.

In terms of demodulation, much more work is left to be done. First, sim-

ple modifications to the work presented here could be made to apply this work to

other signaling types such as offset QPSK (OQPSK),2 minimum shift keying (MSK),

or binary coherent phase modulation (BCPM).3 While more complicated, this work

could also be extended to Frequency Shift Keying (FSK), and Orthogonal Frequency

Division Multiplexing (OFDM). Second, this model can be used to develop optimal

carrier and symbol synchronization algorithms. Yet such improvements do noth-

ing to improve upon the biggest problems associated with this filtering technique:

the unknowns. Thus, further filtering research should look into the problems of es-

timating the unknown pulse function, ψ (t), the signal strength A, and the noise

2See App. C.
3See App. D.
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PSD. Without solving these problems, the filters presented here cannot be applied

to non–burst communications signals.

Further solutions can also be implemented in the area of TDOA estimation.

First, Streight’s analysis and development derived not only the maximum likelihood

TDOA estimator, but the maximum likelihood joint TDOA and Frequency Differ-

ence of Arrival (FDOA) estimator [61]. By leveraging off of his example, extending

this work to FDOA estimation in high interference environments should be fairly

straightforward. Indeed, deriving a maximum likelihood TDOA/FDOA estimator

shouldn’t be much more difficult than the TDOA estimator that was presented here.

What remains is to demonstrate this estimator and the gains associated with it. In

particular, if Streight’s tests were to be repeated, how much performance can be

gained by knowing the signal pulse function and noise PSD? Third, these techniques

make it possible to derive the optimal estimators in correlated, not just colored,

noise environments—such as when multiple sensors see the same interfering signal.

The particular assumption, that the interference is uncorrelated between sensors,

is perhaps one of the least realistic assumptions made. Yet the difficulty of TDOA

estimation in correlated noise environments has led others to make this same assump-

tion [37]. Resolving this difficulty should follow from the linear subspace theory as

well.

Finally, in the area of detection, one critical and fundamental problem remains:

what is the probability of detecting a signal with any of the detectors discussed here?

While the probability of detecting a signal with an energy detector is well known,

that same probability is not as well understood for cyclostationary detectors—much

less cyclic ratio detectors. A similar and related problem is the question of what

threshold should be chosen to achieve a particular probability of a false alarm?

Without knowing these probabilities, designing a communications system to avoid

cyclostationary detection is an ill–defined problem. Likewise, designing a detection
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system to operate in a high interference environment is a difficult problem without

knowing the proper thresholds.

While this dissertation has presented three application areas, others could eas-

ily be mentioned here as well. In particular, Angle of Arrival (AoA) or Direction of

Arrival (DoA) estimation algorithms could be improved by these techniques. While

cyclostationary methods have been applied to such estimation, the development of

optimal cyclostationary algorithms has been hindered in the same manner that op-

timal cyclic TDOA estimation algorithms were hindered. Yet the linear subspace

model for deriving cyclostationary algorithms is applicable here as well. In particu-

lar, it should be possible to develop not only maximum likelihood AoA estimators,

but their respective Cramér–Rao bounds as well.

All told, one change in modeling a digital communications signal has led to a

whole host of new algorithms—the least of which was a new class of signal presence

detectors. Particular algorithms, such as the overwhitener portion of the cyclic

TDOA estimator and the cyclic ratio detectors, would have been difficult to derive

without this new model. Finally, all of the new algorithms developed from this one

simple change demonstrate the full value of using classical statistical principles—even

when the underlying probability density function is only approximate.
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Appendix A. Common Pulse Shapes

Several pulse shapes are commonly used to examine and model Pulse Amplitude

Modulation (PAM) systems. Three particular pulse shapes, the rectangle pulse,

Nyquist pulse, and the cosine pulse, are discussed here. Each of these three pulse

shapes were used at some time during this research, so their definition is important.

Therefore this appendix defines each pulse, and then expresses both in time and

frequency. Along the way, figures will be presented to compare the pulse shapes in

time and frequency.

The first pulse shape of interest is the rectangle pulse, shown in Fig. 58 and

defined by,

ψR (t) ,







1√
Ts

−Ts

2
< t < Ts

2

0 otherwise
(193)

This is perhaps the most common pulse for studying PAM waveforms. It is sim-

ple, and easy to work with theoretically [58]. Its properties, in terms of spectral

redundancy, have been well studied and documented [21].

Unfortunately this pulse is not band–limited in frequency. This is easily seen

by examining its Fourier transform,

ΨR (f) =
√

Tssinc (fTs) . (194)

Therefore, in order to use this pulse in practical applications, some amount of filtering

is typically applied to this pulse prior to transmission. An ideal filter, applied to this

pulse, would cut off all of the tails beyond f = ± 1
Ts

. While this distorts the pulse

shape in time, this may still be a good approximation to practice.
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If being bandlimited is a requirement, the Nyquist pulse, also shown in Fig. 58,

is a common solution. This pulse follows from the comments of Nyquist in [46], but

is further developed in [63, 58]. In terms of this research, this pulse is defined in

frequency as,

ΨNYQ (f) ,







√
Ts cos

(
πfTs

2

)
− 1

Ts
< f < 1

Ts

0 otherwise
(195)

The fact that the Nyquist pulse is bandlimited in frequency carries with it the

unfortunate side effect that it is infinite in time. This is easily seen from its time

response below,

ψNYQ (t) =
1√
Ts

sinc

(
2t

Ts

− 1

2

)

+
1√
Ts

sinc

(
2t

Ts

+
1

2

)

. (196)

This Nyquist pulse, as a function of time, is shown in Fig. 58. As you can see, though

infinite, it tapers off to zero the farther you go from t = 0.

The truly unique and valuable feature of the Nyquist pulse is its time response

after being convolved with itself. In particular, ψNYQ (t)⊗ψNYQ (t) has zero values at

times of t = kTs for all integers k such that k 6= 0. That means that this bandlimited

pulse shape will have zero ISI at the output of a matched filter, and no equalizer will

be necessary [58].

A third type of pulse, having some of the benefits of both, is the cosine pulse,

shown in Fig. 58 as well. This is the pulse used in PSK31 systems, and is known for

the fact that alternating ones and zeros produce two pure tones [41]. It is simple to

generate in time due to the short pulse length,

ψCOS (t) =







1√
3Ts

+ 1√
3Ts

cos
(

πt
Ts

)

−Ts < t < Ts

0 otherwise
(197)
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Figure 58. Common Pulse Functions, in Time

Even better, this pulse tapers off quickly in frequency. The following demon-

strates its frequency response.

ΨCOS (f) = 2

√

Ts

3
sinc (2fTs) +

√

Ts

3
sinc [2fTs − 1] +

√

Ts

3
sinc [2fTs + 1]

(198)

This response is plotted in Fig. 59. As you can see from the figure, this pulse shape

tapers quickly in frequency.

These three pulse functions are shown in the time domain in Fig. 58. Each

pulse, derived above, has been normalized such that it has unit energy.

In frequency, these same pulse functions are shown in Fig. 59.

Following the formula given in Eqn. (7) on page 14, the PSD of signals gener-

ated using these pulse functions is proportional to the square of the pulse functions

in frequency. These functions are plotted in Fig. 60. From Fig. 60, it is clearly seen
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Figure 59. Common Pulse Functions, in Frequency
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Figure 61. α = 0 component of the Spectral Correlation Function

that the rectangle function does not taper off quickly as a function of frequency,

while the cosine pulse tapers off much faster. The Nyquist pulse, on the other hand,

tapers off to zero immediately. This demonstrates how a cosine pulse can be a cheap

way of reducing sidelobes.

Since all of the algorithms within this dissertation depend in some manner

upon the functions |Ψ (f)|2 or Ψ∗
(

f − 1
2Ts

)

Ψ
(

f + 1
2Ts

)

, these two functions can be

seen plotted in Figs. 61 and 62 respectively.

In reality, the actual choice of pulse shape is made by the design engineer.

Nothing can be done about it in the receiver except compensating for it. When the

pulse shape is known, compensation is simple and well defined. When the pulse

function is unknown, it must either be guessed or estimated. Such estimation is well

beyond the scope of this research.
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191



Appendix B. Matrix Samples

Several matrices were introduced in Chap. III. However, it may not be obvious to

the reader what the exact form of each of these matrices is. Therefore, this appendix

presents samples of Rn, Ψ, and Rφ, such as would be used in the BPSK signaling

case. From these examples, it should become obvious that Rn and Rφ are both

diagonal, and that Rφ is unitary as well.

The first matrix sample is Rn, a 4Nf × 4Nf diagonal matrix representing the

covariance of the noise,

Rn ≈ T





























Sn (f1) 0 · · · 0 0 · · · 0 · · · 0 · · ·
0 Sn (f2) · · · 0 0 · · · 0 · · · 0 · · ·
...

...
. . .

...
...

. . .
...

. . .
...

. . .

0 0 · · · Sn

(
fNf

)
0 · · · 0 · · · 0 · · ·

0 0 · · · 0 Sn

(

f1 + 1
Ts

)

· · · 0 · · · 0 · · ·
...

...
. . .

...
...

. . .
...

. . .
...

. . .

0 0 · · · 0 0 · · · Sn (2fc − f1) · · · 0 · · ·
...

...
. . .

...
...

. . .
...

. . .
...

. . .

0 0 · · · 0 0 · · · 0 · · · Sn

(

2fc − f1 − 1
Ts

)

· · ·
...

...
. . .

...
...

. . .
...

. . .
...

. . .





























.

(199)

This matrix demonstrates, perhaps more than any other, the true reason for working

in the frequency domain: it is diagonal. Had the problem been kept in the time

domain, no such simplifying assumption could be made.
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The next matrix, Ψ, also a 4Nf × Nf matrix, holds all of the pulse shaping

information regarding the signal,

Ψ =
















































Ψ (f1 − fc) 0 · · · 0

0 Ψ (f2 − fc) · · · 0
...

...
. . .

...

0 0 · · · Ψ
(
fNf

− fc

)

Ψ
(

f1 + 1
Ts

− fc

)

0 · · · 0

0 Ψ
(

f2 + 1
Ts

− fc

)

· · · 0

...
...

. . .
...

0 0 · · · Ψ
(

fNf
+ 1

Ts
− fc

)

Ψ∗ (fc − f1) 0 · · · 0

0 Ψ∗ (fc − f2) · · · 0
...

...
. . .

...

0 0 · · · Ψ∗ (fc − fNf

)

Ψ∗
(

fc − f1 − 1
Ts

)

0 · · · 0

0 Ψ∗
(

fc − f2 − 1
Ts

)

· · · 0

...
...

. . .
...

0 0 · · · Ψ∗
(

fc − fNf
− 1

Ts

)
















































.

(200)

Example functions for Ψ (f) are given in Appendix A. In general, Ψ (f) is determined

first by the signal of interest and second by the environment that it is placed within.
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The final matrix, Rφ, also 4Nf × 4Nf matrix, was used to contain all of the

complex exponentials in the subspace equations,

Rφ = ejθ


























e−j2π(f1−fc)τ 0 · · · 0 · · · · · · 0 · · · 0 · · ·
0

. . . . . .
...

...
. . .

...
. . .

...
. . .

0
. . . e

−j2π(fNf
−fc)τ 0 · · · · · · 0 · · · 0 · · ·

0 · · · 0 e−j2π(f1−fc)τe−j2π τ
Ts 0 · · · 0 · · · 0 · · ·

...
. . .

...
...

. . . . . .
...

. . .
...

. . .

0 · · · 0 0 · · · · · · e−j2θe−j2π(f1−fc)τ · · · 0 · · ·
...

...
. . .

...
...

. . .
...

. . .
...

. . .

0 · · · 0 0 · · · · · · 0 · · · e−j2θe−j2π(f1−fc)τe−j2π τ
Ts · · ·

...
. . .

...
...

. . .
...

...
. . .

...
. . .


























(201)

In particular, these exponentials depend upon both τ and θ, values which need to be

determined in order to specify Rφ. The utility of Rφ, even without knowing these

values, is that it simplifies the linear equations. Further, the property that R†
φRφ = I

is quite useful in simplifying algorithm development throughout this research.

As proved in Sec. 3.1, these matrices allow the algorithm designer to represent

the signal as a subspace in frequency.
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Appendix C. Redundancy Equations for an Offset QPSK System

The signal model studied in Sec. 3.1 assumed a Pulse Amplitude Modulated (PAM)

signal. While this modulation type may be the most common, it is not the only

digital modulation scheme. Other types of modulation exist that are not described

by this model. This appendix proves that the subspace approach is robust enough

to handle other modulation types as well, by demonstrating the extensions required

to support Offset Quadrature Phase Shift Keying (OQPSK). Further, given that the

difference between OQPSK and Minimum Shift Keying (MSK) lies in the choice of

pulse function, ψ (t), this section also extends this approach to MSK signaling as well.

By developing the extension required for OQPSK, and then showing an example of

the MMSE filter for an OQPSK system, the utility of this subspace approach to

other modulation types should become more apparent.

As with Chapter III, this derivation starts with the definition of an OQPSK

signal. In particular, an OQPSK can be represented as a sum of two PAM signals

with the second one offset by half a symbol period and multiplied by an offset

carrier [58],

s (t) = A<







Ns−1∑

n=0

dinψ (t− nTs − τ) ej(2πfct+θ)

+ j

Ns−1∑

n=0

dqnψ

(

t− nTs −
Ts

2
− τ

)

ej(2πfct+θ)







+ n (t) . (202)

The symbols have been split into two streams, din and dqn, representing the in–phase

and quadrature components respectively.

From this definition alone, an OQPSK signal can be viewed as a sum of two

BPSK signals. The first BPSK signal is identical to the model used throughout this

work, save that the symbols are now marked din. The second BPSK signal, however,

also has a time delay, Ts

2
, and a phase shift, j = ej π

2 , associated with it.
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The Fourier transform of this signal can be evaluated as before as well. Except

this time the Fourier transform is treated as the sum of two independent signals.

The Fourier transform of this signal is,

s (f) =
ejθ

2
e−j2π(f−fc)τΨ (f − fc)DI

(
ej2π(f−fc)Ts

)
(203)

+j
ejθ

2
e−j2π(f−fc)τe−j2π(f−fc)

Ts
2 Ψ (f − fc)DQ

(
ej2π(f−fc)Ts

)
+ n (t) ,

for positive frequencies, f . The two new terms in this equation, DI and DQ, corre-

spond to the z–transforms of din and dqn respectively. That is,

DI

(
ej2π(f−fc)Ts

)
,

Ns−1∑

n=0

dine
−j2π(f−fc)Tsn, (204)

and DQ

(
ej2π(f−fc)Ts

)
,

Ns−1∑

n=0

dqne
−j2π(f−fc)Tsn. (205)

Using the fact that this signal is a sum of two independent BPSK signals, the

redundancy equations can be stated as well. In particular,











Xs (f)

Xs

(

f + 1
Ts

)

X∗
s (2fc − f)

X∗
s

(

2fc − f − 1
Ts

)











= c1











Ψ (f − fc)

e−j2π τ
Ts Ψ

(

f + 1
Ts

− fc

)

e−j2θΨ (f − fc)

e−j2θe−j2π τ
Ts Ψ

(

f + 1
Ts

− fc

)











DI

(
e−j2π(f−fc)Ts

)

+ c2











Ψ (f − fc)

−e−j2π τ
Ts Ψ

(

f + 1
Ts

− fc

)

−e−j2θΨ (f − fc)

e−j2θe−j2π τ
Ts Ψ

(

f + 1
Ts

− fc

)











DQ

(
e−j2π(f−fc)Ts

)
,

(206)

where c1 =
Aejθe−j2π(f−fc)τ

2
and c2 = jc1e

−j2π(f−fc)
Ts
2 .
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Further simplifying this equation can be done by defining two new quantities,

DA

(
ej2π(f−fc)Ts

)
and DB

(
ej2π(f−fc)Ts

)
, as

DA

(
ej2π(f−fc)Ts

)
, DI

(
e−j2π(f−fc)Ts

)
+ je−j2π(f−fc)

Ts
2 DQ

(
e−j2π(f−fc)Ts

)
, (207)

and DB

(
ej2π(f−fc)Ts

)
, DI

(
e−j2π(f−fc)Ts

)
− je−j2π(f−fc)

Ts
2 DQ

(
e−j2π(f−fc)Ts

)
. (208)

Two sets of redundancy equations can then be created. The first set describes the

left half of the signal’s mainlobe,




Xs (f)

X∗
s

(

2fc − f − 1
Ts

)



 =
Aejθe−j2π(f−fc)τ

2




Ψ (f − fc)

e−j2θe−j2π τ
Ts Ψ

(

f + 1
Ts

− fc

)





×DA

(
e−j2π(f−fc)Ts

)
,

(209)

while the second set describes the right half of the signal’s mainlobe,




Xs

(

f + 1
Ts

)

X∗
s (2fc − f)



 =
Aejθe−j2π(f−fc)τ

2




Ψ
(

f + 1
Ts

− fc

)

e−j2θe−j2π τ
Ts Ψ (f − fc)





×DB

(
e−j2π(f−fc)Ts

)
.

(210)

From this point, all of the analysis proceeds as before. The signal is rewritten

as a matrix, and then the theory in Chapt. III applies.

In particular, the optimal filter for an OQPSK signal falls out in the exact same

manner as before. This time, however, the form is slightly different. The optimal
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filter for an OQPSK signal is,

HMMSE (f) =

AΨ∗ (f − fc)

2TsSn (f)

1

2
+
A2

4Ts

|Ψ (f − fc)|2
Sn (f)

+
A2

4Ts

∣
∣
∣Ψ
(

fc − f − 1
Ts

)∣
∣
∣

2

Sn

(

2fc − f − 1
Ts

)

(211)

for f ∈
(

fc − 1
Ts
, fc

)

and

HMMSE (f) =

AΨ∗ (f − fc)

2TsSn (f)

1

2
+
A2

4Ts

|Ψ (f − fc)|2
Sn (f)

+
A2

4Ts

∣
∣
∣Ψ
(

fc − f + 1
Ts

)∣
∣
∣

2

Sn

(

2fc − f + 1
Ts

)

(212)

for f ∈
(

fc, fc + 1
Ts

)

.

To demonstrate an example of this filter, the same noise and signal environment

can be applied as in Sec. 4.2.1 and shown in Fig. 14 on page 116. Under these

conditions, the optimal filter for an OQPSK signal is shown in Fig. 63. This is unlike

the BPSK MMSE filter, where notching one noise frequency required boosting three

other redundant frequencies. Instead, notching one frequency results in boosting

the only other redundant frequency. The notch frequency and boost frequency are

symmetric about either fc + 1
2Ts

or fc − 1
2Ts

depending upon which half of the band

they are in.

This appendix has shown, therefore, that the theories presented in Chapt. III

are easily extended to signaling types beyond PAM signals. The demonstration that

this filter is indeed the optimal demodulation filter for an OQPSK signal has been

rolled into further research.
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Figure 63. MMSE Filter for an OQPSK Signal
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Appendix D. Extensions to Binary Coherent Phase Signals

Laurent demonstrated that any binary coherent phase modulated signal (BCPM) can

be expressed as a pulse amplitude modulated signal [39]. This expression has been

used to recover the spectral correlation properties of such signals [44]. This section

repeats his work, in order to derive expressions for the pulse functions of binary

Coherent Phase Modulation (CPM) signals, in both time and frequency. Each of

these expressions are then illustrated, in a second section, for Binary Frequency Shift

Keyed (BFSK) systems.

D.1 General Binary Coherent Phase Modulation (BCPM)

BCPM signals are defined based upon some arbitrary time–limited function,

φ (t), whose definition depends upon the signaling type. This function is defined over

the interval t ∈ [0, Ts) only. Given this function, the signal sent over any interval

from kTs to (k + 1)Ts is,

s (t) = <
{

ejθk
ejp[k]φ(t−kTs)

√
Ts

ej2πfct

}

, (213)

where the p [k] = ±1 value is determined by which symbol is sent, and the ejθk term

is redefined to be the final phase of the previous symbol. This phase term is defined

so that the phase of the total modulation remains continuous. This paper will derive

the function, ψ (t), and the values dn, such that this same signal may be rewritten

as,1

s (t) = <
{
∑

n

dnψ (t− nTs) e
j2πfct+jθ

}

. (214)

1τ has been dropped from this equation to make it easier to determine dn, ψ (t), and Ψ (f).
Once these have been determined, τ will need to be placed back into the model before applying
any of the algorithms developed in Chap. III.
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Further, the decomposition will be accomplished on the baseband signal,

sBB (t) =
1√
Ts

ejθejp[k]φ(t−kTs), (215)

in order to simplify the analysis. Once accomplished, modulating the signal to

bandpass frequencies may be accomplished as in Chapter III.

This decomposition will be accomplished via mathematical induction. There-

fore, we start at the first symbol interval, from 0 ≤ t < Ts,

sBB (t) =
1√
Ts

ejθ0ejp[0]φ(t) (216)

=
1√
Ts

ejθ0 cos [φ (t)]

︸ ︷︷ ︸

Data Independent

+
j√
Ts

ejθ0p [0] sin [φ (t)]

︸ ︷︷ ︸

Data Dependent

. (217)

Eqn. (217) shows that this symbol can be written as the sum of two components, a

data independent component and a data dependent component. Likewise, the next

symbol from Ts ≤ t < 2Ts can also be written in terms of a data independent and a

data dependent portion,

sBB (t) =
1√
Ts

ejθ1 cos [φ (t− Ts)] +
j√
Ts

ejθ1p [1] sin [φ (t− Ts)] . (218)

Substituting the value of ejθ1 ,

ejθ1 = ejθ0 cos [φ (Ts)] + jejθ0p [0] sin [φ (Ts)] , (219)
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into this expression, this second symbol can be rewritten as,

sBB (t) =
1√
Ts

ejθ0 cos [φ (Ts)] cos [φ (t− Ts)]

+
j√
Ts

ejθ0p [0] sin [φ (Ts)] cos [φ (t− Ts)]

+
j√
Ts

ejθ1p [1] sin [φ (t− Ts)] .

(220)

Next, assume that the signal from kTs ≤ t < (k + 1)Ts can be written as,

sBB (t) =
1√
Ts

ejθ0 cosk [φ (Ts)] cos [φ (t− kTs)]

+
j√
Ts

sin [φ (Ts)] cos [φ (t− kTs)]
k−1∑

m=0

ejθmp [m] cosk−m−1 [φ (Ts)]

+
j√
Ts

ejθkp [k] sin [φ (t− kTs)] .

(221)
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This is clearly true for k = 1, as seen in Eqn. 220. Next, we show that this is true

for the interval from (k + 1)Ts ≤ t < (k + 2)Ts. Over this interval,

sBB (t) = sBB [(k + 1)Ts] e
jp[k+1]φ(t) (222)

= sBB [(k + 1)Ts]




cos [φ (t− kTs − Ts)]

+ jp [k + 1] sin [φ (t− kTs − Ts)]





=
1√
Ts

ejθ0 cosk+1 [φ (Ts)] cos [φ (t− kTs − Ts)]

+
j√
Ts

sin [φ (Ts)] cos [φ (t− kTs − Ts)]
k−1∑

m=0

ejθmp [m] cosk−m [φ (Ts)]

+
j√
Ts

sin [φ (Ts)] cos [φ (t− kTs − Ts)] e
jθkp [k]

+
j√
Ts

ejθk+1p [k + 1] sin [φ (t− kTs − Ts)]

=
1√
Ts

ejθ0 cosk+1 [φ (Ts)] cos [φ (t− kTs − Ts)]

+
j√
Ts

sin [φ (Ts)] cos [φ (t− kTs − Ts)]
k∑

m=0

ejθmp [m] cosk−m [φ (Ts)]

+
j√
Ts

ejθk+1p [k + 1] sin [φ (t− kTs − Ts)] .

(223)

Therefore, this relation holds for all time intervals, from Ts ≤ t to ∞.

Backing out the contribution from a particular value of p [k] provides both the

pulse function, ψ (t), and the appropriate data symbol, dn. In particular,

dn = jsBB (nTs) p [n] , and (224)

ψ (t) =







0 t < 0

1√
Ts

sin [φ (t)] 0 ≤ t < Ts

1√
Ts

sin [φ (Ts)] cos
(k−1) [φ (Ts)] cos [φ (t− kTs)] kTs ≤ t < (k + 1)Ts

(225)
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All that remains is to take the Fourier transform of ψ (t). This transform is

immediately simplified by two definitions,

ΨR (f) ,
1√
Ts

∫ Ts

0

cos [φ (t)] e−j2πftdt (226)

and ΨI (f) ,
1√
Ts

∫ Ts

0

sin [φ (t)] e−j2πftdt. (227)

Having these two functions simplifies the Fourier transform of Eqn. (225) into a sum

of components. In particular, the Fourier transform of the pulse function is,

Ψ (f) = ΨI (f) + ΨR (f) sin [φ (Ts)]
∞∑

k=1

e−j2πfkTs cosk−1 [φ (Ts)] (228)

= ΨI (f) + ΨR (f)
sin [φ (Ts)] e

−j2πfTs

1 − cos [φ (Ts)] e−j2πfTs
. (229)

This Fourier transform is vital to implementing the algorithms in this disser-

tation on any BCPM signal. First, from this pulse function, it is possible to define

and implement the optimal MMSE filter. Further, this pulse function in frequency

determines the form of the weights inside detectors and TDOA estimators. Neither

of these are possible without this pulse function. Two correlations, in particular, are

important. These are the zero–cycle correlation, or PSD, given by [21],

Ss (f) =
A2

4Ts

|Ψ (f − fc)|2 , (230)

and the baud rate correlation, given by [21],

S
1

Ts
s (f) = e−j2πf τ

Ts
A2

4Ts

Ψ∗
(

f − 1

2Ts

− fc

)

Ψ

(

f − 1

2Ts

− fc

)

. (231)

Examples of each of these pulse functions will be provided in the next section for

BFSK systems.
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Finally, it should be noted that this PAM decomposition has been demon-

strated by others for arbitrary CPM modulation schemes—not just binary [42].

D.2 Binary Frequency Shift Keyed Systems

One important subclass within Binary Coherent Phase Systems is that of Bi-

nary Frequency Shift Keyed (BFSK) systems. Because this is an important subclass,

this section accomplishes the PAM decomposition above for BFSK systems. Figures,

presented throughout, will illustrate the shape of the pulse function, as well as its

power and cross power spectral densities in frequency.

The first step to any CPM analysis, however, is to define the phase function,

φ (t). In the case of a binary frequency shift keyed system, the system is either

sending a tone at fc + h
2Ts

or at fc − h
2Ts

. That means the phase function is linear,

φFSK (t) =
πh

Ts

t. (232)

The parameter, h, is called the modulation index.

Using the formula given in Eqn. (225), it is possible to plot these pulse func-

tions, as in Fig. 64, for different values of the modulation index, h. This figure

shows that, for h = 0.5, the pulse function extends over a full two symbols. Larger

modulation indexes, such as h = 0.6 and h = 0.7, only cause this pulse function to

overlap more symbols.
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Figure 64. BFSK Pulse Functions

In order to examine this pulse function in frequency, the functions ΨI (f) and

ΨR (f) must first be determined. For BFSK systems, ΨI (f) and ΨR (f) are,

ΨI (f) = − j

√
Ts

2
e−jπ(2fTs−h)sinc

[

fTs −
h

2

]

+ j

√
Ts

2
e−jπ(2fTs+h)sinc

[

fTs +
h

2

]

,

(233)

and

ΨR (f) =

√
Ts

2
e−jπ(2fTs−h)sinc

[

fTs −
h

2

]

+

√
Ts

2
e−jπ(2fTs+h)sinc

[

fTs +
h

2

]

.

(234)

Once ΨI and ΨR are known, it becomes a simple matter to calculate the spectral

correlation functions of a BFSK signal.

The first spectral correlation function, the PSD, is shown in Fig. 65. This figure
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Figure 65. BFSK Power Spectral Density

shows that as the modulation index increases, the signal goes from being focused

in the center to being focused near fc ± 1
2Ts

. Looking at this same plot in decibels,

Fig. 66, shows that as the signal widens the null–to–null bandwidth, (2 − h) 1
Ts

,

decreases while the sidelobes increase as well.

The second spectral correlation function, the baud rate correlation, is shown

in Fig. 67. Some important features need to be noted from this function. First, the

zero crossings near the center occur at ± (1 − h). Second, as the modulation index

increases, the edges of the signal become more and more highly correlated. At the

same time the edges becomes more correlated, however, the sidelobes increase as

well. Third, unlike the common pulse for phase shift keyed systems, the spectral

correlation function does not go through zero at fc ± 1
2Ts

(see Fig. 62). Practically,

this makes it more difficult to arbitrarily declare an FSK signal to be bandlimited.

This appendix has presented Laurent’s decomposition for binary CPM signals.

This presentation derived the pulse functions, in time and frequency, that can be used
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with this description, together with the respective data symbols. These functions

were then applied to BFSK systems to illustrate how they could be used to derive

spectral correlations.

This representation connects BCPM signals with the rest of this research. This

means that the MMSE filters presented earlier, together with the cyclic detectors

and maximum likelihood TDOA estimators, all apply for BCPM signals. No modi-

fications are required to these techniques to extend them to BCPM signals.
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Appendix E. Differentiating with Respect to a Complex Vector

The development of d̂MLE, presented on page 72, depended upon taking the gradient

of a function with respect to the conjugate of a vector quantity. Such gradients

are not truly defined because the underlying conjugation operator is non–analytic.

The main text has taken the approach, presented in [64], that such gradients can

be calculated under certain circumstances. Although the simplicity of this approach

makes it desirable, the fact that conjugation is non–analytic leaves the approach

questionable. Therefore this appendix is offered to answer the question, what is the

true maximum likelihood estimate of d? As this appendix will show, the maximum

likelihood estimate of d can be found using real vectors, thus avoiding the whole

issue of taking the derivative of a non–analytic function.

Let x and d be complex vectors, Rn and Rd be valid covariance matrices, and

let C be an arbitrary, possibly low rank, matrix. Finding the maximum likelihood

estimate of d is then equivalent to maximizing the expression,1

L = − (x − Cd)† R−1
n (x − Cd) − d†Rdd, (235)

with respect to the unknown parameter, d. Since Rn and Rd are valid covariance

matrices, they must be conjugate symmetric, R†
n =

(
RT

n

)∗
. That means that the

sum, Eqn. (235), above, must be real. As a real function, its derivative with respect

to any individual element in d is well defined.

Therefore, maximizing L over d is equivalent to maximizing over both its real

and imaginary components. By defining dr = <{d} and di = ={d} such that,

d = dr + jdi, (236)

1In Sec. 3.1, the expression involved A
2
RφΨmd and not C. The slight change of notation has

been made here for simplicity only.
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each can be maximized independently. This leaves dr and di real vectors and allows

writing conjugation explicitly.

Since dr is a vector, vector gradient formulas are applicable. The following are

defined for real vectors, dr (or equivalently di).

∇dr
dT

r x = x (237)

∇dr
x†dr = x∗ (238)

∇dr
dT

r Rndr = 2Rndr (239)

Using these formulas, the location where ∇dr
L = ∇di

L = 0 can be determined,

and the vector d̂ can be defined as the complex vector whose real and imaginary

components are solutions to this equation.

To get there, the components of L will be examined by breaking up the con-

jugation and expanding terms. This results in the following expression,

L = − (x − Cdr − jCdi)
† R−1

n (x − Cdr − jCdi) − (dr + jdi)
† R−1

d (dr + jdi)

(240)

= − x†R−1
n x

+ dT
r C†R−1

n x + x†R−1
n Cdr

− jdT
i C†R−1

n x + jx†R−1
n Cdi

+ jdT
i C†R−1

n Cdr − jdT
r C†R−1

n Cdi

− dT
r C†R−1

n Cdr − dT
i C†R−1

n Cdi

− dT
r R−1

d dr − dT
i R−1

d di

− jdT
r R−1

d di + jdT
i R−1

d dr

(241)

From these terms, the gradient of L with respect to dr and di can be examined.
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First, looking at the gradient of L with respect to dr, we get

∇dr
L = C†R−1

n x +
(
C†R−1

n x
)∗

+ j
(
C†R−1

n Cdi

)∗ − jC†R−1
n Cdi

−jR−1
d di + j

(
R−1

d di

)∗ − 2C†R−1
n Cdr − 2R−1

d dr. (242)

Solving for ∇dr = 0 yields,

∇dr
L = 2<

{
C†R−1

n x
}

+ 2=
{
C†R−1

n C + R−1
d

}
di − 2

(
C†R−1

n C + R−1
d

)
dr

(243)

d̂r =
(
C†R−1

n C + R−1
d

)−1 [<
{
C†R−1

n x
}

+ =
{
C†R−1

n C + R−1
d

}
di

]
.

(244)

One particular term in this expression can be simplified here. That is

=
{
C†R−1

n C + R−1
d

}
must be zero. Consider first, that R−1

d is a diagonal covariance

matrix (see Sec. 3.1). Thus it must by necessity be real. That leaves C†R−1
n C. This

term is real as well, but proving it is slightly more difficult and involves examining

first the single sensor case and then the multi–sensor case.

In the single sensor case, C = A
2
RφΨ, and Rn is diagonal. When these terms

are expanded out, they form a sum of positive numbers along each diagonal element,

depending upon the modulation used and the number of redundancies. For the

BPSK signal of interest, these terms turn into the sum,

(
A2

4
Ψ†R†

φR
−1
n RφΨ

)

ii

=
A2

4

|Ψ (fi − fc)|2
Sn (fi)

+
A2

4

∣
∣
∣Ψ
(

fi + 1
Ts

− fc

)∣
∣
∣

2

Sn

(

fi + 1
Ts

)

+
A2

4

|Ψ (fc − fi)|2
Sn (2fc − fi)

+
A2

4

∣
∣
∣Ψ
(

fc − fi − 1
Ts

)∣
∣
∣

2

Sn

(

2fc − fi − 1
Ts

) ,

(245)
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which is clearly real.

The multi–sensor case, however, is a little bit more complicated. To show that

C†R−1
n C is a real diagonal matrix requires looking at Sα

ninj
(f). This function is

related to the cross spectral density between the signals ni and nj. In particular,

Sα
ninj

(f) , lim
T→∞

1

T
E
{

N∗
i

(

f − α

2

)

T
Nj

(

f +
α

2

)

T

}

, (246)

where Ni (f) and Nj (f) are the time–limited Fourier transforms of the noise plus

interference on the i and j sensors respectively. When these terms are strictly station-

ary, regardless of any correlations between the sensors, then this function is strictly

zero for all α 6= 0. Going one step further, any linear combination of the sensors i

and j will be uncorrelated for all frequency pairs but zero. Stated in equation form,

for arbitrary constants ci and cj and α 6= 0,

lim
T→∞

E
{[

ciNi

(

f − α

2

)

T
+ cjNj

(

f − α

2

)

T

]∗ [
ciNi

(

f +
α

2

)

T
+ cjNj

(

f +
α

2

)

T

]}

= c2iS
α
ni

(f) + c2jS
α
nj

(f) + cicjS
α
ninj

(f) + cicjS
α
njni

(f)

= 0. (247)

Carrying this back to C†R−1
n C, this means that prior to combining the redundant

frequency components, the middle terms of this matrix are diagonal as well. Thus, in

all stationary multi–sensor cases, C†R−1
n C will refer to a diagonal covariance matrix.

Since diagonal covariance matrices are real, this function must be real as well.

Now, using the fact that =
{
C†R−1

n C
}

is zero, the maximum likelihood esti-

mate of dr is,

d̂r =
(
C†R−1

n C + R−1
d

)−1 <
{
C†R−1

n x
}
. (248)
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The process to maximize L is repeated here for di, and

∇di
L = −jC†R−1

n x + j
(
C†R−1

n x
)∗

+ jC†R−1
n Cdr − j

(
C†R−1

n Cdr

)∗

+jR−1
d dr − j

(
R−1

d

)∗
di − 2C†R−1

n Cdi − 2R−1
d di

= 2=
{
C†R−1

n x
}
− 2=

{
C†R−1

n C + R−1
d

}
dr − 2

(
C†R−1

n C + R−1
d

)
di.

(249)

Solving for ∇di = 0 yields,

d̂i =
(
C†R−1

n C + R−1
d

)−1 [=
{
C†R−1

n x
}
−=

{
C†R−1

n C + R−1
d

}
dr

]
,

=
(
C†R−1

n C + R−1
d

)−1 =
{
C†R−1

n x
}
. (250)

Adding these estimates together yields the theoretical result,

d̂ =
(
C†R−1

n C + R−1
d

)−1
C†R−1

n x. (251)

This result is identical to the one obtained in Sec. 3.2 by taking the gradient

with respect to a complex vector quantity. This development, however, pulls out

some assumptions that need to be made about the signal and noise covariances in

order for this development to be valid. The first is that the signal covariance, Rd,

is diagonal. This is equivalent to saying that the dn’s form a discrete stationary

sequence. The second is that the matrix, C†R−1
n C, is also diagonal. This is also

equivalent to saying that linear combinations of the noise and interference made

from any of the input sensors also form a stationary sequence. Both assumptions

reduce to stationarity. If the symbol estimates, after sampling and downconversion,

are stationary then this estimate holds.
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Appendix F. Theoretical verses Measured Detector Performance

Several approximations were presented in Sec. 2.4.1 in order to predict the perfor-

mance of a radiometer in a white noise environment. This appendix revisits the

particular approximation given in Eqn. (34), demonstrating that the radiometer de-

tector performance shown earlier, in Fig. 49, at least comes close to matching its

theoretical prediction.

The first step to calculating the theoretical performance of a radiometer us-

ing Eqn. (34), is to provide definitions for the values within that equation. These

parameters, found in Table 8 on page 164, are re–iterated here for completeness.

First, the burst length, T = NsTs, is 4096 samples. Second, the null–to–null band-

width, W = 2 1
Ts

, is simply 0.125 cycles per sample. Together these create a time–

bandwidth product, TW , of 512 (no units). Finally, recognizing that the ratio, E
NoTW

,

in Eqn. (34) is simply another expression for the SNR in the burst, the probability

of detection is then simply given by,

PD ≈ Q
[

Q−1 (PFA) −
√
TWSNR

]

. (252)

Given that this theoretical performance only becomes valid according to the central

limit theorem as the time–bandwidth product, TW , increases towards infinity, there

is no reason to expect a simulated radiometer with a smaller time–bandwidth product

to exactly match this performance.

Now that all of the parameters in Eqn. (252) are known, all that remains is to

compare this prediction to those shown earlier. Fig. 68 on the next page tells this

story. This figure shows the performance of both the radiometer and the multicycle

detector from the white noise simulation presented in Sec. 4.4, together with the

predicted radiometer performance from Eqn. (252). As the theoretical prediction is

only valid for large time–bandwidth products, Fig. 68 demonstrates a modest match
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Figure 68. Comparing simulated performance to theory

for a smaller time–bandwidth product. This commends the validity of the tests

presented in Sec. 4.4.

216



Appendix G. Deriving the Cyclic Ratio Detector

This appendix is a set of notes being used to derive a cyclic ratio detector. As with

the other appendixes, the intention here is to be complete. Thus while the main

documents skips steps for space, every step will be presented here.

Deriving the ratio detector requires starting at the likelihood function,

L , ln fH1
(x,d) (253)

= −mNf +Nf

2
ln (2π) − mNf

2
lnσ2 − 1

2
ln det |Rn| −

1

2
ln det |Rd| (254)

− 1

2σ2

(

x − A

2
RφΨd

)†
R−1

n

(

x − A

2
RφΨd

)

− 1

2
d†R−1

d d

and first deriving maximum likelihood estimates for d,

∇d†L =
A

2σ2
R†

φΨ
†R−1

n x − A2

4σ2
Ψ†R†

φR
−1
n RφΨd − R−1

d d (255)

=
A

2σ2
R†

φΨ
†R−1

n x −
(
A2

4σ2
Ψ†R−1

n Ψ + R−1
d

)

d (256)

d̂MLE =
A

2σ2

(
A2

4σ2
Ψ†R−1

n Ψ + R−1
d

)−1

Ψ†R†
φR

−1
n x (257)

and σ2,

∂

∂σ2
L = −mNf

2σ2
+

1

2σ4

(

x − A

2
RφΨd

)†
R−1

n

(

x − A

2
RφΨd

)

(258)

σ̂2
MLE

=
1

mNf

(

x − A

2
RφΨd

)†
R−1

n

(

x − A

2
RφΨd

)

(259)

=
1

mNf

(

x − A

2
RφΨdMLE

)†
R−1

n

(

x − A

2
RφΨdMLE

)

(260)

217



If you simplify this expression for σ2, by plugging in the ML estimate for d, the

following is the resulting estimator,

σ̂2
MLE

=
1

mNf












x†R−1
n x

− 2 A2

4σ2 x
†R−1

n RφΨ
(

A2

4σ2Ψ
†R−1

n Ψ + R−1
d

)−1

Ψ†R†
φR

−1
n x

+ A4

16σ4 x
†R−1

n RφΨ
(

A2

4σ2Ψ
†R−1

n Ψ + R−1
d

)−1

× Ψ†R−1
n Ψ

(
A2

4σ2Ψ
†R−1

n Ψ + R−1
d

)−1

Ψ†R†
φR

−1
n x












.

(261)

This estimate is still dependent upon σ2, but such is unavoidable.

As in Sec. 3.4.2, define Ao to be A
2σ

to decouple the expressions for σ̂2
MLE

and

d̂MLE. Then,

d̂MLE =
Ao

σ

(
A2

oΨ
†R−1

n Ψ + R−1
d

)−1
R†

φΨ
†R−1

n x, and (262)

σ̂2
MLE

=
1

mNf











x†R−1
n x

− 2A2
ox

†R−1
n RφΨ

(
A2

oΨ
†R−1

n Ψ + R−1
d

)−1
Ψ†R†

φR
−1
n x

+ A4
ox

†R−1
n RφΨ

(
A2

oΨ
†R−1

n Ψ + R−1
d

)−1

× Ψ†R−1
n Ψ

(
A2

oΨ
†R−1

n Ψ + R−1
d

)−1
Ψ†R†

φR
−1
n x











.

(263)

Recall the definition of a locally most powerful detector. Such a detector is

defined, for a generic parameter A near A = 0, by

y (x) ,

∂
∂A
f (x|A)

∣
∣
A=0

f (x|0) . (264)
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Using f (x) = exp {L}, this detection statistic is easily simplified in terms of L,

∂
∂A
f (x|A)

∣
∣
A=0

f (x|0) =
∂

∂A
L
∣
∣
∣
∣
A=0

(265)

In this particular case, we would like to find the optimal detector near A2
o = 0.

Plugging in values, we see that this detector only depends upon three terms from

the original PDF. Of these three terms, the first term (below) is, by nature of the

ML estimate from which it was derived, constant and not dependent upon Ao at all.

∂

∂A2
o

L =
∂

∂A2
o








− mNf σ̂2
MLE

2σ̂2
MLE

− 1
2
d̂
†
MLER

−1
d d̂MLE

− mNf

2
ln σ̂2

MLE








∣
∣
∣
∣
∣
∣
∣
∣
∣
Ao=0
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The second two expand to yield the detector of interest,

∂

∂A2
o

L =
∂

∂A2
o




− A2

o

2σ̂2
MLE

x†R−1
n RφΨ

(
A2

oΨ
†R−1

n Ψ + R−1
d

)−1

×R−1
d

(
A2

oΨ
†R−1

n Ψ + R−1
d

)−1
Ψ†R†

φR
−1
n x





∣
∣
∣
∣
∣
∣
Ao=0

− mNf

2

∂
∂A2

o
σ̂2

MLE

∣
∣
∣
Ao=0

1
mNf

x†R−1
n x

=−
x†R−1

n RφΨRdΨ
†R†

φR
−1
n x

2 1
mNf

x†R−1
n x

+
mNf

2

2
mNf

x†R−1
n RφΨRdΨ

†R†
φR

−1
n x

1
mNf

x†R−1
n x

(267)

=
mNf

2

x†R−1
n RφΨRdΨ

†R†
φR

−1
n x

x†R−1
n x

(268)

Removing the unnecessary scale constant from this detector results in the detector

shown in Eqn. (176) on page 101,

yRATIO (x) =
x†R−1

n RφΨRdΨ
†R†

φR
−1
n x

x†R−1
n x

(269)
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Appendix H. Handling Angles in BPSK Detectors

One particular problem makes implementing the BPSK multicycle detector difficult,

and that is determining the angles τ and θ. This problem is known, and has been

lamented before,

Unfortunately, even if the modulation type and its parameter values
(e.g., carrier frequency and chip rate for a BPSK signal) are known, the
optimum multicycle detector cannot be implemented without knowledge
of the phase of the signal because the quantities Sα

s (f) depend on this
phase. [17, p. 903]

Yet in order to implement the multicycle detector presented in Sec. 4.4, these angles

needed to be determined. This appendix details the method which was used in this

research to determine those angles.

Starting from the definition of the multicycle detector, the detection statistic

is,

yMCYC (x) = max
τ,θ

x†R−1
n RφΨRdΨ

†R†
φR

−1
n x. (270)

This expression can be broken down into components, in order to separate and

simplify the problem of determining τ and θ. Doing this results in an expression

composed of five separate terms,

yMCYC (x) = C0 + max
τ,θ

2<







ej2π τ
TsC1 + ej2θC2

+ ej2θej2π τ
TsC3 + ej2θe−j2π τ

TsC4






, (271)
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where the Cis are independent of τ and θ,

C0 =
∑

fi

|Ψ (fi − fc)|2 |X(fi)|2
S2

n(fi)

+
∣
∣
∣Ψ
(

fi + 1
Ts

− fc

)∣
∣
∣

2 |X(fi+
1

Ts
)|2

S2
n(fi+

1
Ts

)

+ |Ψ (fi − fc)|2 |X(2fc−fi)|2
S2

n(2fc−fi)

+
∣
∣
∣Ψ
(

fi + 1
Ts

− fc

)∣
∣
∣

2 |X(2fc−fi− 1
Ts

)|2
S2

n(2fc−fi− 1
Ts

)

(272)

C1 =
∑

fi

Ψ (fi − fc) Ψ∗
(

fi + 1
Ts

− fc

)
X∗(fi)X(fi+

1
Ts

)
Sn(fi)Sn(fi+

1
Ts

)

+ Ψ (fi − fc) Ψ∗
(

fi + 1
Ts

− fc

)
X(2fc−fi)X

∗(2fc−fi− 1
Ts

)
Sn(2fc−fi)Sn(2fc−fi− 1

Ts
)

(273)

C2 =
∑

fi

|Ψ (fi − fc)|2 X∗(fi)X
∗(2fc−fi)

Sn(fi)Sn(2fc−fi)

+
∣
∣
∣Ψ
(

fi + 1
Ts

− fc

)∣
∣
∣

2 X∗(fi+
1

Ts
)X∗(2fc−fi− 1

Ts
)

Sn(fi+
1

Ts
)Sn(2fc−fi− 1

Ts
)

(274)

C3 =
∑

fi

Ψ (fi − fc) Ψ∗
(

fi +
1

Ts

− fc

) X∗ (fi)X
∗
(

2fc − fi − 1
Ts

)

Sn (fi)Sn

(

2fc − fi − 1
Ts

)

(275)

and C4 =
∑

fi

Ψ

(

fi +
1

Ts

− fc

)

Ψ∗ (fi − fc)
X∗
(

fi + 1
Ts

)

X∗ (2fc − fi)

Sn

(

fi + 1
Ts

)

Sn (2fc − fi)
.

(276)

While each of these terms can be used individually as a single cycle detector, using

them together requires finding the maximum of Eqn. (271).

Factoring ej2θ from the latter three terms in this expression,

yMCYC (x) = C0 + max
τ,θ

2<
{

ej2π τ
TsC1

}

+ 2<
{

ej2θ
(

C2 + ej2π τ
TsC3 + e−j2π τ

TsC4

)}

,

(277)
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yields an equation that is easily maximized for θ. Thus,

yMCYC (x) = C0 + max
τ

2<
{

ej2π τ
TsC1

}

+
∣
∣
∣C2 + ej2π τ

TsC3 + e−j2π τ
TsC4

∣
∣
∣ , (278)

is the maximum value across all θ.

The problem of maximizing this expression over all τ remains. Since no an-

alytical solution appears possible at this point, numerical methods must be used

to solve this equation. One useful numerical method is Newton’s method for root–

finding [1, 48]. This method can be used to find the value of τ which makes,

∂

∂τ
yMCYC (x) = 0. (279)

To use Newton’s method, however, an initial choice needs to be made for τ . Calling

this initial estimate τ̂0, and recognizing that C1 is going to be the largest term in

this expression,

τ̂0 ,
C∗

1

|C1|
, (280)

appears to be a particularly good choice.

From here, the next step is to apply Newton’s method to the derivative,

∂

∂τ
yMCYC (x) = −2

2π

Ts

=
{

ej2π τ
TsC1

}

− 2π

Ts

=
{

ej2π τ
Ts [C∗

2C3 + C2C
∗
4 ] + 2ej4π τ

TsC∗
4C3

}

∣
∣
∣C2 + ej2π τ

TsC3 + e−j2π τ
TsC4

∣
∣
∣

,

(281)
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since it will be zero at the location of any maximum. To drive a solution towards

this root, the second derivative with respect to τ is also required,

∂2

∂τ 2
yMCYC (x) = − 2

(
2π

Ts

)2

<
{

ej2π τ
TsC1

}

−
(

2π

Ts

)2 <
{

ej2π τ
Ts [C∗

2C3 + C2C
∗
4 ] + 4ej4π τ

TsC∗
4C3

}

∣
∣
∣C2 + ej2π τ

TsC3 + e−j2π τ
TsC4

∣
∣
∣

− 3

(
2π

Ts

)2 =
{

ej2π τ
Ts [C∗

2C3 + C2C
∗
4 ] + 2ej4π τ

TsC∗
4C3

}2

∣
∣
∣C2 + ej2π τ

TsC3 + e−j2π τ
TsC4

∣
∣
∣

3 .

(282)

Then, according to Newton’s method, the following expression should converge to

the nearest root [1],

τ̂n+1 = τ̂n −
∂
∂τ
yMCYC (x)

∂2

∂τ2yMCYC (x)
. (283)

One problem remains, however, with this method: it doesn’t work. While it

does correctly find a root in ∂
∂τ
yMCYC (x), it does not necessarily find the maximum.

To make this solution converge to a maximum, one slight modification is made to

Newton’s formula,

τ̂n+1 = τ̂n +
∂
∂τ
yMCYC (x)

∣
∣ ∂2

∂τ2yMCYC (x)
∣
∣
. (284)

This expression always converges to a maximum value. While its convergence might

not start out very fast, and indeed it does not, typically within ten iterations the

expression for τ , and likewise for yMCYC (x), has converged enough to be usable.

Thus, from Eqn. (284), we have an expression for τ and from Eqn. (278),

we have a maximum likelihood estimate for θ. Putting these two estimates into

Eqn. (278) provides an estimate of yMCYC (x) which can be used in a detector. This
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method for dealing with the nuisance parameters τ , and θ was used in the detection

tests of Sec. 4.4. The two facts that the multicycle detector outperformed all other

detectors when the signal was present, and that it rejected more interference than

the radiometer when the signal was not present, both commend the capability and

utility of this method.
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Appendix I. Subspace Detection

All of the cyclostationary detectors, such as those presented in in Sec. 3.4.2 as well

as those developed in [17], are locally most powerful detectors. That means that,

when the signal is weak, no other detector has a greater probability of detection for

a fixed probability of false alarm [13]. Yet as the signal strength increases, no such

claim to optimality can be made. A more desirable detector would be a uniformly

most powerful (UMP) detector—one that has a greater probability of detecting the

signal than every other detector independent of the strength of the signal.

From linear subspace theory, Scharf and Friedlander have developed matched

subspace detectors that are UMP regardless of the strength of the signal within the

subspace [54]. These detectors are very similar in form to the detectors presented

in Sec. 3.4. Further, they are provably the optimal detectors for detecting unknown

signals lying within a known subspace—regardless of signal strength. This section

presents these matched subspace detectors, and tests them in the signal environment

to determine which detectors, whether the subspace detectors or the locally optimal

cyclostationary detectors, are truly optimal.

The subspace detectors follow after changing two assumptions. The first is

that the subspace containing the signal, including Rφ and thus τ and θ, is fully

known. The second changed assumption is that d is unknown and deterministic, as

opposed to random vector with a known distribution. Under these assumptions, the

hypothesis test is framed as,

H0 : x ∼ N
(
0, σ2Rn

)
(285)

versus H1 : x ∼ N
(
A

2
RφΨd, σ2Rn

)

, A > 0. (286)

The most obvious difference between this hypothesis test and those in Eqns. (166)

and (167), is that the data vector, d, no longer has a distribution associated with it.
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A more subtle difference is that the matrix Rφ is fully specified in this test. From

this hypothesis test, the UMP detector for determining if A > 0 is given by [54]

ySUBS-KNOWN (x) = x†R−1
n RφΨ

(
Ψ†R−1

n Ψ
)−1

Ψ†R†
φR

−1
n x. (287)

Using the same hypotheses, only this time letting σ2 be unknown, a similar detector

to yRATIO results,

ySUBS-KNOWN,RATIO (x) =
x†R−1

n RφΨ
(
Ψ†R−1

n Ψ
)−1

Ψ†R†
φR

−1
n x

x†R−1
n x

. (288)

These subspace detectors are desirable because they are UMP detectors. That

is, they are provably the optimal detectors for detecting an unknown signal, regard-

less of its strength, in a known interference environment. Indeed, these detectors

should be optimal for all values of A whenever Rφ is known.

In order to make these optimal detectors usable, however, some choice must

be made for θ and τ . Since the detectors above were created by maximizing the

likelihood ratio, an appropriate set of estimators would be the maximum likelihood

estimators. These estimators are the ones that, in this case, also maximize the

detection statistics. Thus, a search must be made over all θ and τ to maximize the

detection statistic, thus creating estimates of these parameters. Once τ and θ have

been estimated, these detectors may be used. In reality, however, searching over θ

and τ produces new detectors,

ySUBS (x) = max
φ

x†R−1
n RφΨ

(
Ψ†R−1

n Ψ
)−1

Ψ†R†
φR

−1
n x, and (289)

ySUBS-RATIO (x) = max
φ

x†R−1
n RφΨ

(
Ψ†R−1

n Ψ
)−1

Ψ†R†
φR

−1
n x

x†R−1
n x

. (290)
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Figure 69. Subspace Detector Performance in White Noise

These new detectors are applicable to the problem of detecting an unknown signal

in known noise, yet they are no longer the optimal detectors presented by Scharf and

Friedlander.

Further, given that the detectors developed in Sec. 3.4 were developed under

the assumption that the data vector, d, was Gaussian, and given that subspace

detectors have no such caveats, one might hypothesize that uniformly most power-

ful subspace detectors would outperform the locally most powerful cyclostationary

detectors for small numbers of symbols where the Gaussian assumption is most sus-

pect. Therefore, Fig. 69 plots the SNR required to detect a signal, with PD = 0.9

and PFA = 0.1, as a function of the number of symbols. Unlike previous detection

performance diagrams, the best detector in this diagram is the one with the lowest

required SNR.

From this diagram, it is difficult to tell which detector is better. Indeed, for

large numbers of symbols, Ns > 16, the multicycle and multicycle ratio detectors
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Figure 70. Detection Functions for a White Noise Signal

differ only in the third decimal place from their subspace counterparts. In this

third decimal place, however, the optimal detectors are the locally most powerful

cyclostationary detectors.

Fig. 69, however, does not tell the whole story. Comparing the matrix internal

to the subspace detector under white noise conditions,

QSUBS = RφΨ
(
Ψ†R−1

n Ψ
)−1

Ψ†R†
φ, (291)

with the matrix internal to the multicycle detector,

QMCYC = RφΨRdΨ
†R†

φ, (292)

reveals no significant differences. For reference, the diagonal and off diagonals of

these matrices, called detection functions here, are plotted in Fig. 70, and separated
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Figure 71. Detection Functions for a Colored Noise Signal

according to cycle frequencies that they correspond to. Since these internal detection

functions are near identical, this test may be ruled inconclusive.

If, on the other hand, the noise were colored instead of white, then these matrix

diagonals would be quite different from each other. Using the colored noise spike

introduced in Sec. 4.2.1, the colored noise detection functions are shown in Fig. 71.

In this case the equalizer within the subspace detector,
(
Ψ†R−1

n Ψ
)
, significantly

differentiates it from the multicycle detector.

Yet, in terms of performance, there is little measurable difference between their

performance under these colored noise conditions, shown in Fig. 72, and their perfor-

mance under the white noise conditions in Fig. 69. As before, the optimal detector is

the multicycle detector. Also, as before, the difference between the detection SNRs

of these two detectors is in the third decimal place once Ns > 16. Unlike before,

however, the subspace detectors clearly outperform the multicycle detectors when

Ns ≤ 10.
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Figure 72. Subspace Detector Performance in Colored Noise

These colored noise results validate the earlier hypothesis: The optimal de-

tector for very small numbers of symbols is indeed the subspace detector. Under

these circumstances, approximating d as a Gaussian is questionable. The fact that

the multicycle detectors work so well for large numbers of symbols can easily be

attributed to the fact that d can be validly modeled as a Gaussian random vector

in frequency when the number of symbols is large. This Gaussian data model, while

not perfect, is better than the subspace model in which no information at all is

known about d. Therefore, despite the fact that subspace detectors are provably the

optimal detectors for detecting an unknown signal in a known subspace, they are not

the optimal detectors for detecting PAM waveforms of moderate duration, Ns > 10.
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Appendix J. Deriving the Cramér–Rao Bounds

This appendix presents much of the mathematical work behind the Cramér–Rao

bound estimates presented within the text. As with deriving the Cyclic Ratio detec-

tor, this section is intended to be as complete as possible without skipping any steps.

The unfortunately result is that the accompanying text may be somewhat terse.

Prior to beginning, two fundamental definitions are required. These are,

FδRφ , − 1

j2π

∂

∂τ
Rφ =











(fi − fc) 0
. . .

(

fi + 1
Ts

− fc

)

0
. . .











Rφ

(293)

and F∆Dk , − 1

j2π

∂

∂τdk

Dk =











fi 0
. . .

fi + 1
Ts

0
. . .











Dk = (Fδ + fcI)Dk.

(294)

Using these definitions, the derivatives of Rφ and Dk can be taken quickly and easily,

∂

∂τ
Rφ = −j2πFδRφ,

∂

∂τ
R†

φ = j2πFδR
†
φ,

∂

∂τ
Dk = −j2πF∆Dk, and

∂

∂τ
D†

k = j2πF∆D†
k

Using these formulas, it is possible to keep the expressions for the Cramér–Rao bound

simple, and in matrix form.
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The Cramér–Rao bound for a vector of parameters, such as θ ,

[

τ A d

]T

,

is well known, and given by [53]

Ex

{
−∇2

θL
}−1

. (295)

The expression, Ex {−∇2
θL} is known as the Fisher Information Matrix (FIM). The

first step to evaluating any Cramér–Rao bound is to evaluate this matrix. Only then

can it be inverted.

In this case, however, a related quantity will be evaluated leading to the Mod-

ified Cramér–Rao Bound (MCRB). Instead of taking the expectation over x, the

expectation will be taken over both x and d, resulting in a modified FIM. The

resulting bound is provably lower than the true CRB, and easier to evaluate [9].

The purpose of this appendix is to first evaluate the modified FIM, and second

to invert it to get expressions for the Cramér–Rao bound. To do this, this appendix

is broken into two sections. The first deals with the Cramér–Rao bounds for the

unknown parameters on a single sensor. The second section deals with evaluating

the FIM for a multiple sensor case. This latter section will conclude with Cramér–

Rao bound for the two sensor TDOA problem when τ must be estimated as well.
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J.1 Single Sensor Bounds

Starting with the second derivative of L for τ , we get the following expressions,

L = −mNf +Nf

2
ln (2π) − 1

2
ln detRn − 1

2
ln detRd (296)

−1

2

(

x − A

2
RφΨd

)†
R−1

n

(

x − A

2
RφΨd

)

− 1

2
dR−1

d d (297)

∂L
∂τ

=
A

4

∂

∂τ

[

x†R−1
n RφΨd + d†Ψ†R†

φR
−1
n x

]

(298)

= j2π
A

4

[

−x†R−1
n FδRφΨd + d†Ψ†R†

φFδR
−1
n x

]

(299)

∂2L
∂τ 2

= −4π2A

4

[

x†R−1
n F2

δRφΨd + d†Ψ†R†
φF

2
δR

−1
n x

]

(300)

= −2π2A<
{
x†R−1

n F2
δRφΨd

}
(301)

Placing these expressions into the expression for the FIM provides what could be

the MCRB for τ (once inverted),

E
{

−∂
2L
∂τ 2

}

= A2π2E
{

d†Ψ†R†
φR

−1
n F2

δRφΨd
}

(302)

= A2π2E
{
d†Ψ†R−1

n F2
δΨd

}
(303)

= A2π2tr
{
ΨRdΨ

†R−1
n F2

δ

}
. (304)

The problem with stopping here is that τ is only one of the unknowns in a single

sensor problem. d and A must be estimated as well.
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Therefore, we turn our attention next to the unknown data, d,

∇d†L =
A

4
Ψ†R†

φR
−1
n x −

(
A2

4
Ψ†R−1

n Ψ + R−1
d

)

d (305)

E
{
−∇2

dL
}

=
A2

4
Ψ†R−1

n Ψ + R−1
d (306)

∂

∂τ
∇d†L = j (2π)

A

2
Ψ†R†

φFδR
−1
n x (307)

E
{

−∂∇d†L
∂τ

}

= −j (2π)
A

2
Ψ†R†

φFδR
−1
n E {x} (308)

= −j (2π)
A

2
Ψ†R†

φFδR
−1
n

A

2
RφΨE {d} (309)

= 0. (310)

Finally, we turn our attention to the unknown amplitude,

∂2L
∂A∂τ

= jπ
1

2

[

−x†R−1
n FδRφΨd + d†Ψ†R†

φFδR
−1
n x

]

(311)

E
{

− ∂2L
∂A∂τ

}

= jπ
A

4
Ed

{

−d†Ψ†R†
φR

−1
n FδRφΨd + d†Ψ†R†

φR
−1
n FδRφΨd

}

(312)

= 0 (313)

∂L
∂A

=
1

4

[

x†R−1
n RφΨd + d†Ψ†R†

φR
−1
n x

]

− A

4
d†Ψ†R−1

n Ψd (314)

E
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−∂
2L
∂A2

}

=
1

4
tr
{
ΨRdΨ

†R−1
n

}
(315)

∂∇d†L
∂A

=
1

4
Ψ†R†

φR
−1
n x − A

4
Ψ†R−1

n Ψd (316)

E
{

−∂∇d†L
∂A

}

= 0 (317)
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So there are no interdependencies and the Cramér–Rao bounds are quickly

calculated,

MCRB (τ) =
1

A2π2

1

tr {ΨRdΨ†R−1
n F2

δ}
(318)

MCRB (A) =
4

tr {ΨRdΨ†R−1
n } (319)

and MCRB (d) =

(
A2

4
Ψ†R−1

n Ψ + R−1
d

)−1

(320)

Two things commend these bounds to us. The first is that the MCRB for τ

is already known for the baseband, fc = 0, white noise case, Rn = NoI, and this

expression for the MCRB is consistent with that known result. [9] The second is that

the bound for d is discussed by Berger and Tufts in [2] under the case of known time

delay. Likewise, this expression is also consistent with Berger and Tufts work. These

two known results commend this method, prior to extending it to multiple sensor

evaluations.

J.2 Multiple Sensor Bounds

Using the assumption that the interference is uncorrelated between each sensor,

the likelihood function is easy to write,

L = −mNfM +Nf

2
ln (2π) − 1

2
ln detRd −

1

2

M−1∑

k=0

ln detRnk (321)

−1

2
dR−1

d d − 1

2

M−1∑

k=0

(

xk − ejθdk
Ak

2
DkRφΨd

)†
R−1

nk

(

xk − ejθdk
Ak

2
DkRφΨd

)
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Given this likelihood function, derivatives proceed as before. First, for the unknown

data vector,

∇d†L =
M−1∑

k=0

e−jθdk
Ak

4
Ψ†R†

φD
†
kR

−1
nk xk −

(
M−1∑

k=0

A2
k

4
Ψ†R−1

nkΨ + R−1
d

)

d

(322)

E
{
−∇2

dL
}

=
M−1∑

k=0

A2
k

4
Ψ†R−1

nkΨ + R−1
d . (323)

The next parameter is the unknown amplitude. In this case, there is one unknown

amplitude on each sensor, and the effect that unknown amplitude has on the data

vector needs to be evaluated as well.

E
{

−∂
2L
∂A2

i

}

=
1

4
tr
{
ΨRdΨ

†R−1
ni

}
(324)

E
{

−∂∇d†L
∂Ak

}

= 0 (325)

E
{

− ∂2L
∂Ai∂Ak

}

k 6=i

= 0 (326)
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Then we turn to τ and τdi, as each of these need to be estimated,

∂L
∂τ

=
1

2

M−1∑

k=0

Ak

2




− j2πejθdkx

†
kR

−1
nkFδDkRφΨd

+ j2πe−jθdkd†Ψ†R†
φD

†
kFδR

−1
nk xk



 (327)

∂2L
∂τ 2

=
M−1∑

k=0

Ak

2
<
{

−4π2ejθdkx
†
kR

−1
nkF

2
δDkRφΨd

}

(328)

E
{

−∂
2L
∂τ 2

}

=
M−1∑

k=0

Ak

2
Ed







<







4π2ejθdk

(

ejθdk
Ak

2
DkRφΨd

)†

×R−1
nkF

2
δDkRφΨd













(329)

=
M−1∑

k=0

A2
kπ

2tr
{
ΨRdΨ

†R−1
nkF

2
δ

}
(330)

∂L
∂τdi

=
Ai

4




− j2πejθdix

†
iR

−1
ni F∆DiRφΨd

+ j2πe−jθdid†Ψ†R†
φD

†
iF∆R−1

ni xi



 (331)

E
{

−∂
2L
∂τ 2

di

}

= A2
iπ

2tr
{
ΨRdΨ

†R−1
ni F

2
∆

}
(332)

E
{

− ∂2L
∂τdi∂τ

}

= A2
iπ

2tr
{
ΨRdΨ

†R−1
ni FδF∆

}
(333)
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This leaves one final parameter of interest that may need to be estimated, θdi.

∂L
∂θdi

= jejθdi
Ai

4
x
†
iR

−1
ni DiRφΨd − je−jθdi

Ai

4
d†Ψ†R†

φD
†
iR

−1
ni xi (334)

∂2L
∂θ2

di

= −ejθdi
Ai

4
x
†
iR

−1
ni DiRφΨd − e−jθdi

Ai

4
d†Ψ†R†

φD
†
iR

−1
ni xi (335)

= −Ai

2
<
{

ejθdix
†
iR

−1
ni DiRφΨd

}

(336)

E
{

−∂
2L
∂θ2

di

}

=
Ai

2
<
{

ejθdi

(
Ai

2
ejθiDiRφΨd

)†
R−1

ni DiRφΨd

}

(337)

=
A2

i

4
tr
{
ΨRdΨ

†R−1
ni

}
(338)

∂2L
∂θdi∂τ

=
Ai

2

[

πejθdix
†
iR

−1
ni FδDiRφΨd + πe−jθdid†Ψ†R†

φFδD
†
iR

−1
ni xi

]

(339)

= Ai<
{

πejθdix
†
iR

−1
ni FδDiRφΨd

}

(340)

E
{

− ∂2L
∂θdi∂τ

}

= −AiEd

{

<
{

πejθdi

(

ejθdi
Ai

2
DiRφΨd

)†
R−1

ni FδDiRφΨd

}}

(341)

= −A
2
iπ

2
tr
{
ΨRdΨ

†R−1
ni Fδ

}
(342)

E
{

− ∂2L
∂θdi∂τdi

}

= −A
2
iπ

2
tr
{
ΨRdΨ

†R−1
ni F∆

}
(343)

From here, two MCRBs are immediately apparent. These are the MCRB for

Ai and the MCRB for d, since these two bounds are independent. That is, the

inverse is easily applied,

MCRB (Ai) =
4

tr
{
ΨRdΨ†R−1

ni

} (344)

MCRB (d) =

(

R−1
d +

1

4

M−1∑

k=0

A2
kΨR−1

nkΨ
†

)−1

(345)
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The difficult part is to find an analytical expression for the MCRBs of τ ,

θdi, and τdi. Since this involves inverting an M ×M matrix, analytical results are

difficult to obtain. Instead, the previous results are summarized and then a two

sensor problem is considered.

Recalling from the above equations, and evaluating when Rd = NsI, the fol-

lowing modified FIM entries are known:

E
{

−∂
2L
∂τ 2

}

=
M−1∑

k=0

A2
kπ

2tr
{
ΨRdΨ

†R−1
nkF

2
δ

}
(346)

= π2

M−1∑

k=0

A2
k

∑

f

|Ψ (f − fc)|2
TsSnk (f)

(f − fc)
2 (347)

E
{

−∂
2L
∂τ 2

di

}

= A2
iπ

2tr
{
ΨRdΨ

†R−1
ni F

2
∆

}
(348)

= π2A2
i

∑

f

|Ψ (f − fc)|2
TsSni (f)

f 2 (349)

E
{

− ∂2L
∂τdi∂τ

}

= A2
iπ

2tr
{
ΨRdΨ

†R−1
ni FδF∆

}
(350)

= π2A2
k

∑

f

|Ψ (f − fc)|2
TsSni (f)

f (f − fc) (351)

E
{

−∂
2L
∂θ2

di

}

=
A2

i

4
tr
{
ΨRdΨ

†R−1
ni

}
(352)

=
A2

i

4

∑

f

|Ψ (f − fc)|2
TsSni (f)

(353)

E
{

− ∂2L
∂θdi∂τ

}

= −A
2
iπ

2
tr
{
ΨRdΨ

†R−1
ni Fδ

}
(354)

= −A
2
iπ

2

∑

f

|Ψ (f − fc)|2
TsSni (f)

(f − fc) (355)

E
{

− ∂2L
∂θdi∂τdi

}

= −A
2
iπ

2
tr
{
ΨRdΨ

†R−1
ni F∆

}
(356)

= −A
2
iπ

2

∑

f

|Ψ (f − fc)|2
TsSni (f)

f (357)
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FIM =
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E
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}
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E
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E
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∂τ2

d2

}

E
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∂θd2∂τd2

}

· · ·
E
{

− ∂2L
∂θd2∂τ

}

0 0 E
{

− ∂2L
∂θd2∂τd2

}

E
{

− ∂2L
∂θ2

d2

}

· · ·
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...

. . .














(358)

In the particular case of a two sensor problem where θd1 = 0, the MCRB for

τd1 is given by,

MCRBbp (τd1) =
1

E
{

− ∂2L
∂τ2

d1

}

− E
{

− ∂2L
∂τd1∂τ

}2

E
{

− ∂2L

∂τ2

}

(359)

=
1

π2A2
1tr
{
ΨRdΨ†R−1

n1 F
2
δ

}
− π2A2

1

A2
1tr{ΨRdΨ

†R
−1
n1 FδF∆}2

A2
0tr{ΨRdΨ

†R
−1
n0 F2

δ}+A2
1tr{ΨRdΨ

†R
−1
n1 F2

δ}

This is the function evaluated for the colored noise TDOA estimation tests given in

Figs. 43 and 45.

A similar function, appropriate for baseband TDOA estimation, is shown in

Figs. 37 and 38. This function is given by,

MCRBbb (τd1) =
1

4π2A2
1tr
{
ΨRdΨ†R−1

n1 F
2
δ

}
− 4π2

A4
1tr{ΨRdΨ

†R
−1
n1 F2

δ}2

A2
0tr{ΨRdΨ

†R
−1
n0 F2

δ}+A2
1tr{ΨRdΨ

†R
−1
n1 F2

δ}
.

(360)

The extra factor of four in this equation is a result of the fact that a baseband signal

has a scale factor of Ai, and not Ai

2
.
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Glossary

Autocorrelation function The autocorrelation function of a random process, x (t),

is defined by,

Rx (t,∆t) , E
{

x∗
(

t− ∆t

2

)

x

(

t+
∆t

2

)}

. (361)

If the random process is stationary, this autocorrelation function is a function

of time difference, ∆t, only. If, instead, the function is cyclostationary, its

autocorrelation function admits a Fourier series expansion,

Rx (t,∆t) =
∑

α

Rα
x (∆t) ej2παt, (362)

where α ranges over all of the cycle frequencies found in the signal.

Bandlimited A signal is bandlimited if its Fourier transform is zero or near zero

outside of a particular band of frequencies.

Bandpass A signal having a non–zero carrier frequency, fc, that is typically much

greater than its bandwidth.

Bandwidth The width, in frequency, of the spectrum used by a particular signal.

Baseband A “signal whose spectrum extends from (or near) dc [sic] up to some

finite value, usually less than a few megahertz” [58, p. 56].

Binary Phase Shift Keying A Binary Phase Shift Keyed (BPSK) system is one

where the weights modifying the pulse function are plus or minus one, dn ∈
{±1}.

Burst A burst is a signal of finite duration having two properties. The first property

is that a burst can be observed in its entirety. The second property is that it is
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uncommon enough that the noise covariance may be measured when the burst

is not present.

Colored Noise A stationary random process possessing some amount of correlation

in time. This is equivalent to stating that its power spectral density is not

constant.

Complex Signal A signal created by taking a complex–valued function, with real

and imaginary components, and multiplying it by a complex exponential car-

rier. The real portion of the result is then transmitted.

Cramér–Rao Bound A lower bound on the error covariance matrix for any unbi-

ased estimator of an unknown parameter [53].

Cross Spectral Density The cross spectral density between two signals, x (t) and

y (t), is defined by,

Sxy (f) , lim
T→∞

1

T
E {XT (f)∗ YT (f)} ,where (363)

XT (f) ,

∫ T
2

−T
2

x (t) e−j2πftdt. (364)

Cyclostationary A random process is called cyclostationary if all the probabil-

ity distribution functions describing the process are periodic or polyperiodic

functions of time.

Discrete PSD The power spectral density of a discrete sequence, dn, is defined by

Sd

(
ej2πf

)
, lim

Ns→∞
E







1

Ns

∣
∣
∣
∣
∣

Ns−1∑

n=0

dne
−j2πfn

∣
∣
∣
∣
∣

2





.
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Expected Value The expected value or mean of a continuous random variable,

g (X), denoted by E {g (X)}, is

E {g (X)} =

∫

g (X) f (x) dx, (365)

where f (x) is the probability density function for the random variable x [7, p.

55]. This definition assumes, of course, that the integral exists and is finite.

Field A field F is a set of numbers together with certain properties. In particular,

if x, y, and z are arbitray elements in F, then [31, p 1–2]

1. addition is commutative, x+ y = y + x;

2. addition is associative, x+ (y + z) = (x+ y) + z;

3. there is a unique element 0 (zero) in F such that x+ 0 = x;

4. a unique element, (−x) corresponds to x such that x+(−x) = 0;

5. multiplication is commutative, xy = yx;

6. and multiplication is associative, x (yz) = (xy) z.

The two fields of particular interest to this research are the set of real numbers,

R, and the set of complex numbers, C.

Fisher Information Matrix If fφ (x) is a probability density function parameter-

ized by the vector, φ, then the Fisher Information Matrix (FIM) is given by

the expected value of the negative of the second gradient of the log of fφ (x),

J , E
{
−∇2

φ ln fφ (x)
}
. (366)

In particular, the elements within this matrix are given by,

Jij = E
{

− ∂2

∂φi∂φj

ln fφ (x)

}

. (367)

The diagonal elements of J−1 correspond to the Cramér–Rao bounds on the

parameters within φ.
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Gaussian Process A random process, X (t), is considered Gaussian, if for every

set of unique time instants, t1, t2, . . . , tN , the vector

x =
[

X (t1) X (t2) · · · X (tN)
]T

(368)

is a multivariate Gaussian.

Gaussian Random Variable A random variable, X ∈ R is said to be Gaussian,

or to have a Gaussian distribution, if the probability that X lies within a range

(a, b) ⊂ R is given by

P [a < X < b] =

∫ b

a

1√
2πσ2

exp

{

−(x− µ)2

2σ2

}

dx, (369)

where µ and σ2 are the mean and variance of X respectively. In this case, we

say that X is Gaussian distributed with a mean µ and variance σ2 and note

this as, X ∼ N (µ, σ2).

Geolocation The process of estimating the position of a transmitter (or receiver)

on the earth’s surface.

Intersymbol Interference Interference within the receiver caused by the tail of

one pulse interfering with the detection of another pulse.

Linear Space From Hoffman and Kunze,

A vector space (or linear space) consists of the following:

1. a field F of scalars;

2. a set V of objects, called vectors;

3. a rule (or operation), called vector addition, which associates
with each pair of vectors α, β in V a vector α + β in V , called
the sum of α and β, in such a way that

(a) addition is commutative, α + β = β + α;

(b) addition is associative, α + (β + γ) = (α + β) + γ;

(c) there is a unique vector 0 in V , called the zero vector, such
that α + 0 = α for all α in V ;
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(d) for each vector α in V there is a unique vector −α in V such
that α + (−α) = 0;

4. a rule (or operation), called scalar multiplication, which asso-
ciates with each scalar c in F and vector α in V a vector cα in
V , called the product of c and α, in such a way that

(a) 1α = α for every α in V ;

(b) (c1c2) α = c1 (c2α);

(c) c (α + β) = cα + cβ;

(d) (c1 + c2) α = c1α + c2α.

[31, p. 28–20]

One vector space of particular interest to this research is the set of all real

functions, x (t), defined from −∞ to ∞.

Linear Subspace Let V be a vector space over the field F. A linear subspace of V
is a subset W of V which is itself a vector space [31, p. 34].

The particular subspace of interest to this research is the subspace described

by linear combinations of pulse functions, such as those given by Eqns. (39)

and (40), since every possible received message may be represented as a linear

combination of these functions.

Log Likelihood Function Given a probability density function for a random vari-

able, x, that is parameterized by θ, f (x|θ), the likelihood function is the

function of θ, L (θ), that results when x is fixed. The log likelihood function,

L is simply the log of the likelihood function, L , lnL (θ).

Matched Filter A “linear filter designed to provide the maximum signal–to–noise

power ratio at its output for a given transmitted symbol waveform” [58, p.

122].

Maximum Likelihood Estimate The maximum likelihood estimate of the pa-

rameter, θ, of a probability distribution function, f (x|θ), is defined as the

parameter that maximizes the likelihood function, L (θ).

Multivariate Gaussian An N–dimensional vector x is said to be a multivariate

Gaussian if the probability that it lies within a region W of the N–dimensional
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vector space V is given by

P [x ∈ W ] =

∫

W
(2π)−

N
2 |R|− 1

2 exp

{

−1

2
(x − µ)† R−1 (x − µ)

}

dx. (370)

In this case we say that x has a multivariate Gaussian distribution with mean,

µ and covariance matrix, R, and note this as x ∼ N (µ,R).

Normalized Frequency Frequency units for sampled data, counting the number

of cycles per sample. The maximum frequency is 1
2
, or one cycle every two

samples.

Nuisance Parameter A parameter that is present in a model, but “not of direct

inferential interest.” [7, p. 378] That is, the parameter needs to be known or

estimated in order to work with the model, but knowing the parameter does

not necessarily provide any practical value to the task at hand.

Nyquist Bandwidth The theoretical minimum system bandwidth needed to de-

modulate a signal at a particular rate.

Overwhitener A filter defined by applying a whitener twice, HOVW (f) = 1
Sn(f)

.

Polyperiodic Consisting of multiple, possibly incommensurate, periods.

Power Spectral Density The power distribution of a signal in the frequency do-

main. For a signal x (t), this function is defined as,

Sx (f) , lim
T→∞

E







1

T

∣
∣
∣
∣
∣

∫ T
2

−T
2

x (t) e−j2πftdt

∣
∣
∣
∣
∣

2





.

From here, the total power in the signal is given by integrating this expression

across all frequency,

PTOTAL =

∫ ∞

−∞
Sx (f) df. (371)
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Similar expressions are used to calculate the total power in a signal that falls

within a particular frequency band.

Quadrature Phase Shift Keying A Quadrature Phase Shift Keyed (QPSK) sys-

tem is one where the weights modifying the pulse function form the four corners

of a square on the unit circle. For example, dn ∈ {±1,±j}.

Random Process A real valued random process, X (t), is a measurable function

that maps a real number, t, to a random value selected from a subset of real,

or possibly complex, numbers.

Real Signal Used to describe a signal created by taking a real–valued function and

multiplying it by a sine–wave carrier.

Signal to Noise Ratio The ratio of the energy in the signal to the energy in the

noise (sum of squares). Since this is only defined over a particular band, it is

defined here as the energy in the signal over the band fc − 1
Ts

to fc + 1
Ts

.

Spectral Correlation Function A statistical measure of the correlation between

two frequencies of a signal. If x (t) is a random process, this function is defined

as,

Sα
x (f) , lim

T→∞
E
{

1

T
XT

(

f − α

2

)∗
XT

(

f +
α

2

)}

where

XT (f) ,

∫ T
2

−T
2

x (t) e−j2πftdt.

This function may also be referred to as the cyclic spectral density.

Stationary “A random process X (t) is called time stationary or stationary in the

strict sense if all of the [probability] distribution functions describing the pro-

cess are invariant under a translation of time” [57, p. 135].

Tapped Delay Line Any linear filter having an impulse response represented by a

sum of scaled delta functions spaced at periodic intervals.
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Trace The trace of a matrix A, denoted tr {A} “is defined to be the sum of the

diagonal entries of A” [33, p. 216].

White Noise A stationary random process having the property that every sample

in time is statistically independent of every other is considered a white random

process. A consequence of this definition is that the power spectral density

of this process is a constant. Since this is physically impossible, the phrase

is more often used to refer to noise that is white across some bandwidth of

interest.

Whitener A filter designed to produce white noise from a given colored noise input.

(See Eqn. (14) on page 21.)

Wide–sense Stationarity “A process X (t) is said to be stationary in the wide

sense if its mean is a constant and the autocorrelation function depends only

on the time difference” [57, p. 136].
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