Title and Subtitle

Analysis of Sperm Whale Acoustic Signals in the Gulf of Mexico and the Mediterranean

Author(s)

Aaron Thode

Performing Organization Name(s) and Address(es)

MPL/SSO/UCSD
9500 Gilman Dr
La Jolla CA 92093-0238

Sponsoring/Monitoring Agency Name(s) and Address(es)

Office of Naval Research
800 N. Quincy St.
Arlington VA 22217-5000

Distribution/Availability Statement

Distribution Unlimited

Abstract

Self-explanatory

Subject Terms

sperm whale, ocean acoustics, marine mammal mitigation

Security Classification of:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
</table>

Limitation of Abstract

UL

Number of Pages

3

Name of Responsible Person

Aaron Thode

Telephone Number (Include area code)

958-922-4967
FINAL REPORT

GRANT #: N00014-02-1-0448 (see also N00014-02-1-0187)

PRINCIPAL INVESTIGATOR: Aaron M Thode

INSTITUTION: Marine Physical Laboratory, Scripps Institution of Oceanography

GRANT TITLE: Analysis of Sperm Whale Acoustic Signals in the Gulf of Mexico and the Mediterranean

AWARD PERIOD: 1 December 2001 - 31 December 2002

OBJECTIVE: To design, develop, and simulate an automated procedure for passively tracking sperm whales in three-dimensions, using natural vocalizations recorded on two towed arrays, deployed either alone or in conjunction with dive tags. The algorithms would permit automated tracking of multiple animals over complete dive cycles, producing statistically significant sample sizes for evaluation of controlled-exposure studies. When used in conjunction with a dive tag, the algorithm would permit better resolution tracking of animals detected on both the tag in array, effectively increasing the number of animals tracked by the tag.

APPROACH: Previous work by the PI had shown that 3D tracking of sperm whales is possible using a single towed array, using multi-path reflections from the ocean surface and bottom. However, the resulting algorithm was difficult to automate and required substantial effort by a human, yielding only one 3D trajectory per ten hours of work. In addition, the bottom returns were detected only sporadically, during times when the animals were in their initial descent to presumed foraging depth. During feeding and/or social behavior the bottom returns are usually absent.

To overcome these difficulties, a new algorithm was been developed, using two spatially-separated towed arrays deployed from a single vessel to record both the direct and surface reflections of sounds. The automated detection and classification of direct and surface paths is considerably simpler than that required for bottom returns, but requires information about the array depths to be effective. The results would have lower depth resolution than those obtained using bottom returns, but could be computed automatically, reducing the processing time to an estimated 15 minutes per trajectory. Thus the technique is designed to produce large numbers of low-resolution tracks, as opposed to a single high-resolution track generated by an
tagged animal. The technique will also only work on acoustically active animals.

If one of the animals present has an acoustic tag, the algorithm can be extended to time-sync the tag with the array record, effectively creating a large-aperture array. This approach would provide much more precise localizations of all vocalizing animals, at the cost of requiring a tagged animal to be present.

ACCOMPLISHMENTS: The localization algorithms were written and tested in simulation in 2002. The automated data extraction algorithms were written using both MATLAB and the software package Ishmael (written by David Mellinger of Oregon State University under ONR support). The algorithms were successfully tested on field data in 2002 and 2003 under ONR N00014-02-1-0187, and additional support from the Minerals Management Service (MMS). A peer-reviewed publication has resulted from this work, and MMS and the North Pacific Research Board (NPRB) are currently funding research that exploits this technique.

CONCLUSIONS: The use of surface-reflected multipath to track sperm whales in range in depth has been found to be a robust technique that can be used with either a towed horizontal array or a bottom-mounted vertical array. The technique was found to be easily automated, using standard signal-processing software found in the public domain.

SIGNIFICANCE: The demonstration of the technique is expected to yield 1-3 trajectories per half-hour of recording time, if a group of animals is being followed. Over the course of a night (7 hours) one might reasonably expect to obtain at least 25 tracks, a credible sample size for studying variables such as dive descent time, maximum depth obtained, and the depth at which “creak” sounds begin. The success of this algorithm would provide an inexpensive and rapid way of collecting statistically significant numbers of animal track for future environmental impact studies conducted by the division and other interested parties. Some of these predictions are being tested in the Gulf of Mexico in 2004, as part of the Sperm Whale Seismic Study (SWSS).

The algorithm used here is also being use to examine how sperm whales remove fish from longline fishing gear in the Gulf of Alaska, to gain insight into possible means of reducing the depredation without harming the animals.

AWARD INFORMATION: Work presented here lead to contracts with MMS and the North Pacific Research Board (North Pacific F0412) to apply the results of this research to sperm whale behavioral studies.
RELEVANT PUBLICATIONS AND ABSTRACTS:
