1. **REPORT DATE (DD-MM-YYYY)**
04/22/2004

2. **REPORT TYPE**
Technical Report

4. **TITLE AND SUBTITLE**
SEM Study of deformation and failure Mechanisms in Strained Elastomers

6. **AUTHOR(S)**
C. T. Liu; T.W. Hawkins; A. Brand; Fu-Pen Chiang

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB, CA 93524-7048

9. **SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)**
Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB, CA 93524-7048

12. **DISTRIBUTION / AVAILABILITY STATEMENT**
Approved for public release; distribution unlimited.

13. **SUPPLEMENTARY NOTES**
165TH Spring Technical Meeting of the Rubber Division, ACS
Grand Rapids, MI, 17-19 May 2004

14. **ABSTRACT**

BEST AVAILABLE COPY

20040524 022

15. **SUBJECT TERMS**

16. **SECURITY CLASSIFICATION OF:**

<table>
<thead>
<tr>
<th></th>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. **LIMITATION OF ABSTRACT**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>17</th>
</tr>
</thead>
</table>

18. **NUMBER OF PAGES**

19a. **NAME OF RESPONSIBLE PERSON**

Linda Talon

19b. **TELEPHONE NUMBER (include area code)**

(661) 275-5283

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18
SEM Study of Deformation and Failure Mechanisms in Strained Elastomers

C. T. Liu, T. W. Hawkins, and A. Brand
AFRL/PRS
Edwards AFB CA, 93524-7680

Fu-Pen Chiang
Department of mechanical Engineering
State University of New York
Stony Brook, N.Y. 11790

Approved for public release; distribution unlimited
Objectives

- Investigate the deformation and failure mechanisms on meso and macro scales in a particulate composite and Solithane 113.
- Determine the strain fields on the meso and macro scales of the two materials.
Testing Set-Up

Approved for public release; distribution unlimited
Local Damage at Crack Tip

Approved for public release; distribution unlimited
\(\varepsilon_x \) for 11.34 psi at 30 sec
ε_y for 11.34 psi at 30 min
Maximum Principal Strain Distribution of 6.0% Far Field Strain During Loading
Maximum Principal Strain Distribution of 8.0% Far Field Strain During Loading
Side View of Crack Tip at 40x.

07/13/2002

40.0x 500um

Approved for public release; distribution unlimited
Side View of Crack Tip at 150x, 400x, 500x, and 1000x.
SEM Pictures of Top View of Crack Tip at 150x and 250x.

Approved for public release; distribution unlimited.
Strain Distributions
(2.5mm x 2.0mm)

\[\varepsilon_{yy} \text{ field, Load} = 52 \text{ grams} \]
\[\varepsilon_{xx} \text{ field, Load} = 52 \text{ grams} \]

Approved for public release; distribution unlimited
Strain Distributions
(0.5mm x 0.45mm)

\(\varepsilon_{yy}\) field, Load = 47 grams

\(\varepsilon_{xx}\) field, Load = 47 grams

Approved for public release; distribution unlimited
Strain Distributions
(0.065mm x 0.055mm)

ε_{yy} field, Load = 49 grams

ε_{xx} field, Load = 49 grams

Approved for public release; distribution unlimited
Strain Distributions
(0.065mm x 0.055mm)

\[\varepsilon_{yy} \text{ field (3-D), Load } = 49 \text{ grams} \]

\[\varepsilon_{xx} \text{ field (3-D), Load } = 49 \text{ grams} \]

Approved for public release; distribution unlimited
Conclusions

- On the meso-scale, microstructure has a significant effect on the strain distributions.
- The basic crack growth mechanism consists of the coalescence of voids with the crack tip.
- The local deformation, damage mechanism, and crack growth mechanism in the two materials are similar.
- In the two materials, highly damaged regions, or failure process zones, are formed at the crack tip.