REPORT DOCUMENTATION PAGE

1. REPORT DATE (DD-MM-YYYY)
03-12-2004

2. REPORT TYPE
Technical Paper (View Graph)

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
Reactivity Ratios of Isobutyl POSS-Styrene and Styrene Monomers

6. AUTHOR(S)
Brian Moore, Timothy Haddad, Rene Gonzalez, Constance Schlaefer

8. PERFORMING ORGANIZATION REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S NUMBER(S)
AFRL-PR-ED-VG-2004-067

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES
American Chemical Society
Anaheim, CA, 1 April 2004

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES
A

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linda Talon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19b. TELEPHONE NUMBER (Include area code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(661) 275-5865</td>
</tr>
</tbody>
</table>

Best Available Copy
Reactivity Ratios of Isobutyl POSS-Styrene and Styrene Monomers

Brian Moore†, Timothy Haddad‡, Rene Gonzalez§, and Constance Schlaefer∥

†ERC Inc., §Air Force Research Lab

Distribution A. Approved for public release, distribution unlimited.
Introduction

Copolymers containing POSS (Polyhedral Oligomeric Silsesquioxane) generally have higher mechanical and thermal properties than polymers without POSS.

The microstructure that leads to these increases may be caused by POSS nanoparticle units or aggregates of these units to form larger POSS clusters.

To help define the microstructure of the addition copolymers, the POSS macromer and organic monomer reactivity ratios (r_1 and r_2) need to be known.

- **Alternating Copolymerization**: $r_1 = r_2 = 0$
- **Block Copolymerization**: $r_1 > 1, r_2 > 1$
- **Random Copolymerization**: $r_1 r_2 = 1$
Hybrid Inorganic/Organic Polymers

Hybrid plastics bridge the differences between ceramics and polymers.
POSS Synthesis

RSiX₃ acid or base hydrolysis

Brown & Vogt: JACS, 1965, 4313
Feher et al: JACS, 1989, 1741;
Organometallics, 1991, 2526;
Chem Comm, 1999, 1705, 2309

Distribution A. Approved for public release, distribution unlimited.
POSS-Styrene Monomer Synthesis

- High-yield syntheses.
- Phenyl derivative requires inverse addition.
POSS-Styrene Copolymer Synthesis

- Solution polymerization in toluene or bulk polymerization possible.
- Polymerization is limited by solubility of the POSS-macromer.
- Isobutyl-POSS is the most soluble, Phenyl-POSS the least soluble.
Reactivity Ratios for Styrene / POSS-Styrene

\[r_1 = \frac{k_{11}}{k_{12}} \]
\[r_2 = \frac{k_{22}}{k_{21}} \]

\[M_1^* \rightarrow M_1 \quad \frac{M_1^*}{M_1} \]
\[M_1^* + M_2 \rightarrow M_1^* M_2 \quad \frac{M_1^*}{M_1} \quad \frac{M_2}{M_2} \]

\[M_2^* \rightarrow M_2 \quad \frac{M_2^*}{M_2} \]
\[M_2^* + M_1 \rightarrow M_2^* M_1 \quad \frac{M_2^*}{M_2} \quad \frac{M_1}{M_1} \]

Assume the chemical reactivity of the propagating chain in a copolymerization to be dependent on the monomer at the growing end.

The composition of a copolymer cannot be determined by the homopolymerization rates of the two monomers.
Reactivity Ratios for Styrene / POSS-Styrene

\[
\begin{align*}
 r_1 &= \frac{k_{11}}{k_{12}} \\
 r_2 &= \frac{k_{22}}{k_{21}}
\end{align*}
\]

- Alternating Copolymerization: \(r_1 = r_2 = 0 \)
- Block Copolymerization: \(r_1 > 1, r_2 > 1 \)
- Random Copolymerization: \(r_1 r_2 = 1 \)

Reactivity Ratios calculated using the copolymer composition equation:

\[
F_1 = \frac{(r_1 f_1 f_1 + f_1 f_2)}{(r_1 f_1 f_1 + 2 f_1 f_2 + r_2 f_2 f_2)}
\]

- \(r_1 = \) reactivity ratio for styrene
- \(r_2 = \) reactivity ratio for POSS-styrene
- \(F_1 = \) mole fraction of styrene in copolymer
- \(f_1 = \) mole fraction of styrene monomer in feed
- \(f_2 = \) mole fraction of POSS monomer in feed
Reactivity Ratios: Challenges

- Polymerizations must be carried out to only 3-5% completion. Reactions were run for 3 hours and monitored by 1H NMR.
- The small amount of polymer formed (a solid) must be separated from unreacted POSS-monomer (also a solid). Achieved with precipitation of copolymer using Chloroform/MeOH.
- Carry out a full (10-90) range of mole % POSS reactions while maintaining the same concentration of monomers and initiator. Achieved best with isoButylPOSS as it has favorable solubility.
- Accurately determine the amount of POSS in each copolymer. NMR integration is more accurate than IR analysis over the full mole % range.
Compositional Analysis with FTIR

FTIR can be used to determine weight % POSS in a copolymer as there is a linear response between weight % POSS and absorbance. However, because a POSS is a such a large macromer, there is **NOT** a linear response using mole % POSS (see graph below).

![Graph showing IR Absorbance vs. wt % and mol %]

Note that IR analysis is an excellent method for determining mole % POSS in the low to 25 mole % POSS range.
1H NMR Spectrum of Crude Reaction Solids

This spectrum shows mostly POSS-monomer with some copolymer.
1H NMR Spectrum of Isolated Copolymer

This spectrum shows monomer-free copolymer.
Copolymer Composition

Composition determined from 2 equations and 2 unknowns using 1H NMR

\[x + y = 1 \]
\[y = 1 - x \]

Integral Ratio (IR) = \frac{\text{Aromatic Integral}}{\text{Aliphatic Integral}} = \frac{4x+5y}{66x+3y}

Solving for \(x \):

\[x = \frac{5-3IR}{63IR+1} \]
Experimental Data

<table>
<thead>
<tr>
<th>Experiment #</th>
<th>POSS in Feed</th>
<th>POSS in Copolymer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>weight %</td>
<td>mole %</td>
</tr>
<tr>
<td>1</td>
<td>48.91</td>
<td>9.78</td>
</tr>
<tr>
<td>2</td>
<td>70.42</td>
<td>21.24</td>
</tr>
<tr>
<td>3</td>
<td>78.98</td>
<td>29.85</td>
</tr>
<tr>
<td>4</td>
<td>88.73</td>
<td>47.14</td>
</tr>
<tr>
<td>5</td>
<td>90.01</td>
<td>50.50</td>
</tr>
<tr>
<td>6</td>
<td>92.53</td>
<td>58.38</td>
</tr>
<tr>
<td>7</td>
<td>94.58</td>
<td>66.40</td>
</tr>
<tr>
<td>8</td>
<td>95.42</td>
<td>70.24</td>
</tr>
<tr>
<td>9</td>
<td>98.42</td>
<td>87.57</td>
</tr>
</tbody>
</table>
Determination of Reactivity Ratios

<table>
<thead>
<tr>
<th>Method</th>
<th>Reactivity Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r_{styrene}</td>
</tr>
<tr>
<td>Fineman-Ross</td>
<td>0.77</td>
</tr>
<tr>
<td>Kelen-Tudos</td>
<td>0.82</td>
</tr>
<tr>
<td>Yezrielev-Brokhina-Roskin</td>
<td>0.79</td>
</tr>
<tr>
<td>Tidwell-Mortimer</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Tidwell-Mortimer is a nonlinear least squares method.

Calculations and Confidence Interval were obtained using a program supplied in the book "Copolymerization Toward a Systematic Approach" by Cornel Hagiopol.
Summary and Future Work

- $r_{\text{styrene}} = 0.84$ and $r_{\text{POSS}} = 0.38$, therefore a copolymer sequence should be close to random.

- Copolymer compositions are best analyzed using NMR and not FTIR spectroscopy because copolymerizations are done over a full 10 to 90 mole % POSS. FTIR analysis is accurate up to approximately 25 mole % POSS incorporation.

- Q and e values (polarity and reactivity) for i-butyl POSS styrene will be determined after reactivity ratios with methacrylate and acrylonitrile are completed.
ACKNOWLEDGEMENTS

The Polymer Working Group at Edwards Air Force Base is:

Maj Constance Schlaefer
Mr. Patrick Ruth
Dr. Sandra Tomczak
2Lt Amy Palecek
Mr. Brian Moore
Mrs. Sherly Largo
Dr. Darrell Marchant

Dr. Shawn Phillips
2Lt Will Cooper
Dr. Rusty Blanski
Mr. Scott Barker
Dr. Joseph Mabry
2Lt Laura Moody
Dr. Timothy Haddad

Financial Support:
Air Force Office of Scientific Research
Air Force Research Laboratory, Propulsion Directorate

Distribution A. Approved for public release, distribution unlimited.