Preparation of Benzophenone Modified Poly (dimethysiloxane) Thermosets

Joseph M. Mabry, William P. Weber

ERC Incorporated
555 Sparkman Drive
Huntsville, AL 35816-0000

Air Force Research Laboratory (AFMC)
AFRL/PRSB
4 Draco Drive
Edwards AFB CA 93524-7160

Approved for public release; distribution unlimited.

American Chemical Society
Anaheim, CA, 1 April 2004

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES
a. REPORT Unclassified A 22
b. ABSTRACT Unclassified

c. THIS PAGE Unclassified

19a. NAME OF RESPONSIBLE PERSON
Linda Talon

19b. TELEPHONE NUMBER (Include area code)
(661) 275-5865
Preparation of Benzophenone Modified Poly(dimethylsiloxane) Thermosets

Joseph M. Mabry1 and William P. Weber2

1ERC, Inc., Air Force Research Laboratory
Edwards AFB, CA 93524
2 Loker Hydrocarbon Research Inst., Dept. of Chemistry
University of Southern California 90089-1661

Best Available Copy DISTRIBUTION A. Approved for public release; distribution unlimited.
While the **Ru** catalyzed incorporation of aromatic ketones into siloxane polymer backbones adds various properties to the polymers, the characteristic properties of poly(dimethyl-siloxane) (PDMS), such as low glass transition temperature (T_g), are lost.

The **Ru** catalyzed chemical modification of a PDMS copolymer may allow the addition of the properties of the ketones, while retaining the properties of PDMS.
Poly(dimethylsiloxane) (PDMS)

\[
\left(\text{Si-O} \right)_n
\]

- Water repellent/Hydrolysis resistant
- Thermal and electrical insulator
- Oxidative resistant
- Biocompatible
- Low T_g of approximately -125 °C
- Thermally degrades at approximately 300 °C

DISTRIBUTION A. Approved for public release; distribution unlimited.
Murai Reaction

\[
\text{O} \quad \text{O} \\
\text{CH}_2 \quad \text{CH}_2 \\
\text{Si(OEt)}_3 \\
\longrightarrow \\
\text{Ru} \\
\text{O} \quad \text{O} \\
\text{CH}_2 \quad \text{CH}_2 \\
\text{Si(OEt)}_3 \\
\]

Murai has shown that \(\text{RuH}_{2}(\text{CO})(\text{PPh}_3)_3 \) (\(\text{Ru} \)) catalyzes the addition of vinylsilanes to aromatic ketones in high yield.

DISTRIBUTION A. Approved for public release; distribution unlimited.
The catalyst, dihydridocarbonyltris(triphenylphosphine) ruthenium (Ru), prepared from RuCl₃₄ is activated with a stoichiometric amount of styrene. Hydrogen is lost from the ruthenium center and ethyl benzene is produced. This activates the catalyst by creating a site of coordinate unsaturation.⁵

DISTRIBUTION A. Approved for public release; distribution unlimited.
Catalytic Cycle

\[R = \text{phenyl or mesityl} \]

DISTRIBUTION A. Approved for public release; distribution unlimited.
This poster reports the Ru-catalyzed addition of benzophenone to 1% vinylmethyl PDMS.
Addition ofrough methylbenzophenone

TMS-\text{O-Si-O-Si-O-Si-O-TMS}
Glass Transition Temperature

<table>
<thead>
<tr>
<th>Compound</th>
<th>Starting Polymer</th>
<th>Benzophenone</th>
<th>2,4,6-Trimethylbenzophenone</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_w/M_n</td>
<td>33,300/20,700</td>
<td>34,200/19,800</td>
<td>39,300/22,500</td>
</tr>
<tr>
<td>T_g</td>
<td>$-125 , ^\circ C$</td>
<td>$-123 , ^\circ C$</td>
<td>$-123 , ^\circ C$</td>
</tr>
</tbody>
</table>

While thermal stability is increased, low T_g values are retained.
Both copolymers are stable in nitrogen to 350 °C.
Both copolymers are stable in air to 350 °C.
Polymer sample is heated in TGA analyzer at 300 °C for one hour.

DISTRIBUTION A. Approved for public release; distribution unlimited.
Molecular Weight Increase

<table>
<thead>
<tr>
<th></th>
<th>Benzophenone</th>
<th>2,4,6-Trimethylbenzophenone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting M_w/M_n</td>
<td>34,200/19,800</td>
<td>39,300/22,500</td>
</tr>
<tr>
<td>M_w/M_n after heating</td>
<td>157,900/75,500</td>
<td>119,100/57,700</td>
</tr>
</tbody>
</table>

- M_w triples or better upon heating at 300 °C for one hour
- Polymer remains soluble
- Structural changes not visible in NMR spectra.

DISTRIBUTION A. Approved for public release; distribution unlimited.
α,ω-Substituted PDMS

![Chemical structure of α,ω-substituted PDMS]

<table>
<thead>
<tr>
<th></th>
<th>100 cSt</th>
<th>200 cSt</th>
<th>1000 cSt</th>
<th>20,000 cSt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting Material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting M_w/M_n</td>
<td>9,200/5,400</td>
<td>13,000/6,800</td>
<td>29,900/18,200</td>
<td>87,600/44,800</td>
</tr>
<tr>
<td>Starting T_g</td>
<td>-125 °C</td>
<td>-124 °C</td>
<td>-125 °C</td>
<td>-125 °C</td>
</tr>
<tr>
<td>Product M_w/M_n</td>
<td>10,300/7,000</td>
<td>18,200/13,300</td>
<td>34,300/21,400</td>
<td>96,300/59,700</td>
</tr>
<tr>
<td>Product T_g</td>
<td>-125 °C</td>
<td>-123 °C</td>
<td>-124 °C</td>
<td>-125 °C</td>
</tr>
</tbody>
</table>

Low T_gs are also retained in α,ω-substituted polymers.

DISTRIBUTION A. Approved for public release; distribution unlimited.
TGA Experiment

<table>
<thead>
<tr>
<th>Starting Material</th>
<th>100 cSt</th>
<th>200 cSt</th>
<th>1000 cSt</th>
<th>20,000 cSt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting M_w/M_n</td>
<td>10,300/7,000</td>
<td>18,200/13,300</td>
<td>34,300/21,400</td>
<td>96,300/59,700</td>
</tr>
<tr>
<td>Product M_w/M_n</td>
<td>12,500/7,800</td>
<td>19,600/13,900</td>
<td>44,900/28,500</td>
<td>127,200/70,200</td>
</tr>
</tbody>
</table>

- M_w increases by up to 32% after heating at 300 °C
- Polymer remains soluble
- Structural changes not visible in NMR spectra.

DISTRIBUTION A. Approved for public release; distribution unlimited.
The Elbs Reaction

Pyrolysis of 2-methylbenzophenone results in the formation of anthracene and fluorene.

DISTRIBUTION A. Approved for public release; distribution unlimited.
Pyrocondensation of Anthracene

Pyrolysis of anthracene results in the formation of bianthracenyls.
Model Compound

Model compound was prepared and pyrolyzed
Conversion to anthracene was confirmed by UV
Higher molecular weight products were observed

DISTRIBUTION A. Approved for public release; distribution unlimited.
Polymer Crosslinking

\[TMS-O\left(\text{Si}-\text{O}\right)_{n}\left(\text{Si}-\text{O}\right)_{m}\text{TMS} \]

\[\xrightarrow{\Delta} \]

\[TMS-O\left(\text{Si}-\text{O}\right)_{n}\left(\text{Si}-\text{O}\right)_{m}\text{TMS} \]

\[\xrightarrow{\Delta} \]

\[TMS-O\left(\text{Si}-\text{O}\right)_{n}\left(\text{Si}-\text{O}\right)_{m}\text{TMS} \]

• Crosslinks may interfere with reversion reaction

DISTRIBUTION A. Approved for public release; distribution unlimited.
Summary

• Low T_gs are retained with the addition of benzophenones
• Thermal stability is increased in both nitrogen and air
• Molecular weight increases upon heating to 300 °C
• Conversion to anthracene was confirmed by UV
• Pyrocondensation of anthracene may form cross links
• Cross links may interfere with reversion reaction
• Typical characteristics of PDMS (low \(T_g \) and thermal stability) were successfully retained.
• Characteristics of aromatic diketones (electrochemical and photochemical) were successfully added.
• Poly(dimethylsiloxane) containing 0.8% vinylmethyl units was purchased from Gelest.
• Virtually all vinyl groups were substituted with aromatic units when analyzed by NMR.
Acknowledgement

We would like to thank the National Science Foundation for their support.

DISTRIBUTION A. Approved for public release; distribution unlimited.
References