Update in Ionic Liquids Research

Greg Drake, Tommy Hawkins,

Air Force Research Laboratory (AFMC)
AFRI/PRS
5 Pollux Drive
Edwards AFB, CA 93524-7048

Air Force Research Laboratory (AFMC)
AFRI/PRS
5 Pollux Drive
Edwards AFB, CA 93524-7048

Approved for public release; distribution unlimited.

AFOSR Ionic Liquids Workshop
Tampa, FL, 7-8 March 2004

20040503 190

Unclassified

Unclassified

Unclassified

A

32

Linda Talon

(661) 275-5283
Update in Ionic Liquids Research

Greg Drake and Tommy Hawkins
AFRL/PRSP
AFOSR Ionic Liquids Workshop
March 7 & 8, 2004
Tampa, FL

Those involved in this work

Ms. Kerri Tollison
Synthesis and Characterization

Greg Kaplan
Synthesis and Characterization

Jerry Boatz
Theoretical Calculations

Jeff Mills
Theoretical Calculations

Leslie Hall
Synthesis & x-ray work

Ashwani Vij
X-ray crystallography

Tommy Hawkins
6.2 Propellant Development

Greg Drake
6.1 Research Synthesis

Distribution A: Public Release, Distribution unlimited
AFRL Ionic Liquids

HOW WE GOT TO WHERE WE ARE

- SIMPLE SALTS USING PROTIC ACIDS
- OPEN CHAIN WORK
 HYDROGEN BONDING EFFECTS
 HYDRAZINE ANALOGUES
- SOME SIMPLE AMINES
- HETEROCYCLIC APPROACH

SHAPE CONSIDERATIONS

Distribution A: Public Release, Distribution unlimited
AFRL Ionic Liquids

- Oxyamine, \(-\text{O-NH}_2\), is an analogue to hydrazine linkage \(-\text{NH-NH}_2\)
- \(\text{CH}_2(\text{O-NH}_2)_2\) Explored at Edwards in late 1960’s (Claude Merrill)
- Reinvestigation of mono- and di- salts
- Several of the salts met the definition of an ionic liquid
- Treacherous! Sensitive to mechanical stimuli! Explode unexpectedly!

Distribution A: Public Release, Distribution unlimited
AFRL Ionic Liquids

1,2-bis(oxyamine)ethane

1,2-bis(oxyamine)ethane mono salts
X⁻ = NO₃⁻, ClO₄⁻, C(NO₂)₃⁻, N(NO₂)₂⁻

1,3-bis(oxyamine)propane very stable, watery liquid
b.p. = 65-70 °C @ 0.3 torr; f.p. = glasses at -40 °C

1,3-bis(oxyamine)propane mono salts
X⁻ = NO₃⁻, ClO₄⁻, C(NO₂)₃⁻, N(NO₂)₂⁻

In either case, the oxyamines yield extremely friction and impact sensitive materials.

AFRL Ionic Liquids

X-ray diffraction confirmed structure, lots of hydrogen bonding!

H(1) and H(8) are partial occupancy 70%/30%

Distribution A: Public Release, Distribution unlimited
AFRL Ionic Liquids

High level computational studies (Dr. Jeff Sheehy NASA/ Marshall) revealed a slightly different structure. Comparison of bond distances matched well though.

Distribution A: Public Release, Distribution unlimited
X-ray structure ethylene bisoxyamine dinitrate was also solved

Distribution A: Public Release, Distribution unlimited
High level calculations (Jeff Sheehy) of the gas phase ethylene bisoxyammonium Dication revealed a similar structure with accurately predicted bond distances.

Distribution A: Public Release, Distribution unlimited
AFRL Ionic Liquids

1,3-dihydroxy-2-aminopropane (serinol)

\[H-X \rightarrow X^- = NO_3^-, ClO_4^-, N(NO_2)_2^- \]

<table>
<thead>
<tr>
<th>Salt</th>
<th>m.p.</th>
<th>DSC onset</th>
<th>Impact (kg·cm)</th>
<th>Friction (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serinol nitrate</td>
<td>61-66°C</td>
<td>215°C</td>
<td>180</td>
<td>18.0</td>
</tr>
<tr>
<td>Serinol perchlorate</td>
<td>55-60°C</td>
<td>250°C</td>
<td>200</td>
<td>>37.8</td>
</tr>
<tr>
<td>Serinol dinitramide</td>
<td>41-44°C</td>
<td>135°C</td>
<td>16</td>
<td>23.4</td>
</tr>
</tbody>
</table>

"Distribution A: Public Release, Distribution unlimited"
AFRL Ionic Liquids

Single Crystal x-ray diffraction study of serinol perchlorate

Theoretical computations by Dr. Jerry Boatz (AFRL) using B3LYP/6-31G(d,p) of serinol cation in the gas phase (C_s symmetry) as compared to that observed in the single crystal x-ray diffraction study of serinol perchlorate.

Distribution A: Public Release, Distribution unlimited
AFRL Ionic Liquids

1,2-dihydroxy-3-aminopropane (chiral)

\[\text{H-X} \quad \xrightarrow{\text{SALT}} \quad \text{x}^+ \text{X}^- \]

\[\text{X}^- = \text{NO}_3^-, \text{ClO}_4^-, \text{N(NO}_2)_2^- \]

<table>
<thead>
<tr>
<th>SALT</th>
<th>Melting Point</th>
<th>Decomposition Onset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-dihydroxy-3-aminopropane nitrate</td>
<td>-40°C</td>
<td>220°C</td>
</tr>
<tr>
<td>1,2-dihydroxy-3-aminopropane perchlorate</td>
<td>?</td>
<td>225°C</td>
</tr>
<tr>
<td>1,2-dihydroxy-3-aminopropane dinitramide</td>
<td>-5°C</td>
<td>135°C</td>
</tr>
</tbody>
</table>

Distribution A: Public Release, Distribution unlimited
AFRL Ionic Liquids

4-amino-1,2,4-triazole

H-X

X⁻ = NO₃⁻, ClO₄⁻, N(NO₂)₂⁻

<table>
<thead>
<tr>
<th>SALT</th>
<th>Melting Point</th>
<th>Decomposition Onset</th>
<th>Impact kg/㎝³</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-amino-1,2,4-triazolium nitrate</td>
<td>69° C</td>
<td>180° C</td>
<td>>200</td>
</tr>
<tr>
<td>4-amino-1,2,4-triazolium perchlorate</td>
<td>84° C</td>
<td>210° C</td>
<td>30</td>
</tr>
<tr>
<td>4-amino-1,2,4-triazolium dinitramide</td>
<td>20° C</td>
<td>145° C</td>
<td><5</td>
</tr>
</tbody>
</table>

*Distribution A. Public Release, Distribution unlimited.
Single crystal x-ray diffraction study revealed the expected structure for 4-amino-1,2,4-triazolium perchlorate.

AFRL Ionic Liquids

New Effort with 1-amino-1,2,3-triazole

\[
\text{O} + 3\text{N}_2\text{H}_4 \xrightarrow{1.0 \text{ C}} \text{H}_2\text{N-N} \xrightarrow{2. \Delta, 75-80\text{C}} \text{N-NH}_2 \xrightarrow{\text{MnO}_2, \text{CH}_3\text{CN}} \text{N-NH}_2
\]

Distribution A. Public Release, Distribution unlimited
AFRL Ionic Liquids

Synthesis of 1-amino-3-alkyl-1,2,3-triazolium halides

\[
\begin{align*}
\text{N} & \quad \text{N} & \quad \text{N} \quad \text{NH}_2 \\
\text{R} & \quad \text{N} \quad \text{X} & \quad \text{N} \quad \text{NH}_2 & \quad \text{X}^{-} \\
\end{align*}
\]

+ 3 R-X

<table>
<thead>
<tr>
<th>New Salt</th>
<th>M.P. (°C)</th>
<th>Decomp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-amino-3-methyl-1,2,3-triazolium iodide</td>
<td>146</td>
<td>150</td>
</tr>
<tr>
<td>1-amino-3-ethyl-1,2,3-triazolium bromide</td>
<td>118</td>
<td>149</td>
</tr>
<tr>
<td>1-amino-3-propyl-1,2,3-triazolium bromide</td>
<td>128</td>
<td>135</td>
</tr>
<tr>
<td>1-amino-3-allyl-1,2,3-triazolium bromide</td>
<td>100</td>
<td>135</td>
</tr>
<tr>
<td>1-amino-3-butyl-1,2,3-triazolium bromide</td>
<td>131</td>
<td>145</td>
</tr>
</tbody>
</table>

Not Ionic Liquids!

Distribution A. Public Release, Distribution unlimited
Single crystal x-ray diffraction study of 1-aminoo-3-methyl-1,2,3-triazolium iodide

Distribution A. Public Release, Distribution unlimited
AFRL Ionic Liquids

Single crystal x-ray diffraction study of 1-amino-3-ethyl-1,2,3-triazolium bromide

Distribution A. Public Release, Distribution unlimited
AFRL Ionic Liquids

Single crystal x-ray diffraction study of 1-amino-3-propyl-1,2,3-triazolium bromide

Distribution A. Public Release, Distribution unlimited
AFRL Ionic Liquids

Single crystal x-ray structure of 1-amino-3-butyl-1,2,3-triazolium bromide

AFRL Ionic Liquids

Straight-forward metathesis forms desired nitrate salts

![Chemical structures](image)

<table>
<thead>
<tr>
<th>NEW SALT</th>
<th>M.P. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-amino-3-methyl-1,2,3-triazolium nitrate</td>
<td>86</td>
</tr>
<tr>
<td>1-amino-3-ethyl-1,2,3-triazolium nitrate</td>
<td>30</td>
</tr>
<tr>
<td>1-amino-3-propyl-1,2,3-triazolium nitrate</td>
<td>33</td>
</tr>
<tr>
<td>1-amino-3-allyl-1,2,3-triazolium nitrate</td>
<td>8</td>
</tr>
<tr>
<td>1-amino-3-butyl-1,2,3-triazolium nitrate</td>
<td>48</td>
</tr>
</tbody>
</table>

Distribution A. Public Release, Distribution unlimited.
AFRL Ionic Liquids

Single crystal x-ray diffraction study of 1-amino-3-methyl-1,2,3-triazolium nitrate

Distribution A. Public Release, Distribution unlimited.
AFRL Ionic Liquids

3,4,5-triamino-1,2,4-triazole (Guanazine)

\[+ H-X \to \text{New Salt} + X^- \]

\[X^- = \text{NO}_3^-, \text{ClO}_4^-, \text{N(NO}_2)_2^- \]

<table>
<thead>
<tr>
<th>New Salt</th>
<th>M.P. (°C)</th>
<th>Impact (kgcm)</th>
<th>Friction (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guanazinium nitrate</td>
<td>225</td>
<td>200</td>
<td>16</td>
</tr>
<tr>
<td>Guanazinium perchlorate</td>
<td>215</td>
<td>50</td>
<td>15.2</td>
</tr>
<tr>
<td>Guanazinium dinitramide</td>
<td>145</td>
<td>196</td>
<td>15.2</td>
</tr>
</tbody>
</table>

Not Ionic Liquids!

Distribution A. Public Release, Distribution unlimited
AFRL Ionic Liquids

Single crystal x-ray diffraction study of 3,4,5-triamino-1,2,4-triazolium nitrate

Distribution A. Public Release, Distribution unlimited
AFRL Ionic Liquids

Single crystal x-ray diffraction study of 3,4,5-triamino-1,2,4-triazolium perchlorate

Distribution A. Public Release, Distribution unlimited
Theoretical Calculations of protonated 3,4,5-triamino-1,2,4-triazole

Distribution A. Public Release, Distribution unlimited
Experimental points to proton going on tetrazole ring, which disagrees from Russian findings.

Distribution A. Public Release, Distribution unlimited
AFRL Ionic Liquids

Single crystal x-ray diffraction study of 1,5-diamino-1,2,3,4-tetrazolium perchlorate

Distribution A. Public Release, Distribution unlimited
Theory and Experimental Structures of 1,5-diamino-1,2,3,4-tetrazolium perchlorate are in close agreement in distances and angles.

Distribution A. Public Release, Distribution unlimited
AFRL Ionic Liquids

Summary and Conclusions

Hydrogen bonding is highly important in all systems.

Asymmetry can dramatically affect physical properties and modest changes can have drastic affects.

N-amino heterocycles offer a rich platform for ionic liquids.

New triazole and tetrazole systems have been identified as ionic liquid precursors.

X-ray crystallography continues to be a powerful tool in identifying interactions in the solid state.

There are a lot of possibilities out there that await development....

Distribution A. Public Release, Distribution unlimited
AFRL Ionic Liquids

Acknowledgements

Mike Berman (AFOSR)
Mike Huggins (AFRL/PRS)
Adam Brand (AFRL/PRSP)
Ronald Channell (AFRL/PRSP)
Wayne Kalliomaa (AFRL/PRSP)
Brett Wight (ERC, Inc.)
Jeff Bottaro Mark Petrie (SRI Int.)