The Relationship Between Detection Algorithms for Hyperspectral and Radar Applications

Nirmal Keshava, Stephen M. Kogon, Dimitris Manolakis

March 14, 2001

ASAP Conference
MIT Lincoln Laboratory
Lexington, MA 02420
The Relationship Between Detection Algorithms for Hyperspectral and Radar Applications

Nirmal Keshava; Stephen M. Kogon; Dimitris Manolakis

MIT Lincoln Laboratory 244 Wood Street Lexington, MA 02420-9185

Approved for public release, distribution unlimited

See ADM001263 for entire Adaptive Sensor Array Processing Workshop., The original document contains color images.

See Briefing Charts.

Security classification of: unclassified

Limitation of abstract: UU

Number of pages: 22

Standard Form 298 (Rev. 8-98)
Objective

- Overview of hyperspectral sensing

- Demonstrate how and why detection algorithms for hyperspectral imagery are related to detection algorithms for MTI radar
 - Similar physical assumptions
 - Common signal model

- Illustrate detection in hyperspectral imagery with real data and familiar detectors
Outline

- Introduction to hyperspectral sensing
- Signal models
- Detection models
- Hyperspectral detection results
- Conclusion
Hyperspectral Imaging (HSI) Concept

Each pixel contains a continuous spectrum that is used to identify the materials present in the pixel.

- **Signal**
- **Wavelength**

Pushbroom Class of Hyperspectral sensor

- **Spectral dimension**
- **Swath width**

Along track dimension built up by the motion of the spacecraft

Scene
Hyperspectral Sensing

- Hyperspectral imaging (HSI) is a form of passive imaging
 - Extension of multispectral sensing (e.g., Landsat)
 - Hundreds of contiguous, real-valued spectral bands
 - Spatial resolution is a function of Instantaneous Field of View (IFOV) and altitude
Outline

• Introduction to hyperspectral sensing
• Signal models
 – Hyperspectral sensing
 – MTI radar
• Detection models
• Hyperspectral detection results
• Conclusion
Modeling of Spatially Unresolved (Mixed) Pixels

Physical Space

- Spatially unresolved targets
- Measured spectrum

Data Space

- Band 1
- Band 2
- Band 3
- Pixel spectra

Signal Processing

- **Unmixing**
 - Find endmembers
 - Compute abundances
- **Classification**
- **Detection**
Linear Mixing Model (LMM)
Target and Background Modeling

Test pixel \(\mathbf{x} = \sum_{k=1}^{P_T} a_k s_k + \sum_{k=P_T+1}^{P_T+P_B} a_k s_k + n \)

\(P_T \) \(P_B \) \n
\(\text{abundance} \)

\(\text{end member} \)

\(\text{Target subspace} \) \(\text{Background subspace} \) \(\text{Noise hyper-sphere} \)

\(N(\mathbf{0}, \sigma^2 I) \)
MTI Radar

Two-dimensional filtering required to cancel interference

Space-Time Adaptive Processing (STAP)
Pulsed Radar Datacube

Measurement	Physical Quantity
Pulse | Doppler (velocity)
Element | Angle
Fast-time | Range
STAP Radar Signal Model

- Space-time snapshot for single target
 \[x = t + c + n \quad \text{and} \quad t = \alpha v(\phi, f) \]

- \(v(\phi, f) \) is called the space-time steering vector

- Space-time interference (clutter, noise) covariance is
 \[R = E \{(c + n)(c + n)^H\} = R_c + R_n \]
Hyperspectral Imaging and MTI Radar

Summary of Properties

<table>
<thead>
<tr>
<th>Hyperspectral Imaging</th>
<th>MTI Radar</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>Active, coherent sensing</td>
</tr>
<tr>
<td>Resolution</td>
<td>Resolution is a function of signal bandwidth and aperture length</td>
</tr>
<tr>
<td>Passive, incoherent sensing</td>
<td>Components add linearly to yield received signal</td>
</tr>
<tr>
<td>Resolution is a function of detector IFOV and altitude</td>
<td>Complex array measurements are sum of steering vectors weighted by RCS values</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal Model</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMM assumes distinct spectra mix linearly</td>
<td>LMM assumes distinct spectra mix linearly</td>
</tr>
<tr>
<td>Real spectra are sum of endmembers weighted by abundances</td>
<td>Real spectra are sum of endmembers weighted by abundances</td>
</tr>
<tr>
<td>$x = a s + b + n$</td>
<td>$x = a s + b + n$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Cube</th>
<th>Signal Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>M bands</td>
<td>Components add linearly to yield received signal</td>
</tr>
<tr>
<td>Y</td>
<td>Complex array measurements are sum of steering vectors weighted by RCS values</td>
</tr>
</tbody>
</table>

$x = a s + b + n$

$x = \alpha v + c + n$
Outline

• Introduction to hyperspectral sensing
• Signal models
• Detection models
 – Hyperspectral sensing
 – MTI radar
• Hyperspectral detection results
• Conclusion
Adaptive HSI Detection
Known and Unknown Targets

\[\hat{R} = \frac{1}{N} \sum_{n=1}^{N} x(n)x^T(n) \]
Adaptive Detection in STAP Radar

Radar data cube

Estimate interference using this data (training region)

Estimate STAP Weights

\[w = \hat{R}^{-1} v(\phi, f) \]

Hypothesis Testing:

\[H_0: x = t + c + n \]
\[H_1: x = c + n \]

Target present
No target
Replacement and Additive Target Models

- Hyperspectral detection has replacement targets
 \[H_0 : \quad x = b + n \]
 \[H_1 : \quad x = f t + (1 - f)b + n \]

- Interference statistics
 - Varies with \(f, 0 \leq f \leq 1 \)
 - Target displaces background

- Detection results
 - Insufficient target data for ROC curves
 - No theoretical models

- MTI radar detection has additive targets
 \[H_0 : \quad x = c + n \]
 \[H_1 : \quad x = t + c + n \]

- Interference statistics
 - Independent of target
 - Measure locally

- Detection results
 - ROC curves indicate \(P_D/P_{FA} \) values
 - Theoretical models for target
Comparison of HSI and MTI Detection

<table>
<thead>
<tr>
<th>Hyperspectral Imaging</th>
<th>MTI Radar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td>Strategy</td>
</tr>
<tr>
<td>Known target</td>
<td>Additive target model</td>
</tr>
<tr>
<td>Detect target spectrum amid background</td>
<td>Moving target</td>
</tr>
<tr>
<td>Unknown target</td>
<td>Exploit coherency through beamforming and Doppler filtering</td>
</tr>
<tr>
<td>Detect pixels anomalous from background</td>
<td>RCS and velocity are key parameters for target visibility</td>
</tr>
<tr>
<td>Covariance</td>
<td>Covariance</td>
</tr>
<tr>
<td>known target</td>
<td>Interference covariance estimated from local subset of pulse/element/range measurements</td>
</tr>
<tr>
<td>Dimension equals number of bands (~ 100--200)</td>
<td>Better estimate</td>
</tr>
<tr>
<td>Can use subset of bands</td>
<td>Avoids non-stationarity</td>
</tr>
<tr>
<td>Replacement target model</td>
<td>Interference covariance estimated from sample pixels</td>
</tr>
<tr>
<td>Known target</td>
<td>Interference covariance estimated from local subset of pulse/element/range measurements</td>
</tr>
<tr>
<td>Measure spectral angle</td>
<td>Better estimate</td>
</tr>
<tr>
<td>Unknown target</td>
<td>Avoids non-stationarity</td>
</tr>
<tr>
<td>Measure magnitude</td>
<td></td>
</tr>
</tbody>
</table>
Outline

• Introduction to hyperspectral sensing
• Signal models
• Detection models
• Hyperspectral detection results
 – Detection taxonomy
 – Sub-pixel target detection
• Conclusion
Taxonomy of Hyperspectral Detectors

<table>
<thead>
<tr>
<th>Noise model</th>
<th>Signal model</th>
<th>Available data</th>
<th>Test statistic $T(x)$</th>
<th>References</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbf{R} = \text{completely unknown interference (unstructured)}$</td>
<td>$s = as_i$ known direction</td>
<td>$x =$ test measurement ({x_n}_{n=1}^{N} = \text{“signal-free” training data})</td>
<td>$\frac{</td>
<td>s_i^T \mathbf{R}^{-1} x</td>
<td>}{(s_i^T \mathbf{R}^{-1} s_i)(1 + x^T \mathbf{R}^{-1} x)}$</td>
</tr>
<tr>
<td>$\mathbf{R} = \sum_{k=1}^{P} a_k s_k = \mathbf{S} a$</td>
<td>$x =$ test measurement ({x_n}_{n=1}^{N} = \text{“signal-free” training data})</td>
<td>$\mathbf{R} = \sum_{n=1}^{N} x_n x_n^T$, $\mathbf{R} = \frac{1}{N}$</td>
<td>$\frac{</td>
<td>s_i^T \mathbf{R}^{-1} x</td>
<td>}{(s_i^T \mathbf{R}^{-1} s_i)(1 + x^T \mathbf{R}^{-1} x)}$</td>
</tr>
<tr>
<td>$s = \sum_{k=1}^{P} a_k s_k = \mathbf{S} a$</td>
<td>$x =$ test measurement</td>
<td>$\hat{S} = [s_1, s_2, \ldots, s_P]$, $\mathbf{Z} = [z_1, z_2, \ldots, z_Q]$</td>
<td>Classical F-test for linear statistical models; Signal processing interpretations Matched Subspace Detector (MSD), Scharf-Friedlander (1994)</td>
<td>Orthogonal subspace projection (OSP): $T(x) = s_i^T \mathbf{P}_z^T x$</td>
<td>$T(x) = \frac{\mathbf{T}(x)}{P}$, $P = M \Rightarrow T(x) = x^T \mathbf{R}^{-1} x$, $\mathbf{P} = \mathbf{M} \Rightarrow$ Classical F-test for linear statistical models; Signal processing interpretations Matched Subspace Detector (MSD), Scharf-Friedlander (1994)</td>
</tr>
<tr>
<td>$\mathbf{R} = \sigma^2 \mathbf{I} + \sum_{k=1}^{Q} z_k z_k^T$ structured interference</td>
<td>$s = as_i$</td>
<td>$x =$ test measurement</td>
<td>$\hat{S} = [s_1, s_2, \ldots, s_P]$, $\hat{Z} = [z_1, z_2, \ldots, z_Q]$</td>
<td>Classical F-test for linear statistical models; Signal processing interpretations Matched Subspace Detector (MSD), Scharf-Friedlander (1994)</td>
<td>Orthogonal subspace projection (OSP): $T(x) = s_i^T \mathbf{P}_z^T x$</td>
</tr>
</tbody>
</table>

\[T'(x) = \frac{x^T \mathbf{P}_z \mathbf{P}_G \mathbf{P}_z^T x}{x^T \mathbf{P}_z \mathbf{P}_G \mathbf{P}_z^T x} \]

\[P_G = \mathbf{G} (\mathbf{G}^T \mathbf{G})^{-1} \mathbf{G}^T \]

\[\mathbf{G} = \mathbf{P}_z \mathbf{S} \mathbf{P}_G = \mathbf{I} - \mathbf{P}_G \]
Hyperspectral Detection Results

- **HYDICE (HYperspectral Digital Imagery Collection Experiment)**
 - Airborne sensor
- **210 spectral bands**
 - 399-2501 nm
 - Channel widths ~ 3 – 11 nm
 - Spatial resolution, 1m x 1m
- **Look for sub-pixel targets**
Comparative Detector Performance
Sub-pixel Targets

- 8232 tree pixels
- 8232 synthetic mixed pixels
 - 25% / 75%
 - 50% / 50%
 - 75% / 25%
- Two detectors
 - SAM ("unwhitened")
 \[T_{SAM}(x) = \frac{(s^T x)}{\sqrt{(s^T s) \sqrt{(x^T x)}}} \]
 - GLRT
 \[T_{GLRT}(x) = \frac{(s^T \bar{R}_b^{-1} x)^2}{(s^T \bar{R}_b^{-1} s)(1 + x^T \bar{R}_b^{-1} x)} \]
- Measure range of test statistics

\[T(x), \text{ Detector Statistic Value} \]

\[\text{Target Percentage} \]

\[\text{Skgd. range} \]

\[\text{Target range} \]
Conclusions

• Under LMM, hyperspectral sensing shares a common signal model with MTI radar
 – Endmembers ↔ Steering vectors
 – Abundances ↔ RCS

• Hyperspectral processing has leveraged optimal detection algorithms from radar
 – Exploit spectral differences between targets and background

• Successful sub-pixel target detection depends upon
 – Target/background subspace relationship
 – Fraction of target present