NATO Defense Science and Technology

by Donald C. Daniel and Leigh C. Caraher

Overview

The accord establishing the North Atlantic Treaty Organization (NATO) in 1949 provided the framework for the greatest international mechanism ever in defense science and technology. From its earliest days, NATO involvement in science and technology has sought to build cooperation and promote security and stability. Today, the central element of the NATO defense science and technology program is the Research and Technology Organization (RTO), which provides the best basis for collaboration among the most technologically advanced countries in the world. Through this body, alliance nations plan and execute activities that cover the full spectrum of technologies vital to current and future security.

RTO and its two predecessors, the Advisory Group for Aerospace Research and Development and the Defense Research Group, have a history of fostering long-term relationships among senior executives, scientists, and engineers; sharing information and research; and enhancing military capabilities. There is no international activity that rivals RTO in scope, magnitude, or potential. RTO can continue to build on these successes by emphasizing longevity of its highly qualified members, prioritizing areas of opportunity, integrating the seven newest NATO invitees, and building a closer relationship with Russia. This paper examines the origins of NATO defense science and technology, provides an overview of the Research and Technology Organization, and analyzes the elements that make RTO successful. The paper concludes with recommendations for enhancing RTO effectiveness in the 21st century.

Origins of NATO Science and Technology

Involvement of the North Atlantic Treaty Organization (NATO) in defense science and technology dates to the earliest days of the alliance. It was founded on the principles of international cooperation and security. Although neither science and technology nor research and technology are explicitly mentioned in any of the 14 North Atlantic Treaty articles, they are clearly implicit in Articles 2 and 3, which address “promoting conditions of stability and well-being” and achieving “the objectives of this Treaty . . . by means of continuous and effective self-help and mutual aid, (to) maintain and develop . . . capacity to resist armed attack.” In drawing the connection between promoting stability and providing for mutual aid for defense, the NATO charter laid the foundation for future cooperation among the alliance nations in defense science and technology. This unique cooperation has been a key element in establishing and maintaining the connection between the military and technology.

The first scientific and technical organization of the alliance was the Advisory Group for Aerospace Research and Development (AGARD), founded by Theodore von Karman in 1953. Von Karman was a powerful, if quiet, voice in establishing the post-World War II model of a military that was closely coupled with the scientific and technical community. He contended that “scientific results cannot be used efficiently by soldiers who have no understanding of them, and scientists cannot produce results useful for warfare without an understanding of operations.”

The mission statement of the AGARD Charter actively sanctioned the free exchange of militarily relevant scientific information to strengthen the NATO common defense posture and increase the scientific potential of member nations, thereby providing the essence of international technical cooperation for NATO that continues today. Although commonly accepted now, this charter at the time represented significant new thinking for an international activity. Oversight and management of AGARD evolved somewhat over the years but generally consisted of a Board of Delegates, which reported to the NATO Military Committee, and various technical panels, which had oversight in their own areas. The Board of Delegates provided guidance to the technical panels and approved their program of work.

A second scientific and technical organization within NATO, the Defense Research Group (DRG), was formed in 1967, also based on input from von Karman. DRG was created simultaneously with the Conference of National Armaments Directors (CNAD). Unlike
NATO Defense Science and Technology

Report Documentation Page

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR 2003</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATO Defense Science and Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Defense University Center for Technology and National Security Policy Fort McNair Washington, DC 20319</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORYING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR'S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR'S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

UU

18. NUMBER OF PAGES

6

19a. NAME OF RESPONSIBLE PERSON

Approved for public release, distribution unlimited
AGARD with its research focus, the primary purpose of DRG was to foster technical cooperation among alliance nations that could lead to the development of future defense equipment. Also, unlike AGARD, which reported to the Military Committee, DRG reported to the newly created CNAD. At the highest level, DRG was made up of individuals from the alliance nations who had responsibility for national defense research and development. DRG featured eight panels and two special groups of experts.

During the 1990s, senior leaders from the member nations and NATO headquarters increasingly perceived that unnecessary duplication existed between DRG and AGARD. There was also some concern about the number of individuals involved, which had grown to more than 1,000 scientists, engineers, and administrators. The consensus among several nations was that both the total number of people and unnecessary duplication needed to be reduced. In an effort to solve these problems, NATO Secretary General Javier Solana formally disbanded DRG and AGARD in April 1997 as part of a major restructuring of defense research and technology. The Research and Technology Organization (RTO) was then created, and it absorbed the duties of its predecessors.

The Research and Technology Organization

Formed in 1998 by the merger of AGARD and DRG, the Research and Technology Organization is the primary NATO organization for defense science and technology. RTO reports to both CNAD and the Military Committee; it has both a board and technical panels; and it blends the research and technical missions of its predecessors. RTO promotes and conducts cooperative research and information exchange, develops and maintains a long-term NATO research and technology strategy, and provides advice to all elements of NATO on research and technology issues. In pursuit of this mission, RTO operates at three levels: the Research and Technology Board, technical panels, and technical teams. A Research and Technology Agency (RTA) provides staff support to RTO.

The Research and Technology Board (RTB) constitutes the highest authority in RTO. It is the policy body tasked by the North Atlantic Council through the Conference of National Armaments Directors and the Military Committee to serve as the single integrating body within NATO for the direction and/or coordination of defense research and technology. RTB consists of up to three members per NATO nation. The members are chosen by the nations and may be from government, academia, or industry, although the majority of members are from governments. Board members are typically senior science and technology executives at the deputy under secretary, deputy assistant secretary, or deputy administrator level. RTB elects a chairman for a 3-year term from nominations submitted by the nations.

Technical panels are composed of senior-level technical experts appointed by member nations. Panels have considerable autonomy and are charged with initiating, planning, and managing technical activities, subject to RTB approval, within their areas of responsibility. Each technical panel consists of up to three national members from each NATO nation. These members are chosen by the nations, with the majority coming from government. In addition, members-at-large, who may be required for a specific technical expertise, may also be appointed based on a panel request or recommendation. The total membership of a panel is limited to 60, however. National panel members typically have been government senior executive personnel with extensive science and technology responsibility and authority. Panel members-at-large most often have been internationally recognized experts of high technical stature from government, academia, or industry.

Technical teams are formed by the technical panels to perform specific tasks, which include organizing and hosting symposia, specialist meetings, workshops, lecture series, technical courses, and other activities. Technical team activities have clearly defined products and are limited in scope as well as duration, with 3 years being the maximum time a team may be in existence unless specifically extended by the board. Panel or board members appoint technical team members. Any significant change in activities or team membership requires board approval. At any given time, dozens of technical teams exist. Each team typically has multiple representatives from the nations coming from a variety of backgrounds and experience levels.

The Research and Technology Agency (RTA) provides RTO staff support. The multinational RTA staff numbers approximately 50 people. It consists of formal NATO positions and a larger number of positions that member nations voluntarily provide in an ad hoc manner. The assigned personnel may be civilian or military and either technical or administrative. RTA is led by a director whom RTB selects subject to approval by CNAD and the Military Committee in consultation with the Secretary General. The director is a full-time NATO employee.

Benefits to RTO Nations

The RTO structure provides the framework for the greatest international scientific and technical cooperative mechanism for sharing of defense-related information of its kind. These research results lead, in turn, to significantly enhanced military capabilities of benefit to the entire alliance. As the NATO Standing Group communicated to the AGARD Second General Assembly in 1952 declared:

The research and development potential of the North Atlantic Treaty Nations is one of the greatest resources of the West. Any feasible pooling of these resources should achieve a greater rate of technical progress than would each nation working alone. It is self-evident that any contribution to this rate of progress is a contribution of fundamental importance to NATO defence objectives.

Long-Term Relationships

Progress in science and technology frequently is made with a long-term investment; often a decade or two passes before results appear outside the immediate technical community in the form of products or processes. Perseverance and steady advancement are key elements in the success of science and technology and lend
themselves to long-term international relationships that provide both new approaches to difficult problems and the scientific feedback necessary for progress.

RTO provides an exceptional opportunity for member nation senior executives, scientists, and engineers to establish long-term professional relationships. Regularly scheduled meetings in various nations over the years give participants the opportunity for repeated dialogue and exchange of ideas. Professional relationships and strong ties evolve based initially on common technical interests, but with continued contact, the relationships evolve further based on in-depth, personal knowledge of individuals and institutions. These solid relationships significantly enhance the prospects for resolving technical, or even political, issues.

Multiple Approaches to Technical Problems

Difficult technical problems can most often be solved by having top-quality people take different approaches. Because schools of thought develop within institutions, the approach a senior specialist takes toward a technical problem can vary widely by geographic area, institution, or culture. For example, scientists and research engineers in some nations (especially those with limited funding) spend considerable amounts of time analyzing problems, whereas other scientists and research engineers with greater funding may move quickly to experimentation or even rudimentary concept development. Either approach may be the one that provides the timely breakthrough or ultimately provides a key element for the other’s research program. With the participation of 19 nations and a combined membership possessing the highest technical capability in the world, RTO inherently provides superior access to various schools of thought and multiple technical approaches to many of the most difficult military problems.

Leveraged Resources

Leveraging resources has always been at the heart of NATO. In 1945, von Karman concluded, “progress in technology was so swift that only a pool of nations could properly utilize scientific advances for mutual protection.” This statement has as much validity today as it did over 50 years ago, and it continues to underscore NATO scientific and technical cooperation. By combining the financial and human resources as well as technical capacities of its members, NATO can make greater advances in defense science and technology.
than any one nation working alone. As the NATO Standing Commit-
tee communiqué indicated to the Second AGARD General Assembly
in 1952, “the research and development potential of the North
Atlantic Treaty nations is one of the greatest resources of the West.”

Documented Results

The foundation of any technology is the archival literature.
Documenting the results of research conducted by thousands of its
scientists and engineers is an essential element of the RTO mission.
RTO (including its predecessors) is one of the largest scientific and
technical publishers in the world, with well over 3,000 publications
issued since 1952. These publications include focused volumes on
defense-related technologies, extensive collections of symposia
papers, and numerous workshop reports. Recent examples of the
subjects of some of these publications include *Multisensor Image
Exploitation, Active Control of Engine Dynamics, Future Modeling
and Simulation Challenges and Integrated Mission System
Concepts, and Technologies for Future Unmanned Combat Applica-
tions*. NATO members have access to all publications through RTA.
Many are also available via the RTO Web site.

Issues and Recommendations

Built on a foundation of international scientific and technical
cooperation, the NATO Research and Technology Organization has
achieved many successes in defense science and technology that
have contributed significantly to NATO military capabilities. Since
the November 2002 NATO Summit in Prague, even more opportuni-
ties exist to build on these past successes. Not only were seven new
countries invited to join in accession talks for future membership in
the alliance, but the North Atlantic Council also announced new
NATO efforts at transformation—from streamlining its command
structure to creating a NATO Response Force. RTO can and must
play an integral role in working with the new strategic command for
transformation and the NATO Response Force, the integration of the
new members, and building relations with Russia.

Increased Defense Spending

Proportionate leveraging of financial resources in defense sci-
ence and technology is one of the most fundamental and important
tasks for RTO. The gross domestic products of the United States and
Europe are almost equal, at approximately $10 trillion. However, the
United States outspends Europe almost 4 to 1 in defense research and
technology. With a defense science and technology budget that
approaches $10 billion per year, a multibillion-dollar laboratory infra-
structure, and over 20,000 people employed in the laboratories, the
U.S. investment is a formidable one. An already exceptional leveraging
opportunity can clearly be enhanced by an increase in European
defense budgets.

It is gratifying to see that, concerned by the growing capabili-
ties gap between Europe and the United States, many European
leaders have already taken steps to increase their defense budgets.
France, Norway, Portugal, and the United Kingdom have submitted
budgets with a boost in defense spending, ranging from 1.2 percent
in the United Kingdom to 8.2 percent in France. The Czech Repub-
lic, Poland, and Hungary have also announced plans to increase
their budgets. France’s $13.3 billion proposed 2003 defense budget
is especially significant since it includes an increase in research
and development to $3.7 billion.

Prioritization of Technical Areas

RTO must achieve a balance of its activities across the spec-
trum of land, air, sea, space, and command, control, communica-
tions, computers, and information technologies. Because of its
AGARD heritage, RTO activities perhaps continue to be too aeronautics-centric, and RTB must be more proactive in providing policy
guidance to its panels to improve this situation. Perhaps the two
major technical areas of opportunity are information technology and
communications, which are also the two most dominant emerging
areas demanding increased interoperability. These should be a top
priority. Information technology is particularly appealing since it
does not require large infrastructure investments. As Ann Miller,
chair of the Information Systems Technology Panel, recently pointed
out, “The playing field is more level between Europe and the U.S.
industry when it comes to information technology.”

In setting research priorities, RTB must continue to listen care-
fully to its primary customers: the two strategic commands, the Mil-
itary Committee, and the Conference of National Armaments Direc-
tors. These customers will become increasingly important as NATO
transforms its forces and stands up the NATO Response Force. The
new strategic command for transformation, announced at the
Prague Summit, will be responsible for the continuing transforma-
tion of military capabilities and for the promotion of interoperability
of alliance forces. The formation of this command provides a
unique opportunity to rapidly transition the right technologies with
the highest impacts.

Interoperability

One of the most critical issues that NATO has faced over the
last 50 years has been improving military interoperability. RTO has
excellent potential to increase interoperability from the research
beginnings of a given technology. With appropriate RTB policy guid-
ance, the technical panels can perhaps derive solutions to interop-
erability problems early in a technology’s research and development
cycle. Information technology and communications are two areas
where interoperability is not only critical but also where technical
opportunities may be highest. More opportunities for enhanced
interoperability may also evolve as the defense industry becomes
more multinational over time; RTO must stay in touch with this evo-
lution through the NATO Industrial Advisory Group and foster coop-
eration within the framework of growing interoperability.

Integration of New Members

At the NATO Summit in Prague, seven nations were invited to
begin accession talks to join NATO by May 2004. With their mem-
bership so close, RTO must formulate and implement plans to integrate
these new members into a broad spectrum of technical activities.
Their technical capabilities and desires must be considered equally,
and proactive plans that are mutually beneficial to NATO and the new
members must be put in place. The new members must understand
from the beginning that their active participation in RTO is welcome
and that their scientific and technical contributions are expected.
Outreach to Russia

A major, proactive initiative by the RTO to Russia is perhaps overdue and could contribute significantly to security and stability in Europe and the world. Although RTO activities have been open to Russia for some time, the organization has yet to formulate and implement a proactive plan. With the eastward enlargement of NATO, increasing commonality in our national security interests, and the continuing excellent ability of Russian defense research and technology, now is the time.

Increased Longevity in Membership

The key to establishing and maintaining the long-term relationships that are essential for the NATO defense science and technology program to flourish rests with the Research and Technology Board and technical panels. Because RTB formulates and directs NATO strategy for research and technology, RTB members must continue to come from the ranks of the most senior defense research and development organizations in the member nations. These board members must commit to the time and travel required to participate in semiannual board meetings, and they must be active participants.

Nations must also strive for the stability and longevity of their board members. For example, U.S. members have served on average only 2 years, with no current member having served continuously since the board’s inception. Given the desirability of establishing long-term relationships within the scientific and technical community of the alliance nations, this matter requires increased attention.

Technical Panel Membership

Membership on RTO technical panels also requires increased attention. Nations must appoint members who are prominent in their research and technology organizations and command appropriate resources to execute the programs put in place by their panels. Also, member nations must strive for continuity and appropriate longevity in panel membership. The average length of service for all U.S. members on technical panels, for example, is only 2 years. Nations individually and the alliance at large will benefit from longer terms.

Conclusion

Allied cooperation in defense science and technology through the NATO Research and Technology Organization remains critical to the promotion of peace, stability, and security throughout the world. By encouraging international scientific and technical cooperation and by conducting research to maintain a technological lead in defense capabilities, NATO assures its active engagement and continued viability in the new strategic environment.

No international defense research and technology activity rivals RTO in scope, magnitude, or potential. As NATO enlarges and takes on new missions, the common language of scientists and engineers will offer a mechanism for exchange and growth in a world that will continue to be dominated by technology. It is imperative that the technical arm of NATO grasps this opportunity and remains a key ingredient in our collective security.

Notes

1 Article 2 of the NATO Charter states, “The Parties will contribute toward the further development of peaceful and friendly international relations by strengthening their free institutions, by bringing about a better understanding of the principles upon which these institutions are founded, and by promoting conditions of stability and well-being.” Article 3 adds, “in order more effectively to achieve the objectives of this Treaty, the Parties, separately and jointly, by means of continuous and effective self-help and mutual aid, will maintain and develop their individual and collective capacity to resist armed attack.”

3 Jan Van der Brike, ed., AGARD, The History 1952–1997 (Essex, UK: SPS Communications, 1999). The elements of the AGARD Charter were to:

- recommend effective ways for member nations to use research and development capabilities for the common benefit of the NATO community
- provide scientific and technical advice and assistance to the Military Committee in the field of aerospace research and development (with particular regard to its military application)
- continuously stimulate advances in the aerospace sciences relevant to strengthening the common defense posture
- improve the cooperation among member nations in aerospace research and development
- exchange scientific and technical information
- provide assistance to member nations for the purpose of increasing scientific and technical potential
- render scientific and technical assistance, as requested, to other NATO bodies and to member nations in connection with research and development problems in the aerospace field.

4 The number and titles of the AGARD technical panels varied over the years, but, for the most part, seven were organized around the following areas: aerospace medicine, flight vehicle integration, fluid dynamics, mission systems, propulsion and energetics, sensors and propagation, and structures and materials. The technical panels were made up of experts in the various fields from most member nations. Total membership varied, but by the late 1990s was approximately 500 people. The technical panels had considerable autonomy subject to board approval in the formulation and execution of their programs.

5 The DBG panels, made up of senior laboratory directors and administrators, were long-term scientific studies; physics and electronics; optics and infrared; operational research; human and biomedical sciences; electronic warfare; air defense; and information processing technology. The two special groups of experts were concealment, camouflage, and deception; and combat engineering technology. Total membership varied, but by the late 1990s was approximately 500 people.

6 Van der Brike. Emphasis added.

7 Ibid.

10 Prague Summit Declaration, issued by the heads of state and government participating in the meeting of the North Atlantic Council, Prague, November 21, 2002.

11 Bulgaria, Estonia, Latvia, Lithuania, Romania, Slovakia, and Slovenia.
<table>
<thead>
<tr>
<th>Number</th>
<th>Date</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Dec 2002</td>
<td>The Emergence of Mini UAVs for Military Applications</td>
<td>Timothy Coffey and John A. Montgomery</td>
</tr>
<tr>
<td>21</td>
<td>Jan 2003</td>
<td>The Silence of the Labs</td>
<td>Don J. DeYoung</td>
</tr>
<tr>
<td>20</td>
<td>Oct 2002</td>
<td>From Petro to Agro: Seeds of a New Economy</td>
<td>Robert E. Armstrong</td>
</tr>
<tr>
<td>17</td>
<td>Oct 2002</td>
<td>Computer Simulation and the Comprehensive Test Ban Treaty</td>
<td>Peter D. Zimmerman and David W. Dorn</td>
</tr>
<tr>
<td>16</td>
<td>Aug 2002</td>
<td>The Virtual Border: Countering Seaborne Container Terrorism</td>
<td>Hans Binnendijk, Leigh C. Caraher, Timothy Coffey, and H. Scott Wynfield</td>
</tr>
<tr>
<td>15</td>
<td>Jul 2002</td>
<td>Biological Weapons: Toward a Threat Reduction Strategy</td>
<td>Brad Roberts and Michael Moodie</td>
</tr>
<tr>
<td>14</td>
<td>Jun 2002</td>
<td>Toward Missile Defenses from the Sea</td>
<td>Hans Binnendijk and George Stewart</td>
</tr>
<tr>
<td>12</td>
<td>Apr 2002</td>
<td>The Airborne Laser from Theory to Reality: An Insider’s Account</td>
<td>Hans Mark</td>
</tr>
<tr>
<td>11</td>
<td>Apr 2002</td>
<td>Computer Games and the Military: Two Views</td>
<td>J.C. Herz and Michael R. Macedonia</td>
</tr>
<tr>
<td>10</td>
<td>Mar 2002</td>
<td>Rediscovering the Infantry in a Time of Transformation</td>
<td>Bing West</td>
</tr>
<tr>
<td>9</td>
<td>Mar 2002</td>
<td>Nonlethal Capabilities: Realizing the Opportunities</td>
<td>E.R. Bedard</td>
</tr>
<tr>
<td>8</td>
<td>Mar 2002</td>
<td>Small Security Nanotechnology and Future Defense</td>
<td>John L. Petersen and Dennis M. Egan</td>
</tr>
<tr>
<td>7</td>
<td>Feb 2002</td>
<td>Global Trade: America’s Achilles’ Heel</td>
<td>James M. Loy and Robert G. Ross</td>
</tr>
</tbody>
</table>