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SECTION 1 

INTRODUCTION 

1.1 OPERATIONAL SETTING AND MOTIVATING EXAMPLE 

A fundamental challenge for modern Battle Management/Command, Control, and Communications 
(BMC3) systems is to withstand attacks against their constituent computer and communication 
subsystems.  Measures introduced by System Administrators to safeguard or respond to a “cyber attack” 
will vary with the type of attack, of course, but almost all measures will disrupt the processing flow 
within the BMC3 system in some manner.  Encryption, for instance, will invariably introduce processing 
and communication delays within the BMC3 system.  Re-locating a database server will both introduce 
delays and interrupt processing. Every BMC3 system is in a race against time, and disruptions in its 
processing flow may very well cause the system to lose the race.  

System Administrators disrupt BMC3 processing flows with startling regularity even under 
benign conditions when their systems are not under attack, and the consequences are often dire.  Two 
examples from Joint Experiment Force Exercise (JEFX) 2000 illustrate the impact of even “modest” 
disruption on time-critical BMC3 processing.   

In the first example, the Combined Air Operations Center (CAOC) at Hurlburt Field was 
performing Time-Critical Targeting (TCT) with the TCT cell at Nellis AFB.  System Administrators at 
Hurlburt discovered a minor configuration problem, and attempted to fix the problem with a system 
upgrade.  The upgrade, however, caused a loss of synchronization in the data appearing on the Common 
Operational Pictures (COPs) at Hurlburt and Nellis.  With this loss of synchronicity the CAOC at 
Hurlburt was no longer able to see targets nominated for engagement by the TCT cell at Nellis.  
Confusion quickly settled in: the CAOC observed strike aircraft diverted (to engage TCTs) without 
knowing why.  CAOC operators assumed that the air plan had gone awry, and suspended missions in 
order to straighten out the situation. 

The second example involved planned system outage for maintenance at the CAOC.  The 
directors for Current Operations and for System Administration agreed to a plan to take the system down 
a) after 7PM, and b) after air planners had finished building the strike package.  The System 
Administration staff were instructed on the first condition, but not the second.  The system was taken 
down for maintenance at 7 PM before the air plan was completed, and several hours of data were lost.  

In both cases, the System Administrators did not know that their BMC3 systems were in the 
midst of critical workflows that simply could not be interrupted.  This point is vitally important as we 
look beyond the relatively benign conditions in those circumstances to the challenges of responding to 
cyber attacks.  System Administrators cannot respond intelligently to a cyber attack if they are unable to 
anticipate how disruptions in the ongoing workflow will affect the mission. 
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If the impacts of disruptions are understood, then System Administrators can further evaluate the 
effectiveness of courses of action (CoAs) undertaken to mitigate and to circumvent the effects of cyber-
attacks.  Reconfigurations of the BMC3 network, whether physical, logical, or procedural, introduce 
disruptions; however, these short term disruptions may improve performance over the duration of the 
cyber-attack effects. 

The Effects-Based Cyber-COA Optimization Technology & Experiments (EBCOTE) project has 
studied the problem of quality of service (QoS) assurance in BMC3 systems in the context of a Time 
Critical Targeting (TCT) cell scenario.  In an Air Force Air Operations Center (AOC), the TCT cell is 
responsible for the command and control of air operations that prosecute time-sensitive targets of 
opportunity.  The TCT Cell must identify and classify emerging targets based on incoming sensor and 
Intelligence, Reconnaissance, Surveillance (ISR) data, evaluate the targets, and ultimately task surface or 
air assets to prosecute the targets.  In order to successfully prosecute a TCT, operators must use a variety 
of IT capabilities both hardware and software, to support each of a sequence of doctrinally prescribed 
tasks.   

Since TCTs may be lost to sensors after emergence, there is a short time limit (on the order of ten 
minutes) for their prosecution.  In addition, TCTs may emerge frequently; dozens may be in process at 
once.    Together, these characteristics make the TCT cell’s mission effectiveness highly sensitive to 
disruptions in workflow. 

1.2 PROBLEM CHARACTERIZATION 

To formalize the problem of QoS assurance in BMC3 systems, we draw from managed information 
systems ideas in the business process re-engineering (BPR) community, in particular, the notions of a 
workflow system and workflow management.  BMC3 systems that we are studying and their missions are 
characterized by their support of a doctrinal process—tasks to be performed, conditions for executing 
these tasks, and further subprocesses.  A workflow is the process-related collection of jobs, resources, and 
orders to initiate or perform tasks on jobs [1].  The BMC3 information system, then, is a workflow 
system—it supports the workflow to accomplish its mission.  Some BMC3 systems also incorporate a 
workflow management system (WfMS), which initiates the execution of activities and tracks the 
generation of activities and their assignment to resources, the status of jobs and activities, performance 
statistics, and other data.  The measure of mission effectiveness in workflow systems is a quality of 
service (QoS) metric.  The QoS metric defines an optimization criterion based or observable, derived, or 
predicted parameters of collected workflow data [15]. 

For BMC3 systems, both cyber-attacks and CoAs are modifications (or reconfigurations) to the 
nominal workflow system that affects QoS; in EBCOTE, these modifications are to availability and 
allocation of cyber-resources, although one can formulate more general possibilities.  A cyber-resource 
can be a hardware device, software applications running on that device, data files or databases, or 
connectivity to any of these.  EBCOTE assumes that other software entities in the system can recognize 
cyber-attacks and categorize them in terms of workflow modification; see Section 2.2 on other DARPA 
Cyber-Panel projects for intrusion detection and situation awareness.   
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A workflow model defines a process and the resources that support it.  Colored Petri Nets 
(CPNs), with their concepts of transitions (tasks), queues (states), and tokens (jobs), are commonly used 
to model workflows.  In EBCOTE, we use the CPN model to address a stochastic discrete optimization 
problem: 

Find allocations of resources to tasks that maintain the best QoS objective score in the 
face of constraints resulting from cyber-attack disturbances to nominal workflow. 

1.3 TECHNICAL CHALLENGES 

The EBCOTE project faced several technical challenges in addressing the BMC3 cyber-CoA problem: 

1)  BMC3 systems exhibit diversity in their workflow models.  The EBCOTE solution must be able to 
flexibly represent this diversity of models and formulate the appropriate optimization problem at run-
time. 

2)  The optimization problem is a complex multi-step queuing problem.  Jobs enter the system and wait at 
a sequence of stations for processing.  Value is collected only when a job is processed by the last station.  
Resources are allocated to the stations to service the jobs, subject to constraints on which resources are 
capable of supporting which stations. 

3)  Real BMC3 systems have sophisticated probability distributions for arrival and transition times.   

4)  The problem is a combinatorial search over possible network configurations, but similar 
configurations may give very different QoS scores. 

Because of these considerations, we cannot practically generate a closed form for a QoS objective as a 
function of resource allocations using mathematical analysis.   

We describe the research context for EBCOTE-3 in Section 2, including related outside research, 
connections to other DARPA Cyber-Panel efforts, and the foundational results of the first two phases of 
EBCOTE.  Section 3 describes the EBCOTE system architecture; EBCOTE system components are 
described in detail in the following sections.  Important workflow concepts and a driving example are 
discussed in Section 4, followed by our resource policy and resource configuration models in Section 5.  
In Section 6, we state the QoS objective optimized in EBCOTE and a description of an oracle for this 
objective.  Our formulation of the central QoS optimization problem and the search algorithm 
incorporated in EBCOTE-3 are found in Section 7. 
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SECTION 2 

PREVIOUS RESEARCH 

2.1 PREVIOUS OUTSIDE RESEARCH 

QoS management is a growing research area for distributed or networked IT systems.  Building on 
dynamic resource reservation or allocation in non-workflow contexts such as scientific computing [16] 
and web multicast [10], the DARPA Quorum program, the predecessor to Cyber Panel, sought to apply 
QoS management ideas to emerging problems in chains of applications and communications services 
[17]. 

Most projects in Quorum investigated the dynamic allocation of computing resources to incoming 
jobs, e.g., Honeywell’s RT-ARM [19].  Although some computing resources are easily allocated in a 
reactive fashion, cyber-resource assignment in a BMC3 system cannot be completely dynamic.  In some 
cases, if a resource has been assigned to support one kind of task, there is a cost of assignment or 
reassignment to other tasks, e.g., time for physical reconfiguration or software installation.  Such costs 
motivate a static resource allocation policy that assigns classes of resource tokens to support kinds of 
tasks, with infrequent movements of tokens between classes.  This approach is similar to the Weapons 
Systems Open Architectures (WSOA) approach.  WSOA ideas on managing airborne computing 
resources have evolved into workflow management requirements in the Multi-Sensor Command and 
Control Aircraft (MC2A) program. 

Recent work in QoS management has focused on integration with evolving WfMS concepts and 
technology.  Cordoso and Sheth [6] identify the need for WfMS mechanisms to model multiple QoS 
criteria, log historical QoS metric performance, and estimate QoS on a task-by-task basis.  Hewlett 
Packard’s Changengine [9] is one of the first WfMS-compatible systems for integrating pre-existing 
resource management systems through principled resource policy specifications. 

Analytical work in workflow QoS optimization has centered around providing optimal solutions 
for deterministic criteria such as system latency.  Notable results have included the resource scheduling 
work of Alhusaini and Prasanna [2], which minimizes latency over a directed acyclic graph workflow 
formulation for a simple resource model consisting of compute resources and data repository resources.  
Gertphol, et al, [11] have used integer programming to map applications onto processing paths, once 
again minimizing system latency. 

EBCOTE is breaking new ground in its explicit consideration of QoS optimization in the context 
of a broad class of workflows with a stochastic QoS metric depending on job completions.  This 
stochastic discrete optimization problem is a challenging one, and we draw on a foundation of recent 
work in hybrid gradient-based/random search methods which utilize simulation or other means to 
establish search heuristics.  A review of these methods can be found in Andradottir [5].  Our approach 
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falls into her Perturbation Analysis class, but we extend perturbation analysis to gradient-estimation for 
search over discrete parameters. 

2.2 CONNECTIONS WITH OTHER DARPA CYBER-PANEL WORK 

EBCOTE is funded by the DARPA Cyber Panel program.  Cyber Panel’s program concept is to provide 
for the protection of mission-critical information systems from cyber-attack.  Cyber Panel projects range 
from simple intrusion detection and event generation, correlation and situation assessment, to threat 
analysis and prediction. 

BBN Technologies’ CMIT and Stottler-Henke’s Propheteer are systems that are primarily 
responsible for situation awareness—identifying intrusions and detecting the intent and extent of an 
attack.  These systems do provide CoAs based on a rule-based framework, but do not use optimization to 
devise effective and novel responses.  Situation awareness systems identify the nature of cyber-attacks 
and could supply key inputs to EBCOTE. 

Systems such as Honeywell’s CIRCADIA and MASC attempt to resist cyber-attacks in progress 
by devising reactive, defensive responses that are, like EBCOTE, based on control-theoretic ideas.  
ALPHATECH’s AlphaLADS identifies novel “worm” attacks in progress and determines 
countermeasures for isolating and defeating the infection.  EBCOTE, on the other hand, proposes 
responses to mitigate impacts of attacks that have already occurred—given that some attacks will 
succeed, it focuses on repair and recovery of system effectiveness. 

2.3 RESULTS OF PAST EBCOTE PHASES 

EBCOTE is now coming to the end of its third phase of development, building on work begun in June, 
2001.  Figure 1 charts the evolution of EBCOTE throughout its three phases. 

In our feasibility study for EBCOTE-1, we developed off-line analysis methods for predicting the 
impacts of cyber-attack disruptions beforehand.  We developed an analysis method based on perturbation 
analysis. The method approximates the nominal BMC3 workflow processing using a Markov model, and 
computes important sensitivity metrics from Optimal Control Theory, most notably cost-to-go, and co-
state.  The key parameters required by this analysis method are Completion State transition probabilities, 
which might be indirectly derived using data that is regularly collected by advanced workflow 
management systems. 

The logical next step for EBCOTE was to develop an on-line capability to predict the mission 
impact of candidate Cyber-COAs to respond to cyber attacks.  This capability encompasses two elements: 
an element that predicts how a Cyber-COA disrupts BMC3 workflow, and an element that predicts how a 
disruption in BMC3 workflow affects QoS.  In EBCOTE-1 we modeled workflow in terms of Markov 
chains, and developed a mission impact prediction method specifically suited to Markov chains.  This 
method proved to be quite accurate, but required considerable calibration to estimate the several hundred 
state transition probabilities required by the Markov chains.  We concluded that EBCOTE-1 was not 
suitable for on-line use.  EBCOTE-2 modeled BMC3 workflow using Colored Petri Nets (CPNs), and 
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implemented a perturbation analysis method developed for CPNs to predict the mission impact of a 
cyber-COA; this was the path reconstruction analysis (PRA) algorithm. 

Online Cyber-COA Impact Prediction

Online cyber-COA Search  

Off-line Perturbation Impact Prediction Prototype

Off-line prediction of the mission impact
due to a disruption in BMC3 workflow

On-line prediction of the disruption in
BMC3 workflow due to a Cyber-COA

On-line prediction of the mission impact
due to a disruption in BMC3 workflow

On-line optimization of Cyber-COAs

On-line generation of Cyber-COAs

EBCOTE-1

EBCOTE-2

EBCOTE-3

Online Cyber-COA Impact Prediction

Online cyber-COA Search  

Off-line Perturbation Impact Prediction Prototype

Off-line prediction of the mission impact
due to a disruption in BMC3 workflow

On-line prediction of the disruption in
BMC3 workflow due to a Cyber-COA

On-line prediction of the mission impact
due to a disruption in BMC3 workflow

On-line optimization of Cyber-COAs

On-line generation of Cyber-COAs

EBCOTE-1

EBCOTE-2

EBCOTE-3

 

Figure 1.  Three research stages in the evolution of the EBCOTE system. 

2.4 EBCOTE-3 PROJECT GOALS 

The EBCOTE project had four main goals during its third phase: 

1) Develop an on-line capability to generate cyber-COAs in response to a cyber-attack.   

2) Leverage path reconstruction analysis capability to search for an optimal cyber-COA. 

3) Implement a prototype whose architecture enables transition to a WfMC-compliant workflow 
management environment. 

4) Demonstrate ability to generate cyber-COAs in real-time using BMC3 workflow data. 

EBCOTE-3 builds on previous work by using the on-line cyber-attack/cyber-CoA perturbation impact 
assessment capability to determine which cyber-resources are over- and under-utilized.  It then identifies 
prospective activity-resource re-assignments using this heuristic information to guide optimization. 
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SECTION 3 

EBCOTE-3 SYSTEM CONCEPT AND ARCHITECTURE 

The EBCOTE system concept, shown in Figure 2, is based on workflow analysis.  As such, it leverages 
data about BMC3 workflows archived in a workflow management system to estimate the effects of 
perturbations to the workflow and identify ways of reconfiguring the network’s cyber-resources to 
mitigate these effects.  EBCOTE-3 assumes that an intrusion detection and assessment tool such as CMIT 
or Propheteer, also developed under DARPA Cyber Panel, can identify a cyber-attack in terms of a 
workflow perturbation.  These tools are shown notionally in the diagram below, though they are not 
necessary to run the EBCOTE-3 prototype. 

Offline Inputs
• User QoS Profile
• Workflow Model
• Resource capability and 

configuration policy 
model

BMC3 WfMS Inputs
• Job/Event History Log
• In-system Job Status
• Current Resource Config
• Current Resource-Activity Assignment

CMIT/Propheteer
• Cyber Attack Detection
• Perturbation Assessment

EBCOTE-3 Executive

Feasibility Assessment and Service 
Optimization

1.  Generate feasible COAs
2.  Heuristic search for optimal COA
3.  Determine reconfig steps

Perturbation Analyzer 
(EBCOTE-2)

Modified to handle 
attributed resource tokens

Reports
• Total QoS impacts for “no-op” COA 

under attack conditions
• Feasible set of COAs
• Reconfig steps for each COA
• QoS impact report for each COA

Offline Inputs
• User QoS Profile
• Workflow Model
• Resource capability and 

configuration policy 
model

BMC3 WfMS Inputs
• Job/Event History Log
• In-system Job Status
• Current Resource Config
• Current Resource-Activity Assignment

CMIT/Propheteer
• Cyber Attack Detection
• Perturbation Assessment

EBCOTE-3 Executive

Feasibility Assessment and Service 
Optimization

1.  Generate feasible COAs
2.  Heuristic search for optimal COA
3.  Determine reconfig steps

Perturbation Analyzer 
(EBCOTE-2)

Modified to handle 
attributed resource tokens

Reports
• Total QoS impacts for “no-op” COA 

under attack conditions
• Feasible set of COAs
• Reconfig steps for each COA
• QoS impact report for each COA  

Figure 2.  System architecture for EBCOTE-3. 

Because the EBCOTE project did not have access to a WfMS-instrumented BMC3 system, we used an 
ALPHA/Sim Petri Net simulation of the TCT Cell BMC3 system to drive research and development.  Our 
prototype’s design, however, permits extension to use of WfMS data from WfMC-compliant systems. 

3.1 WORKFLOW MODEL 

The workflow model is a topology of queues, queue decision rules, transitions, and transition timing data 
that specifies a BMC3 workflow process. 
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A mature WfMS captures this information as a part of its workflow definition process.  The 
EBCOTE-3 prototype imports a workflow model created within ALPHA/Sim to support the path 
reconstruction analysis (PRA) algorithm.   

The prototype can be evolved to import workflow model data using WfMC standards.  See the 
CoA Search SDK Developer’s Guide for details on EBCOTE-3’s API. 

3.2 JOB HISTORY LOG 

The log of the processing history of past jobs provides an essential input to the path reconstruction 
analysis (PRA) algorithm.  The log records event information including job ID, activity completed, time 
of completion, and processing time (delay).  The log records attributes of the resource used to support the 
activity, and event-caused changes to job attributes which are used to evaluate decision rules in the 
workflow. 

A mature WfMS captures this information during prior workflow instances.  EBCOTE-3, like 
EBCOTE-2, generates a flat-text event log using an ALPHA/Sim simulation of a BMC3 workflow. 

The prototype can be evolved to import WfMC-standard job history log data using our API 
design. 

3.3 IN PROGRESS JOBS 

This input specifies the completion status of jobs currently in the system and the availability status of 
resources which might currently be engaged in processing activities. 

A mature WfMS captures this information while jobs are in the workflow.  EBCOTE-3 uses a flat 
text input file in-progress jobs, but we have also designed an API for querying this information from a 
WfMS. 

3.4 USER/TASK QOS PROFILE 

This input is a record of QoS objectives and priorities for specific users and tasks.  Cardoso, et al, 
describe four categories of QoS metrics, including time, cost, reliability, and fidelity [7].  We focus on 
time objectives (e.g., relative and absolute deadlines) in EBCOTE-3.  The profile is used to assign 
priorities for meeting objectives to certain classes of jobs, and provides weightings for the objective 
function used to determine COAs that optimize QoS. 

A mature WfMS captures this information as a part of its workflow definition process.   

3.5 RESOURCE POLICY MODEL 

This model describes types of resource tokens that support BMC3 workflow activities—their attributes, 
domains of valid assignments to those attributes, actual values assigned, and their roles.  It lays out 
qualification policies matching roles to BMC3 tasks.  This model also describes valid installations for 
changing tokens of one resource token type into another type.  The resource capability model should not 
be confused with the nominal resource configuration data which records the actual policy for a workflow 
instance—activations of resources and their assignment to support tasks. 
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Workflow management architects have recently developed resource classification and 
management tools that integrate with a WfMS [13].  These tools capture an organizational model of 
resources and roles, along with qualification, requirement, and substitution policies.  The resource policy 
model we developed for EBCOTE-3 draws upon these approaches. 

3.6 RESOURCE CONFIGURATION 

Cyber-COAs considered during EBCOTE-3 reflect changes in activity-resource assignments from the 
nominal case.  Such activity-resource assignment changes can model both physical and procedural 
network configuration changes.  The nominal resource configuration records both the active cyber-assets 
and their assignments to workflow tasks at the time a cyber-attack occurs.  The nominal resource 
configuration becomes the initial solution used as a starting point for the cyber-COA Search (Section 
3.7.2). 

Cyber-attacks and Cyber-COAs are modeled as alternative configurations.  These configurations 
reflect both alternative assignments of cyber-assets to tasks and installations modifying the type of a 
resource token (from the nominal).  In any configuration, activities need not be assigned a resource, but 
this may prohibit completing any jobs, depending on the topology of the workflow process.  Resource 
tokens need not be assigned to an activity.  Each potential solution to the discrete stochastic optimization 
problem is expressed as a system reconfiguration. 

BMC3 systems, even those without WfMS instrumentation, are usually able to determine what 
resources are currently activated and assigned to workflow activities. 

3.7 EBCOTE-3 EXECUTIVE 

3.7.1 Perturbation Analyzer (PA) 

This component assesses the impact of perturbations and resource reconfigurations on the user-specified 
QoS metric (Section 3.4).  The PA uses the job history log to perform path reconstruction analysis, 
generating new histories by propagating the perturbation along the sample history.  PA thus functions as 
an oracle for the discrete stochastic optimization problem—in the absence of a closed form expression for 
the objective function, the PA allows us to get a QoS value for each potential reconfiguration solution. 

The EBCOTE-3 PA capability builds on the work performed in EBCOTE-2.  We expanded our 
workflow model and PRA algorithms developed in EBCOTE-2 to incorporate resources, job classes, in 
progress jobs, and installation delays. 

3.7.2 Cyber-Course of Action Search (COA Search) 

This component determines a feasible, near-optimal cyber-COA through search.  The PA is used to 
generate evaluations of the objective function for various solutions, which are in turn used to estimate a 
gradient for search through the solution space. 

The EBCOTE problem is a difficult combinatorial optimization with many local minima.  To 
facilitate “just-in-time” solutions, COA Search reports the best COAs found to date during search, and 



 

  10

restarts using a predetermined number of initial solutions, increasing the likelihood that a better local 
optimum is found over time. 

3.8 REPORT GENERATION 

EBCOTE-3 generates an impact report for each cyber-COA considered, including QoS and job success 
rate by job class.  It also reports the details of each configuration option, including activation and 
installation steps relative to the immediate post-attack configuration. 
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SECTION 4 

WORKFLOW MODELS 

Workflow concepts are an essential part of the EBCOTE solution.  A workflow model provides an 
analytical formalism for characterizing the way networks support BMC3 missions and makes a 
quantitative determination of QoS possible under varied conditions.  Petri Nets [1,3] are the preferred 
methodology for modeling workflows; in this section we discuss workflow concepts and relate them to 
Petri Net modeling.  We reserve a discussion of our resource model to Section 5. 

4.1 WORKFLOW MODEL DEFINITIONS 

The definitions of workflow terms in this section are adapted from the Workflow Management 
Coalition’s (WfMC) glossary [18].   

• Workflow definition:  The formal representation of a business process which supports 
automated manipulation.  This representation includes a network of tasks performed on jobs, 
criteria for starting and stopping the process and activities within it, and resources 
participating in those activities.  For EBCOTE, the workflow definition is the Petri Net model 
itself. 

• Workflow instance (job):  An individual enactment of the process.  In EBCOTE, only 
completed jobs contribute positively to mission effectiveness (QoS).  Jobs are represented by 
Petri Net tokens. 

• Task:  A stage of processing in the workflow which jobs pass through on their way to 
completion.  Tasks are represented by Petri Net transitions. 

• Task instance (activity):  An activity is an instance of a task executed on some job.  Activities 
are not explicitly represented in Petri Nets, but each firing of a Petri Net transition is an 
activity.   

• Process state:  A representation of the internal state of a job in the process.  The completion 
of activities may modify the process state of a job.  Process states are Petri Net queues. 

• Transition conditions:  A logical expression evaluated by a workflow engine to decide the 
sequence of task execution within a process.  In EBCOTE, these conditions are decision rules 
at queues in a Petri Net. 

• Workflow relevant data:  Data used by a WfMS to evaluate transition conditions.  These are 
Petri Net colors or token attributes. 

• Event:  An occurrence of a particular condition (called a trigger) which causes the WfMS to 
take actions such as process or activity initiation.  For EBCOTE, events occur when transition 
conditions are met such that an activity may commence.  For example, when a Petri Net 
transition fires, this is an event. 
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• Audit Data:  The historical record of a process instance from start to completion, normally 
including information about transition events.  This data forms the Job History Log on which 
the Perturbation Analyzer performs path reconstruction to analyze impacts on mission 
effectiveness. 

4.2 EXAMPLE WORKFLOW MODEL 

To illustrate workflow models as used in EBCOTE, we describe an ALPHA/Sim Petri Net model of the 
TCT Cell workflow described in Section 1.1.  The top-level view of the TCT process is shown 
graphically in Figure 3. 

Each target candidate entering the TCT “kill chain” is a job to be completed.  Completion 
requires evaluating each target candidate and the possibly assigning air or ground assets for attack.  Full 
value for target processing is received only if air or ground assets are tasked within five minutes of the 
candidate entering the system; value received decays after that.  After ten minutes, the candidate is 
dropped from processing, and no value is received. 

 

Figure 3: The TCT Cell workflow is modeled as a Colored Petri Net. 

Target candidates enter the system with an exponentially-distributed inter-arrival time with mean 
one minute.  Targeting candidates are identified in the Find subprocess.  They are fixed, identified, and 
tracked by tasks in the Fix_Track_CID subprocess, possibly using information provided by the 
intelligence and image processing capabilities represented by the ISR_Section subprocess. The decision 
to prosecute a target and to assign either air or ground assets for the attack is made in the Target 
subprocess.  For those targets prosecuted by an air asset, the final task performed is 
Command_Message_Sent, and the job reaches the successful completion state Success_Cmd_Msgs.  If a 
target is prosecuted a surface asset, the Accept task transitions the job to the successful completion state 
Success_Task_Accepted (not shown).  Surface asset prosecutions lessen the load on TCT Cell cyber-
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resources, since air asset prosecutions require additional processing time by the Cell to review and 
approve the tasking order.  A surface asset will use its own processing resources to determine whether it 
will accept a prosecution request. 

Processing paths in the TCT workflow sometimes depend on time-dependent properties of a job.  
Figure 4 illustrates the different branches which a target candidate may follow depending on the results of 
the Attack Operations Decision Aid (AODA) Asset Selection task—if the target candidate is matched 
with a surface asset, it follows one branch, if an air asset, a different one, and if it is insufficiently 
valuable, it is discarded. 

 

Figure 4.  Target candidates may be prosecuted by surface or air assets depending on the result of the 
AODA Asset Selection task. 

Petri Net models of the Find, Fix_Track_CID, ISR_Section, and Target subprocesses of the TCT 
model can be found in Appendix A of the EBCOTE-3 User’s Manual. 
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SECTION 5 

RESOURCE POLICY AND CONFIGURATION 

In the EBCOTE model, cyber-attacks render cyber-resources unavailable for processing, or at least 
available at reduced capacities.  Unavailability may be caused by sysadmins removing a compromised 
resource from the network to avoid further contamination or by other denial of service mechanisms.  
Cyber-CoAs are sysadmin responses to compensate for a cyber-attack by reallocating some processing 
tasks to other qualified resources (activation), or by changing an unqualified resource through hardware 
or software reconfiguration (installation).  Thus, resource perturbations are the focus of our assessment of 
QoS impacts. 

 During this EBCOTE option, we enhanced our path reconstruction analysis to specifically 
incorporate flexible models of cyber-resources and resource configurations.  Our resource models follow 
emerging business process and workflow management standards [20].   

5.1 RESOURCE POLICY MODEL 

In WfMS parlance, a resource class is a set of resource instances.  Two types of propositional rules 
delimiting a resource class are distinguished—roles, which classify instances by functional similarity or 
qualifications, and organizational units, which classify instances by geography, command hierarchy, or 
business unit [1].  We focus only on roles in EBCOTE. 

We model a role as a set of attributes possessed by a resource.  This modeling is sensible because 
qualification of a resource for a task means that the resource possesses at least the attributes required to 
resolve a task's execution (e.g., evaluate a timing rule). 

A resource specification is a set of resources which have the same attributes, and furthermore, 
those attributes have the same values.  The attributes possessed by a resource must be consistent with the 
roles associated with its resource specification.  For example, the role secretary is comprised of the 
attributes of Typing and Phone Skill.  If a resource specification junior assistant has a role of 
secretary, then it must have values for Typing and Phone Skill.  However, possessing a set of attributes 
associated with a role does not require that a resource specification has that role.  For instance, a senior 
analyst may also have Typing and Phone Skill attributes, but not be designated with a role of 
secretary.  A resource has a unique resource specification.  Its attributes and values do not change during 
a workflow simulation unless an installation moves the resource from one specification to another. 

In workflow resource management, three types of policies govern the allocation of resources to 
tasks—qualification, requirement, and substitution [13].  In EBCOTE-3, we focus on qualification 
policies, although our model may be extended to account for the more complex constraints imposed by 
requirement and substitution policies.  A qualification policy associates resource classes with tasks 
through their roles.  Our resource policy model allows a user to associate multiple roles with a task.  Once 
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again, even if a specification has attributes necessary to resolve a task’s execution, it may not be declared 
as qualified to perform it.  For example, the senior analyst does not have the role of secretary and 
so could not be assigned to a task “Direct Incoming Call” in spite of having a Phone Skill attribute.  A 
requirement policy specifies that a resource assignment to a task is valid only if attributes of the resource 
and attributes of the task satisfy some condition.  For instance, a typist needs to be able to type a certain 
number of words per minute to be assigned the task of typing a 150-page long document.  A substitution 
policy specifies rules for resources that may be adequately substituted if no resource meeting the 
preferred requirements is available. 

 We allow cyber-resources to change their resource specifications through installation.  
Installations are software and hardware changes that offer flexible response options to sysadmins.  
Installations are not cost-free, they require time to implement.  Part of the resource policy model is a 
specification of the amount of time it takes to install a resource token from one resource specification to 
another. 

Figure 5 shows the syntax for our resource policy model file.  There are three sections.  The first 
section declares all resource specifications, their attributes and attribute values, and roles.  This 
declaration is followed by a set of qualification policies which identifies a role as appropriate for 
supporting a task.  Not all tasks are supported by resources, but any resource specification which has a 
role qualified for a task must have the correct attributes to resolve the task.  Particularly, this means that 
the resource spec must have any attributes the Perturbation Analyzer requires to evaluate the completion 
delay time distribution rule.  The last section declares resource installation requirements in matrix form.  
Element (i,j) of the matrix records the time required to convert a resource with specification i into a 
resource with specification j, where a dash means that a conversion is not possible.  

 
%resource specification declarations 
<resource_spec_name_1> 
 <attribute_1> = <real value> 
 <attribute_2> = <real value> 
 … 
 <attribute_N> = <real value> 
 roles = <role_1>, <role_2>, …, <role_N> 
end 
… 
 
%qualification policies 
qualify <role_1> for <task_name_1> 
… 
qualify <role_N> for <task_name_N> 
 
install 
%example matrix 
-   - 1  
0.5 - - 
-   - - 

Figure 5.  Syntax for specifying a resource policy model. 

 Table 1 shows the five cyber-resource specifications in the TCT Cell model.  A TCT Cell may 
have multiple instances of each available; for example, there may be multiple Targeting Computers.  In 
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our scenario, server performance is characterized by the amount of RAM, and processing workstations by 
processor speed in GHz.  The resources have roles that designate which members of the TCT Cell team 
may use them.  The Emergency Server is not part of the nominal system configuration but may be 
brought on-line for ISR, Tracking, and Fusion tasks as needed. 

 
TCT Cyber Resource Attribute and Value Role(s) 

ISR Server GB RAM = 0.5 ISR Technician 

Tracking Fusion Server GB RAM = 0.77 Target Intel Technician 

Targeting Computer GHz = 2 Targeting Officer 

Admin Services Computer GHz = 1.4 Targeting Officer, Team Chief 

Emergency Server GB RAM = 0.5 General Technician 

Table 1.  Cyber-resources in the TCT Cell example. 

Table 2 shows which tasks each role is qualified to perform.  The Final Approval Meeting and Team 
Chief Review Air Asset tasks are not required for surface asset prosecutions; they are required only when 
an air asset is assigned. 

 
Role(s) Tasks Qualified For 

ISR Technician ISR Processing 

Fix 

CID Target Intel Technician 

Process Candidate Target 

Targ Officer Eval Target 
Targeting Officer 

Final Approval Meeting 

Team Chief Initial Review 

Team Chief Review Air Asset Targeting Officer, Team Chief 

Final Approval Meeting 

ISR Processing 

Fix 

CID 
General Technician 

Process Candidate Target 

Table 2.  Qualification policies for TCT Cell tasks. 

The Admin Services computers have the necessary software to help the Targeting Officer, but they are 
slower.  Installations between Targeting and Admin Services computers are allowed, but time is needed to 
switch out processors (to convert an Admin computer into a Targeting Computer) or install software (to 
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allow a Targeting Computer to perform Admin tasks).  Installations are also permitted among the three 
types of servers. 

5.2 RESOURCE CONFIGURATIONS 

Resource configurations describe the availability of cyber-resources to support a BMC3 workflow and 
their current usage.  A configuration describes how many resources of each resource spec are at hand, 
which resource specs are activated to support which tasks, and any installation plans for modifying 
available resource tokens.  The nominal configuration represents a pre-attack state, and rarely includes 
any plans for installation.  Some resources, however, may not initially be assigned to support a task (e.g., 
due to routine maintenance). 

Figure 6 shows the EBCOTE syntax for describing a resource configuration.  The number of 
available tokens of each resource specification comes first.  Then one or more resource specifications, all 
of which must have roles qualified to support the task in accord with the resource policy, are activated to 
support tasks.  Finally, installation plans are described in matrix form—note that this installation-related 
matrix has different semantics from the matrix in the policy file.  Here, element (i,j) of the matrix records 
the number of tokens with resource spec i that will be installed to resource spec j. 

Multiple-step installations are not permitted in the EBCOTE model, i.e., we do not allow 
installations from resource spec i to j, and then on to k.  Only the direct installation from i to k is 
considered as a CoA. 

 
 
%total available resources in nominal configuration 
<resource_spec_name_1> <nonnegative integer> 
<resource_spec_name_2> <nonnegative integer> 
… 
<resource_spec_name_N> <nonnegative integer> 
 
task <task_name_1> 
<resource_spec_name_1> 
… 
<resource_spec_name_M> 
 
Installs: 
%example install matrix 
0 3 0 
1 0 0 
0 0 0 

Figure 6.  Syntax for a resource configuration. 

Other configurations are perturbations to the workflow with respect to the nominal configuration, 
and have some impact on QoS.  Thus configurations can dually represent both cyber-CoAs and effects of 
cyber-attacks.  For instance, if a cyber-attack compromises the Targeting Computer in the TCT Cell, that 
token is no longer available (reflected in the first section of the configuration file).  To complete any jobs, 
other workstations with adequate software must be tasked to perform functions normally handled by the 
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Targeting Computer.  Such a cyber-CoA would be reflected in either the second section (an activation 
CoA) or the third section (an installation CoA). 

An example post-attack configuration is shown in Figure 7.  There are normally three Targeting 
Computer workstations online, but a cyber-attack has caused the sysadmins to remove them from the 
network to prevent further contamination.  Under these circumstances, the Targ Officer Eval Target and 
Final Approval Meeting tasks are unsupported—no TCTs can be fully processed in this configuration.  A 
couple of CoAs consistent with the resource model are activating other computers (such as the Admin 
Services) to do these unsupported tasks or performing an installation on an Admin Services computer to 
enhance its performance.  The Perturbation Analyzer (Section 6) can evaluate the QoS impacts of these 
CoAs, and the cyber-CoA Search algorithm (Section 7) can search for these and better alternatives. 

 
   
  ISR_Server 5 

Tracking_Fusion_Server 10 
Targeting_Computer 0 
Admin_Services_Computer 2 
Emergency_Server 0 
 
task ISR_Processing 
ISR_Server 
 
task Fix 
Tracking_Fusion_Server 
 
task CID 
Tracking_Fusion_Server 
 
task Process_Candidate_Target 
Tracking_Fusion_Server 
 
task Targ_Officer_Eval_Target 
Targeting_Computer 
 
task Final_Approval_Meeting_1 
Targeting_Computer 
 
task Team_Chief_Initial_Review 
Admin_Services_Computer 
 
task Team_Chief_Review_Air_Asset 
Admin_Services_Computer 
 
task Final_Approval_Meeting_2 
Admin_Services_Computer 
 
Installs: 
 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

Figure 7.  A post-attack configuration that has taken Targeting Computers off-line. 
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5.3 RESOURCE CONFIGURATION CONSTRAINTS 

Resource configurations form the space of solutions for the QoS optimization problem of Section 7.  A 
resource configuration, relative to the nominal configuration, is then represented by the following sets of 
decision variables: 

ijα⎡ ⎤Α = ⎣ ⎦  is a matrix of variables such that 1ijα =  if the resource tokens belonging to resource 

specification i  have been allocated to support workflow task j and 0ijα =  otherwise. 

ijτ⎡ ⎤Τ = ⎣ ⎦  is a matrix of variables such that ijτ  is the number of resource tokens initially belonging to 

resource specification i  that have been transferred, by installation, to resource specification j . 

Any resource configuration change must be feasible given the starting configuration, thus these variables 
must obey the following constraints: 

Constraint I : Let ijI⎡ ⎤= ⎣ ⎦I  be the installation matrix from the resource policy model.  By definition, ijI  

is the time necessary to convert resource specification i  to j  by installation.  Let ijI⎡ ⎤= ⎣ ⎦I% %  be the matrix 

with an entry of 1 where the corresponding installation time is finite, and 0 otherwise.  Then, 

If 0ijI =% , then 0ijτ = .  (We cannot convert resource specification i into j.) 

Constraint II : Let iN  be the number of resource tokens belonging to resource specification i  in the 
perturbed configuration.  Then 

For each  j, ij i
j

Nτ ≤∑ .  (We cannot convert by installation more tokens than 

initially available.) 

 

Constraint III : Let ijr⎡ ⎤= ⎣ ⎦R be such that 1ijr =  if resource specification i  has a role qualified to support 

workflow task j ; 0ijr =  otherwise.  Then 

ij ijrα ≤ .  (Resources can be assigned to task only if role is qualified.) 

Our cyber-CoA search algorithm generates candidate CoAs in terms of the decision variables Α  and Τ .  
Constraint I and Constraint III are easy to enforce—these constraints require that any solution is found in 
the subspace where the respective variables must be zero.  By identifying variables whose values must be 
zero before running the optimization and removing them from the optimization solution vector, we reduce 
our search space and improve performance. 
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SECTION 6 

PERTURBATION ANALYZER ENHANCEMENTS 

The Perturbation Analyzer (PA) component implements a path reconstruction analysis (PRA) algorithm 
for propagating changes to a stochastic process without full discrete-event simulation of the changed 
process.  Given a sample history of processing events for the nominal workflow, PA estimates the QoS 
impact of a resource configuration change.  In EBCOTE-2, we demonstrated the computational benefits 
of using PRA compared with full simulation, which we review in Section 6.1.  By propagating the limited 
effects of a perturbation using a previously generated history, we observed a factor of 6 to 7 reduction in 
the time required to evaluate a configuration, while accurately estimating QoS within a few percent of 
that predicted by simulation.   

In EBCOTE-2, PA handled two types of perturbations.  First, PA predicted the impact of slight 
modifications to routing decision rules based on timing deadlines.  An example of this type of decision 
rule is routing a job along different branches of a process according to the time it has been in the 
system—if the breakpoint for making the decision is modified, how does this affect QoS?  This type of 
perturbation was not the main focus of EBCOTE-3.  The second perturbation handled in EBCOTE-2 was 
a modification to parameters in a task’s completion time distribution.  For instance, if TCT weapons 
selection takes one minute longer on average, how does this affect QoS? 

This second type of perturbation corresponds to the effect of resource reconfigurations in 
EBCOTE-3.  EBCOTE-2, however, did not utilize a resource policy model or track resource usage during 
perturbation analysis.  Several enhancements to the path reconstruction algorithm were needed, including 
the incorporation of resource usage audit data in the workflow history log and accounting for installation 
delays.  We also improved the algorithm to account for jobs in progress when the cyber-attack occurs and 
to evaluate QoS using user-specified criteria for job priority and deadlines. 

 We review the PRA algorithm implemented in EBCOTE-2 and our results in Section 6.1, then 
discuss the essential enhancements required and implemented in EBCOTE-3 in the remainder of the 
Section 6. 

6.1 EBCOTE-2 BASIC PATH RECONSTRUCTION ALGORITHM  

Discrete-event simulation is not an altogether efficient way to analyze perturbations in a workflow model.  
A perturbation in a large workflow will rarely affect all activities therein, obviating the need to simulate 
the entire workflow.  Rather, a perturbation will typically affect a narrow thread of activities.  This is 
normally true even if the perturbation affects many different segments of the workflow. A typical 
perturbation is akin to a web: it may span a wide area, but it does not blanket all of the area that it spans.  
Various perturbation analysis methods have been developed to exploit these observations [14]. The 
problem, is that we cannot anticipate the span and coverage of this ‘web’ beforehand and direct the 
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simulation to just those threads involved.  Instead, discrete-event simulation must blanket the entire 
workflow to discover which portions are actually affected by a perturbation.   

The ideal perturbation analysis method would discover and focus its attention on only those 
activities that are affected by the perturbation.  This, in a nutshell, is the motivation for Path 
Reconstruction Analysis (PRA) developed by Cassandras [8].  The idea is to take task processing 
histories that had been recorded under nominal conditions, estimate which ones would have been affected 
by the perturbation, and construct new processing histories as if the perturbation had been in effect.  

We have implemented an enhanced version of PRA to analyze disruptions to BMC3 workflow. 
We introduce the following terms to describe it: 

1. Event:  the transformation of a task from one completion state to another 

2. Event Type: a type of task going from one completion state to another completion state.  These 
are determined by the business rules for the workflow system under study. 

3. Enabled Event: an Event for a specific task that can occur (i.e., its pre-conditions have all been 
met), and with a proposed duration, but without a scheduled start time 

4. Scheduled Event: an Event for a specific task that has a specified start but an unknown 
completion time 

5. Completed Event: an Event  for a specific task with known  start and completion times 

6. Sample Path: the history of a specific task as it passed through (or is passing through) the 
workflow system; it is a sequence of Completed Events.  

6.1.1 Path Reconstruction Algorithm Pseudocode 

Initialization 

1. Record the completion state of tasks the workflow at the current time 

2. For each task currently in the workflow: 

• Locate a task from the workflow logs that  reached a comparable completion state, and 
retrieve its Sample Path 

• Find the Completed Event from that Sample Path that brought the task to this Completion 
State, and store in a list of Completed Events (CompletedEventList) 

• For each Completed Event that appears thereafter in the Sample Path: 
− Create a corresponding Enabled Event 
− Set the proposed duration for this Enabled Event to the duration of the Completed Event 
− Store the Enabled Event in a list of Enabled Event (EnabledEventList) 

3. Locate and remove the Completed Event from CompletedEventList that had the latest completion 
time.  Create a corresponding Scheduled Event , give it the start time for the Completed Event, 
and store it in a list of Scheduled Events (ScheduledEventList); this list will be sorted by start 
time. 
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At the completion of the Initialization step we have a single event in ScheduledEventList, an initial set of  
completed events in CompletedEventList, and a large number of prospective Events in EnabledEventList. 

 

Path Reconstruction 

Repeat 

1. Remove the event at the head of ScheduledEventList, determine its completion time, and add it to 
CompletedEventList. If the Event is not directly affected by the disturbance, then the completion 
time is simply the start time + the nominal duration. Otherwise, use a model of the disturbance to 
compute the duration in order to establish the completion time 

2. Locate events in the EnabledEventsList that are now enabled by the occurrence of this event, 
schedule their completion times, and place them in ScheduledEventlist 

Until ScheduledEventList is empty 

 

We have necessarily omitted several details in outlining the method, and we fill them in now. 

Step 2 of the Initialization phase sets up prospective event histories for tasks that are currently in 
the workflow system.  We can extend this to include new tasks forecasted to enter the system: they will 
simply enter with a nominal initial completion state, and the initialization actions in Step 2 will take care 
of the rest. 

Perturbations may alter processing paths within the workflow system, and send tasks down 
different processing paths than the nominal event history would have suggested. We can handle this 
condition with the following additional actions in Step 1 of the Path Reconstruction phase:  

• Eliminate the nominal events from EnabledEventsList corresponding to the task in question 

• Locate a task from the nominal workflow log that went down the branch and retrieve its event 
history. Create Enabled Events corresponding to those events (following the rules used during 
Initialization), store them in EnabledEventList., and continue on to Step 2 

We have also glossed over how we handle ‘time,’ and whether we treat time in a relative sense or 
in an absolute sense.  The simple answer is that we do both, depending on the purpose in mind.  
Workflow logs typically record event start and completion times against an absolute reference, but the 
nominal duration (a relative measure) is the essential information we need to obtain from the logs during 
the Initialization phase.  During the Path Reconstruction phase, we first set time to  the current system 
time and then derive event start and completion times offset from that time during the path reconstruction 
analysis. 

We have also glossed over how we handle resource contention. Our PRA implementation treats 
the release of a resource from an activity as a special ‘resource release’ event. Step 2 of the Path 
Reconstruction phase normally locates all events in EnabledEventsList that become enabled when an 
event occurs.  When a resource release event occurs, however, we locate a single event in 
EnabledEventsList; the selection of a single event accounts for resource contention. 
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6.1.2 Illustrative Analysis for a DoS Cyber-Attack 

We illustrate the efficacy of our PRA implementations with a sample case study involving a denial of 
service (DoS) attack on our TCT Cell BMC3 example.  Figure 8 depicts cyber-assets and their functions 
in the TCT Cell. 

MIDB TWM AODB TAP, AD AAT

Functions

Cyber-Assets

Retriev e
Nominated

Target

Develop
Strike

Options

Develop
Air Missi on

Publish

 

Figure 8. The Key Cyber-Assets and Functions for our Hypothetical Timce Critical Targeting System 

The “tasks” in this system are requests to strike TCTs, and they pass through four key functions: 

• The system validates each request to confirm that the track qualifies as a TCT. The system 
retrieves key information about the track and about neighboring enemy units (e.g., air defense 
units) from intelligence databases (e.g., the MIDB).  In the simplified workflow and resource 
model described in Section 4.2 and Section 5.1, these functions are served by the ISR and 
Tracking/Fusion Servers. 

• The system develops strike options against validated requests by developing new air missions 
and by locating existing air missions that can be diverted to strike the TCT.  The system 
retrieves existing air missions and mission planning data from the Air Operations Data Base 
(AODB) and matches strike aircraft to strike requests using the Target Weaponeering Module 
(TWM).  In the simplified workflow and resource model described in Section 4.2 and Section 
5.1, these functions are served by the Targeting Computer. 

• The system develops new air mission packages and establishes specific instructions for the 
strike aircraft and for supporting assets (e.g., air controllers, electronic countermeasure 
support, surveillance support, etc).  The system both retrieves information from the AODB 
and updates the missions therein.  The system prepares the missions instructions using the 
Theater Air Planning (TAP) system.  In the simplified workflow and resource model 
described in Section 4.2 and Section 5.1, these functions are served by the Admin Services 
Computer. 

• Finally, the system publishes and disseminates the new air mission orders. 

The workflow must be able to complete these four functions within a specific amount of time after a 
request appears, and we set that deadline to 5 minutes in our example.  We hasten to add that people are 
instrumental players in the workflow, though they are not depicted in Figure 2, and they decide whether 
tasks should be sent on to downstream functions, re-worked by upstream functions, or abandoned 
outright. 
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Figure 9 illustrates the time spent in the workflow system for a stream of TCT requests under 
nominal conditions.  The X-axis depicts the time of arrival for a request and the Y-axis depicts the time 
required to service that request.  The average service time is roughly 2.5 minutes, and the maximum time 
was less than the 5 minute deadline. 
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Figure 9. Service Times Under Nominal Conditions. 

We consider a DoS attack on the AODB. It is a key resource in this workflow, supporting the two 
functions listed above along with a host of low-level functions distributed throughout the processing 
chain.  A disruption in this application, therefore, will reach out into many activities in the workflow. 

The DoS attack increases the number of database accesses seen normally by a factor of four.  We 
consider two possible ways variations of this attack.   The first variation simply increases database 
processing time by that factor.  In the second variation the malicious access requests compete with 
legitimate requests, possibly  blocking connections to the AODB. 

We analyzed both DoS variations using PRA and using Monte-Carlo Simulation using 
ALPHATECH’s Colored Petri Net simulator, ALPHA/Sim [3]. We use the same arrival profile of TCT 
requests used to generate the nominal profile illustrated in Figure 3.  The PRA uses the workflow log 
recorded for the nominal condition, and simply introduces perturbations in the processing times for those 
activities that use the AODB.   

Figure 10 depicts the history of service times for the first DoS variant.  The Monte-Carlo 
simulation  results appear in the top-most curve, and the PRA results appear immediately below.  The two 
perturbation analyses agree almost perfectly.  The average service time increases to roughly 3.1-3.2 
minutes, but all service times stay within the 5 minute deadline. 
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Figure 10. Service Times When the DOS Attack Simply Retards Processing 

Figure 11 depicts the history of service times for the second DOS variant.  As before, the Monte-
Carlo simulation results appear in the top-most curve, and the PRA results appear immediately below.  
This attack creates a bottleneck at the AODB, and service times grow as new TCT requests arrive at a 
congested workflow. The two perturbation analyses do not agree perfectly, but PRA nonetheless predicts 
both the impact and its dynamics quite well. This is all the more remarkable when we recall that these 
predictions are derived using the nominal workflow event history! 
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Figure 11. Service Times When the DOS Attack Blocks Database Access Requests 

PRA is significantly faster than discrete-event simulation, as illustrated in Figure 12.  Here we 
report runtimes for both vs. the size of the workflow system (here, measured as the number of tasks in the 
workflow).  PRA is a factor of 6 to 7 times faster than discrete event simulation. 
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Figure 12. Runtime vs. Workflow Size for Monte-Carlo Simulation and PRA 

6.2 EBCOTE-3 PRA (WITH ENHANCED RESOURCE MODEL) 

The key modification to the algorithm for EBCOTE-3 is easily summarized: task completion delay 
distributions are now functions of resource attributes.  Perturbations to delay distribution parameters are 
then determined by differences between the attributes of resources supporting a task in the nominal and 
perturbed cases. 

 Table 3 shows a sample from a TCT Cell job history log.    The log includes the Job ID, Job 
Class, the task associated with the event, completion delay and completion time, the state of the job after 
the event, and a relevant attribute from the supporting resource.  In this example, resource-supported tasks 
use the Tracking Fusion Server, so the important value is the RAM of the server.  We will perturb this 
sample history by substituting two Emergency Server tokens (RAM = 0.5) for the Tracking Fusion Server 
tokens on the Fix task. 

 
Job Cls Transition  Delay  Complete Next State  RAttr 
1 1 Record_Detect_Time 0.000000 2.226477 Target_To_Fix  N/A 
2  1  Record_Detect_Time  0.000000  2.143620  Target_To_Fix  N/A 
3  2  Record_Detect_Time  0.000000  2.269640  Target_To_Fix  N/A 
2  1  Fix    0.470978  2.614600  Is_Target_Fixed 0.77 
2  1  Determine_Track_Time  0.000000  2.614600  Target_To_Track N/A 
1  1  Fix    0.734323  2.960800  Is_Target_Fixed 0.77 
1  1  Not_Fixed  0.000000  2.760800  Fail_Not_Fixed  N/A 
2  1  CID    0.576590  3.191190  CID_Done  0.77 

Table 3.  Sample data from a TCT Cell job history log. 

Using the PA algorithm, we begin with the first three events as SCHEDULED.  We derive the event 
sequence from the workflow model, thus events corresponding to the Fix task for jobs 1 and 2 are 
ENABLED.   

The first event in the ENABLED list is job 2’s Fix activity.  An Emergency Server resource token 
is available.  The nominal delay for the Fix activity in the log is 0.47, but that was when the supporting 
resource had 0.77 GB of RAM.  To calculate the perturbed delay, PA consults the Fix task timing rule in 
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the workflow model—the distribution is triangular with a minimum of 0.3, a mode of 0.5, and a 
maximum that depends on the inverse of the RAM value. 

If  Z is the nominal delay, then an estimate of the perturbed delay is given by the formula 

Z’ = F-1( F( Z; 0.3, 1/(RAM), 0.5 ); 0.3, (1/RAM), 0.5 ),  where F = Triangular CDF 

In this example, Z’ = 0.52441; this is the new delay.  We update the perturbed log to reflect this event as 
SCHEDULED at t = 2.143620 + 0.52441 = 2.668061.  An Emergency Server token’s next availability 
time is updated to 2.668061. 

The downstream queue for Fix is the Is_Target_Fixed state.  This state has an associated routing 
decision rule that governs the next task in the process.  When this rule is evaluated under the perturbation, 
Determine Track Time is no longer the next activity event to be enabled for job 2.  Instead, a Not_Fixed 
activity event will be enabled. 

The Path_Update procedure is now used to supply a fictitious history for this new branch.  
Another job in the log does go down this path—job 1 has the same job class as job 2 and followed the 
Not_Fixed branch.  The Not_Fixed activity event for job 1 is copied, and assigned as the child event for 
job 2’s Fix event.  All children along that path for job 1 are also copied, and the job IDs are updated to 
associate the copies with job 2. 

The algorithm proceeds by considering the next ENABLED event in the list, the Fix activity for 
job 1. 

6.3 INSTALL DELAYS 

Although assignment of resource classes to support tasks (activation) is immediate in our model, the 
process of transferring tokens from one class to another (installation) may involve a time delay.  To model 
this cost of installation reconfigurations, we augmented the PA to intelligently add and remove tokens 
from a resource spec.  The following example illustrates our modifications: 

Suppose Targeting Computer contains five tokens, with availability {4, 8, 10, 11, 13} and Admin 
Services Computer has four tokens with availability {5, 8, 9, 15}.  Targeting Computer supports the Eval 
Target task, and for our example, assume that Eval Target always has a delay of 3.  Consider the situation 
where one token will be transferred from Targeting to Admin; according to the installation matrix, the 
delay for installation between them is 6 time units.   

Although installation begins immediately at t = 0, our model assumes that the token undergoing 
installation does not have to remain idle, and is still available to initiate an Eval Target activity up until t 
= 6.  In fact, we also assume that even once installation is completed, any activities using the installed 
token are allowed to finish before the token is removed from Targeting and made available to Admin. 

We mark the Targeting Computer  token with availability at t=5 as the one for install. 

• Job A arrives at Eval Target, the activity is ENABLED at t = 4.  It uses a resource token 
available at t = 4, and the activity is SCHEDULED for completion at t = 7, leaving the 
Targeting Computer spec with availability times {7, 8, 10, 11, 13}. 
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• Job B arrives at Eval Target, and the activity is ENABLED at t = 5.  Under the old PA, it 
would have used the token available at t = 7, however, now the installation delay has elapsed 
at t = 6.  The token originally flagged for install is deleted from Targeting (now availability = 
{8, 10, 11, 13}) and added to Admin with the same availability time (making Admin 
availability = {5, 7, 8, 9, 15}). 

• Job B’s Eval Target is SCHEDULED, then, at t = 8, and leaves the Targeting Computer spec 
with availability times {10, 11, 11, 13}. 

This model does possibly penalize some jobs supported by the target resource specification (Admin 
Services).  For instance, if two jobs had arrived at a task supported by Admin Services Computer before t 
= 7, the second job would have committed to beginning that task at t = 8 due to Admin Services 
availability.  The second job is committed to a resource token with no foreknowledge that an install is 
destined to make one available earlier at t = 7.  For evaluating QoS, this penalty is more than offset by our 
assumption allowing the installed resource to be fully used during its installation. 

6.4 IN-PROGRESS JOBS 

The PA evaluates the impacts of a resource configuration change on QoS by performing path 
reconstruction on a job history log that is representative of current and anticipated workload.  If the 
number of jobs currently in the system, however, is an non-negligible fraction of the total number of jobs 
in the sample history, a projection of cyber-CoA effects on these jobs in-progress is necessary for an 
accurate assessment of QoS.   

EBCOTE-3 uses several pieces of information, obtainable from WfMC-compliant WfMS audit 
data, about in-progress jobs:   

• Job ID 

• Job class 

• Job arrival time 

• The next task ID, if in queue, or the current task ID if an activity is in-progress for that job.  
We assume that routing decision rules have already been evaluated for queued in-progress 
jobs at the time PA begins, so that the transition the job is waiting for is well-defined. 

• If an activity is in-progress for the job, the time the activity was started (in PA terms, the time 
after the corresponding event is marked ENABLED when a resource is available). 

• If an activity is in-progress for the job, the resource spec of the token supporting the activity. 

The PA cross-checks that the resource spec of the token supporting the activity is 

1. qualified to support the activity according to the resource model. 

2. assigned to support the activity by the current (nominal) configuration. 

3. contains a non-zero number of tokens in the nominal configuration. 

We use the following procedure to integrate in-progress jobs into the job history log: 
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• If the job is in queue, we simply find a candidate event (with the same job class) for the 
awaited task and copy the path, just as we do with decision-rule branching (Path_Update, see 
Section 6.1).  We ENABLE that event at t = 0. 

• If the job is currently being processed in an activity, we need to: 

1. Find a candidate event for the task corresponding to the in-progress activity, with the 
same job class, and copy the path. 

2. ENABLE the event at the activity start time. 

3. Calculate the delay for the activity using the copied path’s delay (taking into account the 
possible perturbation resulting from differences in the attributes of token supporting the 
copied activity from the attributes of the token supporting the actual in-progress activity). 

4. SCHEDULED time = max (0, ENABLED time + delay).  Thus, if the calculated delay 
isn’t enough to keep the activity in-progress up to the present time, assume the delay will 
be longer and that the activity will finish right when PA begins. 

5. Set the availability time of one of the tokens in the supporting resource spec to be  

max (0, ENABLE time + delay). 

 

6.5 USER/TASK QOS PROFILE 

After the PA generates a perturbed history, it calculates the QoS metric according to the input provided in 
the User/Task QoS Profile.  This profile assigns to each job class a deadline D (relative to the job’s in-
system arrival time) and priority weight P.  Suppose that  a job arrives in the system at time ta and enters a 
success state at time ts. 

• If ts =< ta + D, then P is added to the QoS score. 

• Otherwise, P * exp(D-(ts – ta)) is added to the QoS score.  This allows jobs that succeed, but 
do not meet their deadline, to count for an increasingly smaller amount as time in system 
elapses. 

• Jobs which reach a failure state add nothing to the QoS score. 
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SECTION 7 

CYBER-COURSE OF ACTION SEARCH 

From the discussion in Sections 5.3 and 6.3, we can formulate the BMC3 QoS optimization problem as 
follows.  Let Succ be the set of jobs reaching a completion state, ( )i

at  the time of arrival of job i Succ∈ , 
( )i
st  the time job i reaches its completion state.  Succ,  ( )i

at , and ( )i
st  are all complex stochastic functions of 

the resource configuration variables Α  and Τ  of Section 5.3.  (We vectorize the matrices Α  and Τ  to 
ease the expression of the optimization problem.)  Thus our optimization problem can be written: 

 ( ) ( )

, ( , )
min ( ( , ), ( , ))i i

a s
i Succ

QoS V t t
Α Τ

∈ Α Τ

= Α Τ Α Τ∑  

where 

 ( ) ( )

( ) ( )
( ) ( )

( ( ))

if  
( ( , ), ( , ))

otherwise
i i

s a

i i
s ai i

a s D t t

P t t D
V t t

Pe − −

⎧ ≤ +⎪Α Τ Α Τ = ⎨
⎪⎩

 

subject to the three constraints of Section 5.3. 

The complexity of the QoS objective function requires the use of an oracle to evaluate it.  One oracle is 
discrete event simulation over the Petri Net workflow model.  We use the faster PRA algorithm (Section 
6) in EBCOTE. 

7.1 SEARCH ALGORITHM INTUITION 

Our approach to search in the BMC3 QoS optimization problem is motivated by the heuristic use of the 
approximate co-state to suggest improving resource configurations.  The approximate co-state is a change 
in a job’s expected value from a given state given a resource configuration change.  This concept is 
discussed in [4], where a formal expression for off-line calculation of approximate co-state is given.  For 
on-line CoA search, however, we need a fast way to estimate these values.   

The use of approximate co-state to generate a search direction is equivalent to a hill-climbing 
algorithm using an estimated gradient.  Given the complexity of our objective function, gradient 
estimation must occur using PRA or some other oracle to obtain evaluations of nearby configurations.   

In EBCOTE-3, we developed a surrogate optimization algorithm, following Gokbayrak and 
Cassandras [12], that leverages path reconstruction.  Intuitively, surrogate optimization uses a steepest 
ascent search on a continuous relaxation of the discrete stochastic problem, then projects the optimal 
continuous problem’s solution onto the nearest feasible discrete problem solution.  The oracle, however, 
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cannot meaningfully evaluate QoS for non-integer values of the activation and installation variables, 
hence another means of estimating the gradient is necessary. 

Gokbayrak and Cassandras show that the gradient at a continuous solution may be estimated by 
evaluating the oracle at a small number of nearby discrete solution vectors called a selection set.  If N is 
the number of dimensions in the optimization problem, then we need only evaluate N+1 discrete solutions 
to estimate the gradient.  Given the need to repeatedly evaluate alternative configurations, the fast PRA 
oracle is critical for providing real-time performance.  Since PRA is 6-7 times faster than discrete event 
simulation, our surrogate optimization algorithm is 7N times faster than an equivalent algorithm using 
simulation, clearly two or more orders of magnitude improvement on most problems.   

In Section 7.2, we describe the surrogate optimization algorithm as applied to EBCOTE, and 
provide a small example.  Our empirical evaluation of the algorithm’s performance follows in Section 7.3, 
and we conclude with a summary of known issues with the algorithm and lessons learned. 

7.2 COA SEARCH ALGORITHM 

7.2.1 Main Loop 

7.2.1.1 SOLUTION VECTOR 

We separate our optimization problem into two subproblems for the two sets of COA variables, the 
activation variables denoting whether resource class i is assigned to support task j, and the installation 
variables denoting how many resource tokens of class i are transferred to resource class j.  This separation 
is motivated by the very different characters of the two classes of variables.  The activation variables all 
have domain {0,1}.  If an installation is allowed at all, an installation variable can take on any 
nonnegative integer as a value, subject to the constraint that the sum of installations from any resource 
spec cannot exceed the total number of tokens initially available in that specification.   

If a resource class does not have a role qualified to support a task, then the corresponding 
activation variable must be zero.  For the activation subproblem, we project our solution vector onto the 
subspace of feasible activations and eliminate those variables from search. 

Likewise, the installation matrix in the resource policy file may indicate that a token resource 
class i cannot be installed to become a token in resource class j.  Those installation variables must be zero.  
In the installation subproblem, we project our solution vector onto the subspace of where installations 
may feasibly be nonzero and eliminate those variables. 

7.2.1.2 SUBPROBLEM ALTERNATION 

We search for CoAs in the subproblems iteratively, holding fixed any previous solution to the 
other subproblem (with an exception discussed in Section 7.2.1.3), and halting when no improvement is 
found in the subproblem from the previous solution. 

We initially perform steepest ascent search on both subproblems and take the better solution 
produced between the two, and then alternate subproblems thereafter.  For example, the COA Search 
algorithm would 
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• Solve the activation subproblem assuming initial installation (e.g., QoS = 45 after steepest ascent) 

• Solve the installation subproblem assuming initial activation (e.g., QoS = 55 after steepest ascent) 

• Select the configuration with the better answer. ( = Installation 1) 

• Solve activation assuming Installation 1. ( = Activation 2) 

• Solve installation assuming Activation 2. ( = Installation 2) 

• Solve activation assuming Installation 2.  ( = Activation 3)…and so on until a subproblem search 
does not find an improving configuration. 

Trying both subproblems first was motivated by our initial experiments with the algorithm.  We found, 
for instance, that (Activation 0, Installation 1) may be a better solution than (Activation 1, Installation 0), 
yet this may not be reachable from the latter if the solution (Activation 1, Installation 1) is not itself an 
improvement over it.  The search was biased to finding the local minima resulting from resource 
activation CoAs.  This issue disappears after the initial subproblem gets solved, and we are free to strictly 
alternate subproblems thereafter. 

7.2.1.3 ASSUMED ACTIVATION FOR THE INSTALLATION SUBPROBLEM 

The installation subproblem assumes the activation solution found in the previous subproblem iteration 
with one important exception.  For resource specs containing no tokens, these specs should be activated 
for all tasks for which they are qualified.  Note that this modified activation does not affect the QoS of the 
initial configuration. 

Without this exception, we found that CoA search could miss this two-step CoA improvement: 1) 
Install tokens to classes not currently activated, then 2) Activate them in the subsequent activation 
subproblem iteration.  CoA search misses this solution because neither step is separately an improvement 
in QoS. 

7.2.2 Surrogate Optimization 

The surrogate optimization loop attempts to optimize QoS over the variables corresponding to either the 
activation or installation subproblem while leaving the remaining variables fixed for purposes of 
evaluating test configuration QoS.  We will refer to the vector of variables subject to optimization for 
either subproblem using ρ . 

On the first pass at the activation and installation subproblems, 0ρ  is the configuration resulting 
from the cyber-attack before reconfiguration occurs.  On subsequent passes 0ρ  reflects the solution 
returned from the last subproblem.  0ρ  is guaranteed to be a feasible solution to the continuous relaxation 
problem. 

The procedure determine_approx_discrete_set  finds a set of discrete points near 
continuous solution (Section 7.2.4.1). 

The perturbation_analyzer oracle finds a QoS evaluation for each discrete point in set 
(Section 6). 
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We then compute_gradient at the current continuous problem solution using the perturbation 
analyzer’s QoS evaluations at the discrete points (Section 7.2.4.2). 

The continuous solution is updated using steepest ascent.  The step-size schedule nη  is one of the 

areas where the user can tune the algorithmic performance.  For EBCOTE 
1n

K
n

η =
+

, where K is a user-

defined parameter, and n is the iteration number.  This schedule takes smaller steps as we presumably get 
nearer to a local maximum. 

 
surrogate_optimization( 0ρ ) : 

0ρ ρ= ;  

do 
{ n = 0; 

( )S ρ  = determine_approx_discrete_set( ρ );  

 for ( )ir S ρ∈  

  ( )i
dQ r = perturbation_analyzer(

ir );   

 end 

 ( )cQ ρ∇  = compute_gradient({ ( )i
dQ r });   

 ( )n cQρ ρ η ρ′ = + ∇ ;   

 ρ = enforce_continuous_feasibility( ρ′ );   
} while Stopping_Condition; 
return enforce_integral_feasibility( ρ ); 

Figure 13.  Pseudocode for Surrogate Optimization. 

The enforce_continuous_feasibility (Section 7.2.4.3) ensures that the updated 
continuous solution obeys the relaxed constraints for the continuous problem by projecting the current 
solution onto the nearest feasible one. 

We continue with steepest ascents until a Stopping_Condition is reached.  The choice of 
stopping condition is one of the areas where we can tune the algorithmic performance.  A standard 
stopping condition is to terminate steepest ascent when the gradient becomes sufficiently small.  We 
describe the actual set of stopping conditions used in EBCOTE in Section 7.2.3. 

The outcome of steepest ascents is a locally optimal solution to the relaxed continuous problem.  
We then project the feasible continuous solution onto a feasible solution for the discrete problem using 
enforce_integral_feasibility (Section 7.2.4.4).  

7.2.3 Stopping conditions 

1)  Activation and Installation subproblem stopping condition 1. 

Hill-climbing for both activation and installation subproblems stops when the gradient becomes small. 
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Stopping condition 1 : 1( )cQ ρ ε∇ <  

2)  Activation and Installation subproblem stopping condition 2. 

Hill-climbing for both activations and installation subproblems stops when a cycle is detected; that is, if 
hill-climbing revisits the neighborhood of a previously revisited solution to the continuous problem. 

Stopping condition 2 : 1|k kρ ρ ρ ε∃ − <  

3)  Installation subproblem stopping condition 3. 

In each loop of the steepest ascent solution to the continuous surrogate problem, there are three 
continuously approximated CoAs considered: 

A) The solution generated in the previous iteration, x . 

B) The incrementally updated solution obtained by adding step size times gradient, ′x .  This 
solution may lie outside the feasible region. 

C) The projection of the incrementally updated solution onto the feasible region, i.e., by 
enforcing the continuous constraints, ′′x . 

This stopping condition for installation compares the projected point to the previous solution.  If these 
points are close together, yet our increment was large, then the gradient’s improvement was largely in an 
infeasible direction.  This suggests an additional stopping condition for installation. 

Stopping condition 3 : 2ε
′′ −

<
′ −

x x
x x

 

7.2.4 Other algorithmic routines 

7.2.4.1 DETERMINE_APPROX_DISCRETE_SET 

This routine determines a set of 1ρ +  discrete points nearby a continuous solution ρ  that can be used to 
evaluate a gradient for the continuous problem (through path reconstruction simulation).  Note that the 
elements of this set need not be feasible solutions to the discrete optimization problem (they may lie 
outside the constraints).  Thus, we determined a convention for evaluating infeasible discrete solutions in 
the perturbation analyzer: 

• For the activation subproblem, an activation variable value of 2 is equivalent to a value of 1; 
it indicates that the associated resource spec is activated for the associated task. 

• For the installation subproblem the number of tokens installed from a resource spec might 
(infeasibly) exceed the number available in the nominal configuration.  If this occurs, the PA 
marks as many tokens for installation as it can.  It then keeps track of the deficit, and when an 
install occurs that requires more tokens than are in the source resource spec, it creates 
additional tokens in the target resource spec with availability time equal to their hypothetical 
install time. 
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The PA is then allowed to evaluate hypothetical, but infeasible configurations for the purpose of gradient 
estimation only.  Reported CoAs are always feasible. 

Gokbayrak and Cassandras demonstrate that the convex nature of our constraints for this problem 
guarantees that at least one of the selection set points is feasible. 

 
determine_approx_discrete_set( ρ ) : 

ρ ρ ρ= − ⎢ ⎥⎣ ⎦% ;   

I = {1..length( ρ% )}; 
ρ=v % ; 

while I ≠ ∅    

{    
i

j
j I

r e
∈

=∑% , where arg min{ , }ji v j I= ∈ , and je  is the unit jth component vector; 

 i ivα = ; 

 
i

irα= −v v % ; 

 \{ }I I i= ; 
} 

0 0r =% ;   

0
1

1
N

i
i

α α
=

= −∑ ; 

return ( ) { |  for 0,.., }i i iS r r r i Nρ ρ= = + =⎢ ⎥⎣ ⎦% ; 

Figure 14.  Psuedocode for determining the “selection set” of discrete points used to approximate the 
gradient at a solution to the continuous surrogate problem.  

The selection set for a solution to the continuous problem is found by considering the non-integer part of 
the solution, i.e. the vector of fractional parts of each component.  We calculate a set of discrete 
approximating points around this non-integer part, which have components of either 0 or 1.  The non-
integer part is a convex combination of these approximating points.  The set of approximating points has 

1ρ +  members, and the last is always a vector of zeros. 

The selection set itself is obtained by adding the integer part of the continuous solution back to 
each member of this set of discrete approximating points.  Figure 15 illustrates the results schematically. 
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Figure 15.  We can find a selection set for the fractional part of our continuous solution, without loss of 
generality.  

7.2.4.2 COMPUTE_GRADIENT 

Given the set of points in ( )S ρ , we can evaluate each configuration represented using the PA to find a 
set of QoS estimates 0{ ( )}i N

d iQ r = .  We can use those estimates to calculate a gradient ( )cQ ρ∇  in the 
following fashion. 

 

compute_gradient( 0{ ( )}Ri
d iQ r = ) : 

for i = 1.. R  

 ( ) ( ) ( )i j
c i d dQ Q r Q rρ∇ = −  

end 

Figure 16.  Pseudocode for computing the gradient estimate. 

Note the following fact about ( )S ρ : if ( )ir S ρ∈ , then there exists ( )jr S ρ∈ such that i j
ir r e− =  

(that is, there is a vector that differs from ir  in the ith component).  It is sufficient to order the vectors in 
( )S ρ lexicographically to discover which vectors to use in the differences above. 

In words, the ith component of the gradient vector is the difference between the PA QoS of the ith 
configuration in ( )S ρ  and the PA QoS of the configuration in ( )S ρ  that differs by one in the ith 
component. 
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7.2.4.3 ENFORCE_CONTINUOUS_FEASIBILITY 

The next candidate continuous solution reached by a step in the steepest ascent must be projected onto the 
continuous constraint set to yield a closest feasible continuous solution.   

• For the activation subproblem, all components must be between 0 and 1.  Thus, any negative 
component is replaced with 0 and any component greater than 1 is reduced to 1. 

• For the installation subproblem, we must enforce that the transfers out of a resource class 
must not exceed the number of tokens in the “nominal” case.  That is, considering the vector 
of installation variables Τ as a matrix,  ij i

j

Nτ ≤∑  for each j. 

We project iτ  onto its feasible region for each resource class i by proportionally reducing 
each nonzero component until the sum of its components meets the constraints: 

First, consider only nonzero components of iτ . Let iτ  be this vector of nonzero components.  

Let min{ } for 1..ij j Rα τ= = .  Also, let ( ) / length( )ij i i
j

Nβ τ τ= −∑ .   

− If α β< , then set 0ijτ = , where j = arg min{ ijτ }.  In words, we reduce that minimum 
component to zero.  We then repeat the process—the new iτ  will be shorter by one 
component.  If there are no remaining nonzero components, then we are done, and the 
only feasible set of installs is no installs. 

− Otherwise, we can reduce each nonzero transfer in the continuous solution equally by β .  
So for each j, ij ijτ τ β= − .  If we take this branch, we are done, and return with a 
feasible solution. 

7.2.4.4 ENFORCE_INTEGRAL_FEASIBILITY 

For both subproblems, once we have a feasible continuous solution that passes the stopping condition, we 
want to project it onto the closest feasible integer solution.  It can be shown that the rounding the value of 
each variable in the continuous solution to the nearest integer produces the desired solution. 

For the assignment subproblem, optimization variables must have the value 0 or 1.  If we simply 
round off each component, we get the nearest feasible integer solution. 

For the installation subproblem, the variables representing installations from a resource class 
must sum to be less than the nominal number of tokens in the resource class.  It suffices to show that the 
rounding solution works when the continuous solution is such that a group of variables sums to be exactly 
the nominal number of tokens.  In this case we are in an easy extension of the Lemma 3.1 situation in 
Gokbayrak and Cassandras. 

7.2.5 CoA Search Restart Procedure 
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The hill-climbing search of Section 7.2.2 will only find a locally optimal cyber-CoA, reached from the 
starting solution of the immediate post-attack configuration.  EBCOTE-3 can generate other locally 
optimal solutions for sysadmin consideration, time permitting.  To find other locally optimal CoAs, we 
use the following algorithm for identifying new feasible restart points for the gradient-directed search: 

1. For each resource class having no tokens in it (an empty resource class) in the attack 
configuration, identify possible source resource classes for the empty class from which tokens 
may be installed.  Source classes may not be empty. 

The source classes for empty class E may be identified by looking at the install matrix.  The 
source classes are rows representing non-empty classes with non-dash entries in E’s column. 

2. Construct a list of redistribution options that take tokens from source classes and install them to 
empty classes.  The list is constructed as follows: 

Step 1 gives a list of possible source resource classes 
iES  for each empty class iE .  The list of 

redistribution options is the set of elements in the Cartesian product 
iEi

S× , representing a choice 

of a single source class for each empty class. 

COA Search will only restart MAX times, where MAX is a user-defined constant, thus the 
exhaustive list of redistribution options need not be enumerated. 

3. If the surrogate optimization terminates by finding a local maximum and MAX has not been 
reached, COA Search will restart using the next redistribution option.  For each redistribution 
option: 

4. For each source class S in the redistribution option 

− Let k = (# of initial tokens in S - 1)/(number of empty classes matched with S in the 
option). 

− Let Distributed = k⎢ ⎥⎣ ⎦  
− If Distributed = 0, discard option. 
− Else install k tokens to the empty class. 

If the option is not discarded, execute surrogate optimization using the initial config generated in 
step 3, and increment the restart counter.  NOTE : Discarded options are not counted against 
MAX 

7.3 KNOWN ISSUES 

In our test case evaluation, we identified several opportunities for improvements on the cyber-CoA search 
algorithm described here.  The surrogate optimization approach is valuable for optimization problems 
with a certain characterization—not all workflow models yield such problems. 

First, surrogate optimization is not the ideal approach for the activation subproblem.  The 
activation subproblem is an optimization over binary variables representing assignment of resource specs 
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to tasks.  The problem is limited to a unit hypercube and all solutions are on the cube’s vertices.  We 
adapted the gradient-based search for the subproblem to promote uniformity in the initial EBCOTE-3 
prototype; however, there are better methods for search over sets of binary variables that can be 
implemented in future development. 

Surrogate optimization is appropriate for problems whose continuous relaxations exhibit smooth 
variation in QoS at the scale of discrete problem solutions.  Some workflows may not fit these conditions.  
We observed in some problems that local minima appeared rather densely in the continuous problem, 
meaning that sometimes the gradient computed at a continuous solution was not a good guide to 
improving movements in the discrete space.  More research is required to identify and characterize 
workflows for which surrogate optimization is a convenient approach and those for which other search 
methods may be better. 
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SECTION 8 

CONCLUSIONS 

8.1 SUMMARY OF EBCOTE-3 RESULTS 

The EBCOTE-3 project has developed a prototype tool for generating cyber-CoAs to help system 
administrators of BMC3 systems reconfigure system resources in response to cyber attacks.  EBCOTE-3 
features include: 

• Works on a broad range of workflow models specified using a Petri Net workflow modeling 
tool. 

• Uses a resource policy model declaring cyber-resources and their attributes, roles that qualify 
resources for workflow tasks, and installation times required to transfer resource tokens from 
one spec to another. 

• Evaluates impacts of the current resource configuration and status on QoS. 

• Computes a QoS estimate including user-specifiable priorities and deadlines for each job 
class. 

• Accounts for any jobs currently in-progress. 

• Searches for multiple cyber-CoAs within a user-specified time window and ranks their 
effectiveness estimates. 

• Provides APIs to allow external WfMS programs to supply workflow data (such as job 
history logs) to EBCOTE-3. 

EBCOTE-3 uses a novel path reconstruction analysis technique that propagates the effects cyber-attack or 
reconfiguration perturbations throughout a sample history of BMC3 workflow processing.  This technique 
provides a factor of 6-7 speedup over workflow discrete event simulation, a benefit magnified by the 
optimal search algorithm which uses it. 

EBCOTE-3 leverages path reconstruction to support an innovative surrogate optimization 
technique that searches for cyber-CoAs through a gradient-based search on a continuous relaxation of the 
BMC3 QoS optimization problem.  Here, path reconstruction provides a fast method for computing the 
objective function values of various configurations, permitting an estimate of the gradient at some 
solution to the continuous problem.  EBCOTE-3 finds cyber-CoA options which preserve QoS within 
seconds, developing improved CoAs within a couple of minutes if time permits. 

Surrogate optimization is not ideal for every workflow problem, but the path reconstruction 
analysis technique is suitable for supporting other stochastic discrete optimization methods which use an 
oracle to guide search.  More work is needed to characterize workflow problems and identify the most 
advantageous search mechanism for each.  
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8.2 FUTURE DIRECTIONS 

One area for future work on the EBCOTE prototype is further integration with evolving WfMS standards.  
In particular, EBCOTE-3 relies on specified timing rule distributions for each task in the workflow to 
perform path reconstruction analysis.  Each task in the workflow model must have a declared 
distribution—one of constant, uniform, exponential, triangular, or normal.  Further, the dependence of 
these distributions on resource token attributes must be specified.  This information does not currently 
appear in workflow definitions standards for WfMS.  EBCOTE needs a methodology for inferring 
properties of task distributions from data in the history log. 

The EBCOTE prototype can also benefit from additional research into search algorithms.  For 
instance, as discussed in Section 7.3, searches other than surrogate optimization are more appropriate for 
the activation subproblem, and would likely improve performance. 

EBCOTE searches for cyber-CoAs that specifically reconfigure resource usage in the BMC3 
system, but not only may system administrators wish to use other types of workflow configurations, but 
more sophisticated cyber-attacks may alter other features of the workflow.  Path reconstruction analysis 
can be applied to other workflow perturbations such as decision rules and local queue management rules. 

 We believe that the application of path reconstruction techniques to workflow management opens 
up many possibilities for workflow and resource optimization, benefiting business process re-engineering, 
infrastructure protection, and defense BMC3 communities.  EBCOTE is an important step for cultivating 
these ideas and adding value to BMC3 cyber-protection. 
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