REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, collecting and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this form to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
20-02-2004 Final Report 01 Apr 00 - 30 Sep 01

4. TITLE AND SUBTITLE
Experimental Data Acquisition and Quantitative Visualization of Turbulent Jet Mixing Layers

5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER 3484/US 5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
William K. George

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The Research Foundation of SUNY on behalf of State University of New York at Buffalo
520 Lee Entrance, Suite 211 Amherst, NY 14228

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR DURIP
Steven Walker

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

20040423 039

14. ABSTRACT
This AFOSR/DURIP sponsored funding was used to upgrade the data acquisition, graphics and image processing capabilities of the Turbulence Research Laboratory (TRL) of the State University of New York at Buffalo. The proposed upgrades were of immediate benefit to the research sponsored by AFOSR (Investigation into the Dynamics of the Jet Mixing Layer) as well as a number of on-going and anticipated investigations. The AFOSR sponsored effort enhanced on-going research using 138 hot-wire probes to investigate the dynamics of the jet mixing layer. The hot-wires are used to obtain simultaneous data at 138 positions so that the instantaneous velocity profiles can be reconstructed using the proper orthogonal decomposition (POD). The complexity of the data acquisition required for this number of probes has been considerably simplified. In spite of this, the demands on the data acquisition system and the experimenter are enormous, especially with regard to calibration and post-data-acquisition validation, visualization and processing of the data.

The equipment purchased both addressed the immediate research needs, and considerably enhanced the ability of the Turbulence Research Laboratory to meet the needs of the university and regional technical community.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
18. NUMBER OF PAGES
19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18
Experimental Data Acquisition and Quantitative Visualization of Turbulent Jet Mixing Layers

Final Report
William K. George

Abstract
This AFOSR/DURIP sponsored funding was used to upgrade the data acquisition, graphics and image processing capabilities of the Turbulence Research Laboratory (TRL) of the State University of New York at Buffalo. The proposed upgrades were of immediate benefit to the research sponsored by AFOSR (Investigation into the Dynamics of the Jet Mixing Layer) as well as a number of on-going and anticipated investigations. The AFOSR sponsored effort enhanced on-going research using 138 hot-wire probes to investigate the dynamics of the jet mixing layer. The hot-wires are used to obtain simultaneous data at 138 positions so that the instantaneous velocity profiles can be reconstructed using the proper orthogonal decomposition (POD). The complexity of the data acquisition required for this number of probes has been considerably simplified. In spite of this, the demands on the data acquisition system and the experimenter are enormous, especially with regard to calibration and post-data-acquisition validation, visualization and processing of the data.

The equipment purchased both addressed the immediate research needs, and considerably enhanced the ability of the Turbulence Research Laboratory to meet the needs of the university and regional technical community. A number of computational fluid dynamics analysis, flow visualization experiments, data visualization and theoretical modeling studies used this equipment on a regular basis.

The Supported Research
The backbone of the experimental program most significantly enhanced by this equipment acquisition was the large turbulent axisymmetric jet. This facility has been extensively used in the past by the Turbulence Research Laboratory in Buffalo, and is thoroughly described in dissertations of Citriniti [1], Jung [2] and Gamard [3].

A series of near field measurements by Jung [2] where extended to the far field by Gamard [3] using the same array of 138 long hot-wires. These were designed specifically to resolve the energetic features of the mixing layer of the jet in the potential core at 3 diameters downstream of the jet exit. The idea behind the design of the hot-wires array is to measure optimally the energetics of the flow. Knowing that the interest lies in the large scales, Citriniti and George [4] used the natural filtering length of the hot-wires as a small-scale filter. Indeed, the velocity measured by the wire is actually the average over its length. By increasing the wire length, the information in the small wavenumbers is averaged naturally before the signal is sampled, therefore avoiding any folding into other modes.

If it is assumed that spatial resolution is the principal limitation to the 'apparent' frequency response, the maximum frequency that can be resolved by the hot wires can be estimated by: $f_c = U / 2l_w$ with $l_w = 1$ cm being the length of the wire, and U the velocity seen. Note that the temporal response of the wires can be estimated to be at least 10 μs, orders of magnitude faster than presented by the flow field (Citriniti [1]).

Using similarity predictions obtained from the models of Hussein et al. [5], we obtained the following frequencies: 850 Hz. to 312 Hz. for the 21D, 50 m/s and 69D, 70 m/s cases. To avoid any aliasing, we need to sample at, at least, twice that frequency, respecting the Nyquist criterion. For all our cases, we sampled at a frequency of 4,001.6 Hz. to be able to satisfy the sampling limitations of measuring all the signals together, as will be explained later. As seen from spectral
plots, the probes roll-off in the -5/3 range, long before the limiting frequency induced by the length of the wire, implying that the wire sees indeed most of the kinetic energy. It should be noted that Citriniti and George [6] also showed the one-dimensional spectrum to be affected at all wavenumbers, because of the reduced spatial aliasing intrinsic to the one-dimensional spectra.

The Hot-Wires Array

Based on the results of Glauser [7], it was concluded that the mixing layer needed 6 concentric radii in order to resolve correctly the dynamics using the POD. It was also seen that the azimuthal distribution was increased as one moves away from the centerline. Therefore, an array of 6 concentric radii of increasing azimuthal distribution, comprising a total of 138 hot-wires was created to fully resolve adequately the mixing layer, see Figure 1 and Figure 2. Each single wire was oriented in the azimuthal direction, using its long length as a natural filter to eliminate, without aliasing the higher azimuthal modes. Note that, since streamwise variations at small scales are convected by the probe, the temporal filtering accomplishes the same aliasing for the streamwise variations.

The hot wires, all home-made in the laboratory, were 1 cm. long and made of 12.7 μm unplated tungsten (Sigmund-Cohn, Mt. Vernon, NY), creating an actual l/d of around 800. Each wire was mounted on a 37 cm. long brass tube; all of them fixed and held together using a 50 cm. wide bicycle wheel. The electric cables were therefore 40 cm. away from the measuring position of the wires, minimizing therefore the actual influence on the wires of a blockage by the probe array. Using the smoke generator apparatus, a confirming check was made by Citriniti and George [4] as to the minimum of a blockage by the probe array on the measuring devices (see Figure 3).

Figure 1. Picture of jet with 138 hot-wire probe array.
Figure 2. Schematic of the 138 hot-wire probe array. Each small circle represents a single hot-wire.
Figure 3. A) Single frame of smoke visualization recorded and edited using the purchased video recording and editing system. B) Smoke visualization of the flow field around the hot-wire array. Taken from Citriniti and George [6].

Acquiring the Data

The Acquisition Board

The huge constraint of the experiment was to acquire 140 signals (139 probes, and other monitoring signals) simultaneously at the right sampling frequency. We therefore used a data acquisition board from Microstar Laboratories DAP 5200a purchased with AFOSR-DURIP funding. It has an on-board operating system optimized for 32 bit operation in a PC expansion slot, consisting of an AMD K6-2 CPU with PCI bus interface, 14-bit A/D converter, with a 50 ns. acquisition time resolution, 800 K samples per second throughput, and programmable input and output voltage range.

The DAP 5200a, as seen on Figure 4 was connected via a 68-line round cable to an analog backplane interface board MSXB 029, itself located inside the anemometer rack and connected to 3 analog input Microstar Laboratories expansion cards of type MSXB 018. These expansion cards are connected in series to each other via 68-line flat ribbon cables, and each one holds 4 connectors each with 16 single-ended inputs. The 3 cards can therefore process up to a maximum of $3 \times 4 \times 16 = 192$ analog signals.
Simultaneous Sampling

To obtain data simultaneously at all 138 positions, a sample/hold amplifier, SHC298, was used in each anemometer board separately. It had a 12 bit throughput accuracy, less than 10 μs acquisition time\(^1\), wide-band noise less than 20 μV\(_{\text{rms}}\), reliable monolithic construction and TTL-CMOS-compatible logic input features.

The positive-edge triggered control signal for the sample/hold amplifier is generated by the Microstar 5200a Data Acquisition Processor as part of the sampling process. The sampling time here is 10.2 μs and holding time 239.7 μs, so the resulting sampling frequency is 4,001.6 Hz (= 1/(10.2+239.7 μs)). When the mode control is switched from hold-mode to sample-mode with the positive-edge triggered signal, the sample/hold amplifier samples data at all 138 anemometers simultaneously and holds the signals until it switched to the next sample-mode. During the hold-mode, the Microstar DAP 5200a collects data from all the channels, and then saves them on the hard disk.

147 channels are used to acquire data from the hot wire probe array. They consist of the 139 channels for the hot wire probes, a channel for the pressure transducer, and one for room temperature, and 6 channels for generating the control signals. The holding time of 239.7 μs was calculated using 141 ch X 1.7 μs, and the sampling time of 10.2 μs from 6 ch X 1.7 μs. The sampling time 1.7 μs for each channel is selected accordingly with the optimal sampling frequency, 4,000 Hz. The resulting control signal is generated automatically by the Microstar DAP 5200a while operating, and is applied to all sample/hold amplifiers at each anemometer separately as the positive-edge trigger signal within the standard TTL logic ranges from 0 to +5 volts.

Calibration of the Wires

Calibration of even a single probe is not easy, even if straightforward. Calibration of 139 probes is

\(^1\) It is the required time for the sample/hold output to settle within a given error range of its final value, when switched from Hold to Sample.
a monumental task. Fortunately, drift during the experiment was not a problem. And we had the advantage of considerable experience in the Citriini and George [4] experiment.

Conversion of the voltage acquired by the probes to velocity is done by first exposing the probes to a known velocity and computing the calibration conversion curve. The high stability of the anemometers allowed a high reproducibility of the signal, therefore only one calibration was necessary, although this was checked at the end of the experiment.

The calibration curve was modeled by a 4th-order polynomial: $V = a_0 + a_1 V + a_2 V^2 + a_3 V^3 + a_4 V^4$. Mainly because the linearity of the method removes unwanted sources of errors from mathematical roundoffs both when computing the coefficients initially with the calibration scheme and when recovering the velocity from the acquired voltage in the experimental stage. The order of the polynomial has been chosen after previous trials done in the Turbulence Research Laboratory.

We calibrated 20 to 30 wires at the same time by placing them at a radius away from the jet exit in the laminar core of the flow; the boundary layer at this point was small and the velocity profile was constant within 0.1%. A collection of the voltage outputs from those wires was acquired along with the signal from the pressure transducer at a frequency of 4,001.6 Hz. and a sampling time of 100 s. The velocity of the jet was in the range of 0 to 25 m/s., which was the predicted range later seen by the wires in experimental configuration. A sample of a calibration curve is seen in Figure 5.

![Calibration curve](image.png)

Figure 5. Calibration curve for a polynomial fit. Symbols are measured data points
The Experimental Results

All of the calibration data acquisition and processing was performed on the AFOSR-DURIP funded data acquisition system. The subsequent data processing was performed on the data visualization workstation. The large-scale structure of an axisymmetric mixing layer was investigated using the POD for Reynolds numbers of 78,400, 117,600, and 156,800 at $x/D = 2.0$ to 6. Data were sampled simultaneously at all measuring positions at 4,001.6 Hz for 400 sec using 139 hot-wire probes of length of 1 cm. The sampling frequency was sufficient to satisfy the temporal Nyquist criterion. The record length of each block of data was 4,096 samples giving a bandwidth of 0.98 Hz and a length of 1.02 sec. In all, 388 blocks were used in the statistical analysis, which reduced the variance of the cross-spectra to less than 5%. The Strouhal number of the spectral peak was in the range of 0.25 to 0.5 for all downstream locations.

In addition to applying the POD in the radial direction, the streamwise velocity at each cross-section was decomposed into Fourier modes by both azimuthal mode and temporal frequency. The variations due to downstream positions and Reynolds numbers were discussed in detail. The original velocity field was also reconstructed using only the first POD mode and selected azimuthal modes using a linear combination of the coefficients and eigenfunctions. From animations of the reconstruction, the interaction between the azimuthal modes and the dynamics of the coherent structure could be visualized.

Similarity of the energy distribution

From application of the POD in the radial direction, it was observed that the first POD mode contains more than 60% of turbulent energy at all downstream positions and Reynolds numbers. The first 2 POD modes contain more than 80%.

The eigenvalues have a strong dependence on the streamwise position, x/D. And mode-0 behaves in a manner entirely different than the higher modes. The main results are as follows:

1. The energy in mode-0 moves to lower frequencies as x/D increases, and the total energy in mode-0 decreases. (Note that because the flow is largely correlated by the probes, frequency is to more correctly representative of wavenumber, $k = 2\pi f / U_c$) Corresponding to the diminution of mode-0 is the emergence of mode-1. This is consistent with an approach toward homogeneity in the downstream direction, and suggest that perhaps some residual value may control (or reflect) the growth rate of the far jet.

2. The behavior of mode-0 and mode-1 as x/D increases is similar to that predicted from inviscid instability theory. In particular, Batchelor and Gill [8] show that for a top-hat profile all modes are unstable, but mode-0 grows the fastest. By contrast, once the profile is fully-developed, mode-0 is stable, and mode-1 grows the fastest, at least for a parallel flow. Similar conclusions were reached by Michalke [9] and Michalke [10] as well, but for spatially growing disturbances. These stability results are strikingly similar to the behavior of the POD modes which have the most energy and even the eigenfunctions appear to be similar.

3. The energy distribution (with azimuthal mode number and frequency) of the first, second, and third POD modes has a strong dependence on x/D.

4. For azimuthal mode greater than m=0, the energy shifts from higher modes to lower modes (m>0) as x/D increases. In fact, the eigenspectra collapse when scaled in shear layer similarity variables; i.e. $\lambda / x U_0^2$ versus $f x / U_0$ and mx / D.

5. The energy distribution of the first POD mode has no dependence on Reynolds numbers over the range of these experiments. This is contrary to the suggestion of Vite(HLB86) that more complicated modal structures might evolve with increasing Reynolds number.
On the other hand, this observation is consistent with suggestion by Glauser [7] and Citritini and George [4] that once the Reynolds number is sufficiently high, there should be no dependence.

6. The Strouhal number associated with the frequency of maximum energy of the eigenspectra of the first POD mode correlates well with Strouhal number of the velocity spectral peak.

The velocity reconstructions

The instantaneous fluctuating velocity field at each cross-section was reconstructed using the eigenfunctions and coefficients obtained from the projection onto the original instantaneous velocity measured by all of the probes (in the manner of Citritini and George [4]). From the animations of the velocity field, these main characteristics were observed:

1. Near the jet exit, highly organized and near-periodic evolutions of the large-scale structures are observed.
2. Azimuthally coherent vortex rings, the volcano-like eruptions identified by Citritini and George [4], dominate the dynamics and the interactions of the structures until about $x/D \sim 4$.
3. The passage frequency for the volcanic eruption reasonably matches with the Strouhal frequency and 0th mode frequency in the range of $x/D = 2$ to 4.
4. Beyond $x/D \sim 4$, the volcano-like eruptions die off rapidly.
5. For $x/D \geq 4$, a "propeller-like" structure appears and dominates the pattern. For this experiment, at least, this "propeller-like" structure appears to rotate in a single direction. The direction of this rotation corresponds to the direction of a slight (1:1000) rotation at the exit plane of the jet, but the rate of rotation of the "propeller" is orders of magnitude faster.

Publications and Activities Benefiting from this Funding

Post Graduate Degrees

Publications and Presentations

42. Johansson, Peter and George, William K., *Applications of equilibrium similarity analysis*

Summary of Purchased Equipment

<table>
<thead>
<tr>
<th>Description</th>
<th>Proposed Cost</th>
<th>Actual Expenditure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Acquisition, Collection and Storage System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Data Acquisition System</td>
<td>$15,822</td>
<td>$14,629</td>
</tr>
<tr>
<td>Data Acquisition Software</td>
<td>$2,269</td>
<td>$2,318</td>
</tr>
<tr>
<td>Data Server/Storage Computer System</td>
<td>$6,397</td>
<td>$6,367</td>
</tr>
<tr>
<td>Matlab Data acquisition Toolbox</td>
<td>$199</td>
<td>$199</td>
</tr>
<tr>
<td>Data Processing and Visualization System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visualization Workstations</td>
<td>$19,050</td>
<td>$19,498</td>
</tr>
<tr>
<td>Matlab Data Processing Software</td>
<td>$1,993</td>
<td>$2,029</td>
</tr>
<tr>
<td>Digital Video Flow Visualization System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Video Recorder</td>
<td>$4,995</td>
<td>$5,643</td>
</tr>
<tr>
<td>Professional Video Editing System</td>
<td>$2,995</td>
<td>$1,720</td>
</tr>
<tr>
<td>Adobe Imaging and Illustration Software</td>
<td>$349</td>
<td>$324</td>
</tr>
<tr>
<td>Digital Video Editing Software</td>
<td>$1,498</td>
<td>$1,334</td>
</tr>
<tr>
<td>Total Budget Expenditures</td>
<td>$55,567</td>
<td>$54,062</td>
</tr>
<tr>
<td>Total DURIP Funding</td>
<td>$55,367</td>
<td></td>
</tr>
</tbody>
</table>
Bibliography

