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Chapter 1 

ABSTRACT 

LOGWAR MULTISENSOR IMAGE 
REGISTRATION 

This thesis examines the utility of automated image registration techniques developed 

by the author.  The major thrusts of this research include using the Laplacian of Gaussian 

(LoG) filter to automatically determine ground control points (GCPs) and wavelet theory for 

multiresolution analysis.  Additionally, advances in both composite and predictive 

transformations will be covered. 

The defense will include an overview of the processes involved in general image 

registration and specifically how they pertain to automation with the techniques utilized in this 

thesis.  Use of the LoG filter to extract semi-invariant GCPs, development of automated point 

matching schemas, and the use of matrix transformations for efficient management of affine 

image relationships will be explained in detail.  Additionally, the ability to apply statistical 

analysis to both local and image wide sets of GCPs will be discussed. 

The student developed software application, LoG Wavelet Registration (LoGWaR). 

will demonstrate the utility of these techniques for processing large datasets such as 

LANDSAT and how integration of these features can provide both power and flexibility when 

registering multiresolution and/or multisensor images. 

Automation techniques will be highlighted, demonstrating the strengths and 

weaknesses when applied to images with high degrees of parallax, cloud-cover, and other types 

of temporal change.  Specific applications, such as “wavelet sharpening” and “spectral 

unmixing” will be addressed as it pertains to current research.
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GLOSSARY 

Affine Transform:  A subset of polynomial transformations that include shift, rotation, scale, 
and skew. 

Dyadic Power:.  A power of two; used in the Fast Wavelet Transform to maintain proper 
dimension constraints for multiresolution analysis. 

Hyperspectral:  Image datasets that contain tens, to hundreds, of spectral bands. 

Hypertemporal:  Video datasets that contain tens to hundreds of frames per second. 

Multispectral:  Image datasets with four to tens of spectral bands. 

Multisensor:  Images that contain similar spatial content taken from different sensors. 

Multiresolution:  The ability to decimate an image into several spatial frequency subbands 
for analysis lays the foundation for Wavelet theory. 

Polynomial Transform:  The generic form of a spatial transformation that can be utilized to 
relate two images via global equations. 

Resampling:  Changing the number of pixels in an image, normally done through pixel 
averaging, sampling or replication. 

Wavelets:  By iteratively stripping off the highest spatial frequency components from an 
image (decimating), it is possible to retain those frequencies in insolated subbands for 
analysis. 
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C h a p t e r  2  

INTRODUCTION 

With the rapid advancement of both hyperspectral and hypertemporal imaging 

capabilities, the need for automated registration of image bands and frames with each other 

and with an ever-growing database of related images is critical.  Similarly, for low light 

conditions such as astronomy, analysts are often producing long dwell composite images 

(utilizing long integration times or by “stacking” several individual images).  These techniques 

all require precise registration of images, whether it’s for change detection, spectral unmixing, 

or to maximize the S/N ratio of the output image.  

This registration process can be very slow and tedious when done by supervised 

registration, when an analyst chooses similar reference locations within images as ground 

control points (GCPs) and generates the transformation operation necessary for registration.  

So, it is the attempt of this research to add automation to this registration process through 

the use of spatial frequency analysis, edge filtering, point matching, and statistical analysis.  

The proposed registration technique utilizes comparison of semi-invariant features (edge 

detail) within a scene to correlate images/spectral bands.  With the increasing processing 

speeds of today’s computers and the continuing sophistication of edge detection/filtering 

techniques, point matching, and statistical analysis, it is possible to fully automate this task.    

 As is often the case, it is desirable to register high-resolution (panchromatic) images 

with lower-resolution (multispectral) images.  If this can be accomplished, it is possible to 

allow the strengths of each sensor to compensate for the inherent weaknesses of the other, so 

that analysts can efficiently exploit the spatial and spectral characteristics of the fused data 

simultaneously.   
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The goal of this thesis is to provide a robust technique for automated multisensor 

image registration and the development of software to implement these techniques (in the 

IDL programming environment).  Correction for the basic geometric distortions such as 

shift, rotation, and scale between images will be covered in detail.  Wavelet analysis (image 

resolution pyramids) will be utilized to decompose higher resolution images to the equivalent 

frequency content of a lower resolution image.  This will allow automated registration of 

multi-sensor images utilizing the Laplacian of Gaussian (LoG) filter and automatic point 

matching techniques.  The capabilities of this LoG Wavelet Registration (LoGWaR) 

technique will be demonstrated on both test data and real multisensor datasets.   

Finally, useful applications for this technique such as “sharpening” and “spectral 

unmixing” will be developed and applied to datasets of interest so that analysts can efficiently 

exploit the spatial and spectral characteristics of the data simultaneously.  This is necessary for 

applications such as “sharpening”, where the high frequency components of the higher 

resolution image are utilized to determine detail in the lower resolution image.  Additional 

applications include pure “end member” selection for spectral “end-member” libraries 

(critical for “step-wise” unmixing), image stacking to increase the S/N, and change detection.   
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WORK STATEMENT 

The Objectives of this research were to: 

1. Develop a technique, using the Laplacian of Gaussian (LoG) filter, to identify regions 

with similar rates-of-variation within a scene as candidates points for relating the datasets 

(for automated Ground Control Point selection). 

2. Develop/Implement point matching algorithms to automate the registration of images 

that vary with shift, rotation, and scale.  Relate these images through the use of global 

affine and polynomial equations. 

3. Develop/Implement criteria to determine “Goodness” of registration on both 

synthetic and real datasets. 

4. Develop/Implement wavelet algorithms to deconstruct images by iteratively stripping 

off high frequency components. 

5. Develop applications utilizing this registration technique that will be useful in 

“sharpening” and “spectral unmixing”. 

6. Develop/Implement composite transforms to automatically manage and cascade 

numerous affine manipulations into a single mathematical expression to reduce 

transformation degradations. 

7. Develop predictive transformation techniques, to relate multiresolution datasets, by 

registering the data at the lowest common resolution. 

8. Implement registration code in a “user-friendly” Graphical User Interface (GUI); 

actualized in the LoGWaR software application.   

 3



C h a p t e r  3  

BACKGROUND AND THEORY 

Research for this thesis has centered around three critical areas necessary to accomplish 

the aforementioned objectives:  these areas are image registration, wavelet analysis, and point 

matching theory.  Pertinent areas within image registration and point matching include relating 

images using invariant characteristics within a scene, matching those characteristics and then 

using this information to develop a polynomial equation to transform one dataset into another 

with care given to the effects of resampling.  Wavelet analysis is utilized here for the ability to 

relate multisensor/multiresolution images.  This is due to its ability to gracefully degrade high-

resolution imagery to a comparable frequency content of its lower-resolution counterpart.  

Wavelet analysis will also provide a useful mechanism for “sharpening” images, later in 

Chapter 7. 

3.1  Image Registration/Warping 

The goal of image registration is to provide spatial commonality between two datasets.  

Many aspects of remote sensing involve the comparison of similar datasets over time 

(temporal change) and/or how individual image planes vary spectrally (spectral change) within 

a spectral cube.  With both of these examples, it is inherently necessary to register two or more 

images together so that their spatial values can be related directly, thus reducing the spatial 

variability as much as possible.   

3.1.1  Polynomial Transformation 

Schott maintains that, the formatting and processing of GIS data rely very heavily on our 

ability to transfer spatial data into a common coordinate system (registration) and to resample 

the data so that we can easily access and process information from the same spatial location 

simultaneous (Schott 1997).  To do this, we can define a coordinate system such that, xref and 

yref designate points in the reference coordinate system.  While, xwarp and ywarp can represent 

coordinates in the secondary image that we plan to warp (transform) into the coordinates of 
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the reference image.  Registration of the two images requires us to relate both coordinate 

systems; which can often be accomplished with a least-squares polynomial fit.  It has become 

common practice, in the user community to use a generic polynomial model for registering 

images to each other and to maps (Schowengerdt 1997).  The general expression for this 

transform is: 

(3.1)   
1

0 0

N N

i j
warp xj ix a x yij ref ref ε

−

= =
= +∑ ∑  

 
(3.2)  

1

0 0

N N

i j
warp y

j iy b x yij ref ref ε
−

= =
= +∑ ∑  

 

Once expanded, these equations become: 

(3.3)  2 2
00 01 10 11 02 20 ...warp ref ref ref ref ref ref xx a a x a y a x y a x a y ε= + + + + +        

 
(3.4)  2 2

00 01 10 11 20 02 ...warp ref ref ref ref ref ref xy b b x b y b x y b x b y ε= + + + + +  

 

Here, N represents the “order” of the polynomial that will be used for the transform.  If 

the input imagery has been processed accurately for systematic distortions, a linear polynomial 

may suffice for further correction.  At worst, a quadratic polynomial (N equals 2) is sufficient 

for most problems in satellite remote sensing where the terrain relief is small and the FOV is 

not large (Schowengerdt 1997). 

Higher-order polynomial terms are required to correct for ever more complex 

relationships between the two images.  If the transform from the warp coordinate system to 

the reference is represented by a fairly linear relationship, only the first three terms are 

necessary to relate them (plus any residual error represented by ε).  The N=0 terms (a00 and 

b00) would represent a shift of the origin, while the N=1 terms represents a scaling, rotation, 

shear, and perspective change from one coordinate system to the next.  Some of these terms 

represent the “affine” (linear polynomial) transformation.  Affines can simultaneously 

accommodate shift, scale and rotation and can be written in a compact vector-matrix form 

(Schowengerdt 1997).  This general form will be utilized due to its ease of coding and general 

utility in registering remotely sensed images: 
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(3.5)   10 01 00

10 01 00

warp ref

warp ref

x xa a a
y yb b b
     

= +   
     

 


  


 
 
3.1.2  Ground Control Point Matching 
 
In order to determine the polynomial relationship between the images, it is necessary to 

select similar locations or “Ground Control Points” (GCPs) within the scenes that can be used 

to relate the two images (figure 3.1.1).  Although this process can be done manually through 

“supervised” GCP selection, it is quite tedious and it is the intention of this thesis to add a 

robust automation to GCP selection and matching between reference and warp images.  

Techniques, most notably cross-correlation, have been successfully utilized for this purpose in 

the past, but require a sensor’s pointing information for accurate registration.  Unfortunately, 

the cross-correlation technique is very sensitive to variations in rotation, scale and parallax.  

This paper develops a new approach, based on the LoG filter and wavelet techniques, to 

facilitate multisensor registration.  The feature matching is shift, rotation, and scale invariant 

and has demonstrated a robust performance against images with localized parallax and terrain 

relief. 

 

[xwarp3, 

[xwarp2, 
[xref1, 

[xwarp1, 

 

[xref2,  

 [xref3, 
Figure 3.1.1: GCP selection for registration of two similar objects. 

The xwarp, ywarp and xref, yref values of the GCPs from each image generate the input for a 

least-squares regression that is used to solve for the aij and bij coefficients of equations 3.1-3.5.  

As with any regression solution, the input data should cover the entire solution space, and in 

general, the solutions should not be extended beyond the sample space (Schott 1997).  This 

becomes even more critical when higher order effects, like lens aberrations, may effect only a 

portion of one image. 
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Following this logic, the creation of a transform from matching point sets is relatively 

straightforward.  This is especially true for supervised image registration, where an analyst 

selects similar feature pixels in both images and these point sets are utilized to feed into a 

regression solution.  The difficulty is in developing robust algorithms that accurately and 

automatically relate the reference image to the warp image.  Any automated registration 

scheme, will “live or die” on its ability to match like-features in the two images.  This area is 

critical to the success of multisensor image registration and will be covered extensively in 

Chapter 4. 

3.2 Resampling 

Nearest neighbor resampling and bilinear interpolation are two well known techniques 

used for determining pixel intensity levels (grayscale values) when registering images.  

However, if a more robust resampling approach is required, cubic convolution will often 

produce the superior results.  All have pluses and minuses associated with them that 

necessitate review.    

Nearest neighbor transforms compute the location of the new pixel and associate that 

location’s grayscale value with the nearest pixel’s value from the original (pre-warped) image, 

(figure 3.2.1).  This technique is easy to implement, computationally fast and radiometrically 

accurate, since it does not introduce any new grayscale values into the warped image.  The 

negative aspect of this technique is primarily in its appearance, since “stair-stepping” artifacts 

can occur on edges (straight lines can have a blocky appearance) within an image. 

90     50

125   75

50

Reference Image Pixels         Warp Image Pixel

Figure 3.2.1: Nearest Neighbor grayscale resampling. 

Bilinear interpolation computes the grayscale value at the transformed location by 

interpolating the value of the four nearest pixels based on their distance from the new location 
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(figure 3.2.1). This can be accomplished with the following formula, where F(x,y) is the 

grayscale value of the warped pixel: 

(3.6)    
1 1 2 2 3 3 4 4

1 2 3 4

1 2 3 4

1 1 1 1( , ) ( , ) ( , ) ( , )
( , ) 1 1 1 1

F x y F x y F x y F x y
d d d dF x y

d d d d

+ + +
=

+ + +
             

 

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 1 1 1
50 90 125 75

.25 .25 .75 .25 .75 .75 .25 .75( , ) 74.27
1 1 1 1

.25 .25 .75 .25 .75 .75 .25 .75

F x y
+ + +

+ + + += =
+ + +

+ + + +

 

Figure 3.2.2: Example of grayscale resampling using Bilinear Interpolation. 

The benefits of bilinear interpolation include moderate computational requirements and 

relatively good results, since the “stair-stepping” artifacts that occur in nearest neighbor 

resampling do not occur here.  Unfortunately, radiometric integrity is not maintained since 

new grayscale values can be created through the interpolation (blurring) process, which can 

have 

pixel 

 

Smoother results can be obtained by using more sophisticated techniques, such as cubic 

convolution interpolation, which fits a surface of the sin(z)/z type through a much larger 

74

90 50

125 75

90 50

125 75

d1
d2

d3
d4

Reference Image Pixels             Warp Image Pixel

very damaging results for spectral analysis.  These new grayscale values could represent 

new object reflectances/radiances that might confuse classifying algorithms.  Due to the 

blurring results of any resampling besides nearest neighbor, Schott maintains that it is often 

desirable to perform radiometric calculations before any geometric transforms are applied to

the data. (Schott 1997) 
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number of neighbors (4, 8, 16) in order to obtain a smooth estimate of the gray level at any 

desired point (Gonzalez and Woods 2002). Cubic convolution resampling provides the closest 

approximation to the ideal, since it is designed to emulate the characteristics of the SYNC 

functi

 

ith 

e 

y be 

wh est 

neighbor m

panchromatic (or RGB) image with a lower-resolution spectral dataset, one of the alternate 

resam ue 

on, sin(z)/z.  Linear systems theory indicates that the ideal sampling kernel would leave 

all frequencies unaffected (i.e., a RECT function in frequency space) (Schott 1997), which 

results in a SYNC function in the space domain (figure 3.2.3).  Although the SYNC function

would require a convolution kernel over the whole image, a quantized version is normally 

utilized that affects only a 4x4 or 8x8 region around the target pixel for resampling.  Even w

this simplification computation time suffers compared to the previous methods since more 

neighboring pixels are sampled.  Processing time aside, this technique will often provide th

most “eye pleasing” results when resampling is required.  The LoGWaR software utilizes the 

IDL implementation of the cubic convolution with a default value of –0.5.  Park and 

Schowengerdt (1983) suggest that this value can significantly improve the reconstruction 

properties of the algorithm that has been incorporated into IDL.  

 

 

 

 

Figure 3.2.3: Cubic Convolution grayscale resampling over an 8x8 weighted pixel area. 

he type of resampling we choose to implement will be heavily dependent on our 

application and desired outputs.  If radiometric integrity is of primary importance, as it ma

en registering and sharpening a multispectral image with a hyperspectral image, the near

-4          -3         -2          -1         0          1          2          3         4

T

ethod can be utilized.  However, if we wish to register a high-resolution 

pling techniques may be more attractive.  Since radiometric integrity is less of an iss

when transforming a panchromatic image, cubic convolution can be utilized unless processing 

time is excessive; in which case, bilinear interpolation would be the algorithm of choice. 
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3.3  Laplacian of Gaussian (LoG) Filter 

The choice of filters to help identify and accentuate invariant features from within 

multisensor images is a critical design decision for this automated registration process.  The 

idea for using the LoG filter for this task was sparked after noticing its effects on synthetic 

data during research on edge detection, for which this filter is traditionally utilized.  During a 

Digita rent that the LoG filter could be utilized to 

consistently pinpoint features within an overhead image that might be utilized for image 

regist  

is 

due to the “second derivative” ( ) nature of the Laplacian filter which produces high output 

for well defined edges.  Figure 3.3.1 demonstrates the effect of the LoG filter on a synthetic 

dataset that resembles the letter “X” but could represent a crossroads or building in an 

overhead image.   

 

Figure 3.3.1: Demonstration of the effects of LoG filter to identify repeatable Maximums 

The effect that the LoG filter has on an image is very similar to the lateral-brightness 

daptation of the human eye (also known as lateral inhibition) that leads to the “Mach band 

effect”.  Evidence of this is provided by Gonzalez and Woods, when they maintain that certain 

aspects of human vision can be modeled mathematically in the basic form of the LoG 

equation ( .2, with 

an exaggeration of grayscale step edges.  In the human eye, this adaptation is due to cross-talk 

betwe

s 

l Image Processing exercise, it became appa

ration.  By applying a threshold to the LoG filtered image, it is possible to isolate regions

that have similar rates-of-variation within a scene and to do so in a repeatable fashion.  This 
2∇

a) Synthetic Image          b) Application of Gaussian    c) Application of Laplacian 

 

a

Gonzalez & Woods 2002).  This phenomenon is demonstrated in figure 3.3

en different receptors [in the retina] and it makes the discrimination between objects 

more apparent by enhancing the detection of edges (Hailstone 2001).  Schott maintains this i

because, each cell reduces the sensitivity of adjacent cells when it is excited (Schott 1997). 
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ra

y
ca

le

LoG Edge-Exaggeration

G
s

Figure 3.3.2: Edge-exaggeration resulting from convolution w/LoG Filter 

n is the second derivative of a function.  This equation

D (3.7) and 2-D (3.8) versions: 

Distance

The Laplacia  takes the following 

forms for both the 1-

.7)  (3  
2

2
2

ff
x

∂
∇ =

∂
 

(3.9)   ∇ =

 

(3.8)   2
2 2f
x y

∇ = +
∂ ∂

 

(3.10)    

2 2f f∂ ∂

This function can be approximated with the following 1-D & 2-D digital filters: 

2 1 2 1−  

ion (3.4.  fi

 

 2

0 1 0
1 4 1
0 1 0

∇ = −

egative p
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A graphical representation of the effects of this filter when applied to a 1-D step 

funct a) that has been rst convolved with a Gaussian low-pass filter (3.3.3.b) follows.  

It can be seen why the 2nd Derivative filters are also called “zero-crossing” edge detectors since 

the knife edge input (3.3.3.a) goes to unity precisely at the zero crossing between the positive 

and n eaks of figure 3.3.3.d. 

 

 



       a) Knife edge input   b) Gaus Low Pass   c) 1st Derivative     d) 2nd Derivative 

Figure 3.3.3: Visual effect of the Laplacian of Gaussian Filters in succession 

 

Although the LoG filter can be easily deconstructed into its component parts as seen 

above, it is more commonly implemented in one convolution step with a kernel similar to 

figure 3.3.4.  the 5x5 filter approximation and the “Mexican Hat” (LoG) function are shown 

below. 

 

 due to the ease in which the width of the Gaussian smoothing kernel can be changed 

to mitigate the effects of noise within an image. 

The Laplacian is very good at highlighting var  result is useful 

if the variation is equivalent to information content or  that variation 

is represented by noise.  On its own, the Laplac

components, including noise along with the edges.  For this reason the image is first convolved 

with a Gaussian filter, to diminish the effects of noise, before the Laplacian filter is applied.  

 they 

it will more easily allow for “connected 

components” analysis after thresholding of the resulting maxima and minima (figure 3.3.5). 

 

 

Figure 3.3.4: A composite 5x5 LoG Filter & 1-D representation of the function it approximates. 

After successfully testing both techniques within the LoGWaR program, the incremental 

approach of applying first the Gaussian Filter and then the Laplacian has been primarily 

adopted

0 0 -1 0 0 
0 -1 -2 -1 0 
-1 -2 16 -2 -1
0 -1 -2 -1 0 
0 0 -1 0 0 

iation within an image.  This

 edges, but, detrimental if

ian will accentuate all high frequency 

Gonzalez and Woods point out that the edges determined by the zero crossings form 

numerous closed loops within the filtered image (Gonzalez and Woods 2002).  Although

suggest that this detracts from utilizing the LoG filter as an edge detector, it will actually work 

to our benefit in automated GCP selection since 
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Original Image               LoG Filtered Image         GCP Threshold

 
Figure 3.3.5: The results of the LoG filter and thresholding of maxima to create GCPs. 

 

The results of this LoG thresholding process provide the automated GCP selection 

 off 

high frequency components, saving that information into orthogonal wavelet coefficients and 

 reduced “scale” image proves quite useful in multisensor image registration.  The focus of 

is paper’s es.  

Multiresolution theory gives a simple and fast method for decomposing a signal into its 

comp

e 

Even as Fourier analysis deconstructs a periodic signal into a sum of orthogonal sines 

and c lysis deconstructs a signal into its constituent wavelet 

coefficients.  Wavelet coefficients are largest where they best match the signal being analyzed.  

within each image.  Once these GCPs have been identified, a point matching routine (section 

4.4) will be utilized to relate the subset of similar points from each image.  As mentioned in 

section 3.1.2, these related points can be used to develop a polynomial equation, for 

registration of the two images. 

3.4  Wavelet Analysis 

The ability of wavelet algorithms to gracefully decimate images by iteratively stripping

a

th  wavelet analysis will be on multiresolution or “resolution pyramid” schem

onents at different scales.  It is possible to progressively drain the signal of its 

information, beginning with small details and continuing on to larger and larger components.  

At each step the "details" are encoded as wavelet coefficients, while the next step analyzes th

signal seen at half the previous resolution (Hubbard 1996). 

osines, so to wavelet ana
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The main advantage to utilizing wavelet theory is that it allows concurrent analysis of scale and 

frequency whereas Fourier analysis is limited only to frequency. 

(3.11)   2( ) ( ) i xf x F e dπ ξξ ξ
∞

−∞

= ∫  
 

2πiξx

 

iθ θ θ= +  
 

Where F(ξ) is the scaling function and e  is the basis function. 

(3.12)   cos sine i

et” that i tr

So, in the case of the discrete fourier series below, the a’s and b’s are the coefficients, 

which tell us how much of the integer multiples of cosines and sines are contained in the 

function f(x). 

(3.13)   
1

1( ) ( cos 2 sin 2 )
2 k

f x a a kt b ktπ π
∞

=

= + +∑  

 

0 k k

For the continuous wavelet transform (CWT), we have: 

(3.14)    1( , ) ( ) ( )x
xW s f x dx
ss
ττ ψ

∞ +
≡ ∫

 
−∞

   

   (Daubechies 1992) 

  
here s provides the scaling of the function Wx , τ shifts it and ψ(x) is the “mother 

wavel s utilized to decons uct the function much as the sines and cosines of the 

Fouri

e 

iscrete Fourier series, the mother wavelet is translated and scaled only by integer 

values (s and τ are integers) for the discrete wavelet transform.  Also, use of the Fast Wavelet 

Transform (FWT) requires scaling by a factor of two (s=2k); this is sometimes referred to as 

dyadic constraint. 

 the orthogonal Haar Wavelet 

(Daubechies order 1), which can be seen in figure 3.4.1.  Both the ease with which it can be 

W

er series.  The primary difference is that the wavelet must have relatively compact 

support, but like the sinusoidal Fourier series components, must integrate to zero.  As is th

case with the d

The use of wavelet analysis in this paper will be limited to
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applied in the form of the FWT and its application in multi-resolution pyramid analysis will aid 

greatl

 

ure 3.4.1: The Haar Wavelet used here for the Fast Wavelet Transform. 

In ad

For th

(3.15)   

(3.16)   

y in its application and utility here. 

                        a) Haar Scale Function (φ)  b) Haar Mother Wavelet (ψ) 

 

Fig

0 1 0 1
0

1

-1

dition, the FWT demonstrates both lossless decimation and maintains radiometric 

integrity (see Appendix A).  Before addressing the FWT, it is useful to first investigate the 

mathematical formulation of the DWT.  The following derivation for the Haar DWT was 

drawn from (Rao and Bopardikar 1998). 

e Haar Scale Function (φ), the “father wavelet”, let: 

1 0 1
( )

0
t

t
otherwise

ϕ
≤ <

≡ 


 

 
2 ( 1)

2 ( )

1
k

k

l

l

c
+

( , ) ( )
2k

k l f t dt≡ ∫  

The equation for c(k,l) simply represents the average value over the interval, so: 

(3.17)   

So, a function fk(t) can be approximated by: 
 

(3.18)   

 
1 0 2
0

k
k t

otherwise
−  ≤ <


 

(2 )tϕ ≡   

( ) ( , ) (2 )k
k

l
f t c k l tϕ −

=−∞

= −∑  l

 
Now, if the Haar mother wavelet is defined as: 
 

∞
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(3.20)    
11 1( ) tt − ≤ <Ψ = 

 
pressed (in interval 0 to 1) as: 

(3.21)    

 

11 0
2

2

0

t

otherwise

 ≤ <







 

then, the detail and scaling wavelets can be ex
 

[ )0,1 1 10, ,1
2 2

( ) ( ) ( )t t tϕ ϕ   
     

Ψ = −  

1d

 
(3.22)    [ )0,1 1 10, ,1

2 2

( ) ( ) ( )t t tϕ ϕ ϕ
     

= +     

 

(3.23)    [ ) [ )0,1 0,1
10,
2

( ) ( )
( )

2

t t
t

ϕ ϕ
ϕ 

 

 + =  

(3.24)    [ ) [ )0,1 0,1
1,1
2

( ) ( )
( )

2

t t
t

ϕ ϕ
ϕ 

 

 − =  

ontruct a space components for mult

 

(3.25)    

and if detail in the wavelet subband is expressed as: 
 

[ ]1( , ) ( 1,2 ) ( , 2 1)
2

k l c k l c k l≡ − − − +  

 
The detail function is then given by: 

(3.26) −  

ppendix 1 contains a simple 1-D example of the Haar FWT and how it can be utilized 

to dec  signal into its frequency and iresolution analysis.  

he fast wavelet transform works from fine resolution to coarse.  At each resolution, the signal 

 analyzed with both wavelets and scaling function.  The wavelets encode the details, while the 

scaling function produces an image of the signal at half resolution, taking one sample out of 

( ) ( , ) (2 )k
k

l
g t d k l t l

∞
−

=−∞

= Ψ∑

A

T

is
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two.  The process is repeated until nothing, or virtually othing, is left (Hubbard 1996).  In this 

way, an image is deconstructed iteratively into half resolution components.   

  

 n

 ( )xΨ               ( )xϕ           
 
 
 

                                         
 

( )yΨ

 

( , )x yϕ  

 

Figure 3.4.2 demonstrates the “separability” of the FWT algorithm in both the “x” and 

“x” & ”y”

 

Figure 3.4.2: A minimal processing approach to the FWT (one less step than traditional). 

“y” axis when utilizing an approach that minimizes the number of operations needed to 

maintain an orthogonal decimation.  This figure shows how the FWT first strips off the 

highest frequency data (

Original Image Detail in “x” Scale in “x” Detail in ”y”

Scale in 

( )xΨ ) from the scale image ( ( )xϕ

ency d ( )yΨ ) from the s e (cale imag ( )yϕ

)

tion “scale images” allows for direct comparison to lower resolution spectral images, 

thus increasing the potential to automatically register these images.  An added benefit is th

once registered in this matter, it is possible to transfer the high frequency wavelet coeffici

from the panchromatic d t to the related spectral i  planes for the purpose of spatial 

) in the “x” and then strips off the 

maining highest frequ ata (re ) in the “y”.  The 

sultingre  scale plane ( ( , )x yϕ ) and detail planes ( ( )xΨ & ( )yΨ ) contain all the infor

iginal image.  This process is continued by utilizing the scale plane ( ( ,x yϕ

s as the input image to the next FWT reduction.  The reverse applicatio

e inverse Fast Wavelet Transform (FWT-1) and orthogonality is proven, by g

iginal image.  A detailed analysis of how the FWT algorithm accomplishes

rated in Appendix A. 

mation of 

the or ) of this

proces n of the process 

yields th enera

the or  this feat is 

corpo

The ability to decimate a high resolution panchromatic image into increasingly lower 

resolu

at 

ents 

atase mage

“sharpening”.  The same applies to sharpening of hyperspectral bands with multispectral, but 

ting 

in
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with the added potential for spectral i rpolation/extrapolation monly referred to a

“crossband correlation e more traditional M ntation, displays the subbands 

for individual analysis of horizontal, vertical & diagonal detail as well as th ed resolution 

scale subband (figure 3.4.3). 

     The Mallat Representation of FWT:                    ( , )

nte (com s 

”).  Th allat Represe

e reduc

x yϕ              ( )xΨ  

      ( )yΨ               ( , )x yΨ  
 

 

 

 

 

The biggest drawback in utilizing the FWT is that image registration is constrained to 

dyadic dimensions in both the x and y.  Hubbard maintains that with an orthogonal wavelet 

lways b  of two (obeying, without 

excess, the Shannon sampling theorem, sin ch time the frequency doubles, one doubles 

e number of wavelets used to sample the signal) (Hubbard 1996).  Maintaining orthogonality 

 

Figure 3.4.3: The Haar Wavelet orthogonally extracts high frequency “details” from x & y. 

Detail in Detail in ”y”
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FWT2 
HP/HP 

FWT2 
HP/LP 

FWT2 
LP/LP 

FWT 
R l
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transform, a signal is analyzed at scales varying a y a factor

ce ea

th
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is important here, since it is imperative that all high frequency information can be completely 

recovered in order to maintain spectral integrity.  Although utilizing the FWT necessitates a 

dyadic constraint on the dimensions of the common image chips that can be registered with 

ach other, savings in processing time and complexity greatly outweigh the limitations 

incurred.  

e

 

 19 
 



C h a p t e r  4  

THE REGISTRATION PROCESS 

The proposed process for registering multisensor images is most clearly explained 

through the use of a flowchart.  Figure 4.1.1 gives an overview of the essential steps and 

the process flow that is required for multisensor image registration, as developed in this 

research.  This process relies on the theory developed in Chapter 3 and represents the 

critical elements used to register images with the software developed as part of this thesis.  

The Laplacian of Gaussian Wavelet Registration (LoGWaR) software was crafted as a 

graphical user interface, in IDL, to help automate the process of image registration.  

Although the steps in the registration process have been laid out in a linear fashion, many 

of the initial steps (in 4.1 & 4.2), could occur in an order other than what is presented.   

 

Figure 4.1.1: The Multisensor Image Registration Process. 
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Whenever possible throughout this process, changes to grayscale values (digital 

count) will be constrained to the grayscale images (Panchromatic) in order to maintain the

integrity of our spectral image radiometry.  When this cannot be done, special precaution

may be instituted to reduce contamination of the radiometric information such as utiliz

nearest neighbor resampling (section 4.5).  In the case of using multispectral data for the 

sharpening of hyperspectral cubes, resampling will be kept to a minimum and if possib

accomplished in one composite step as opposed to multiple single steps.   

   

s 

ing 

le, 

4.1  Image Preparation – Finding “Com

Although one of the primary thrus  this research is to automate the registration 

proces ch as possible, one un ct remains…the higher gree of 

o datasets mension, scale, orientation, and grayscale range, 

etc.), the easier it is to get a good au egistration.  The commonality, of the datasets, 

directly impacts the a tomatically identify and solve for the degrees-of-freedom that 

exist between the data to be registered.  So, any preparation that can easily be accomplished to 

rela e d ance of automated techniques, is often worthwhile. ep is often 

referred to as image pre-processi  preparation. 

Some steps, such as histogram matching and LoG filtering, are utilized only to help 

relate the two datasets.  The common theme here is at it is totally acceptable to change the 

digital count values to identify commo  in the images, but, the spatial coordinate 

relationship must be carefully maintained/managed to ensure that the final warped output is 

spatially registered.  Once the images have been registered and the transform has been 

determined, it will be applied to the original image to minimize unnecessary changes to the 

data.   

Define Common Regions of Interest (ROI):

bility to au

te th ataset in adv   This st

ng or

 th

n features

  One of the first steps, identified in the 

registration process (figure 4.1.1), is to identify regions within each image that are common.  

However, this step may not be necessary if the amount of overlap between the reference and 

warp image is large.  Image subregions can be utilized to compare related regions of interest 

using supervised registration (user defined ROIs).  But, for automated registration, the two 

images must have a general orientation relationship, before subregion analysis can commence. 

      
to ted rma

 (in dicorrelation between the tw

 the des as mu

ts of

deniable fa

mon Ground” 
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If they do not, it is necessary to analyze the entire image at its native resolution or at a reduced 

scale, using wavelet decimation ling.  This concept is explored in more detail in 

section 5.1. 

User defined ROIs often make it easier for the automated algorithms to arrive at an 

accep

 or resamp

table registration since the degrees-of-freedom have been reduced by identifying the 

areas of commonality visually.  This is especially necessary when mosaicing (stitching) two 

datasets, when the area of overlap is small (figure 4.1.2).  The reason for this is that the point 

matching algorithms work best when the point sets are most similar. 

 

 + =
 

 

 

Figure 4.1.2: Image Mosaics may require user identification of commonality due to small overlap. 

Similar Spectral Band/Region Selection:  Another essential preparatory step is to extract 

the spectral bands with the highest degree of correlation.  This may require some inspection 

since spectral bands can vary greatly from sensor to 

+ =
LoG Images Thresholded

sensor.  A good example is in the 

registration of  a bandpass containing VIS and NIR spectra, with an 

MS image that nor a isolated into individual spectral bands.  In this case it 

is often beneficial to derive a synthetic Pan image from the individual RGB and NIR bands. 

Figure 4.1.3: Select Spectral Regions that match most closely for Registration. 

 a PAN image, which has

mally has this spectr
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Histogram Matching the Images:  Once this is accomplished, it is often useful to 

perform a histogram matching of the ‘warp’ image to the ‘reference’ image using a direct band

to-band comparison.  This is done to ensure that the grayscale distributions are as similar as 

possible to promote automatic registration (figure 4.1.4).  It is important to remember that th

LoG filter is, in essence, an edge detector.  The quest for commonality in grayscale and spec

is just a precursor to obtaining similar edge information in the two datasets!  Once the images 

have been registered, this interim processing can be disregarded, since the registration 

transform that has been developed can be applied to the original image.  It is always impor

to try and m

-

e 

tra 

tant 

aintain radiometric integrity whenever possible!   

 

Figure 4.1.4: Histogram match images to enhance grayscale similarity. 

cale Similari
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S ty with Wavelet Decimation or Resampling:  A final and critical 

e-processing obtain t me resolution for b

r two reasons t, the point-m ng algorithms expl

es to relate the datasets. Secondly, the results of the LoG fil

 the edge e initial in

amids and wav omain analys ce, wavelet analys

ed a good ch for addressing oblem.  In fa

ables us to have nvariant in etation of the imag

requir n the pr oth datasets.  

This is important fo oit distance 

between like featur tering operation 

change depending on centive to explore 

multiresolution pyr is allows for multi-

scale alysis, it seem ct, "a multiresolution 

decomposition en e" (Mallat 1989) 

and can b

otely 

 

 

ement i  stage is to 

.  Firs

he sa

atchi

/scale relationship and provided th

elet d

oice 

 a scale-i

is.  Sin

 this pr

terpr

an

e very useful in image registration. 

Although the point matching algorithms, discussed in section 4.3, have been built   to 

automate the determination of scale differences between the reference and warp images, we 

can often assume that this knowledge is available in the header information of the rem

sensed data or is already known.  This assumption is often acceptable since the sensor imaging

resolution is often well known and is one of the primary characteristics of most remote sensing
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systems.  The simplified results of the FWT as utilized in our registration process are shown in 

figure 4.1.5 to attain images at similar scale. 

e detail 

mplished, the images are ready 

for registration utilizing the automated techniques encompassed in LoGWaR.  Although the 

images will be regis al image and 

scale relationship fo

transformation pro

It should be  dimensions as 

the lower resolution data decreases the precision of the registration.  However subpixel 

accur e least-

 

rm 

 

y into a superpixel with the same overall intensity. 

“Resampling” is a process that replicates an existing pixel into several smaller subpixels 

that reside in the same space and have the same intensity as the original pixel or that averages 

 Scale  Plane ( ),x yϕ  

Figure 4.1.5: FWT  image decomposition into orthogonal scale and detail planes. 

When it is not necessary to retain the high-frequency information contained in th

planes of the wavelet decimated image, it is then possible to perform a simple resampling of 

the image to the lowest common resolution.  Once this is acco

Pan 
Image 

Image 
Spectral 

FWT Pan 
to nearest 

Dyadic scale 

ter e lower resolution, i  retain the origin

g at a later time.  This hrough a predictive 

cess outlined in section 4.8 and Chapter 5.  

no degrading the high-resolution image to the same

ed at th

r warpin

t is possible to

 is possible t

ted that 

acy registration is still possible if enough GCPs are generated to over-define th

squares solution provided by the psuedo-inverse process.  So, it is possible to register at the

lowest common resolution (common frequency information) and then predict the transfo

needed for the original high-resolution image.  

 

Figure 4.1.6: Resampling a pixel arra

2x2 SubPixel 4x4 SubPixel 

Detail Plane ( , )x yΨ  

SuperPixel 

 24



severa
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a.  

When this  each 

subpixe

mages 
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including ad ent,  and 

even band i GB 

 

4.2  LoG Thresholding 

The multiscale wavelet decimation/resampling, of section 4.2, allows the LoG filter to 

process images with similar spatial frequency content for the registration process.  Since the 

LoG filter is essentially a robust edge detection tool, the detail information is much different in 

a low-resolution spectral cube in comparison to a high-resolution panchromatic image.  In fact, 

we will be disregarding all of the highest frequency information contained in the high-

resolution image during the registration process with the lower resolution image (figure 4.2.1). 

t sources (using the LoG filter) for matching. 

he objective of this step is to reduce both images into sets of points.  These points are 

the thresholded maxima and minima of the LoG filter output.  They represent areas within the 

Image

Spectral 

l smaller subpixels into a superpixel.  So, as seen in figure 4.1.6, one pixel could be 

“subsampled” into matrices of smaller subpixels such as:  2x2, 3x3, 4x4, …10x10, as long as a

pixels in the matrix retain the same intensity (grayscale) level as the original pixel or vice vers

when registered RGB to Pan).  But, keep tract of all spatial changes so that they can be 

incorporated into the composite model and perform the final transform on the original image 

or dataset”.

 is applied to an entire image plane, overall radiometry can be preserved if

l matrix retains the same intensity value as its parent super-pixel.   

So the motto for registration is this:  “Change whatever you want on the interim i

 much commonality as possible between the datasets to be registered.  This may 

justing scale, histogram matching grayscale values, dynamic range adjustm

ntegration (it is often useful to create synthetic panchromatic image from R

 

 

 

 

Figure 4.2.1: Reduction of the images to poin
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image that portray extreme rates-of-variation and should be relatively similar for like images 

that have been taken under similar conditions.  Once the LoG output has been thresholded, 

the resulting regions are aggregated using ‘connected components’ analysis and a distinct pixel 

is isol

G 

images to point sets.  

It is th

Figure 4.3.1: Matching points to determine the Polynomial Transform. 

Throughout this section, a robust point matching technique will be introduced and 

applied to the task of image registration.  An important concept to keep in mind is that the 

matched points will provide the matrix equation inputs to solve for the geometric distortions.  

So, if our panchromatic image is shifted (both horizontally and vertically), rotated, and scaled 

then we require three sets of matched points to solve for the geometric transform.  If we have 

more matched points than required, the solution is over-determined and it is possible to either 

select a subset of the “best” point matches that uniquely determine the solution or utilize a 

tion. 

Point Di

ated as the extrema for each region.  These point sets can then be related using point 

matching schemes and utilized, as ground control points (GCPs), to register the two images.   

4.3  Point Matching Schemes 

The accuracy of registering images utilizing the LoG technique boils down to how well 

related areas of both images can be identified, isolated, and matched.  Even though the Lo

thresholding procedure simplifies the registration process by reducing the 

e accurate matching of points, from dissimilar point sets, that will determine the utility 

and ultimate success of this registration process! 
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linear regression model to estimate e data and obtain a subpixel registra

st mparison:  The method utilized here to match shifted and rotated 

apted from the realm of astronomy, where  to mosaic “star fields” 

 The “star field” datasets are n ar to the ou uts of th

points is ad

(Chandrasek e tphar 1999).  

 it was used

ot dissimil

ance Co

 the best fit to th
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thresholded, LoG filtered images.  This lead the author to believe the technique could be 

cross-pollinated into the area of remote sensing image registration.  This process utilizes a 

point’s distance from every other point in a scene and creates an array of distances with this 

data. 

 

or 

 This is done with each point in the image, from which a matrix of distances is created. 

The point distance matrices, from each image, are then compared row-to-row for total number 

of matching distances.  The two rows that have the greatest number of distance matches 

(within some predestinated error) are considered matched points (figure 4.3.2).  In real image 

registration cases, it is quite possible to have a one-pixel variability across the focal plane due to

quantization variability.  So the default error for matching has been set to 2 pixels, to allow f

the diagonal case of 2  pixel distance.  This value can be changed by a slider bar in the lower 

left corner of the LoGWaR GUI, reference Appendix C. 

a) Reference Image b) Warp Image 
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Figure 4.3.2: Determining matching points through equivalent distances to other points. 

The distance between any two points is equal to the square root of the sum of the 

squares: Distance, ( ) ( )1 2 1 2d x x y y  .  For our reference image points 2 and 

2 

# Same Elements: 

2 

2 2 = − + −
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( ) ( )2 2 
 3, this becomes: 2 1 2 4 5d = − + − =

ents that point’s (point 1

age Point Set                                    

.  In the matrix each row and column (i.e. 

column & row 1) repres ) distance from the other points, which 

are al  so related to their equivalent row and column.  In our example above, point 1 from

the reference image would match point 2 from the warp image since they have the 

greatest number of matching distances in their equivalent rows. 

Point Scale Comparison:  This point distance matrix technique works well for 

images that can be related via shift and rotation transforms.  However, the technique tha

will be developed here, to address scale difference, depends on the ratio of distances 

between sets of points, regardless of relative size.  The implementation of this concept is 

similar to the technique above and is illustrated below (figure 4.3.3). 
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Figure 4.3.3: Determining Scale through equivalent distance ratios to other points. 
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ref to warp to

dist dist
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(4.1)  Dist Ratios:

( ) ( )1 3 2 3ref to warp to   

 

ref to warp to   

 

distance, as an ad t matching.  With this technique, it is 

necessary to compare vertices.  So, 3 points will be used to define each angle of interest,

and can be computed through the use of the following formula: 

 2 2 2

(4.2) [ , , ] a cos a b ci j kθ
 
 

− −=

   

 

   
Point Angle Comparison

   

 

   
Point Angle Comparison:  Angle matching can be accomplished, along with 

ditional discriminator for poin

 

 

.3.4 

. 

atching. 

 

 

Figure 4.3.4.b: Each Point is isolated i o planes containing angels for every vertex. 

2 b c − ∗ ∗

  Due to the 3 point per angle requirement, it is necessary to perform a 3-D matrix 

comparison of angles to determine point matches.  This process is outlined in figure 4

and is similar to the distance matrix approach, except that now each point has a plane of 

angles associated with it instead of just a row and column of distances
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re 4.3.4.c: Discriminating Point Matches through Angle matc

 

    Point Set 1                             Point Set 2         # of Matching Angles 

 

 

 

 

 

Figu h count. 

1 2 3 4

2 0 0
3 0 0

Φ ϒ
 Φ Σ

 

 

1 0 0 0 0

4 0 0

 
 
 

 

1 0 0 0 0

4 0 0

 
 
 

 Π Σ

2 

 

 

   

1 2 3 4
1 0 0Ω Θ 

1 2 3 4
1 0 0θ Ψ 

3 3

 

 

 

 

 

ϒ Σ 

1 2 3 4

3 0 0
4 0 0

 Π Σ
 Γ Σ

1 2 3 4
0
0 0 0

3 0 0
4 0 0

1 0 0
2 0 0 0 0

Π Γ 
 
 

1 0
2 0





1 2 3 4

2 0 0
3 0 0

Γ Π
 Γ Σ

ϒ Φ



 ϒ Σ
 Φ Σ

 

 Ω ∆

4 0 0 0 0

2 0 0
3 0 0
4 0 0

 
 
 Θ ∆ 

1 2 3 4
1 0 0
2 0 0
3 0

θ
θ

Ξ 
 Ψ 
 Ξ

2 0 0
3 0 0 0 0
4 0 0

 
 
 Ψ Ξ 

1 2 3 4
0

2 0 0
3 0

Ω ∆ 
 Ω Θ


 4

0 0

0Ψ
 
 

θ Ξ

1 0

0

∆ Θ

4 0 0 0 0 
 

6 

0 

0 

1

2

1

2

4

 



 Although this method is useful as an additional criteria for determining matching 

points, the additional requirements of the 3-Dimensional analysis negatively impacts 

processing time.  However, since this method is used only after the distance comparison 

technique has already identified potential matches, the point sets are often much smaller 

and take considerably less processing time.  In fact, the angle matching criteria is also 

implemented after the LoG Maxima comparison that follows.  This further prunes the 

point sets before the angle match comparison is utilized.  The default error that is allowed 

for matching angles is set at ¼ degree, but can be changed via a slider bar in the 

LoGWaR GUI
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comp red to a localized image transformation model.  If the offsets vary, by greater than 

1 standard deviation from the mean, they are candidates as outliers for ejection from the 

point match set.  This concept is portrayed in figure 4.3.6. 

Figure 4.3.6: Post Match Comparison based on statistical analysis of match offset 

 

ide a quick analysis, resulting 

in preliminary matches.  This set of potential GCPs will then be quickly scrutinized by 

the LoG ng, 

the subset is much smaller and can be more efficiently managed by the required 3-

Dim

polynom

4.4  Developing the Transform Model:   

Once enough points from the reference and warp images have been matched to 

uniquely (at minimum) relate them, it is simply a matter of solving n-equations for n-

unknowns using matrix inversion or psuedo-inversion to develop the polynomial 

transform.  “To see how GCPs are used to find the polynomial coefficients, suppose we 

a

 

 

 

 

 

In the course of a standard registration, with all of the matching criteria enabled (via

GUI pushbuttons), the Distance Matching routing will prov

 Maxima test.  By the time the potential GCPs reach the Angle Matching routi

ensional analysis.  Finally, most anomalous matches can be identified through 

localized statistical analysis of Matching GCP Distances, if the images are not rotated 

with respect to each other.  Additional, post-match, global statistical analysis of RMS 

Distance Error of Matches will be covered in section 4.7.  This is done in conjunction 

with determination of the registration accuracy and includes analysis of variation from 

ial transform models. 
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have located M pairs of GCPs in the distorted image and reference (image or map) 

coordinate systems.  Assuming the global polynomial distortion model, we can write, for 

each pair m of GCPs, a polynomial equation of degree N in each variable, x and y, 

(4.3)    2 2
00 10 01 11 20 02m refm refm refm refm refm refmx a a x a y a x y a x a y= + + + + +  

 
(4.4)    2 2y b b x b y b x y b x= + + + +00 10 01 11 20 02m refm refm refm refm refm refmb y+  

 
leading to M pairs of equations.  This set of equations can be written in vector-matrix form for 

the x coordinates of the imag

.5)   

e as”, (Schowengerdt 1997)  
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(4.6)   X WA=  
 

 
and utilizing the matrix inverse for uniquely-determined solutions, 

(4.8)   1A W X−=  
 
(4.9)   B W Y=  

or utilizing the psuedo-inverse for over-determined solutions, 
 

1T T−

 
(4.11)   1( )T TB W W W Y−′ =

Y WB=  (4.7)   
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4.5  Image Warping/Resampling 

Implementing the polynomial transform from the preceding section is simply

matter of determining the new xwarp and ywarp geometric location within the warp plane 

and then transferring the sampled reference image grayscale value into this new image 

space.  This is often done pixel-by-pixel from the transformed image plane, by sampling 

the grayscale value (nearest neighbor/bicubic) from the original image (figure 4.5.1)

 a 

.  For 

example, warp image pixel (1,1) would be processed through the inverse polynomial 

transf etermine the location in the original image to sample the grayscale value 

from ay seem backward compared to the intuitive method of 

transferring pixel information from the original image to the warped image, it avoids 

  Original Image Location (0.75,0.81)     Transformed Image Pixel (1,1)  

     

 

 

 

 

4.5.1: Sa ple grayscale value of nearest original image pixel using inverse transform. 

ay be necessary to institute special precautions 

t neighbor” 

sampling, instead of bilinear or bicubic, to maintain radiometric integrity of the data.  

However, with a Pan image, the use of bicubic convolution will provide smoother 

resam nce we d not have to worry about maintaining the true spectral nature of 

 

orm to d

.  Although this m

pixel “dropout” in the output. 

Figure m

As mentioned in section 4.1, it m

when warping multispectral data.  It may be better to utilize “neares

re

pling si o 

the data. 
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4.6 Automation Techniques for isolating GCPs 

Now the to the heart of the problem, how can the LoG thresholding process, that 

enerates GCPs, be automated, to take full advantage of the automatic point matching 

chn  program, it is easy for the user to determine an 

appropriate threshold level through visual inspection of the isolated LoG maxima.  When 

the ‘r  

t 

g

te iques?  When utilizing the LoGWaR

eference’ and ‘warp’ maxima appear to have similar content and are of sufficient

number and distribution throughout the image; it is simply a matter of initiating the poin

matching algorithms to relate the images.  Three automated techniques have been 

developed and incorporated into the LoGWaR program to complement the manual 

threshold process outlined above. 

Image Wide, Preset Threshold Level, Preset # of GCPs:    The fastest automation 

technique involves thresholding the LoG filtered image at a preset, user-defined

50%).  Once accomplished, the resulting extrema pixels are limited to a user-defined 

number of GCPs (i.e. 50 pts).  

 level(i.e. 

This number does not necessarily equate to the number of 

final matches, but instead limits the maximum size of the point set, that will be used for 

comparison by th g  to 

atching 

routines, but, not so large as y.  Although this is heavily 

dependent on processing capabi  to work well 

per ROI (the current lim

 If the threshold is se an are 

required.  This problem a pixels based 

on their normalized LoG values.  Once this is accomplished, the point set is truncated to 

the hig le 

to ext  

 

 

e point matching algorithms.  This number should be large enou h

ensure an adequate number of matching points are produced from the point m

to overly tax processing capabilit

lities of the computer, 50 to 75 points seem

it is around 100 points per region). 

t too low, many additional GCPs are selected th

 is easily solved by first sorting the resulting extrem

hest LoG values based on the user-defined GCP limit.   In this way, it is possib

ract and compare similar locations in both images since the highest LoG extrema

represent regions with the greatest rates-of-variation in both images.   
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The strength of this technique is also its greatest weakness.  The preset threshold 

level allows the process to quickly identify GCPs, unfortunately, the threshold level could 

be to high to adequately extract sufficient GCPs to relate both images.  This inherent 

weakness of the preset threshold is rectified in the following technique.   

Image Wide, Adaptive Threshold, Preset # of GCPs:  The only difference between 

this technique and the previous one is in the adaptive thresholding of the LoG extrema.  

Instea e 

e 

 user 

ld, Preset # of GCPs

d of thresholding the LoG filtered image at a predetermined, user defined level, th

threshold level is determined completely by the number of initial points requested.   

To accomplish this task robustly, it is necessary to monotonically decrease the 

threshold level until the requisite number of points has been achieved.  Once the adaptiv

thresholding has reached this level, there are often more points extracted than necessary.  

For this reason, it is often necessary to sort based on LoG value and truncate to the

specified number of points.   

Subregion, Adaptive Thresho :  This technique is a powerful 

tool f

 

hey 

ul and it possible to reduce 

the er ated 

or automated large image registration. However, it does require a general image 

orientation before implementation is possible.  This is because both subregions must 

represent similar areas of the image before automated analysis can commence. The 

requirement for general image orientation is explored in more detail in section 5.1.   

This technique combines aspects of the previous techniques and implement them on

image chips (~512 to 2048 work well), instead of the entire image (figure 4.6.1).  Once 

the individual subregions have been analyzed and local GCPs have been determined, t

are compiled into an image-wide set of control points.  It is easy to generate several 

hundred GCPs in this manner for large images.  With this large amount of GCPs, 

statistical analysis of RMS Distance Error become meaningf

ror in the transform model by comparing each match against the model gener

from all the GCPs.  The analysis of global RMSDE statistics will be analyzed more 

extensively in Section 4.7. 

 

 36



Reference Image    Warp Image 

 

 

 

 

Figure 4.6.1: Subregion Analysis utilized to compare similar areas of the original images.  

Subband Analysis

 

 

       Reference Sub-Image           Warp Sub-Image 

 

 

 

. 

:  In order to enable the previous subregion analysis technique, it 

may be necessary to first perform a subband registration, to obtain the general image 

orientation required.  The subband registration technique allows image wide analysis by 

utilizing datasets of reduced resolution to minimize processing requirements.  This 

‘reduced dataset’ could simply be a resampled version of the original images at a lower 

resolution (figure 4.6.2), or could be a ‘scale subband’ resulting from a wavelet 

decimation sequence.  This is often a useful technique since LoG filtering is currently 

inefficient on datasets over 2k x 2k.  The utility of subband analysis will be explored in 

further detail in section 5.1.  
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Figure 4.6.2: Reduce the resolution to enable image-wide LoG Filtering. 

4.7  Determining the Registration Accuracy 

One of the more challenging aspects of image registration is formulating criteria to 

determine the ‘goodness’ of how well the registration was accomplished.  Two general 

methods focus on grayscale comparison and RMS Distance Error (RMSDE) analysis.  

Three rate th of ese m ented to 

judge the accuracy of the registration with the LoGWaR program.  Figure 4.7.1 shows an 

example image set, where the Warp image is a rotated, shifted and cropped subset of the 

Reference image. 

Half
 Scale
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 Scale

1/41/4 1/41/4

Image Wide
LoG Filtering

Threshold

Half
 Scale
Half

 Scale

Reference Image          Warp Image

Full ScaleFull ScaleFull ScaleFull Scale

Reference Image Warp Image

 techniques, which incorpo bo th ethods, have been implem

 

 

 

 

Figure 4.7.1: Sample dataset utilized for image registration. 
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Pixel Averaging:  A useful, if somewhat qualitative, test on registration accuracy is 

through visual inspection of the overlaid and averaged images.  This technique is 

common in image ‘stacking’ and can be utilized to increase the S/N of an image by 

averaging out the noise.  Through visual inspection, it is easy to determine an ina

registration through any blurring that is apparent in the composite image. An accurate 

registration will appear clear with well defined edge detail.  A comparison of a poor 

registration and a good registr

ccurate 

ation are portrayed in figure 4.7.2. 

Figure 4.7.2: C ng. 

Absolute M

omparing registration accuracy through visual inspection of Image Stacki

ean Variance:  This metric combines aspects of both qualita

is to help determine registration accuracy.  The visual aspects of th

ed to a ‘difference image’, where a perfect registration would be 

tilizing the sample registrations from the previous exam

e is useful for determining registration accuracy. 

Poor Registration         Good Registration

tive and 

quantitative analys is 

metric can be liken

completely black.  U ple, it is easy 

to see why this techniqu

omparing registration accuracy through visual inspection of Difference Image. 

Poor Registration         Goo

Figure 4.7.3: C
AMV = 3.25%AMV = 5.79%

d Registration
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The quantitative me puting the Absolute 

Mean Variance (AMV) between  This process involves the 

following steps: 

• age 
 

• 
 

• Ave
 

tric involved with this method is based on com

the two registered images. 

Determine overlap of Reference Image and Warp Im

Determine Digital Count Difference per pixel over entire scene 

rage over # of pixels overlap 

• Divide by Digital Count Range of Images 
 

• This Metric delivers a Percent AMV between two Images 

Deviation from a Polynomial Model:  The final metric used to determine 

registration accuracy, RMS Distance Error, is one of the more common techniques 

utilized in remote sensing.  In fact, the RMSDE is used by ENVI to judge deviation o

matches from the prescribed polynomial model to judge registrati

40

tive statistical solution to arrive at an RM

atch points delivers a registration with almo

f 

on accuracy.  

Discriminating bad matches based on deviation from affine/polynomial models is shown 

in figures 4.  the 

polynom

 the RMSDE. 

Any ma  than 1 standard deviation) 

can then be rem s in 

 with even less 

error, the ma

model. 

This can be done iteratively to determine a statistical solution that is of low enough 

error to satisfy the accuracy of registration needed.  Figure 4.7.4 shows this process, 

which utilizes an itera SDE of 0.26.  In this case, 

the iterative pruning of m st a quarter-of-a-

pixel accuracy.   

7.4.  By analyzing the error associated with each matched point from

ial model of choice, it is possible to reject bad matches. 

One way to do this is through analysis of the standard deviation from

tches that deviate significantly from the mean (greater

oved.  The following table contains the raw data utilized by the graph

figure 4.7.4.  If an additional iteration was required to derive a transform

tches below the ‘cut line’ would be removed due to their deviation from the 
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Figure 4.7.4: Comparison of LoGWaR matches with polynomial predictions and RMSDE plots. 
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Table 4.7.1: Removing Bad Matches by comparing Match Error to (RMSDE+1STD). 

180.000      202.000      175.000      149.000      174.959      148.935   -0.0406952   -0.0647125     0.0764448 
159.000      65.0000      109.000      27.0000      109.128      27.0283     0.128311      0.0282650    0.131387 
203.000      111.000      166.000      55.0000      166.056      55.1356     0.0563507    0.135620      0.146861 
165.000      83.0000      121.000      42.0000      120.864      41.8970   -0.136017      -0.103004      0.170618 
91.0000      176.000    
102.000      190.000    

 42

44.0000      162.000      34.0000      158.000      34.1693      157.810     0.169254     -0.190292    
0      51.1823 308      0

1 0      42.2742 208       0
135.000      56.0000      83.0000      27.0000      83.3916      26.9391     0.391579     -0.0609474     
99.0000      97.0000      63.0000      78.0000      63.3964      77.9842     0.396427     -0.0157852     
136.000      72.0000      90.0000      42.0000      89.7698      41.6373    -0.230232     -0.362656       
 

Overall RMSDE Mean =    0.261753 
Overall RMSDE SDev =     0.121065 

 
BadMatches match error RMSDE STD

dMatches match error
BadMatches match error

= > +
= > +
= >

 

Another statistical technique that LoGWaR incorporates is an approach th

iteratively rejects the matched point with greatest RMSDE.  The model is recom

every r oved match until the RMSDE is below a user-defined level.  In this w

possible to attain a model of the desired RMSDE that is statistically based and is easily 

incorpo  into an automatic image registration process.  This technique is used for 

several of the test cases in Chapter 6 to obtain subpixel accuracy for the tranform

and can be referenced for a more detailed explanation. 

4.8 Predictive Transforms 

In Chapter 5, this research will delve into the ability to cascade severa

into one single, composite transform.  One of the uses of this composite transf

register images at a lower resolution and then predict the transform at the orig

When utilizing this predictive transform capability, it is often necessary to

RMSDE (representing high levels of subpixel registration accuracy).  To predict the 

transform of an image at 4 times the resolution, the transform will have a m

times the RMSD error.  For the example in figure 4.7.4, the 0.26 RMSDE bec

or slightly greater than 1 pixel RMSD error. 

  Ref Coords [x,y],      Warp Coords [x,y],       Pred Coords [x,y],          Coord Error [x,y],        Match Error 

  83.0000      155.000      82.9932      154.829   -0.00677490  -0.170898      0.171033 
  98.0000      164.000      98.0763      164.206     0.0762863     0.205521     0.219222 

39.0000      183.000      37.0000      179.000      36.7956      179.142    -0.204445       0.142365     0.249129 
  0.254673 

.3114.000    74.0000      70.0000      51.0000      69.676
18.000    66.0000      71.0000      42.0000      70.724

  71787 
  389037 

    -0.324020      0.182
    -0.275970      0.274 .

0.396293 
0.396741 
0.429565 

_ ( 1 )
_ (0.261753 0.121065)
_ (0.382818)

Ba

at 

puted for 

ay, it is 

 model 

l transforms 

orm is to 

inal scale.  

 have very low 

odel with 4 

o  

em

rated

mes 1.04,



Although reducing the model error is a useful tool, it is possible to eliminate too 

many matching GCPs.  When this happens, the registration accuracy will deteriorate.  

Bernstein has shown that the registration error between related images decreases as the 

number 

number increases (Bernstein 1987).  So, there is a limit to the improvement that can be 

obtained by reducing the error by eliminating ‘good matches’ that deviate slightly from 

the m utilizing 

large sets of GCPs for the psuedo-inverse solution when solving for over determined 

er 

of GCPs increases, however, the quality of GCP accuracy may decrease as their 

odel.  This is possibly due to the added benefits that can be gained when 

transform expressions.   Regardless, determining the optimum balance between numb

of GCPs and model error is ripe for further research! 
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Chapter 5 
 
 
 
 

The Composite Transform 
 

 Often, when attempting to register images, especially large datasets, it is 

necessary to perform more than one transformation on the images before automated 

techniques can be employed.  This is due to the images requiring a general-orientation 

relationship before subregion analysis can be employed.  Because of this, it is often 

essential to perform basic manipulations such as scale and/or rotation on an image-wide 

basis in advance of utilizing automated routines on related subregions (figure 5.1).  In 

some cases, multiple transformations may be the only way to implement automation into 

the registration process since a datasets may be too large to work with at full resolution. 

 

No 
Orientation

Relationship

Warp Image

Reference Image 

 

 

 

 
Scaled & Rotated 

New Warp Image  

  
Reference Image

 
General 

Orientation 
Relationship 

Figure 5.1:  Subregion analysis requires a general image orientation relationship. 

 Unfortunately, each transformation would slightly degrade the data due to 

interpolation of the grayscale values when resampling (although nearest-neighbor 

resampling does not suffer from grayscale degradation, it often induces spatial artifacts 
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on edge detail).  Obviously, these degradations are cumulative and can be detrimental to 

some remote sensing applications.  Regardless of the type of sampling utilized and the 

purpose of registered products, it would be beneficial to consolidate the chain of 

transforms into a single mathematical model if possible. 

 In order to adequately manage this requirement, a mechanism should be employed 

that can efficiently encode multiple transformations at each stage of the registration 

process and be representative of the general transformation at any given time.  According 

to Wolberg, multiple transforms can be collapsed into a single composite transformation 

by taking advantage of the unique commutative property of the affine transformation 

(Wolberg, 1990). 

 5.1  Relating Affines to Polynomial Transformations 

 Equations 3.3 and 3.4 show the expanded forms of the polynomial equations that 

can be used to relate two images.  The affine model is a subset of this more general 

formulation that can account for the familiar effects of rotation, scale, translation (RST) 

and shear when relating the coordinate systems of two images.  The affine model 

includes only the first 3 terms in both the x and y expressions and thus requires six 

coefficients to adequately define the relationship.  The fourth term represents a change in 

perspective and when taken into account with the affine coefficients represents the 1st 

Order Polynomial Model.  Additional terms in the Polynomial expressions represent  

x = a0 + a1x’ + a2y’ + a3x’y’ + a4x’2 + a5y’2
 

y = b0 + b1y’ + b2x’ + b3y’x’ + b4y’2 + b5x’2    

2nd Order Polynomial

1st Order Polynomial

Affine Transforms 

Figure 5.1.1:  Relating the Affine Transform to the Polynomial Expression 
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higher orders and thus a more complex relationship between the images.  Dissecting 

equations 3.3 and 3.4 we can identify the portions of the general polynomial equations 

that relate to the affine, 1st Order and 2nd order expressions as shown in figure 5.1.1. 

 5.2  The 3 x 3 Affine Representation 

 Section 3.1.1 alludes to the general utility of matrix formulations in image 

transformations; this section will expand upon that concept in some detail.  Since the 

product of affine transformations is also affine, they can be used to perform a general 

orientation of a set of points relative to an arbitrary coordinate system (Wolberg, 1990).  

This is a unique property of affine relationships, since higher order polynomials generally 

cannot be combined with a commutative operation.  Developing a composite transform 

for affines relies heavily on this property, which can be easily implemented in a simple   

3 x 3 matrix such as the forward mapping function expressed in equation 5.1: 

(5.1)  
2 2

1 1

0 0

0
' ' 1 1 0

1

a b
x y x y a b

a b

 
         
  

=  

It should be noted that a 2 x 3 matrix contains enough elements to define an affine 

relationship (6 coefficients for 6 unknowns), however the symmetry of a 3 x 3 is useful 

for commutation when cascading elements of the composite transform.  Example 

representations of the Affine warps, as defined by Wolberg, in the 3 x 3 matrix notation 

follow (figure 5.2.1). 
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Figure 5.2.1:  Relating the Affine Transforms to the 3 x 3 Matrix 
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If an affine transform is deemed adequate to describe the relationship, the six 

coefficients may be derived by specifying the coordinate correspondence of three 

noncollinear points in both images (Wolberg, pg 50, 1990).  This is demonstrated in 

equation 5.2 where x’ and y’ represent the noncollinear points in the “warp image”, x and 

y represent the related points in the “reference image” and aN and bN are the unknown 

mapping coefficients. 

(5.2)  
1 1 1 1

2 2 2 2

3 3 3 3

2 2

1 1

0 0

1 1
1 1
1 1

0
0
1

x y x y
x y x y
x y x y

a b
a b
a b

′ ′     
    ′ ′     
 ′ ′        

=  

With the selection of additional GCP matches, the affine problem becomes over-

defined.  By solving for the coefficients using the ‘psuedo-inverse’ solution to the least 

squares problem it is possible to estimate the best fit of the GCPs to the affine model 

(equations 5.3-5.6).  This solution can generate a sub-pixel registration of the datasets if 

the GCPs are accurate to the affine model and well distributed. 

 

(5.3)  

1 1 1 1

2 2 2 2

3 3 3 3

2 2
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=
M M M M M M

 

U = WA (5.4) 

(5.5) 

(5.6) 

A = U-1W 

A = (UTU)-1UTW 

Due to the dimensions of the GCP matrices, the psuedo-inverse solution (eq 5.6) is 

utilized to solve the linear least-squares problem since non-square matrices have no 

inverse.   
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It should be noted that with the addition of the third column, in the matrix, all the 

1st Order relationships could be solved for including perspective as noted in the following 

normalized (c0=1), general relationship: 

(5.3)  
2

1

2 2

1 1

0 0

' ' ' ' '
1

c
c

a b
x w y w w x y w a b

a b

 
         
  

=  

For perspective mapping projections, coefficients c1 and c2 are nonzero and can be related 

to the 1st order polynomial expression in figure 5.1.1. 

Fortunately, many requirements for remote sensing registration can be 

accommodated with an affine or 1st Order model to relating the datasets.  This is 

especially true if the data is orthorectified.  Minimally, a general orientation or geo-

reference can be achieved with the composite affine in order to relate the images spatially 

(Schowengerdt, 1997).  If an affine model cannot obtain the relationship needed, then a 

higher order model can be utilized in conjunction to obtain the precision necessary.  Thus 

minimizing the degradations due to interpolation to two separate operations.  Although, 

comprehensive validation has not been performed on the combination of a composite 

affine and a 1st Order, results have been promising.  It is quite possible that one 

combination is mathematically sound, whereas additional commutations are not.  If this 

proves to be the case, then it is possible to solve for most remote sensing global 

aberrations with one composite transform; since perspective can be incorporated (if only 

once) into the composite model. 

There is a great benefit in utilizing the composite affine to obtain an approximate 

registration of two datasets.  The ease and flexibility it provides in combining basic 

geometric manipulations and the ability to precisely log, in concise mathematical 

notation, any changes that have been made to the data make it a powerful tool in the quest 

for automated registration.  Additionally, the use of affine transformations for 

approximate correction of satellite sensor distortions has been noted in literature 

(Schowengerdt 1997). 
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Although point matching techniques have not been developed here to address 

shear and perspective, both of these deformations can be incorporated into the 3 x 3 

model to relate datasets.  Occasionally, with large images, the subregion technique can be 

utilized to locally relate datasets that have relatively small global shear, perspective, and 

even earth curvature (2nd Order) distortions.  This is due to local regions exhibiting affine 

relationships, even though higher order global distortions exist.  Once related in this 

manner, the LoGWaR software facilitates RMSDE analysis and warping of data at the 1st 

and 2nd Order via a user slider bar at the lower right hand corner.  Additionally, if the 

warp dataset has not been corrected for sensor viewing geometries (orthorectified), it is 

often trivial for the user to select four dispersed GCPs to provide a 1st Order relationship 

between it and the reference image.  By warping a dataset with this transform, it is then 

possible to re-register the warped image utilizing automation techniques to precisely 

relate the images at the subpixel level.  Both transforms can then be incorporated into one 

composite that can be used to warp the original.  This technique has shown great utility 

when working with non-orthorectified data. 

5.3  Creating the Composite Transform 

By utilizing the commutative property of the 3 x 3 affine representation, it is 

possible to combine several individual affine transforms into one composite transform.  

This consolidation of matrices provides processing efficiency and can be utilized to avoid 

multiple resamplings (Schowengerdt, 1997, pg 334).  Equation 5.4 represents the 

cascading of affines (A1A2A3) through a commutative process into a single composite 

transform(Mcomp). 

 

(5.4) Mcomp = A1A2A3 

 

Utilizing Wolberg’s 3 x 3 representation of individual affine transforms, the following 

formulation depicts the cascading of an image relationship containing translation, rotation 

and shear into a composite matrix (figure 5.3.1).  The convenience of this notation is 
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realized in the easy multiplication of matrices within many computing environments and 

the minimal overhead of a single 3 x 3 matrix. 

As mentioned earlier in this chapter, it is often useful (especially with automated 

processes) to first determine the general orientation relationship between datasets.  Once 

this is accomplished, automated subregion analysis can be utilized to produce many GCP 

with good distribution throughout the image for precise (subpixel) registration.  By 

utilizing this cascading approach, it is possible to combine the general orientation affine 

with the precise subregion affine to produce a single solution that best relates the two 

datasets. 
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Figure 5.3.1:  Creating a Composite Affine Transform from 3 separate Affines. 

 

5.4  Utilizing the 3 x 3 Affine with Wavelets for Predictive Transforms 

An interesting application of the 3 x 3 formulation involves manipulating the last 

element in the matrix (coefficient c0).  This element represents the overall scale 

relationship between the two images and so can be easily manipulated to conveniently 

keep track of any scale changes from the base image.  So, if an image is decimated once, 

using the partial FWT, the composite transform would equate to the product of the 

current affine relationship and a scale modifier matrix with coefficient c0 equal to 2 (if 

reconstituted with the FWT-1, then a33 would be equal to ½): 
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Figure 5.4.1:  Manipulating the global scale coefficient in the Composite Affine Transform. 

This result represents the new relationship between the two images at half the scale of the 

original warp image.  The process is similar for any scale relationship change between 

the two images. 

 One of the most important implications of utilizing this technique is that 

predictive transformations can be developed utilizing much lower resolution version of 

the original images!  So, when working with large images, it is possible to reduce the size 

of the datasets, register at the lower resolution and then predict the transform required to 

register the images at their original scale.  This can even be accomplished with images 

much too large to load into virtual memory and manipulate at their native resolution.  
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Figure 5.4.2:  Utilizing the Affine Transform Matrix to Relate Multi-Scale image sets. 
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Figure 5.4.2 demonstrates this capability as it is applied to a pair of LANDSAT datasets 

that have been related by only registering a single band in the MS and predicting the 

transforms for the additional MS, Pan, and Thermal bands. 

 Although registration precision decreases in relationship to the reduced scale that 

the registration takes place at, it is still possible to have a good prediction of the 

registration at the native resolution if the subpixel accuracy of the registration is 

sufficient.  Once again, the precision of the registration required, will often be predicated 

on the type of product or additional processing that is required of the registered datasets. 

 The obvious benefits of utilizing this approach are processing speed and more 

critically overcoming the virtual memory limitations of processing many of today’s 

enormous datasets.  An additional benefit of implementing scaling changes in the wavelet 

domain is that an iterative solution could be implemented that would allow registration at 

a low resolution “scale” subband level and allow the ability to predict transforms at 

various resolutions.  This would allow a user to view the registered datasets at various 

resolutions by predicting the transform required when transitioning (zooming) from one 

resolution to the next in the wavelet “resolution pyramid” and then re-registering at the 

higher resolution for a more precise result.  In this fashion, an analyst could immediately 

reap the benefits of a predicted transform at the new resolution and while dwelling there a 

more precise relationship could be developed as a background process. 

 In this manner, transitioning between various resolutions can be accomplished 

while still maintaining a basic spatial relationship between the two datasets.  This can be 

accomplished quickly since only a simple 3 x 3 matrix multiplication and the 

transformation of the image at the new resolution (LL subband level) is required for the 

prediction, not an entirely new registration.  Also, for purely automated registration of 

large datasets, it would be essential to register images at a low resolution to establish the 

initial relationship before subregion analysis could be utilized to establish a more precise 

relationship at the original resolution (figure 5.1). 
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C h a p t e r  6  

REGISTRATION TEST CASES 

In order to demonstrate the capabilities of the LoGWaR process, it will be tested 

with three datasets.  The first dataset will be used as a control test and will be the same 

image that has been copied and pre-warped (with known geometric distortions) and then 

sent through the registration process to test the results.  A second test for this research will 

be two large (8k x 8k) LANDSAT images and will demonstrate the capability for 

multiresolution registration from the same sensor.  The final tertiary test case will include a 

multispectral image (CITIPIX) and a hyperspectral cube (HYMAP), demonstrating the 

capabilities to register images from two dissimilar sensors (an MS framing sensor and a HS 

linescanner). 

6.1  Control Test:  Same Image – shifted and rotated. 

The image utilized for this test is a color Space Imaging shot of the Capitol Building in 

Washington D.C., converted to grayscale.  The reference image is 300 x 300 pixels in 

dimension while the warp image has been cropped to 250 x 250 pixels (25 to 274) and later 

rotated by 135 degrees.  Since the cropping procedure and the rotation will both induce shift 

into the image-to-image relationship, they be tested separately. 

Shift:  The cropping procedure extracts the central portion of the reference image (figure 

6.1.2).  This causes a translation relationship between the two images of 25 pixels in both the x 

& y.  The ability to use a statistical model to reject the matches of greatest error and improve 

the accuracy of the registration is evident in figure 6.1.1.  The following results demonstrate 

LoGWaR’s capability to determine the shift and show the utility of both the RMSDE & AMV:  

RMSDE computed for        1st Degree Polynomial. 
Overall Root Mean Square Distance Error (RMSDE) =  0.000000 
Overall RMSDE Standard Deviation from Mean =     0.000000 

 
Affine Transform:  1.00000   1.44169e-006      0.000000 

 3.15602e-007 1.00000      0.000000 
          -25.0000  -25.0001       1.00000 
 
                                                Registration Metric (Abs Mean Var) =   0.00208408 
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Figure 6.1.1: Utilizing RMSDE analysis to increase the accuracy of the registration model (Initial to Final). 

Warp GCP Prediction RMSDE Plot 

Image Legend:  Black square boxes represent the Warp GCP locations compared to the Red Predicted GCPs. 
Plot Legend:  Black Line is cumulative RMSDE, Blue Line is Histogram, Red Line is Mean, and dashed is 1STD. 

 
 

 

 

 

 

 

 

Figure 6.1.2: The crop has induced a -25 pixel shift in the x & y for the inverse transform sampling. 

Reference Image Cropped Warp Image

(0,0)(0,0) 
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Figure 6.1.3: Confirming the registration results through visual inspection of overlaid and AMV images. 

Figure 6.1.3 shows how the overlaid images and the Absolute Mean Variance can be 

used as visual evidence of a good registration.  The lack of any definable information in the 

AMV image is due to the accuracy of the registration and the fact that the grayscale values for 

the related areas are exactly the same. 

Rotate:  Now the warp image is an exact replica of the reference image except that it has 

been rotated 90 degrees clockwise.  The following results are non-intuitive, but, accurate non-

the-less.  Although the following results show the correct –90 degree rotation, the inherent 

shift of 299 pixels in the y direction is demonstrated in figure 6.1.5.  For the image to be 

rotated by 90 degrees, it is necessary to rotate each pixel about the origin and then translate in 

the y-direction by 299 pixels for inverse transform sampling.  The LoGWaR results for the 

transform follow:          RMSDE computed for        1st Degree Polynomial. 

Overall Root Mean Square Distance Error (RMSDE) =     0.000000 
Overall RMSDE Standard Deviation from Mean =     0.000000 

Affine Transform:  -3.71925e-015      -1.00000      0.000000 
1.00000   1.81799e-015      0.000000 

   2.02505e-013       299.000       1.00000 
 
Registration Metric (Abs Mean Var) =     0.0139355 
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 0,0 -90o-90o-90o-90o

Rotated Warp Image Reference Image

0,0

Figure 6.1.4: Use the transform-1  for pixel sampling:  including a shift and rotation about the origin. 

Since the initial registration had very low AMV and RMSDE, additional statistical 

analysis of the matched points for improvement to the model is not necessary.  The RMSDE 

plots are visible in figure 6.1.4 and the AMV is displayed in 6.1.6. 

Warp GCP Prediction RMSDE Plot  

 

 

 

 

 

Figure 6.1.5: Utilizing RMSDE analysis to judge the accuracy of the registration model. 
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Figure 6.1.6: Confirming the registration results with visual inspection of overlaid and AMV images. 

As can be seen from the results, of both the translated and rotated images,  the 

LoGWaR algorithms accurately determined the transformation needed to register the 

images to an almost perfect statistical accuracy.  The extremely low values of the AMV and 

the visual inspection techniques also corroborate these results. 

6.2  Multispectral/Multiresolution Registration with LANDSAT. 

The registration of LANDSAT datasets offers an opportunity to test LoGWaR’s 

capabilities on large multispectral datasets (8k-16k) with multiple resolutions for the 

thermal, MS, and panchromatic bands.  This will illustrate some of the challenges in 

performing accurate registrations with automated techniques.  The datasets for this test 

were taken on January 14th and February 15th of 2000, and cover the region of Jericho, 

Israel (figure 6.2.1).  The LANDSAT datasets were ordered as ‘G-1’ products and 

exhibited a good image orientation relationship.   However, the data was not registered 

well enough to perform the pixel-to-pixel comparison necessary for change detection 

analysis.  Additionally, the relatively low-resolution LANDSAT datasets often prove 

difficult to perform accurate supervised registrations, due to the difficulty in isolating 

precisely related GCPs. 
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Reference Image (7747x7291) Warp Image (7750x7250)

 

 

 

 

 

 

Figure 6.2.1: The test datasets of Jericho, Israel were taken in January and February of 2000. 

Due to virtual memory restrictions in IDL and processing speed, there are two 

approaches that can be taken with LoGWaR software when attempting to register images 

of this size.  Since the entire image cannot be filtered with the LoG filter, it is essential to 

either process the image in subregions or in subbands.  Both of these processes will be 

analyzed in the context of this example. 

Subregion Registration:  Since these datasets exhibit a good image orientation 

relationship, it is possible to directly relate subregions within the images.  Subregion analysis 

utilizes the same techniques as image-wide analysis, but is applied over successive areas of both 

images (figure 6.2.2).  The subregion results are eventually combined to form the transform for 

the entire ‘warp’ dataset.  If the user has defined a focused ROI, by boxing an area with the 

mouse, the Subregion Tool will subdivide that ROI for analysis, ignoring regions outside of the 

highlighted area.  The subregion size is determined in the User Preference, File pull-down menu, 

within LoGWaR (default = 512).  Any residual portions of the image, at the edges, will be 

treated as additional subregions of smaller size.  A 512x512 subregion can take from 20-45 

seconds based on the criteria utilized for point matching.  The Subregion Tool automatically 

compensates for offset from the origin based on the user defined ROI size, thus maintaining 

the proper relationship between GCPs derived in each subregion relative to the original image. 
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 Reference Image Warp Image 

 

 

 

 

 

 

 

 

 

 

 

 

Warp SubregionReference Subregion 

Figure 6.2.2: Subregion analysis utilized to compare similar areas of the original images. 

The subregions collect local GCPs, until the entire image (or supervised focus area) has 

been filtered and analyzed.  Once the entire image has been processed, it may be necessary to 

perform a check on the matched points for false matches, especially in the presence of water 

or clouds .  It is then possible remove bad matches using an ROI tool or through statistical 

analysis.  The resulting GCPs can be viewed in figure 6.2.3.  The automated nature of the 

LoGWaR software can produce several hundred GCPs.  The accuracy of registration has been 

shown to increase with the number of GCPs (Bernstein, 1987), however, the chances for bad 

matches to be incorporated into the transform model also increases. 
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Reference Image Warp Image 

 

 

 

 

 

 

Figure 6.2.3: ROI tools and statistical analysis can be utilized to discriminate and reject bad matches. 

A useful aspect of the subregion registration process is that is limits the error associated 

with a bad match to the dimensions of the subregion that is enforced.  Thus, a 512x512 

subregion will limit a bad match error to 512 512+ .  This is much smaller than a bad 

match obtained with an image-wide technique that is limited to 7747 7291+ .  This helps 

mitigate the impact introduced by a bad match into the model.   

Statistical analysis of the GCPs enables iterative rejection of matches with the highest 

error.  This continues until a subpixel accuracy of matches to a transform model is achieved 
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(figure 6.2.4).  The initial model was obtained using 492 GCPs.  This was further refined by 

removal of matches > 1 STD from the mean RMSDE, which resulted in 444 final GCPs: 

RMSDE computed for        1 Degree Polynomial. 
Overall Root Mean Square Distance Error (RMSDE) =     0.693404 
Overall RMSDE Standard Deviation from Mean =    0.0774224 

Saving Affine Transform: 
     0.999990  1.77472e-005  0.000000 
-3.59437e-006  0.999992      0.000000 
     -6.36321       9.41334       1.00000 
Registration Metric (Abs Mean Var) =     0.113350 

 
RMSDE Plot RMSDE Plot  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2.4: Utilizing RMSDE analysis to judge & improve the accuracy of the registration model. 
 

The results of the registration were quite good, with excellent edge alignment across the 

image.  The overlaid image clarity and the AMV image (11.335%) corroborate this result:   

Figure 6.2.5   Confirming the registration results with visual inspection of overlaid and AMV images. 
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Subband Registration:  A useful alternative to subregion registration is the ability to 

perform image-wide analysis at a reduced scale of the original.  In fact, this may be the 

only alternative when attempting to attain an orientation relationship (section 5.1), on 

images that exceed the LoG filtering size limitation.  The ability to register images at a 

lower resolution and predict the transform of the original image is a powerful technique.  

It facilitates efficient processing, reduces virtual memory requirements and allows the 

registration of very large images.   

For this example, the Jericho dataset will again be utilized to demonstrate the 

capabilities of subband registration and predictive transformation.  Two options are now 

available, simply scaling the image to a lower resolution or decimating the image with the 

wavelet transform.  Scaling the image will achieve the same registration results as the 

wavelet decimation, but, will sacrifice the high-frequency spatial information in the image.  

However, wavelet decimation stores the spatial detail and allows for later use in 

applications such as sharpening.  The reduction of the original image resolution utilizing 

both techniques is demonstrated in 6.2.6. 

 Scaled Warp Image (1937x1822) Decimated Warp Image (2048x2048)

 

 

 

 

 

 

Figure 6.2.6   Access subbands through scaling or wavelet decimation (note dyadic dimensions). 
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Now that the images have been reduced in scale to a size that allows image-wide 

LoG filtering, it can be processed for registration with the LoGWaR program.  If the user 

defined point limit (50 pts) does not provide enough matches, the ROI tool can be utilized 

to identify specific regions to extract additional matches from the image (figure 6.2.7). 

 

 

 

 

 

 

Figure 6.2.7   Utilizing the ROI tool to isolate specific areas for registration. 

These matches are then be utilized to relate the reference and warp image at the reduced 

scale.  If this is accomplished with a high enough degree of precision, the prediction can 

produce results similar to the transform at the original resolution.  To test this hypothesis, the 

reduced scale registration model will be adjusted through RMSDE analysis of the matches.  

Three models will be utilized for the prediction:  a) All Matches from reduced scale, b) All 

matches minus matches greater than 1STD of the Mean RMSDE, and c) Only those matches 

with less RMSDE than 20% of a pixel.  The plots of the matches and the resulting RMSDE 

can be seen in figure 6.2.9.  Once the required RMSDE has been achieved, those matches are 

utilized to derive an affine model to relate the low-resolution images.  Now it is possible to 

predict the affine that will relate the original resolution images through the commutative 

property of the affine, which is discussed in Chapter 5.  This is accomplished by multiplying 

the affine relationship at the low-resolution by the scale modifier as depicted in figure 6.2.9.  

Once this has been accomplished, the resulting affine models will be compared to the original 

affine transform which was acquired at the full resolution.  Since the original affine provided a 

high quality registration, it will be utilized to judge the accuracy of the predicted transforms. 
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Warp GCP Prediction RMSDE Plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.8: Utilizing RMSDE analysis to remove matches with greatest error and improve model. 
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b pred affine

  
  =   
    

 

0.999747 0.000306 0
_ 0.000414 1.00014 0

5.80468 8.00952 4
pred affine

 
 =  
 − 

 RMSDE=0.98062 

1 0 0 1.00039 0.000466588     0
). _ 0 1 0 0.000289899      1.00047     0

0 0 4      -1.85605      1.31172      1
c pred affine

  
  =   
    

      

1.00036 0.000467 0
_ 0.00029 1.00047 0

7.4242 5.24688 4
pred affine

 
= 
 − 

 RMSDE=1.55218 

----------------------------------------------------------------------------------------------------------- 

0.999990 0.0000177 0
_ 0.00000359 0.999992 0

6.36321 9.41334 4
original affine

 
 = − 
 − 

 

 
Figure 6.2.9: Predicting the affine model by inducing a scale modifier; the RMSDE tests a pixel at the origin for 
each model in figure 6.2.8 (a, b,& c) compared to the results of those obtained at the original resolution. 
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From the preceding results it would seem that predicting a good transform relies 

more heavily on the number of matches than on the precision of the matches used to 

derive the affine model.  It would at first seem realistic to presume that the 0.7 pixel 

RMSDE that was attained at the original resolution could best be predicted by a transform 

model at ¼ the resolution if it has 4 times the precision (i.e. RMSDE = 0.2 pix.).  However 

this does not seem to be the case.  This test seems to suggest that the predictive model 

that best describes the transform for the original resolution may be the one that retains as 

many matches as possible (excluding outliers) and may not always be the one with the 

greatest precision.  Visual results seemed quite good when utilizing the model from 6.2.9.a.  

The original resolution overlaid and AMV images can be viewed in figure 6.2.10. 

 Overlaid Image (7747x7291) Overlaid Image (7747x7291) AMV Image = 12.3019% AMV Image = 12.3019% 

 

 

 

 

 

Figure 6.2.10   Confirming the registration results with visual inspection of overlaid and AMV images. 

Multiresolution Agility:  An added benefit of utilizing the affine model for predictive 

transforms, especially for multiresolution datasets like LANDSAT, is the ability to develop one 

transform model and utilize it for all of the image elements.  This means that an affine model 

can be developed with the high-resolution panchromatic band and that same model, can be 

utilized to predict the transforms for the MS bands and the thermal band and vice-versa (figure 

6.2.11).  This can take much frustration out of registering an entire LANDSAT dataset to 

another image and now all elements of the warped dataset have the same relationship which is 

codified into a 3x3 matrix. 
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Figure 6.2.10   Affine models demonstrate great agility in multiscale transformations. 

6.3  Multisensor/Multiresolution Registration with CITIPIX and HYMAP. 

The Mobile, Alabama harbor area site, which contains both CITIPIX RGB (6 inch-

HM_2001_USA_1022_0344) and  HYMAP HS data (3 meter-hy20010511F01R12S00), 

collected over the same region.  The CITIPIX ROI was extracted at twenty times the 

resolution of the HYMAP ROI. 

 

 

 

 

 

 

CITIPIX ROI (8192x8192)HYMAP ROI (400x398) 

Figure 6.3.1: ROIs taken from the HYMAP HS dataset (band 0.6491) and CITIPIX RGB. 
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Note that ROIs have been extracted with similar image features (figure 6.3.1).  The 

dyadic size of the CITIPIX image will facilitate wavelet sharpening in Section 7.1, once the 

datasets have been registered.  In order to preprocess the datasets, the CITIPIX image will be 

downsampled to 1/20th its native size and rotated 270o (figure 6.3.2).  The LoGWaR software 

allows for this supervised manipulation and logs image changes with affine transforms that can 

later be automatically combined into a composite transform by the program (figure 6.3.3). 

HYMAP (400x398) CITIPIX (409x409)  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3.2: The scaled and rotated CITIPIX image is now prepared for subregion analysis. 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3.3:
 

 

Composite Transform Matrix: 
      1.00000     0.000000     0.000000 
     0.000000      1.00000     0.000000 Current 
     0.000000     0.000000      1.00000         Affine 
 
     0.000000     -1.00000       0.000000 
     1.00000     0.000000     0.000000 Rotation
     0.000000     8191.00       1.00000 
 
      1.00000     0.000000     0.000000 
     0.000000      1.00000     0.000000 Scale 
     0.000000     0.000000    20.00000 

 

  Storing image manipulations and current affine transformation into Composite Matrix. 
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 Now that the images have an orientation relationship, subregion analysis can be 

utilized to extract match points.  Since the images have different characteristics, due to 

their spectral bands, sensor format (line scanner vs framing), and resolution, the 

LoGWaR program was optimized via the GUI interface.  Some of the user defined 

options, located at the bottom of the LoGWaR GUI (figure 6.3.4), can be changed to 

optimize the extraction of GCPs.  For this test, the Maxima Similarity button was 

unchecked because of the potential for very large differences in the LoG image values.  

Also, since the images have a good orientation relationship, the Match Distance button 

was checked to perform localized statistical analysis on the potential matched points . 

Figure 6.3.4:    LoGWaR’s interface options for point matching, located on bottom of GUI.  

 

 Another LoGWaR capability, demonstrated below, is the subregion analysis that 

can be accomplished within a ROI (figure 6.3.5).  This technique simply ‘walks’ from the 

lower left corner, across rows and up columns, using the user defined subregion size 

(205pix), staying within the prescribed ROI.  This technique is useful when the images 

cover dissimilar features and cropping is not desired.  It can be seen that when the Match 

Distance button is utilized, very few anomalous matches are extracted.  Caution must be 

utilized since images cannot have rotational dissimilarity for it to operate effectively! 

 
CITIPIX (409x409) HYMAP (400x398)  

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6.3.5:    Matches resulting from LoGWaR’s subregion analysis technique (205x205area).  
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 Since the lower left corner did not produce any matches with this configuration 

(using the subregion technique), a new ROI was created for focused extraction of GCPs.  

With the addition of matches from this region (figure 6.3.6), a desirable quantity and 

distribution of GCPs have been produced for global statistical analysis to commence. 
 

HYMAP (400x398) CITIPIX (409x409)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3.6:  An additional ROI added due to sparse content in lower left corner. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RMSDE Plot RMSDE Plot 

Figure 6.3.7: Utilizing RMSDE analysis to judge the accuracy of the registration model. 
 
 As can be seen from the RMSDE analysis (figure 6.3.7), the matches derived with 

the subregion technique and localized statistics enabled, has initially achieved subpixel 

accuracy.  It should be noted that all of the initial matches are within the Distance Match 

specification (2 pixels error) that is used to determine potential matches.  Therefore, the 
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features that have been matched are probably related but some may deviate from the 

model due to imprecise GCPs because of quantization, sampling, parallax, elevation, etc.  

In the previous examples, bad matches were iteratively rejected from the model if they 

deviated from the mean by more than one standard deviation.  For this example, an 

alternative technique will be demonstrated.   

Since LoGWaR allows the user to enter the precision of the model desired, it is 

possible to iteratively remove the match with the largest error (for the given polynomial 

degree) and then recomputed the model based on the remaining matches.  This process 

continues until either the desired precision is reached or there are not enough points left 

to transform the image at the desire polynomial degree.  The following list displays the 

resulting RMSDE Means generated for this iterative process.  This technique is useful to 

achieve the registration accuracy needed (user defined in this example to be less than half 

a pixel) for predictive warping, since the error increases with the scale of the prediction: 
Number of Matches Loaded =          43 

RMSDE Mean =     0.796456 
Degree of Polynomial used Test =       1 

RMSDE Mean =     0.740595 
RMSDE Mean =     0.712932 
RMSDE Mean =     0.691343 
RMSDE Mean =     0.664629 
RMSDE Mean =     0.628197 
RMSDE Mean =     0.604795 
RMSDE Mean =     0.589627 
RMSDE Mean =     0.575741 
RMSDE Mean =     0.558026 
RMSDE Mean =     0.546082 
RMSDE Mean =     0.530231 
RMSDE Mean =     0.515644 
RMSDE Mean =     0.498238 

..................... 
RMSDE SDev =     0.203998 
# of Good Matches =          30 

 
 
 Here the number of matches went from 43 to 30, whereas the RMSDE went from 

~0.8 pixels to below 0.5 pixels, respectively.  This technique is slightly different in that it 

allows the user to uniquely identify the precision of the transform model desired and can 

allow completely autonomous statistical analysis of the match points.   
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 HYMAP (400x398) CITIPIX (409x409) 
 

 

 

 

 

 

 

 

 

 
Figure 6.3.8:   Point Matches remaining from LoGWaR’s iterative statistical analysis of RMSDE <.5 pix 
 

The final match locations are displayed on the images in figure 6.3.8, where the 

blue icons represent the matches removed from the model.  The resulting transform can 

be visually analyzed via the overlaid and AMV (9.55713%) images in figure 6.3.9. 

 Overlaid Image (400x398) AMV Image = 9.55713%  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3.9   Confirming the registration results with visual inspection of overlaid and AMV images. 
 
 Although the AMV seems relatively high compared to previous ‘good’ 

registrations, it should be recalled that the datasets are quite dissimilar in 

grayscale…especially in the water regions (even though a histogram matching operation 
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was performed for registration).  These results will be utilized in section 7.1 to illustrate 

the ease of implementing wavelet sharpening once the images are well registered.  This 

transform model can now be utilized to warp the original CITIPIX image chip at full 

resolution (8192x8192) if the affine chain of manipulations has been maintained for the 

composite transform.  

In order to perform the transform on the original image, it is necessary to update 

the composite transform discussed in figure 6.3.4.  To do this, the latest affine transform 

(developed at the reduced resolution) must be incorporated into the composite matrix..  

Since the image rotation, scale reduction in the wavelet domain, and registration 

transform have all been accomplished in an affine format, they can be combined with the 

commutative technique discussed in Chapter 5.  This process is automatically logged 

within the LoGWaR program (except for the pull-down menu update of the current 

affine) and is displayed below: 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.3

 First t

through comm

operation is im

dimensions.  T

applied in the

results will be

 

Composite Transform Matrix: 
   0.996564   -0.00121325 0.000000 
  -0.00476494      0.987933 0.000000    Current 
  -5.64522      7.10843       1.00000       Affine 
 
     0.000000      -1.00000      0.000000 
      1.00000      0.000000      0.000000 Rotation
     0.000000       8191.00       1.00000 
 
      1.00000      0.000000      0.000000 
     0.000000       1.00000      0.000000 Scale 
     0.000000      0.000000       20.00000 

 

.10  LoGWaR automatically keeps track of image manipulations with affine matrices. 

 

he scale factor, from wavelet decimation or downsampling, is accounted for 

utation and then the rotation.  It should be noted that the order of this 

portant, due to any wavelet padding that was incorporated to obtain dyadic 

he order of the matrix commutations must be in the inverse order as that 

 LoGWaR operations to obtain the correct results.  The composite affine 

 utilized to transform the original scale (8k x 8k) image (figure 6.3.11).  
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Once this is accomplished, the HYMAP image can be upsampled to 20 times its original 

dimensions, utilizing Nearest Neighbor resampling to maintain spectral integrity.  Now 

the images are spatially related for comparison or additional processing.   

Alternatively, the warped CITIPIX image could be decimated with the FWT to 

512x512 and the HYMAP upsampled to 512x512 to allow for wavelet sharpening. This 

would entail transferring the high frequency information from CITIPIX to HYMAP and 

performing the inverse FWT to provide up to four levels of sharpening (reference 

Chapter 7 and Appendix A for more detail on wavelet sharpening). 

 
Figure 6.3.11  The Composite Transform  that can be utilized to warp the original image. 

 

         Rotation Affine  Latest Affine  Scale Affine 

 0.0000 -1.0000 0.0000 0.996564  -0.00121325 0.0000 1.0000 0.0000 0.0000
_ 1.0000 0.0000 0.0000   -0.00476494 0.987933 0.0000 0.0000 1.0000 0.0000

0.0000 8191.00 1.0000 -5.64522 7.10843 1.0000 0
Comp Trans

   
   

=    
   
    .0000 0.0000 20.0000

 
 
 
 
 

-0.00121325 -0.996564 0.0000
_ 0.987933 0.00476494 0.0000

142.169 8303.90 1.0000
Comp Trans

 
 

=  
 
 

0.0000 -1.0000 0.0000 0.996564  -0.00121325 0.0000
_ 1.0000 0.0000 0.0000   -0.00476494 0.987933 0.0000

0.0000 8191.00 1.0000 -112.904 142.169 1.0000
Comp Trans

   
   

=    
   
   

 

 

 

 

 

 

The ability to automatically register images with LoGWaR is dependent on 

isolating similar edge detail within the datasets.  This capability is heavily dependent on 

analyzing the images as similar scale/resolution.  The multiresolution aspects of this 

research allow comparison of data at similar scale for the extraction of related spatial 

frequency detail.  The rationale for automatic analysis of data at similar resolutions can 

be noted from the images in figure 6.3.12.  Here the original CITIPIX is downsampled 

from 20x to 5x the resolution of the HYMAP data.  Even at this reduced scale it is easy to 

see the how automated detail comparison between the two images would be difficult.  

However, once the images have been scaled to the same resolution, the similarity in edge 

detail becomes apparent.   

For this reason, registration at similar resolutions is critical for automatic 

correlation of edges between datasets.  Furthermore, the need for predictive transforms,  
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CITIPIX Chip (Downsampled to 5x)  

 

HYMAP Chip (original scale)CITIPIX Chip (downsampled to 1x) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.3.11:  Comparison of CITIPIX and HYMAP data at 5x and 1x resolutions. 
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accomplished at lower resolutions, becomes necessary when attempting to automatically 

relate multiresolution datasets.  This approach requires incorporation of the affine 

composite transform for relating the original hi-resolution image to the low-resolution 

image space.  All of these techniques have been incorporated into the LoGWaR program, 

with the added benefit of automatic logging and computation of the affine matrices 

necessary to perform predictive transformations. 
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C h a p t e r  7  

ADDITIONAL APPLICATIONS  

As with any research, there is often potential for application beyond the scope of 

the “core” research area.  This section is dedicated to highlighting some of the 

applications that could gain immediate benefit from the registration research presented 

thus far.  Several analytical techniques, such as image sharpening, stacking,  mosaicing, 

fusion, and change detection can now be applied since the datasets have been spatially 

related.  An added benefit of the wavelet based approach for registration, is the potential 

for wavelet based sharpening the low-resolution spectral image plane with the high 

frequency detail derived from the high-resolution data.  In conjunction with the 

sharpened product, there is now potential for pure endmember selection for spectral 

unmixing algorithms.  Some of these applications will be now be discussed.   

7.1  Wavelet Sharpening - High Frequency Detail transfer w/FWT-1 

In continuation of the process flow developed for the LoGWaR technique, figure 

7.1.1 includes the additional steps required for Spatial Sharpening of images in the 

Wavelet domain.  Due to competing resources (photons), remote sensing system can 

either provide high-resolution spatial information or detailed spectra, but not both 

simultaneously.  By utilizing the process above (figure 7.1), it should be possible to 

transfer the image detail from high-resolution images to low-resolution images.  A recent 

SPIE paper seems to corroborate this idea, "if the data are taken nearly at the same time, 

some cross-sensor resolution enhancement techniques are able to produce a merged 

image as close as possible to what would be a high spatial resolution hyperspectral 

image…Multiresolution Wavelet Decomposition is the most interesting tool to perform 

this process." (Peytavin 1996) 

When utilizing wavelet analysis, special considerations must be undertaken to maintain 

the proper scale relationship.  The dyadic requirement of the FWT mandates that these similar 

regions must be pixels related by a ‘power of 2’ in both the ‘x’ and ‘y’ dimension.  Since the 
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largest common dyadic size image chip in figure 4.1.1 is 2048x2048, these areas will be utilized 

for registration.  It is also possible to ‘zero-pad’ the image to obtain a dyadic size, but, caution 

must be introduced here if combined with image rotation.  The reasons for this were explained 

in Chapter 5, when it becomes necessary to keep tract of image manipulations with the 

composite transform.  The figure below demonstrates this dyadic common area requirement: 

  
 

Common 
Dyadic Size 
Image Chip 

Pan 
Image 

Spectral 
Image 

4x6 4x4 

2x3 2x2 

 

 

 

Figure 7.1.1: Extraction of common areas with dyadic dimensions. 

Since it is often useful to relate the process flow with real data, a test dataset can be 

viewed in figure 7.1.1.  The high-resolution (hi-res) image, which will be utilized for this 

test case is the CITIPIX (6 inch) image of Mobile, AL.  The corollary hyperspectral (HS) 

data is a HYMAP (1 m) image that was taken of the same region.  When utilizing the 

FWT, some unique requirements for specific image dimensions and relationships between 

images are required and so will require additional preparation (figure 7.1.2).   

HYMAP ROI (2048x2048) CITIPIX ROI (8192x8192)
 

 

 

 

 

 

 

Figure 7.1.2: Mobile dataset with dyadic image chips relating CITIPIX to HYMAP. 
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Now the hi-res image is resampled to the closest dyadic factor of the spectral image size.  

For our test case using the CITIPIX (6 inch) RGB image and the HYMAP (3 meter) spectral 

cube, it is necessary to resample the CITIPIX data to the nearest power of two (2n) resolution.  

Since there are approximately 118 inches in 3 meters, then we could decompose 118 into its 

dyadic constituents (59, 29.5, 14.8, 7.4, & 3.7) and find the closest to 6 inches.  Since 7.4 is the 

closest dyadic constituent, it is necessary to resample 6 inch pixels to 7.4 inch pixels.  This will 

require the CITIPIX image to be processed through the FWT using four iterations.  The 

resulting “scale” image, (4 , )x yϕ , will then be 16x smaller (24) and contain a “detail” plane,  

(4 , )x yΨ , containing the 4 highest frequency bands that have been stripped off.   

An alternative approach is to determine the scale difference between the two datasets: 

(7.1)  SCALE = (HYMAP Resolution/ CITIPIX Resolution) = (118/6) =19.667 

This indicates that the CITIPIX image is 19.667 times the resolution of the HYMAP dataset.  

Since the FWT requires a dyadic scale relationship, it is reasonable to utilize the nearest lower 

power of two.  So, we can easily compute this value in IDL with the following formula: 

 (7.2)  DYADIC_Power = FLOOR(alog(SCALE)/alog(2)) = 4 
  
 (7.3)  DYADIC_Scale = 2^DYADIC_Power = 2^4 = 16 
 
In this example we could warp the CITIPIX image to 0.8136 scale (16 / 19.667) to attain 

the required dyadic relationship.  So, the CITIPIX image can now be related to the 

HYMAP image after 4 decimations of the FWT. 

Since the CITIPIX imagery is 3-band RGB, the spectra can tolerate modification 

through interpolation with minimal impact.  So, either bilinear or bicubic interpolation 

can be utilized for resampling the data since it provides “smoother” results and will 

provide crisper edges for sharpening.  In the case of the multispectral registration to 

hyperspectral, nearest neighbor resampling would be utilized when it is important to 

maintain the spectra.  
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Figure 7.1.3: Dyadic ROI from HYMAP and CITIPIX that were registered in Section 6.3. 

Onc

HYMAP ROI (2048x2048) CITIPIX ROI (8192x8192) 

e the wavelet decimated CITIPIX image (the scale plane ( , )x yϕ ) has been 

registered with the appropriate spectral band of the HYMAP dataset (figure 7.1.3), it is 

possible to transfer the high frequency detail ( ( , )x yΨ ) that has been iteratively stripped 

erring the de

tral band of HYMAP.  Now that the “scale 

off utilizing the FWT.  This unique applicati volves transf tail plane of 

the CITIPIX image over to the registered spec

on in

plane” of the warp image is of the same scale, dimension, and orientation of the low-res 

HS image, it is possible to perform the FWT-1 on the “spectral band/warp detail plane” 

combination (figure 7.1.4).  Recall that this combination is both the warped scale 

( ( , )x yϕ ) and the warped detail plane ( ( , )x yΨ ) now combined into a wavelet decimate

m ed prior to the transfer of detail ation.  In this way we can elegantly add 

detail at increasingly greater dyadic frequencies for band sharpening analysis. 

 Pan 

d 

ip is 

aintain  inform

Figure 7.1.4: Transferring “Detail Plane” from a Pan to a Spectral image before FWT-1. 

Image 
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FWT to 
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Sharpened 
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structure.  It is essential to ensure the dyadic image size and scale plane relationsh
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Since the 8kx8k CITIPIX image is too large to demonstrate the sharpening results, 

another subregion will be utilized for analysis.  Note that the sharpening can now occur 

over the entire 8kx8k area or on any individual subregion of interest.  The following 

regions will be utilized for demonstrating the wavelet sharpening technique (figure 7.1.5). 

 

 

and CITIPIX that will be utilized for sharpening. 

ted with two iterations of the FWT to produce a 

scale ba

CITIPIX ROI (2048x2048) HYMAP ROI (512x512) 

 

 

 

 

Figure 7.1.5: Dyadic sub-ROI from HYMAP 

ow the CITIPIX image is decima

nd ( x yϕ ) with the same dimensi

process can be viewed using Mallat’s Representa

into the horizontal, vertical, and diagonal com

N

( , ) ons as the HYMAP image (512x512).  This 

tion, which separates the detail planes 

ponents (figure 7.1.6). 

Figure 7.1.6: Two iterations of the FWT, utilized to decimation the CITIPIX image. 
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 Now the CITIPIX subband and the HYMAP spectral band regions are at the same 

resolution and dimension.  It is now possible for the transfer of high frequency spatial 

detail from the CITIPIX image (

77

8:  HYMAP band embedded within the CITIPIX 

( , )x yΨ ) to HYMAP.  This is physically accomplished 

by tra

 

Figure 7.1.7: Switch the CITIPIX scale plane with the HYMAP band in the wavelet matrix. 

ith the HYMAP band now imbedded within the high frequency content of the 

CITIPIX wavelet matrix (figure 7.1.8) it is possible to perform an FWT-1 to reconsitute 

the detail into the HYMAP image.  At each inverse FWT level, the overall radiometry of 

the H  

Figure 7.1. detail planes. 

ding the CITIPIX subband with the HYMAP spectral band into the wavelet matrix 

(figure 7.1.7). 

 

CITIPIX Scale HYMAP Band

 

 

W

YMAP image is preserved in the sharpened product.  This is especially useful for

any additional processing such as spectral unmixing. 

 



 The resul  illustrate 

the edge enhancement capabilities of the wavelet sharpening.  The following four images, 

figure 7.1.9, represent the HYMAP band during three stages of the sharpening process 

(A-C) and the original CITIPIX image for comparison (D). 

arpeni  (A-C) IX area (D). 

ts of the FWT-1 can be viewed at the same dimensions to better

 

 

 

 

 

 

 
     HYMAP 4-1 with CITIPIX   HYMAP 2-1 with CITIPIX  

  
 

 

 

 

 

     HYMAP 1-1 with CITIPIX   CITIPIX Full Resolution 

A) B)

C) D)

Figure 7.1.9:  Results of the HYMAP sh ng  compared to the original CITIP
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Since the FWT utilizes the Haar wavelet, some edge artifacts are evident in the 

sharpened product.  This is due, in part, to the “blocky” nature of the Haar ‘mother 

wave ther 

lows 

e 

displacement (parallax effects) as they may apply to the sharpened product.  Any relief 

displa

e 

still be 

a direct comparison/analysis of 

the sharpened HYMAP dataset (at various resolutions) to the original spectral data is 

possi

t 

e 

all process flow for sharpening images based on this technique follows in 

figure 7.1.10.  This process has been adapted from the registration flowchart to highlight 

special

let’.  However, there are many benefits in utilizing the Haar, compared to most o

wavelets.  First, the ability to maintain overall radiometric integrity (Appendix A) al

for correct application of many spectral algorithms such as unmixing.   Also, since the 

FWT resampling is lossless, the data can be completely recovered at any time and each 

level maintains the same overall grayscale values as the original image.  Additionally th

speed of the FWT makes this technique very attractive when processing large images.   

Also, it is important to note the artifacts that will be introduced as a result of relief 

cement (or its effects such as shadowing) between the datasets will hamper 

attempts at good sharpening.  Because of the detrimental effects that this may have on th

sharpened products, it is often necessary to obtain datasets with similar viewing 

geometries to produce satisfactory results.  Even though the HYMAP and CITIPIX test 

case in Figure 7.1.8 had similar viewing geometries, this edge artifact effect can 

noticed on the windowed building above the dry-dock. 

Once wavelet sharpening has been accomplished, 

ble.  This comparison is often worthwhile, since it can add greatly to an analyst’s 

knowledge of a scene when both the hi-res spatial information and the spectral conten

can be observed together.  An exemplar case, is the ability to compare spatial knowledg

of a panchromatic band, spectra of an HS cube, and radiometry from a low-res thermal 

band in unison. 

The over

 requirements of the FWT. 
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Figure 7.1.10: The Multisensor Image Registration and Sharpening Process 
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7.2  Pure Pixel selection for Endmember Libraries 

“Pure endmember” selection for spectral unmixing often requires the supervised 

select ross & 

n 

Figure 7.2.1: The ability to select ‘pure’ endmembers is often based on edge detail perception. 

The utility of supervised unmixing algorithms to discriminate species, depends heavily 

on th

ion of “pure endmember” classes.  This is especially true for stepwise unmixing (G

Schott 2000).  Through the sharpening process highlighted here, it is now possible to utilize 

the detail from the higher resolution image to identify homogeneous spectral regions within 

the low-resolution spectral plane.  What may appear to be a ‘pure spectra’ in the low-resolutio

HS band may not in the high-resolution image (figure 7.2.1). 

 

 

 

 

 

 

 

 

 

Original HYMAP Sharpened HYMAP (4x) 

Supervised EndMember 
lection (appears pure): 

Supervised EndMember 
selection (appears unpure): 

 
se

e ability to accurately define “pure endmembers” within a spectral data cube.  In fact, 

without “pure endmembers”, stepwise unmixing loses much of its capability to accurately 

unmix spectral data (Gross & Schott 2000).  Conversely, with “pure endmembers” comprising 

the endmember library, the algorithm can accurately unmix spectral compositions at the 
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subpixel level.  The ability to incorporate the high-frequency detail directly into low-resol

spectral bands, greatly increases the ability to select pure pixels and provides critical support 

for algorithms such as stepwise unmixing. 

ution 

________________________________________________________________ 

The Following Applications have not been implemented  or pursued under this 

effort

_________________________________________________________________ 

7.3 Super-Resolution by combining Spatial Sharpening with Spectral Unmixing 

With the ability to ‘sharpen’ images and to ‘spectrally unmix’ end-members at the 

subpi

First, it would be essential to analyze the subpixel edge-detail (high frequency content) 

within

 of 

 

 

 

.  They are only mentioned as potential areas for further research, since they all 

require high degrees of spatial correlation that can be obtained with the registration 

techniques developed in this thesis. 

xel level, it should be possible to combine the results of these two operations to create a 

super-resolution product that incorporates both properties.  This hybrid product could be 

produced from the byproducts of sharpening and unmixing.    

 a sharpened image pixel.  Once this is done, the super-pixel would be divided into 

regions  (connected components) based on the edge-detail and texture.  The resulting area

each connected component could then be normalized at the pixel level to determine a percent 

fill factor (fraction map) for each region.  Second, the ‘fraction maps’, which normally result 

from an unmixing operation, would be compared at the super-pixel level to the sharpened 

product.  This comparison would provide the best estimate, as to how a super-pixel would be 

comprised based on spatial structure and spectral content. (figure 7.3.1). 
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Figure 7.3.1: Combine the results of Spectral Unmixing and Sharpening to create Super-Resolution images. 

7.3 Cross-Band Correlation - Detail Transfer to other spectral bands 

If there is a high degree of correlation, band-to-band, between the multispectral (warp 

image) and hyperspectral data (reference image), then it should be possible to 

interpolate/extrapolate sharpening to remaining planes of the hyperspectral cube.  Schott 

maintains that cross-band correlation can be accomplished, “if we assume that the reflectance 

in the two bands are approximately correlated with zero bias such that:  

(7.3.1)  2 1r Cr ε= +  

where r1 and r2 are the reflectance values in band 1 and band 2, C is approximately a constant, 

and ε  is the error due to the lack of perfect correlation between r1 and r2.”(Schott 1997)  Here, 

reflectance would be related to the intensity level (digital count/grayscale) of the spectral plane 

data.   

The ability to transfer detail information to additional spectral planes, beyond the band 

related image planes of the high-resolution and lower resolution images, has important 

applications.  Propagation of high frequency detail into additional wavelengths would allow 

additional analysis in those bands of interest.  In addition, composite analysis could now be 

accomplished on the entire spectral cube, at the new resolution. 

The ability to sharpen non-correlated bands can also be accomplished if there is a known 

relationship between bands of interest.  For instance, the ability to sharpen a LANDSAT 
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thermal band with the information from the panchromatic band could be accomplished 

due to the known relationship between the data even though the end detail may appear 

quite different.  This is often useful to obtain knowledge of how the radiometry of a given 

area compares to known geography that may be readily apparent in the panchromatic or 

even MS bands.   

Since the LANDSAT bands already have dyadic relationships, this could easily be 

accomplished by bringing the Pan or MS band into the LoGWaR program as the 

Reference Image and the Thermal band as the Warp Image.  Once these images are 

resident in LoGWaR, it is straightforward to perform wavelet decimation on the hi-res 

Pan or MS image from the Wavelet Tools pull-down menu.  Since there is a known 

relationship between the resolutions of these bands (Pan 4x, MS 2x, Thermal 1x), it is 

possible to perform one or two iterations of the FWT and transfer the detail planes of the 

hi-res image to the thermal band.  Once this is accomplished it is just as easy to perform 

an inverse FWT on the thermal data to provide a sharpened result.  

7.5 Utilizing the AMV (difference) image for Change Detection 

With the ability to register two images at the subpixel level, the difference between those 

two images (AMV) can be readily utilized as a tool to detect change.  This ‘change detection’ 

can be utilized to detect changes in agricultural crops, environmental concerns (erosion, fire 

damage, etc), and even moving objects, if the resolution is good enough.  In the example of 

the LANDSAT test case from Section 6.2, the AMV can even be utilized to determine cloud-

cover changes (figure 7.5.1). 
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Figure 7.5.1: The AMV image can be utilized to detect change from image-to-image. 

 

7.6 Compression of the AMV image for High Bandwidth Video Transfer 

Many of today’s digital video recorders offer advanced features such as motion 

compensation to remove the human induced jitter.  This technique is basically an image 

registration technique that operates under very constrained limits (small amounts of rotation 

and translation).  The ability to compute this registration in realtime allows for the motion 

compensation.  
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Since the AMV can be utilized image-to-image to capture change, it is easy to imagine 

how this can be of utility in image streaming applications.  If the first frame of the video is 

maintained, it is possible to create the AMV image from each following image compared to the 

first.  This would, in essence, be a ‘change detection’ video sequence that would allow for very 

high levels of compression due to the degree of spatial correlation in the data.   

For example, run-length-encoding (RLE) is based on the premise that data can be 

compressed due to the repetition of grayscale values and the minimal memory required to save 

small difference values.  In the case of the AMV, the repetitious occurrence of zero (or near 

zero) grayscale values, should allow for a high degree of compression.  It would be imaginable 

to compress an entire video sequence in this manner for transmission over communications 

lines and then uncompress and rebuild the video sequence frame by frame.  This would be 

useful in instances where the communications paths are severely restricted and processing time 

is of secondary concern.  Two videos sequences would then be available for analysis, the 

‘difference’ video and the original. 

7.7 Frame Stacking for increasing Image S/N Ratio 

Although this thesis will not discuss the image stacking process in detail, it is suffice to 

mention that this process is an excellent technique to increase image S/N by averaging out the 

noise.  The ‘overlaid images’ that have been produced to visually inspect the accuracy of 

registration, actually average the registered images pixel-to-pixel.  This simple process has been 

used for years in astronomy to increase the signal of ‘dim’ objects.  The same technique can be 

utilized for remotely sensed images taken in low-light situations to improve the image S/N.  
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C h a p t e r  8  

SUMMARY  

Due to the increasing availability of both spaceborne and airborne imagery and spectral 

datasets now becoming available, multi-sensor image registration is becoming increasingly 

important.  Utilizing the LoG thresholding process to automatically determine GCPs, in 

concert with wavelet multiresolution analysis, it is possible to automate this often time 

consuming process.  This is possible due to the ability to compare images with similar 

frequency content through “Wavelet Decimation” or even standard downsampling procedures 

and automatically relate this edge detail utilizing point-matching techniques. 

The ability to spatially relate images from different sensors allows for direct comparison 

and augments spectral, temporal, and spatial analysis.  So, once the multi-sensor images have 

been registered, there are several applications that can be implemented to compare and/or 

fuse the information content.  One application is the ability to “sharpen” the lower resolution 

spectral image with the detail gained from the high-resolution image for additional analysis.  In 

this way, visual interpretation of the spectral data is more easily accomplished and additional 

spectral analysis is made possible.  Additionally, applications such as change detection, image 

stacking, image mosaicing, cross-band correlation and spectral unmixing become more 

feasible.   

In fact, many current remote sensing applications start with the assumption that two 

datasets are inherently registered (a fairly large assumption).  This thesis attempts to add to the 

current body of knowledge in the area of automated image registration (section 8.1) and 

proposes new applications for this process. 
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8.1 Key Research Advancements 

8.1.1 Automated GCP Selection 

Critical to this research is the ability to extract similar GCPs from spatially related image 

sets.  By utilizing the properties of the LoG filter to automatically detect and extract similar 

edges from two separate images, it is possible to threshold that result and obtain initial GCP 

sets.  This technique lays the foundation for the entire thesis.  The incorporation of techniques 

to extract GCP from both subregions and subbands using the LoG technique allows for the 

accurate registration of large multiresolution images with invariance to shift, rotation, and 

scale. 

8.1.2 Automated Correlation of related GCPs using Point Matching Theory 

Leveraging the ability of a relative distance matching technique to relate star fields, this 

thesis enables the registration of images once they have been boiled down to edge maxima 

point sets through the LoG thresholding process.  Similar techniques have been created to 

compare possible GCP matches based on angle, scale, LoG Maxima value, and local statistical 

analysis of the match point distance. 

8.1.3 Automated Statistical Analysis of RMSDE for Registration Accuracy 

Once the GCPs have been extracted across the entire image, using subregion or subband 

techniques, statistical analysis of how well each matching GCP agrees with the overall 

transform model can be computed.  This technique compares the RMS Distance Error of each 

matching point to every other point to reject outliers and to improve the accuracy of the 

model by removing matches with the most error.  This quantitative registration metric lends 

itself to automation by allowing the user to define the level of error required in the model and 

provides a mechanism to iteratively strip off the matches that deviate most until the desired 

registration accuracy is attained. 
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8.1.4 Embedded Wavelet Structure to utilize Multiresolution Registration 

By utilizing a wavelet structure for multiresolution registration it is possible to gracefully 

analyze images of different resolutions and register them without loss of high frequency 

content.  By reducing the resolution of one image to the other using wavelet techniques, it is 

possible to utilize the LL Subband for registration similar to two image of equal resolution.  

Once the registration has been accomplished at the lowest common resolution, it is possible to 

predict the transform at any other wavelet level through manipulation of a composite affine 

transform.  This ability allows analysts to compare the images at multiple levels of resolution 

(scales) and to quickly and efficient transition between these levels (zoom in and out). 

8.1.5 Manipulations Automatically incorporated into Single Composite Model 

With integration of composite transforms into the registration scheme, it is possible to 

incorporate several image manipulation automatically into a single, composite transformation 

model.  This ability is predicated on the special commutative property of affine transforms and 

minimizes degradations due to numerous resamplings.  This capability allows for 

multiresolution analysis by manipulating the scale coefficient in the affine 3x3 matrix and is a 

convenient way to mathematically express a series of image manipulations. 

8.1.6 Predictive Transformation of hi-res Images from low-res coefficients 

The multiresolution capabilities of the wavelet structure combined with the ability to 

easily manipulate composite affine relationships allows for the ability to register images at a 

reduced resolution and to predict the transform necessary to warp the original scale image.  

Also, by incorporating the global statistical analysis of RMSDE, it is possible to determine the 

expected model error at the original scale.  The predictive transform technique not only allows 

for efficient registration of very large datasets at a reduced scale, it also provides a way to relate 

multiresolution image datasets. 
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8.1.7 Radiometrically accurate Wavelet Sharpening Technique 

The development of a radiometrically accurate Wavelet Sharpening technique incorporates 

many of the earlier advancements mentioned above.  The ability to relate images at the lowest 

common scale, determine the transform for the original high resolution image, decimate the 

warped image to the nearest dyadic level, transfer the high frequency detail, and finally 

reconstitute the low resolution image with the inverse FWT requires all of the above processes, 

integrated into a single application. 

8.1.8 Techniques for Judging Registration Accuracy 

New techniques have been developed in this research to judge the registration accuracy 

of the LoGWaR process.  The Absolute Mean Variance (difference image) metric provides 

both a quantitative and qualitative measure of registration accuracy.  While the RMSDE metric 

provides a quantitative and automated measure of how well the extracted and matched GCPs 

conform to a specific polynomial model.  Both the overlaid image product and especially the 

‘flicker test’ provide excellent qualitative mechanisms to corroborate the registration accuracy 

of warped images through user confirmation.  All of these tests combine to give good 

confidence in the accuracy of the registration process developed in this thesis. 

8.2  Related Research  

Many of the capabilities developed in this thesis for automatically registering multisensor 

images have already been modified, streamlined, and incorporated into other applications for 

specific registration tasks.  Matthew Egan and Peter Kopacz, of Eastman Kodak, have 

seamlessly integrated and optimized the process developed here to automatically register 

multiresolution datasets in preparation for multispectral sharpening using panchromatic 

imagery.  Dr. William Reynolds, also of Eastman Kodak, has utilized GCP extraction and 

point matching techniques developed here as input to a zero-tree prediction and hierarchical 

estimation using high frequency wavelet subbands to increase registration accuracy at higher 

resolutions (Reynolds & Walli, 2003).  Finally, Gabriel Dore of RIT and Derrick Campbell of 

Eastman Kodak are independently utilizing the automated registration techniques developed 

here to determine motion estimation vectors for video super-resolution research. 
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Appendix A 
 

“1-D” Haar Fast Wavelet Transform (FWT) Example 
 
Adapted from notes provided during Digital Image Processing II, Dr. Harvey Rhody 
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Figure A.1: The Haar Fast Wavelet Transform. 
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Figure A.2: An Example “1-D” Signal. 
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tilizing the Haar FWT: 
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Figure A.3: The resulting Scale and Detail products, s(1) , after first pass of FWT. 
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Figure A.3: The resulting Scale and Detail products, s(0) , after second pass of FWT. 
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“2-D” Haar FWT Example 
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Figure A.4: Synthetic Image with Grayscale values representing scene compositions. 
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Step 1: Decimate Image in “x” direction (x↓). 
 

[ ) [ ) [ ) [ ) [ ) [ ) [ ) [ )

[ ) [ ) [ ) [ ) [ ) [ ) [ ) [ )

[ ) [ ) [ ) [ ) [ ) [ )

1 0
0 0,2 0,2 2,4 2,4 0,2 0,2 2,4 2,4

1 0
1 0,2 0,2 2,4 2,4 0,2 0,2 2,4 2,4

1 0
2 0,2 0,2 2,4 2,4 0,2 0,2

3 3 3 3 5 5 5 5( , ) 3 0 5 0
2 2 2 2

3 3 3 3 5 8 5 8( , ) 3 0 6.5 1.5
2 2 2 2

5 5 5 5 8 1 8 1( , ) 5 0
2 2 2 2

f x y

f x y

f x y

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

+ − + −
= + Ψ + + Ψ = + Ψ + + Ψ

+ − + −
= + Ψ + + Ψ = + Ψ + −

+ − + −
= + Ψ + + Ψ = + Ψ + [ )

Ψ

[ )

[ ) [ ) [ ) [ ) [ ) [ ) [ ) [ )

2,4 2,4

1 0
3 0,2 0,2 2,4 2,4 0,2 0,2 2,4 2,4

4.5 3.5

5 8 5 8 1 1 1 1( , ) 6.5 1.5 1 0
2 2 2 2

f x y

ϕ

ϕ ϕ ϕ ϕ

+ Ψ

+ − + −
= + Ψ + + Ψ = − Ψ + + Ψ

 
Then for, 
 

1 0 10 10 10
0
1 0 10 10 10
1
1 0 10 10 10
2
1 0 10 10 10
3

( , ) : (3,5); (0,0); (3,5,0,0)

( , ) : (3,6.5); (0, 1.5); (3,6.5,0, 1.5)
( , ) : (5, 4.5); (0,3.5); (5,4.5,0,3.5)
( , ) : (6.5,1); ( 1.5,0); (6.5,1, 1.5,0)

f x y a c s
f x y a c s
f x y a c s
f x y a c s

= = =

= = − =

= = =

= = − = −

−
 

 95



So, in image form, the scale plane 10
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Step 2: Now decimate the scale plane ( 10ϕ ) in the “y” direction (y↓). 
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0

1 11 11 11
1

( , ) : (3,5.75); (0, 0.75); (3,5.75,0, 0.75)

( , ) : (5.75, 2.75); ( 0.75,1.75); (5.75, 2.75, 0.75,1.75)

f x y a c s
f x y a c s

= = − = −

= = − = −
 

 
 

So, the image scale plane 11 3 5.7
5.75 2.75

ϕ =
5

 & the detail plane 11 0 0.7
0.75 1.75

−
Ψ =

−
5

 

 
This represents the 1st dyadic (power of 2) multiresolution decomposition.  The scale 
image plane ( 11ϕ ) is half the resolution of the original image in both “x” and “y”. 
 
Step 3: Now decimate the scale plane ( 11ϕ ) again in the “x” direction (x↓). 
 

11
3 5.753 5.75

5.75 2.75 5.75 2.75
ϕ = =

[ ) [ )

[ ) [ )

0 0,1 1,2

1 0,1 1,2

( , ) 3 5.75

( , ) 5.75 2.75

f x y

f x y

ϕ ϕ

ϕ ϕ

= +  ≡  = +  
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[ ) [ ) [ ) [ )
2 1
0 0,2 0,2 0,2 0,2

3 5.75 3 5.75( , ) 4.375 1.375
2 2

f x y ϕ ϕ+ −
= + Ψ = − Ψ  

[ ) [ ) [ ) [ )
2 1
1 0,2 0,2 0,2 0,2

5.75 2.75 5.75 2.75( , ) 4.25 1.5
2 2

f x y ϕ ϕ+ −
= + Ψ = + Ψ  

 
Then for, 
 

2 1 21 21 21
0

2 1 21 21 21
1

( , ) : (4.375); ( 1.375); (4.375, 1.375)

( , ) : (4.25); (1.5); (4.25,1.5)

f x y a c s
f x y a c s

= = − = −

= = =
 

So, the image scale plane 21 4.375
4.25

ϕ =  & the detail plane 21 1.375
1.5

−
Ψ =  

 
Step 4: Now decimate the scale plane ( 21ϕ ) again in the “y” direction (y↓). 
 

21 4.375
4.25

ϕ = [ ) [ ){ }2 2
0,1 1,2( , ) 4.375 4.25f x y ϕ ϕ≡ = +  

 
 

[ ) [ ) [ ) [ )
2 2

0,2 0,2 0,2 0,2
4.375 4.25 4.375 4.25( , ) 4.3125 0.0625

2 2
f x y ϕ ϕ+ −

= + Ψ = + Ψ  

 
Then for, 
 

2 2 22 22 22( , ) : (4.3125); (0.0625); (4.3125,0.0625)f x y a c s= = =  
 
 
So, the image scale plane 22 4.3125ϕ =  & the detail plane 22 0.0625Ψ =  
 

At this point, the original image has been decomposed twice with the FWT and the 

scale plane ( 22ϕ ) is composed of only one “super-pixel”.  This super-pixel value 

represents the average of the 16 pixels in the original image.   

 
22 3 3 5 5 3 3 5 8 5 5 8 1 5 8 1 1 69 4.3125

16 16
ϕ + + + + + + + + + + + + + + +

= = =  

 
The ability of the FWT to preserve the radiometry, on average (at each decimation), is 

important for many spectral applications including “unmixing”.  In this way, overall 

radiometry is exactly preserved while high frequency information is stripped away. 
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Figure A.5:  Summary of FWT Image Decomposi ashed boxes represent non-essential steps). 
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The FWT Scale/Detail Pyramid representation, as developed by Mallat (Mallat 89), 

is useful for two reasons.  First the decomposition results in the same size matrix (4x4) as 

the original image, so it does not require additional storage requirements.  Secondly, it 

allows for immediate analysis of detail in the horizontal, vertical and diagonal directions, 

while still producing the reduced resolution scale image (figure A.7).  The only 

questionable requirement is the necessity for additional image processing steps 

(represented by the dashed boxes in figures A.5 and A.6) to obtain the vertical and 

diagonal detail planes. 

Figure A.8:  Mallat’s FWT Pyramid, showing that a 4x4 information matrix is retained. 

 

 

Figure A.7:  Mallat’s FWT Pyramid, showing that a 4x4 information matrix is retained. 
 

One iteration of the FWT, on a real image, can be scene in Figure A.8 below: 
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Two iterations of the FWT, on the same image, can be scene in Figure A.9 below: 

Original Image 2 FWT Iterations

FWT2
LP/HP

FWT1
HP/LP

(Rows/Cols)

Vertic

HP
(Rows/C

LP/HP
(Rows/Cols)

FWT2
HP/HP

FWT2
HP/LP

FWT2
LP/LP

FWT Products

Figure A.9:  Mallat’s FWT Pyramid, showing the 2  Interation and related products. 

 

So, each iteration of the FWT strips the image of its highest remaining frequencies, un

none remain as demonstrated in Figure A.10: 

til 

Figure A.10:  Mallat’s FWT Pyramid, showing a full decomposition of the original image. 
A faster FWT decomposition would negate these additional steps, if the vertical and 

diagonal detail planes were not required.  This representation may not be as useful for 

analysis (since the vertical detail is stretched and there is no diagonal detail represented), 

but the processing requirements are much less.  This is because each iteration now 

requires 4 steps, instead of 6, saving 33% in processing for each stage (fig A.11).  So, 

Mallat’s Representation actually requires 50% more processing than what is required to 

orthogonally decompose the original image and still retain the ability to perfectly 

reconstruct it through the FWT-1. 

 

nd
 

al Detail

FWT1
/HP

ols)

Diagonal Detail

FWT1

Horizontal Detail
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Original Image Detail in “x” Scale in “x” Detail in ”y”

Scale in 
“x” & ”y”

Figure A.11:  FWT with minimum required processing steps (4). 
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The Inverse FWT (FWT-1): 

 
In order to prove that the FWT is an orthogonal decomposition, it is necessary to 

demonstrate the ability to precisely reconstruct the original signal from the scale plane 

and the detail planes.  As expected, this process is very similar to the forward FWT, only 

in reverse: 

Step 1: Reconstitute the scale plane ( 22ϕ ) in the “y” direction (y↑) with  22Ψ .

22 4.3125ϕ = ; 22 0.0625Ψ =  

 

    
2 1 22 22

0( , ) 4.3125 0.0625 4.375f x y a c = + = + = 
 

21ϕ  
2 1 22 22

1( , ) 4.3125 0.0625 4.25f x y a c= − = − =  
=

 

So, the image scale plane 21 4.375
4.25

ϕ =  & the detail plane, stored earlier 21 1.375
1.5

−
Ψ =  

 

Step 2: Reconstitute the scale plane ( 21ϕ ) in the “x” direction (x↑) with . 21Ψ

21 4.375
4.25

ϕ = ; 21 1.375
1.5

−
Ψ =  

 

[ ) [ )

[ ) [ )

11 11 11 21 21 21 21
0 0 00 0,1 0 1,2

11 11 11 21 21 21 21
1 1 11 0,1 1 1,2

;

;

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

= = +Ψ

= = +Ψ

0 0

1 1

−Ψ

Ψ

1 1 21 21 21 21
0 0 0 0 0 11
1 1 21 21 21 21
1 1 1 1 1

( , ) [ ; ]

( , ) [ ; ]

f x y a c a c
f x y a c a c−

   ϕ
 = + −  = 

= + −  
 

 

11 4.375 ( 1.375) 4.375 ( 1.375) 3 5.75
4.25 1.5 4.25 1.5 5.75 2.75

ϕ
+ − − − 

= = + − 
    ( new scale plane) 

As before, the earlier stored detail plane, 11 0 0.75
0.75 1.75

−
Ψ =

−
 is used for reconstituting 

in the next stage of the FWT-1. 

 

21 22 22
0

21 22 22
1

ϕ ϕ

ϕ ϕ

= +Ψ

= −Ψ
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Step 3: Again reconstitute the scale plane ( 11ϕ ) in the “y” direction (y↑) with . 

(T

11Ψ

he formulation for ( , )f x y using the “a” and “c” notation is left out for clarity.) 

11 3 5.75
5.75 2.75

ϕ = ; 11 0 0.75
0.75 1.75

−
Ψ =

−
 

 

1 0

11
00 00 10 10
11 11 11 1110
00 00 10 1010 00

10 10 11 11 11 11
01 11 01 01 11 11

11 11 11 11
01 01 11 11

5)
3 0 5.75 ( 0.75)

5.75 ( 0.75) 2.75 1.75
5.75 ( 0.75) 2

ϕ ϕϕ ϕ
ϕ

ϕ ϕ ϕ ϕ
ϕ ϕ

 
−Ψ −Ψ  − − − 

= = =   + − +   +Ψ +Ψ
  − −−Ψ −Ψ  

3 5
3 6.5
5 4.5

.75 1.75 6.5 1

  
   
   =
   
   −   

11 11 11
3 0 5.75 ( 0.7ϕ ϕ  + −+Ψ +Ψ +

10
10

 

So, in image form, the scale plane 10

3 5
3 6.5

6.5 1

ϕ = 10

0 0
0 1.5
0 3.5
1.5 0

−
Ψ =

−

 & recall that
5 4.5

  

tep 4: Finally, the scale plane ( 10ϕ ) is reconstituted in the horizontal (x↑) with 10ΨS . 

(Again, the formulation for 1 0( , )f x y using the “a” and “c” notation is left o orut f  clarity.) 

10

3 5
3 6.5
5 4.5

6.5 1

ϕ = ; 10

0 0
0 1.5
0 3.5
1.5 0

−
Ψ =

−

 

10 10 10 10
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+ − + −    ±Ψ ±Ψ    
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   So, the final scale plane is derived through the FWT-1, and a 

perfect reconstruction of the original image is reproduced.
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Figure A.6:  Summary of FWT-1  Image Reconstitution (dashed boxes represent non-essential steps). 
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A p p e n d i x B  

SHARPENING 

The radiometrically accurate wavelet sharpening process, proposed in section 7.1, can be 

compared below with Munechika’s sharpening method devised in 1990. 

B.1  Sharpening via Munechika’s method 

“One of the most straightforward methods of fusing multispectral data with higher-

resolution panchromatic data relies on the assumption that there is some degree of correlation 

between the multispectral band and the pan band brightness values.” (Schott 1997, pg 310)  

Utilizing this concept, Munechika et. el., devised a method to merge multisensor data.  

Specifically, they tested their concept by merging SPOT 10m panchromatic images to Landsat 

TM 30m multispectral data.  Munechika’s method can be summarized in the following steps 

(Munechika 1990, pgs 12-13) : 

1) The SPOT image is geometrically registered to the Landsat images. 

2) A medium resolution panchromatic image is created from a weighted average of the 

Landsat TM bands 1 through 4.  This synthetic image approximates the same 

spectral characteristics as the high resolution SPOT panchromatic channel. 

3) The histogram of the SPOT panchromatic image is then linearly adjusted to the 

histogram of the synthetic TM panchromatic image.  This transformation will, to the 

first order, account for the differing atmospheric and sensor effects between the 

SPOT and the Landsat TM images. 

4) The images are then merged to create a high resolution, multiband hybrid image.  

The merging algorithm is: 
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(B.1)  ( )( ) TM
Hybrid Multiband SPOT Pan

Syn TM Pan

DC iDC i DC
DC

 
= ⋅  

 
 

where: 

( )Hybrid MultibandDC i = the digital count of the ith band in the hybrid image 

SPOT PanDC  = the digital count in the adjusted panchromatic SPOT image 

( )TMDC i  = the count in the ith band of the original multispectral image 

Syn TM PanDC  = the digital count in the synthetic TM panchromatic image 

This method is applied on a pixel-by-pixel basis, and therefore each of the above terms 

also has a pixel location “(x , y)” associated with it.  An example of how this technique is 

implemented follows:  

            Landsat TM Blue   Pan Super-Pixel Ave    Pan Sub-Pixels 

            
12 18 21
40 60 62
100 110 112

    

20 26 30

80 92 94
120 130 136

     
21 23 24
120 124 130
118 125 140

 

Figure B.1: Comparison of 3x3 Landsat region compared to 9x9 SPOT reduced to 3x3 Superpix. 

 

With this raw data, it is possible to compute the DCHybrid Blue 3x3 pixel region.  This region 

represents the sharpened Landsat TM blue spectral band. 

21 23 24 14 15 16
60 120 124 130 78 81 85
92

118 125 140 77 82 91

TM Blue
Hybrid Blue Pan Subpix

Pan Superpix

DC
DC DC

DC

 
 

 = = =  
 
 
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Hybrid BlueDC  represents the average digital count value over the original space covered by 

the Landsat TM blue band.   

1 (14 15 16 78 81 85 77 82 91) 60
9

N

Hybrid Blue
i

Hybrid Blue

DC
DC

N
= + + + + + + + +

= =
∑

=  

The fact that the results above equate to the original Landsat TM Blue pixel value, are 

significant.  “This means that on average at the resolution of the original MS imagery, the 

radiometry is preserved exactly…this approach yields both radiometrically and visually 

improved images.” (Schott 1997, pg 310)  The Munechika method is a good introduction to 

spatial sharpening since the method is fairly intuitive and yields radiometrically correct (on 

average) results. 

B.2  Sharpening via Gross’s method 

Gross et. el., devised an approach that relies first on the ability to spectrally unmix a 

dataset before application of a sharpening operation.  This method attempts to sharpen the 

endmember fraction maps associated with unmixing as opposed to the actual raw imagery.  

Further detail is contained in the report referenced in the bibliography (Gross and Schott 

2002).  Unfortunately Gross’s method often involves underdetermined problems, since there 

are many more unknowns than equations, and thus is only mentioned for parties interested in 

further research. 
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The LoGWaR GUI 
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LoGWaR Legend 

 
1)  Reference Image     9)  Overlaid Images/Reference Zoom 

2)  Warp Image    10)  Difference Image/Warp Zoom 

3)  1-D Ref LoG Plot   11)  Pixel Distance Slack Slider 

4)  Ref Threshold Slider   12)  Maxima Similarity Slider 

5)  1-D Warp LoG Plot   13)  Angle Slack Slider 

6)  Warp Threshold Slider  14)  Match Distance Button 

7)  Reference Image Zoom Button 15)  Polynomial Transform Order Slider 

8)  Warp Image Zoom Button 
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1) Reference Image:  The Reference image display window shows a thumbnail 
image that is scaled to 256x256.  The reference image provides the stable 
coordinate system to which the Warp image is transformed. 

 
2) Warp Image:  The Warp image display window shows a thumbnail image that is 

scaled to 256x256.  The Warp image is registered to the Reference image and is 
then transformed to its coordinate system resulting in a Warped image. 

 
 
3) 1-D Ref LoG Plot:  The 1-Dimensional plot of the 2-Dimensional LoG filtered 

Reference image.  This visualization allows quick viewing of the peaks and 
valleys within the filtered image that will be isolated with a threshold procedure. 

 
4) Ref Threshold Slider :  This slider allows manual thresholding of the Reference 

image.  This tool is used in conjunction with the Manual Threshold function 
found within the Analyze pull-down menu to isolate regions similar to the Warp 
image. 

 
 
5) 1-D Warp LoG Plot: The 1-Dimensional plot of the 2-Dimensional LoG filtered 

Warp image.  This visualization allows quick viewing of the peaks and valleys 
within the filtered image that will be isolated with a threshold procedure. 

 
6) Warp Threshold Slider: This slider allows manual thresholding of the Warp 

image.  This tool is used in conjunction with the Manual Threshold function 
found within the Analyze pull-down menu to isolate regions similar to the 
Reference image. 

 
 
7) Reference Image Zoom Button:  This button provides a zoom feature of the ROI 

defined within the Reference image.  This technique is often useful when 
choosing supervised GCPs.  To select a GCP, simply left-click within the zoom 
window to the right of the button and then click the related pixel in the Warp 
zoom window. 

 
8) Warp Image Zoom Button: This button provides a zoom feature of the ROI 

defined within the Warp image.  This technique is often useful when choosing 
supervised GCPs.  To select a GCP, simply left-click within the zoom window to 
the right of the button and then click the related pixel in the Reference zoom 
window. 

 
9) Overlaid Images/Reference Zoom:  This multifunctional window can display 

the resulting stacked images of a registration operation (Reference and Warped), 
zoom operations, or interim Reference thresholds when utilizing the Adaptive – 
Subregion procedure.  The text below the window describes the current contents. 
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10) Difference Image/Warp Zoom: This multifunctional window can display the 

difference image of a registration operation (Reference and Warped), zoom 
operations, or interim Warp image thresholds when utilizing the Adaptive – 
Subregion procedure.  The text below the window describes the current contents. 

 
11) Pixel Distance Slack Slider:  This slider determines the tightness of the control 

over relative distance matching between points within each dataset.  With the 
default setting of 2, the point matching routine tests matching distances to within 
a difference of two pixels.  Positive distance matches must agree to within the 
pixel error specified with this slider.  The relative pixel matching process is the 
first in a series of four point matching algorithms.  Each algorithm takes the 
results of the previous matching process to iteratively pare the point-sets down to 
the best matches.  So, the relative distance matching technique determines the 
preliminary matches from which all subsequent matching techniques utilize. 

 
12) Maxima Similarity Slider:  This slider analyses the similarity of the LoG filtered 

image values of the current matches (determined by the pixel distance matching 
algorithm).  The similarity of the LoG value must be within plus or minus the 
percent identified by this slider (default is 15%). 

 
13) Angle Slack Slider:  This slider determines the tightness of the control over 

relative angle comparison of the existing point matches.  This technique analyses 
the angular position of  matches with respect to the other points in the matched 
point set. 

 
14) Match Distance Button:  The Match Distance Button should only be utilized on 

images that demonstrate good rotational agreements with each other.  If this is 
true, then the matched points should have similar distances between the GCP 
pairs.  If this box is checked, the matched GCPs distances will be analyzed for 
similarity and outliers will be rejected if they vary by more than one standard 
deviation from the mean. 

 
15) Polynomial Transform Order Slider:  This slider can be manipulated to change 

the polynomial degree desired for a polynomial transform.  Once the degree of the 
necessary polynomial is chosen, the GCPs can be utilized to determine the 
necessary coefficients.  This toggle can also be utilized to switch the polynomial 
degree (1st or 2nd) utilized when computing the model error with the Compute 
Matched RMS Error function. 
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1. FILE Pull-down Menu Options: 
 
Loading Images into LoGWaR:   

 
Utilizing the FILE pull-down menu option, 
it is possible to load both the Reference and 
Warp images into the LoGWaR 
environment for registration.  The 
Reference image should be the image that 
will remain unaltered, while the Warp 
image will be the image that is to be 

transformed into the Reference image geometric space.  All of the standard image 
formats supported by IDL can be loaded in utilizing this function (JPEG, TIFF, etc.).  If 
ENVI is available, the LoGWaR_ENVI version should be utilized to enable the full 
extensibility to data formats that can be opened utilizing ENVI’s I/O functions. 
 
 
Working with FITS Images: 
 
The FITS I/O and additional tools can only be utilized for licenses that include IDL’s 
Astronomy Library… 
 
 
Storing the Current Working Images: 
 

ile 
At times it may be necessary to store the 
current working images into a temporary f
that can be recalled at a later time for 
additional analysis or as a safety precaution.  
It can also be utilized for predictive 
transformation when working with 
composite affines, since the transformations 
are performed on the Stored images. 

Any image that is loaded 
will be automatically saved 
within the Stored image 
variables. 
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Loading Stored Images: 

  
Loading the stored images allows for the 
ability to return to a previous point in the 
image registration process.  It can also be 
used to load in images that were transferred 
in as IDL variables exported from ENVI.  
These images are placed in the stored image 
variables during execution of the LoGWaR 
program (prompt> logwar, reference, warp).  

The LoGWaR program a
allows the user to load the 
Warped image into the 
Warp image variable for  

lso 

 

ser 

additional registration 
analysis.  This technique is 

extremely useful when obtaining a rough 
estimate of the registration with a reduced scale image, and then utilizing the results of 
this operation to allow a subregion registration analysis for increased accuracy. 
 
Saving the Current Working Images: 

Occasionally it will be useful to utilize the 
Registration Tools menu to perform basic 
image processing manipulations on the 
working images (rotation, cropping) and to 
save the results, instead of just temporarily 
storing them.  These functions allow the u
to save the Reference or Warp working 
images as one of the basic image types 
supported in IDL. 
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Saving the Registrion Results: 
 

 
The LoGWaR program produces three 
useful image based results that can be saved 
using this function.  The first, and most 
important, is the resulting warped image 
obtained from the transformation of the 
Warp input image to the Reference image 
space.  This image will be the same 
dimensions as the Reference image and may 
be cropped to maintain those dimensions.  
Another product that can be saved is the 
Difference Image (Absolute Mean 
Variance), which represents the change in 
pixel value between the Reference image 

and the Warped 
Image.  The final 
output is the 
Composite image or 
“stacked image”.  
This averaged 
image is often used 

to improve the Signal to Noise of datasets by averaging-out the noise.  In order to save a 
Multi-Band image it is necessary to save out the transformation coefficients and utilize 
the Thin_Warp.pro program to warp the entire dataset. 
 
Save Transformation Coefficients: 

 
The LoGWaR program develops 
transformation coefficients from 
the matched points it extracts 
from the Reference and Warp 
images.  The Affine coefficients 

represent the most current affine registration results saved in a 3x3 matrix format.  The 
Composite coefficients represents the cascade of the entire chain of  image manipulations 
that have been combined through the Update Composite function and is also saved in a 
3x3 matrix.  The Polynomial transform is similar to the Affine except it is saved in the 
ENVI format and is variable in size dependent on the degree of the polynomial.  
  
These coefficients can be utilized with the Thin_Warp.pro program to warp very large 
and Multi-Band images. 
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Load Transformation Coefficients: 
 
By loading affine or polynomial coefficients 
that have been developed by LoGWaR or 
ENVI, it is possible to transform the Warp 
image.  This is very useful, especially when 
registering datasets such as LANDSAT, that 
have known scale relationships between the 
Panchromatic, Multispectral, and Thermal 
images.  Once loaded into memory the 
affine scale relationship can be manipulated 
in the Registration Tools pull-down in the 
Scale section.  
  
LoGWaR and ENVI polynomial c
are saved in the same format for 
interoperability.  However, the affine 
coefficients are saved by LoGWaR into a 
3x3 matrix format, that can be used for the 

predictive scale t
 

oefficients 

ransformation. 

dding Current Matches to the Stack: 

LoGWaR matched points 

 

c

nce the matches are added to the stack, it is possible to perform statistical analysis of 

his function allows the user to add matches that have been derived by LoGWaR or 

dding recent matches to the stack can easily be forgotten; so take special precaution to 

 
 

 
A
 

are treated as temporary 
results, until they’ve been
accepted by the user!  This 
rease the number of 

matches utilized for the image-wide registration.   
 

is done to allow ROI matches to be cumulatively added to in

O
the matches and/or utilize these matches to register the datasets. 
 
T
through manual selection of GCPs using point selection in the zoom window. 
 
A
ensure this is done, especially once ‘good matches’ have been derived by LoGWaR! 
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Saving Matched Points: 
 

he ability to save matches either derived by 

.  

VI 

 the 

o, to utilize matches derived by the 

VI 

n, 

 
oading matched points into LoGWaR: 

 
oading matches into LoGWaR follows the 

s 

learing all current matches: 

ccasionally it is desirable to clear all the 

ith 

T
LoGWaR or through supervised GCP 
selection is available through this function
There are two options available, the ability 
to save matches into a format for LoGWaR 
or ENVI.  The reason for this is due to the 
way that LoGWaR loads images (from 
bottom-to-top format) as apposed to EN
(from top-to-bottom format).  This problem 
is overcome by inverting the vertical 
position of the matches with respect to
horizontal position. 
 
S
LoGWaR program within ENVI, it is 
necessary to save the matches in the EN
format.  This precaution is not necessary 
when utilizing the LoGWaR_ENVI versio
since the images are opened and saved 
utilizing the ENVI I/O operations. 

 
 
 
 
 

L

L
same format as the Save Matched Points 

pull-down menu.  Matche
obtained from ENVI can be 
loaded in from this menu 
function. 

 
C
 

O

 

current matches in order to load matches 
from a saved point match file or to start w
a clean slate.  The Clear All Matches menu 
function can be utilized to accomplish this 
task. 
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User Preferences: 

oGWaR allows several preferences to be 

ll-
 

 

 
he Sub-Region Size determines 

n that 

 

e and 

28 

iltering Size 
 

is 

e 

 

oints 

n 
extracted through the threshold procedure are first sorte

t 
 

he Threshold Level (%) identifies the LoG threshold level that will be utilized when 
e 

 
L

 

changed to maximize flexibility and user 
interaction.  Once the User Preferences pu
down menu has been chosen, a new GUI
window will appear with several variables
that can be changed to suit specific 
registration requirements. 
 

T
the horizontal and vertical 
dimensions of the sub-regio
will be utilized for registration 
analysis.  The size of this region
depends on the number of 
matches desired image-wid
is limited only be processing 
speed and virtual memory (~ 1
to 2048 pix).   
The Max LoG F
limits the image-wide filtering
that can be accomplished.  This 
useful for very large images 
where the image size is too larg
for LoG convolution and where 
sub-region or sub-band analysis 
is utilized to bring the size below
the maximum value.   
The Max # of Region P
limits the number of potential 
axima & minima that have bee
d based on their rate-of-variation 

and then truncated to the number identified in this field.  This process identifies the mos
well defined edge regions and limits the number to the requested amount.  The peak
pixels are identified from these regions and are then utilized for the input to the point 
matching algorithms. 
 

matches to the value identified in this field.  The LoG m

T
utilizing the <Analyze> <Auto Threshold> <Preset> pull-down option.  This preferenc
is useful for registration of datasets that often require the same threshold level (FITS 
images are often at 1%). 
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The Max Allowed RMSDE value can be changed to suit user requirements.  This variable 
determines how well the cumulative match error must agree with the polynomial 
transform (1st or 2nd Degree) model for the entire image.  When utilizing the 
<Registration Tools> <Delete Matches> <Delete RMSDE > User Defined> pull-down 
option, the match with the greatest error will be removed and the transform model will be 
recomputed.  In this way the matches that deviate most from the transform model will be 
iteratively removed from the matched point list until the overall model contain less 
cumulative RMS Distance Error than the value identified within this field.  This 
preference is very useful to ensure the overall model error is within desired parameters 
(i.e. requirement for subpixel registration accuracy).  For predictive transformations, 
where the model error will be increased by the same factor as the scale modulator, it is 
necessary to keep the registration error to a low sub-pixel level.  For example, the 
transform model of RMSDE = 0.25 becomes RMSE = 1.0 if the predictive transform 
warps an original image that is four times the scale (i.e. 0.25 * 4 = 1.0).  
 
The Interpolation Method determines the type of sampling that is utilized for the image 
transformation.  Choices for this preference include Nearest Neighbor (NN), Bilinear 
Interpolation (BL), and Bicubic Interpolation (BC).  The NN sampling method retains 
the image radiometric accuracy but sacrifices edge smoothness.  BL interpolation 
provides a relatively fast sampling technique with good edge characteristics.  Whereas, 
BC sampling delivers the ‘best looking’ edges of the sampling techniques, but at the 
expense of processing speed (some artifacts may result with 8-bit overflow). 
 
The I/O Optimization preference allows the user to process large images even without 
access to large amounts of virtual memory when using the Min Virtual Memory option.  
This option saves many of the large interim results to temporary files.  The optimization 
for Processing Speed preference can be utilized when an adequate amount of virtual 
memory is available to hold the interim processing results.  This option greatly increases 
the processing speed since writing the temp files to the hard drive can be time consuming. 
 
The Sort LoG Extrema preference can be changed to mitigate some of the harmful 
effects that caused by clouds within an image.  Although LoGWaR is very effective in 
minimizing the effects of moving features from one dataset to the next (i.e. parallax, 
moving objects), clouds still pose a problem due to the well-defined edges that they 
produce within an image.  This function allows the user to change the sorting procedure 
of the LoG derived extrema points from Max-to-Min to Min-to-Max.  This can minimize 
the effects of cloud-cover by truncating the most well defined edges, but, keep the edges 
that have been selected by adaptive thresholding and fall within the Max # Region Points 
limit. 
 
Exit: 

The Exit function is utilized to gracefully 
exit from the LoGWaR program.  This 
function overwrites any temporary files that 
were created when utilizing the Min Virtual 
Memory option within the user preferences. 
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REGISTRATION TOOLS Pull-down Menu Options: 
 
Deleting ROI Matches: 
 

 
It is possible to create a Region of Interest (ROI) within LoGWaR, by depressing the left 
mouse button at one corner of the ROI and holding it down while moving the mouse icon 
to opposite corner of the ROI and releasing the left mouse button.  Once the ROI has 
been defined (in either the Reference or Warp image), it is possible to delete any matches 
within this area through the use of this pull-down menu option. 
 
Delete RMSDE > 1 Standard Deviation from Mean: 

 
 
 
 
 
 
 
 
 

Before this function can be utilized it is necessary to compute the statistical accuracy of 
the model compared to each individual matched point (<Analyze> <Compute Matched 
RMS Error>).  This function then allows the user to reject any matches that deviate from 
the transform model mean by more than one standard deviation (1STD).  This technique 
is often quite useful in identifying anomalous matches and deleting them from the current 
matched points.  Unlike the following technique, it does not recompute the model for 
each deleted match.  It is possible to quickly reject many poor matches with this 
technique.  Unfortunately, you may risk rejecting some good matches if there are bad 
matches that unduly skew the transform model.  This technique is normally a good 
method to identify the “knee in the curve” for the RMSDE plot.  A knee in the plot will 
normally indicate that there are some anomalous matches that could be removed to 
increase the transform model accuracy.  The figure below shows how the 1STD (dashed 
line) threshold can be utilized to extract poor matches for rejection.  Once these matches 
have been removed, the model is recomputed (<Analyze> <Compute Matched RMS 
Error>) for analysis.  The RMSDE plot should appear fairly straight with cumulative 
error increasing linearly for accurate transform models.   
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The RMSDE plot shows the cumulative error (solid-white), Mean (red-solid), Mean + 
1STD (red-dashed), and matched point error histogram (white-dotted). 
 
Delete RMSDE > User Defined: 

 
 
 
 
 
 
 
 
 

 
Before this function can be utilized it is necessary to compute the statistical accuracy of 
the model compared to each individual matched point (<Analyze> <Compute Matched 
RMS Error>).  This function iteratively strips of the matched point that has the greatest 
RMSDE from the transform model and recomputes the model error after each deletion.   
This is repeated until the overall model error falls below the level dictated under the user 
preferences menu (<File> <User Preferences> [Max Allowed RMSDE]).  The default 
value for this preference is set to 1 pixel and will ensure that the transform model has 
subpixel accuracy when this function is utilized.  The following results are text-based 
output from the LoGWaR program.  It demonstrates how the overall RMSDE Mean 
decreases monotonically with the iterative rejection of the matching point with greatest 
error from the transform model: 
 
Number of Matches Loaded =          16 
RMSDE Mean =      14.9907 
Degree of Polynomial utilized for Transform =       1 
RMSDE Mean =      12.0535 
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RMSDE Mean =      6.71098 
RMSDE Mean =      3.99343 
RMSDE Mean =      1.14675 
RMSDE Mean =      1.01661 
RMSDE Mean =     0.891629 
..................... 
RMSDE SDev =     0.464510 
# of Good Matches =          10 
 
The following figure plots the results for this example.  Note the relatively linear 
character of the cumulative error (white-solid) for the final plot. 
 

 
 
Pad Reference Image: 

 
As the name suggests, this tool 
simply pads the Reference i
with surrounding zeroes.  The 
dimensions of the padding are 
dyadic to enable FWT anal
This tool is useful increase th
size of the reference image to 
preclude harsh cropping o

Warped image.  Since the dimensions of the Warped image are constrained to th
dimensions of the Reference image, this tool can be utilized to increase the transformed 
image dimensions.  

mage 

ysis.  
e 

f the 
e 
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Rotate Image: 
 

s 
ore 
 

This function allows rudimentary rotation 
of both the Reference and Warp images.  
Special care must be taken when rotating 
images and using the predictive transform. 
Since any predictive transformations 
operate on the original images, it is 
important that the warp image rotation  i

executed bef
any FWT or
scaling 
operations.  

This will ensure that the composite matrix multiplications are done correctly.  For the 
same reason, it is important that the Reference image is not rotated when performing 
composite or predictive operations.  Remember that if you do choose to rotate the 
Reference image, you should save this result as an interim file (<File> <Save Reference 
Image>) or the transformation results will not relate to the current image.  Also, note that 
any 90 degree rotations do not change the data, they merely represent a swapping of 
columns for rows in the image array. 
 
Histogram Matching: 

 
Since LoGWaR attempts to register 
images based on detecting similar regions 
with high rates-of-variation, it is often 
useful to make these images appear as 
similar as possible.  One useful technique 
to accomplish this task is to match the 
histogram distribution of grayscale values 
from the Reference image to the Warp 

image or vice-
versa.  This 
function allows 
for both of those 
possibilities.  

Since the histogram match results are only used to determine matching GCPs and the 
resulting transformation coefficients, the nonlinear change to grayscale values is only 
temporary. 
 
 
 
 
 
 
 

 122



Inverting the Images: 
 

 

This function is only useful when 
attempting to work with image datasets 
that have been previously registered in 
ENVI with the resulting matched points 
file saved to a text file.  If these images are 
subsequently brought into LoGWaR and 
the ENVI matched points file loaded; the 
GCPs will appear to be inverted due to the 
way that IDL loads in images bottom-to-
top format vs ENVI’s top-to-bottom 

format.  For more info 
read the section above 
on Saving Match 
Points. 
 

 
Crop Boxed Area: 

This function is very similar to most 
cropping function in today’s of the shelf 
image processing software.  Once a ROI 
has been defined, either in the Reference 
or Warp image window, the Crop 
Function can be utilized to trim the image 
to the desired dimensions.  It is important 
to remember to save these results (<File> 
<Save Reference Image>) if the ensuing 
registration transformation is to be utilized 
for comparison to the Reference Image. 
 

 
 
 
 

 
Scale Comparison: 
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The Resample to Half Size option allows the user to down-sample (through pixel 
averaging) the Reference or Warp image to half of its current size for registration at a 
lower resolution.  This function is very useful when working with large images and 
allows for the registration at a much lower resolution and eventual predictive 
transformation of the original image.  Since the LoGWaR program automatically keeps 
tract of any scale manipulations, it is possible to include this information into a composite 
affine transformation that can be utilized to register the original Warp image to the 
original Reference image based solely on the relationship between the low-resolution 
counterparts.  This function can be repeated several times to compare images at half, 
quarter, eighth, sixteenth scale etc.  It should be noted that this operations is the 
counterpart to the FWT decimation process.  However, where the FWT conserves the 
high spatial frequency information for later use, this down-sampling procedure does not. 
 
The User Defined scale function calls a GUI for the user to input the scale relationship 

between the 
Reference and W
images.  It is not 
necessary to inpu
the absolute scale 
relationship 
between the two 
images; only the 

relative scale relationship needed.  This 
scale relationship can then be utilized to 
resample the images to comparable 
dimensions or to a unique scale ratio, 
such as may be required for wavelet 
analysis (the FWT requires dyadic scale 
relationships).  The following function 
can be utilized to scale the images to 
comparable resolutions.  

arp 

t 

 

 
 
The Resample scale function allows the works in conjunction with the previous function 
and allows the user to scale either the Reference or Warp image to the relative 
dimensions of the other.  The sampling method (NN, BL, BC) is determined within the 
user preferences section of the File pull-down menu. 
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he Wavelet Decompose function allows scaling of the Reference or Warp images to the 

he Determine Scale function can be utilized to automatically determine the scale ratio 

is 

t 

m

ndo Last Action: 

he final function within the Registration 

o 

T

closest dyadic scale as defined by the image dimensions and the user defined scale 
relationship.  Currently under construction!!! 
 
T

between the 
Reference and 
Warp images.  
This technique 
based on the 
premise tha
although the 
distance may 
e.  Since the 

resolutions (or GSDs) of remotely sensed images are normally known, this function is 
often unnecessary.  This function needs to be optimized and so is currently under 
construction. 
 

change between related points, the ratio of distances will remain the sa

U
 

T
Tools pull-down menu is the Undo Last 
Action feature.  This option allows most 
actions to be undone, including changes t
the Reference and Warp images and to the 
match points file.  This feature will appear 
bold when available and subdued when 
unavailable. 
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Wavelet TOOLS Pull-down Menu Options: 

rop Boxed Area: 

The Ref/Warp to nearest Dyadic 

yadic size 
wers 

 
, 

).   

 to 
a

he Crop and Scale Ref/Warp to Dyadic functions provide an exact cropping of the ROI 

avelet Decomposition: 
 

his function provides forward 

ence or 

ed 

t 

s 
 

s 

 
 

 
C
 

function crops the reference/warp 
ROI to the closest D

(po
of 2; i.e.
128, 256
512,…
This is 
useful 
when 
trying
nalysis identify an approximate ROI and still retain proper image dimensions for FWT 

without changing the scale of the images. 
 
T
area and then scales this region to the nearest dyadic size.  Care must be taken with this 
function since it changes the relative resolution of the images through the scaling 
procedure.   
 
W

T
transform for the FWT 
Decimation of the Refer
Warp images.  For all practical 

purposes, the 
image is 
decompos
into four 
componen

and the diagonal high frequency components (edges) at the current resolution.  These 
results can be portrayed in the Mallat representation of the image resolution pyramid a
seen below.  The scale component is simply the half-scale resolution image that is treated
by LoGWaR as the new Reference or Warp working image.  The current FWT level can 
be identified in the image title by the number in parenthesis.  For example, if the 
reference image was 512x512, after one FWT decimation the title would appear a
Reference Image (LL1): 256x256. 
 

‘subbands’.  The four components are the half-scale image, and the vertical, horizontal, 
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   Mallat’s Image Resolution Pyramid 

avelet Reconstitute: 

his function provides the 
ce or 

is 

 
s of 

recombines the frequency subbands to obtain the ‘sharpened’ Reference age 

ransfer Detail Information: 
 

he ability to transfer high 
 the 

function.  

 

ncy 
 appl  

tegrity. 

Detail in ‘x & y’ Detail in ‘y’

Detail in ‘x’ Scale in ‘x & y’

 
 
 
 
 
 
W
 

T
inverse FWT of the Referen
Warp images.  The strength of 
wavelet analysis with the FWT 
the ability to easily move 
between image resolutions

without los
information.  
The Wavelet 
Reconstitute 
function 
or Warp im

at twice the resolution.  This process can only be utilized if the image was previously 
decimated or if high frequency information was transferred in from another image. 
 
T

T
frequency information from
Reference image to the Warp 
image or vice-versa is 
accomplished with this 
This function can be utilized as 
long as the images have the same
dimensions and spatial frequency 

information is 
available for 
transfer.   
high-frequeThis process is utilized to transfer 

information for eventual sharpening technique is 
shown to retain overall radiometric in

ications.  This FWT sharpening
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Analyze Pull-down Menu Options: 
 
Manual Threshold: 

he Manual Threshold 

at 
e 

rence and Warp have similar content.   

This was achieved in the 
 

 

 Out 

his example registration 

 

dge 

 to 

t is possible to see the matching points that were derived from the threshold regions (by 
 

 
ing 

thresholding procedure can be accomplished on ROIs as well as image wide. 

 
T

(connected components regions) within the Refe

procedure is a semi-
automated process th
requires the user to mov
the threshold slider-bars 
until the point sets 

 

figure (to right) by sliding
the Reference threshold bar
to 26% and the Warp 
threshold bar to 25%. 
of these regions, LoGWaR 
will isolate the peak pixels 
in each region and limit the 
point sets to the 50 most 
extreme LoG filtered 
values.   
 
T
was accomplished on two 
separate moon-shots taken 
very close in time.  The 
edge of the moon against
the black background 
provided an excellent e
that required the entire 
threshold to come down
a very low level.  Note that 
only one peak is identified 
for each region…including 

 
the edge of the moon. 

I
the LoGWaR program) from the following figure.  The resulting overlaid/stacked images,
difference image and similarity metric are also displayed for reference.  The manual 
technique works quite well due to the ability of the human visual system (HVS) to 
identify similarity in point sets.  For difficult image registration problems, it is often
useful to manipulate the manual threshold sliders to get an idea of how the LoG Filter
and thresholding process is isolating similar regions within the scenes.  The manual 
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Example Registration of two moon images. 
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Auto Threshold Processes: 

 
The automatic threshold processes 
ttempt to replicate the manual 

 

a
process identified above with three 
separate functions. 

 

 
 



The Preset – Imagewide technique utilizes the user-preference’s Threshold Level (%) 
alue to automatically threshold both images at that level.  This technique is most useful 

 

rocedure that requires 
oG filtering of the entire image.  For this reason, the image should be no larger than 

in 
e 

ate 

 
 

v
when dealing with datasets like FITS images that often need very low threshold values
(1%) to bring out the maximum number of threshold regions. 
 
The Adaptive –Imagewide technique if an adaptive threshold p
L
what can be efficiently filtered with resident virtual memory.  The LoGWaR program 
will not provide imagewide filtering on datasets that are larger than what is prescribed 
the user-preference’s Max LoG Filtering Size value.  In order to accomplish image-wid
filtering on large datasets it often necessary to either reduce the size through FWT 
decimation or traditional downsampling.  This technique is referred to as Subband 
processing due to the cutoff of high frequency spatial information from the image. 
Adaptive thresholding is utilized to slowly lower the threshold level in order to isol
more potential GCPs.  Once the number of isolated regions grows above the user-
preference’s Max # Region Points, independently in both the Reference and Warp 
images, the adaptive thresholding stops.  The isolated regions are then converted to
maxima pixels, sorted based on LoG value, and then truncated to the Max # Region
Points identified in user-preferences (example adaptive threshold shown below).  
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The Adaptive - Subregion technique relies on the same procedure as the Adaptive –
Imagewide process except that it does not filter the whole image at one time.  Instead, it 
divides the image into manageable pieces and independently derives matched GCPs for 
each region.  The ROI size is obtained from the user-preference’s Subregion Size value.  
The LoGWaR program will then isolate no more than the Max # Region Points from each 
ROI.  After ‘walking’ through the entire images, the matches are combined into one 
master GCP match set. 
This technique is referred to as Subregion processing due to the independent analysis of 
related ROI within the datasets.  For this reason it is necessary that the two images 
have good rotational agreement before the Adaptive – Subregion technique can be 
utilized effectively.  If they do not, it is first necessary to first rotate the images or 
determine a rough estimate of the transform through Subband analysis, apply the 
predicted transform and then re-register with the Subregion technique.  LoGWaR allows 
the user to perform independent affine transformations (such as rotations, scaling, and 
affine transforms) and automatically logs these manipulations for future inclusion into a 
composite transformation.  The interim rotations and scales are computed automatically 
at each stage, as affine transformations, and later combined to produce the composite 
transform for the original image.  This final composite transform only needs to be applied 
once to the original image and mitigates unnecessary sampling degradation. 
 
 

LoGWaRs Adaptive-Subregion Technique 
LANDSAT MS (8k x 8k), Jericho, Israel 
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Register from Matched Points: 
 

CPs have been 
oGWaR, it is possible 

to transform the Warp image with 
either an affine or polynomial model.  
The affine models are a subset of the 
polynomial transforms that include 

shift, 
rotation, 
scale, and 
skew.  
They also 

have a special commutative property that allows combination through multiplication. 
 
The Affine Warp (4pts) function determines the four GCP matches with the greatest 
spread in the horizontal and vertical directions.  This allows for a quick estimate of the 
affine without utilizing the Psuedo-Inverse solution, which is used for most over 
determined problems within LoGWaR.  This procedure is primarily utilized to check 
results of alternative solutions. 

he aR program.  Since 
ost regis possibly hundreds), the Psuedo Inverse solution 
 the Line is is where the GCPs that have been 

enerated ilized to relate the two 
een the GCPs and the affine 

lution via the Psuedo Inverse technique: 

ti

duce an affine estimate with a polynomial model to reduce any sampling 
egradations to two operations.  The image transformation is done with the 

 
  

Once matched G
derived from L

 
T Affine Warp (all pts) function is the ‘workhorse’ for the LoGW

trations produce several GCPs (
ar Least Squares problem is utilized.  Th
are transformed into a global equation that can be ut

ages.  The following equations show the relationship betw

m
to
g
im
so
 

 
   X = UA 

U-1X = A 
(UTU)-1UTX = A 

 
It should be noted that an affine solution is required for a
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=

ny composite/predic ve 
transformation.  If an affine solution is inadequate to relate the two datasets it may be 
necessary to pro
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d
POLY_WARP function, which utilizes the derived affine coefficients (stored in a 3 x 3
matrix), but reformats them into a polynomial expression to transform the Warp image. 
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The Polynomial Warp function allows for a much higher degree relationship to be 

efined between the Reference and Warp images.  The degree of the polynomial is 

 
.  

st remotely sensed image, that have been 
corrected for sensor artifacts, can be related with no more than a 2nd degree polynomial 
expression.  The polynomial expressions, within LoGWaR, are derived primarily from 
IDL’s POLY_2D function.  This function also utilizes the Psuedo Inverse solution to the 
least squares problem. The image transformation is done with the POLY_WARP 
function, which uses the derived polynomial expression to transform the Warp image.   
 
Register from Coefficients: 

 
The LoGWaR program allows user 
to save and load matched GCP files 
as well as transform coefficients to 
warp images.  This function allows 
user to transform the Warp image 
utilizing either an affine or 

en 
 

useful when 
 

nd/or composite affine transforms that contain information that is not easily converted 
to matched GCP form.  Polynomial coefficients that have been saved from ENVI can 

d
defined by the Polynomial Transform Order slider-bar, which is located in the lower 
right-hand corner of the LoGWaR GUI.  Although the LoGWaR program can only 
automatically register images with an affine relationship (minus skew), it is still possible
to relate regions at the affine level and solve for higher order relationships image-wide
This is because related ROIs may have affine relationships even though the entire dataset 
may require a higher order relationship.  Mo

polynomial model that has be
loaded from a saved file.  This can

be very 

utilizing the
predictive 

a
in
also be loaded into LoGWaR to transform the Warp image. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 133



Composite Affine Transform: 
 

e 
nd scale 

 
ltiplication to 
f

n 
 

 
 

Latest Affine  Scale Affine 

his example demonstrates the rationale for initiating any rotations before scaling 
perations.  Due to the order in which these matrices are combined, it is essential that any 

in order to properly account for the dimensions of the 

t
n
p
s

 b
p
y
r

g
ination of only one 1st order w

 function has incorporated the affine operations into a 
omposite transform, the Apply Composite function applies this transform to the original 
arp Image.   

The Update Composite function 
allows the latest affine transform to 
be included into the composite affin
structure with any rotation a
information.  The 3 x 3 affines 
containing this information are then

ine 
tion can be 
visualized i
the example
below: 

combined through mu
produce a composite af
transform.  This formula

 
         Rotation Affine  

0.0000 1.0000 0.0000 1.01672 0.00112421 0.0000 1.0000 0.0000 0.0000
_ -1.0000 0.0000 0.0000 -0.00862428 0.998749 0.0000 0.0000 1.0000 0.0000

2047.00 0.0000 1.0000 -0.224098 0.0169114 1.0000 0.00
Comp Trans

   
   

=    
   
    00 0.0000 8.0000

 
 
 
 
 

-0.00112421 1.01672 0.0000
_ -0.998749 -0.00862428 0.0000

2046.86 -1.79278 1.0000
Comp Trans

 
 

=  
 
 

 
T
o
rotations are accomplished first, 
original image. 
 
The LoGWaR program also keeps tabs on whether 
the current Warp image.  If it has, the composite tra
affine for possible incorporation into the latest com
useful when utilizing a supervised selection of GCP
deformations that cannot be automatically detected
scheme.  For example, to correct for skew and pers
four matching GCPs  to correct for the 1st order pol
unknowns.  This 1st order equation can also be inco
incorporation into the composite structure.  Althou
the commutative property of affines, the comb
has shown good composite transformation results. 
  
Once the Update Composite

he Warped image has been loaded as 
sform will retain the old composite 
osite structure.  This technique is 
 to compensate for higher order 
y the LoGWaR point matching 

ective, it is only necessary to pick 
nomial required to solve for these 
porated into a 3 x 3 formulation for 
h 1st order polynomials do not have 

ith an affine 

c
W
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M : orph
 

The Ref to Warp (4 corners) function 
provides a visual inspection of how 
the Reference and Warp images 
relate.   
The Ref to Warped (match pts) 
technique first requires the Reference 
and Warp image to be registered 

tches 

. 
 

 

licker Test to detect artifacts and other 

This function provides a 
w well 

d
 m e 

e 
S
e
t e 
e
 

ning an average RMSDE value less than one 
e he 

with matched GCPs.  These ma
are then utilized, to sequentially 
morph the Warped image to the 
Reference image coordinate system

 
 
 

 
Flicker Test: 
 

The Flicker Test often provides
the best visual inspection the 
registration results.  Subtle 
differences can often be detected 

when quickly flickering between the Reference image and the recently Warped image.  
his is why compression testing often utilizes the FT

anomalies. 
 
Compute Matched RMS Error: 
 

quantitative analysis of ho
the LoGWaR derived matched 

el.  Once the image-wide model is 
atch point is compared against th

GCPs agree with a 1st or 2nd Degree Polynomial mo
determined from all the matches, each Warp image
model prediction.  Any variation between the LoGW
polynomial model prediction is captured in the RM
calculation.  These individual RMSDE values (in th
combined into an average RMSDE value for the en
utilized to judge the overall agreement of the match
often a very good judge of registration accuracy.  If
registration, it is simply a matter of obtai
pixel through iterative rejection of matches with gr
RMS error (cumulative and histogram) and the LoGW
matched point comparison. 

aR derived Warp location and th
 Distance Error (RMSDE) 
 ‘x’ and ‘y’) are accumulated and 

ire image.  This useful metric can b
s to a mathematical model and is 

subpixel accuracy is required for a 

atest error.  This function plots t
aR derived vs. model predicted 
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