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Methods, Assumptions, and Procedures 
 
The classic scientific method was used to develop the FLF tools. The data for 
our experiment was compiled as a repository of 30 open source software 
systems with known security vulnerabilities. Each software system in the 
repository contains exactly one security flaw, which is documented as a source 
code patch file. Since source code patches typically repair several bugs, it was 
difficult to find patch files that repaired only one security flaw.  The hypothesis 
that we wanted to test was that security vulnerabilities typically involve 
functions that perform input/output operations or are close to ones that perform 
input/output operations. Examples of input/output operations include the 
opening, reading, and writing of file or socket data.  

Our hypothesis was shown to be true for all 30 software systems that were 
in the repository. The next step was to develop a tool, called FLFfinder that can 
automatically find all functions that either perform or are close to the functions 
that perform input/output operations. The effectiveness of this tool was verified 
on three open source software systems that have known vulnerabilities but were 
not part of our experimental data. 

A case study was used to validate the effectiveness of the Gemini tool. 
Specifically, several open source software systems were transformed into 
semantically equivalent program that were not as susceptible to buffer overflow 
security attacks. After transforming the source code of each system we verified 
that the system compiled and passed its regression test suite correctly. We also 
designed examples of software with exploitable buffer overflow security 
vulnerabilities and showed that the transformations performed by the Gemini 
tool mitigated them.  
 
 

Results and Discussion 
 

FLF Finder Tool 
A software vulnerability is a fault in the specification, implementation, or 
configuration of a software system whose execution can violate an explicit or 
implicit security policy. Software maintainers typically focus on the 
functionality of software rather than on its security posture. Hence, 
vulnerabilities often escape their attention until the software is exploited by 
specially written malicious code.  

A large percentage of software is developed using unsafe programming 
languages (e.g., C and C++) in the name of cost effectiveness, programmer 
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familiarity, and performance. Being unable to influence how others develop 
new software, we must find ways to improve the maintenance process to secure 
software against possible attacks.  

Code audits are one aspect of the maintenance process that can expose 
security vulnerabilities. Audits have been tried, with some success, on systems 
such as the OpenBSD operating system. Unfortunately, audits are expensive and 
reoccurring.  Each audit requires many man-hours, and each software revision 
requires re-examination to verify that new faults have not been introduced. 

The quantity of code in many systems makes large-scale auditing infeasible. 
In the case of OpenBSD, the auditing effort only focuses on software that is 
enabled in the default installation. This decision has resulted in overlooked 
vulnerabilities in often-used components of the distribution that have not been 
audited, such as telnetd.  

Beizer states that good source code will have one to three faults for every 
one hundred lines of code. However, it is not known which of those faults is a 
security fault. Auditors would benefit from a tool that can reduce the amount of 
code that needs to be studied; enabling them to focus their attention on areas of 
likely vulnerability. 

Our hypothesis is that a small percentage of functions near a source of input 
(e.g., file I/O) are the most likely to contain a security fault. We refer to these 
functions as FLFs (Front Line Functions), and the percentage of functions likely 
to contain a security fault as the FLF density. We validate our hypothesis with 
an experiment that involves 31 open source systems using two tools that we 
developed for this purpose.  

Based on the validation of the hypothesis, the FLF Finder tool was 
developed to identify areas of high vulnerability likelihood automatically. The 
effectiveness of the FLF Finder is demonstrated in two ways. First, it is applied 
to three open source software systems, micq, elm, and dhcpd, each with known 
(documented) vulnerabilities.  Second, the FLF Finder is applied to the 
OpenSSH server daemon, which does not have known vulnerabilities but has 
recently undergone a widely publicized restructuring, called privilege 
separation. This separation aims at minimizing the amount of code that runs 
with elevated privileges. By minimizing the amount of privileged code, it 
reduced the risk of a security vulnerability occurring within that code. Although 
the restructuring was done manually, our case study shows that the results 
produced by the FLF Finder are consistent with the design decisions made by 
the maintainers. 

  For the purpose of the FLF experiment, we refer to the functions that 
accept input as Inputs and the functions with known vulnerabilities as  Targets. 
An example of an Input is a user-defined function that contains a call to read, 
defined in unistd.h. The function that invokes read stores data from a 
possibly untrusted source in a buffer.  Our analysis revealed that the most 
common sources of input are user supplied input, input via command line 
arguments, and input from environment variables. 
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The FLF Finder supplies a list of common Inputs such as read. However, 
any function could be a potential Input, so the user may specify what other 
functions in the software system are considered Inputs.  

A Target is any function that contains a known vulnerability. These 
functions typically use a global buffer or a variable parameter that contains data 
from an Input.  For example, a Target could be a function that calls printf 
using user-supplied input as the first argument.  If nothing is known about the 
software system then all functions in the system are Potential Targets. 

All of the open source systems used in the experiment have at least one 
known security fault and a patch file for repairing the vulnerability. Maintainers 
using the Unix diff tool create the patch files. The experiment uses patch files to 
identify the Targets in each system automatically. 

The experiment uses two tools that we developed. The GNU Abstract 
Syntax Tree Manipulation Program (GAST-MP) takes pre-processed C source 
code and generates a database of code facts for each system in the experiment. 
The System Graph Analyzer (SGA) discovers Targets in the source code and 
creates the necessary function call graphs. 

The GNU C++ Compiler (G++) can output the abstract syntax tree (AST) as 
an ASCII text file when given the -fdump-tree-original flag. GAST-
MP parses this file and produces a relational database of code facts. 

The SGA tool has a dual purpose. It functions as a vulnerability patch file 
analyzer to identify Target functions and as a function call graph generator that 
is used to trace how potentially dangerous data could flow from Inputs to 
Targets. 

For each vulnerability patch file, SGA determines the line number of each 
subtractive line in the corresponding source code. It then uses the GAST-MP 
database to find the function that contains that line of code. Once the function is 
determined, it is marked as a Target. 

Recall that the FLF hypothesis states that a small percentage of functions, 
specifically those near a source of input, are most likely to contain a security 
vulnerability. We will show that in 31 open source systems FLFs occur within 
close proximity to an Input. The proximity is measured as the number of 
function invocations that occur between the Input and Target. 

The FLF density k represents the percentage of Potential Targets in a 
software system that transmits data from an Input.  Thus k can be computed via 
the ratio p/m.  p is the number of functions involved in a function invocation 
path between an Input and Target; m represents the total number of Potential 
Targets.  

The validation of the FLF hypothesis consists of four stages. The first stage 
is to search for software systems with known vulnerabilities and patch files for 
those vulnerabilities.  In general, it is difficult to find patch files that only 
pertain to security vulnerabilities since maintainers often make one general 
patch file that contains fixes for both regular faults and security vulnerabilities.  
Fortunately, some Linux distributions provide software in the form of Source 
Red Hat Package Manager (SRPM) files. SRPMs contain unaltered source code 
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and a set of patches that address specific faults in the source. SRPM packages 
comprise much of the test suite. 

The second stage is to pre-process each software system in the test suite 
with G++ to resolve macros and compile-time dependencies. GAST-MP is then 
used to generate a database of code facts for each system. 

Finally, SGA is used to calculate the FLF density of each system. The 
process to calculate FLF density is detailed in our paper [ICSM03]. 

Our experiment computed the FLF density  
for each system. The sample mean FLF density across all systems is 2.87% 

with a standard deviation of 1.83. This means that, on average 2.87% of the 
functions in each system were involved in the security vulnerability documented 
by the patch files. 

The FLF Finder discovers those functions in the code that are at high risk of 
vulnerability. The tool is not intended to find faults, only to show which 
functions are at risk. The FLF Finder requires two pieces of information to be 
provided by the user.  The first is the source code to be analyzed, and the second 
is a list of Inputs (besides those provided by the FLF Finder. 

The process the FLF Finder uses is the following algorithm: 
1. Create the entire call graph G for the system. 
2. Label Input nodes in G=(V,E) with a depth of 0. 
3. Compute the total number of functions, m, in G. 
4. Given the FLF density result of 2.87%, solve for p <- km 
5. Label the nodes in G as follows: 
• Perform a reverse (follow incoming edges) breadth first search (bfs) 

from each 0-labeled node to depth p. During the reverse bfs, if a visited 
node is not already labeled, label it with its depth (e.g., 1,2,3, …). 

• For all labeled nodes u in set V, perform a bfs from its labeled depth 
ending at depth p.  All nodes visited are at high risk of vulnerability. 

 
This process is identical to the process used to compute the FLF density 

except that it might produce false positives. The false positives are introduced 
because Targets are not known ahead of time. In the experiment, the resulting 
FLF density was based on one path through one common ancestor. Since the 
Targets are not known ahead of time when the FLF Finder is used, every 
function invocation path of length p through every common ancestor is suspect.  
Step 5 of the algorithm is responsible for finding all three invocation paths 
discussed in previously.   

To test the effectiveness of the FLF Finder, we applied it to three open 
source systems, micq, elm, and dhcpd, with known vulnerabilities that were not 
used in the experiment.  

Only dhcpd failed to identify all of its known vulnerabilities. It failed to find 
one vulnerability because there is no known path to the function in dhcpd which 
contains the vulnerability. 

One of our objectives was to supply the maintainer with a tool that eases the 
process of performing a security audit. The FLF Finder accomplishes this by 
eliminating most of the system's functions from consideration. 
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We applied the FLF Finder to a software system with no known 
vulnerabilities.  In the previous section, patch files had been used to test 
accuracy. In a system with no patch files we use the maintainers' design 
decisions to evaluate the success of the FLF Finder.  

OpenSSH is a free suite of network connectivity tools that a growing portion 
of the Internet is relying on.  Telnet, rlogin, ftp, and other such programs 
transmit unencrypted password information during authentication. OpenSSH 
encrypts all traffic (including passwords) to eliminate eavesdropping, 
connection hijacking, and other network-level attacks. OpenSSH includes sshd, 
a secure alternative to telnetd, and sftp, a secure alternative to ftp.  

The principle behind privilege separation is to minimize the amount of code 
that runs with elevated privileges without limiting the functionality of the 
program. Privilege, in this context, refers to a “security attribute that is required 
for certain operations”.  The result of privilege separation is that the separated 
code, which runs with elevated privileges, can now be audited thoroughly due to 
its small size.  After separation, the number of lines of sshd code that needed to 
be audited was reduced from approximately 20,000 to 2,000. 

In OpenSSH, privilege separation is implemented via a message passing 
API. The API is used to transmit data between an unprivileged section and a 
privileged section, and vice versa.  The actual details of the message passing 
scheme involve interprocess communication (IPC) and are beyond the scope of 
this report. 

The unprivileged code executes as a slave.  A slave is an unprivileged user 
that is sandboxed in a specific directory.  Any attempts to exploit an application 
(i.e., OpenSSH) should result in either a denial of service to the attacker or the 
execution of arbitrary instructions as the slave. 

  Privilege separation was originally an optional part of the OpenSSH 
architecture.  However, the OpenSSH team made it mandatory as of version 
3.2.3. 

The goal of the study is to demonstrate that the FLF concept and the FLF 
Finder can be used to increase the efficiency of a source code auditor by 
identifying functions that are at high-risk of containing a security fault.  
Comparing the FLF Finder results of OpenSSH 3.1 against OpenSSH 3.2.3 will 
do this. We will show that the functions identified by the FLF Finder 
correspond to the functions modified by the maintainers in 3.2.3 while 
implementing privilege separation. The process that we follow can be best 
explained with set notation: 
• F_3.1 - The set of functions found by the FLF Finder.  
• P_3.2.3 – The set of functions that are involved in privilege separation.  
• A_3.1 - The set of all functions in 3.1. 
• C - The intersection of P_3.2.3 and F_3.1. 
• S - The intersection of I and A_3.1. 

 
We first run the FLF Finder on 3.1; this results in F_3.1.  F_3.1 includes 

34% (i.e., 374) of the functions in 3.1. the functions that are involved in 
privilege separation.   
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The set P_3.2.3 also contains functions that are not found in 3.1. The 
functions in P_3.2.3 that are not in 3.1 must be removed in order to consider 
only the functions in 3.1 that were changed in 3.2.3. The set C contains the 
functions in 3.1 that were modified while implementing privilege separation in 
3.2.3.  The cardinality of C is 17.  To verify the success of the study, we 
intersect F_3.1 with C.   

We found that of the 374 functions contained in F_3.1, the FLF Finder 
identified 14 of the 17 functions involved in privilege separation, resulting in an 
accuracy of 82%.  Therefore, by reviewing 34% of OpenSSH, we were able to 
identify 82% of the functions that were modified to increase OpenSSH's 
security posture in 3.2.3.   

This case study presents an example of how the FLF concepts and tools can 
be used to aid code auditors in finding high-risk areas of code in an efficient 
manner.  We were able to remove at least 10,000 lines of code from 
consideration with very little effort while maintaining a high degree of 
accuracy. As our tools mature and our experimental set become larger we hope 
that our ability to reduce the unimportant segments of a system (in terms of 
security) will improve. 

 

Gemini Tool 
 
Buffer overflows are the most common source of security vulnerabilities in C 
programs. This class of vulnerability, which is found in both legacy and modern 
software, costs the software industry hundreds of millions of dollars per year. 

The most common type of buffer overflow is the run-time stack overflow. It 
is common because programmers often use stack allocated arrays. This enables 
the attacker to change a program's control flow by writing beyond the boundary 
of an array onto a return address on the run-time stack.  If the arrays are 
repositioned to the heap at compile time, none of these attacks succeed. 
Furthermore, repositioning buffers to the heap should perturb the heap memory 
enough to prevent many heap overflows as well. 

We have created a tool called Gemini that repositions stack allocated arrays 
at compile time using TXL. The transformation preserves the semantics of the 
program with a small performance penalty. Our approach involves the 
semantics-preserving transformation of stack allocated arrays to heap allocated 
“pointers to arrays'”. A program that is amenable to a buffer overflow attack and 
several Linux programs were used as examples to demonstrate the effectiveness 
and overhead of our technique.  

C is a widely used programming language for critical software (e.g., 
operating systems and system software). Most of the software that is bundled 
with Linux and Sun Solaris are written in C. Furthermore; the most popular 
servers on the Internet for e-mail, the World Wide Web, and the Domain Name 
System are implemented in C. 
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C programmers often use arrays to store data gathered from external input.  
Stack allocated arrays are automatic variables; hence they are allocated and de-
allocated during run-time without programmer intervention. This is convenient 
since the input is often used immediately (see previous discussion of FLFs). 
Despite their convenience, stack allocated arrays are vulnerable to buffer 
overflow attacks. Fortunately, allocating all arrays to the heap can mitigate such 
attacks. 

Stack buffer overflows are the most common form of security vulnerability 
found in C programs. This vulnerability alone costs industry hundreds of 
millions of dollars per year. For example, bind, the software responsible for 
95% of the Domain Name System, was discovered to contain a buffer overflow 
as recently as November, 2002. After the discovery of vulnerabilities in 
infrastructure-critical software, many man-hours of software analysis, 
reinstallation, and testing are required to fix it. 

Moving stack allocated arrays to the heap accomplishes two things. First, it 
disrupts the attack vectors of known stack buffer overflow exploits and all 
future stack buffer overflow exploits. Second, it can disturb the heap memory 
enough to eliminate known heap buffer overflow attack vectors also. Moving a 
stack allocated array to the heap does not fix the bug that causes the buffer 
overflow, it only prevents the overflow from providing the attacker with 
elevated privileges, such as a command shell. This leads to less vulnerability in 
the long run since it is very difficult, and in many cases impossible, for an 
attacker to leverage a heap buffer overflow. 

In C, a heap allocated buffer is actually a pointer to contiguous memory. 
Pointers are not automatic variables; hence they require explicit memory 
management by the programmer. The added complication of explicit memory 
management often leads to bugs such as uninitialized pointers and memory 
leaks. A program that transforms arrays into “pointers to arrays” can automate 
memory management.  Such a program should preserve the semantics of the 
original program so that the transformation is transparent. In C, this is a problem 
since arrays and pointers are not equivalent types. 

Preserving the semantics of the program after the transformation allows 
code to be developed using conventional programming practices (i.e., allocating 
certain buffers on the stack). Furthermore, maintenance and debugging need not 
be hampered by the prolific use of pointers. Rather, the code is automatically 
transformed to use heap allocated “pointers to arrays” immediately prior to 
compilation. 
 
We have created a tool called Gemini that uses TXL rules to transform stack 
allocated arrays into heap allocated “pointers to arrays” automatically.  This 
transformation preserves the semantics of the original program, allowing it to be 
inserted into the end of the development process transparently and with a small 
amount of run-time overhead. 

Our work is related to two major areas of research.  The first is software 
security, specifically as it applies to buffer overflow vulnerabilities in code. The 
second is the use of source code transformation for code re-engineering. 
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Buffer overflows may occur when a fixed size memory allocation is used to 
store a variable-size data entry.  There are conflicts when the variable-size data 
entry overruns the bounds of the fixed-size memory. These overflows are 
typically exploited by entering a string that is larger than the buffer assigned to 
hold it. If the return address (RA) is part of the overwritten run-time stack, an 
attacker may execute arbitrary code, such as spawning a remote terminal 
session. 

Unlike the stack, the heap does not contain return addresses, making it 
harder to change the program’s control flow. 

Some security tools, such as Splint, perform static analysis to find code that 
is likely to be vulnerable.  Unlike our technique, however, they require 
programmers to annotate their source code with constraints.  Not all of the 
existing source code analysis tools require code annotations, however. 

StackGuard has been reasonably successful at reporting buffer overflows 
immediately after they happen at run-time. Specifically, StackGuard inserts 
code into the application at compile time and a ‘canary’ value just before the 
return addresses on the run-time stack. When the function returns, the added 
code checks if this canary value is still in place.  If the canary value is no longer 
present, a buffer overflow must have occurred. When this happens, the 
application terminates with a notification. 

A way to avoid the side effects of an exploited vulnerability is to disallow 
the execution of the run-time stack. This prevents executable code, such as shell 
instructions that may have been placed on the stack during a buffer overflow, 
from being executed. 

One way to get around a non-executable run-time stack is to perform a heap 
overflow, followed by a stack overflow. The heap overflow is used to insert the 
binary instructions for a command shell into the program's executable memory 
space. A stack overflow is then used to modify the return address of the current 
stack frame to point to the executable shell instructions in the heap. 

Several languages have been created to perform source code transformation. 
One such language is TXL. 

TXL uses a grammar for the input text to be transformed and a set of rules 
for performing the transformations. TXL can be thought of as a mixture of a 
functional programming language and the Unix tools like lex and yacc. The 
TXL grammar files are specified in extended Backus-Naur form. First, TXL 
uses the specified grammar files to produce a scanner and parser for that 
grammar. Second, it generates a parse tree from the input using the scanner and 
parser. Finally, it applies the transformation rules to the tree.  

In order to perform the transformation, one simplifying assumption is made. 
The C source code being transformed must be compilable to an executable 
binary. Recall that we are attempting to prevent stack allocated buffer 
overflows. This is accomplished by transforming all stack allocated arrays into 
heap allocated “pointers to arrays”. This transformation preserves the semantics 
of array access and function argument declarations.  

Array declarations within functions are the only arrays that must be 
transformed. Arrays that are declared outside the scope of a function are 
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allocated in the block storage segment and data segment of the executable, and 
hence, they are not vulnerable to stack overflows. Similarly, pointers to arrays 
and pointers to pointers, allocated with malloc, are on the heap and therefore 
not vulnerable to stack-based buffer overflow attacks. 

The following steps outline our transformation process. 
1. Declaration Expansion. This step expands declarations that contain a list of 

declarators. Expanding declarations simplifies the rest of the 
transformations. 

2. typedef Flattening. A typedef can either alias a type or an array of 
types. Without doing the flattening, there could be many nested typedef 
aliases, making it difficult to determine the correct “pointer to array” 
declaration. 

3. Declaration Transformation. This step transforms all local array declarations 
to “pointer to array” declarations. An initialization function is created to 
perform all memory allocation and initialization for the pointer to array. The 
memory allocation and initialization cannot be performed within the body of 
the function due to an ambiguity in the C grammar concerning declarations 
and statements. Due to this ambiguity, it is impossible to guarantee that the 
allocation and initialization of each transformed array will occur before any 
statements reference the resulting pointer. To solve this problem, we 
perform all of the work in a separate function. This function returns a 
pointer to the prepared memory. The ISO C99 specification allows the 
dimensions of locally defined arrays to be variable sized. After the 
transformation, the dimensions of the resulting pointer will be referenced 
several times during initialization. Simply copying the expression to several 
areas of the source code would result in a failure to preserve the semantics 
of the program. To solve this problem, the dimensions of the original array 
are extracted and stored in a local integer variable. This placeholder is 
substituted for the original expression during allocation and initialization of 
the memory. 

4. sizeof alias Declarations. This step inserts a new, unique array 
declaration for each array declaration that was transformed. This new 
declaration is the same as the original array declaration, except that it is not 
initialized with data. The purpose of the unique declaration is to preserve the 
semantics of sizeof. To be proper, the sizeof constant should only be 
passed a type. However, many programmers will pass it a variable or an 
expression. If a sizeof constant references the transformed array, it will 
no longer evaluate to the same value as the original program since the type 
has changed from array to pointer.  In order to solve this special case, we 
search through the scope of each transformed array declaration and replace 
every reference to the original array, within a sizeof, with the name of the 
new unique declaration. 

5. Add free and Transform return and sizeof. This step adds the 
appropriate calls to free, and transforms the return and sizeof 
statements. The calls to free are necessary to preserve the behavior of the 
original arrays, which are automatic variables. The transformation will insert 
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the free calls at the end of every block where the original array would 
have run out of scope. If the return statement references one of the 
buffers, a segmentation fault may occur since the return statement will 
attempt to dereference an invalid pointer. Hence, the expression that would 
have been returned is stored in a local variable, and the contents of the 
variable are returned instead. 

6. Initialization Functions. This step adds the initialization functions to the end 
of the source file to ensure that any necessary header files are included 
above them, such as stdlib.h. Prototypes for the new functions are 
inserted at the top of the source file so that the compiler can resolve the 
symbol names of the functions. 

 
    To demonstrate the effectiveness of our transformation, we show how the 
transformation of source code that is amenable to a buffer overflow prevents the 
exploit from occurring. Several transformed Linux programs have been tested to 
demonstrate the expected efficiency of the transformed code.  
    To show the amount of overhead that can be expected from using heap 
allocated buffers in place of stack allocated arrays, we transformed several 
Linux programs, each with varying degrees of size and complexity. If a program 
came with a regression test suite, these tests were performed on both the 
original code and the transformed code. The binaries were compiled without 
optimizations in each case. The time increase was calculated in one of two 
ways. If the program did not include a suite of regression tests, it was executed 
fifty times with standard options. The result of this was compared to the same 
tests being executed on the non-transformed binary. If the program did include a 
suite of regression tests, the time increase was calculated by taking the 
difference in fifty runs of the test suite of the transformed and non-transformed 
binaries. 
    The following steps constitute the pipeline for transforming C code. This 
pipeline can be inserted directly into the build process of most open source 
software. 
1. Configure and build the program. This ensures that all necessary build files 

are created and that the program holds the simplifying assumption 
mentioned previously. From this step we obtain the names of the files that 
need to be transformed. 

2. Automatically modify the Makefile. Use a sed script to automatically 
change the Makefile so that it produces pre-processed C code instead of 
object files and binaries. Finally, update the modification time of each C file 
using the  touch program. This ensures that make will attempt to generate 
object files and binaries in the next step. 

3. Generate pre-processed C. Execute  make again for each file that was 
produced during the initial execution of make. This time the pre-processed 
C code will be produced for each file.  The debugging directives found in 
the pre-processor output from GCC are removed since the TXL grammar 
cannot parse them. 
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4. Transform the program. Backup the original C source files and transform 
each pre-processed C file, overwriting the original C source file with the 
transformed output.  After all of the files have been transformed, execute 
make again to create the transformed program, then restore the original C 
source files. 

     

Conclusions 
The FLFinder and Gemini tools in CoSAK represent a 2-pronged approach to 
securing software systems. 

The FLF hypothesis states that a relatively small percentage of functions 
near a source of input are the most likely to contain security vulnerabilities. We 
ran an experiment to validate this hypothesis. The results of this experiment 
support our hypothesis. These results were tested against several open source 
software systems not included in the experiment, as well as the OpenSSH server 
daemon. The case study showed that the design decisions made by the 
OpenSSH team concur with the results our FLF Finder produced. By using the 
FLF Finder, code auditors can focus their attention on the most vulnerable 
functions in the system. This would allow them to spend more of their time 
searching for less obvious security flaws in systems, leading to more secure 
applications. 

The Gemini tool guarantees that current and future stack buffer overflow 
attack vectors will fail when used against a transformed program, since the heap 
does not contain return addresses.  

Our solution does not fix the bug that causes a buffer overflow, but it does 
mitigate the risk of such a bug by preventing the attacker from inserting 
executable instructions, such as shell instructions, and overwriting the return 
address to jump to those instructions. Furthermore, our technique preserves the 
semantics of the    program. This allows Gemini to be inserted into the regular 
development process effortlessly.  

The performance associated with using heap memory instead of stack 
memory will increase with the amount of use the stack allocated buffers receive, 
and by the number of times the functions containing the arrays are called. A 
fortunate side effect of our technique is that by inserting more buffers onto the 
heap, the heap memory becomes perturbed. This perturbation lends itself to 
thwarting current and future heap buffer overflow attack vectors. Gemini is 
available from our website at http://serg.cs.drexel.edu/gemini/. 
 

Recommendations 
The FLF work can be viewed as a foundation for future work on developing 
more secure and fault tolerant software. Specifically, our long-term plan is to 
provide mechanisms that will allow code to continue running even in the 
presence of faults through isolation, policy relaxation and dynamic 
reconfiguration. These capabilities will reduce the likelihood of successful 
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denial of service attacks, and provide a better understanding of the software 
failure or the techniques used by the attacker. 

We plan to achieve these goals by defining the operational envelope of a 
software system (i.e., the exact runtime requirements of each of its 
components), and then creating a special runtime environment that ensures that 
the program stays within its envelope.  We also define an area outside of the 
normal envelope, which we call the red zone.  If the program enters the red 
zone, we know that the behavior of the program is off nominal, but we do not 
know the cause and the severity of the problem.  Rather than terminating the 
program, we place the runtime environment into an increased state of readiness 
and allow the code to continue running. We also take actions to limit the 
damage that the misbehaving program can cause. If the program attempts to 
breach the red zone, it will be terminated by the runtime system. 

The envelope of the system is defined as the set of conditions that remain 
true throughout the lifetime of each of the system components. These conditions 
are essentially the operational parameters of each component. If any of them are 
violated, the component is operating outside of its design limits as a result of a 
software problem, or an attack. We refer to these conditions, along with the 
actions performed by the runtime system in response to the violated conditions, 
as contracts. If, during the execution of the program, a contract is violated, the 
runtime environment is provided with sufficient information about the program 
(via the contracts) to determine what kind of action should be taken.  

Using the CoSAK tools we can determine which functions in a system are 
FLFs (i.e., Front Line Functions). Recall that an FLF is a function that is close 
to a source of input from the external environment (e.g., a function that reads 
from a file, socket, standard input). As it would be prohibitively expensive to 
specify contracts for all of the function in a software system, we can use 
heuristics such as the FLF concept to direct the attention of developers to the 
most vulnerable functions from a reliability and security perspective. 

After the FLFs have been identified we will use our profiling tools to 
determine the nominal behavior of the application undergoing scrutiny. 
Subsequently, we will document this nominal behavior using contracts written 
the contract specification language. We will, finally, test these same systems 
under the red zone-enabled runtime system to check that the faults and security 
vulnerabilities no longer result in simple program terminations. 
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Glossary 
CoSAK. The Code Security Analysis Kit is a collection of software tools to 

help analyze C source code to (a) determine which of its functions are more 
amenable to as security attack and (b) transform C programs so that they are 
less susceptible to certain types of buffer overflow attacks. 

FLF. Front Line Functions are the functions in a program that either perform 
input/output or that interact closely with functions that do. 

FLFfinder. The FLFfinder tool analyzes C programs and finds the program’s 
FLFs. 

Gemini. The Gemini tool transforms C code into semantically equivalent C 
code that is not as susceptible to certain kinds of buffer overflow attacks. 




