REPORT DOCUMENTATION PAGE

1. REPORT DATE (DD-MM-YYYY) 10/3/2004
2. REPORT TYPE Final Technical Report
3. DATES COVERED (FROM - TO) 01/06/2001 – 31/12/03
4. TITLE AND SUBTITLE High-speed imaging system for droplet collision and unsteady combustion phenomena
5a. CONTRACT NUMBER
5b. GRANT NUMBER F49620-01-1-0233 - DURIP
5c. PROGRAM ELEMENT NUMBER
5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

6. AUTHOR(S)
Chung K. Law

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Mechanical and Aerospace Engineering
Princeton University
Princeton, NJ 08544

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR/NA
801 North Randolph Street
Room 732
Arlington VA 22203-1977

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Two high-speed imaging systems were acquired for ongoing combustion research supported by AFOSR and ARO. All research programs involve extensive experimentation of unsteady flows, such as the bouncing/merging events for colliding droplets, the propagation of high-speed premixed flames, and the complex ignition kinetics in turbulent flows. Superior spatially and temporally resolved images have since been obtained with these systems.

15. SUBJECT TERMS
Droplet collision; droplet-film collision; droplet bouncing; droplet coalescence; flame propagation; cellular flames; flame-front instabilities.

16. SECURITY CLASSIFICATION OF:
 a. REPORT Unclassified
 b. ABSTRACT Unclassified
 c. THIS PAGE Unclassified

17. LIMITATION OF ABSTRACT UL
18. NUMBER OF PAGES 5
19a. NAME OF RESPONSIBLE PERSON
Mitat Birkan
19b. TELEPHONE NUMBER (include area code) (703) 696-8234

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18
Final Technical Report
(June 1, 2001 to December 31, 2003)

HIGH-SPEED IMAGING SYSTEM FOR DROPLET COLLISION
AND
UNSTEADY COMBUSTION STUDIES
(F49620-01-1-0233 - DURIP)

Submitted By:
Chung K. Law
Department of Mechanical and Aerospace Engineering
Princeton University, Princeton, NJ 08544
Phone: 609-258-5178
Fax: 609-258-6233
E-Mail: cklaw@princeton.edu

For Consideration By:
Dr. Mitat Birkan
Air Force Office of Scientific Research

Approved for public release,
distribution unlimited
Need for Equipment

The funding was used to acquire a high-speed camera system for use in ongoing research supported by AFOSR (Dynamics of Droplet Collision and Flamefront Motion, Contract No. F49620-00-1-0092, and Physical and Chemical Processes in Flames, Contract No. F49620-98-1-0075), and ARO (Chemical Kinetics and Aerodynamics of Ignition, Contract No. DAAG19-01-0004). All research programs involve extensive experimentation of unsteady flows, with the first investigating bouncing/merging criteria for colliding droplets, the second dealing with the response of rapidly propagating unsteady flames exhibiting intrinsic cellular and pulsating instabilities, and the third investigating the inherently complex nature of ignition kinetics in turbulent flows.

For droplet collision studies, the major thrusts involve the determination of the bouncing/merging criteria and the evolution of the collision topology. During such processes, experimental observations of the deformation of the liquid phase prior and subsequent to impact are essential in characterizing the phenomena. With the characteristic time scale for such interaction on the order of tens to hundreds of μs, a high-speed imaging system of sufficient spatial and temporal resolution is requisite.

For the unsteady flames, the propagation velocity of the flame front can be extremely fast, of the order of hundreds of cm/s. During this period the flame surface could also develop cells as well as pulsate. In order to properly resolve the flame surface during the transient, a high-speed imaging system is again required.

Finally, ignition in systems with turbulent flows and inhomogeneities in both temperature and species concentrations play an important role in many combustion processes. Experimentally, it is of fundamental importance to study the development of the ignition kernel (on the order of 1 ms), which can be investigated with a suitable optical system with high-speed imaging capability.

Acquired High-Speed Imaging Systems

Since the award of the grant, fierce market pressure and rapid technological development had enabled us to acquire two high-speed imaging systems capable of recording rates
from 30 to 40,000 pictures per second, with sufficient spatial resolution. Specifics of the
system components are listed in the following:

1. Phantom V5.0 camera upgraded to Phantom V7.0 monochrome camera.
2. Phantom V7 color camera
3. Two computer systems for the two cameras.
4. Optical accessories

Results
Perhaps the best means of presenting the results of the funded program is to show the
superior images obtained with the camera systems acquired. Thus Figure 1 shows typical
collision images of a ~ 200 μm droplet with a thin film of the same liquid. The total
duration of the images shown is 0.25 ms. Figure 2 shows exploding stoichiometric
propane/air flames at different pressures. The total durations are of the order of 15 to 20
ms. Images at much finer temporal resolutions have also been obtained.

Publications
1. “Cellular Instabilities and Self-Acceleration of Outwardly Propagating Spherical
 Flames,” by O.C. Kwon, G. Rozenchan and C.K. Law, Proceedings of the

2. “Outward Propagation, Burning Velocities, and Chemical Effects of Methane
 Flames up to 60 Atmospheres,” by G. Rozenchan, D.L. Zhu and C.K. Law,

 (2004).

4. “On the dynamics of Head-On Droplet Collision: Experiment and Simulation,” by