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ABSTRACT 
 
 
 
 
The Center for Information Technology (CIT) of the University of South Carolina (USC) 
participated in the Autonomous Negotiating Teams (ANTS) program funded by DARPA 
since its inception.  The USC team was involved in two efforts. The first was to develop a 
resource allocation architecture called TargetShare, in which agents used utility to negotiate 
and allocate resources That effort was led by Dr. Jose Vidal.  The second effort, led by Dr. 
Juan E. Vargas, was focused on providing a multi-target tracking system, called the 
SCTracker, compatible with the program’s challenge problem infrastructure. This report 
describes the two efforts. 
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A. TARGETSHARE 

 
1. INTRODUCTION 

 
TargetShare is an architecture based on a method for solving service allocation problems in 
which a set of services must be allocated to a set of agents so as to maximize a global utility. 
The method is completely distributed so it can scale to any number of services without 
degradation.  In this report, we formalize the service allocation problem and then present a 
simple hill-climbing, a global hill climbing, and a bidding-protocol algorithm for solving it.  
We then analyze the expected performance of these algorithms as a function of various 
problem parameters such as the branching factor and the number of agents.  Finally, we use 
the sensor allocation problem, an instance of a service allocation problem, to show the 
bidding protocol at work.  The simulations also show that phase transition on the expected 
quality of the solution exists as the amount of communication between agents increases. 
 
The problem of dynamically allocating services to a changing set of consumers arises in 
many applications.  For example, in an e-commerce system, the service providers are always 
trying to determine which service to provide to whom, and at what price [5]; in an 
automated manufacturing for mass customization scenario, agents must decide which 
services will be more popular/profitable [1]; and in a dynamic sensor allocation problem, a 
set of sensors in a field must decide which area to cover, if any, while preserving their 
resources.  
 
While these problems might not seem related, they are instances of a more general service 
allocation problem in which a finite set of resources can be allocated by a set of autonomous 
agents so as to maximize some global measure of utility. A general approach to solving these 
types of problems has been used in many successful systems, such as [2] [3] [11] [9].  The 
approach involves three general steps: 1. Assign each resource that needs to be preserved to 
an agent responsible for managing the resource. 2. Assign each goal of the problem domain 
to an agent responsible for achieving it. Achieving these goals requires the consumption of 
resources. 3. Have each agent take actions so as to maximize its own utility, but implement a 
coordination algorithm that encourages agents to take actions that also maximize the global 
utility. In this report we formalize this general approach by casting the problem as a search in 
a global fitness landscape which is defined as the sum of the agents’ utilities. We show how 
the choice of a coordination/communication protocol disseminates information, which in 
turn “smoothes” the global utility landscape. This smooth global utility landscape allows the 
agents to easily find the global optimum by making selfish decisions to maximize their 
individual utility. We also present experiments that pinpoint the location of a phase 
transition in the time it takes for the agents to find the optimal allocation. The transition can 
be seen when the amount of communication allowed among agents is manipulated. It exists 
because communication allows the agents to align their individual landscapes with the global 
landscape. At some amount of communication, the alignment between these landscapes is 
good enough to allow the agents to find the global optimum, but less communication drives 
the agents into a random behavior from which the system cannot recuperate.  



 

2

1.1 Task Allocation 

 
The service allocation problem we discuss is a superset of the well known task allocation 
problem.  A task allocation problem is defined by a set of tasks that must be allocated among 
a set of agents.  Each agent has a cost associated with each subset of tasks, which represents 
the cost the agent would incur if it had to perform those tasks. Coordination protocols are 
designed to allow agents to trade tasks so that the globally optimal allocation (the one that 
minimizes the sum of all the individual agent costs) is reached as soon as possible.  It has 
been shown that this globally optimal allocation can be reached if the agents use the contract-
net protocol [9] with Original Cluster Swap Multi (OCSM) contracts [8].  These OCSM 
contracts make it possible for the system to transition from any allocation to any other 
allocation in one step. As such, a simple hill-climbing search is guaranteed to eventually 
reach the global optimum.  We consider the service allocation problem, which is a superset 
of the task allocation because it allows for more than one agent to service a “task”. The 
service allocation problem we study also has the characteristic that every allocation cannot be 
reached from every other allocation in one step. 
 
1.2 Service Allocation 

 
In a service allocation problem there are a set of services, offered by service agents, and a set 
of consumers who use those services. A server can provide any one of a number of services 
and some consumers will benefit from that service without depleting it. A server agent incurs 
a cost when providing a service and can choose not to provide any service. For example, a 
server could be an agent that sets up a website with information about cats. All the 
consumer agents with interests in cats will benefit from this service, but those with other 
interests will not benefit. Since each server can provide, at most, one service, the problem is 
to find the allocation of services that maximizes the sum of all the agents’ utilities, that is, an 
allocation that maximizes the global utility. 
 
1.2.1 SENSOR ALLOCATION 

Another instance of the service allocation problem is the sensor allocation problem, which 
we will use as an example throughout this report.  In the sensor allocation problem we have 
a number of sensors placed in fixed positions in a two-dimensional space. Each sensor has a 
limited viewing angle and distance but can point in any one of a number of directions. For 
example, a sensor might have a viewing angle of 120 degrees, viewing distance of 3 feet, and 
be able to look in three directions, each one 120 degrees apart from the others. That is, it can 
“look” in any one of three directions. In each direction it can see everything that is in the 
120 degree and 3 feet long view cone. Each time a sensor looks in a particular direction it 
uses energy. There are also targets that move around in the field. The goal is for the sensors 
to detect and track all the targets in the field. However, in order to determine the location of 
a target, two or more sensors have to look at it at the same time. We also wish to minimize 
the amount of energy spent by the sensors. 
 
We consider the sensor agents as being able to provide three services, one for each sector, 
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but only one at a time. We consider the target agents as consuming the services of the 
sensors. 
 
2.  A FORMAL MODEL FOR SERVICE ALLOCATION 

We define a service allocation problem SA as a pair SA = {C, S} where C is the set of 
consumer agents C = {c1, c2, . . . , c|C|}, and ci has only one possible state, ci = 0.  The set of 
service agents is S = {s1, s2, . . . , s|S|} and the value of si is the value of that service. For the 
sensor domain in which a sensor can observe any one of three 120-degree sectors or be 
turned off we have  si ∈ {0, 1, 2, off}. An allocation is an assignment of states to the services 
(since the consumers have only one possible state we can ignore them). A particular 
allocation is denoted by a = {s1, s2, . . . , s|S|}, where the si have some value taken from the 
domain of service states, and a ∈ A, where A is the set of all possible allocations. That is, an 
allocation tells us the state of all agents (since consumers have only one state they can be 
omitted). Each agent also has a utility function. The utility that an agent receives depends on 
the current allocation a, where we let a(s) be the state of service agent s under a. The agent’s 
utilities will depend on their state and the state of other agents. For example, in the sensor 
problem we define the utility of sensor s as Us(a), where  
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where fc(a) = number of sensors s that see c given their state a(c).   [eq 3] 

 
Finally, given the individual agent utilities, we define the global utility 
GU(a) as the sum of the individual agents’ utilities: 
 

∑ ∑
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aUsaUcaGU )()()(        [eq 4] 

 
The service allocation problem is to find the allocation a that maximizes GU(a). In the 
sensor problem, there are 4|S| possible allocations, which would make a simple generate-
and-test approach take exponential amounts of time. We wish to find the global optimum 
much faster than that. 
 
 
2.1 Search Algorithms 

Our goal is to design an interaction protocol whereby an allocation a that maximizes the 
global utility GU(a) is reached in a small number of steps. In each step of our protocol 
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one of the agents will change its state or send a message to another agent. The messages 
might contain the state or utilities of other agents. We assume that the agents do not have 
direct access to the other agents’ states or utility values. A simpler algorithm could involve 
having each consumer, at each time, changing the state of a randomly chosen service agent 
so as to increase the consumer’s own utility. That is, a consumer c will change the current 
allocation a into a0 by changing the state of some sensor s such that Uc(a0) > Uc(a). If the 
sensor’s state cannot be changed so as to increase the utility, then the consumer does 
nothing. In the sensor domain this amounts to a target picking a sensor and changing its 
state so that the sensor can see the target. We refer to this algorithm as individual hill-
climbing. The individual hill-climbing algorithm is simple to implement and the only 
communication needed is between the consumer and the chosen server. This simple 
algorithm makes every consumer agent increase its individual utility at each turn. However, 
the new allocation a0 might result in a lower global utility, since a0  might reduce the utility of 
several other agents. Therefore, it does not guarantee that an optimal allocation will be 
eventually reached. Another approach is for each agent to change state so as to increase the 
global utility. We call this a global hill-climbing algorithm.   
 
In order to implement this algorithm, an agent would need to know how the proposed state 
change affects the global utility as well as the states of all the other agents. That is, it would 
need to be able to determine GU(a’) which requires it to know the state of all the agents in a0 
as well as the utility functions of every other agent, as per the definition of global utility in 
equation 4. In order for an agent to know the state of others, it would need to somehow 
communicate with all other agents. If the system implements a global broadcasting method 
then we would need for each agent to broadcast its state at each time. If the system uses 
more specialized communications such as point-to-point, limited broadcasting, etc., then 
more messages will be needed. Any protocol that implements the global hill-climbing 
algorithm will reach a locally optimal allocation in the global utility. This is because it is 
always true that, for a new allocation a0 and old allocation a, GU(a’) ≥ GU(a). Whether or not 
this local optimum is also a global optimum will depend on the ruggedness of the global 
utility landscape. That is, if it consists of one smooth peak then it is likely that any local 
optimum is the global optimum. On the other hand, if the landscape is very rugged then 
there are likely many local peaks.  
 
Studies in NK landscapes [4] tell us that smoother landscapes result when an agent’s utility 
depends on the state of smaller number of other agents. Global hill-climbing is better than 
individual hill-climbing since it guarantees that we will find a local optima. However, it 
requires agents to know each others’ utility function and to constantly communicate their 
state. Such large amount of communication is often undesirable in multi-agent systems. We 
need a better way to find the global optimum. 
 
One way of correlating the individual landscapes to the global utility landscape is with the 
use of a bidding protocol in which each consumer agent tells each service the marginal utility 
the consumer would receive if the service switched its state so as to maximize the 
consumer’s utility. The service agent can then choose to provide the service with the highest 
aggregate demand. Since the service is picking the value that maximizes the utility of 
everyone involved (all the consumers and the service) without decreasing the utility of 
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anyone else (the other services) this protocol is guaranteed to never decrease the global 
utility. This bidding protocol is a simplified version of the contract-net [9] protocol in that it 
does not require contractors to send requests for bids. However, in order for a consumer to 
determine the marginal utility it will receive from one sensor changing state, it still needs to 
know the state of all the other sensors. This means that a complete implementation of this 
protocol will still require a lot of communication (namely, the same amount as in global hill-
climbing). We can reduce this number of messages by allowing agents to communicate with 
only a subset of the other agents and making their decisions based on only this subset of 
information. That is, instead of all services telling each consumer their state, a consumer 
could receive state information from only a subset of the services and make its decision 
based on this (assuming that the services chosen are representative of the whole). This 
strategy shows a lot of promise but its performance can only be evaluated on an instance-by-
instance basis. We explore this strategy experimentally in Section 3 using the sensor domain. 
 
2.1.1 THEORETICAL TIME BOUNDS OF GLOBAL HILL-CLIMBING 

We now know that global hill-climbing will always reach a local optimum, the next questions 
we must answer are: 
 
1. How many local optima are there? 
2. What is the probability that a local optimum is the global optimum? 
3. How long does it take, on average, to reach a local optimum? 
 
Let  a  be the current allocation and a0 be a neighboring allocation.  We know that a is a local 
optimum if 
 

)()()( aGUaGUaNa ′≥∀ ∈′          [eq 5] 
 
where 
 

N(a) = {x | x is a Neighbor of a}            [eq 6] 
 
We define a Neighbor allocation as an allocation where one, and only one, agent has a 
different state. 
 
The probability that some allocation I is a local optimum is simply the probability that 
equation 5 is true. If the utility of all pairs of neighbors is not correlated, then this probability 
is 
 

b
aNa aGUGUaGUaGU )]()Pr[)]()(Pr[ )( ′>=′>∀ ∈′           [eq 7] 

 
where b is the branching factor. In the sensor problem b = 3 · |S| where S is the set of all 
sensors. That is, since each sensor can be in any of four states it will have three neighbors 
from each state. In some systems it is safe to assume that the global utilities of a’s neighbors 
are independent. However, most systems show some degree of correlation. 
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Now we need to calculate the Pr[GU(a) > GU(a0)], that is, the probability that some 
allocation a has a greater global utility than its neighbor a0, for all a and a0. This could be 
calculated via an exhaustive enumeration of all possible allocations. However, often we can 
find the expected value of this probability. For example, in the sensor problem each sensor 
has four possible states. If a sensor changes its state from sector x to sector y the utility of 
the target agents covered by x will decrease while the utility of those in y will increase. If we 
assume that, on average, the targets are evenly spaced on the field, then the global utilities 
for both of these are expected to be the same. That is, the expected probability that the 
global utility of one allocation is bigger than the other is 1/2. If, on the other hand, a sensor 
changes state from “off” to a sector, or from a sector to “off,” the global utility is expected 
to decrease and increase, respectively. However, there are an equal number of opportunities 
to go from “off” to “on” and vice-versa. Therefore, we can also expect that for these cases 
the probability that the global utility of one allocation is bigger than the other is 1/2. Based 
on these approximations, we can declare that for the sensor problem  
 

λ==′>∀ ∈′ baNa aGUaGU
2
1)]()(Pr[ )(          [eq 8] 

 
If we assume an even distribution of local optima, the total number of local optima is simply 
the product of the total number of allocations times the probability that each one is a local 
optimum. That is,  
 

Total number of local optima = λ|A|               [eq 9] 
 
 
For the sensor problem,   b2

1=λ   b = 3 · |S| and |A| = b|S|, so the expected number of 
local optima is b|S|/23|S|.  
 

bA
lobalmumIsAlsoGaLocalOpti

2
1

||
1

]Pr[ ==
λ

          [eq 10] 

 
 
We can find the expected time the algorithm will take to reach a local optimum by 
determining the maximum number of steps from every allocation to the nearest local 
optimum. This gives us an upper bound on the number of steps needed to reach the nearest 
local optimum using global hill-climbing. Notice that, under either individual hill-climbing or 
the bidding protocol it is possible that the local optimum is not reached, or is reached after 
more steps, since these algorithms can take steps that lower the global utility. In order to 
find the expected number of steps to reach a local optimum, we start at any one of the local 
optima and then traverse all possible links at each depth d until all possible allocations have 
been visited. This occurs when  
 

 λ |A| · bd > |A|               [eq 11] 
 
Solving for d, and remembering that  b2

1=λ , we get 
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d > b logb 2.               [eq 12] 

 
The expected worst-case distance from any point to the nearest local optimum is, therefore, 
b logb 2 (this number only makes sense for b ≥2 since smaller number of neighbors do not 
form a searchable space). That is, the number of steps to reach the nearest local optima in 
the sensor domain is proportional to the branching factor b, which is equal to 3 · |S|. We 
can expect search time to increase linearly with the number of sensors in the field. 
 
 
3. SIMULATIONS 

While the theoretical results above give us some bounds on the number of iterations before 
the system is expected to converge to a local optimum, the bounds are rather loose and do 
not tell us much about the dynamics of the executing system. Also, we cannot show 
mathematically how changes in the amount of communication change the search. Therefore, 
we have implemented a service allocation simulator to answer these questions. It simulates 
the sensor allocation domain described in the introduction. The simulator is written in Java 
and the source code is available upon request. It gathers and analyzes data from any desired 
number of runs. The program can analyze the behavior of any number of target and sensor 
agents on a two-dimensional space, and the agents can be given any desired utility function. 
The program is limited to static targets. That is, it only considers the one-shot service 
allocation problem.  
 
Each new allocation is completely independent of any previous one. In the tests we 
performed, each run has seven sensors and seven targets, all of which are randomly placed 
on a two-dimensional grid. Each sensor can only point in one of three directions or sectors. 
These three sectors are the same for all sensors (specifically, the first sector is from 0 to 120 
degrees, the second one from 120 to 240, and the third one from 240 to 360). All the sensors 
use the same utility function which is given by equation 1, while the targets use equation 2. 
After a sensor agent receives all the bids it chooses the sector that has the highest aggregate 
demand, as described by the bidding protocol.  During a run, each of the targets periodically 
sends a bid to a number of sensors asking them to turn to the sector that faces the target. 
We set the bid amount to a fixed number for these tests. Periodically, the sensors count the 
number of bids they have received for each sector and turn their detector (such as a radar) to 
face the sector with the highest aggregate demand.  
 
We assume that neither the targets nor the sensors can form coalitions. We vary the number 
of sensors to which the targets send their bids in order to explore the quality of the solution 
that the system converges upon as the amount of communication changes. For example, at 
one extreme if all the targets send their bids to all the sensors, then the sensors would always 
set their sector to be the one with the most targets. This particular service allocation should, 
usually, be the best. However, it might not always be the optimal solution. For example, if 
seven targets are clustered together and the eighth is on another part of the field, it would be 
better if six sensor agents pointed towards the cluster of targets while the remaining two 
sensor agents pointed towards the stray target rather than having all sensor agents point 
towards the cluster of targets. At the other extreme, if all the targets send their bids to 
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only one sensor then they will minimize communications but then the sensors will point to 
the sector from which they received a message, i.e., an allocation which is likely to be 
suboptimal.  
 
These simulations explore the ruggedness of the system’s global utility landscape and the 
dynamics of the agents’ exploration of this landscape. If the agents were to always converge 
on a local (non-global) optimum then we would deduce that this problem domain has a very 
rugged utility landscape. On the other hand, if they usually manage to reach the global 
optimum then we could deduce a smooth utility landscape. 
 
 
4. TEST RESULTS 

In each of our tests we set the number of agents that each target will send its bid to, that is, 
the number of neighbors, to a fixed number. Given this fixed number of neighbors, we then 
generated 100 random placements of agents on the field and ran our bidding algorithm 10 
times on each of those placements. Finally, we plotted the average solution quality, over the 
10 runs, as a function of time for each of the 100 different placements. The solution quality 
is given by the ratio 
 

malUtilityGlobalOpti
lityCurrentUti

=α                 [eq 13] 

 
when α= 1 the run has reached the global optimum. Since the number of agents is small, we 
were able to calculate the global optimum using a brute-force method. Specifically, there are 
37 = 2187 possible configurations times 100 random placements leads to 218700 
combinations that we had to check for each run in order to find the global optimum using 
brute-force.  
 
Due to the large number of configurations, using more than 7 sensors to run the simulation 
was not practical. Notice, however, that our algorithm is much faster than this brute-force 
search which we perform only to confirm that our search does find the global optimum. In 
our tests there were always seven target agents and seven sensor agents. We varied the 
number of neighbors from 1 to 7. If the target can only communicate with one other sensor, 
the sensors will likely have very little information for making their decision, while if all 
targets communicate with all seven sensors, then each sensor will generally be able to point 
to the sector with the most targets. However, because these decisions are made in an 
asynchronous manner, it is possible that some sensors may not always receive all the bids 
before decisions are due. The targets always send their bids to the sensors that are closest to 
them.  
 
The results from our experiments are shown in Figure 1 where we can see that there is a 
transition in the system’s performance as the number of neighbors goes from three to five. 
That is, if the targets only send their bids to three sensors then it is almost certain that the 
system will stay in a configuration that has a very low global utility. However, if the targets 
send their bids to five sensors, then it is almost guaranteed (98% of the time) that the 
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system will reach the globally optimal allocation. 
 
 
5. RELATED WORK 

There is ongoing work in the field of complexity that attempts to study they dynamics of 
complex adaptive systems [4]. Our approach is based on ideas borrowed from the use of NK 
landscapes for the analysis of co-evolving systems. As such, we are using some of the results 
from that field. However, complexity theory is more concerned with explaining the dynamic 
behavior of existing systems, while we are more concerned with the engineering of multi-
agent systems for distributed service allocation. The Collective Intelligence (COIN) 
framework [12] shares many of the same goals of our research. They start with a global 
utility function from which they derive the rewards functions for each agent. The agents are 
assumed to use some form of reinforcement learning. They show that the global utility is 
maximized when using their prescribed reward functions. They do not, however, consider 
how agent communication might affect the individual agent’s utility landscape. The task 
allocation problem has been studied in [7], but the service allocation problem we present in 
this paper has received very little attention. There is also work being done on the analysis of 
the dynamics of multi-agent systems for other domains such as e-commerce [5] and 
automated manufacturing [6]. It is possible that extensions to our approach will shed some 
light into the dynamics of these domains. 
 
6. CONCLUSIONS 

 
We have formalized the service allocation problem and examined a general approach to 
solving problems of this type. The approach involves the use of utility-maximizing agents 
that represent the resources and the services. A simple form of bidding is used for 
communication. An analysis of this approach reveals that it implements a form of distributed 
hill-climbing, where each agent climbs its own utility landscape and not the global utility 
landscape. However, we showed that increasing the amount of communication among the 
agents forces each individual agent’s landscape to become increasingly correlated to the 
global landscape.  
 
These theoretical results were then verified in our implementation of a sensor allocation 
problem, which is an instance of a service allocation problem. Furthermore, the simulations 
allowed us to determine the location of a phase transition in the amount of communication 
needed for the system to consistently arrive at the globally optimal service allocation. More 
generally, we have shown how a service allocation problem can be viewed as a distributed 
search by multiple agents over multiple landscapes. We also showed how the correlation 
between the global utility landscape and the individual agent’s utility landscape depends on 
the amount and type of inter-agent communication. Specifically, we have shown that 
increased communications leads to a higher correlation between the global and individual 
utility landscapes, which increases the probability that the global optimum will be reached. 
Of course, the success of the search still depends on the connectivity of the search space, 
which will vary from domain to domain.  
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We expect that our general approach can be applied to the design of any multi-agent systems 
whose desired behavior is given by a global utility function but whose agents must act 
selfishly. Our future work includes the study of how the system will behave under 
perturbations. For example, as the target moves it perturbs the current allocation and the 
global optimum might change. We also hope to characterize the local to global utility 
function correlation for different service allocation problems and the expected time to find 
the global optimum under various amounts of communication. 
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B.  SC TRACKER 

 
1. INTRODUCTION 

 
This part of the report describes a multi-target tracking system developed to support the 
ANTS challenge problem (CP).  The tracking system is based on a Bayesian approach [18] 
that estimates target locations and velocities by fusing amplitude and frequency 
measurements obtained from Doppler Radar sensors. The tracking system was designed to 
operate in conjunction with Doppler Radar sensors developed by the BAE Sanders [26], or 
their simulation version, called RADSIM, developed at the Air Force Research Laboratory 
[25]. The simulated and hardware sensors are devices that return values of amplitude and 
frequency. The amplitude is proportional to the distance between the sensor and the target, 
and the frequency is proportional to the angular velocity of the target, as seen by the sensor.  
Equations 4 and 5 describe the amplitude and frequency models; Figure 4 shows the 
geometry involved to determine amplitude and frequency given the target velocity, its 
location, and the location of the sensor. 
 
The tracker system fuses data into a probability space to obtain an estimate of  a target’s state 
at any given time [15, 18, 21, 22, 23]. The state of  a target, represented by  its location and 
velocity, are not directly observable from the sensors data.  Instead, the sensors return 
amplitude and frequency measurements that are related to the target location, its velocity, 
and sensor parameters, including sensor location, sector selection, gain, type of  
measurement, beam width, number of  pulses within a measurement, and power. 
 
2. SENSOR MODEL 

In general, a target moving in a two-dimensional plane can be represented by a vector Ts 
given by, 
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T              [eq 1] 

 
Where x and y are the target’s coordinates, and xv and yv  are the target’s velocity in the x 
and y direction, respectively, in a fixed reference frame.  Given that the ith sensor returns a 
measurement mi, then a sensor model for that measurement, mi, can be expressed as  

 
( )isimi TMm θ,,=            [eq 2] 

 
The sensor model imM ,  is a function of the target state sT  and the parameters iθ of the 
model. The model could be based on fundamental principles of physics or be formulated 
from empirical observations [20, 22, 24]. In either case it is likely that the functional 
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model imM ,  might not explain the measurement im  completely.  Errors may occur because 
the model might be insufficient and may not take into consideration all the possible 
interactions within the system or because the experimental conditions may go beyond 
control.  Hence a better representation of the model is, 

 

( ) imisimi TMm ,, , εθ +=          [eq 3] 

Where im,ε  is the error term in the thm  measurement of the thi  sensor.  During the 
development of the tracking systems two sensor models were used.  The first sensor model 
was given by the system of equations: 
 
 
         [eq 4] 

 
 
 
 
 
Where Ak is a value of amplitude and fk is a value of frequency given the range Rk (the 
distance between the sensor and the target).  K, C, and α, are parameters of the sensor 
model.  This model had a correction factor given by equation 5  
 
 

[eq 5] 
 
 
 
i.e., the value of amplitude was affected by Gaussian noise compounded at a level of 5%, 
while the value of frequency had an error factor of εf . 
 
The first sensor model was replaced by a model that contained a noise factor given by a 
uniform distribution around [-0.2, 0.2].  The second model considered amplitude as a 
function of frequency, which in turn was a function of an interpolation function Cf .  
 
 

      [eq 6] 
 
 
 
3. PROCESS MODEL 

In addition to the sensor model, the tracker uses a process model to predict target location 
and velocity [14, 16, 17, 18, 19, 25, 26].  The process model contains data structures and 
algorithms that were specifically designed to cope with the asynchronous nature of the 
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CP and the incompatible measurement spaces of the data sources.  The process model 
relates the history of the target states to potential future states.  Let ( )tH  denote the history 
of target states until time t.  If ( )tTs  denotes the target state at time t, then 
 

( ) [ ]Tss tTTtH )(...)1(=         [eq 7] 

i.e., H(t) is the set of  all target states until time t.  A general motion model of  the target’s 
trajectory can be ascertained from the history of  the target states.   Given the current target 
state and the distribution of  the velocity obtained from that history, it is feasible to project 
that information into the future and obtain a distribution of  the most likely target locations.  
This information can be used with the measurements obtained at time t+1 to locate the 
target. 

( ) ( ))(,,,1 1 tHmmTtT Nss K=+       [eq 8] 

Where 1m , … , Nm  are the measurements from N sensors at time t+1.  

The process model assumes that the clocks on all the sensors are synchronized.  However 
the hardware implementation of the challenge problem is not compatible with this 
assumption.  One of the constraints of the CP architecture is that a sensor returns one single 
measurement during a time t. Yet, to estimate the target state at any time, it is necessary to 
have as many measurements as possible during that period.  Another constraint is that 
measurements from a single sensor are not enough to track a target with a high degree of 
accuracy.  
 
To overcome these limitations, the process model assumes that the motion of a target 
follows the laws of inertia.  This assumption is implemented using the concept of motion 
through time, which is implemented by two structures, called the time frames and the 
motion model, described in the following sections.  
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where 

V(t-1), V(t), V(t+1) are the estimates of target velocity, 
L(t-1), L(t), L(t+1) are the estimates of target location,  
A(s1,t).. A(sn,t) are the amplitude measurements from sensors s1 .. sn, at time=t. 
F(s1,t).. F(sn,t) are the frequency measurements from sensors s1 .. sn, at time=t. 
P(s1,t).. P(sn,t) are the operational parameters of sensors s1 .. sn, at time=t. 

 
Figure 1:  Interactions Between the State and Process Models 

 
 
4. TIME FRAMES 

Given the asynchronous nature of  the CP infrastructure, information from the sensors is 
never guaranteed to arrive at the tracker on time. In fact, data arriving with significant delay 
are the norm rather than the exception.   To cope with this constraint, it was hypothesized 
that changes in the target state are very small during the period fT∆ , and that all sensor 
measurements received in that period can be fused to obtain an approximate estimate of  that 
target state.  This assumption led to the discretization of  time into a series of  time frames of  
length fT∆ .  It is implied that the target location in a time frame fT∆  is constant. 
Theoretically the best results are obtained by making fT∆  approach zero.  However it is not 
feasible to obtain sufficient measurements to estimate target state under that condition. 
 
The tracker uses time frames to accommodate incoming data based on the time stamp at 
which data was produced by the sensors.  These data, which consist of amplitude and 
frequency, are used to update the estimation of target location and velocity at the end of 
each time frame. Due to this scheme, data belonging to the past, received later because of 
communication or processor delays, is not ignored.  Instead, those data are used to update 
the tracker at the current time frame, or at times T-1, T-2, T-3, etc., if data for those 
frames arrive during the current time frame.  Since measurements are continuously added 
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under a timed-queued scheme, whenever the tracker updates location and velocity for the 
time-frame at time T, the tracker first checks if there is any data for previous time frames.  If 
new data indeed came for previous time frames, then the estimates of target state for those 
frames are updated, and the new predictions are propagated forward. The tracker ignores 
measurements whose time stamp is delayed more than 4 time frames. Although this number 
is easily set up as an operational parameter, the number is consistent with theoretical results 
from hidden Markov models, and constitutes a good compromise that has little impact on 
performance [18]. 
 
Figure 2 shows the sequence of data update that would take place at frame 4000, as new 
“old” data from previous frames are detected.  The circles are color coded: Green means 
that the data item arrived on time, yellow that it arrived one time frame later, blue two times 
later, red three time frames later. The location in the time frame is such as to indicate 
approximately the time at which the item arrived. For example, in time frame 1000, data 
items were produced at the sensors at times 1000, 1250, 1500, and 1800.  Of these, only the 
first two items arrived on time, the data item for t=1500 arrived one frame later, and the data 
item for t=1800 arrived three frames later. Similarly, the data item for t=2800 arrived at that 
frame two frames later, etc.   
 
 

 TimeFrame 1000 2000 3000 4000 
Sensor1      
Sensor2      
Sensor3      
Sensor4      

 
Figure 2 Time Frames 

 
 
In a given time frame some sensors may return more than one measurement. This would be 
illustrated in the last time frame, where Sensor1 returns measurements at times t=4100 and 
t=4800. Two approaches were taken to deal with this issue. The first approach considered 
only the most recent measurement and ignored the previous measurements within the frame.  
Each measurement has an intrinsic background noise that is not constant.  If  the 
assumption is made that background noise fluctuates around zero, then averaging the 
measurements actually diminishes the effect of  fluctuations, and the result is a more accurate 
representation of  the target state. Therefore the approach adopted by the tracker is to 
average the measurements within the same frame.   
 
Although some of these concepts may not be applicable as-is to other tracking problems, the 
time frame concept offers a reasonable insight that is applicable to many tracking platforms. 
 
 
5. LOCATION MODEL 

The measurements obtained from the hardware sensors or from RADSIM are 
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stored in a time-stamped queue of time frames.  Each time frame has a start time and an end 
time.  The end-time of frame T-1 is the start time of frame T.  A measurement belongs to a 
time frame if that measurement’s time is between the start and end time of that time frame. 
 
The tracker uses an internal clock to keep track of time. As time progresses, the clock 
reaches a point at which the tracker time is greater than the end time of the current time 
frame. When that occurs, a method, called updateTracker, is invoked. The method first checks 
if new data has just arrived for previous time frames.  If new data exist in those frames then 
the frames are updated before updating the current time frame, and the update proceeds 
forward.  The method uses two data handlers to manage amplitude and frequency 
measurements from the sensors.  The amplitude handler uses the sensor model to fuse 
information and obtain a probabilistic distribution of the target location.  This distribution is 
updated using the motion model, which is in turn an expression of the history of target 
states.  The frequency handler uses the frequency measurements to estimate the target’s 
velocity.  
 
 
6. AMPLITUDE HANDLER 

The two-dimensional target domain is divided into a set of mxn grid cells [13, 18].  The 
measurements from the sensors are used to compute the probability of a target being in each 
grid cell.  The grid cell is mapped to the center of the cell as a single point. 
 
Consider two amplitude measurements 21 , AA  obtained from two different sensors 21 , SS . 
A distribution of target location in each cell of the grid can be obtained by fusing these 
measurements. The probability of the target being in each cell ( )ji yx ,  where mi ...1=  and 

nj ...1=  is computed given the measurements 21 , AA .  Let this probability be denoted 
by ( )2211 ,, AMAMyYxXP ji ==== .  The measurements 21 , AA  are assumed to be independent; 
thus measurements from one sensor do not have any affect on the measurements of another 
sensor.  This implies that, 
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From Bayes theorem we can write each term in the right hand side of the equation as, 
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The term ( )ji yYxXP == ,  is the a-prior probability associated with the target being 
in location ( )ji yx ,  and ( )11, AMyYxXP ji ===  is the posteriori probability after the 



 

17

measurement 1A  was obtained.  Assuming a model for the amplitude that is a function of 
the target location, 
 

( ) AA YXMA εθ += ,,          [eq 11] 
 
in equation 11 θ  is a sensor-specific parameter vector and Aε  is the measurement error.  If 

Aε  is assumed to be distributed normally with a standard deviation Aσ  then, 
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Using equation 12 the posterior probability distribution of the target location given 
measurements from N different sensors can be obtained.  If the measurement error for each 
sensor is assumed to be normal, the equation above becomes 
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Where 2

,Akσ  is the variance in amplitude measurements, kθ  is the parameter vector, 

( )kjiAk yxM θ,,,  is the amplitude model of the thk sensor, kA  is the measurement received 
from that sensor, and C  is a normalization constant. 
 
An example that illustrates the fusion of two amplitude measurements to obtain a probability 
distribution of target location is shown in Figure 3. 
 
Clearly, it is not possible to track a target with just one or two amplitude measurements; the 
region of high probability is too wide.  To resolve this issue, either more measurements are 
needed, or a motion model that could resolve the ambiguities is needed. Ideally, the motion 
model would use the history of target states to estimate velocity.  
 
 
7. FREQUENCY HANDLER 

A frequency model for the sensor relates the velocity of the target to the sensor’s frequency 
measurement.  It is assumed that frequency is a linear function of the radial velocity with 
respect to the sensor, i.e., 

•

= kfkk RCf ,           [eq 14] 
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Where kf  is the frequency measurement, fkC ,  is a constant, kR
•

 is the radial velocity with 

respect to thk  sensor. 
 
A single frequency measurement is not sufficient to solve for target’s velocity; measurements 
from at least two sensors are required.  Even in the presence of two measurements, a 
technique to realize the radial direction (whether the target is moving towards or away from 
the sensor) is required.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3   (a) Target Probability Distribution From Single Amplitude Measurement. 
              (b) Target Probability Distribution From Fusing two Amplitude Measurements 

 
 
 
Figure 4 shows the relation between the sensor location and the target velocity. 
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vr : Target velocity 
•

R : Radial velocity with respect to the sensor 
α : Angle between target and sensor 

yx vv , : Velocity of the target in x and y direction respectively 
( )SS yx , : Sensor coordinates 
( )TT yx , : Target coordinates 

      R : Target distance from the sensor 
 

Figure 4: Relation Between the Sensor Location and the Target Velocity 
 
 
The frequency measurements from the sensors can be converted into radial velocities using 

the equation for frequency.  Let 
•

iR  denote the radial velocity of a target computed from the 

frequency of the thi  sensor.  The target velocity components yx vv ,  are related to 
•

iR  as, 
 

iiyix Rvv =+ αα sincos              [eq 15] 
 
Where iα  denotes the angle between the thi  sensor and target coordinates.  The tracker 
solves this equation simultaneously for xv  and yv  whenever frequency measurements are 
obtained from more than two sensors within the same time frame. 
 
 
8. MOTION MODEL 

A motion model was developed using recent history of target states [14, 18, 20].  This can be 
viewed as a learning technique of the target’s motion, based on the assumption that the 
target is subjected to the laws of inertia.  This assumption is consistent with the CP; the 
targets being detected have a constrained pattern of motion.  Other “common-sense” 
constraints, like the fact that the target cannot change its direction abruptly, or 
cannot move faster than a pre-specified maximum velocity, are also assumed.   Some 
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of the advantages of the motion model are, 
• Since the motion model captures the velocity distribution, using the model in 

conjunction with the amplitude handler results in more accurate distributions of 
target location.  As discussed in a previous section, the amplitude handler sometimes 
gives two clusters as the most likely target locations.  Using a probabilistic weighted 
mean in such circumstances to predict target location may lead to erroneous 
estimations.  Multi-modal distributions of target location can be avoided most of the 
times by using the motion model.  

• The motion model can help to predict future target states and hence optimize the 
use of CP resources (sensors) from this information. 

• Estimates of target location can be obtained even when the sensors fail to report 
measurements. 

 
The motion model builds a probabilistic estimate from previous target states.  There are two 
techniques to compute target velocity.  One uses the previous target locations to find the 
fraction of distance that the target has moved in time t.  The second uses frequency 
measurements from the sensors to compute the target velocity [14, 18, 20]. 
 
A fixed number of time frames tfN  in the past are used to build the motion model.   
 
The velocity of the target has two components, the magnitude and the direction of motion.  
Hence the model is split into two parts, one for the distance model and one for the direction 
model.  An average value of the speed and the direction can be computed from the previous 
time frames. 
 
Let β,v  be the average speed and direction computed from tfN  time frames.  Let ( )pp yx ,  
be the previous target location estimated at time pt .  Assume that the amplitude model gives 
the target location distribution from the amplitude measurements.  The distribution is 
updated using the distance and the direction models. 
 

• A new target location ( )cc yx , at time ct  is computed using 
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• Distance Model: The target domain is divided into mxn  grid cells.  Let ( )ji yx ,  
represent a cell in the grid.  If ijd  is the distance between the points ( )ji yx ,  and 
( )cc yx , , the probability of a target being in cell ( )ji yx ,  is computed using a 
Gaussian model  
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Where )( ctH  is the target history considered, dσ  is the standard deviation 
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assumed for the distance model. 
• Direction Model:  Let ijβ  denote the angle between ( )ji yx ,  and ( )cc yx , . Assume a 

standard deviation βσ  in the direction estimate β .  The probability estimate for the 
location ( )ji yx ,  using the direction model is given by 
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The joint distribution of the distance and direction model gives the target location 
distribution given the history )( ctH , expressed as: 
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9. TARGET LOCATION 

A joint probability distribution for amplitude measurements and motion model is computed 
to estimate target’s location.  Combining the equations of the target model and the motion 
model we obtain the joint probability distribution 
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The target location ( )TT YX ,  is given by, 
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Figure 5 illustrates the joint of  the two equations. 
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Figure 5 Motion model: (a) Distance Probability Model 
(b) Angle Probability Model 
(c) Joint Probability Distribution From Distance and Angle Probability 
(d) Contour Plot of the Joint Probability Distribution 

 
 
 

(b)(a)

(d)(c) 
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10. RESULTS 

 

The tracker was tested using several target configurations. Figure 6 shows a typical set of 
results, obtained using the tracker under an “omniscient” controller.  Since this controller 
knew where the target was, the controller instructed the tracker to get measurements from 
the “right sectors,” providing a means to establish a base-line estimation of the tracker 
performance.  Even under these conditions it should be noted that the measurements were 
not assured to arrive at the right time. The diamond shaped dots are the target’s predictions. 
The square dots are the true locations. As the figure shows, there is an insignificant 
difference between the two sets of data.  The Root Mean Square error (RMS) was 0.4 ft. 
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Figure 6 Results Obtained with the SC Tracker During the First Demonstration 
 
 
11. MULTIPLE TARGET TRACKING 

The multiple target version was grown from the original single-target version. In essence, 
instead of maintaining target state for a single target, the multi-target version maintained 
state for N targets. Since the allocation of sensor resources was decided by the controllers, 
the association of target to sensors was not considered in the multi-target version. 
 
The final version of the multiple target tracker was further adapted so that instead of keeping 
multiple states within the tracker, multiple instances of the tracker were spawned by their 
controller agents. The resulting architecture is that shown in Figure 7.  Since the controller 
agent was the piece of software in which negotiation was to be made, the controller 
determined which resources were needed, and based on those decisions, sensor 
measurements were feed into the appropriate instance of a tracker thread, where 
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predictions of target state were made and communicated to the controller. 
 
As in previous demos, the performance of the tracker was quite acceptable, as shown in 
Figure 7. 
 

 
 

Figure 7  Results Obtained with the SC Tracker During the Final Demonstration 
 
12.  CONCLUSIONS 

We have presented a multiple-target tracking system that uses probabilistic data fusion to 
estimate target location and velocity from sensor data.  The system’s architecture provides a 
high degree of separation between the data sources, the tracking logic, and the state 
transitions, which could be adapted to other tracking and data fusion scenarios.  
 
The two major components of  the tracker, the state model and the process model, are 
based on Bayesian estimation theory. This makes it possible to fuse data from different 
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measurement spaces into a rich, unified, representation scheme, and offers the following 
advantages: 

• Robust operational behavior: Multi-sensor data fusion has an increased robustness 
when compared to single sensor data fusion. When one sensor becomes unavailable 
or is inoperative, other sensors can provide information about the environment. 

• Extended spatial and temporal coverage: Some parts of the environment may not be 
accessible to some sensors due to range limitations. This occurs especially when the 
environment being scanned is vast. In such scenarios, multiple sensors that are 
mounted at different locations can maximize the regions of scanning. Multi-sensor 
data fusion provides increased temporal coverage as some sensors can provide 
information when others cannot. 

• Increased confidence: The confidence in detection of targets is increased in multi-
sensor data fusion. Single target location can be confirmed by more than one sensor 
and this increases the users confidence in target detection. 

• Reduced ambiguity: Joint information from multiple sensors can reduce the set of 
beliefs about the target.  

• Decreased costs: Multiple, inexpensive sensors can replace expensive single sensor 
architecture at a significant reduction of cost.  

• Improved detection: Integrating measurements from multiple sensors can reduce 
signal to noise ratio, which ensures improved detection.  

 



 

26

 
REFERENCES 

 
[1] A. D. Baker, H. V. Parunak, and K. Erol. Agents and the internet: Infrastructure for mass 

customization. IEEE Internet Computing, 3(5):62–69, September-October 1999. 
[2] E. H. Durfee, T. Mullen, S. Park, J. M. Vidal, and P. Weinstein. The dynamics of the UMDL 

service market society. In M. Klusch and G. Weiß, editors, Cooperative Information Agents II, 
LNAI, pages 55–78. Springer, 1998. 

[3] J. M. Epstein and R. L. Axtell. Growing Artificial Societies : Social Science from the Bottom Up. 
Brookings Institute, 1996.  

[4] S. Kau_man. The Origins of Order: Self-Organization and Selection in Evolution. Oxford 
University Pres, 1993. 

[5] J. O. Kephart, J. E. Hanson, and A. R. Greenwald. Dynamic pricing by software agents. 
Computer Networks, 32(6):731–752, 2000.  

[6] H. V. D. Parunak. “go to the ant”: Engineering principles from natural agent systems. Annals of 
Operation Research, 75:69–101, 1997. 

[7] J. S. Rosenschein and G. Zlotkin. Rules of Encounter. The MIT Press, Cambridge, MA, 1994.  
[8] T. W. Sandholm. Necessary and sufficient contract types for optimal task allocation. In 

Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 1997. 
[9] R. G. Smith. The contract net protocol: High-level communication and control in a distributed 

problem solver. IEEE Transactions on Computers, C-29(12):1104–1113, 1981.  
[10] G. Weiss, editor. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. 

MIT Press, 1999.  
[11] M. P. Wellman. Market-oriented programming: Some early lessons. In S. Clearwater, editor, 

Market-Based Control: A Paradigm for Distributed Resource Allocation. World Scientific, 1996. 
[12] D. H. Wolpert and K. Tumer. An introduction to collective intelligence. Technical report, ACM 

Computing Research Repository, 1999. cs.LG/9908014. 
[13] Alberto Elfes, Using Occupancy Grids for Mobile Robot Perception and Navigation. IEEE 

Computer, 22(6): 46-57 (1989). 
[14] Bar-Shalom, Y. and T.E. Fortmann, “Tracking and Data Association”. Academic Press: New 

York, 1987. 
[15] Berler, A. and Shimony, S. E., “Bayes Networks for Sonar Sensor Fusion”, Proceedings of the 13th 

Conference on Uncertainty in AI, 1997. 
[16] Gregory Francis Welch, “Incremental tracking with incomplete information”, PhD thesis, UNC 

Chapel hill, 1996. 
[17] Hughes, T.J. “Sensor Fusion in a Military Avionics Environment.” Measurement and Control. Sept. 

1989: (203-205).. 
[18] L. D. Stone, C.A. Barlow, and T. L. Corwin, “Bayesian Multiple Target Tracking”, Artech 

House, Norwood, MA, 1999. 
[19] L. Y. Pao. "A Measurement Reconstruction Approach for Distributed Multisensor Fusion," J. 

Guidance, Control, and Dynamics, 19(4): 842-847, July-Aug. 1996. 
[20] M. M. Kokar, M. D. Bedworth and K. B. Frankel. “A Reference Model for Data Fusion 

Systems”, In Sensor Fusion: Architectures, Algorithms and Applications IV,  191-202, SPIE, 2000. 
[21] M. M. Kokar, J. A. Tomasik and J. Weyman. A Formal Approach to Information Fusion. 

Proceedings of the Second International Conference on Information Fusion (Fusion'99), Vol.I, 
133-140,July 1999. 

[22] N Okello and D. Tang and D W McMichael, “Tracker: A Sensor Fusion Emulator for 
Generalised Tracking”, Proceedings of Information Decision and Control 99, 359—364, 
February. 1999. 



 

27

[23] Waltz, E. and J. Llinas. Multisensor Data Fusion. Artech House, Norwood, MA 1990. 
[24] Wen, W. and H.F. Durrant-Whyte. “Model-based Multi-sensor Data Fusion.”, Proceedings. 

IEEE International Conference on Robotics and Automation. 12-14 May 1992: Nice, France. IEEE: Los 
Alamitos, CA, 1992. Vol. 2: (17206). 

[25] Lawton, J.L. The RADSIM Simulator, in Distributed Sensor Networks, Ed. By V. Lesser, C. Ortiz 
& M. Tambe, Kluwer Academic Press, 2003. 

[26] Zemany, P.  and  Gaugham, M.  Challenge Problem Testbed, in Distributed Sensor Networks, Ed. 
By V. Lesser, C. Ortiz & M. Tambe, Kluwer Academic Press, 2003. 

  
 
 




