

AFRL-IF-RS-TR-2003-293
Final Technical Report
December 2003

RESOURCE ALLOCATION IN DYNAMIC
UNCERTAIN DOMAINS

University of South Carolina

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. H359

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-293 has been reviewed and is approved for publication.

APPROVED: /s/
 DANIEL E. DASKIEWICH
 Project Engineer

 FOR THE DIRECTOR: /s/
 JAMES A. COLLINS, Acting Chief
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
DECEMBER 2003

3. REPORT TYPE AND DATES COVERED
Final May 99 – May 03

4. TITLE AND SUBTITLE

RESOURCE ALLOCATION IN DYNAMIC UNCERTAIN DOMAINS

6. AUTHOR(S)

Juan E. Vargas

5. FUNDING NUMBERS
G - F30602-99-2-0513
PE - 62301E
PR - H359
TA - 01
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of South Carolina
Swearingen Engineering Center
Columbia SC 29208

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DARPA AFRL/IFTB
3701 NORTH FAIRFAX DRIVE 525 BROOKS ROAD
ARLINGTON, VA 22203-1714 ROME NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-293

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Daniel E. Daskiewich/IFTB/(315) 330-7731 Daniel.Daskiewich@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The problem of dynamically allocating services to a changing set of consumers arises in many applications. One such
application is the tracking of multiple targets through a sensor field, where sensors decide which area to cover while
preserving their resources. This report covers two related areas: 1) the development of TargetShare, and 2) the
development of the SCTracker. TargetShare is a resource allocation architecture in which agents use utility to negotiate
and allocate resources. The SCTracker is a multi-target tracking system which is compatible with the program’s overall
challenge problem infrastructure.

15. NUMBER OF PAGES14. SUBJECT TERMS
Software agents, resource allocation, multi-target tracking

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

33

i

ABSTRACT

The Center for Information Technology (CIT) of the University of South Carolina (USC)
participated in the Autonomous Negotiating Teams (ANTS) program funded by DARPA
since its inception. The USC team was involved in two efforts. The first was to develop a
resource allocation architecture called TargetShare, in which agents used utility to negotiate
and allocate resources That effort was led by Dr. Jose Vidal. The second effort, led by Dr.
Juan E. Vargas, was focused on providing a multi-target tracking system, called the
SCTracker, compatible with the program’s challenge problem infrastructure. This report
describes the two efforts.

ii

TABLE OF CONTENTS

A. TARGETSHARE ... 1

1. Introduction.. 1
1.1 Task Allocation .. 2
1.2 Service Allocation .. 2

2. A Formal Model for Service Allocation... 3
2.1 Search Algorithms ... 3

3. Simulations.. 7
4. Test Results ... 8
5. Related Work .. 9
6. Conclusions... 9

B. SC TRACKER .. 11
1. Introduction.. 11
2. Sensor Model .. 11
3. Process Model... 12
4. Time Frames ... 14
5. Location Model .. 15
6. Amplitude Handler .. 16
7. Frequency Handler... 17
8. Motion Model... 19
9. Target Location .. 21
10. Results.. 23
11. Multiple Target Tracking... 23
12. Conclusions.. 24

References .. 26

iii

TABLE OF FIGURES

Figure 1: Interactions Between the State and Process Models...14
Figure 2: Time Frames..15
Figure 3: Target Probability Distribution From Amplitude Measuremens. ...18
Figure 4: Relation Between the Sensor Location and the Target Velocity ..19
Figure 5: Motion Model ...22
Figure 6: Results Obtained with the SC Tracker During the First Demonstration23
Figure 7: Results Obtained with the SC Tracker During the Final Demonstration.................................24

1

A. TARGETSHARE

1. INTRODUCTION

TargetShare is an architecture based on a method for solving service allocation problems in
which a set of services must be allocated to a set of agents so as to maximize a global utility.
The method is completely distributed so it can scale to any number of services without
degradation. In this report, we formalize the service allocation problem and then present a
simple hill-climbing, a global hill climbing, and a bidding-protocol algorithm for solving it.
We then analyze the expected performance of these algorithms as a function of various
problem parameters such as the branching factor and the number of agents. Finally, we use
the sensor allocation problem, an instance of a service allocation problem, to show the
bidding protocol at work. The simulations also show that phase transition on the expected
quality of the solution exists as the amount of communication between agents increases.

The problem of dynamically allocating services to a changing set of consumers arises in
many applications. For example, in an e-commerce system, the service providers are always
trying to determine which service to provide to whom, and at what price [5]; in an
automated manufacturing for mass customization scenario, agents must decide which
services will be more popular/profitable [1]; and in a dynamic sensor allocation problem, a
set of sensors in a field must decide which area to cover, if any, while preserving their
resources.

While these problems might not seem related, they are instances of a more general service
allocation problem in which a finite set of resources can be allocated by a set of autonomous
agents so as to maximize some global measure of utility. A general approach to solving these
types of problems has been used in many successful systems, such as [2] [3] [11] [9]. The
approach involves three general steps: 1. Assign each resource that needs to be preserved to
an agent responsible for managing the resource. 2. Assign each goal of the problem domain
to an agent responsible for achieving it. Achieving these goals requires the consumption of
resources. 3. Have each agent take actions so as to maximize its own utility, but implement a
coordination algorithm that encourages agents to take actions that also maximize the global
utility. In this report we formalize this general approach by casting the problem as a search in
a global fitness landscape which is defined as the sum of the agents’ utilities. We show how
the choice of a coordination/communication protocol disseminates information, which in
turn “smoothes” the global utility landscape. This smooth global utility landscape allows the
agents to easily find the global optimum by making selfish decisions to maximize their
individual utility. We also present experiments that pinpoint the location of a phase
transition in the time it takes for the agents to find the optimal allocation. The transition can
be seen when the amount of communication allowed among agents is manipulated. It exists
because communication allows the agents to align their individual landscapes with the global
landscape. At some amount of communication, the alignment between these landscapes is
good enough to allow the agents to find the global optimum, but less communication drives
the agents into a random behavior from which the system cannot recuperate.

2

1.1 Task Allocation

The service allocation problem we discuss is a superset of the well known task allocation
problem. A task allocation problem is defined by a set of tasks that must be allocated among
a set of agents. Each agent has a cost associated with each subset of tasks, which represents
the cost the agent would incur if it had to perform those tasks. Coordination protocols are
designed to allow agents to trade tasks so that the globally optimal allocation (the one that
minimizes the sum of all the individual agent costs) is reached as soon as possible. It has
been shown that this globally optimal allocation can be reached if the agents use the contract-
net protocol [9] with Original Cluster Swap Multi (OCSM) contracts [8]. These OCSM
contracts make it possible for the system to transition from any allocation to any other
allocation in one step. As such, a simple hill-climbing search is guaranteed to eventually
reach the global optimum. We consider the service allocation problem, which is a superset
of the task allocation because it allows for more than one agent to service a “task”. The
service allocation problem we study also has the characteristic that every allocation cannot be
reached from every other allocation in one step.

1.2 Service Allocation

In a service allocation problem there are a set of services, offered by service agents, and a set
of consumers who use those services. A server can provide any one of a number of services
and some consumers will benefit from that service without depleting it. A server agent incurs
a cost when providing a service and can choose not to provide any service. For example, a
server could be an agent that sets up a website with information about cats. All the
consumer agents with interests in cats will benefit from this service, but those with other
interests will not benefit. Since each server can provide, at most, one service, the problem is
to find the allocation of services that maximizes the sum of all the agents’ utilities, that is, an
allocation that maximizes the global utility.

1.2.1 SENSOR ALLOCATION

Another instance of the service allocation problem is the sensor allocation problem, which
we will use as an example throughout this report. In the sensor allocation problem we have
a number of sensors placed in fixed positions in a two-dimensional space. Each sensor has a
limited viewing angle and distance but can point in any one of a number of directions. For
example, a sensor might have a viewing angle of 120 degrees, viewing distance of 3 feet, and
be able to look in three directions, each one 120 degrees apart from the others. That is, it can
“look” in any one of three directions. In each direction it can see everything that is in the
120 degree and 3 feet long view cone. Each time a sensor looks in a particular direction it
uses energy. There are also targets that move around in the field. The goal is for the sensors
to detect and track all the targets in the field. However, in order to determine the location of
a target, two or more sensors have to look at it at the same time. We also wish to minimize
the amount of energy spent by the sensors.

We consider the sensor agents as being able to provide three services, one for each sector,

3

but only one at a time. We consider the target agents as consuming the services of the
sensors.

2. A FORMAL MODEL FOR SERVICE ALLOCATION

We define a service allocation problem SA as a pair SA = {C, S} where C is the set of
consumer agents C = {c1, c2, . . . , c|C|}, and ci has only one possible state, ci = 0. The set of
service agents is S = {s1, s2, . . . , s|S|} and the value of si is the value of that service. For the
sensor domain in which a sensor can observe any one of three 120-degree sectors or be
turned off we have si ∈ {0, 1, 2, off}. An allocation is an assignment of states to the services
(since the consumers have only one possible state we can ignore them). A particular
allocation is denoted by a = {s1, s2, . . . , s|S|}, where the si have some value taken from the
domain of service states, and a ∈ A, where A is the set of all possible allocations. That is, an
allocation tells us the state of all agents (since consumers have only one state they can be
omitted). Each agent also has a utility function. The utility that an agent receives depends on
the current allocation a, where we let a(s) be the state of service agent s under a. The agent’s
utilities will depend on their state and the state of other agents. For example, in the sensor
problem we define the utility of sensor s as Us(a), where

otherwise
ffsaif

k
aU s

0)(0
)(

1

=




−

= [eq 1]

That is, a sensor receives no utility when it is off and must pay a penalty of -K1 when it is
running. The targets are the consumers, and each target’s utility is defined as U









=−+
=
=

=
nafcifnk

afcifk
afcif

aUc

)(2
1)(
0)(0

)(

2

2 [eq 2]

where fc(a) = number of sensors s that see c given their state a(c). [eq 3]

Finally, given the individual agent utilities, we define the global utility
GU(a) as the sum of the individual agents’ utilities:

∑ ∑
∈ ∈

+=
Cc Ss

aUsaUcaGU)()()([eq 4]

The service allocation problem is to find the allocation a that maximizes GU(a). In the
sensor problem, there are 4|S| possible allocations, which would make a simple generate-
and-test approach take exponential amounts of time. We wish to find the global optimum
much faster than that.

2.1 Search Algorithms

Our goal is to design an interaction protocol whereby an allocation a that maximizes the
global utility GU(a) is reached in a small number of steps. In each step of our protocol

4

one of the agents will change its state or send a message to another agent. The messages
might contain the state or utilities of other agents. We assume that the agents do not have
direct access to the other agents’ states or utility values. A simpler algorithm could involve
having each consumer, at each time, changing the state of a randomly chosen service agent
so as to increase the consumer’s own utility. That is, a consumer c will change the current
allocation a into a0 by changing the state of some sensor s such that Uc(a0) > Uc(a). If the
sensor’s state cannot be changed so as to increase the utility, then the consumer does
nothing. In the sensor domain this amounts to a target picking a sensor and changing its
state so that the sensor can see the target. We refer to this algorithm as individual hill-
climbing. The individual hill-climbing algorithm is simple to implement and the only
communication needed is between the consumer and the chosen server. This simple
algorithm makes every consumer agent increase its individual utility at each turn. However,
the new allocation a0 might result in a lower global utility, since a0 might reduce the utility of
several other agents. Therefore, it does not guarantee that an optimal allocation will be
eventually reached. Another approach is for each agent to change state so as to increase the
global utility. We call this a global hill-climbing algorithm.

In order to implement this algorithm, an agent would need to know how the proposed state
change affects the global utility as well as the states of all the other agents. That is, it would
need to be able to determine GU(a’) which requires it to know the state of all the agents in a0
as well as the utility functions of every other agent, as per the definition of global utility in
equation 4. In order for an agent to know the state of others, it would need to somehow
communicate with all other agents. If the system implements a global broadcasting method
then we would need for each agent to broadcast its state at each time. If the system uses
more specialized communications such as point-to-point, limited broadcasting, etc., then
more messages will be needed. Any protocol that implements the global hill-climbing
algorithm will reach a locally optimal allocation in the global utility. This is because it is
always true that, for a new allocation a0 and old allocation a, GU(a’) ≥ GU(a). Whether or not
this local optimum is also a global optimum will depend on the ruggedness of the global
utility landscape. That is, if it consists of one smooth peak then it is likely that any local
optimum is the global optimum. On the other hand, if the landscape is very rugged then
there are likely many local peaks.

Studies in NK landscapes [4] tell us that smoother landscapes result when an agent’s utility
depends on the state of smaller number of other agents. Global hill-climbing is better than
individual hill-climbing since it guarantees that we will find a local optima. However, it
requires agents to know each others’ utility function and to constantly communicate their
state. Such large amount of communication is often undesirable in multi-agent systems. We
need a better way to find the global optimum.

One way of correlating the individual landscapes to the global utility landscape is with the
use of a bidding protocol in which each consumer agent tells each service the marginal utility
the consumer would receive if the service switched its state so as to maximize the
consumer’s utility. The service agent can then choose to provide the service with the highest
aggregate demand. Since the service is picking the value that maximizes the utility of
everyone involved (all the consumers and the service) without decreasing the utility of

5

anyone else (the other services) this protocol is guaranteed to never decrease the global
utility. This bidding protocol is a simplified version of the contract-net [9] protocol in that it
does not require contractors to send requests for bids. However, in order for a consumer to
determine the marginal utility it will receive from one sensor changing state, it still needs to
know the state of all the other sensors. This means that a complete implementation of this
protocol will still require a lot of communication (namely, the same amount as in global hill-
climbing). We can reduce this number of messages by allowing agents to communicate with
only a subset of the other agents and making their decisions based on only this subset of
information. That is, instead of all services telling each consumer their state, a consumer
could receive state information from only a subset of the services and make its decision
based on this (assuming that the services chosen are representative of the whole). This
strategy shows a lot of promise but its performance can only be evaluated on an instance-by-
instance basis. We explore this strategy experimentally in Section 3 using the sensor domain.

2.1.1 THEORETICAL TIME BOUNDS OF GLOBAL HILL-CLIMBING

We now know that global hill-climbing will always reach a local optimum, the next questions
we must answer are:

1. How many local optima are there?
2. What is the probability that a local optimum is the global optimum?
3. How long does it take, on average, to reach a local optimum?

Let a be the current allocation and a0 be a neighboring allocation. We know that a is a local
optimum if

)()()(aGUaGUaNa ′≥∀ ∈′ [eq 5]

where

N(a) = {x | x is a Neighbor of a} [eq 6]

We define a Neighbor allocation as an allocation where one, and only one, agent has a
different state.

The probability that some allocation I is a local optimum is simply the probability that
equation 5 is true. If the utility of all pairs of neighbors is not correlated, then this probability
is

b
aNa aGUGUaGUaGU)]()Pr[)]()(Pr[)(′>=′>∀ ∈′ [eq 7]

where b is the branching factor. In the sensor problem b = 3 · |S| where S is the set of all
sensors. That is, since each sensor can be in any of four states it will have three neighbors
from each state. In some systems it is safe to assume that the global utilities of a’s neighbors
are independent. However, most systems show some degree of correlation.

6

Now we need to calculate the Pr[GU(a) > GU(a0)], that is, the probability that some
allocation a has a greater global utility than its neighbor a0, for all a and a0. This could be
calculated via an exhaustive enumeration of all possible allocations. However, often we can
find the expected value of this probability. For example, in the sensor problem each sensor
has four possible states. If a sensor changes its state from sector x to sector y the utility of
the target agents covered by x will decrease while the utility of those in y will increase. If we
assume that, on average, the targets are evenly spaced on the field, then the global utilities
for both of these are expected to be the same. That is, the expected probability that the
global utility of one allocation is bigger than the other is 1/2. If, on the other hand, a sensor
changes state from “off” to a sector, or from a sector to “off,” the global utility is expected
to decrease and increase, respectively. However, there are an equal number of opportunities
to go from “off” to “on” and vice-versa. Therefore, we can also expect that for these cases
the probability that the global utility of one allocation is bigger than the other is 1/2. Based
on these approximations, we can declare that for the sensor problem

λ==′>∀ ∈′ baNa aGUaGU
2
1)]()(Pr[)([eq 8]

If we assume an even distribution of local optima, the total number of local optima is simply
the product of the total number of allocations times the probability that each one is a local
optimum. That is,

Total number of local optima = λ|A| [eq 9]

For the sensor problem, b2

1=λ b = 3 · |S| and |A| = b|S|, so the expected number of
local optima is b|S|/23|S|.

bA
lobalmumIsAlsoGaLocalOpti

2
1

||
1

]Pr[==
λ

 [eq 10]

We can find the expected time the algorithm will take to reach a local optimum by
determining the maximum number of steps from every allocation to the nearest local
optimum. This gives us an upper bound on the number of steps needed to reach the nearest
local optimum using global hill-climbing. Notice that, under either individual hill-climbing or
the bidding protocol it is possible that the local optimum is not reached, or is reached after
more steps, since these algorithms can take steps that lower the global utility. In order to
find the expected number of steps to reach a local optimum, we start at any one of the local
optima and then traverse all possible links at each depth d until all possible allocations have
been visited. This occurs when

 λ |A| · bd > |A| [eq 11]

Solving for d, and remembering that b2

1=λ , we get

7

d > b logb 2. [eq 12]

The expected worst-case distance from any point to the nearest local optimum is, therefore,
b logb 2 (this number only makes sense for b ≥2 since smaller number of neighbors do not
form a searchable space). That is, the number of steps to reach the nearest local optima in
the sensor domain is proportional to the branching factor b, which is equal to 3 · |S|. We
can expect search time to increase linearly with the number of sensors in the field.

3. SIMULATIONS

While the theoretical results above give us some bounds on the number of iterations before
the system is expected to converge to a local optimum, the bounds are rather loose and do
not tell us much about the dynamics of the executing system. Also, we cannot show
mathematically how changes in the amount of communication change the search. Therefore,
we have implemented a service allocation simulator to answer these questions. It simulates
the sensor allocation domain described in the introduction. The simulator is written in Java
and the source code is available upon request. It gathers and analyzes data from any desired
number of runs. The program can analyze the behavior of any number of target and sensor
agents on a two-dimensional space, and the agents can be given any desired utility function.
The program is limited to static targets. That is, it only considers the one-shot service
allocation problem.

Each new allocation is completely independent of any previous one. In the tests we
performed, each run has seven sensors and seven targets, all of which are randomly placed
on a two-dimensional grid. Each sensor can only point in one of three directions or sectors.
These three sectors are the same for all sensors (specifically, the first sector is from 0 to 120
degrees, the second one from 120 to 240, and the third one from 240 to 360). All the sensors
use the same utility function which is given by equation 1, while the targets use equation 2.
After a sensor agent receives all the bids it chooses the sector that has the highest aggregate
demand, as described by the bidding protocol. During a run, each of the targets periodically
sends a bid to a number of sensors asking them to turn to the sector that faces the target.
We set the bid amount to a fixed number for these tests. Periodically, the sensors count the
number of bids they have received for each sector and turn their detector (such as a radar) to
face the sector with the highest aggregate demand.

We assume that neither the targets nor the sensors can form coalitions. We vary the number
of sensors to which the targets send their bids in order to explore the quality of the solution
that the system converges upon as the amount of communication changes. For example, at
one extreme if all the targets send their bids to all the sensors, then the sensors would always
set their sector to be the one with the most targets. This particular service allocation should,
usually, be the best. However, it might not always be the optimal solution. For example, if
seven targets are clustered together and the eighth is on another part of the field, it would be
better if six sensor agents pointed towards the cluster of targets while the remaining two
sensor agents pointed towards the stray target rather than having all sensor agents point
towards the cluster of targets. At the other extreme, if all the targets send their bids to

8

only one sensor then they will minimize communications but then the sensors will point to
the sector from which they received a message, i.e., an allocation which is likely to be
suboptimal.

These simulations explore the ruggedness of the system’s global utility landscape and the
dynamics of the agents’ exploration of this landscape. If the agents were to always converge
on a local (non-global) optimum then we would deduce that this problem domain has a very
rugged utility landscape. On the other hand, if they usually manage to reach the global
optimum then we could deduce a smooth utility landscape.

4. TEST RESULTS

In each of our tests we set the number of agents that each target will send its bid to, that is,
the number of neighbors, to a fixed number. Given this fixed number of neighbors, we then
generated 100 random placements of agents on the field and ran our bidding algorithm 10
times on each of those placements. Finally, we plotted the average solution quality, over the
10 runs, as a function of time for each of the 100 different placements. The solution quality
is given by the ratio

malUtilityGlobalOpti
lityCurrentUti

=α [eq 13]

when α= 1 the run has reached the global optimum. Since the number of agents is small, we
were able to calculate the global optimum using a brute-force method. Specifically, there are
37 = 2187 possible configurations times 100 random placements leads to 218700
combinations that we had to check for each run in order to find the global optimum using
brute-force.

Due to the large number of configurations, using more than 7 sensors to run the simulation
was not practical. Notice, however, that our algorithm is much faster than this brute-force
search which we perform only to confirm that our search does find the global optimum. In
our tests there were always seven target agents and seven sensor agents. We varied the
number of neighbors from 1 to 7. If the target can only communicate with one other sensor,
the sensors will likely have very little information for making their decision, while if all
targets communicate with all seven sensors, then each sensor will generally be able to point
to the sector with the most targets. However, because these decisions are made in an
asynchronous manner, it is possible that some sensors may not always receive all the bids
before decisions are due. The targets always send their bids to the sensors that are closest to
them.

The results from our experiments are shown in Figure 1 where we can see that there is a
transition in the system’s performance as the number of neighbors goes from three to five.
That is, if the targets only send their bids to three sensors then it is almost certain that the
system will stay in a configuration that has a very low global utility. However, if the targets
send their bids to five sensors, then it is almost guaranteed (98% of the time) that the

9

system will reach the globally optimal allocation.

5. RELATED WORK

There is ongoing work in the field of complexity that attempts to study they dynamics of
complex adaptive systems [4]. Our approach is based on ideas borrowed from the use of NK
landscapes for the analysis of co-evolving systems. As such, we are using some of the results
from that field. However, complexity theory is more concerned with explaining the dynamic
behavior of existing systems, while we are more concerned with the engineering of multi-
agent systems for distributed service allocation. The Collective Intelligence (COIN)
framework [12] shares many of the same goals of our research. They start with a global
utility function from which they derive the rewards functions for each agent. The agents are
assumed to use some form of reinforcement learning. They show that the global utility is
maximized when using their prescribed reward functions. They do not, however, consider
how agent communication might affect the individual agent’s utility landscape. The task
allocation problem has been studied in [7], but the service allocation problem we present in
this paper has received very little attention. There is also work being done on the analysis of
the dynamics of multi-agent systems for other domains such as e-commerce [5] and
automated manufacturing [6]. It is possible that extensions to our approach will shed some
light into the dynamics of these domains.

6. CONCLUSIONS

We have formalized the service allocation problem and examined a general approach to
solving problems of this type. The approach involves the use of utility-maximizing agents
that represent the resources and the services. A simple form of bidding is used for
communication. An analysis of this approach reveals that it implements a form of distributed
hill-climbing, where each agent climbs its own utility landscape and not the global utility
landscape. However, we showed that increasing the amount of communication among the
agents forces each individual agent’s landscape to become increasingly correlated to the
global landscape.

These theoretical results were then verified in our implementation of a sensor allocation
problem, which is an instance of a service allocation problem. Furthermore, the simulations
allowed us to determine the location of a phase transition in the amount of communication
needed for the system to consistently arrive at the globally optimal service allocation. More
generally, we have shown how a service allocation problem can be viewed as a distributed
search by multiple agents over multiple landscapes. We also showed how the correlation
between the global utility landscape and the individual agent’s utility landscape depends on
the amount and type of inter-agent communication. Specifically, we have shown that
increased communications leads to a higher correlation between the global and individual
utility landscapes, which increases the probability that the global optimum will be reached.
Of course, the success of the search still depends on the connectivity of the search space,
which will vary from domain to domain.

10

We expect that our general approach can be applied to the design of any multi-agent systems
whose desired behavior is given by a global utility function but whose agents must act
selfishly. Our future work includes the study of how the system will behave under
perturbations. For example, as the target moves it perturbs the current allocation and the
global optimum might change. We also hope to characterize the local to global utility
function correlation for different service allocation problems and the expected time to find
the global optimum under various amounts of communication.

11

B. SC TRACKER

1. INTRODUCTION

This part of the report describes a multi-target tracking system developed to support the
ANTS challenge problem (CP). The tracking system is based on a Bayesian approach [18]
that estimates target locations and velocities by fusing amplitude and frequency
measurements obtained from Doppler Radar sensors. The tracking system was designed to
operate in conjunction with Doppler Radar sensors developed by the BAE Sanders [26], or
their simulation version, called RADSIM, developed at the Air Force Research Laboratory
[25]. The simulated and hardware sensors are devices that return values of amplitude and
frequency. The amplitude is proportional to the distance between the sensor and the target,
and the frequency is proportional to the angular velocity of the target, as seen by the sensor.
Equations 4 and 5 describe the amplitude and frequency models; Figure 4 shows the
geometry involved to determine amplitude and frequency given the target velocity, its
location, and the location of the sensor.

The tracker system fuses data into a probability space to obtain an estimate of a target’s state
at any given time [15, 18, 21, 22, 23]. The state of a target, represented by its location and
velocity, are not directly observable from the sensors data. Instead, the sensors return
amplitude and frequency measurements that are related to the target location, its velocity,
and sensor parameters, including sensor location, sector selection, gain, type of
measurement, beam width, number of pulses within a measurement, and power.

2. SENSOR MODEL

In general, a target moving in a two-dimensional plane can be represented by a vector Ts
given by,





















=

y

x
s

v
v
y
x

T [eq 1]

Where x and y are the target’s coordinates, and xv and yv are the target’s velocity in the x
and y direction, respectively, in a fixed reference frame. Given that the ith sensor returns a
measurement mi, then a sensor model for that measurement, mi, can be expressed as

()isimi TMm θ,,= [eq 2]

The sensor model imM , is a function of the target state sT and the parameters iθ of the
model. The model could be based on fundamental principles of physics or be formulated
from empirical observations [20, 22, 24]. In either case it is likely that the functional

12

()() ()()

kf

k
nk

ikknk

f
ff

BAA

ε+
=

+++=

1

1,0N05.011,0N05.01

,

,,

•
=





























−=

kk

k
k

RCf

KA 2

2

3

exp
π

α

model imM , might not explain the measurement im completely. Errors may occur because
the model might be insufficient and may not take into consideration all the possible
interactions within the system or because the experimental conditions may go beyond
control. Hence a better representation of the model is,

() imisimi TMm ,, , εθ += [eq 3]

Where im,ε is the error term in the thm measurement of the thi sensor. During the
development of the tracking systems two sensor models were used. The first sensor model
was given by the system of equations:

 [eq 4]

Where Ak is a value of amplitude and fk is a value of frequency given the range Rk (the
distance between the sensor and the target). K, C, and α, are parameters of the sensor
model. This model had a correction factor given by equation 5

[eq 5]

i.e., the value of amplitude was affected by Gaussian noise compounded at a level of 5%,
while the value of frequency had an error factor of εf .

The first sensor model was replaced by a model that contained a noise factor given by a
uniform distribution around [-0.2, 0.2]. The second model considered amplitude as a
function of frequency, which in turn was a function of an interpolation function Cf .

 [eq 6]

3. PROCESS MODEL

In addition to the sensor model, the tracker uses a process model to predict target location
and velocity [14, 16, 17, 18, 19, 25, 26]. The process model contains data structures and
algorithms that were specifically designed to cope with the asynchronous nature of the

() ()[]
γ

α

R

U
BW

fKC

A
f 2.0,2.01exp 2

2
−+










−

=

13

CP and the incompatible measurement spaces of the data sources. The process model
relates the history of the target states to potential future states. Let ()tH denote the history
of target states until time t. If ()tTs denotes the target state at time t, then

() []Tss tTTtH)(...)1(= [eq 7]

i.e., H(t) is the set of all target states until time t. A general motion model of the target’s
trajectory can be ascertained from the history of the target states. Given the current target
state and the distribution of the velocity obtained from that history, it is feasible to project
that information into the future and obtain a distribution of the most likely target locations.
This information can be used with the measurements obtained at time t+1 to locate the
target.

() ())(,,,1 1 tHmmTtT Nss K=+ [eq 8]

Where 1m , … , Nm are the measurements from N sensors at time t+1.

The process model assumes that the clocks on all the sensors are synchronized. However
the hardware implementation of the challenge problem is not compatible with this
assumption. One of the constraints of the CP architecture is that a sensor returns one single
measurement during a time t. Yet, to estimate the target state at any time, it is necessary to
have as many measurements as possible during that period. Another constraint is that
measurements from a single sensor are not enough to track a target with a high degree of
accuracy.

To overcome these limitations, the process model assumes that the motion of a target
follows the laws of inertia. This assumption is implemented using the concept of motion
through time, which is implemented by two structures, called the time frames and the
motion model, described in the following sections.

14

where

V(t-1), V(t), V(t+1) are the estimates of target velocity,
L(t-1), L(t), L(t+1) are the estimates of target location,
A(s1,t).. A(sn,t) are the amplitude measurements from sensors s1 .. sn, at time=t.
F(s1,t).. F(sn,t) are the frequency measurements from sensors s1 .. sn, at time=t.
P(s1,t).. P(sn,t) are the operational parameters of sensors s1 .. sn, at time=t.

Figure 1: Interactions Between the State and Process Models

4. TIME FRAMES

Given the asynchronous nature of the CP infrastructure, information from the sensors is
never guaranteed to arrive at the tracker on time. In fact, data arriving with significant delay
are the norm rather than the exception. To cope with this constraint, it was hypothesized
that changes in the target state are very small during the period fT∆ , and that all sensor
measurements received in that period can be fused to obtain an approximate estimate of that
target state. This assumption led to the discretization of time into a series of time frames of
length fT∆ . It is implied that the target location in a time frame fT∆ is constant.
Theoretically the best results are obtained by making fT∆ approach zero. However it is not
feasible to obtain sufficient measurements to estimate target state under that condition.

The tracker uses time frames to accommodate incoming data based on the time stamp at
which data was produced by the sensors. These data, which consist of amplitude and
frequency, are used to update the estimation of target location and velocity at the end of
each time frame. Due to this scheme, data belonging to the past, received later because of
communication or processor delays, is not ignored. Instead, those data are used to update
the tracker at the current time frame, or at times T-1, T-2, T-3, etc., if data for those
frames arrive during the current time frame. Since measurements are continuously added

State(T-1) State(T) State(T+1)

Sensor Model

Process Model

Sensor Model

P(s1,t)

A(s1,t) F(s1,t)

P(sn,t)

A(sn,t) F(sn,t)

V(t-1)

L(t-1)

Signals(T-1)

Sensor Model
Signals(T+1)

Process Model

V(t)

L(t)

Process Model

V(t+1)

L(t+1)

15

under a timed-queued scheme, whenever the tracker updates location and velocity for the
time-frame at time T, the tracker first checks if there is any data for previous time frames. If
new data indeed came for previous time frames, then the estimates of target state for those
frames are updated, and the new predictions are propagated forward. The tracker ignores
measurements whose time stamp is delayed more than 4 time frames. Although this number
is easily set up as an operational parameter, the number is consistent with theoretical results
from hidden Markov models, and constitutes a good compromise that has little impact on
performance [18].

Figure 2 shows the sequence of data update that would take place at frame 4000, as new
“old” data from previous frames are detected. The circles are color coded: Green means
that the data item arrived on time, yellow that it arrived one time frame later, blue two times
later, red three time frames later. The location in the time frame is such as to indicate
approximately the time at which the item arrived. For example, in time frame 1000, data
items were produced at the sensors at times 1000, 1250, 1500, and 1800. Of these, only the
first two items arrived on time, the data item for t=1500 arrived one frame later, and the data
item for t=1800 arrived three frames later. Similarly, the data item for t=2800 arrived at that
frame two frames later, etc.

 TimeFrame 1000 2000 3000 4000
Sensor1
Sensor2
Sensor3
Sensor4

Figure 2 Time Frames

In a given time frame some sensors may return more than one measurement. This would be
illustrated in the last time frame, where Sensor1 returns measurements at times t=4100 and
t=4800. Two approaches were taken to deal with this issue. The first approach considered
only the most recent measurement and ignored the previous measurements within the frame.
Each measurement has an intrinsic background noise that is not constant. If the
assumption is made that background noise fluctuates around zero, then averaging the
measurements actually diminishes the effect of fluctuations, and the result is a more accurate
representation of the target state. Therefore the approach adopted by the tracker is to
average the measurements within the same frame.

Although some of these concepts may not be applicable as-is to other tracking problems, the
time frame concept offers a reasonable insight that is applicable to many tracking platforms.

5. LOCATION MODEL

The measurements obtained from the hardware sensors or from RADSIM are

16

stored in a time-stamped queue of time frames. Each time frame has a start time and an end
time. The end-time of frame T-1 is the start time of frame T. A measurement belongs to a
time frame if that measurement’s time is between the start and end time of that time frame.

The tracker uses an internal clock to keep track of time. As time progresses, the clock
reaches a point at which the tracker time is greater than the end time of the current time
frame. When that occurs, a method, called updateTracker, is invoked. The method first checks
if new data has just arrived for previous time frames. If new data exist in those frames then
the frames are updated before updating the current time frame, and the update proceeds
forward. The method uses two data handlers to manage amplitude and frequency
measurements from the sensors. The amplitude handler uses the sensor model to fuse
information and obtain a probabilistic distribution of the target location. This distribution is
updated using the motion model, which is in turn an expression of the history of target
states. The frequency handler uses the frequency measurements to estimate the target’s
velocity.

6. AMPLITUDE HANDLER

The two-dimensional target domain is divided into a set of mxn grid cells [13, 18]. The
measurements from the sensors are used to compute the probability of a target being in each
grid cell. The grid cell is mapped to the center of the cell as a single point.

Consider two amplitude measurements 21 , AA obtained from two different sensors 21 , SS .
A distribution of target location in each cell of the grid can be obtained by fusing these
measurements. The probability of the target being in each cell ()ji yx , where mi ...1= and

nj ...1= is computed given the measurements 21 , AA . Let this probability be denoted
by ()2211 ,, AMAMyYxXP ji ==== . The measurements 21 , AA are assumed to be independent;
thus measurements from one sensor do not have any affect on the measurements of another
sensor. This implies that,

() ()
()22

112211

,

,,,

AMyYxXP

AMyYxXPAMAMyYxXP

ji

jiji

===

×======== [eq 9]

From Bayes theorem we can write each term in the right hand side of the equation as,

() () ()
() ()

() () ()
() ()∑ ∑

∑ ∑

= =

= =

=====

=====
====

=====

=====
====

m

i

n

j
jiji

jiji
ji

m

i

n

j
jiji

jiji
ji

yYxXPyYxXAMP

yYxXPyYxXAMP
AMyYxXP

yYxXPyYxXAMP

yYxXPyYxXAMP
AMyYxXP

1 1
22

22
22

1 1
11

11
11

,,

,,
,

,,

,,
,

 [eq 10]

The term ()ji yYxXP == , is the a-prior probability associated with the target being
in location ()ji yx , and ()11, AMyYxXP ji === is the posteriori probability after the

17

measurement 1A was obtained. Assuming a model for the amplitude that is a function of
the target location,

() AA YXMA εθ += ,, [eq 11]

in equation 11 θ is a sensor-specific parameter vector and Aε is the measurement error. If

Aε is assumed to be distributed normally with a standard deviation Aσ then,

() ()() ()ji
A

jiA

A
ji yYxXP

AyxM
AMyYxXP ==












 −
−∝=== ,

2

,,
exp

2

1, 2
,1

2
11,1

2
,1

11
σ

θ

πσ
 [eq 12]

Using equation 12 the posterior probability distribution of the target location given
measurements from N different sensors can be obtained. If the measurement error for each
sensor is assumed to be normal, the equation above becomes

() ()()

()

()()

C

AyxM

AMAMyYxXP

AyxM
AMAMyYxXP

N

k Ak

kkjiAk

Ak
N

k
NNji

N

k Ak

kkjiAk

Ak
N

k

NNji













 −
−

Π
=====













 −
−

Π

∝====

∑

∑

=

=

=

=

1
2
,

2
,

2
,

1
11

1
2
,

2
,

2
,

1

11

2

,,
exp1

,...,,

2

,,
exp1,...,,

σ

θ

σ

σ

θ

σ

 [eq 13]

Where 2

,Akσ is the variance in amplitude measurements, kθ is the parameter vector,

()kjiAk yxM θ,,, is the amplitude model of the thk sensor, kA is the measurement received
from that sensor, and C is a normalization constant.

An example that illustrates the fusion of two amplitude measurements to obtain a probability
distribution of target location is shown in Figure 3.

Clearly, it is not possible to track a target with just one or two amplitude measurements; the
region of high probability is too wide. To resolve this issue, either more measurements are
needed, or a motion model that could resolve the ambiguities is needed. Ideally, the motion
model would use the history of target states to estimate velocity.

7. FREQUENCY HANDLER

A frequency model for the sensor relates the velocity of the target to the sensor’s frequency
measurement. It is assumed that frequency is a linear function of the radial velocity with
respect to the sensor, i.e.,

•

= kfkk RCf , [eq 14]

18

y

y
x

x x

y

y

(a)

(b)

x

Where kf is the frequency measurement, fkC , is a constant, kR
•

 is the radial velocity with

respect to thk sensor.

A single frequency measurement is not sufficient to solve for target’s velocity; measurements
from at least two sensors are required. Even in the presence of two measurements, a
technique to realize the radial direction (whether the target is moving towards or away from
the sensor) is required.

Figure 3 (a) Target Probability Distribution From Single Amplitude Measurement.
 (b) Target Probability Distribution From Fusing two Amplitude Measurements

Figure 4 shows the relation between the sensor location and the target velocity.

19

vr : Target velocity
•

R : Radial velocity with respect to the sensor
α : Angle between target and sensor

yx vv , : Velocity of the target in x and y direction respectively
()SS yx , : Sensor coordinates
()TT yx , : Target coordinates

 R : Target distance from the sensor

Figure 4: Relation Between the Sensor Location and the Target Velocity

The frequency measurements from the sensors can be converted into radial velocities using

the equation for frequency. Let
•

iR denote the radial velocity of a target computed from the

frequency of the thi sensor. The target velocity components yx vv , are related to
•

iR as,

iiyix Rvv =+ αα sincos [eq 15]

Where iα denotes the angle between the thi sensor and target coordinates. The tracker
solves this equation simultaneously for xv and yv whenever frequency measurements are
obtained from more than two sensors within the same time frame.

8. MOTION MODEL

A motion model was developed using recent history of target states [14, 18, 20]. This can be
viewed as a learning technique of the target’s motion, based on the assumption that the
target is subjected to the laws of inertia. This assumption is consistent with the CP; the
targets being detected have a constrained pattern of motion. Other “common-sense”
constraints, like the fact that the target cannot change its direction abruptly, or
cannot move faster than a pre-specified maximum velocity, are also assumed. Some

R

Sensor

Target

α

xv

yv
•

R
vr

y

β

Target velocity with respect to sensor coordinates

20

of the advantages of the motion model are,
• Since the motion model captures the velocity distribution, using the model in

conjunction with the amplitude handler results in more accurate distributions of
target location. As discussed in a previous section, the amplitude handler sometimes
gives two clusters as the most likely target locations. Using a probabilistic weighted
mean in such circumstances to predict target location may lead to erroneous
estimations. Multi-modal distributions of target location can be avoided most of the
times by using the motion model.

• The motion model can help to predict future target states and hence optimize the
use of CP resources (sensors) from this information.

• Estimates of target location can be obtained even when the sensors fail to report
measurements.

The motion model builds a probabilistic estimate from previous target states. There are two
techniques to compute target velocity. One uses the previous target locations to find the
fraction of distance that the target has moved in time t. The second uses frequency
measurements from the sensors to compute the target velocity [14, 18, 20].

A fixed number of time frames tfN in the past are used to build the motion model.

The velocity of the target has two components, the magnitude and the direction of motion.
Hence the model is split into two parts, one for the distance model and one for the direction
model. An average value of the speed and the direction can be computed from the previous
time frames.

Let β,v be the average speed and direction computed from tfN time frames. Let ()pp yx ,
be the previous target location estimated at time pt . Assume that the amplitude model gives
the target location distribution from the amplitude measurements. The distribution is
updated using the distance and the direction models.

• A new target location ()cc yx , at time ct is computed using
()()
()()pcpc

pcpc

ttvyy

ttvxx

−+=

−+=

β

β

cos

cos
 [eq 16]

• Distance Model: The target domain is divided into mxn grid cells. Let ()ji yx ,
represent a cell in the grid. If ijd is the distance between the points ()ji yx , and
()cc yx , , the probability of a target being in cell ()ji yx , is computed using a
Gaussian model

()










−∝ 2

2

2
exp

2
1)(,

dd

ij
cji

d
tHyxP

σπσ
 [eq 17]

Where)(ctH is the target history considered, dσ is the standard deviation

21

assumed for the distance model.
• Direction Model: Let ijβ denote the angle between ()ji yx , and ()cc yx , . Assume a

standard deviation βσ in the direction estimate β . The probability estimate for the
location ()ji yx , using the direction model is given by

() ()












 −
−∝ 2

2

2
exp

2
1)(,

ββ
σ

ββ

πσ
ij

cji tHyxP [eq 18]

The joint distribution of the distance and direction model gives the target location
distribution given the history)(ctH , expressed as:

() ()


























 −
+−∝ 2

2

2

2

22
exp1)(,

ββ
σ

ββ
σσσ

ijij
cji

dd

d
tHyxP [eq 19]

9. TARGET LOCATION

A joint probability distribution for amplitude measurements and motion model is computed
to estimate target’s location. Combining the equations of the target model and the motion
model we obtain the joint probability distribution

() ()() ()






























 −
+−












 −
−∝== ∑

=
2

2

2

2

1
2
,

2
,

1
2

,,
exp,,...,,

β
σ

ββ

σσ

θ ijijN

k Ak

kkjiAk
Nji

d

dAyxM
HAAyYxXP [eq 20]

The target location ()TT YX , is given by,

()
()

()

()

() 

















=

∑∑

∑∑

∑∑

∑∑
=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

mi

i

nj

j
Nji

i

mi

i

nj

j
Nji

mi

i

nj

j
Nji

i

mi

i

nj

j
Nji

TT

HAAyxP

yHAAyxP

HAAyxP

xHAAyxP
YX

0 0
1

0 0
1

0 0
1

0 0
1

,,...,,

,,...,,
,

,,...,,

,,...,,
, [eq 21]

Figure 5 illustrates the joint of the two equations.

22

Figure 5 Motion model: (a) Distance Probability Model
(b) Angle Probability Model
(c) Joint Probability Distribution From Distance and Angle Probability
(d) Contour Plot of the Joint Probability Distribution

(b)(a)

(d)(c)

23

10. RESULTS

The tracker was tested using several target configurations. Figure 6 shows a typical set of
results, obtained using the tracker under an “omniscient” controller. Since this controller
knew where the target was, the controller instructed the tracker to get measurements from
the “right sectors,” providing a means to establish a base-line estimation of the tracker
performance. Even under these conditions it should be noted that the measurements were
not assured to arrive at the right time. The diamond shaped dots are the target’s predictions.
The square dots are the true locations. As the figure shows, there is an insignificant
difference between the two sets of data. The Root Mean Square error (RMS) was 0.4 ft.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Series1
Series2

Figure 6 Results Obtained with the SC Tracker During the First Demonstration

11. MULTIPLE TARGET TRACKING

The multiple target version was grown from the original single-target version. In essence,
instead of maintaining target state for a single target, the multi-target version maintained
state for N targets. Since the allocation of sensor resources was decided by the controllers,
the association of target to sensors was not considered in the multi-target version.

The final version of the multiple target tracker was further adapted so that instead of keeping
multiple states within the tracker, multiple instances of the tracker were spawned by their
controller agents. The resulting architecture is that shown in Figure 7. Since the controller
agent was the piece of software in which negotiation was to be made, the controller
determined which resources were needed, and based on those decisions, sensor
measurements were feed into the appropriate instance of a tracker thread, where

24

predictions of target state were made and communicated to the controller.

As in previous demos, the performance of the tracker was quite acceptable, as shown in
Figure 7.

Figure 7 Results Obtained with the SC Tracker During the Final Demonstration

12. CONCLUSIONS

We have presented a multiple-target tracking system that uses probabilistic data fusion to
estimate target location and velocity from sensor data. The system’s architecture provides a
high degree of separation between the data sources, the tracking logic, and the state
transitions, which could be adapted to other tracking and data fusion scenarios.

The two major components of the tracker, the state model and the process model, are
based on Bayesian estimation theory. This makes it possible to fuse data from different

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70

T1-Pred T1-True T2-Pred T2-True T3-True T3-Pred

25

measurement spaces into a rich, unified, representation scheme, and offers the following
advantages:

• Robust operational behavior: Multi-sensor data fusion has an increased robustness
when compared to single sensor data fusion. When one sensor becomes unavailable
or is inoperative, other sensors can provide information about the environment.

• Extended spatial and temporal coverage: Some parts of the environment may not be
accessible to some sensors due to range limitations. This occurs especially when the
environment being scanned is vast. In such scenarios, multiple sensors that are
mounted at different locations can maximize the regions of scanning. Multi-sensor
data fusion provides increased temporal coverage as some sensors can provide
information when others cannot.

• Increased confidence: The confidence in detection of targets is increased in multi-
sensor data fusion. Single target location can be confirmed by more than one sensor
and this increases the users confidence in target detection.

• Reduced ambiguity: Joint information from multiple sensors can reduce the set of
beliefs about the target.

• Decreased costs: Multiple, inexpensive sensors can replace expensive single sensor
architecture at a significant reduction of cost.

• Improved detection: Integrating measurements from multiple sensors can reduce
signal to noise ratio, which ensures improved detection.

26

REFERENCES

[1] A. D. Baker, H. V. Parunak, and K. Erol. Agents and the internet: Infrastructure for mass

customization. IEEE Internet Computing, 3(5):62–69, September-October 1999.
[2] E. H. Durfee, T. Mullen, S. Park, J. M. Vidal, and P. Weinstein. The dynamics of the UMDL

service market society. In M. Klusch and G. Weiß, editors, Cooperative Information Agents II,
LNAI, pages 55–78. Springer, 1998.

[3] J. M. Epstein and R. L. Axtell. Growing Artificial Societies : Social Science from the Bottom Up.
Brookings Institute, 1996.

[4] S. Kau_man. The Origins of Order: Self-Organization and Selection in Evolution. Oxford
University Pres, 1993.

[5] J. O. Kephart, J. E. Hanson, and A. R. Greenwald. Dynamic pricing by software agents.
Computer Networks, 32(6):731–752, 2000.

[6] H. V. D. Parunak. “go to the ant”: Engineering principles from natural agent systems. Annals of
Operation Research, 75:69–101, 1997.

[7] J. S. Rosenschein and G. Zlotkin. Rules of Encounter. The MIT Press, Cambridge, MA, 1994.
[8] T. W. Sandholm. Necessary and sufficient contract types for optimal task allocation. In

Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 1997.
[9] R. G. Smith. The contract net protocol: High-level communication and control in a distributed

problem solver. IEEE Transactions on Computers, C-29(12):1104–1113, 1981.
[10] G. Weiss, editor. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence.

MIT Press, 1999.
[11] M. P. Wellman. Market-oriented programming: Some early lessons. In S. Clearwater, editor,

Market-Based Control: A Paradigm for Distributed Resource Allocation. World Scientific, 1996.
[12] D. H. Wolpert and K. Tumer. An introduction to collective intelligence. Technical report, ACM

Computing Research Repository, 1999. cs.LG/9908014.
[13] Alberto Elfes, Using Occupancy Grids for Mobile Robot Perception and Navigation. IEEE

Computer, 22(6): 46-57 (1989).
[14] Bar-Shalom, Y. and T.E. Fortmann, “Tracking and Data Association”. Academic Press: New

York, 1987.
[15] Berler, A. and Shimony, S. E., “Bayes Networks for Sonar Sensor Fusion”, Proceedings of the 13th

Conference on Uncertainty in AI, 1997.
[16] Gregory Francis Welch, “Incremental tracking with incomplete information”, PhD thesis, UNC

Chapel hill, 1996.
[17] Hughes, T.J. “Sensor Fusion in a Military Avionics Environment.” Measurement and Control. Sept.

1989: (203-205)..
[18] L. D. Stone, C.A. Barlow, and T. L. Corwin, “Bayesian Multiple Target Tracking”, Artech

House, Norwood, MA, 1999.
[19] L. Y. Pao. "A Measurement Reconstruction Approach for Distributed Multisensor Fusion," J.

Guidance, Control, and Dynamics, 19(4): 842-847, July-Aug. 1996.
[20] M. M. Kokar, M. D. Bedworth and K. B. Frankel. “A Reference Model for Data Fusion

Systems”, In Sensor Fusion: Architectures, Algorithms and Applications IV, 191-202, SPIE, 2000.
[21] M. M. Kokar, J. A. Tomasik and J. Weyman. A Formal Approach to Information Fusion.

Proceedings of the Second International Conference on Information Fusion (Fusion'99), Vol.I,
133-140,July 1999.

[22] N Okello and D. Tang and D W McMichael, “Tracker: A Sensor Fusion Emulator for
Generalised Tracking”, Proceedings of Information Decision and Control 99, 359—364,
February. 1999.

27

[23] Waltz, E. and J. Llinas. Multisensor Data Fusion. Artech House, Norwood, MA 1990.
[24] Wen, W. and H.F. Durrant-Whyte. “Model-based Multi-sensor Data Fusion.”, Proceedings.

IEEE International Conference on Robotics and Automation. 12-14 May 1992: Nice, France. IEEE: Los
Alamitos, CA, 1992. Vol. 2: (17206).

[25] Lawton, J.L. The RADSIM Simulator, in Distributed Sensor Networks, Ed. By V. Lesser, C. Ortiz
& M. Tambe, Kluwer Academic Press, 2003.

[26] Zemany, P. and Gaugham, M. Challenge Problem Testbed, in Distributed Sensor Networks, Ed.
By V. Lesser, C. Ortiz & M. Tambe, Kluwer Academic Press, 2003.

