MONARCH:
A Morphable Networked micro-ARCHitecture

John Granacki, USC/Information Sciences Institute
Mike Vahey, Raytheon
1. REPORT DATE
 21 MAY 2003

2. REPORT TYPE
 N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
 MONARCH: A Morphable Networked micro-ARCHItecture

5a. CONTRACT NUMBER
 -

5b. GRANT NUMBER
 -

5c. PROGRAM ELEMENT NUMBER
 -

5d. PROJECT NUMBER
 -

5e. TASK NUMBER
 -

5f. WORK UNIT NUMBER
 -

6. AUTHOR(S)
 -

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 USC/Information Sciences Institute and Raytheon

8. PERFORMING ORGANIZATION REPORT NUMBER
 -

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 -

10. SPONSOR/MONITOR’S ACRONYM(S)
 -

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
 -

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
 The original document contains color images.

14. ABSTRACT
 -

15. SUBJECT TERMS
 -

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 UU

18. NUMBER OF PAGES
 33

19a. NAME OF RESPONSIBLE PERSON
 -

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Outline

- MONARCH Team, Goals & Approach
- DIVA (Data Intensive Architecture) Leverage: The Chip
- Raytheon HPPS (High Performance Processor System)
- MONARCH Architecture & Applications
- Summary & Conclusions
The Team

Co-Principal Investigator
Michael Vahey

Principal Investigator
John Granacki

Arlan pool

RESEARCH STAFF
John “Chip” Bodenschatz
Frank Brandon
Reagan Branstetter
Charles Channell
Phil Rosen
Mike Walker

RESEARCH STAFF
Jeff Draper
Pedro Diniz
Jeff LaCoss

RESEARCH STAFF
Vlad Kaufman
GOALS

♦ **To support multiple classes of military missions**
 with a single morphable architecture

♦ **To eliminate processing system redundancies**
 through rapid dynamic reconfiguration of front-end
 filtering and data-reduction processing

♦ **To reduce application development costs**
 by allowing the hardware to be mapped to the algorithms
 both statically and dynamically

♦ **To develop an architecture that can quickly and
 efficiently adapt to changing situations**
 - internal (fault tolerance, sensors configurations)
 - external (threats change, mission phasing, environment)
Key Ideas

Combines fine, medium and coarse grain processing resources on a single chip

Matches hardware to the algorithms and the control flow mechanisms

Configures memory structures for efficient front-end and back-end processing

Provides flexible gigabyte I/O channels for direct interface to sensors and inter-chip communication

Supports all systems processing requirements with a single MONARCH chip type
Approach

- Leverage DARPA-sponsored DIVA Project results, Raytheon IRAD-sponsored HPPS and Mercury Stream Co-processing Engine
- Use DoD missions to drive micro-architecture and morphing concepts and implementation
- Determine the “sweet spot” for mixing large, small-to-medium and fine-grained elements
- Through experiments and simulations demonstrate a “single chip” VLSI processing architecture based on DIVA and HPPS
DIVA Leverage: The Chip
Exploiting The Bandwidth in a System

Processor \leftrightarrow Memory

A Solution

DIVA Solutions:
- Move concurrent processing on-chip
- More bandwidth and less latency on chip
- Added bandwidth between memories
- Lower latencies throughout system
DIVA Software/Hardware

Tools & Applications
- Compiler
 Data Placement, Parallelism, Host-PIM Mapping, Parcels, Coherence
- OS (Linux)
 Page Placement, Paging for Host & PIMs, Scheduling, PIM Initialization
- PIM Backend Compiler
 Code generation for scalar and WideWord
- PIM Runtime Kernel
 Parcel Management, Address Translation Faults, PIM Context Switches, Synchronization

System Management
- Host Runtime Layer
 Synchronization, Flushing, Thread Management, Host Parcels
- Application

Runtime Coordination
- Host System
- Memory Controller
- PIM VLSI Devices
 Processor, Memory Array

Physical Hardware
- PIM Applications
- DARPA
- PCA
- MONARCH
WideWord ALU Data Flow

Source 1 (256 bits) Source 2 (256 bits)

WideWord Register File

Arithmetic (8, 16, 32)
Logical (8, 16, 32, 256)
Multipliers (8 x 8, 16 x 16)
Permutation (8, 16, 32)

KISS: More compromises in architecture to enable early prototype
DIVA PIM Chip

♦ Current lab measurements
 – 640 MOPs (peak, 32-bit ops)
 – 0.8 Watts at 80MHz on cornerturn core loop

♦ Purpose
 – Demonstrate bandwidth advantages of PIM technology

♦ Key architectural components
 – High memory bandwidth
 – 256-bit WideWord processing
 – PIM routing component

♦ Chip statistics
 – 9.8mm X 9.8mm in TSMC 0.18µm
 – ~200K logic cells plus 8Mbit SRAM
 – 352 pins (241 signal pins)

♦Projected performance for 2nd prototype
 – 1.6 GOPs
 – 2.5 Watts at 200MHz
HPPS & FPCA ARCHITECTURES
♦ Multinode Processor
♦ One custom ASIC
♦ Innovative voting
♦ Inputs for high bandwidth A/D receiver channels or FPCA
HPPS Node Architecture

- **Fault-Tolerant Intf. Core**
 - I/O Capability
 - Intra-node
 - Inter-node
 - Distrib. Crossbar
 - Fault Detection
 - Memory EDAC
 - Processor voting
 - Node configuration controls

- **12 ea 4GByte I/O paths**

- **Point-To-Point Interconnect Fabric**

- **Field Programmable Computing Array**

- **Interface for COTS µP to Leverage Commercial Advances**
MONARCH: Node Architecture

Note: Not to Scale

- Fault-Tolerant Intf. Core
 - I/O Capability
 - Intra-node
 - Inter-node
 - Distrib. Crossbar
 - Fault Detection
 - Memory EDAC
 - Processor voting
 - Node configuration control

- 12 ea 4GByte I/O paths

- Virtual WideWord Unit/
 Data Flow Unit

- DFIM

- Interface for COTS μP
 For Legacy Systems
Virtual WideWord Unit/DFIM
♦ Multinode Processor
♦ One MONARCH chip
♦ Innovative voting
♦ Inputs for high bandwidth A/D receiver channels or direct chip-to-chip data transfer
MONARCH Chip Overview

- **Inter-Chip Communication Fabric**
- **Multichannel Sensor Input**
- **I/O Control & Data Integrity**
- **PARCEL BUFFER**
 - Data/Control Registers
- **COMPUTING RESOURCES**
 - ALUs/MACs
 - Memory Clusters
 - Register Files
- **INTERCONNECT**
 - Crossbars/DDEs
- **EDGEMEMORY**
- **DRAM MEMORY**
- **MEMORY CONTROL & ARBITER**
- **ICache**
- **Instruction Pipeline**
- **μCONTROLLER**
 - Datapath
- **Register Load/Store Requests**
- **GENERAL INTERFACE LOGIC**
 - (Fine-grain programmable)
Native Threaded Mode

- External Memory Interface
- High Speed I/O
- Parcel Logic
- I/O Adaptor ("FPGA")
- DRAM
- FPU
- ALU
- Reg File
- µController

MONARCH Application Processor

Stream Processing

Control

MC-SM

MC-SM

MC-SM

MC-TM

MC-TM

Inter-chip Memory Transfer

Inter-chip I/O (crossbar)

Parcel Interface

Threaded Processing
MONARCH Architecture Features

♦ Dual native mode, high throughput computing
 – Multiple wide word threaded (instruction flow) processors/chip
 – Highly parallel reconfigurable (data flow) processor
♦ Large on chip, multiport memories
 – High bandwidth access to memory
 – Extensible with off chip memory
♦ High speed, distributed cross bar I/O
 – Integrated with chip processing
 – Scalable I/O bandwidth - multiple topologies
 – Direct connect to high speed I/O devices, e.g., A/D’s
♦ Rich on chip interconnect
 – Supports on chip topology morphing and fault tolerance
 – Supports multiple computation models (SISD, SIMD, DF, SPMD,…)
♦ On chip Morph - Program bus and microcontrollers
<table>
<thead>
<tr>
<th>ISSUE</th>
<th>APPROACH</th>
<th>BENEFIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>256 bit wide word processing unit</td>
<td>Each Arithmetic Cluster has 8 32 bit units</td>
<td>1 AC provides same width as WW unit</td>
</tr>
<tr>
<td>Instruction Set Mapping</td>
<td>Basic functions same</td>
<td>Little impact</td>
</tr>
<tr>
<td></td>
<td>Need to add some insts</td>
<td></td>
</tr>
<tr>
<td>Large On-chip memory</td>
<td>Similar to Edge Memory</td>
<td>Performance boost</td>
</tr>
<tr>
<td></td>
<td>Now can have on chip</td>
<td></td>
</tr>
<tr>
<td>5 State pipeline, instruction flow decoder</td>
<td>Retain, and mux decoded signals with DF signals</td>
<td>Some hardware growth, but more control modes</td>
</tr>
<tr>
<td>Data flow control mode - streaming</td>
<td>Retain - switch mode bit</td>
<td>As above</td>
</tr>
<tr>
<td>High speed, multiple channel I/O</td>
<td>Incorporate dist. xbar and use for parcel com</td>
<td>Improved I/O performance</td>
</tr>
<tr>
<td>Parcel communications</td>
<td>Retain and map onto other physical protocol</td>
<td>Little impact</td>
</tr>
<tr>
<td>On-chip micro controllers</td>
<td>Retain</td>
<td>Performance boost</td>
</tr>
</tbody>
</table>

* Merger of features from DIVA and HPPS processors
Architecture Merger Issues

<table>
<thead>
<tr>
<th>ISSUE</th>
<th>APPROACH</th>
<th>IMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>WideWord 8-bit math</td>
<td>Modify array carry-chain logic</td>
<td>Negligible delay</td>
</tr>
<tr>
<td>Thread control for array / WideWord</td>
<td>Switch RISC pipeline control into array</td>
<td>TBD</td>
</tr>
<tr>
<td>3-port WW register file implementation</td>
<td>Extend array arithmetic clusters</td>
<td>Small area increase</td>
</tr>
<tr>
<td>WideWord pipeline length / bypass</td>
<td>TBD / Simulation</td>
<td>Interconnect, Compiler</td>
</tr>
<tr>
<td>Minimum I Cache size</td>
<td>Simulation</td>
<td>Area</td>
</tr>
<tr>
<td>Data exchange: W→S / S→W</td>
<td>TBD</td>
<td>Area, Interconnect</td>
</tr>
<tr>
<td>I/O: Memory map or program?</td>
<td>Memory Map</td>
<td>None</td>
</tr>
<tr>
<td>WideWord shifter implementation</td>
<td>TBD (modify array)</td>
<td>Design complexity</td>
</tr>
<tr>
<td>Permute implementation</td>
<td>Enhance array x-bars for 8 bit data</td>
<td>Small area increase</td>
</tr>
</tbody>
</table>
FPCA Changes for WideWord

Multiplexor for dual mode instruction set control of elements

8 32-bit ALUs become 32 8-bit elements
32 word register file added

“Breakable” carry chains
(Actually still 32 bit processing elements, but condition codes and carries controllable at 8 bit boundaries)

OP
Data valid (default)
Consume (default)
Token (participation)
MONARCH I/O Summary

<table>
<thead>
<tr>
<th>Port Type</th>
<th>Number of Ports</th>
<th>Wires per Port</th>
<th>Total Wires</th>
<th>Type</th>
<th>Clock Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>High speed ports</td>
<td>12</td>
<td>50</td>
<td>600</td>
<td>LVDS</td>
<td>1 GHz</td>
</tr>
<tr>
<td>Inter FPCA Links</td>
<td>4</td>
<td>52</td>
<td>208</td>
<td>LVDS</td>
<td>1-2 GHz</td>
</tr>
<tr>
<td>External memory</td>
<td>1</td>
<td>160</td>
<td>160</td>
<td>CMOS</td>
<td>500 MHz</td>
</tr>
<tr>
<td>Standard I/O</td>
<td>2</td>
<td>60</td>
<td>120</td>
<td>variable</td>
<td>100+ MHz</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>1088</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Need to Select Preferred Parameters for 1st MONARCH Chip

Design choice will balance throughput, memory, and I/O needs for representative applications.

MONARCH Processor/Memory Trade Space

Could design chip for anywhere inside this space.
MONARCH Processing Card
- 6Ux160 double euro card form factor -

- 6 MONARCH chips + memory and power conditioning
- 75 GFLOPS
- 2.4 TOPS
- 192 MBytes on-chip DRAM
- 2 MBytes on-chip SRAM
- 1 GBytes on-board memory
Summary & Conclusions

♦ MONARCH features very attractive for multiple applications

♦ Merger of two existing architectures shows good fit
 – “Complementary” but compatible features
 – Rich experience base allows quick design trades

♦ “The devil is in the details” --- a lot more work
 – On-chip DRAM organization and access
 – Support for “morphing”
 – Simulation results at application-level
 – Trade offs for FPU capability