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Executive Summary

A team of investigators led by C. Mobley of Sequoia Scientific, Inc. has developed and evaluated
a new methodology for extracting environmental information from remotely sensed hyperspectral
imagery. In brief, this look-up-table (LUT) methodology works as follows:

First, a database of remote-sensing reflectance (R;) spectra corresponding to various water
depths, bottom reflectance spectra, water-column inherent optical properties (IOPs), sky conditions,
and viewing geometries is assembled. This database is constructed using the a special version of the
Hydrolight radiative transfer numerical model, which provides an exact solution of the unpolarized
radiative transfer equation for the given input. Each Hydrolight-generated R,, spectrum in the
database is tagged by indices that identify the bottom depth, bottom reflectance spectrum, water
TOPs, sun zenith angle, etc. that were used as input to the Hydrolight run. At a minimum, this
database should contain R, spectra generated for environmental conditions close to those occurring
in nature at the time and location where the image was acquired. The database also may contain
spectra corresponding to environmental conditions much different from those of the image under
consideration.

Second, the R, spectrum for a particular image pixel is compared with each spectrum in the
database and the closest match to the image spectrum is found using a least-squares minimization.
The environmental conditions in nature are then assumed to be the same as the input conditions that
generated the closest-matching Hydrolight—generated spectrum in the database. Thus, the inversion
of a measured R spectrum to obtain the corresponding environmental conditions is effected by a
table look-up of the conditions corresponding to the closest-matching database spectrum.

Finally, for example, the index tag identifying which bottom reflectance spectrum was used in
the closest-matching Hydrolight run can be used to identify the bottom type at that pixel, or to obtain
other information such as the bottom reflectance at a particular wavelength. This process is repeated
for each pixel in the image to generate corresponding maps of bottom depth, bottom type, or water-

" column IOPs.

The LUT methodology has been evaluated by application to a PHILLS (Portable Hyperspectral
Imaging Low-Light Spectrometer) image acquired near Lee Stocking Island, Bahamas, on 17 May
2000. The LUT-retrieved bottom depths were compared with independently obtained acoustic
bathymetry. On average, the LUT depths were within 5% and 0.5 m of the acoustic depths. The
LUT-retrieved bottom classification was in qualitative agreement’ with diver and video spot
classification of bottom types, although detailed bottom classification data were not available for
quantitative, pixel-by-pixel comparison with the LUT retrievals. The LUT-retrieved IOPs were
consistent with IOPs measured at nearby times and locations.

The detailed discussion of this work is 'presented here as a paper which has been prepared for
submission to Applied Optics in January 2004.
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1. Introduction

Recent years have seen much interest in the development of hyperspectral imagers and in the analysis
of hyperspectral imagery of optically shallow waters. Sensors include the airborne AVIRIS
(Airborne Visible and InfraRed Imaging Spectrometer), Ocean PHILLS (Ocean Portable
Hyperspectral Imager for Low-Light Spectroscopy), CASI (Compact Airborne Spectrometer
Imager;), AAHIS (Advanced Airborne Hyperspectral Imaging System), and HyMap (Hyperspectral
Mapper) instruments, and the satellite-borne Hyperion imager

Recent applications of hyperspectral imagery have been quite varied. Hochberg and Atkinson (2000)
used AAHIS imagery and Andréfouét et al., (2003) used CASI imagery for mapping and
classification of benthic types into corals, algae, and sediments by fourth-derivative analysis of
remotely sensed reflectance spectra. Dierssen et al., (2003) used spectral ratios derived from Ocean
PHILLS imagery of shallow Bahamian waters to extract bathymetry and bottom type; Louchard et
al. (2003) used spectrum matching for the same purpose on the same imagery. Sandage and Holyer
(1998) used a neural network to determine bathymetry from AVIRIS imagery of Florida waters, and
Melack and Gastil (2001) used AVIRIS to map phytoplankton concentrations in Mono Lake,
California. In all cases, the exploitation of hyperspectral imagery for shallow waters depends on
being able to extract information about water-column optical properties, bathymetry, or bottom type
from remote-sensing reflectance spectra.

The remote-sensing reflectance R, is the ratio of the water-leaving radiance L, to the incident plane
irradiance E, from the sun and background sky; both L,, and E, are evaluated just above the sea
surface. In practice, L, must be estimated either by removing the surface-reflected radiance from
the total (water-leaving plus surface-reflected) radiance measured just above the surface, or by
extrapolating the upwelling radiance measured below the sea surface through the surface.
Regardless of how it is obtained from field measurements, R, is uniquely determined by the water
column inherent optical properties (IOPs, namely the absorbing and scattering properties of the water
body), the depth and bidirectional reflectance distribution function (BRDF) of the bottom, the sun

and sky radiance incident onto the sea surface, and the sea surface wave state. Given complete

information about these environmental conditions, R, can be computed exactly by numerically
solving the radiative transfer equation (RTE). The solution of this forward radiative transfer problem
can be obtained using the Hydrolight radiative transfer software package (Sequoia Scientific, Inc.)

The extraction of environmental information from measured reflectance spectra constitutes a
radiative-transfer inverse problem, which is discussed in the present paper. Inverse problems are
notoriously difficult because of potential non-uniqueness problems. Although a given R, spectrum
uniquely corresponds to a particular set of environmental conditions, errors in the measured R, may
cause a particular R, spectrum to be associated with incorrect environmental conditions when
“inverting” R, to obtain information about the environment. Thus it is often necessary to constrain
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inverse problems so as to guide the inversion to the correct solution. Such constraints often take the
form of simplifying assumptions about the underlying physical or mathematical problem, or of added
environmental information. '

We approach the inversion of R via a spectrum-matching and look-up-table (LUT) methodology -
designed for the simultaneous extraction of bathymetry, bottom classification, and water-column
absbrption and scattering properties from hyperspectral imagery. After presenting the underlying
LUT ideas, we apply our methodology to the extraction of environmental information from an Ocean
PHILLS image acquired on May 17,2000 in optically shallow waters near Lee Stocking Island (LSI),
Bahamas. This area has been previously studied, so that acoustic bathymetry and diver and video
observation of bottom type are available for comparison with the corresponding LUT-retrieved
values. We evaluate both unconstrained and constrained forms of the LUT methodology.

2. The LUT Methodology

The basic idea underlying the LUT methodology for inverting R; is simple. First, a database of R
spectra corresponding to various water depths, bottom reflectance spectra, water-column IOPs, sky
conditions, and viewing geometries is assembled. This database is constructed using the a special
version of the Hydrolight radiative transfer numerical model (Sequoia Scientific, Inc.), which
provides an exact solution of the unpolarized RTE for the given input. Each Hydrolight-generated
R, spectrum in the database is tagged by indices that identify the bottom depth, bottom reflectance
spectrum, water IOPs, sun zenith angle, etc. that were used as input to the Hydrolight run. Ata
minimum, this database should contain R spectra generated for environmental conditions close to
those occurring in nature at the time and location where the image was acquired. The database also
may contain spectra corresponding to environmental conditions much different from those of the
image under consideration.

Second, the R, spectrum for a particular image pixel is compared with each spectrum in the database
and the closest match to the image spectrum is found. The environmental conditions in nature are
then assumed to be the same as the input conditions that generated the closest-matching Hydrolight-
generated spectrum in the database. Thus, the inversion of a measured R spectrum to obtain the
corresponding environmental conditions is effected by a table look-up of the conditions
corresponding to the closest-matching database spectrum.

Finally, for example, the index tag identifying which bottom reflectance spectrum was used in the
closest-matching Hydrolight run can be used to identify the bottom type at that pixel, or to obtain
other information such as the bottom reflectance at a particular wavelength. This process is repeated
for each pixel in the image to generate corresponding maps of bottom depth, bottom type, or water-
column IOPs.




Although spectrum-matching has a venerable history, previous applications have been to easier
problems or relied on ancillary data. Laboratory or terrestrial applications do not have the
confounding influence of unknown water absorption and scattering obscuring the desired
information. The previous oceanographic application by Louchard et al. (2003) relied on ancillary
measurements of the IOPs so that the water properties could be considered known. In our
unconstrained analysis mode, we make no a priori assumptions about the water depth, IOPs, or
bottom reflectance.

The Hydrolight runs needed to generate the database are computationally expensive, but they are
done only once. Searching the database to find the closest match to a given image spectrum is
computationally fast, as is the table look up and generation of graphical or digital output products.

Spectrum matching is performed using a least-squares comparison of the measured image and
database spectra via

J
LSQG) = Y wh) [RG.A) - R AP , M

J=1

where ﬁm(i, A.j) is the / database spectrum at wavelength band j, R,s(lj) is the measured spectrum

for a particular image pixel, and w(lj) is a weighting function between 0 and 1 that can be used to
weight the contribution of different wavelength bands (e.g., to discount wavelengths where the
measured reflectance data are less accurate). The smallest value of the least-squares distance LSQ
determines the closest database spectrum i to the measured spectrum.

Criterion (1) matches the spectrum magnitudes at each wavelength; the simultaneous incorporation
of spectral shape information is implicit in this criterion. Other spectrum-matching criteria have
been considered. For example, the Spectral Image Processing System (SIPS; Kruse, et al., 1993)
minimizes the angle between the two normalized spectra in J-dimensional space, where J is the
number of wavelengths. The SIPS matching criterion considers only the spectral shape; it regards
two spectra that differ only by a multiplicative factor as being a perfect match. Although such a
matching criterion is adequate for some applications, and must be used if only uncalibrated spectra
are available, the SIPS criterion makes no use of the magnitude information available in the
calibrated PHILLS spectra considered here. The LUT method uses both magnitude and spectral
shape information to avoid the non-uniqueness problems that often occur when extracting
oceanographic information from uncalibrated or normalized spectra.




3. Imagery and Ground Truth

Imagery

The Ocean PHILLS airborne hyperspectral imager is a pushbroom-scanning instrument. It uses a
two-dimensional CCD array with 1024 cross-track pixels for spatial resolution. Light from each
spatial pixel is dispersed onto the other direction of the CCD to obtain (after binning) 128 spectral
channels between 400 and 1000 nm, with a nominal bandwidth of 4.6 nm. As normally flown, each
spatial pixel is one to two meters square on the ground. Davis etal. (2002) give detailed descriptions
of the instrument design and its spectral and radiometric calibration.

Ocean PHILLS was flown during the Coastal Benthic Optical Properties (CoBOP) field experiment
in the vicinity of Lee Stocking Island (LSI), Bahamas during May 2000. The waters in the vicinity
of LSI are generally less than 15 m deep, but do extend offshore to optically deep, open-ocean water.
Nearshore waters are usually visually very clear and are characterized by chlorophyll concentrations
of 0.1 to 0.2 mg Chl m*. In shallow regions, there is often substantially more absorption at blue
wavelengths than what would be expected for Case 1 waters having the same chlorophyll
concentration, due to colored dissolved organic matter (CDOM) derived from benthic biota such as
seagrass and coral or sediment biofilms. Scattering, however, appears to be dominated by
phytoplankton except during episodic strong winds, which can resuspend sediments. The sea bed
consists of carbonate sands and harder sediments, seagrass beds, and patches of both hard and soft
corals. The bottom can be uniform on scales of tens of meters, or patchy on scales of less than a
meter. There are often sharp dividing lines between bottoms of different types, such as between bare
sand and dense seagrass beds or coral heads.

Figure 1 shows a PHILLS RGB image of the Adderly Cut area just to the northwest of LSI acquired
at 0930 local (Eastern Daylight Savings) time (1330 UTM) on 17 May 2000. After geocorrection
and discarding questionable pixels at the ends of the scan lines, the useable image shown here is 900
pixels from North to South and 1425 pixels from East to West. The pixel size is approximately 1.3
‘m, so the image shows an area of approximately 1.2 km by 1.9 km. This image contains areas of
highly reflecting ooid sands, sparse to dense seagrass beds, pavements and sediments with varying
degrees of biofilm and patchy turf algae or Sargassum, and small coral patch reefs. The deepest
water is about 11 m. |

The PHILLS at-sensor radiances were atmospherically corrected with Tafkaa (Montes et al., 2001;
Gao et al., 2000). Atmospheric absorption was modeled using distributions of well-mixed gasses
appropriate for a tropical atmosphere. The ozone content was set to 0.3 atm-cm (300 Dobson units),
and the water vapor content was set to 3.5 cm of precipitable water. A maritime aerosol with a
relative humidity of 90% was used; the optical properties of such an aerosol are described in Shettle
and Fenn (1979). The aerosol optical depth was 0.1 at 550 nm. Tafkaa uses the wind speed to set
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the reflectivity of the sea surface via the surface slope statistics; the available speeds are 2, 6, and
10ms". A value of 6 m s tended to overcorrect for atmospheric effects thereby occasionally giving .
negative radiances at the sea surface. Therefore a speed of 2 m s was used, which may have led to
undercorrection, i.e., to water-leaving radiances that were too large.

Given an accurate radiometric calibration and using Tafkaa in its aerosol determination mode (i.e.,
aerosols are chosen based on the assumption that the water-leaving radiance at several
NIR/SWIR wavelengths is 0), Tafkaa's lookup-table grid gives water-leaving radiances that are
accurate to the equivalent of +0.003 sr' in R, However, the errors will increase if, for example, the
true aerosol is not closely matched by the modeled aerosol, or if swells are present in the image (i.e.,
the true sea-surface geometry is different than the modeled slope statistics in Tafkaa). For the
present image, the aerosols were input to Tafkaa rather than being determined from NIR/SWIR
wavelengths. Likewise, the calibration processing was fairly involved (Leathers et al. 2002). Both
of these situations may lead to larger systematic errors in the final R

Bathymetry

Acoustic bathymetry in the waters surrounding LST was acquired from a small boat during 16-20
June 2001 (Louchard et al., 2003). Bathymetric measurements were recorded at a repetition rate of
0.7 Hz using a Suzuki ES2025 echo sounder, and each depth was recorded along with its time and
the latitude and longitude as determined by WAAS GPS. The acoustic data were corrected to mean
sea level (MSL) to account for tide differences. Extracting only the acoustic data that fell within the
latitude-longitude bounds of the Adderly Cut image of Fig. 1 left 98,751 depths. The GPS latitude-
longitude coordinates were converted to UTM and then to image pixel coordinates. Because of the
slow boat speed and fast sample rate, a given PHILLS pixel often contained several acoustic depths.
Multiple acoustic depths within any PHILLS pixel were averaged to get the depth for that pixel. The
final result was 20,446 image pixels for which an acoustic depth is available. These pixels are
shown by the black boat track in Fig. 2. The depth contours of Fig. 2 were generated by interpolation
of the available depth values using the IDL (Research Systems, Inc.) contouring routine with
smoothing by an 11-pixel boxcar filter (+ 5 pixels to either side of a given pixel).

To gain some idea of the accuracy of the tide-corrected acoustic depths, we compared the depths for
all pixels where east-west and north-south boat tracks crossed. In principle, the MSL depths at the
crossings should be the same for both tracks, which may have been hours apart. There were 120
such crossings, including acoustic data from areas not shown in Fig. 1. The average difference in
the depths at the crossing points was 0.10 m, with a standard deviation of 0.08 m. Only 10 crossing
had a difference of more than 0.20 m, and the largest difference was 0.27 m. There was no
correlation between the bottom depth and the difference in the depths of the crossing tracks. Thus
we feel that the acoustic depths are accurate to within 0.1 to 0.2 m for depths of 2 to 12 m.




Geocorrection and GPS Errors

The PHILLS image was geocorrected by comparison of 379 ground control points (for the entire
flight line seen in Fig. 17) as seen on the raw PHILLS image and on an IKONOS image, which
covered the Adderly Cut area at 2 m resolution. After rubbersheeting, the rms error for these points
was 3.1 m.

To gain some idea of the magnitude of the horizontal position errors due both to errors in the GPS
positioning of the acoustic bathymetry and to the warping of the PHILLS image, we plotted the
acoustic depths along line AB of Fig. 1 along with the magnitude of the corresponding PHILLS
spectra at selected wavelengths. The result is seen in Fig. 3. Because the reflectance of the ooid
sand in this shoal area is probably very uniform, it is reasonable to assume that the shallowest
acoustic depth along line AB corresponds to the highest magnitude of R,. We thus associate the
shallowest acoustic depth and the highest R, values as indicated by the dotted lines in the figure.
There is an offset of 17 pixels between the minimum acoustic depth and the maximum R, values.
For a pixel size of 1.3 m, this is a discrepancy of 22 m on the ground. This error is larger than what
might be expected from the rms error of the image warping and the expected error of roughly 5 m
in the GPS positioning. It is more speculative to associate other peaks in the depth profile with peaks
in the R, values, but there appear to be discrepancies of order 10 pixels, i.e. of order 10 m, in
associating the bathymetic data with the image data. These discrepancies represent the combined
errors due to imperfect GPS positioning of the acoustic data, imperfect warping of the PHILLS
image during geocorrection, and possible migration of the ooid sand shoal in the year between the
PHILLS image and the acoustic survey.

There are few other points in the image for which an acoustic depth measurement can be reliably
associated with the R, signal. Moreover, the geocorrection image warping is very nonlinear over
the image area, so it is not possible to correct horizontal mismatches in bathymetric and image data
based on only a few points. We therefore conclude that, when making pixel-by-pixel comparisons
of the acoustic bathymetry with the PHILLS imagery, there may be horizontal positioning errors of
roughly 10 m. The depth profile of Fig. 3 shows that a horizontal mismatch of pixels by 10 m can
correspond to an error as of 1 m in the depth due to bottom slope. Thus, although the acoustic data
are accurate to 0.1 or 0.2 m, the association of that data with a particular image pixel may be in error
by as much as one meter, although the average error may be less.

10Ps

Absorption a and scattering b coefficients were measured using an ac-9 (WETLabs, Inc., Philomath, '
Oregon) over part of a tidal cycle on 21 May 2000 ata location approximately 1 km to the northwest
of the Adderly Cut area (just to the upper left of Fig. 1; E. Boss, personal communication). Another
ac-9 was used to measure the IOPs at just to the south of Adderly Cut on 1 June 1999 during the ebb
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tide (Louchard et al, 2003, Table 2). In both cases the ac-9 data were taken at nominal wavelengths
of 412, 440, 488, 510, 532, 555, 650, 676, and 715 nm, with a 20 nm bandwidth. These data are
shown by the diamonds in Fig. 4, both with and without the pure water contribution. The figure also
shows the a and b spectra as predicted by a bio-optical model for Case 1 water with a chlorophyll
concentration of 0.2 mg Chl m™.

For purposes of hyperspectral data analysis, it is necessary to extrapolate and interpolate the available
ac-9 data to cover the wavelength range of the hyperspectral image. We extended the ac-9 data to
the 400-750 nm range, with 5 nm band widths (which we call the LUT standard wavelengths), as
follows. As seen in Fig. 4(a), the ac-9 a spectra resemble CDOM absorption spectra, which are well
described by an exponential function of wavelength. We therefore used the slope of the 412 and 440
nm values to define an exponential function of wavelength characteristic of CDOM absorption,
which was then used to define the absorption for the LUT bands centered at 402.5 and 407.5 nm.
Non-water absorption at and beyond 715 was assumed to be zero. Values at other LUT wavelengths
were obtained by cubic spline interpolation of the available ac-9 values. The ac-9 scattering
coefficients were extended in a similar fashion using the available bands to define a A" functional
form for extrapolation to 400 and 750 nm.

The Adderly Cut area has deep, open ocean water to the northeast and extensive shallows to the
northwest and south. Strong tidal currents alternately flush the area with water from the open ocean
or from the shallows. The flood tide brings in open-ocean water, which has chlorophyll
concentrations near 0.2 mg Chl m™. As seen in Fig. 4(a), the total absorption at high tide is very
close to that for Case 1 water with 0.2 mg Chl m* at wavelengths of 470 nm and greater. Below
470 nm, there is additional absorption in the blue. The ebb tide drains the extensive shallow areas,
which are covered by sea grass beds, corals, and ooid sands and pavements with varying degrees of
biofilm. These benthic biota are a source of water-column CDOM that is unrelated to the
phytoplankton concentration (Boss and Zaneveld, 2003). The ebb tide carries this CDOM-rich water
from the shallows, which greatly increases the absorption at blue wavelengths. The ebb-tide water
thus has a much different absorption spectrum than Case 1 water for any chlorophyll concentration.
Because of the benthic CDOM, the absorption coefficient varies by over a factor of three during the
tidal cycle of 21 May 2000, with the highest CDOM concentration and absorption occurring at low
tide. The flood-tide water from offshore appears to retain some of this CDOM, as indicated by the
additional absorption in the blue noted above. The 1 June 1999 measurement, which was made on
a falling tide, is consistent with those of 21 May 2000.

Figure 4(b) shows the corresponding scattering coefficients b. The scattering coefficient for the 21
May 2000 measurements is only about 30% larger at low tide than at high tide, which indicates that
the ebb and flood of the tide has a smaller effect on the particulate load in the water than on the
CDOM concentration. The scattering coefficient remains close to that predicted by the Case 1 model
with 0.2 mg Chl m throughout the tidal cycle. This implies that most of the scattering in the water
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column is due to phytoplankton. The 1 June 99 scattering coefficients are somewhat higher
indicating, perhaps, additional mineral particles in the water from resuspended sediments or detritus
from benthic plants.

It thus appears that in this area the absorption coefficient is strongly coupled to the tidal cycle and
is much greater at blue wavelengths than for Case 1 water with the same chlorophyll concentration.
The scattering coefficient, on the other hand, is less variable, is weakly coupled to the tides, and is
closer to what would be expected in Case 1 water. The time of the PHILLS image acquisition, 0930
EDST on 17 May 2000, was just after a high tide at 0847 EDST (the next low tide was at 1440). The
period between image acquisition on 17 May and the nearby IOP measurements on 21 May was one
of stable weather and no visually apparent changes in water conditions. Thus a reasonable a priori
guess as to the IOPs at the time of image acquisition could be made by using one of the higher-tide
TOP sets from the 21 May 2000 measurements.

We also added pure water, and spectra defined by the Case 1 IOP model in Hydrolight for
chlorophyll concentrations of 0.05,0.2, and 0.5 mg Chl m™. We do not expect that these IOPs would
describe the Adderly Cut waters, but their presence in the database will serve as a test of the
algorithm’s ability to extract the correct IOPs when others are also available. To have a wider
selection of spectra in the IOP database, we also interpolated between the four ac-9 spectra measured
on 17 May 2000. This gives a total of 4 sets of measured IOPs, 3 sets obtained from interpolation
of measurements, and 4 sets of modeled IOPs, for a total of 11 sets of absorption and scattering
spectra in the database. These a and b spectra are shown in Fig. 5. Figure 5(b) shows that the Case
1 scattering spectra vary much more in magnitude as a function of chlorophyl!l concentration than
do the measured b over the course of a tidal cycle.

Bottom Classification

Bottom type in the Adderly Cut area has been classified by a combination of diver observation and
video recorded from a small boat (Gonzalez and Eberli, 1997, Louchard et al., 2003). As mentioned
above, the bottom includes bare oolitic sand shoals in areas swept by strong tidal currents; sands
stabilized by sparse to dense beds of Thalassia; pavement with varying coverages of Sargassum, turf
algae, soft corals, and sponges; and small patch reefs and isolated hard coral heads. The sediments
are covered by varying degrees of biofilm. Figure 6 shows the bottom classification based on video
recorded from a small boat. Visual classifications such as “sparse to medium seagrass” or “patchy
Sargassum” do not allow for quantitative analysis in terms such as leaf area index, but they do serve
for qualitative evaluation of the LUT retrievals of bottom type.
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Bottom Reflectance

Spectral irradiance reflectances R, for various bottom materials in the LSI area have been measured
both in situ with diver-operated instruments (Mazel, 1997; Mazel and Fuchs, 2003) and in the
laboratory on sediment cores (Stephens et al, 2003; Decho et al, 2003) and plant specimens (Drake
et al., 2003) returned from the field. In many cases the measured quantities were reflectance factors
that are equated to the irradiance reflectance under the assumption that the material is a Lambertian
reflector.

Selected sediment and biota reflectances are shown in Fig. 7. The spectra of Fig. 7(a) show the wide
range of reflectance magnitudes occurring for sediments ranging from clean ooid sand (top
spectrum), through sand with varying degrees of biofilm, to pavement, grapestone and other dark,
hard sediments (bottom spectrum). Figure 7(b) shows the reflectance spectra for selected biota
including bleached coral (top spectrum), clean seagrass leaves (Thalassia), turf algae, brown
seaweed (Sargassum), corals, and sponges. These spectra are in many cases averages of several

- spectra measured on different plants or on different parts of the same plant. In many cases these

spectra were obtained at other locations and may or may not be representative of the biota at Adderly
Cut. The spectra of Figs. 7(a) and 7(b) can be combined to obtain spectra for mixtures such as sand
and seagrass, or pavement and Sargassum, as may be appropriate for describing particular locations
in Adderly Cut. Figure 7(c) shows such reflectance mixtures for clean seagrass leaves combined
with a sand substrate measured in a seagrass bed, and for mixtures of pavement and turf algae,
Sargassum, and coral. The mixing was done at ten percent increments, i.e., 90% sand + 10% grass,
80% sand + 20% grass, etc. These mixtures are rather limited given the ranges of possible bottom
reflectances found in nature. The coral reflectance used in the mixing was an average of several
rather different reflectances for different coral species, and the Sargassum and turf algae spectra were
each measurements on a single plant.

We also included three “gray” bottom reflectances with wavelength-independent reflectances 0of 0.2,

0.1, and 0.0 (a black bottom). Although such spectra are unnatural and would not be included in a

database for operational image analyses, their presence is a test of the matching algorithm’s tendency
to go astray if given the chance. Including the measured endmembers, the mixtures, and the three
gray spectra, there are 63 bottom reflectance spectra in the database. These are shown in Fig. 7(d).

4. Database Generation

A special version of the Hydrolight 4.2 radiative transfer model (called EcoLUT) was used to create
a database of R, spectra for evaluation of the LUT methodology. The water IOPs were assumed to
be homogeneous (constant with depth). Finite-depth bottoms were assumed to have Lambertian
BRDFs characterized by the irradiance reflectances just discussed. Runs were made at the LUT
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standard wavelengths, namely at the 70 five-nanometer wavelengthvbands from 400 to 750 nm. For
computational efficiency, all IOPs and bottom reflectances were preprocessed to obtain values at the
LUT standard wavelengths before being used as input to EcoLUT.

No backscatter data were available, from which it would be possible to determine the backscatter
fraction from the backscatter coefficient and the scattering coefficient. It is likely that the
phytoplankton had a backscatter fraction of 0.015 or less (Ulloa et al., 1994). However, in these
clear waters, backscatter by the water itself can be a significant part of the total backscatter.
Simultaneous ac-9 and HydroScat-6 (HOBILabs, Inc.) measurements in the Florida Keys, which also
have optically clear, shallow water in a similar environmental setting, have shown total (particulate
plus water) backscatter fractions between 0.03 and 0. 04 [P. Bissett, personal communication; Looe
Key data from Oct 2002]. When processing the ac-9 data, the particle backscatter fraction was
assumed to be 0.02, which may be representative of the mixture of small mineral particles and
phytoplankton suspended in the LSI waters. The resulting total backscatter fractions (including
water backscatter) are in the range of 0.025 to 0.05, which covers the range of measurements made
elsewhere in similar environments. For the database IOPs based on bio-optical models for Case 1
waters, a particle (phytoplankton) backscatter fraction of 0.005 was used. The total backscatter
fraction at each wavelength was then used to generate the total scattering phase function from the
Fournier-Forand family of phase functions, as described in Mobley et al. (2002).

The bottom was placed at 0.25 m increments from 0.25 to 15.0 m, for a total of 60 depths. An
additional bottom option, infinitely deep water, was also included. In this case, the non-Lambertian
“bottom” BRDF was computed from the water-column IOPs and no separate bottom reflectance
spectrum was used.

The EcoLUT runs included Raman scatter by water. However, since the IOP input to EcoLUT was
the total IOPs, not chlorophyll or CDOM concentrations, fluorescence by chlorophyll and CDOM
were not included in the runs.

“The LUT database thus has N, = 11 sets of IOPs, Ny, = 63 bottom reflectances, and N,;, = 60 finite
bottom depths. When combined in the EcoLUT runs, these yield NigpX(Npy XN, + 1) = 41,591 R
spectra for a given sun angle, wind speed, and other external conditions. For the initial database,
only one solar zenith angle was used: 8, = 60 deg, which corresponds to the sun’s location at the time
of the PHILLS overflight. The sky was modeled as clear with atmospheric conditions (humidity,
aerosol type, etc.) typical for tropical atmospheres. Only the EcoLUT nadir-viewing radiances were
used to compute R_; there are no off-nadir v1ew1ng directions in the database. Figure 8 shows the
R spectra in the database.
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5. Unconstrained Inversions

We now apply the entire EcoLUT-generated database of R, spectra to the analysis of the
hyperspectral PHILLS data for the Adderly Cut area seen in Fig. 1. The 72 wavelengths in the
PHILLS R, spectra in the 400-750 nm range do not correspond exactly to the 70 LUT standard
wavelengths. We therefore first resampled the LUT database R_ spectra via a cubic spline fit to
correspond to the 72 PHILLS wavelengths.

The first matching used the entire LUT database and all available wavelengths from 400 to 750 nm,
ie., all w(A) =1 in Eq. (1). The results were disappointing. When compared to the acoustic
bathymetry at the 20,446 pixels where both LUT and acoustic depths are available , the average LUT
depth retrieval was 49.0% too shallow, which corresponded to the average depth being 2.56 m too
shallow. The retrieval of bottom type correctly separated areas of sediment and seagrass in waters
less than ~5 m deep, but large areas of deeper water were retrieved as a gray bottom. The IOPs were
generally retrieved as the lower-CDOM spectra in shallow waters, but were often retrieved as higher-
CDOM or even Case 1 water over the gray-bottom pixels. Thus, the deeper pixels were often
retrieved as too shallow, with a gray bottom and an unlikely set of IOPs.

The reason for the poor retrievals apparently lies in the presence of systematic errors in the PHILLS
R, spectra. Figure 9 shows selected PHILLS spectra chosen to illustrate a variety of bottom depths
and types. The locations of points 1-5 are shown in Fig. 1 and are briefly characterized as follows:
Point 1 is clean ooid sand at ~2 m (acoustic) depth; 2 is ooid sand at ~8 m; 3 is moderate to dense
seagrass at ~2 m; 4 is sparse grass at ~2.5m; 5 is biofilmed sand or pavement at ~3 m; and 6 is a
deeper-water (15 m or more) offshore pixel located ~2 km to the northeast of Adderly Cut (at the
upper right of Fig. 17). For our present purpose, we note that the spectra do not approach zero for
wavelengths beyond 700 nm, as would be expected for bottom depths of more than a meter. Indeed,
all of the database R, spectra with z, >1 m are essentially zero beyond 750 nm. Dierssen et al.
(2003) compared data from the same PHILLS instrument at a nearby location with ground-truth R
spectra measured by a Hyper-TSRB (Satlantic, Inc.). They too concluded that the 2000 version of
the PHILLS instrument gave spectra which were too high in the red, and were also too high over
_most of the spectrum for areas of seagrass bottoms. Kohler (2001) compared PHILLS spectra from
the 1999 version of this instrument with Hyper-TSRB data and found that both an offset and a gain
were necessary to bring the PHILLS spectra into agreement with the Hyper-TSRB spectra.
Louchard et al. (2003) also adjusted spectra from the 1999 version of the PHILLS instrument by
subtracting the difference of a deep-water PHILLS spectrum and a Hydrolight-computed spectrum
for infinitely deep water from each shallow-water spectrum. If the PHILLS spectra are too large in
magnitude, we could expect that the LUT depth retrieval would be too shallow because a brighter
spectrum would correspond to a shallower bottom, all else being the same.

We thus hypothesize that the PHILLS spectra are systematically too large. This is consistent with
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an undercorrection of atmospheric effects caused by usinga2 ms’ wmd speed in Tafkaa Lacking
extensive groundtruth R, data, we cannot say if the obvious offsets ‘beyond 650 nm as seen in Fig.

9 also occur down to 400 nm or if the offset is the same for every wavelength. Nevertheless, we can
attempt to correct for any systematic, wavelength-independent bias by shifting each PHILLS
spectrum so that its minimum value, which is generally located somewhere beyond 650 nm, is zero.
The dotted lines in Fig. 9 illustrate such shifted spectra.

Wethen repeated the LUT matching with each PHILLS spectrum offset to zero at its minimum value
before determining the closest database match via Eq. (1). The results were much better. The
average depth error over all pixels is now only 5.3%, or 0.54 m, too shallow. The deeper areas
prev1ously retrieved as gray bottoms are now generally retrieved as sea grass.

Figure 10 compares the LUT and acoustic depth retrievals as a function of the retrieved bottom type.
The average percent difference in the LUT and acoustic depths is computed as

100 i z,(LUT; i) - z,(acoustic; i)

percent difference = —
z,(acoustic; 7)

@)

where z,(LUT; i) is the retrieved depth at pixel i, zy(acoustic; i) is the acoustic depth, and N is the
number of pixels for a given bottom type as shown in the figure. The average depth difference is
computed as

N
depth difference = 1 Z [z,(LUT; i) - z,(acoustic; 9)] . 3)

In each case, a positive (negative) error indicates that the LUT depth is too deep (shallow). Over the
sediments, which are highly reflecting and well represented in the LUT database, the average error
is only 1.6%, or -0.07 m. The depth error is larger, -12.6% or -0.88 m, over the darker seagrass
bottoms, which give a smaller bottom contribution to R, and whose reflectances in the LUT database
are a mixture of an average clean-leaf seagrass reflectance and one sediment type. Thus the bottom
reflectances for seagrass and sediment mixtures are perhaps not as well represented in the LUT
database as are the pure sediment bottoms. There is large scatter in the depth retrievals for mixtures
of coral, Sargassum, and turf algae, which are likely even less well represented in the present
database. The “other” category also includes the gray-bottom pixels, which are always retrieved as
much too shallow. The horizontal striping in the plotted points occurs because the LUT depths are
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* at intervals of 0.25 m.

It is not clear in Fig. 10 that most of the points cluster near the 1:1 line at the shallower depths.
Therefore Fig. 11 displays the retrieved and acoustic depths as a depth distribution of the number
of pixels at each depth. We note in particular that the seagrass bottoms in the 7-9 m depth range are
not well retrieved. Figure 12 shows the pixel-by-pixel depth retrievals for the entire image.
Although the LUT retrieved depths are in increments of 0.25 m, we have binned the retrieved depths
for convenient display. The qualitative agreement with the acoustic depth map of Fig. 2 is clear.
No pixels were retrieved with a depth greater than 12 m, which is correct for this area. Figure 13
compares the acoustic and LUT depths along transect AB shown in Fig. 12. We see that there is
considerable pixel-to-pixel variability, but that the overall retrieval is fairly good. Moreover, we note
that the average error and standard deviation between the LUT and acoustic depths are comparable
to the differences that can be expected owing to GPS and geocorrection errors, as discussed above.

Figure 14 shows the pixel-by-pixel retrieved bottom type. The color-coded classification scheme
is defined as follows. A pixel is flagged as “sand” if the retrieved bottom reflectance is any of the
seven database spectra for clean ooid sand to heavily biofilmed sand. These are the upper seven Rb
spectrain Fig. 7(a). “Darker sediment” corresponds to bottom reflectances for any of the four lower-
reflectance spectra for hardpan, grapestone, or pavement. “Thick grass” refers to a pixel whose
retrieved bottom spectrum was either the pure sea grass spectrum or a mixture of sand and grass with
60% or more grass spectrum; “sparse grass” is a grass-sand mixture with 10-50% grass. “Turf on
pavement” flags pixels whose bottom reflectances correspond to any mixture (10-100%) of the turf
algae spectrum with the pavement spectrum; the same definition is used for “Sargassum on
pavement” and “coral on pavement.” “Pure biota” refers to a pixel retrieved as having a reflectance
spectrum for one of the seven corals and sponges in the database. Finally, “gray” refers to bottoms
with a reflectance of R, = 0.0, 0.1, or 0.2 at all wavelengths. It should be remembered that our
category of “thick grass,” for example, is based on a large contribution by the pure grass spectrum
to the total bottom reflectance. This may or may not correspond to a “thick grass” classification by
some other scheme such as leaf area index.

With this qualitative bottom classification scheme, we see from Figs. 14 and 6 that the LUT retrieval
has done a reasonably good job of classifying areas of sediments, and dense and sparse sea grass.
The LUT retrieval is also consistent with an intuitive interpretation of Fig.1. There appears to be
some mis-identification of sea grass vs. turf or Sargassum, but this is not surprising because these
reflectance spectra are dark and somewhat similar (especially for turf algae vs. Sargassum). Very
few pixels are retrieved as pure biota. The curved band of turf/Sargassum at x pixels ~400-850 and
y pixels ~850 parallels the edge of the image and is not correlated with any physical feature. Note
a similar band in the IOP data of Figs. 15 and 20, which extends beyond the Adderly Cut area. This
indicates that these retrievals are influenced by artifacts in the PHILLS image.
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Figure 15 shows the IOP retrievals color coded as to which set of IOPs was retrieved. The water
TOPs will have the least influence on R, where the bottom is brightest and shallowest, such as over
the center of the ooid shoal or very near shore. The IOPs will have the greatest influence on R
where the bottom is darkest and deepest, such as over seagrass beds or the deeper parts of the ooid
shoal. Thus the IOP retrievals are likely to be more trustworthy over the deeper and vegetated areas.
These areas of Fig. 15 are predominately retrieved as IOP sets 2, 3 or 4, which correspond to the
lower-to-moderate CDOM waters that we would expect to occur just after high tide. The shallow
center of the ooid shoal is retrieved as IOP set 1, which had the lowest CDOM concentration. We
tend to discount the accuracy of this retrieval because of the shallow, bright bottom. The deeper
areas of the ooid shoal are retrieved as IOP set 2 or 3, consistent with the retrievals over the adjacent
darker bottoms. The shallow near-shore regions are often retrieved as high-CDOM water. This is
indeed where benthic vegetation and sediment biofilms could significantly increase the CDOM
concentration during the previous slack water at high tide, and where the currents are weakest and
may not have mixed the waters with those of the central part of the area as the tide begins to ebb.
However, those high-CDOM retrievals also may be incorrect IOP retrievals resulting from
inadequate representation of the corresponding bottom reflectances in the database. The sensor
signal to noise ratio is lowest and the calibration is most difficult at blue wavelengths, which may
also affect the IOP retrievals be cause of the strong influence of CDOM absorption near 400 nm.
Although it is not possible to decide which IOP retrievals are correct or incorrect in the absence of
IOP ground truth measurements taken at the time of the PHILLS overflight, the IOP retrievals are
nevertheless plausible. It is reassuring that the only pixels retrieved as Case 1 water were at the very
shallowest part of the ooid shoal. '

These results indicate that the poor initial matching results were indeed due in large part to a
systematic erros in the PHILLS spectra for this image. We will henceforth offset each PHILLS
spectrum to zero before performing the matching. '

6. Constrained Inversions

We next investigate whether the matching results can be improved by constraining the inversion.
We can do this by restricting the allowed depths, bottom reflectances, or IOPs in the LUT database,
or by performing the matching over a restricted wavelength interval. In all cases, it is best to be
guided by the data, starting with an unconstrained inversion.

The three gray-bottom reflectance spectra were included in the initial database just to see if they ever
occurred in the matching results. They seldom occur with the offset PHILLS spectra and, in any
case, they are unnatural. Likewise, the IOP sets for pure water and Case 1 water with chlorophyll
concentrations of 0.05, 0.2, and 0.5 mg Chl m™ were included in the database to see if they would
be chosen, even though we did not expect that the Adderly Cut waters would be described by these
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IOPs. It was again reassuring that the matching almost never returned one of these IOP sets.
Because neither the gray bottoms nor the Case 1 IOPs are found to provide frequent best matches
for this image, the corresponding R,, spectra can be omitted from the database. This gives a
constrained database with 7 IOPs and 60 R, spectra, for a total of 25,207 R spectra. Searching a
smaller LUT database will also decrease the computer time required to process an image.

The average depth error obtained with the constrained database is 4.7%; or 0.49 m, too shallow. The
various plots are visually quite similar to Figs. 10-15. Now, however, the points of Fig. 10(c) lie
nearer to the 1:1 line because there are no gray-bottom pixels. However, excluding the gray bottoms
and Case 1 IOPs does not greatly improve the average retrievals because so few pixels were
previously being matched with these now-excluded values.

If we now assume that the IOP retrievals over the deeper, darker bottom regions are most likely to
be correct over the entire image area, then we might improve the depth and bottom classification
retrievals by reprocessing the image using only the IOPs for this retrieved range of likely values. We
thus further constrained the R database to include spectra corresponding only to IOP sets 2, 3, and
4. This does indeed slightly improve the depth retrievals: the average error decreases from -4.7%
and -0.49 m to -2.2% and -0.38 m. This is a noticeable quantitative improvement, but the depth plots
corresponding to Figs. 10-13 are visually similar to those already seen.

The regions previous retrieved as IOP set 1 are now retrieved as set 2, which is the nearest allowed
TOP set. Likewise, areas previously retrieved as high-CDOM IOPs are now retrieved as IOP set 4.

Although constraining the IOPs did not greatly influence the depth retrievals, the shallow near—shore
areas previously retrieved as high-CDOM IOPs and a mixtures of seagrass, and Sargassum, or turf
algae are now more often retrieved as Sargassum or turf algae, as seen in Fig. 16. It is not possible
to say quantitatively if these changes in the bottom type retrievals are correct or not. However, visual
comparison of Figs. 6 and 16 is good.

When the IOPs are constrained to sets 2-4, most of the pixels are retrieved as IOP 4, except over the

shallower parts of the ooid shoal. Therefore, if we assume that the entire water body is

homogeneous, we can further constrain the inversion by allowing only IOP4 in the matching. This
gives almost no change in the depth or bottom type retrievals, since most pixels were already being
retrieved as IOP set 4. In any case, constraining the dataset this much is hard to justify given our
limited knowledge about the IOPs at the time of the PHILLS overflight.

We can also constrain the inversion by performing the matching using a restricted wavelength range.
Since the PHILLS R, spectra appear somewhat noisy at wavelengths greater than about 600 nm, we
performed the matching using only 400 to 600 nm. In all cases—unconstrained, or any of the
constrained inversions discussed above—restricting the wavelength range degraded the depth
retrievals. For example, for the constrained inversion with 60 bottoms and 7 IOPs, the 400-750 nm
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inversion gave an average depth error of -4.7% or -0.49 m, whereas the 400-600 nm inversion gave
errors of -10.1% and -0.67 m. This indicates that the wavelengths beyond 600 nm are contributing
useful information, presumably at the shallowest depths where the bottom reflectance contributes
to R,, in spite of the high absorption by water itself.

Finally, we performed the inversion using spatially filtered PHILLS spectra. The PHILLS image was
reprocessed so that the R, spectrum at each pixel was averaged with the eight surrounding spectra
in a 3x3 block centered on the given pixel (except at the edges of the image, where fewer spectra
were averaged). This averaging gives a very slight fuzziness to the visual appearance of Fig. 1. The
smoothed image, i.e., the spatially averaged PHILLS R, was reanalyzed using the constrained
dataset with 60 bottoms, IOPs 2-4, and all wavelengths from 400 to 750 nm. The smoothing does
reduce the pixel-to-pixel variability in the depth retrievals somewhat, as seen in Fig. 13, and the
average depth error is only -1.0% and -0.25 m, compared to -2.2% and -0.38 m for the same
inversion applied to the unsmoothed image. The map of retrieved bottom type is very similar to
those already seen.

7. Additional Retrievals

Based on the above quantitative comparisons of the Adderly Cut depth retrievals with the acoustic
bathymetry, and on the qualitative agreement for bottom type and expected water IOPs, we are
confident that the LUT methodology provides useful inversions of hyperspectral R, data. The
present LUT database appears to be adequate for analysis of the waters around LSI. We therefore

now extend the analysis to the entire PHILLS flight line, which is seen in Fig. 17. '

The Adderly Cut area studied above is at the center of this image. At the left end of the image, west
of Norman’s Pond Cay, the water is less than 4 m deep and the nearly level boitom is generally
pavement or grapestone, which can be bare or sparsely covered with seagrass or other vegetation.
At the east end of the image, north of LSI, the water becomes progressively deeper. The deepest
waters at the upper right corner of this image have depths of 15 m or more, but are not yet optically
deep (i.e., the bottom still influences R).

ALUT inversion of this dataset was performed using the constrained database with 60 bottoms, IOPs
1-7, and all wavelengths. Figure 18 shows the depth retrievals. We see that at the upper right of the
figure the depth is retrieved as 12-15 m, which is correct. Some of that area may be deeper than 15
m, but the present LUT database does not have depths greater than 15 m, except for the infinite depth
case. Thus the closest matching spectra are those for 15 m; the infinite-depth spectra were never
chosen. At the left end of the plot, the depths are correctly retrieved as being less than 4 m.

The previous plots of bottom type have used the retrieved bottom index to classify the bottom type
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according to a convenient ad hoc scheme. However, one of the advantages of the LUT inversion
methodology is that the bottom index labels an entire reflectance spectrum. Thus we have spectral
information available, which can be presented or used in various ways. If, for example, the LUT-
retrieved bottom information were being used to predict the performance of a bathymetric LIDAR,
the quantity of interest might be the reflectance of the bottom at the LIDAR wavelength, not the type
of bottom material. In this case a map of bottom reflectance, rather than bottom type, can be
displayed. Figure 19 illustrates this LUT capability via a map of retrieved bottom reflectance at 488
nm. We see that the darker grapestone and pavement sediments west of Norman’s Pond Cay (at the
left end of Fig. 17) have a bottom reflectance similar to that of the areas covered by sparse vegetation
on a sand substrate, as seen in the Adderly Cut area. Only the areas covered by dense vegetation
have reflectances less than 10%, and only the ooid shoal and a few beach areas have reflectances
greater than 40%.

Likewise, the retrieved IOPs have full spectral information on the total absorption, scattering, and
backscatter coefficients that were used to generate the LUT database. The ratio of a(412 nm) to
a(443 nm) is sometimes used to separate Case 2 waters with high concentrations of CDOM from
Case 1 waters with the same chlorophyll concentration. Such information is available from the LUT
retrievals. Thus, rather than plot the index of the IOP set as was done above, Fig. 20 shows a plot
of the retrieved a(412)/a(443) ratio. As expected, the furthest offshore (at the upper right of Fig. 17)
have the lowest value of this ratio, i.e., the lowest CDOM concentration. As previously discussed,
the low ratio values over the ooid shoal are likely an incorrect retrieval due to the shallow, bright
bottom. For comparison, the Case 1 waters in the full LUT database have an a(412)/a(443) ratio of
less than one; pure water has a(412)/a(443) = 0.66. '

8. Conclusions

We have developed a very general spectrum-matching and look-up-table (LUT) methodology for
inversion of hyperspectral ocean-color remote-sensing data. The present methodology requires no
ancillary environmental information and is able simultaneously to retrieve bathymetry, bottom
classification, and IOPs. It is therefore a significant improvement over previous spectrum-matching
algorithms.

We evaluated our methodology by application to a PHILLS image taken near Lee Stocking Island,
Bahamas. The associated database of R, spectra was constructed using Hydrolight and the available,
but limited, information on bottom reflectances and water IOPs in this area. Additional gray bottom
reflectances and IOPs for Case 1 water were included in the database to evaluate whether the LUT
inversions would be led astray by the presence of spectra representing unnatural (the gray bottoms)
or unlikely (the Case 1 IOPs) conditions. The LUT retrievals were validated using acoustic
bathymetry and diver- and video-generated maps of bottom type.
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The success of the LUT methodology depends upon two requirements. First, the image R, spectra
must be accurately calibrated. This is a difficult but achievable goal given recent advances in
hyperspectral imaging and atmospheric correction algorithms. Poorly calibrated or relative R
spectra are not sufficient for accurate extraction of quantitative environmental information. It is
indeed the use of accurately calibrated R, spectra that avoids the non-uniqueness problems that often
occur with uncalibrated spectra. Second, the database R, spectra used to match the image spectra
must include spectra that describe the depth, bottom reflectance, and water IOPs found within the
image. The database spectra can be obtained from models, as was done here, or from well
characterized field measurements. The presence of non-representative R, spectra, which perhaps
describe other locations, increases the computer time required for image processing but does not
degrade the retrieval.

The available PHILLS R spectra appear to be systematically too large at red and longer wavelengths
(Fig. 9). Indirect evidence (based on the accuracy of the LUT retrievals before and after correction
of the PHILLS spectra) indicates that the offset extends to shorter wavelengths. This is also
consistent with previous comparisons of PHILLS spectra with ground truth measurements made over
shallow seagrass beds. We therefore attempted an approximate correction for this offset by shifting
each PHILLS spectrum to zero at its smallest value, which usually occurs somewhere beyond 650
nm.

The LUT methodology (applied to the corrected PHILLS spectra) yields environmental information
about bathymetry, bottom classification, and water-column IOPs that is consistent with the available
ground truth. When applied in its unconstrained form, i.e., including all database R, spectra and
wavelengths as candidates for matching the PHILLS spectra, the LUT depth retrievals were on
average about five percent or one-half meter too shallow when compared on a pixel-by-pixel basis
with the available acoustic bathymetry. This is comparable to the possible differences between the
LUT and acoustic bathymetry due to GPS errors and imperfect geocorrection of the PHILLS image
(Fig. 3). However, the LUT depth retrievals do appear to be systematically too shallow by one meter
or more at some of the deeper locations (compare Figs. 2 and 12, or Fig. 13). The retrieved bottom
type is consistent with the qualitative ground truth map of bottom type. The retrieved IOPs are
consistent with what would be expected in this area, based on nearby IOP measurements taken at
other times. Very few pixels were matched with either a gray bottom or Case 1 IOPs (see Fig. 14),
which reassuringly indicates that the spectrum matching algorithm correctly selects the spectra for
a given environment even in the presence of unrepresentative environmental conditions in the
database.

Several constrained inversions were also performed. When the un-natural gray bottoms and Case
1IOPs were eliminated from the database, the resulting depth errors decreased only slightly because
the unconstrained inversion was seldom being led astray. Further constraints based on allowing only
the most likely IOPs to be used in matching again gave slight increases in the accuracy of the depth
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retrievals. The constrained inversions gave a somewhat different map of bottom type, with seagrass-
sand mixtures often being replaced by mixtures of Sargassum or turf al gae with pavement (compare
Figs. 14 and 16). The available ground truth is not adequate for pixel-by-pixel quantitative
evaluation of these retrievals, but the retrieved maps of bottom type are in all cases visually similar
to the diver- and video-generated maps.

There is noticeable pixel-to-pixel variability in the retrieved bottom depths (Fig. 13). This variability
decreased somewhat in the constrained inversions or when the PHILLS pixels were spatially
averaged over 3x3 blocks of pixels, but in any case the variability does not obscure the overall depth
retrieval.

The errors in the average depth retrieval increased somewhat when the spectrum matching was
performed using only wavelengths between 400 and 600 nm. This indicates that the wavelengths
from 600 to 750 nm were indeed contributing useful information to the inversion and should be
retained, especially when analyzing images with very shallow waters.

The success of the LUT methodology in this initial evaluation gives us reason to believe that it will
prove to be a very general and robust way of extracting environmental information from
hyperspectral oceanographic imagery. Further improvements in the retrievals can be anticipated as
additional bottom reflectance spectra and water IOPs are added to the existing database. Improved
retrievals of selected information will likely be possible whenever ancillary information is available
to constrain the inversions. Thus, for example, if IOP measurements are available at the time of the
overflight, only those IOPs would be allowed in the spectrum matching, and the resulting retrievals
of depth and bottom type likely would improve. Similarly, if bathymetric data were available,
obtained either from charts or perhaps from a combined hyperspectral-LIDAR imaging system, then
the depths would be known a priori at each pixel, and the inversion would need to find only the
bottom reflectance and water IOPs.

Finally, we note that the computer time required for image processing is not limiting. In the present
analysis, every PHILLS spectrum was compared with every database spectrum. The unconstrained
inversion of the Adderly Cut image required a few hours of time on a PC; less time was required for
the constrained inversions. Analyzing the full flight line required an overnight run. Thus it is
reasonable that, when applied in an operational mode, maps of bathymetry, bottom classification,
and water-column IOPs can be in the user’s hands within 24 hours of the PHILLS overflight. Further
order-of-magnitude decreases in run time can certainly be achieved by streamlining the present
computer code.
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Norman’s
Pond Cay

Fig. 1. RGB image of Adderly Cut generated from wavelengths 446, 565, and 680 nm of the
hyperspectral PHILLS data [from Run04Seq010203_Rrs_SS5_UTM_Adderly.bil] The entire flight
line is shown in Fig. 17. Line AB is the West to East transect plotted in Fig. 3. The numbered points
show the locations of the R spectra plotted in Fig. 9.’
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Fig. 2. Bathymetry corresponding to the area shown in Fig. 1. The black line shows the track of the
small boat used to acquire the acoustic data.
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Fig. 3. Comparison of acoustic depth and R, along West to East transect AB shown in Fig. 1
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Fig 4(a). Measured ac-9 absorption spectra. The solid lines include absorption by pure water.
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Fig. 4(b). Measured ac-9 scattering spectra. The colors and line patterns are the same as for Fig.
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Fig. 5(a) The 11 total absorption spectra in the database. Solid lines: measured ac-9 spectra; dotted
lines: interpolated ac-9 spectra; dashed lines: pure water (bottom curve) and Case 1 models.
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Fig. 5(b). The 11 total scattering spectra in the database. The line patterns are the same as in panel
(a).
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Fig. 6. Bottom classification based on diver observation and video recorded from a small boat. |
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Fig. 7. Irradiance reflectances of various bottom materials and mixtures.
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Fig. 8. The 41,591 EcoLUT-generated R, spectra in the LUT database.
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Fig. 9. PHILLS R, at selected pixels, located as shown in Fig. 1. The solid lines are the PHILLS
spectra; the dashed lines are the corresponding spectra offset to zero at the minimum value of the

spectra.’
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Fig. 10. Comparison of LUT-retrieved and acoustic depths as obtained from the offset PHILLS
spectra and the unconstrained database. The percent difference (pet diff) and depth differences (z
diff) are computed using Eqs. (2) and (3), respectively. The standard deviation of the depth

differences is displayed as “z sd.”
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Fig. 11. Depth distribution of the number of pixels for different retrieved bottom types.
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Fig. 12. Pixle-by-pixel map of LUT-retrieved depths as obtained using the offset PHILLS spectra
and the unconstrained database; compare with Fig. 2. Line AB shows the boat track used for pixel-
by-pixel comparison with acoustic depths in Fig. 13.
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Fig. 13. Comparison of acoustic and LUT-retrieved depths along line AB shown in Fig. 12. The
unconstrained line is for a LUT inversion using the full dataset of 63 bottoms and 11 IOPs. The
constrained, 3x3 line refers to the constrained inversion for 60 bottoms and IOPs 2-4 applied to the
PHILLS image after 3x3 pixel smoothing.
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Fig. 14. LUT-retrieved bottom type for the unconstrained inversion.
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Fig. 15. LUT-retrieved IOPs corresponding to Figs. 12 and 14.
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Fig. 16. Bottom type retrieiral for the constrained database with only IOPs 2-4. Compare with Figs.
6 and 14.
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Fig 18. Depth retrieval for the entire flight line.
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Fig 19. Retrieved bottom reflectance at 488 nm.
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Fig. 20. Reﬁieved ratio of a(412)/a(443). The green band near the bottom of the figure and parallel
to the image edge likely results from data artifacts in those PHILLS pixels.




