NUWC-NPT Technical Report 11,466
10 November 2003

A Nonlinear Programming Algorithm for
Optimizing Conventional Beamformer
Shading Weights

Thomas A. Wettergren

John P. Casey
NUWC Division Newport

Charles M. Traweek
Office of Naval Research

NAVSEA

NEWPORT
Undersea Warfare Center Division

Naval Undersea Warfare Center Division
Newport, Rhode Island

Approved for public release; distribution is unlimited.

20060113 099

PREFACE

This report was prepared under Project No. W280033,
“EA89 TW Support,” principal investigator Thomas A. Wettergren
(Code 2002). The sponsoring activity is the Office of Naval
Research (ONR 321SS, C. M. Traweek).

The technical reviewer for this report was Deepak V. Ramani
(Code 2133).

Reviewed and Approved: 10 November 2003

/LW

John R. Short
Director, Submarine Combat Systems

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

maintaining the data needed, and pleting and reviewing the collection of informati Send ts regarding this burden estimate or any other aspect of this collection of
information, including sug for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

10 November 2003
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Nonlinear Programming Algorithm for Optimizing Conventional Beamformer
Shading Weights

6. AUTHOR(S)
Thomas A. Wettergren
John P, Casey
Charles M. Traweek

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Undersea Warfare Center Division
1176 Howell Street TR 11,466
Newport, Rl 02841-1708

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
Office of Naval Research
Ballston Centre Tower One
800 No. Quincy Street
Arlington, VA 22217-5660

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

A numerical method to determine the optimal shading weights for a conventional delay-and-sum beamformer has been developed. The
method employs a maximization of the deflection coefficient under the constraint of maintaining signal gain. This provides an optimal
array shading scheme based on available noise data. The algorithm has been implemented using off-the-shelf numerical methods that
are applicable only for small arrays. For large arrays, a special-purpose optimization algorithm has been developed. The performance of
the algorithms on measured test array data is included to show the level of performance improvement.

14. SUBJECT TERMS 15. NUMBER OF PAGES
30

Sonar Arrays Passive Sonar Systems Beamformer Shading Weights 16. PRICE CODE

Numerical Optimization Nonlinear Programming Problems
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

TABLE OF CONTENTS

Section Page
1 INTRODUCGTIONoooiviitireeeeteeieeterasreseetssessessesessesesssasssessssaessessssasssssssassassensesessessasessnsone 1
2 OBJECTIVE FUNCTION FOR CONVENTIONAL SHADING WEIGHT
OPTIMIZATIONoovievireieteeteteeesteteeeressesteessessasss e st b e s ae b b e s a s be b e b e se bbb is 3
3 SOLVING THE OPTIMIZATION PROBLEM USING EXISTING
NUMERICAL TECHNIQUES........ooteiiteirerrinereietinsiee st sss s snesnesasaens 7
4 ARRAY SHADING-SEQUENTIAL QUADRATIC PROGRAMMING
(AS-SQP) ALGORITHMccormiiiimiriiiiriiniresetsnrsisisses sttt 9
4.1 Mathematical DESCIIPHONc.coveieviiiririiiitiiire e 9
4.2 Computational Implementationccceeieieueeieininiineinicc s 13
5 NUMERICAL RESULTS ...ttt riestescseeesesetsnis s sae s essesassssssnassessessssesusnsacs 15
6 CONCLUSIONS. ..ottt re et tessesesseseees et sas b s s et b e s be s e s s e s s s e sae s et enbesesbennns 23
REFERENCES ..ottt bbb 24
APPENDIX — FLOWCHART OF THE AS-SQP ALGORITHM.......cccccoiiniiininiiines A-1
LIST OF ILLUSTRATIONS
Figure Page
1 Graphical User Interface for the Optimization SOftware.........cccocvvecriiiiiiinininnnns 14
2 Array Geometry for the Test Data Set........cooieeininniininnnicin 15
3 Map of the Sensor Locations Used in the Test ArTayccoooveciiniiiiniiiiinnnnn, 16
4 Algorithm Convergence Measured by SNR Improvement Over Unity Shading 17
5 Performance Improvement as a Function of Frequency Bandwidthccccoviicinn. 18
6 Performance Improvement as a Function of Array Size.......ccooorrieinniiiiinnniiiiiinnn, 19
7 Optimal Shading Weights for 80-Element Array with White NOiSeccoccevririniiiniinnnns 20
8 Optimal Shading Weights for Test Array Using Elements 181-260ccccccocoviiinnnnncne. 21
9 Optimal Shading Weights for Test Array Using Elements 181-340cccccccovvnirininnnns 21

i (ii blank)

A NONLINEAR PROGRAMMING ALGORITHM FOR OPTIMIZING
CONVENTIONAL BEAMFORMER SHADING WEIGHTS

1. INTRODUCTION

Environmental adaptation of sonar systems is the process of improving the performance of
a sonar system given some known environmental conditions (such as measured environmental
noise). Since a well-designed system is usually environmental-noise limited, the use of this
knowledge of the environment has the potential for large performance improvements. An effort
has been undertaken to develop an optimization system to improve the performance of
conventional beamformers under known environmental noise conditions. The resulting
optimization algorithm shows great potential for improving passive sonar system performance
against unknown signals when the (element-level) noise performance is known. This algorithm
is directly applicable to the conventional delay-and-sum beamformer and thus requires minimal
system impact for implementation.

The use of delay-and-sum beamformers is commonplace in passive sonar systems design.
These are often referred to as conventional beamformers. The conventional beamformer
functions by applying a time delay to each sensor and multiplying each of these by a prescribed
weight before summing the element responses to provide the beamformer output. Traditionally,
the beamformer is designed so that the time delays maximize the sensitivity of the array to a
desired (look) direction, thus achieving robust signal gain; and the corresponding weightings are
chosen to provide low sensitivity to energy that does not match with the incident wave (low
sidelobes), which achieves low noise response.

In the absence of specific knowledge of the noise field encountered, the conventional
beamformer design strategy provides robust performance. However, components of the noise
field are often predictable, particularly in the case of arrays that employ long-duration time
averaging. Those arrays have the opportunity to observe the noise field (as seen by the array
elements) in real time. In this case, adaptive beamforming techniques are often employed,
wherein the beamformer converts each of the received sensor outputs into a digital form and
employs frequency-domain calculations to cancel those components of the received signal that
appear to be attributable to noise. Such calculations provide a dramatic change of the structure
of the beamformer to provide this noise removal. As an alternative means of reducing the impact
of noise on the beamformer, environmentally adaptive methods of conventional beamforming are
available, where the conventional beamformer structure is maintained, and the shading weights
found within that structure are optimized for best performance against the noise field.

1 (2 blank)

2. OBJECTIVE FUNCTION FOR CONVENTIONAL
SHADING WEIGHT OPTIMIZATION

The problem of conventional beamformer shading weight optimization has been recently
formulated from a deflection optimization perspective (see reference 1). Deflection is a
measurement of the statistical variation between two hypotheses in a binary (two-state) statistical
hypothesis test. In the case of passive arrays, these states are the state where signal is present
and the state where signal is absent. The deflection coefficient is a parameter that provides a
measurement of this variation. For the case of distinguishing signal-plus-noise (hypothesis 1)
from noise alone (hypothesis 0), one assumes that both processes are governed by Gaussian
random variables with the same variance. Such an assumption is reasonable in the case of small
signal-to-noise ratio (SNR) that is seen in passive sonar system applications. In that case, the
deflection coefficient is given by

dz.uSN_:uN , (1)
ON

where sy is the mean under the signal-plus-noise hypothesis, 4y is the mean under the noise-
only hypothesis, and oy is the standard deviation of the noise output (recall that this is the same
as that for signal-plus-noise). In a standard square-law detector, the standard deviation of the
noise-only hypothesis oy is given by (see reference 2)

oy = \/%T [Ho@)' Vi@)do 2)

where Hy(w) is the pre-detection filter transfer function, Vi{(w) is the beamformer output noise
spectrum, and 7 is the averaging time. For the sequel, the pre-detection filter transfer function is

assumed to be unity; that is, Hy(@)=1. Such an assumption is reasonable in the absence of

specific knowledge of the source signal. Furthermore, the averaging time is assumed to be large
compared to the correlation time of the beamformer output noise. The mean value of the noise-
only hypothesis is given by (see reference 2)

1 proo 2
uy =5 [|Ho@) Vy(@)do, 3)

with a similar expression holding for the signal-plus-noise mean value. The statistical
independence of signal and noise implies that V(@)= Vsm(@) — Va(@), so that the deflection
coefficient (equation (1)) reduces (in the case of a unity pre-detection filter) to the following:

Ve(w)dw

[f: V,%(a)) dco]l/2 |

The goal of the passive sonar detection problem is now restated as a maximization of the
deflection coefficient (equation (4)) under the signal and noise conditions of interest.

In the passive sonar application, the signal is unknown, yet the array is steered to a prescribed
direction 6. Thus, the source is modeled as a plane wave arriving from direction 6 with
unknown spectrum S(@). Consider a passive array of M sensors with a conventional delay-and-
sum beamformer. Let ks be the corresponding wavevector of the plane wave from direction 6.
The beamformer output power spectrum in the direction &is represented by the autocorrelation
of the time output of the delay-and-sum beamformer. Specifically, this is given by

V(w)= f: E[v(t) v(t +7)] 77 dr, (5)

where the beamformer output voltage v(¢) is given by

M
V()= D Wy 4y (1=7,,) 5 (6)

m=1

with u,(7) representing the time-domain output of the m-th sensor and 7, representing the
appropriate time delay to match the wavevector ks.

For the case of sensors receiving noise-only input, the beamformer output power spectrum in
equation (5) has been shown (reference 3) to reduce to

Vy (@)= W U (0)M(@)U(@)W, (7)

where superscript T represents transpose, ()" represents the complex conjugate transpose, and W
and U(w) are given by the following:
g ®)

W=[W1,W2,"',WM

k4

and
U(w) = Diag{exp(ikg - x), exp(iks - X;),"--,exp(iKg -Xr)} .)]

The matrix M(w) is a matrix of sensor noise measurement cross-correlations; that is, the (i,)-th
component of M(w) is given by the cross-correlation of the noise output of sensor i with sensor j.
For the case of sensors receiving signal-only input with spectrum S(@) in the form of a plane
wave in direction 6, the beamformer output power spectrum in equation (5) has been shown
(reference 4) to reduce to

M 2
Vs(w)=S(w)G[zdm(9) Wm] ; (10)

m=1

where G is the power gain of an individual sensor and d,,(6) is the directivity loss of the m-th

sensor when receiving a signal in the direction 8. For example, omnidirectional sensors have
d,,(8) =1, and cosine-directive velocity sensors have

{(ks(ﬁ)-nm)/ko, for kg(6)-m,, >0
d,(0) = , (11)

0, otherwise

where n,, is the sensor outward normal and ky is the free-space wavenumber. Equations (7) and
(10) provide the power spectra required for general evaluation of the deflection coefficient
expressed in equation (4). Together, these equations represent the analytical form of the
conventional passive sonar array performance.

The goal of conventional beamformer shading weight optimization is to maximize the
performance (as measured by the deflection) through the adjustment of the shading wei ghts wy,.
This is accomplished by minimizing the denominator of the deflection while holding the value of
the numerator fixed. This problem is stated in the form of a nonlinear optimization problem as
follows:

. 02
min [w Vy(w)dw
such that (12)

M
Yd, (O w, =1.

m=l1

The constraint expression in (12) is a direct result of holding the beamformed signal power
output expression (10) constant with respect to the available parameters w,,. Note that the sensor
gain G and the signal spectrum S() are not available as degrees of freedom in the optimization
and, therefore, are taken as unknown constant parameters with respect to the optimization
problem (12). The optimization problem (12) is similar in intent to the goal of Minimum
Variance Distortionless Response (MVDR) beamforming, but the optimization problem varies in
two important respects. First, the weights are constrained to be real and, second, a single set of
weights is found over the entire frequency band of interest. These differences make the
nonlinear programming approach amenable to the conventional beamformer design and thus it is
not an “adaptive beamformer” approach, although the resulting weights are adaptively
determined. In practice, the limits of integration in (12) are restricted to the expected frequency
band of interest, thus providing a limiting case (as bandwidth goes to zero) of the frequency
domain beamformer optimization problem that is solved in MVDR.

5 (6 blank)

3. SOLVING THE OPTIMIZATION PROBLEM USING
EXISTING NUMERICAL TECHNIQUES

The numerical optimization of nonlinear objective functions under constraints (the
nonlinear programming problem) is a well-studied problem with many available solution
techniques. Unfortunately, such problems are often prone to multiple local minima, and
numerical methods that do not start near the solution may converge to one of these locally
optimal solutions with no warning. For the special case of nonlinear programming problems that
are convex optimization problems, all local minima are guaranteed to be global minima, so the
problem of local solutions no longer exists. For these problems, the quadratic programming
(QP) and sequential quadratic programming (SQP) methods are often utilized due to their rapid
convergence properties and ease of implementation. QP methods are applicable only to a further
subset of problems in which the objective is quadratic, whereas SQP methods apply a process of
sequentially approximating the problem as a quadratic objective in a convergent manner. In this
section, the utility of conventional SQP methods in solving the optimization problem (equation
(12)) is examined. A thorough overview of SQP methods is given in reference 5.

The objective function and simple linear constraints shown in equation (12) are a convex
optimization problem. By definition, an optimization problem is convex if the objective function
is a convex function and the set of feasible points (the set of variables that meet the constraints)
is convex. For the problem under consideration (i.e., equation (12)), the objective is convex
since it is the square of a quadratic form (equation (7) shows that V(@) is a quadratic form in the
weights W), and the constraint set is a convex linear combination of the variables. Thus, problem
(12) is a convex nonlinear programming problem and is thus suitable for solution using SQP
methods.

Consider a general nonlinear programming problem as an objective function and
constraints as follows:

min f(x)
such that (13)
C(x)<0.

Any general nonlinear programming problem can be placed in this form by incorporating all
equality constraints into the objective function. The Lagrangian function of the optimization
problem (13) combines the objective and constraints into a single function L(x,1), where A
represents the Lagrange multipliers associated with (13). The general SQP method considers a
sequence of estimates of x (given by x,), where at each estimate a Taylor series expansion of the
objective is used to obtain the quadratic function

frr) =)+ V) dy +1d] V2 L(x A)dy, (14)

where
dk =xk+1—-xk (15)

represents the step taken to get to the next iterate. It can be shown (see reference 6) that this
iteration scheme, when convergent, leads to a solution that satisfies the first and second order
conditions for optimality (the Karush-Kuhn-Tucker conditions). The convergence is guaranteed
whenever the Hessian of the Lagrangian maintains positive-definiteness. The numerical
minimization of quadratic equation (14) is easily performed using standard QP solution
techniques (see reference 7).

Most commercial general-purpose optimization codes for nonlinear programming solve
equation (14) iteratively. The computational savings is that a single algorithm easily handles
general objective functions and constraints. This makes it appropriate for general-purpose codes.
However, the user must still define the objective function, the gradient function, and the Hessian
in a manner that is suitable for the general-purpose solver. One of the most reliable of the
general-purpose SQP solvers is NPSOL (reference 8) from Stanford University’s Systems
Optimization Laboratory. NPSOL solves equation (14) for general objective functions and
general constraints. The user must provide a separate subroutine to evaluate the objective
function and the gradient at an arbitrary iteration step. The Hessian of the Lagrangian is
evaluated approximately using a Broyden Fletcher Goldfarb Shanno (BFGS) update formula (see
reference 9). Such an update provides a computationally reliable technique to improve estimates
of the Hessian.

A numerical implementation of array shading weight optimization using NPSOL was
employed as the first component of this effort. The results of this algorithm are found in
references 4 and 10. For the problem under consideration (equation (12)), the required objective
function and gradient function are written as

F(W) = E‘(WTU*(w)M(m)U(w)w)zdw, (16)

and
V(W) = 4 J:‘(WTU*(a))M(a))U(a))W)U*(a))M(a))U(a))Wda), (17)

where the integrals are evaluated using the method of overlapping parabolas, and the frequency
limits of [y, @] represent the limiting band of the sonar system design. The numerical
implementation of this objective within NPSOL worked well for small arrays. As the number of
elements (size of W) grew, the performance of NPSOL degraded. In particular, the ability of
NPSOL’s BFGS algorithm to handle the updating of such a large Hessian (the Hessian size is

M x M for an M-element array problem) faulted. In particular, for arrays larger than 100
elements, the Hessian update algorithm actually diverged, producing a total lack of convergence.
Numerical investigations showed that the problem is inherent in using a BFGS update of the
Hessian, and a method without such a requirement was sought.

An alternative approach to the use of a general solver for the solution of the QP
subproblem (14) is to develop a specialized algorithm that lacks the flexibility to handle general
objectives but is tuned so that the Hessian is included exactly. The main difficulty with
including the Hessian directly is that the Lagrangian is usually much more complex than the
simple objective. By limiting attention to the array shading problem (12), the constraints are all
linear; hence, the Hessian of the objective is identical to the Hessian of the Lagrangian (all
second derivatives of constraint terms are necessarily zero). Thus, for the specific array shading
optimization problem, the Hessian is explicitly available as

VIA(W) = 4 J;"‘U‘(w)M(w)U(w)(wfu‘(a))M(a;)U(w)w)dw
’ (18)
+ 8 E’U‘(w)M(w)U(a))waU(w)M(w)U‘(a;)dm,

which is readily computed at each iteration. A general-purpose nonlinear programming solver
does not allow such details to be input by the user. By developing a specialized code that solves
only the array shading weight optimization problem, the numerical issues associated with
approximation updates to the Hessian will no longer be a concern, since the Hessian will be
evaluated directly at each step. It is noted that such an approach is not advisable for small
problems, since the evaluation of (18) has considerable computational costs relative to applying
the computationally efficient BFGS method.

4. ARRAY SHADING-SEQUENTIAL QUADRATIC PROGRAMMING
(AS-SQP) ALGORITHM

4.1 MATHEMATICAL DESCRIPTION

The Array Shading-Sequential Quadratic Programming (AS-SQP) algorithm was
developed to provide robust numerical solutions to the specific array shading optimization
problem (12) in cases where general-purpose solvers fail to converge. The mathematical
derivation of AS-SQP is developed for a general convex objective function with a single convex
linear equality constraint and simple bound constraints on the variables (array weights).
Application to the problem (12) is accomplished by evaluating expressions (16), (17), and (18) to
the appropriate components of the algorithm. Consider the following nonlinear optimization
problem:

min F(w) (19a)

weR

subject to the linear equality constraint

M
D Wy, =1 (19b)

and the lower-bound and upper-bound constraints on the array weights
0<w,<1l,m=12,.,M. (19¢)

In the above formulas, the array weights are expressed in terms of the vector w = [w,, w,, ...,
w,]7. This formulation is consistent with the nonlinear programming problem formulated in the
preceding section. Note that non-unity element contributions to the steer direction (i.e.,
directivity effects) can be accounted for by adjusting the definition of “weight” to include the
conventional weight combined with the directive component in the steered direction (i.e.,

w,, < d,,(6)w,,). For simplicity of exposition, the case of unity directivity (omnidirectional
sensors) is considered in this mathematical derivation; however, the computational
implementation includes the directivity effects.

Generally, an SQP algorithm involves two parts: the determination of the search direction
& obtained from the solution of a QP subproblem and the determination of the step size along the
search direction 8. At the end of each iteration, the weight vector w is updated and the procedure
is repeated until either a convergent result is obtained or the maximum number of allowed
iterations is reached. At each iteration of the SQP algorithm, the gradient g and the Hessian H of
the objective function F(w) are evaluated at the current iterate w®, where £ is the iteration index.
The search direction 8® at the point w® is then determined through the solution of a QP
subproblem. The subproblem involves the minimization of the quadratic function approximation
O® to the objective function at the point w(¥) subject to constraints (19b) and (19c).

The AS-SQP algorithm is explicitly focused on the problem of optimal shading weights.
Thus, rather than a generic set of constraints, only linear shading weights of the form (19b) are
considered (along with bound constraints on the individual weights). The QP subproblem for
AS-SQP is given as

min 0¥ (8) (20a)
8eRM
subject to the linear equality constraint

3.6, =0 (200)

and the lower- and upper-bound constraints on the components of the search direction vector
-1<6,<1l,m=1,2,..M. (20c)
In expression (20a), the objective function is defined as

0P (3)=16"HV5+8"g" + Flw®), 1)

10

where H® and g®) denote the Hessian and gradient of F(w), respectively, evaluated at the
current iterate w®. Constraints (20b) and (20c) for the search direction 3 are consistent with
array weight constraints (19b) and (19c¢).

To derive constraints (20b) and (20c) in the QP subproblem, the search direction vector is
expressed as

d=w-wh, (22)
The components of 8 are given as
S =w, —wh, m=12,.. M. (23)

If the M components of equation (23) are summed, linear constraint (20b) is obtained; i.e.,

M M M
280 =2 W= 2w =0, (24)
m=] m=1 m=1

where expression (19b) has been applied to the sums involving w and w(¥). Lower- and upper-
bound constraints (20c) of the components of the search direction vector can be derived from
formulas (19¢) and (23). From constraint (19¢c), one has

~1<w, -wh <1, m=12,...,.M. (25)

Substitution of expression (23) into equation (25) yields the variable constraints (20c) in the QP
subproblem.

Once the solution to the QP subproblem (20) is obtained, the new iterate wi**1 is given by
WD _ () 4 (050 (26)

where the non-negative scalar ¥ is the step size to be determined. In the QP subproblem (20),
because the quadratic function approximation to F(w) at w = w® is minimized at w = wb) + 56,
this minimum corresponds to a step size of ¥ = 1 in expression (26). However, because the
components of w**1) must lie within the constraint region (19c), limitations are placed on o{®.

The second part of the SQP algorithm involves the determination of the step size a® in
expression (26). The components of the new iterate w1 must satisfy constraints (19¢); i.e.,
0<w® +a®s® <1, m=12,...,.M. 27

m

In addition, the step size must satisfy

11

0<a® <1. (28)

Inequality (27) places constraints on the step size a™® in order to ensure that the components of
wk+D) stay within the constraint space. Because the new iterate w**!) must satisfy the equality

constraint (19b), the upper bound of inequality (27) will never be reached. The m'™ component
of the argument in expression (27) will reach or exceed its lower-bound constraint for the

following step sizes:

k wid) k
a()z—%, 68 50, m=12,...M, (29)
5m
k W(k) k
a“ﬁ—g;—%, 5 <0, m=12,...,M. (30)
m

Condition (29) is trivial because o/¥ is already restricted to the interval [0,1]. Therefore, the step
size o® in the optimization problem (27) is determined from the components of w*D with
negative search direction components. Define the set I, as follows:

I, = {m:5® <o}, (31)

Therefore, from formulas (30) and (31), the maximum allowable step size at the k™ iteration is
given by

k)
a® = min| - 2m_|. (32)
s

mel,

The AS-SQP algorithm also contains a user-defined step size ,, which serves as the
default step size during each major iteration, where 0 < &, << 1. The user-defined step size is

small because the gradient and Hessian of F(w) will vary as w moves along the search direction.
At each major iteration, the step size is determined as

(k)
a® =min a,, min ——vf"’T . (33)
mel, 5’(")

At the end of each iteration, the components of the updated weight vector w*1) are checked to
see if they are active (i.e., to see if any lie on the lower boundary of the constraint region (19c¢)).
For each active component of w**1, the lower bound of the corresponding search direction

component is set to zero (i.e., 084 <1 Vm> w1 =0). The QP subproblem is then
m m

recalculated with the updated weight vector and direction constraints. The above procedure is
repeated until either a convergent result is obtained or the maximum number of iterations is

12

reached. A complete flowchart of the AS-SQP numerical algorithm is presented in the appendix.
Note that the addition of non-unity directivity complicates the expressions somewhat; however,
the formulation is identical to that described above.

4.2 COMPUTATIONAL IMPLEMENTATION

The numerical implementation of the AS-SQP algorithm has been performed as a software
program called NumShade (abbrevation for Numerical Array Shading Weight Optimization).
NumShade was written in FORTRAN 95 with a Windows-based graphical user interface (GUI),
using Lahey FORTRAN 95 version 5.7 along with Lahey’s Winteracter development
environment. The entire package (software with GUI) is available as a single Windows
executable file that will run on any computer under the Windows operating system, provided
there is enough memory available on the computer for the calculations. Dynamic memory
allocation within FORTRAN 95 was employed to improve this portability. Thus, computer
systems with little memory will suffice for solving small array problems (few elements and/or
low bandwidth) and a larger memory computer can be employed to solve a larger array shading
problem. This scalability of problem size is inherent in the software structure and, thus, is
transparent to the user.

As part of the computational implementation of the AS-SQP algorithm, expressions for the
objective function and its gradient and Hessian were derived and evaluated directly in the
software. This eliminates the need for numerical methods to approximate the derivatives and
thus removes one of the major drawbacks of using standardized numerical software. These
evaluations are accomplished in a secondary subroutine that evaluates expressions (16), (17), and
(18) at a given iteration using the method of overlapping parabolas to provide the numerical
evaluation of the integrals. The GUI of the software is shown in figure 1. A second software
program that employs NPSOL (for use with small array problem) is also available with an
identical GUI. The INPUTS side of the GUI takes in filenames for element position data,
element normal data, and noise cross-correlation data. These filenames may be typed in, or the
appropriate search button can be used to open a standard Windows file-chooser box. All of the
input files are ASCII text files that contain the data specific to an array. The Sensor Locations
file consists of M + 1 lines, the first line containing the number of elements, and the remaining
lines containing the (x, y, z) positions of the elements (separated by spaces). The Sensor
Normals file is identically formatted, except that the positions are replaced with the (x, y, z)
components of the unit outward normal to each sensor. This information is used to determine the
sensor directivity response. The default version of the software assumes cosine-directive
elements; other element directivity patterns are readily incorporated in special releases of the
software. The Noise Cross-Corr file contains the element-to-element noise cross-correlation for
each frequency of interest. This file is by far the largest file needed to run the program. The
formatting of the file is as follows: the first line is frequency 1 value and the next line is 2*M
numbers representing the frequency 1 component of the complex noise cross-correlation of
sensor 1 with each other sensor, in order. The complex components are represented in pairs of
real component followed by imaginary component, with a space between the two, then another
space before the next complex pair. The successive lines continue this cross-correlation for each
of the sensors until frequency 1 is exhausted; then, the process is repeated for each frequency.

13

The resulting file contains F*(M+1) rows, where F is the number of frequencies and M is the
number of elements.

b : ~INPUTS - ——QUTPUTS -
’ SEARCH
| Sensor Locations 7 Shading Weights y)
: Filename I?eom'dat A _.l Filename ﬁelghts_npt.out I %
S Normal ;T " Numerical S ‘
enFsiIc:na;r;n s ["F’.’.,mda‘ . I _] umi_r:;:;a#;n ety fnum_results.out Ik
Noise Cross-Con full.d [
Filen ame IE"T‘{ ~..§ S w,h_\._w..‘_..,._‘,,,,..,..,’Et‘“ -—]
| First Element: I 81!; Last Element; I Eﬂg , ———=ACTIONS
Number of Frequencies: |
Steering Angle: I _9% degs azimuthal -
I _0§§ degs elevation

Figure 1. Graphical User Interface for the Optimization Software

The user has the option of selecting a subset of the sensor elements (or subarray) by
specifying a first and last element. This allows the entire database of noise information to be
stored in a single ASCII text file, and the software accesses the components necessary for the
optimization that is desired. Furthermore, the number of frequencies can be specified as less
than the number available. At this time, the frequency list always begins with the first frequency
in the noise cross-correlation file. The final setup input is the array steering angle, which
assumes a traditional submarine orientation with (azimuthal, elevation) pairs of (0°,0°) pointing
along the negative x-axis, (90°,0°) pointing along the y-axis, and (0°,90°) pointing along the z-
axis. A final user input is the selection of output filenames. The Shading Weights file contains
two columns—element number and final shading weight. The Numerical Summary file contains
summaries of the numerical performance of the algorithm, which is used by advanced users for

assessing convergence performance.

Once the files are set up and the appropriate fields are all filled in on the GUI, the user
presses the RUN button. After the data files are loaded into memory, a secondary warning
window pops up to inform the user that the run is set up. When the OK button on that window is
pressed, the optimization calculation begins. The output data files can be read in to any offline
program of the user’s choosing. There is a very basic plotting facility under the PLOT button
that will display a window with the nominal (unity shading) objective and the resulting

14

optimal objective plotted over the frequency band of the calculation. It is not recommended that
this plotting be used for anything other than “quick-looks” at the results to determine that the
program is functioning properly. The HELP button contains contact information for the author.
The EXIT button closes the program window.

5. NUMERICAL RESULTS

A set of test data from the WHITEFISH structural acoustic model was taken under a
conformal velocity sonar array test in 1996 at the Intermediate Scale Measurement System
(ISMS). This data set was collected to address many issues, including a high spatial resolution
measurement of the structural noise field on a large-scale array model. For the purposes of the
array shading optimization algorithm, the data set provides a convenient mechanism for testing
the array shading algorithms on a large array with a reasonable level of complexity in the noise
field. The test is described in detail in reference 10 and the reader is referred there for specific
details of the experimental setup. The test setup of the WHITEFISH model for array data
collection is shown in figure 2. The model contains a series of both small and deep frames
within a steel pressure hull. A sequence of 25 shakers were employed along the model to
provide very detailed structural acoustic forcing patterns over a nondimensional frequency range
of 0.5 < kya <30, where ky is the wavenumber in the fluid and a is the nominal radius.

LOW FREQUENCY
PRIMARY ARRAY —_\ / ARRAY REGION
=

s rrrpyeer Ty L Saeeary wasaaiosios =g Trere
xr22lsssszzerzsy Tizsrrszsrzy Tevesvzsozzelesszrcavess Yrszszrrrras Jeyzszrrzzzy Tessxxzzsess h FETT
89 77 65 53 41 29 17 5

DEEP FRAME LOCATIONS

Figure 2. Array Geometry for the Test Data Set

The WHITEFISH model hull was coated with a pressure-release material, and conformal
velocity sensors were placed in two array configurations as shown in figure 2. The data used to
test the optimization algorithms come from the primary array region, which consists of a patch
of 480 regularly-spaced elements as shown in figure 3. The elements that are colored red were
considered faulty elements and were removed from the analysis. The primary area of interest in
this numerical study is subarrays of varying sizes beginning at element 181 and continuing until
element 380. This provided arrays of sizes 1 x 20 up to 10 x 20 for analysis purposes. Further-

15

more, to reduce the size of data files, only a subset of the frequency band with bandwidth of
approximately kya =3.2 was used in the numerical computations. Examination of the data

showed that this limited frequency band was sufficient to capture the complexity of the noise
field and thus illustrate the array shading weight optimization algorithm.

61 | 81 |101|121}141]161 181201221241 261281301321 361 (381401

22| 4262 | 82|102(122 1621182 /2022221242 262282 1302|322 3421362 382 402|422 442

23 | 43 | 63 | 83 [103]123 143163183 203|223 243 263 | 283|303 323|343 363 383403423 443

4 | 24| 44| 64| 84 [104/124|144164|184/204|224 244264 284|304 324|344 364 |384 404 424 444|464

5125|4565 851105 125,145|165| 185205 2251245265 285305325 345|365 385 405.445 465

6 | 26146 | 66| 86 |106!126!146 1166|186 1206} 226 | 246|266 | 286 | 306 | 326 | 346 | 366 | 386 | 406 {426 | 446 | 466

7 |27 . 67 | 87 1107127147167 1871207} 227247267 | 287307327347 | 367|387 | 407 {427 447 467

8 (2848 68 | 88 {108/128 148 18812081228 1248 1268 | 288 {308 | 328 | 348 | 368 | 388 | 408 | 428 | 448 | 468

9 129149 | 69 | 89 |109]129|149]169 1892092291249 269|289 309|329 349369 389 409 429 449 469

10 | 30 ; 50 90 | 1101301150170 190210230 250 270290310330 350370390 | 410,430 450 470

11131081171 | 91 [111]131}151 | 1711191]211} 231251271291 {311 331|351 371|391 411|431 451 471

12132182 | 72192 |112]132}152}1721192{212,232{252{272 292312332 |352|372|392 412,432 452|472

131330537393 |113]133]153(173|193 213233253273 293313333353 373393413433 453 473

14 134 | 54 | 74 | 94 |114]134{1541 1741194 214234254 |274 2943141334354 3741394414434 454 474

15135 155|775 95 | 115/135|155175/195| 215} 235255275295 315335355 375395415435 455 475

16 | 36 | 56 | 76 | 96 |116]136 156176196 |216 | 236|256 | 276 | 296 | 316336 | 356 | 376 | 396 | 416 4561476

1737157 77| 97 |117{137{157|177{1971217]237 257277297317 337357377397 437457 477

38 (58178 98 118138 158 178 198 218 238 258 278 298 318338 358 378 398 418

39|59 79|99 (119139159179 199219239 1259|279 299319 339 359 379399 419

80 /100|120 |140 160 | 180200 | 220 | 240|260 | 280 ; 300 | 320 | 340360 | 380 | 400 | 420

Figure 3. Map of the Sensor Locations Used in the Test Array

16

Because NPSOL was shown to perform well on small arrays (see section 3), a subarray of
80 elements (from numbers 181-260) was used to compare the convergence of the AS-SQP
algorithm with NPSOL. This 4 x 20 array provides enough aperture that noticeable benefit is
expected from optimizing shading weights based on noise measurements. The performance of
each algorithm is considered by measuring the relative improvement in broadband SNR relative
to that achieved by a unity-shaded array over the same frequency band. The use of SNR as a
performance metric is natural since that is a design goal of any array. For the passive array, the
signal is unknown; however, since the optimization algorithm constrains the signal gain to be
constant (see equation (12)), the resulting ratio of SNRs (or SNR improvement) is independent
of the signal level. Thus, the improvement in SNR relative to unity shading is the primary
performance metric for the shading algorithms. The result of the convergence versus iteration
number for the two algorithms is shown in figure 4. For this computation, a frequency
bandwidth of kya = 2.5 was used.

w
o

N
()]
1

N
o
5

-
o
!

(&)}

SNR Improvement over Unity Shading (dB)
o

0 : ; : % 1 : ‘ : : ‘
000 010 020 030 040 050 060 070 080 090 100
Interation Number

Figure 4. Algorithm Convergence Measured by SNR Improvement Over Unity Shading

From figure 4, it is clear that both algorithms converge to a similar solution (and converge to
the same amount of improvement over unity shading). Both algorithms converge uniformly
(they always improve) as is expected for any SQP algorithm applied to a convex nonlinear
programming problem. Also, the AS-SQP converges more rapidly initially, yet the NPSOL
algorithm converges at a steadier rate. This is attributed to the Hessian evaluation strategies
employed. Since NPSOL continually re-estimates the Hessian in an iterative fashion, it is

17

limited to incremental performance improvement at each iteration. AS-SQP, on the other hand,
re-computes the Hessian from “scratch” at each iteration, thus greatly improving convergence
when there is a direction of rapid change to be followed to the next iteration. NPSOL smoothes
out these rapid changes by only allowing gradual shifts to the Hessian, thus providing slower,
more stable convergence. While the number of iterations implies that AS-SQP converges more
rapidly, each iteration is much more expensive, so that AS-SQP actually converges (in wall-
time) much more slowly than NPSOL. This is to be expected, since the evaluation of the
Hessian via equation (18) is the most computationally intensive part of either algorithm. Since
both algorithms provide similar results and run-time is not considered in this study, AS-SQP was
used in the remaining calculations due to its ability to handle arbitrarily large array shading

problems.

The tremendous performance improvement shown in figure 4 leads to the question of
whether the bandwidth was large enough to consider this a true broadband performance result.
For a broad enough frequency band, any complexity in the noise will be seen by the array as
white noise (due to the frequency integration) and, thus, the unity shading should provide near-
ideal performance. To answer the bandwidth question, an examination of the performance
improvement relative to frequency bandwidth was conducted using the same 4 x 20 subarray.
The results of both decreasing and increasing the bandwidth are plotted in figure 5. From the
plot, it is clear that, although the performance improvement is degrading as bandwidth increases,
the rate of decrease is slow enough that substantial gains can be expected for very large
bandwidth problems. Also, note that the limit as bandwidth goes to zero approaches a value of
28 dB, which is the limit of performance of the delay-and-sum beamformer for that size of array
(superdirectivity or non-real weights are the only ways to improve performance beyond that
limit). Thus, the array shading weight optimization software can be employed to set
performance limits.

30 . —

28 1

26 -

24

SNR Improvement (dB)

0.0 1.0 2.0 3.0 4.0
Bandwidth (ko*a) :

Figure 5. Performance Improvement as a Function of Frequency Bandwidth

18

In addition to the effect of performance degradation due to increased frequency, there is
also an expected change in performance due to changes in spatial extent (aperture size). Since an
array functions as a spatial filter, eventually the array size becomes large enough that the noise
response appears spatially white. This phenomenon is clearly illustrated in figure 6, where a
variety of aperture sizes (all beginning with element number 181) were considered. All of the
calculations for this plot used the koa = 2.5 bandwidth. Note that the AS-SQP algorithm is
effective even on arrays of 200 elements (twice the size of the array optimization problem that
the NPSOL algorithm handles). For large arrays (more than 100 elements), the performance
improvement degrades with array size, as the spatial filtering effectiveness of the aperture
becomes a dominant mechanism. This illustrates another area of array analysis where the
optimal shading algorithm is useful—the setting of array sizes to take advantage of the spatial
filtering effect. For the smaller apertures (20, 40, and 60 elements), the array width is so small
(all of these have 20-element columns, so the widths are 1, 2, and 3 elements, respectively) that
the array shading cannot be used effectively. Thus, there is a minimum effective aperture size
before array shading optimization is merited. This size is dependent on both the frequency
bandwidth and the specific structure of the noise profile.

30

N
(4]
I

N
o
i

SNR Improvement (dB)
> >

($)]
I

0 +—— ey
0 50 100 150 200 250

Number of Elements in Array

Figure 6. Performance Improvement as a Function of Array Size

Since the array shading optimization algorithms are designed to minimize the noise response
Vs @) while simultaneously maintaining signal performance Vs(w), it is expected that the
specific structure of the noise field has a large impact on the resulting optimal shading weights.
To examine the impact of the specific structure of the noise field on the algorithm’s performance,
a comparison of optimal shading weights obtained from a simulated array with white noise

19

(figure 7) was computed and compared to that from a section of the test array with an identical
geometry (figure 8). In both of these cases the resulting shading weights were scaled for
visualization so that the maximum weight is at unity. The white noise case in figure 7 shows that
the array shading algorithm functions as expected, providing a standard tapered pattern in the
shading distribution. The measured noise case takes advantage of the element-level noise
readings and places higher weights on less-noisy elements while attempting to still distribute the
weights across the entire aperture to maintain array gain. This notion of array gain is not an
added feature—the algorithm is only solving the standard array shading optimization problem of

equation (12).

To see how much the optimal shading weight selection depends on local noise versus array
characteristics, the array from figure 8 was extended to double its size and the new shading
weights were computed. The results are shown in figure 9, where the left half of the array
consists of the same components as those shown in figure 8 and the same frequency range and
noise data were applied in both cases. While there are some elements that are practically
“zeroed-out” in both cases, the overall pattern of the optimal shading weight selection changes
dramatically. This suggests that selecting the correct array shading weights is more complicated
than just removing the noisiest elements or scaling weights inversely with noise level. Rather,
the complicated patterns of noise cross-correlations impact the performance of the array as a
spatial filter in a complex manner. The ability of the optimization approach to expose those
patterns is responsible for the tremendous performance improvements that are garnered.

Figure 7. Optimal Shading Weights for 80-Element Array with White Noise

20

Figure 9. Optimal Shading Weights for Test Array Using Elements 181-340

21 (22 blank)

6. CONCLUSIONS

A numerical optimization algorithm for determining the optimal conventional beamformer
array shading weights has been developed. This algorithm is based on maximizing the
beamformer deflection coefficient using knowledge of the received noise characteristics of the
individual array elements. Two algorithms were developed. The first used a robust off-the-shelf
numerical optimization method and proved reliable for small arrays (<100 elements), while the
second algorithm was a customized numerical approach that is specific to the array shading
weight optimization problem. The algorithms were tested against test array data and showed
tremendous improvement (usually greater than 20 dB) in signal-to-noise ratio relative to a unity
shaded array.

The new array shading weight optimization algorithm may be used in a variety of ways. For
array designers, the limits of conventional delay-and-sum beamforming can now be adequately
explored and compared to frequency-domain adaptive beamforming techniques given the same
assumptions (i.e., both approaches take advantage of the same observed noise data).
Furthermore, the use of noise models in design arrays with the optimal shading can point out the
proper sizing of an array to take advantage of the spatial complexity of the noise field, thus
taking full advantage of the natural spatial filtering ability of arrays. Also, the algorithms could
provide guidance on the “most important” sections of a given array design by showing which
elements receive the largest optimal weights. Finally, a real-time version of the algorithms could
be coded to provide an in situ re-shading scheme for tactical arrays based on the currently
observed noise characteristics. This would greatly improve array performance without impacting
the overall structure of the delay-and-sum beamformer.

23

1.

10.

24

REFERENCES

R. L. Streit and T. A. Wettergren, “An Objective Function for Optimal Hull Array Design
Using a Broadband Detection Criterion,” NUWC-NPT Technical Memorandum 990124,
Naval Undersea Warfare Center Division, Newport, RI, 15 December 1999.

. H. L. Van Trees, Detection, Estimation, and Modulation Theory, Wiley, New York, 1968,

Part I, Chapter 2.

. T. A. Wettergren, J. P. Casey, and R. L. Streit, “A Numerical Optimization Approach to

Acoustic Hull Array Design,” Journal of the Acoustical Society of America, vol. 112, no. 6,
2002, pp. 2735-2741.

. T. A. Wettergren and C. M. Traweek, “Optimal Determination of Beamformer Shading

Weights for Conformal Velocity Sonar,” preprint submitted to JEEE Journal of Oceanic
Engineering.

. P. T. Boggs and J. W. Tolle, “Sequential Quadratic Programming,” Acta Numerica, vol. 4,

1996, pp. 1-51.

. J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999,

Chapter 18.

. J.R. Bunch and L. Kaufman, “A Computational Method for the Indefinite Quadratic

Programming Problem,” Linear Algebra and Its Applications, vol. 34, 1980, pp. 341-370.

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “User’s Guide for NPSOL 5.0: A
FORTRAN Package for Nonlinear Programming,” Report SOL 86-1, Department of
Operations Research, Stanford University, 1998.

. R. Fletcher, Practical Methods of Optimization, Second Edition, Wiley, Chichester, UK,

1987, pp. 55-57.

C. M. Traweek, “Optimal Spatial Filtering for Design of a Conformal Velocity Sonar Array,”
Ph.D. Dissertation, The Pennsylvania State University, May 2003.

APPENDIX
FLOWCHART OF THE ARRAY SHADING SQP ALGORITHM

This appendix presents a flowchart of the AS-SQP algorithm. The variables in the
flowchart are defined as follows:

N: Number of unknowns (hydrophones)

M: Number of constraints (one equality constraint)

W) : Hydrophone weight vector

X(N): Search direction vector

OBIJ: Objective function

G(N) : Objective function gradient vector

H(N,N) : Hessian matrix of the objective function

AMN): Constraint matrix (each element = 1)

B(M) : Vector containing RHS of constraints (= 1)

BL(N): Vector containing lower bound of search direction vector
BU(N) : Vector containing upper bound of search direction vector

IPRINT : Output indicator for subroutine DIQP
MAXITR : Maximum number of iterations permitted in subroutine DIQP (= 3*N)

IEQ: Number of equality constraints (= 1)

MAXMAJ : Maximum number of major iterations permitted for optimization

STEPU : User-defined step size

STEPI : Variable containing the maximum step size allowed by weight vector at current
iterate

WDIFF : Difference between current and previous iterates of weight vector
(sum of absolute values of components of difference vector)

IMAJ : Major iteration counter

The program starts by reading the number of unknowns and constraints. The lower- and upper-
bound constraints for the components of the search direction vector are initially set to -1 and 1,
respectively, in accordance with condition (20c). After the constraint variables and program
parameters are set, the weight vector and search direction vector are initialized. The
optimization commences with the evaluation of the objective function, gradient, and Hessian at
the initial point w®. These quantities, derived in section 2, are implemented in subroutine
FNOBIJ. After the objective function, gradient, and Hessian are evaluated, the QP subproblem
(20) is carried out through use of subroutine DIQP, developed by Bunch and Kaufman (reference
7).

After evaluation of the QP subproblem, the step size is determined in accordance with
formula (33). Upon determination of the step size, the weight vector is updated via formula (26).
For each component of the weight vector that is active (i.e., equal to zero), the lower bound for
the corresponding component of the search direction vector is set to zero. For the remaining
components, the lower bound is set to -1. The major iteration counter IMAJ is then updated, and
the sum of the absolute values of the differences of the weight vector components at the current
and previous iterates is evaluated and stored in the variable WDIFF; i.e.,

M
WDIFF= > wi) —wi|. (A-1)

m=l

If WDIFF is less than a preset tolerance for two successive iterations, an optimum solution is
attained and the program terminates. In addition, if the maximum number of iterations is
achieved before an optimum solution is obtained (i.e., IMAJ = MAXMA), the program
terminates. The above procedure is repeated until either a convergent result is obtained or the
maximum allowed number of iterations is reached. The computer program is written in
FORTRAN 95 and is run in double precision.

A-2

Start SQP

\ 4

Y

i Read M, N ;

SET CONSTRAINT

VARIABLES

SET
PARAMETER
S

STEPU
IPRINT

'

INITIALIZE WEIGHTS AND
SEARCH DIRECTION

IMAJ « 0

Call FNOBJ

!

Call DIQP

\

STEPI « STEPU

v

A

T«1

STEMP « -W(IV/X(D

no

I« I+1

I>N?

yes

no

yes

STEPI « STEMP

©

A-3

A4

WDIFF < 0
A
1
I>N? e
NP
I no
v
WTEMP « W(I)
W(I) « W(I) + STEPI*X(l)
WDIFF « WDIFF + ABS(W(I) -WTEMP)

BL(I) « -1 BL(I) < 0

y
IMAJ « IMAJ+1

yes

WDIFF < 1.E-127

Print Results
Print Results

INITIAL DISTRIBUTION LIST

Addressee No. of Copies
Office of Naval Research (D. Todoroff, J. McEachern, C. Traweek (10)) 12

Defense Technical Information Center 2

