
  

AFRL-IF-RS-TR-2003-245  

Final Technical Report 
October 2003 
 
 
 
 
 
 
REACTIVE SENSOR NETWORKS (RSN) 
  
Penn State University 
 
  
Sponsored by 
Defense Advanced Research Projects Agency 
DARPA Order No. H584 
  
 
 
 
 
 
 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 

The views and conclusions contained in this document are those of the authors and should not be 
interpreted as necessarily representing the official policies, either expressed or implied, of the 
Defense Advanced Research Projects Agency or the U.S. Government. 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 



  

 
 This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS).  At NTIS it will be releasable to the general public, 
including foreign nations. 
 
 
 AFRL-IF-RS-TR-2003-245 has been reviewed and is approved for publication. 
 
 
 
 
 
 
 

APPROVED:                     /s/   
BRADLEY J. HARNISH 
Project Engineer 

 
 
 
 
 
 

 FOR THE DIRECTOR:                     /s/ 
WARREN H. DEBANY, JR., Technical Advisor 
Information Grid Division 
Information Directorate 

 
 
 
 
 
 
 
 



  

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank)
 

2. REPORT DATE
OCTOBER 2003

3. REPORT TYPE AND DATES COVERED 
Final  Jul 99 – May 03 

4. TITLE AND SUBTITLE 
REACTIVE SENSOR NETWORKS (RSN) 
 

6. AUTHOR(S) 
Richard Brooks 
 
  

5.  FUNDING NUMBERS 
C     - F30602-99-2-0520 
PE   - 62301E  
PR   - H584 
TA   -  16 
WU  -  01 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Penn State University 
PO Box 30 
State College Pennsylvania 16804 
 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
 

N/A 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Defense Advanced Research Projects Agency   AFRL/IFGA 
3701 North Fairfax Drive                                     525 Brooks Road 
Arlington Virginia  22203-1714                            Rome New York 13441-4505  

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 

AFRL-IF-RS-TR-2003-245 
 

11. SUPPLEMENTARY NOTES 
 
AFRL Project Engineer:  Bradley J. Harnish/IFGA/(315) 330-1884/ Bradley.Harnish@rl.af.mil 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words) 
The Reactive Sensor Networks project was based on a vision of sensor networks as virtual enterprises. A sensor 
network would be fielded by the military with certain goals in mind. The chaotic nature of the battlespace guarantees 
that mission parameters will change. The network would have to adapt in response to environmental constraints. 
RSN developed multiple technologies to enable the network to adapt to changing mission parameters: a) mobile code 
daemons support remote tasking of nodes and autonomous software reconfiguration. b) a distributed target-tracking 
algorithm enables the system to accurately track multiple targets with no single points of failure. c) autonomous 
configuration of target classification software uses the mobile code infrastructure to choose the classification algorithms 
that best suit the current mix of targets in the field. d) multiple sensing modalities were integrated into a tracking system 
at the PSU/ARL sensor network testbed. e) a distributed target counting  application was derived and fielded.   All 
approaches were implemented, tested and validated. The project also produced a new design approach for networks of 
embedded systems using cellular automata based tools. From our experience, these tools support an exploratory 
approach to system design that is very appropriate for use in implementing sensor networks. 
 

15. NUMBER OF PAGES
41

14. SUBJECT TERMS  
Sensor Networks, Mobile Code, Distributed Target Tracking and Classification 

16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 
 
 

SAR
LNSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18 
298-102 



 

 
Table of Contents 

 
Executive Summary ........................................................................................................................ 1 
1. Background .............................................................................................................................. 2 
2. Statement of program objectives ........................................................................................... 4 
3. Mobile code support for sensor networks ........................................................................... 4 
4. Mobile code API .................................................................................................................... 10 
5. Classifier swapping ............................................................................................................... 13 

Codebook.................................................................................................................................... 13 
6. Distributed Target tracking.................................................................................................. 14 
7. Integration of multiple sensing modalities ........................................................................ 23 
8. Distributed systems development approach..................................................................... 27 
9. Sensor network virtual enterprise....................................................................................... 31 
10. Discussion........................................................................................................................... 33 
11. Cumulative list of publications supported by this grant............................................. 33 
12. List of personnel associated ............................................................................................. 34 
13. Presentations ...................................................................................................................... 35 
14. Inventions ........................................................................................................................... 35 
15. Program financial summary ............................................................................................ 36 
16. References ........................................................................................................................... 36 
 

 i



 

 
List of Figures  

 
Figure 1.  Distributed Dynamic Linking ..........................................................................................5 
Figure 2. Flowchart of the processing performed at any given node to allow distributed 

target tracking by ColTraNe .................................................................................................... 15 
Figure 3. Both axes are UTM coordinates. Circles are sensor nodes. The faint curve through 

the nodes is the middle of the road. Dark arrows are the reported target tracks. Dotted 
arrows connect the clump heads that formed the tracks. Filtering not only reduced the 
systems tendency to branch, but also increased the track length.......................................16 

Figure 4. Comparison of the two Multiple Target Tracking Simulation Scenarios. Circles are 
sensor nodes. The faint lines crossing the node field are the target paths........................20 

Figure 5.  Bowtie Tracks for Conjunction equal to Node Separation Distance. .......................21 
Figure 6.  Bowtie Tracks for Conjunction equal to 2 times Node Separation Distance...........22 
Figure 7.  Finding Critical Conjunction Experimentally. The darker upper line displays the 

results when the Clump Range is equal to the Node Separation distance. The lighter 
lower line displays the results when Clump Range is equal to 2 times the Node 
Separation Distance...................................................................................................................22 

Figure 8.  Layout of sensor network laboratory............................................................................23 
Figure 9.  Examples of video tracking of pedestrians in the laboratory....................................24 
Figure 10.  As a pedestrian moves from one region of the lab to another, cameras are 

activated to monitor its progress.............................................................................................25 
Figure 11.  360 degree panorama of the laboratory from a ceiling mounted fish eye lens 

camera. ........................................................................................................................................25 
Figure 12.  Laboratory view of a target moving through the laboratory. Multiple sensing 

modalities are combined to detect and follow the target. ...................................................26 
Figure 13.  The top line shows probability of failure for a non-adaptive cluster. ....................31 
Figure 14.  The top line shows probability of failure for a non-adaptive cluster. ....................32 
Figure 15.  The surface shows probability of failure (z axis) for an adaptive cluster as the 

probability of failure for a single node q varies from 0.01 to 0.2 (side axis), and the 
number of nodes in the cluster varies from 4 to 6 (front axis). ...........................................32 

 
List of Tables 

 
Table 1.  Root mean square error comparison for the data association techniques discussed.

......................................................................................................................................................18 
Table 2. Data transmission requirements for the different data association techniques. .......19 
 
 

 ii



 

EXECUTIVE SUMMARY  

The Reactive Sensor Networks (RSN) project was funded as part of the DARPA IXO Sensor 
Information Technology (SensIT) program from July 1999 to May 2003. It consisted of a base 
project and one year extension.  The program was based on a vision of sensor networks as 
virtual enterprises. A sensor network would be fielded by the military with certain goals in 
mind. The chaotic nature of the battlespace guarantees that mission parameters will change. 
The network would have to adapt in response to environmental constraints. 

RSN developed multiple technologies to enable the network to adapt to changing 
mission parameters: 
• Mobile code daemons support remote tasking of nodes and autonomous software 

reconfiguration. 
• A distributed target-tracking algorithm enables the system to accurately track multiple 

targets with no single points of failure. 
• Autonomous configuration of target classification software uses the mobile code 

infrastructure to choose the classification algorithms that best suit the current mix of 
targets in the field. 

• Multiple sensing modalities were integrated into a tracking system at the PSU/ARL 
sensor network testbed. 

• A distributed target counting application was derived and fielded. Analysis found that 
the density of sensors in the network limit the ability of the network to distinguish 
between targets. 

All approaches were implemented, tested and validated. The PI and ARL engineers 
participated in an exercise at 29 Palms Marine Training Grounds. Demonstrations were 
given at multiple PI meetings. This included capstone projects. As the result of a Defense 
University Research Instrumentation Program (DURIP) project the PI was able to 
implement a testbed at PSU/ARL, where the technologies were thoroughly analyzed. 

In addition, RSN produced a new design approach for networks of embedded systems. 
It is difficult to design scalable algorithms for these systems, since the algorithms need to 
accept random failures and environmental disruptions. To counter this, we have explored 
the use of cellular automata based tools. From our experience, these tools support an 
exploratory approach to system design that is very appropriate for use in  implementing 
sensor networks. 
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1. BACKGROUND   

Embedded sensors are now part of large loosely coupled networks with mobile code and 
data. Data supply and demand are stochastic and unpredictable. Processing occurs 
concurrently on multiple processors. Applications are in hostile environments with noise-
corrupted communication and failure prone components. Under these conditions, efficient 
operation cannot rely on static plans. Van Creveld has defined five characteristics 
hierarchical systems need to adapt to this type of environment [van Crefeld 
1985,Czerwinski 1998]: 
• Decision thresholds fixed far down in the hierarchy. 
• Self-contained units exist at a low level. 
• Information circulates from the bottom up and the top down. 
• Commanders actively seek data to supplement routine reports. 
• Informal communications are necessary. 
Organizations based on this approach have been successful in market economies, war, and 
law enforcement [Cebrowski 1998]. Our approach is influenced by and consistent with these 
points. 

Data requests pull data across the network. Sensors push information by providing 
timely data. Requests and data follow paths of least resistance through intermediate nodes. 
Mobile data and code allow signal processing, Automatic Target Recognition (ATR), and 
target tracking to be done during data transmission. Processing is done robustly and 
efficiently by giving each node the ability to make limited local decisions using locally 
available information. 

The Reactive Sensor Networks (RSN) project implement a prototype of this approach, 
combining the following technologies: 
• Mobile code and data support  
• Integration of multiple sensing modalities  
• Autonomous software configuration 
• Distributed target tracking 
• Distributed target counting 
The result was a distributed virtual enterprise that developed data flows in response to 
observed behaviors in the environment. Prototype implementations of these technologies 
were implemented and tested. Tests were performed both at 29 Palms Marine Training 
Ground and at testbeds designated by DARPA IXO management. 

Results from analytical work was combined with experimental testing to reach the 
following conclusions: 
• Self-organizing systems like the one proposed will be more dependable than systems 

with static hierarchies. 
• Data association for distributed target tracking implementations has a lower 

computational complexity than centralized approaches. 
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• The amount of data traffic required for large scale distributed tracking implementations 
should be less than that required for centralized tracking approaches under situations 
like the test implementation at 29 Palms. 

• The ability of these systems to infer information from their environment is limited by 
data sampling rates, which are in turn limited by the density of sensor platforms in the 
battlespace. 
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2. STATEMENT OF PROGRAM OBJECTIVES  

RSN’s objective was to create and implement sensor network technologies that support 
system adaptation. Sensor network applications were to be fielded and these applications 
evaluated. Our goal was to prove that this approach was: (i) feasible, (ii) more dependable 
than existing approaches, and (iii) efficient. Proposed deliverables were: 
• Mobile code infrastructure  
• Data fusion methodology  
• Design support methodology 
• Application implementations. 
• Virtual Enterprise 
This report documents RSN’s results. It explains how we succeeded in accomplishing these 
goals. 

3. MOBILE CODE SUPPORT FOR SENSOR NETWORKS   

Sensor networks are built on the premise of a multitude of nodes working cooperatively. 
These nodes must be very inexpensive, and thus have severe resource constraints. Among 
these constraints are battery power and storage capacity. Mass storage is needed for 
maintaining both sensor data and systems software. Many reasonable applications require 
storing large amounts of data locally, leaving little room for software storage. 

Traditionally embedded systems software has been very lean in order to save system 
memory and storage space. Once a system is in the field, it is traditionally impossible to 
modify its functionality without physically accessing the device. Only those tasks that are 
absolutely necessary are fielded and the system is immutable. In the context of sensor 
networks this means that in traditional systems: 
• Each node has a fixed role. 
• Its abilities are limited to a minimal subset of the desirable ones. 
• Applications requiring target specific data and programs will be deployed with data and 

programs only for the target classes that are anticipated. 
This severely limits system functionality. 

We have implemented lightweight mobile code daemons to overcome these limitations. 
Nodes are deployed with the software suite they are most likely to require. Should they 
attempt to use a function that is not currently present on the node, the system automatically 
locates another node containing the desired program, downloads the code and executes it. If 
there is not enough storage space currently available on the node, a garbage collection 
routine can be run to delete programs that are not currently needed. In many ways this 
functions like distributed cache or virtual memory systems. A hard resource limitation has 
been replaced with almost unlimited virtual storage. The cost of this is the power that will 
be expended transferring programs between nodes. 

In exchange for this cost, node software can now be reconfigured dynamically. Node 
roles can change as required. Rarely used functionality is accessible as needed. Nodes can 
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be deployed years in advance of their use and target classification routines can be updated 
before or during use. Enemy forces may acquire new armaments after system deployment. 
Friendly assets could be captured making tracking target classes that were previously 
innocuous essential.  

Each node runs a mobile code daemon. The daemon is lightweight with a small memory 
profile. It can push or pull data files. It is capable of sending, receiving, and/or executing 
programs. Programs can be executables, shared objects, dynamic link libraries, or 
interpreted files. The daemons interact as peers. Some peers provide indexing information 
to locate programs as needed. The number of indexes can vary from one per network to one 
per node. This allows the system to emulate the peer-to-peer (P2P) functionality of 
applications like Napster and Gnutella. 

One unique aspect of our approach is distributed dynamic linking. At run time, the system 
is capable of choosing between different implementations of a program. For example, 
during system development our network consisted of nodes running Linux on both SH4 
processors and X86 processors. An SH4 node requesting the same program as an X86 node 
would receive a different executable.  

 
Figure 1.  Distributed Dynamic Linking 

The mobile code daemon is based upon the Remote Execution and Action Protocol (REAP). 
This protocol is responsible for message passing between nodes within our network.  On 
top of this packet protocol we have developed a framework to allow objects to serialize 
themselves and travel across the network.  At a higher layer of abstraction we have written 
messages to handle remote process creation and monitoring, simple file system operations, 
and resource index operations.  

The daemon is written in C++. Versions were written for Windows NT, Windows CE , 
and Linux operating systems to conform with experimental plans for the SensIT WINS 
nodes. The daemon structure is broken down into several core modules: foundation classes, 
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the networking core, the random graph module, the messaging core, the packet router, the 
index server, the transaction manager, the resource manager, and the process manager.  We 
will discuss each of these components in turn. 

Before discussing the REAP daemon in detail, it is useful to discuss the underlying 
framework on which it is built.  The framework abstracts many of the complexities of 
systems programming out of the core, into a set of libraries.  Thus, we have written our own 
object-oriented threading and locking classes, whose current implementation calls into the 
threads library of the underlying operating system.  We also rely heavily on a set of 
templated, multithreaded linked list, hash, and heap objects throughout the code. In 
addition, there are classes to handle singleton objects, the union-find problem, and object 
serialization.  Lastly, there is also a polymorphic socket library that allows different 
networking architectures to emulate unicast stream sockets, regardless of the underlying 
network protocol or topology.  These socket libraries are explained in the discussion of the 
networking core. 

The daemon is capable of communicating over several networking technologies.  The 
major ones are: TCP/IP, Diffusion Routing, and UNIX domain sockets. The Diffusion 
routing interface was written to allow interaction with other SensIT programs. The socket 
framework is designed so that new protocols are easily inserted into the daemon.  To 
achieve this, an abstract base class ‘Socket' includes all of the familiar calls to handle 
network I/O. Furthermore, all nodes are assigned a protocol-independent unique address.  
Opening a new socket involves looking up the network-layer address of a node in a local 
cache, and then opening the lower-level socket.  When a cache miss occurs, a higher-level 
protocol is provided to find the network-layer address. The appropriate socket object is 
allocated based upon the network-layer address of the destination. 

Diffusion provided some interesting challenges because it is not a stream-oriented 
unicast protocol.  Rather, it provides a publish and subscribe interface, and is essentially a 
multicast datagram protocol.  Thus, we had the choice of rewriting the REAP socket 
protocol as a datagram protocol, or building a reliable stream protocol on top of the 
Diffusion framework.  It was deemed simpler to write a reliable stream protocol on top of 
Diffusion.  In essence, we wrote a simplified userspace TCP stack.  The current userspace 
stack employs the standard three-way handshake protocols for socket open and close, and it 
also employs a simple delayed-ACK algorithm.  This system is implemented as an abstract 
child of the 'Socket' base class.  Our Diffusion driver then provides an implementation of 
our userspace TCP module.  The Diffusion driver performs a role equivalent to the IP layer 
processing code in most kernels.  It receives datagrams from the Diffusion daemon through 
callback functions, parses the headers to make sure the datagram has reached the correct 
destination, and then either discards the contents, or passes it up to the TCP layer.  These 
steps were deemed necessary because Diffusion is a multicast protocol, and thus we could 
not rule out the possibility of datagrams reaching our socket object that were not actually 
destined for it. 

Early on in the project, it became clear that persistent connections between the various 
nodes was essential.  A single file transfer of a shared object could result in thousands of 
packets traversing the network, and session setup time was simply too long over TCP and 
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Diffusion.  To counteract this problem we implemented a system in which sockets are kept 
open whenever possible.  The first implementation of this system opened directly to a 
destination, and did not support multi-hop routing very well.  Under this implementation, 
socket timeout counters were employed to close underutilized sockets.  This method has 
inherent scalability problems, and we decided a better solution was required. 

This better solution involves a multi-hop packet routing network built on top of a 
random graph of sensor nodes.  Each node in the system has four graph parameters 
specified: minimum degree, maximum degree, cliquishness, and clique radius.  The 
cliquishness parameter defines the probability of a new edge being formed to a node within 
the clique radius.  The minimum degree and maximum degree parameters control how 
many neighboring nodes can exist at any point in time.  The clique parameters allow us to 
control the size and connectedness of cliques within the graph.  Cliques become more 
important when we investigate the index system. 

To add a new edge, a random number is generated to decide whether or not to add a 
clique edge.  Then a random node from the node cache is chosen based upon two filter 
criteria: the chosen node must have a minimum path length of two to this node, and its 
minimum path length must be less than or equal to the clique radius for a clique edge, or 
greater than the clique radius for a non-clique edge. 

The messaging system implements the core of the REAP protocol.  At its lowest levels, 
this consists of a packet protocol, on top of which serialized objects are built.  The 'Packet' 
class is nothing more than a variable-sized opaque data carrier that is capable of sending 
itself between nodes. The header defines enough information to route packets, specify the 
upper-level protocol, and to handle multi-packet transmissions where the number of 
packets is known a priori.  The options field consists of a 4-bit options vector, and a 4-bit 
header extension size parameter.  The TTL field is used in the new multi-hop protocol to 
eventually destroy any packet routing loops that might form. 

Higher level messaging functionality is handled by a set of classes that do object 
serialization, and by a base message class.  The serialization class in REAP provides a fast 
method of changing common data types into network byte-ordered, opaque data.  The key 
advantage to this serialization system is that it only handles common data types, and thus 
has much lower overhead than technologies such as XDR and ASN.1. 

The base messaging class provides a simple interface to control destination address, 
source transaction information, possible system state dependencies for message delivery, 
and control over sending the message.  In addition, it defines abstract serialization and 
reordering functions that are implemented by all message types. 

The serialization class sits beneath the base message class and does the physical work of 
serializing data, packetizing the serialized buffer, and then injecting those packets into the 
router. 

On the receiving end, packets are received by an object serialization class and inserted 
into the proper offset in the receive buffer.  A union-find structure keeps track of packet 
sequence numbers, and once it detects that all packets have been received, the message is 
delivered to a message queue in the destination task structure.   
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Another interesting feature of the messaging system is the function called 'run'.  This 
function takes a task structure as an argument, and is generally intended to perform some 
action on the destination of the message.   

The daemon packet router has several key responsibilities.  The primary one is to use its 
internal routing tables to move packets from source to destination.  The other primary 
function of the router is to coordinate the dissemination of multi-hop routing data. 

The current method of determining multi-hop paths is through broadcast query 
messages.  We gradually increase the broadcast TTL until a route is found, or a TTL upper 
limit is reached, at which point the node is assumed down.  This methodology helps to 
reduce flooding, while making optimal paths likely to be found.  A simple optimization 
allows a node to answer a multi-hop query if it has an answer in its routing table.  Although 
this system is essentially a heuristic, it tends to work well because failed intermediate nodes 
are easily bypassed when their neighbors find that they cannot reach the next hop.  Of 
course, this can lead to much longer paths through the graph, but support is integrated to 
warn of intermediate node failures, and multi-hop cache expire times help to reduce this 
problem by forcing refreshes occasionally.  The multi-hop refreshes are carried out in 
unicast fashion, and a broadcast refresh is only used if a significant hop count increase is 
detected. 

The actual routing of packets involves looking at the two destination fields in the packet 
header.  First, a check is performed to determine whether the destination node identifier is 
equivalent to the current node's identifier, or the local loopback address, or one of several 
addresses that are defined for special purposes, such as broadcast to all members of a 
clique.  The next check is to determine whether the destination process identifier is 
equivalent to that of the current process.  If it is not, then the packet will need to be 
forwarded across a unix domain socket.  If both of these tests pass, then the packet must be 
delivered to the appropriate task.  Because packets do not contain sufficient routing data to 
deliver them to a specific task, we must recreate the high level message object in the router 
to determine the message's final destination. 

Every task in a REAP process registers itself with the router during initialization.  Once a 
task is registered, it can receive messages bound for any active ticket.  Several special tickets 
are defined for every task that handle task status messages, and task-wide requests.  Other 
tickets are ephemeral, and are allocated as needed. 

An important component of the REAP daemon is the index system.  This system 
implements a distributed database of resources available on the network.  Each record in 
this database describes an object of one of the following types: index server, file, executable, 
library, pipe, memory map, host, or a task.  Every record in the database has a canonical 
name, and resource locator associated with it.  Both of these values are stored as human-
readable strings.  Besides this, metadata to allow for both data and metadata replication are 
present.  The goal is to have a distributed cluster of index servers that transparently 
replicate each other's index records, and to have a resource control system that 
transparently replicates the actual data as well.  At this point, the replication technology is 
only partially implemented. 
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The index system consists of the following modules: client, server, database, and the 
associated messaging protocol.  The client is responsible for building a query message, 
sending the message, and either waiting for a response, or returning a response handle to 
the client in the case of an asynchronous call.  The server consists of a pool of threads that 
poll for incoming messages on the server task structure.  When a thread receives a message, 
it runs the query embedded in the message against the local database, and then sends the 
results back to the client in a query result message. 

The index infrastructure is mainly built upon two message types: a query message, and 
a result message.  The query message consists of an operand tree, some query option flags, 
and possibly a list of index records.  Once the query message reaches the server, it is 
received by a server thread, and the 'run' function is called.  This function performs a query 
against the index database object, and sends back a result message to the source node.  Once 
these actions are complete, the 'run' function returns, and then the index server deallocates 
the query object.  The index server itself is nothing more than a pool of threads that accept a 
certain type of message, and then allow the messages to perform their actions.  In this sense, 
the REAP messaging system implements the mobile agent paradigm. 

The other major feature of the index system is a system to select code based upon 
destination system architecture and operating system.  To handle this, system architecture 
and operating system are considered polymorphic class hierarchies.  Every index record 
contains an enumeration defining its membership in each hierarchy.  When a system 
requests object code or binary data, we must ensure that it is compatible with the 
destination system.  Thus, every index query can filter based upon architecture, if desired.  
When a query indicates that architecture and/or operating system are a concern, then C++ 
‘dynamic_cast' calls are made to ensure compatibility.  Because we are using the C++ 
dynamic casting technology, supported architectures and operating systems are determined 
at compile time.  It would not be a technically difficult modification to use human-readable 
strings, and runtime-defined polymorphic hierarchies.  However, we chose the compile-
time approach because it is faster, and the architectures and operating systems in our lab 
are relatively constant. 

The resource management framework is tightly coupled with the index system.  When a 
client program wants to access a resource, a query to the index system is made.  The results 
returned can then be passed into the resource management object.  The resource manager 
then attempts to open one of the resource from the result set.  If possible, one resource from 
each canonical name in the result set will be opened.  Thus, the resource manager is capable 
of overcoming node failures by looking for other copies of the same resource.  The current 
implementation attempts to open one instance of every canonical name in parallel, and 
continues this iterative process as timeouts occur.  Eventually, an instance of every 
canonical name will be opened, or the resource manager will run out of instances of a 
resource in the index result set. 

The resource control system is built on top of a client-server framework.  This 
framework was chosen because the types of resources we want to support are generally not 
concurrent objects.  Thus, the resource management system consists of two REAP message 
types: a resource operation message, and a resource response message.  Then, there are two 
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types of resource objects: a client object, and a server object.  For any given resource, there 
will exist exactly one server object, and one client object per task with an open handle to the 
resource.  When a given client wants to perform an operation on the resource, it will send a 
resource operation message to the server object's transaction address.  The server will then 
call the 'run' method of the message, and through a set of polymorphic calls described 
below, it will perform I/O operations on the server object.  A response message will then be 
sent to the originating node. 

The client and server resource objects are based upon an abstract interface that defines 
several common methods that can be used on UNIX file descriptors.  The major base 
operations are: open, close, read lock, write lock, unlock, read, write, and stat.  In all cases, 
blocking and non-blocking versions of these functions are provided, and the blocking 
functions are simply built on top of the non-blocking code. 

The last major component of the REAP framework is process creation and management.  
This portion of the architecture consist almost entirely of message types.  The primary 
message type is a process creation message.  This message contains an index record 
pointing to the binary to execute.  It also contains the argument and environment vectors to 
include, as well.  A second message is process creation response message.  This message 
simply contains the transaction address of the newly created process.  Finally, task 
monitoring messages may be used to monitor the progress of a task using the 
publish/subscribe model discussed in the section on transaction management. 

The REAP mobile code daemon permits us to experiment with many different mobile 
code paradigms over a fault-tolerant multi-platform framework.  Because it provides a 
simple cross-platform, distributed interprocess communication framework, it is very useful 
for developing systems of collaborating distributed processes. This approach is capable of 
mimicking all the major mobile code paradigms, as shown in [Orr 2002]. Furthermore, its 
polymorphic code selection system permits us to use the optimal algorithm on a given 
system without significant user interaction.  Finally, the distributed resource management 
system allows us to reduce bandwidth and permit concurrent use of resources without 
breaking normal concurrency rules. 

4. MOBILE CODE API 

The following interface was implemented for use within the SensIT community: 

The node responds to the following API calls (semantics explained later): 
status =  exec(program-class, input-data-vector, output-data-vector, resource-list ,optional-

command-line) 
status =  exec_noblock(program-class, input-data-vector, output-data-vector, resource-list, 

optional-command-line) 
status = pipe(program-class, input-data-vector, output-data-vector, resource-list, optional-

command-line) 
status = kill_pipe(program-class, machine) 
status = lock(program-class, machine) 
status = unlock(program-class, machine) 
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status = load(program-class, machine) 
status = register_program(class, URL, optional-command-line) 
status = register_machine(machine, port) 
status = list_machines(machine-info-vector) 
status = list_classes(class-info-vector) 
status = list_available_classes(machine, class-info-vector) 
Parameters: 

status - An integer value indicating call success or failure. ARL_MCN_SUCCESS indicates 
success. Other values indicate errors. A list of error returns will be provided with the 
final documentation. 

program-class - In the initial delivery this will be a string name that uniquely identifies a 
program.  

input-data-vector - A null terminated array of pointers to strings giving a list of URL's 
indicating files to be used as input. 

output-data-vector - A null terminated array of pointers to strings giving a list of URL's 
indicating files to be used as output. 

resource-list - A null terminated array of pointers to strings of resource identifiers. In the 
initial implementation, this will be a node name (ex. strange.arl.psu.edu). 

machine - A string containing a node name (ex. strange.arl.psu.edu). 

optional-command-line - A string defining the command line format for an executable or 
parameters for a DLL. 

port - IP port number of the socket used by the ARL mobile code software to listen for 
mobile code requests. 

machine-info-vector - A null terminated array of pointers to a data structure consisting of 
pointers to two fields: node_name, and port number. 

class-info-vector - A null terminated array of pointers to a data structure consisting of 
pointers to three fields: class_name, URL, and default command line (possibly null). 

Following is the call semantics for the mobile code package: 

exec - Executes in four phases: (1) Uploads all data in the vector input-data-vector and the 
program program-class. (If files are not currently located on the node.) (2) Executes the 
program. (3) Writes output to the URLs in output-data-vector. (4) performs garbage 
collection. This call blocks until execution is complete. Returns the completion status of 
the program. The optional command line argument can be used to override the defaults 
given in register_program. 

exec_no_block - Same as exec, but does not block.. Returns a completion status indicating 
system acceptance (or non-acceptance) the call. The optional command line argument 
can be used to override the defaults given in register_program 
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pipe - Executes in five phases: (1) Uploads the program program-class (If the file is not 
currently located on the node.) input-data-vector identifies files on the node. (2) Executes 
the program. (3) Writes output to the URLs in output-data-vector. (4) Waits for 
modifications to files in input-data-vector and then goes back to step (2). (5) Performs 
garbage collection on receipt of the out of band signal from kill_pipe(). This call does not 
block. Returns a completion status indicating system acceptance (or non-acceptance) of 
the call. The optional command line argument can be used to override the defaults given 
in register_program 

kill-pipe - Sends an out of band message to machine indicating the pipeline should be 
terminated. 

lock - Download a program to a node. Make this program unavailable for garbage collection. 

unlock - Make a program previously unavailable for garbage collection, available for 
garbage collection. 

load - If a local node attempts to execute a program not present locally, it can use this call to 
trigger a network interrupt. First nodes in the neighborhood will be signaled. If they 
have a copy of the program they will transfer the copy to the requesting node. 
Otherwise, the network interrupt will propagate through the multi-hop network up to 
the repository. If the program is found on a node on any of the hops, propagation of the 
request will stop and the program will be transmitted to the requestor. If the program is 
found on the repository, the program will be transmitted to the requestor. If the program 
is not found in the repository, an error condition is signaled. 

register_program - Creates a link in the repository between the URL, the default command 
line and the unique class name. The default command line is either a string giving the 
command line arguments used when executing the class (including variables for input 
and output files), or a list of default parameters used when constructing a call to a 
function in a DLL. In the initial delivery, class name must be unique for each program. 
In later releases polymorphism and subclasses will be supported. 

register-machine - Identifies a machine for use by the Mobile Code software. 

list_machines - Returns a pointer to a machine-info-vector. One entry is given for every 
machine registered with the mobile code repository. This can be used to initialize a 
system list of nodes the machine can accept network connections from. 

list_classes - Returns a pointer to a class info-vector. One entry is given for each class 
registered with the mobile code repository. 

list_available_classes - Returns a pointer to a class info-vector. One entry is given for each 
class  available for use on the node indicated by the machine parameter. If machine is null, 
the local node is used as a default. 
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5. CLASSIFIER SWAPPING 

As a proof-of-concept demonstration of the mobile code daemon, we tested a system for 
swapping classification algorithms on the fly. This allows the sensor network to adapt to 
changes in its environment. 

Target classification is a process in which sensor time-series data is used to assign target 
detections to one of a set of known classes. A vehicle driving by a sensor node could be a 
tank, a truck, a dragon wagon, a TEL, etc. Many classification techniques exist. In this test 
we used classifiers developed by Hairong Qi of the University of Tennessee at Knoxville, 
Akhbar Sayeed of the University of Wisconsin , and David Friedlander of the Penn State 
Applied Research Laboratory. 

To choose between classifiers, confusion matrices were used. A confusion matrix is a 
matrix where the rows are the actual target classes and the columns are the predicted target 
classes. Each element of the matrix ei,j expresses the probability that the classifier returns 
codebook value j when target type i was actually present. For example, the matrix: 

⎥
⎦

⎤
⎢
⎣

⎡
75.025.0
10.090.0  

could express the uncertainty in a classifier with two classes: tracked vehicle (class 1) and 
wheeled vehicle (class 2). In this case, the system correctly classifies class 1 90% of the time 
and class 2 75% of the time. In our case the code book values and target classes used were: 
 

CODEBOOK 
Target Name Target Descriptor 

0 Unknown  
10 sif_Buzzer  
11 sif_Motorcycle Motorcycle 
12 sif_TruckGas Pickup Truck – Gas Engine 
13 sif_TruckDiesel Pickup Truck – Diesel Engine 
14 sif_BuzzerRed Red team 
15 sif_BuzzerBlue Blue team 

 
Another part of the field test tested new classification techniques. Insufficient data was 
available before the tests to derive reliable confusion matrices for the three approaches used. 
Our classifier swapping tests used matrices fabricated to best illustrate the software 
functionality. 

To support classifier swapping each node keeps a vector containing the set of target 
classes most recently detected by the sensor node.1 The diagonal of the confusion matrix 
expresses the likelihood that a classifier is correct. The vector of target classes seen recently 
is multiplied against the diagonal of the confusion matrices for the three participating 
classifiers. This provides a measure of how well a given classifier should work given the 
current target mix. 

                                                 
1 We implicitly assume that the types of targets the node is likely to see in the near future resembles what it has seen 
lately (locality in time and space). 
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All three participants used a unified classifier Application Programming Interface (API). 
This integrated the three different classifiers into the tracking process we developed for 
SensIT via a single call to the mobile code daemon. After each target was processed, the 
system determined which classifier was likely to work best with the current target mix. The 
daemon pre-fetches that classifier to be sure that it is present on the sensor node and uses it 
to classify the next target detected. This illustrates the distributed dynamic linking concept. 
A single classification call can trigger any of a number of implementations. The system 
automatically chooses the most appropriate one at run-time. 

Implementation of this approach requires passing data to and from the classification 
program or library routine. The mobile code daemon can replace the routine used at will. 
We circumvent functionality traditionally given to the linker. We have used two different 
approaches to this problem: manufacturing call stacks and marshalling data to disk. 

6. DISTRIBUTED TARGET TRACKING  

The Collaborative Tracking Network (ColTraNe) is a fully distributed target tracking 
system. Sensoria Corporation constructed the sensor nodes used. Individual nodes use SH4 
processors running Linux and are battery powered. Wireless communication for ColTraNe 
uses time division multiplexing. Data routing is done via the diffusion routing approach, 
which supports communications based on data attributes instead of node network 
addresses. Communications can be directed to geographic locations or regions. 

Each node has three sensor inputs: acoustic, seismic, and passive infrared (PIR). 
Acoustic and seismic sensors are omni-directional and return time-series data. The PIR 
sensor is a two-pixel imager. It detects motion and is directional. Software provided by BAE 
Systems in Austin, Texas handles target detection. The software detects and returns Closest 
Point of Approach (CPA) events. CPA is a robust, easily detected statistic. A CPA event 
occurs when the signal intensity received by a sensor starts to decrease. Using CPA events 
from all sensor types makes combining information from different sensing modes easy. 
Combining sensory modes makes the system less affected by many types of environmental 
noise. 

We summarize the ColTraNe process In Figure 2. 
1. Each node waits for CPA events to be triggered by one or more of its sensors. The 

node also continuously receives information about target tracks heading towards it. 
2. When a CPA event occurs, relevant information (node position, CPA time, target 

class, signal intensity, etc.) is broadcast to nodes in the immediate vicinity. 
3. The node with the most intense signal in its immediate neighborhood and current 

time slice is chosen as the local clump head. The clump head calculates the geometric 
centroid of the contributing nodes’ positions, weighted by signal strength.  This 
estimates the target position. Linear regression is used to determine target heading, 
and velocity. 

4. The clump head attempts to fit the information from step 3 to the track information 
received in step 1. We currently use a Euclidean metric for this comparison. 
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5. If the smallest such track fit is too large, or no incoming track information is found, a 
new track record is generated with the data from step 3. Otherwise, the current 
information from step 3 is combined with the information from the track record with 
the closest track fit to create an updated track record. 

6. The record from step 5 is transmitted to the user community. 
7. A region is defined containing the likely trajectories of the target; the track record 

from step 5 is transmitted to all nodes within that region. 
 

 

 

RECV trac  

Figure 2. Flowchart of the processing performed at any given node to allow distributed target tracking 
by ColTraNe 

Distributing logic throughout the network had unexpected advantages in our field test 
at Twenty Nine Palms in November 2001. During the test, hardware and environmental 
conditions caused 55% of the CPA events to be false positives. The tracks initiated by 
erroneous CPA events were determined by step 3 to have target heading and velocity of 0.0, 
thereby preventing their propagation to the rest of the nodes in step 7. Thus, ColTraNe 
automatically filtered this clutter from the data presented to the user. Problems with the 
Twenty Nine Palms implementation were discovered as well: 

 
• Implementation schedule did not allow the EKF version of step 5 to be tested. 
• Velocity estimation worked well, but position estimation relied on the position of the 

clump head.  
• Tracks tended to branch, making the results difficult to decipher (see figure 3a). 
• Tracking was limited to one target at a time. 

Continued development has alleviated these problems. The Extended Kalman Filter has 
been integrated into the system. It improves the quality of both track and target position 
estimates as tracks progress.  

An angle gate, which automatically excludes continuations of tracks when velocity 
estimates show targets are moving in radically different directions, has been inserted into 
the track matching metric. This reduces the tendency of tracks to branch, as shown in figure 
3b. 
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 Figure 3a. No filtering    Figure 3b.  45-Degree Angle Filter 
 

  
 Figure 3c. Extended Kalman Filter  Figure 3d.  Lateral Inhibition 
 
Figure 3. Both axes are UTM coordinates. Circles are sensor nodes. The faint curve through the nodes is 

the middle of the road. Dark arrows are the reported target tracks. Dotted arrows connect the clump 
heads that formed the tracks. Filtering not only reduced the systems tendency to branch, but also 
increased the track length. 
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We constructed a technique for reducing the tendency of tracks to branch. We call this 
technique lateral inhibition. Before continuing a track, nodes whose current readings match 
a candidate track broadcast their intention to continue the track. They then wait for a period 
of time proportional to the log of their goodness of fit value. During this time, they can 
receive messages from other nodes that fit the candidate track better. If better fits are 
received, they drop their continuations. If no one else reports a better fit within the timeout 
period, the node continues the track. Figure 3d shows a target track with lateral inhibition. 

The target position is now estimated as the geometric centroid of local target detections 
with signal intensity used as the weight. Our tests indicate this is more effective in 
improving the position estimate than the Extended Kalman Filter. The geometric centroid 
approach was used in the angle filter and lateral inhibition test runs shown in figure 3 and 
table 1. 

Differences between the techniques can be seen in the tracks in figure 3.  The tracks all 
use data from a field test with military vehicles at Twenty Nine Palms Marine Training 
Ground. Sensor nodes were placed along a road and at an intersection. In the test run 
depicted in figure 3, the vehicle traversed the sensor field along a road going from the 
bottom of the diagram to the top. The faint dotted line shows the position of the center of 
the road. Figure 3a diagram shows results from our original implementation. The other 
diagrams use our improved techniques and the same sensor data. 

Figure 3a illustrates the deficiencies of our original approach. The tracking process 
works, but many track branches form and the results are difficult to interpret.  Introducing a 
45 degree angle gate (figure 3b) reduces track branching. It also helps the system correctly 
continue the track further than our original approach. Estimating the target position by 
using the geometric centroid greatly improves the accuracy of the track. This approach 
works well because it assumes that targets turn slowly and in this test the road section is 
nearly straight. 

Using the Extended Kalman Filter (EKF) (figure 3c) also provides a more accurate and 
understandable set of tracks. Branching still occurs, but is limited to a region that is very 
close to the actual trajectory of the target. The EKF performs its own computation of the 
target position. Like the angle filter, the EKF imposes a linear model on the data, and hence 
works well with the data from the straight road. 

The lateral inhibition results (figure 3d) have the least amount of track branching. This 
track is the most easily understood of all the methods shown. It is non-parametric and does 
not assume linearity in the data. As with the angle gate, the geometric centroid is a good 
estimate of the target position. We have also tested a combination of EKF and lateral 
inhibition. The results of that approach are worse than either the EKF or lateral inhibition 
approaches in isolation. 

Our discussion of the track data is supported by the error data summarized in table 1. 
Each cell shows the area between the track formed by the approach and the actual target 
trajectory. The top portion of the table is data from all the tracks taken on November 8 2001. 
The bottom portion of the table is from the track shown in figure 3. In both portions, the top 
row is the average error for all the tracks formed by a target. The bottom row is the sum of 
all the errors for all the tracks formed by a target. 
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RMS for tracks from Nov 08 2001

Live Data Angle 45 Deg EKF Lateral Inhibition EKF & LAT
Averaged 18.108328 9.533245 8.877021 9.361643 11.306236

Track Summed 81.456893 54.527057 52.775338 13.535534 26.738410

RMS for track beginning at Nov_08_14.49.18.193_2001
Live Data Angle 45 Deg EKF Lateral Inhibition EKF & LAT

Averaged 14.977790 8.818092 8.723196 9.361643 8.979458
Track Summed 119.822320 123.453290 183.187110 18.723287 35.917832  

Table 1.  Root mean square error comparison for the data association techniques discussed. 
The top set of numbers is for all target tracks collected on the day of November 8. The 
bottom set of numbers is for one specific target run. In each set, the top row is the 
average error for all tracks made by the target during the run. The bottom row sums the 
error over the tracks. Since these tests were of a target following a road, the angle and 
EKF filters have an advantage. They assume a linear trajectory. Lateral inhibition still 
performs well, although it is non-parametric. 

If one considers only the average track error, the EKF provides the best results. The 
original approach provides the worst results. The other three approaches considered are 
roughly equivalent. 

Summing the error of all the tracks formed for a single target penalizes approaches 
where multiple track branches form. When this is done, lateral inhibition has the most 
promising results. The second best results are provided by the combination of lateral 
inhibition and EKF. The other approaches are roughly equivalent. 

These results show that the inter-node coordination provided by lateral inhibition is a 
promising technique. Since it is non-parametric it makes very few assumptions about the 
target trajectory. 

Geometric centroid is a robust position estimator. Robust local parameter estimation 
provides a reliable estimate of the target’s position and heading. Lateral inhibition reduces 
the tendency of our original tracking implementation to produce confusing interpretations 
of the data inputs. The system finds the track continuation that is the best continuation of 
the last known target position. In combination, both methods track targets moving through 
a sensor field more clearly. 

The distributed nature of this approach makes it very robust to node failure. It also 
makes multiple target-tracking problems easy to solve when targets are much more 
sparsely distributed than the sensors. Multiple target tracking becomes a disjoint set of 
single target tracking problems.  

Multiple target tracking conflicts arise only when target trajectories cross each other or 
approach each other too closely. When tracks cross or approach each other closely, linear 
regression breaks down since CPA events from multiple targets will be used in the same 
computation. The results will tend to match neither track. The tracks will be continued once 
the targets no longer interfere with each other. 
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Classification algorithms will be useful for tracking closely spaced targets. If crossing 
targets are of different classes and class information is transmitted as part of the CPA event, 
then the linear regression could be done on events grouped by target class. In which case, 
target crossing becomes even less of a concern. 

Table 2 compares the network traffic incurred by the approaches shown in figure 2 with 
the bandwidth required for a centralized approach using CPA data. CPA packets had 40 
bytes, and the lateral inhibition packets had 56 bytes. Track data packets vary in size, since 
the EKF required three data points and a covariance matrix. The table shows that lateral 
inhibition requires the least network bandwidth due to reduced track divergence. 

 
 

CPA size 40
Inhibition size 56

Track packets Track pack size CPA packets Inhib. packets Total
EKF 852 296 59 0 254552
Lateral inhibition 217 56 59 130 21792
EKF & Lateral inhibit 204 296 59 114 69128
Centralized 0 0 240 0 9600  

 

Table 2. Data transmission requirements for the different data association techniques. The 
total is the number of bytes sent over the network. The EKF requires covariance data and 
previous data points. Angle gating and lateral inhibition, require less data in the track 
record. Data is from the tracking period shown in figure 2. 

Note from table 2, that in this case centralized tracking required less than half as many 
bytes as lateral inhibition. This data is somewhat misleading. The data shown is from a 
network of 40 nodes with an Internet gateway in the middle. As the number of nodes and 
the distance to the gateway increases, the number of packet transmissions will increase for 
the centralized case. For the other techniques, the number of packets transmitted will 
remain constant. Recall the occurrence of tracking filter false positives in the network, 
which was more than 50% of the CPA’s during this test. Reasonably, under those conditions 
the centralized data volume would more than double over time and be comparable to the 
lateral inhibition volume. Note as well that centralized data association would involve as 
many as 24 to 30 CPA’s for every detection event in our method. When association requires 
O(n2) comparisons [Bar-Shalom 1993] this becomes an issue. 

To analyze the ability of ColTraNe to track multiple targets we performed the following 
experiment. Two simulated targets were sent through a simulated sensor node field 
comprised of 400 nodes arranged in a rectangular grid measuring 8 x 8 meters. Two 
different scenarios were used for this simulation. 

1) X Path: Two targets enter the field at the upper and lower left corners, traverse the 
field crossing each other in the center of the field and exit at the opposite corners. See 
figure 4a. 
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2) Bowtie: Two targets enter the field at the upper and lower left corner,  traverse the 
field along hyperbolic paths that nearly intersect in the center of the field, and then 
exit the field at the upper and lower right corners. See figure 4b. 

Calculation of the tracking errors was accomplished by determining the area under the 
curve between a track plot and the target path to which it was related.  

The Collaborative Tracking Network performed very well in the X pattern tests due to 
the linear nature of our track continuations. Tracks seldom jumped to the opposite target 
path and almost always tracked both targets separately.  Bowtie tracking, however, turned 
out to be more complex. See figures 5 and 6. 

 
Figure 4a. X Path Simulation 

 
Figure 4b. Bowtie Path Simulation 

Figure 4. Comparison of the two Multiple Target Tracking Simulation Scenarios. Circles are sensor 
nodes. The faint lines crossing the node field are the target paths. 

 
Bowtie target paths that approach each other too closely at point of nearest approach 

(Conjunction) tend to cause the tracks to cross-over to the opposite target path as if the 
targets' paths had crossed each other (figure 5). Again, this is due to the linear nature of the 
track continuations. 

As Conjunction distance increases beyond a certain point (Critical Conjunction), the 
incidence of cross-over decreases dramatically (figure 6).  Minimum Effective Conjunction is 
the smallest value of Conjunction where the incidence of cross-over begins to decrease to 
acceptable levels. 
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According to our analysis as shown in figure 7, if a Clump Range equal to the Node 
Separation is used, Critical Conjunction is equal to the Node Separation and Minimum 
Effective Conjunction is approximately 1.5 times Node Separation.  If Clump Range is equal 
to 2 times Node Separation, Critical Conjunction is equal to 2.5 times Node Separation and 
Minimum Effective Conjunction is approximately 3 times Node Separation or 1.5 times 
Clump Range. 

 Figure 5a. Track for Target 1 
 

  Figure 5b.  Track for Target 2 
 

Figure 5.  Bowtie Tracks for Conjunction equal to Node Separation Distance. Dark arrows are the 
reported target tracks. Lighter arrows are the calculated velocity vectors. Shaded areas 
are the area between the curves used to determine track error.  Other notations as for 
Figure 3. 

The significant result of this analysis seems to be that the Minimum Effective 
Conjunction is equal to 1.5 times Clump Range. This means that ColTraNe should be able to 
independently track multiple targets provided they are separated by at least 1.5 times the 
Clump Range. This appears to be related to fundamental sampling limitations based on 
Nyquist Sampling Theory [Jacobson 2003]. 

Our work indicates to us that performing target tracking in a distributed manner greatly 
simplifies the multi-target tracking problem. If sensor nodes are dense enough and targets 
are sparse enough, the multi-target tracking is a disjoint set of single target tracking 
problems. Centralized approaches will also become untenable as target density increases. 
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 Figure 6a. Track for Target 1 

 
 Figure 6b. Track for Target 2 
 

Figure 6.  Bowtie Tracks for Conjunction equal to 2 times Node Separation Distance. 
Notations as for Figure 5 

 
Figure 7.  Finding Critical Conjunction Experimentally. The darker upper line displays the results when 

the Clump Range is equal to the Node Separation distance. The lighter lower line displays the results 
when Clump Range is equal to 2 times the Node Separation Distance. 
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7. INTEGRATION OF MULTIPLE SENSING MODALITIES 

The PI of this project received Defense University Research Instrumentation Program 
(DURIP) funding to create an augmented reality smart space, where multiple sensor inputs 
are combined in a networked environment. The networked environment is made up of 
multiple heterogeneous processors, including embedded processors. Communications uses 
both wired and wireless connections. Figure 8 provides a floorplan of the laboratory. 

 
Figure 8.  Layout of sensor network laboratory. 

 
As part of the extension to RSN, we were tasked with extending our sensor network 

approach to sensing modalities that were not included in SensIT work to this point.  Figure 
9 shows examples of multiple target tracking using video inputs. Much of the logic is 
similar to the CPA based tracking we have discussed earlier. What is different is primarily 
the lower level signal processing primitives. In the examples given, we track people. The 
process is: 
• Three different probability distributions (red, green, blue) are retained for each pixel in 

the image. Each probability distribution expresses the intensity variance of that color 
band within recent history. 

• When pixel values in the RGB bands in the current image are outside the range of values 
that would be expected based on the current variance, the pixel is marked as being part 
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of the foreground. This allows the system to adapt to regular changes in the 
environment. 

• Morphological processing removes groups of foreground pixels that are not large 
enough to be of interest. The black (background) and white (foreground) portions of 
figure 9 provide samples of this process. 

• Bounding rectangles are computed for blobs of foreground pixels whose size could 
represent a human being. The images on the right in figure nine show bounding boxes 
around human targets. 

• A track ID is associated with each bounding box. 
• Tracking using the track ID essentially uses the same distributed logic discussed earlier. 
 

 

 
 
Figure 9.  Examples of video tracking of pedestrians in the laboratory. 

 
Figure 10 shows an example of how we extended video tracking to integrate more 

sensing modalities. A camera cueing system was developed. The floor of the laboratory 
contains pressure sensitive plates.  When a change in pressure is detected in the region a 
camera is pointed at, the camera is activated. This is an alternative method for tracking 
pedestrians. Note that our approach integrates infrared and normal video inputs. The 
laboratory also has an omnicamera video input that has a 360 degree field of view. 
Combining the perspectives from two cameras would allow triangulation to compute the 
absolute position of a target. 
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Figure 12 shows the results from a tracking server that was implemented to integrate 
multiple sensing modalities. The grid shown represents the laboratory environment as seen 
from above. The yellow rectangle shows a pressure sensitive plate that has detected a 
significant change in pressure. The red circle in the middle of the yellow rectangle is the 
current target position. Gray and red rectangles positioned on the perimeter of the field are 
passive infrared motion detectors, like those used at 29 Palms. Red ones have detected 
motion. Gray ones have not detected motion.  

 

 
  
Figure 10.  As a pedestrian moves from one region of the lab to another, cameras are 

activated to monitor its progress. Cameras include omnicamera, normal video, low-
light IR (right), and true IR (left). 

 

 
 
Figure 11.  360 degree panorama of the laboratory from a ceiling mounted fish eye lens camera. 
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The room also has two ladar devices located on the walls at the top and bottom of the 
image.  Their positions are marked by large blue rectangles. They send out a laser plane. 
This provides range information across a plane. The purple and white lines in the image 
show ladar readings. Note that both readings intersect at the target position. The red dotted 
lines indicate readings from sonar nodes. When the dotted lines end in a red rectangle, an 
obstruction has been detected. Figure 12 shows an example output from a tracking server 
that integrates all of these modalities. The process also uses windows, linux, and embedded 
processors using combinations of wired and wireless communications. In the laboratory all 
communications is IP based. In our previous work, we have shown our ability to translate 
this to other approaches, like diffusion. 

 

 
 
Figure 12.  Laboratory view of a target moving through the laboratory. Multiple sensing modalities are 

combined to detect and follow the target. 
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8. DISTRIBUTED SYSTEMS DEVELOPMENT APPROACH 

Sensor networks create a distributed information-processing environment. Sensor nodes in 
the networks we consider are self-contained battery-powered units with sensors, CPUs, 
storage, and wireless communications. Each node collects data samples from its 
environment; evaluates the data; and forwards evaluation results to other nodes. 

For many reasons, it is advisable for a large number of nodes to cooperate in the 
network. Having multiple nodes decreases system vulnerability to single points of failure. 
Statistical data analysis is more reliable when a large number of data samples are available. 
Wireless communications are mainly short range due to power constraints and multi-path 
fading. Using a large number of nodes provides multiple paths for data flow, which makes 
the network more robust and increases data throughput. 

Our approach uses cellular automata models to evaluate distributed application designs. 
These approaches distribute computation throughout the network. We use Cellular 
Automata (CA) tools to evaluate and contrast network embedded designs. Our approach 
combines recent approaches to traffic and urban planning.  

CA traffic models look at granular media (automobiles) flowing through constrained 
pipes (roads). Simulations using CA tools mimic these models. They qualitatively 
reproduce many empirically observed consequences of complex interactions, such as the 
wave-like propagation of traffic jams. These CA models are known collectively as “particle-
hopping” models. We use a particle-hopping model to study data packet propagation in 
sensor networks. Data packets form a granular medium that moves through bandwidth-
limited communications channels. 

Urban planning models expand CA’s to include mobile agents that inhabit the CA. The 
“Free Agents in a Cellular Space” (FACS) simultaneously influence and are influenced by 
the CA they inhabit [Portugali 2000]. This extension makes it possible to express distributed 
coordination problems in a straightforward manner.  

Our approach allows us to simultaneously measure and evaluate: 
• Ability of the algorithms to perform their tasks. 
• Resource requirements of different algorithms. 
• Global implications of local behaviors. 
• The ability of the system to organize itself. 
Sensors detect entities in their vicinity and exchange information about the entities. The 
network as a whole continually provides its user community with up-to-date estimates of 
attributes describing the entities crossing the field. 

Our approach is characterized by: 

• Integrating multiple sub-tasks into a single framework. 
• Network self-organization built on a publish-subscribe network paradigm. 
• Entity detection, classification, and parameter estimation performed locally with locally 

available information. 
• Data association and ambiguity resolution done locally. 
• Prediction of future trajectory of the path done locally. 

 27



 

• Local publication of current estimates for consumption by the user community. 
All approaches have a self-referential component. Each node makes local decisions based on 
locally available information. Other nodes are recruited for participation based on their 
position relative to the local node. This removes the need for central coordination and 
greatly increases the scalability of the approach. It also increases the system’s robustness, 
since the system is able to adapt naturally to limited node failures. Under some conditions 
sub-optimal decisions may be made due to the myopic nature of this approach.  

Evolving distributed systems have been modeled using Cellular Automata (CA) 
[Wolfram 1994]. A CA is a synchronously interacting set of abstract machines (network 
nodes). A CA is defined by: 

• d the dimension of the automata  
• r the radius of an element of the automata 
• δ the transition rule of the automata 
• s the set of states of an element of the automata 

An element’s (node’s) behavior is a function of its internal state and those of neighboring 
nodes as defined by δ. The simplest instance of a CA has a dimension of 1, a radius of 1, a 
binary set of states, and all elements are uniform. In this case for each individual cell there 
are a total of 23 possible configurations of a node’s neighborhood at any time step—if the 
cell itself is considered part of its own neighborhood. Each configuration is expressed as an 
integer v: 
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where i is the relative position of the cell in the neighborhood (left=-1, current position =0, 
right=1), and ji is the binary value of the state of cell i. Each transition rule can therefore be 
expressed as a single integer r known as its Wolfram number [Wolfram 1994]: 
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where jv is the binary state value for the cell at the next time step if the current configuration 
is v. This is the most widely studied type of CA. It is a very simple many-to-one mapping 
for each individual cell. 

Four complexity classes have been defined for these models. In the uniform class, all 
cells eventually evolve to the same state. In the periodic class, cells evolve to a periodic fixed 
structure. The chaotic class evolves to a fractal-like structure. The final class shows an 
interesting ability to self-organize into regions of local stability. This ability of CA models to 
capture emergent self-organization in distributed systems is crucial to our study. 

We use more complex models than the ones given by equations (1) and (2). CA models 
have been used successfully to study traffic systems and mimic qualitative aspects of many 
problems found in vehicular traffic flow. For example they can illustrate how traffic jams 
propagate through road systems. By modifying system constraints, it is possible to create 
systems where traffic jams propagate either opposed to or along the direction of traffic flow. 
This has allowed physicists to empirically study how highway system designs influence the 
flow of traffic. 

 28



 

Many of the CA models are called “particle-hopping” models. The most widespread 
particle-hopping CA model is the Nagel-Schreckenberg model. This is a variation of the 
one-dimensional CA model expressed by equations (1) and (2). This approach mainly 
considers stretches of highway as a one-dimensional CA. It typically models one lane of a 
highway. The highway is divided into sections, which are typically uniform. Each section of 
the highway is a cell. The sizes of the cells are such that the state of a cell is defined by the 
presence or lack of an automobile in the cell. All automobiles move in the same direction. 

With each time step, every cell’s state is probabilistically defined based on the states of 
its neighbors. Nagel-Schreckenberg’s CA is based on mimicking the motion of an 
automobile. Only one automobile can be in a cell at a time, since two automobiles 
simultaneously occupying the same space causes a collision. If an automobile occupies a 
cell, the probability of the automobile moving to the next cell in the direction of travel is 
determined by the speed of the automobile. The speed of the automobile depends on the 
amount of free space in front of the automobile, which is defined by the number of vacant 
cells in front of the automobile. In the absence of other automobiles (particles), an 
automobile moves at maximum speed along the highway by hopping from cell to cell. As 
more automobiles enter the highway congestion occurs. The distance between particles 
decreases and consequently speed decreases.  

We adapt this approach to modeling sensor networks. Instead of particles representing 
automobiles moving along a highway, they represent packets in a multi-hop network 
moving from node to node. Each cell represents a network node rather than a segment of a 
highway lane. Since we are considering a two-dimensional surface covered with sensor 
nodes, we need a two-dimensional CA. The cells are laid out in a regular matrix. A node’s 
neighborhood consists of the eight nodes adjoining it to the North, South, East, West, 
Northwest, Northeast, Southwest and Southeast. For this paper we assume that nodes are 
fixed geographically—e.g. non-mobile. A packet can move from a node to any of its 
neighbors. The number of packets in the cell’s node defines the cell’s state. Each node has a 
finite queue length. A packet’s speed does not depend on empty cells in its vicinity. It 
depends on the node’s queue length. Cell state is no longer a binary variable; it is an integer 
value between 0 and 10 (chosen arbitrarily as the maximum value). 

As with Nagel-Schreckenberg, particle (packet) movement from one cell to another is 
probabilistic. This mirrors the reality that wireless data transmission is not 100% reliable. 
Atmospheric and environmental affects, such as sunspots, weather, and jamming can cause 
packets to be garbled during transmission. For our initial tests, we have chosen the 
information sink to be at the center of the bottom edge of the sensor field. Routing is done 
by sending packets along the shortest viable path from the sensor source to the information 
sink, which can be determined using local information. Paths are not viable when nodes in 
the path can no longer receive packets. This may happen when a node’s battery is 
exhausted, or its queue is full. 

This adaptation of particle-hopping models is suitable for modeling the information 
flow in the network; however, it does not adequately express sensing scenarios where a 
target traverses the sensor field. To express scenarios we have included “Free Agents in a 
Cellular Space” (FACS) concepts from [Portugali 2000]. Portugali uses ideas from 
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Synergetics and a CA including agents to study the evolution of ethnic distributions in 
Israeli urban neighborhoods. In the FACS model, agents are free to move from cell to cell in 
the CA. The presence of an agent modifies the behavior of the cell, and the state of a cell 
affects the behavior of an agent. 

In our experiments, entities traversing the sensor field are free agents. They are free to 
follow their own trajectory through the field. Detection of an entity by a sensor node (cell) 
triggers one of the entity tracking algorithms. This causes track information to be 
transmitted to other nodes and to the information sink. Network traffic is a non-linear 
phenomenon. Our model integrates network traffic analysis into the tracking algorithm 
simulations. This includes propagating traffic jams as a function of sensor network design.  

The existence and rate of growth of traffic jams around the sink is a function of the rate 
of information detection and the probability of successful data transmission. Consider false 
detections in the sensor grid, where p is the false alarm probability. For small p, no traffic 
jams form. If p increases beyond a threshold , traffic jams form around the sink. The 
value of  appears to be unique to each network. In our model it appears to be unique to 
each set of CA transition rules. This result is consistent with queuing theory analysis where 
maximum queue length tends to infinity when the volume of requests for service is greater 
than the system’s capacity to process requests. 

cp

cp

Traffic flux through the sink is proportional to the number of tracks being monitored, 
the probability of false detection and the probability of a successful transmission. Assuming 
a perfect network and non-ambiguous tracks, this relationship is linear e.g. 

kTk =sinϕ  
Where T is the number of tracks and ϕ  is the flux. Track ambiguities and networking 
imperfections cause deviations from this linear structure. The exact nature of the distortion 
depends directly on the CA transition rule and the type of track uncertainty. 

The primary purpose of this part of the project was to create a methodology for 
designing distributed systems that interact with the real world. CA models allow us to 
construct models based on the interaction of autonomous nodes. These models include 
system faults and network traffic. We posit that this type of analysis is important for the 
design of robust distributed systems, like autonomous sensor networks. 

Simple cellular automata can be classified into four equivalence classes. Two 
dimensional traffic modeling CA are more difficult to classify. The cellular behavior may be 
periodic, stable and chaotic in different regions of the CA in question. Exact classification 
may be impossible or inappropriate.  

We have shown that for certain probabilities of false positives stable traffic jams will 
form around the sink location; while for other values unstable traffic jams form. These are 
traffic jams that continue to form, disappear and reform. This oscillatory behavior is typical 
of periodic behavior of cellular automata. It is possible to have a stable traffic jam with an 
unstable boundary. 

In the target-tracking context, we have established strong and weak points of the 
algorithms used. Pheromones appear to be robust, but transmit more data than the other 
algorithms. They can also be fooled by false positives.  

 30



 

The Bayesian network is effective for reducing the transmission of false positives but has 
difficulty in maintaining track continuation. Most likely, further work is required to tune 
the probabilities used. 

EKF tracking may not be appropriate for this level of analysis, since it is designed to 
overcome Gaussian noise. At this level of fidelity that type of noise is less important. The 
CA model is discrete and the EKF is meant for use with continuous data.  

Hybrid approaches may be possible and desirable. One possible avenue to consider is 
using the Bayesian logic to restrict the propagation of pheromones or to analyze the 
strength of the pheromone concentration present.  
Our tracking algorithm development will continue by porting these algorithms to an NS 
[11] based sensor network simulation of higher fidelity. A live network test is planned for 
Fall 2003 at a government facility. It would be worthwhile to study the ability of the CA 
approach to predict behaviors in both the higher fidelity NS simulation, and live networks. 

9. SENSOR NETWORK VIRTUAL ENTERPRISE 

Our technology allows virtual enterprises to be constructed on the fly. Nodes’ roles are 
decided dynamically. This significantly increases system robustness by allowing the system 
to adapt to the failure of individual nodes. The nodes that remain exchange readings and 
find answers.  In this section, we discuss the dependability implications of this approach. 
We use the application we fielded at 29 Palms as an example.  

Since the heading and velocity estimation approach uses triangulation, at least three 
sensor readings are needed to get an answer.  In the following, we assume all nodes have an 
equal probability of failure q. In a non-adaptive system when the “cluster head” fails, the 
system fails. The cluster has a probability of failure q no matter how many nodes are in the 
cluster. In the adaptive case, the system fails only when the number of nodes functioning is 
three or less.  
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Figure 13.  The top line shows probability of failure for a non-adaptive cluster. The 

bottom line shows probability of failure for an adaptive cluster. The probability of 
failure for a single node q is 0.01. The number of nodes in the cluster is varied from 4 to 
8. 
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Figure 14.  The top line shows probability of failure for a non-adaptive cluster. The 

bottom line shows probability of failure for an adaptive cluster. The probability of 
failure for a single node q is 0.2. The number of nodes in the cluster is varied from 4 to 8. 

Figures 13-15 illustrate the difference in dependability between adaptive and non-
adaptive tasking. These figures assume an exponential distribution of independent failure 
events, which is standard in dependability literature. The probability of failure is constant 
across time. We assume that all participating nodes have the same probability of failure. 
This does not account for errors due to loss of power.   

In figures 13 and 14 the top line is the probability of failure for a non-adaptive cluster. 
Since one node is the designated cluster head, when it fails the cluster fails. By definition, 
this probability of failure is constant. The lower line is the probability of failure of an 
adaptive cluster as a function of the number of nodes. This is the probability that less than 
three nodes will be available at any point in time. All individual nodes have the same 
failure probability, which is the value shown by the top line. The probability of failure of the 
adaptive cluster drops off exponentially with the number of nodes. Figure 15 shows this 
same probability of failure as a function of both the number of nodes and the individual 
node’s probability of failure. 
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Figure 15.  The surface shows probability of failure (z axis) for an adaptive cluster as the probability of 

failure for a single node q varies from 0.01 to 0.2 (side axis), and the number of nodes in the cluster 
varies from 4 to 6 (front axis). 
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10. DISCUSSION  

This report provides technical details concerning the work performed on the DARPA IXO 
SensIT Reactive Sensor Networks project. The project explored a new approach to sensor 
network design and implementation.  

A design methodology was created that was inherently self-referential. Each node 
worked relative to its own position and based on its own observations. In doing so, we also 
consider potential environmental factors and failure modes. This provides a simple 
viewpoint for algorithm design. It also allows us to develop simulations to explore the 
space of feasible algorithms. The very abstract simulations allow brittle approaches to be 
identified early in the design process. Detailed design work can then concentrate on the 
approaches with a stronger likelihood of success. 

Nodes are also allowed to change their roles dynamically. To support this, we 
implemented mobile code daemons. The daemons support autonomous software 
reconfiguration. Analytical results were given that showed how this creates a more robust, 
dependable infrastructure. Software releases were provided to allow this approach to be 
used by the wider SensIT community. 

To illustrate the feasibility of this approach, we fielded a distributed target tracking 
system. The multiple target tracking problem was analyzed in detail. We found that the 
quality of the tracks we produced was limited by data sampling. The sensor density 
determines the amount of data that is available for track inference. This limitation is 
basically is the same thing as the Nyquist critical frequency. 

We also created a framework for configuring node software so that target classification 
methods can be changed in response to the observed mix of targets. The network as a whole 
is thus able to reconfigure its software and adapt to its environment. 

As part of our contract extension, the target tracking approach was generalized. We 
showed how many different sensing modalities could be integrated into the overall 
framework we proposed. 

11. CUMULATIVE LIST OF PUBLICATIONS SUPPORTED BY THIS GRANT 

The following publications attributed to RSN have been published, are under review,  or are 
in press: 

 
“Data Registration,” by R. R. Brooks and Lynne Grewe, published as chapter 6 of CRC 

Handbook of Sensor Fusion. David Hall, editor. 
“SenseIT - Sensor Information Technology,” by R. R. Brooks, published as chapter 25 of 

CRC Handbook of Sensor Fusion. David Hall, editor. 
R. Brooks, et al. “Reactive Sensor Networks: Mobile Code Support for Autonomous Sensor 

Networks,” Distributed Autonomous Robotic Systems DARS 2000, pp. 471-472, Springer 
Verlag, Tokyo.  

R. R. Brooks. “Stigmergy an intelligence metric for emergent distributed behaviors.” NIST 
Workshop on Performance Metrics for Intelligent Systems. August 14-16. Gaithersburg, MD. 
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R. R. Brooks, Lynne Grewe, and S. S. Iyengar, “Recognition in the Wavelet Domain: a 
survey” Journal of Electronic Imaging. Published August, 2001. 

J. Moore, T. Keiser, R. R. Brooks, S. Phoha, D. Friedlander, J. Koch, A. Reggio, and N. 
Jacobson, “Tracking Targets with Self-Organizing Distributed Ground Sensors,” 2003 
IEEE Aerospace Conference, Invited Paper, March 2003. 

R. R. Brooks, P. Ramanathan, and A. Sayeed, “Distributed Target Tracking and 
Classification in Sensor Networks,” Proceedings of the IEEE, Invited Paper, In Press. 

R. Brooks, Friedlander, E. Grele, C. Griffin, N. Jacobson, T. Kaiser, J. Koch, S. Phoha, J. 
Moore, and T. Reggio, “Distributed Tracking and Classification of Land Vehicles by 
Acoustic Sensor Networks,” Journal of Underwater Acoustics, Classified Journal, Invited 
Paper, Accepted for publication, April 2003. 

R. Brooks, C. Griffin, and D. S. Friedlander, “Self-Organized distributed sensor network entity 
tracking,” International Journal of High Performance Computer Applications, special issue on 
Sensor Networks, vol. 16, no. 3, pp. 207-220, Fall 2002 

R. Brooks and C. Griffin, “Traffic model evaluation of ad hoc target tracking algorithms,” 
International Journal of High Performance Computer Applications, special issue on Sensor 
Networks, Vol. 16, no. 3, pp. 221-234, Fall 2002. 

S. S. Iyengar and R. R. Brooks, Frontiers in Distributed Sensor Networks, CRC Press, Boca 
Raton, FLA, in press, planned publication Fall 2003. Chapters 2.6 Target tracking and 6.4 
Mobile code support  of the book are attributed to RSN. 

R. Brooks, D. Friedlander, J. Koch and S. Phoha, “Tracking Multiple Targets with Self-
Organizing Distributed Ground Sensors,” Submitted for review, Special Issue Journal of 
Parallel Data Processing, Brooks and Iyengar, ed. 

 

12. LIST OF PERSONNEL ASSOCIATED  

Dr. Richard R. Brooks - PI - Head, Distributed Intelligent Systems Dept. Applied Research 
Laboratory of The Pennsylvania State University. 

Dr. Shashi Phoha - Co-PI - Head, Information Science and Technology Division, Assistant 
Director of Applied Research Laboratory, and Professor of Electrical and Computer 
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State University.  
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University. 
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Mr. Christopher Griffin – Research Engineer. Applied Research Laboratory of The 
Pennsylvania State University. Currently pursuing a masters degree in mathematics 

Mr. John Koch - Research Engineer. Applied Research Laboratory of The Pennsylvania State 
University. 

Mr. Anthony Reggio - Research Engineer. Applied Research Laboratory of The 
Pennsylvania State University. 

Ms. Jamila Moore - Graduate Assistant. Applied Research Laboratory of The Pennsylvania 
State University. Currently pursuing a masters degree in electrical engineering. 

Mr. Matthew Pirretti - Graduate Assistant. Applied Research Laboratory of The 
Pennsylvania State University. Currently pursuing a Ph. D. degree in computer science 
and engineering. 

Mr. Brian Ecker – Undergraduate. The Pennsylvania State University. Computer Science 
and Engineering. 

Mr. Thomas Keiser – Undergraduate. The Pennsylvania State University. Computer Science 
and Engineering. 

Mr. Brian Kovac – Undergraduate. The Pennsylvania State University. Computer Science 
and Engineering. 

13. PRESENTATIONS  

The following papers were presented: 
• J. Moore, T. Keiser, R. R. Brooks, S. Phoha, D. Friedlander, J. Koch, A. Reggio, and N. 

Jacobson, “Tracking Targets with Self-Organizing Distributed Ground Sensors,” 2003 
IEEE Aerospace Conference, Invited Paper, March 2003. 

• R. Brooks, et al. “Reactive Sensor Networks: Mobile Code Support for Autonomous 
Sensor Networks,” Distributed Autonomous Robotic Systems DARS 2000. Oak Ridge, TN. 
October 2000.  

• R. R. Brooks. “Stigmergy an intelligence metric for emergent distributed behaviors.” 
NIST Workshop on Performance Metrics for Intelligent Systems. August 2000. Gaithersburg, 
MD. 

14. INVENTIONS  

Three new inventions have been developed. We have submitted invention disclosures and 
performed patent searches for the discoveries. They have been declared to the university 
and evaluated by ARL internally for possible patent protection. They are: 

REAP - Remote Execution and Action Protocol - This protocol is a central part of our mobile 
code infrastructure. It allows multiple requests consisting of several actions to be active 
simultaneously. It minimizes the number of ACK and NAK packets required to ensure 
remote execution of tasks. The protocol is complete. The invention disclosure has been 
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submitted. ARL performs a quarterly internal review to determine whether or not to 
pursue patent protection of inventions. 

Nonlinear Differential Equations for Modeling Network Traffic - The process is 
documented. The invention disclosure has been written. ARL performs an internal 
review quarterly to determine whether or not to pursue patent protection. This process 
is very important for modeling ad hoc networks where transient effects are more 
important than asymptotic performance. 

Distributed Dynamic Linking and Polymorphism - Extension of .DLL concepts to a 
network environment, and ability of the network to automatically resolve hardware 
dependencies. 

15. PROGRAM FINANCIAL SUMMARY  

Total Project

Actual Budget
Salary $328,747.08 337,427.00$    
Fringe Benefits $70,431.29 83,175.00$      
Travel $31,932.86 13,804.00$      
Equipment $8,037.51 7,188.00$        
Tuition $24,699.58 21,903.00$      
Overhead $189,924.01 190,150.00$    

Col. Total $653,772.33 653,647.00$     
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