PREVALENCE OF BIRTH DEFECTS AMONG INFANTS OF GULF WAR VETERANS IN ARKANSAS, ARIZONA, CALIFORNIA, GEORGIA, HAWAII, AND IOWA, 1989-1993

M. R. G. Araneta
K. M. Schlangen
L. D. Edmonds
D. A. Destiche
R. D. Merz
C. A. Hobbs
T. J. Flood
J. A. Harris
D. Krishnamurti
G. C. Gray

Report No. 01-25

Approved for public release; distribution unlimited.
Prevalence of Birth Defects Among Infants of Gulf War Veterans in Arkansas, Arizona, California, Georgia, Hawaii, and Iowa, 1989–1993

1Department of Defense Center for Deployment Health Research, Naval Health Research Center, San Diego, California
2Birth Defects and Pediatric Genetics Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
3Hawaii Birth Defects Program, Honolulu, Hawaii
4Arkansas Reproductive Health Monitoring System, Little Rock, Arkansas
5Arizona Birth Defects Monitoring Program, Phoenix, Arizona
6California Birth Defects Monitoring Program, Emeryville, California
7Iowa Birth Defects Registry, Iowa City, Iowa

Received 4 April 2002; Accepted 2 December 2002

BACKGROUND: Epidemiologic studies of birth defects among infants of Gulf War veterans (GWV) have been limited to military hospitals, anomalies diagnosed among newborns, or self-reported data. This study was conducted to measure the prevalence of birth defects among infants of GWVs and nondeployed veterans (NDV) in states that conducted active case ascertainment of birth defects between 1989–93. METHODS: Military records of 684,645 GWVs and 1,587,102 NDVs were electronically linked with 2,314,908 birth certificates from Arizona, Hawaii, Iowa, and selected counties of Arkansas, California, and Georgia; 11,961 GWV infants and 33,052 NDV infants were identified. Of these, 450 infants had mothers who served in the Gulf War, and 3966 had NDV mothers. RESULTS: Infants conceived postwar to male GWVs had significantly higher prevalence of tricuspid valve insufficiency (relative risk [RR], 2.7; 95% confidence interval [CI], 1.1–6.6; p = 0.039) and aortic valve stenosis (RR, 6.0; 95% CI, 1.2–31.0; p = 0.036) compared to infants conceived postwar to NDV males. Among infants of male GWVs, aortic valve stenosis (RR, 16.3; 95% CI, 0.09–294; p = 0.011) and renal agenesis or hypoplasia (RR, 16.3; 95% CI, 0.09–294; p = 0.011) were significantly higher among infants conceived postwar than prewar. Hypospadias was significantly higher among infant sons conceived postwar to GWV women compared to NDV women (RR, 6.3; 95% CI, 1.5–26.3; p = 0.015). CONCLUSION: We observed a higher prevalence of tricuspid valve insufficiency, aortic valve stenosis, and renal agenesis or hypoplasia among infants conceived postwar to GWV men, and a higher prevalence of hypospadias among infants conceived postwar to female GWVs. We did not have the ability to determine if the excess was caused by inherited or environmental factors, or was due to chance because of myriad reasons, including multiple comparisons. Although the statistical power was sufficient to compare the combined birth defects prevalence, larger sample sizes were needed for less frequent individual component defects. Birth Defects Research (Part A) 67:246–260, 2003. Published 2003 Wiley-Liss, Inc.

Key words: aortic valve stenosis; birth defects; Gulf War veterans; hypospadias; Persian Gulf War; renal agenesis or hypoplasia; tricuspid valve insufficiency; tricuspid valve regurgitation

INTRODUCTION

A 1994 report by the U.S. General Accounting Office identified that 21 reproductive toxicants and teratogenic agents were present in the Gulf War environment (United States General Accounting Office, 1994). The teratogenic effects of myriad exposures, including petroleum solutions, insecticides, arthropod-borne pathogens, sarin, mustard gas, prophylactic drugs such as pyridostigmine bromide, and other medications and vaccines administered to Gulf War veterans (GWV) are unclear (NIH, 1994). Concerns regarding adverse reproductive outcomes precipitated several investigations to measure the risk of birth defects among military progeny (Penman et al., 1996; Cowan et al., 1997; Araneta et al., 1997; Goss Gilroy Inc., 1998; Araneta et al., 2000; Kang et al., 2001). American and Canadian GWVs reported a higher prevalence of birth defects among their infants compared to infants of nondeployed veterans (NDVs) (Goss Gilroy Inc., 1998; Kang et
The objectives of this investigation were to enumerate infants of military personnel born between January 1, 1989, and December 31, 1993 in Arizona, Iowa, Hawaii, and participating counties of Arkansas, California, and Georgia, and to compare the prevalence of selected congenital anomalies between 1) GWV and NDV infants conceived before the war, 2) GWV and NDV infants conceived during or after the war, and 3) GWV infants conceived before and after the war.

MATERIALS AND METHODS

Data Sources and Study Population

The Defense Manpower Data Center provided information on individuals who were in military service on February 1991, the peak of the Gulf War mobilization. The Defense Eligibility Enrollment Reporting System provided data on spouses and children. Birth certificate data were provided by state health departments of the six participating states, and included information on all live births, including personal identifiers, demographic characteristics, and selected pregnancy-related information. Personal identifiers available on birth certificate tapes varied by state. All six states recorded infant's name and date of birth; mother's first name, maiden name, and date of birth; and father's last name and date of birth; five states recorded father's first name, and three states recorded parents' social security numbers.

The six birth defects surveillance programs provided birth defects data. Active case ascertainment is conducted for all major congenital anomalies, as defined by the CDC (Metler et al., 1993). Case ascertainment methods in each state have been previously described (Centers for Disease Control and Prevention, 2001). Birth defects diagnostic data were abstracted by trained staff of the surveillance programs from multiple sources, including hospital discharge indexes, medical records at military and nonmilitary hospitals, pediatric, surgery, and autopsy logs, outpatient facilities, physician reports, fetal diagnostic clinics, cytogenetic and molecular biology laboratories, genetic service and specialty clinics, and vital records (Lynberg et al., 1992; Centers for Disease Control and Prevention, 2001). Diagnostic data for birth defects, including specific written diagnoses, cytogenetic data, and a six-digit diagnostic code developed by the CDC for reportable congenital anomalies (Metler et al., 1993) are reported in the birth defects surveillance case record. The six-digit diagnostic code is a modification of the World Health Organization’s International Classification of Diseases, 9th Revision, Clinical Modification, and the British Pediatric Association codes (Metler et al., 1993).

Statewide birth defects surveillance data were available for all live births in Hawaii from 1989–93, all Arizona births from 1989–92, all Iowa births from 1989–90, and two-thirds of Iowa’s births from 1991–93. Birth defects surveillance data from 1989–93 were available from counties that participated in birth defects surveillance in Arkansas (26 counties in 1989; 14 counties from 1990–92; statewide in 1993), Georgia (metropolitan Atlanta, 5 counties), and California (nonmilitary hospitals in 57 counties in 1989; 13 counties from 1990–93, including Los Angeles County from July 1990 to December 1993).

Linkage software (LinkPro, Manitoba, Canada), an integrated system for deterministic and probabilistic record linkage, was used to identify births common to the military data set and state birth certificate records (Wajda, 1992). Linkage of military and birth certificate files for five states was carried out at the Naval Health Research Center (NHRC), and the sixth at the Arkansas Department of Health, for Arkansas births, using identical software and matching algorithms.

The military data set was stratified by gender of the parent who served in the military to maximize identification of births to military personnel with multiple sex partners and to separate paternal from maternal GWV exposures. Infants whose biological parents both served in the military during the study period were categorized as infants of military mothers. Several matching algorithms were developed to maximize identification of matches and to compensate for missing or incomplete data, transpositional and typographical errors, and to accommodate changes in last name resulting from marriage or divorce. A pilot study was conducted to test the feasibility of the linkage process (Araneta et al., 2000a,b).

Infants with records common to the military and state birth certificate files were defined as "military infants." NHRC provided each state birth defects surveillance program with a data file of their state's military infants containing birth certificate and military data. The birth defects programs matched records of these "military infants" files against their birth defects surveillance data, by state birth certificate number or infant and maternal identifiers. State birth defects programs appended birth defects diagnoses coded to birth certificate information and military data. Personal identifiers of infants, parents and physicians were removed, and anonymous files were forwarded to NHRC for statistical analysis.

Statistical Analysis

There are approximately 850 diagnostic codes for reportable congenital anomalies (Metler et al., 1993) but CDC and other state birth defects surveillance programs routinely report on the prevalence of 46 birth defects categories that occur frequently or have important public health significance (Center for Disease Control, 2001). We selected these 46 birth defects categories for reporting, but excluded pulmonary artery anomalies, for which diagnostic echocardiography is currently required (C.A. Moore, Center for Disease Control, unpublished communication, 1998). Further, we included dextrocardia, chromosomal anomalies (other than trisomies 13, 18, and 21), and Goldenhar syndrome (oculoauriculovertebral complex), in response to concerns of GWV families (Araneta et al., 1997; Briggs, 1995; Sylvester and Changers, 1995). Pulmonary valve insufficiency, tricuspid valve insufficiency, and Ebstein anomaly are not reported in California; therefore, California births were excluded when computing prevalence for these birth defects categories. Similarly, data on fetal alcohol syndrome were not available from Arkansas. In 1992, surveillance in Arizona was limited to major structural defects; consequently, data on dextrocardia, other chromosomal anomalies, and Goldenhar syndrome were not available.

The prevalence of these 48 selected birth defects categories was calculated per 10,000 live births, and 95% confidence intervals (CIs) for rates were computed according to Fleiss (1981). Unadjusted prevalence rates are presented because adjustment for maternal age did not significantly alter prevalence rates. Each birth defect of case infants diagnosed with multiple anomalies (two or more of the 48 selected birth defects) was counted separately.

GWVs were defined according to military personnel data, and included those on active duty on February 1991 and were deployed to the Gulf War. NDVs were defined as those on active duty on February 1991, but were not deployed to the Gulf War. For GWV infants, date of birth, gestational age, and the military parent's date of deployment were defined as infants conceived postwar. Be- cause the presence of U.S. military forces in the Persian Gulf was maximal by January 1, 1991, NDV infants conceived after this date were considered infants conceived postwar. Infants conceived prewar were defined as live births to GWV men who were conceived before the father's deployment; GWV infants who were born before their mothers were deployed; or NDV infants conceived before January 1, 1991.

Data were analyzed using Statistical Analysis Software (SAS Institute, Cary, NC). Chi-square, Student's t-test and nonparametric tests were used to characterize population differences. Chi-square and Fisher's exact (two-tailed) tests were used to compare the prevalence of birth defects temporally and among subpopulations (Mehta and Patel, 1983). The logit estimator with precision-based CI was used with zero frequencies, where 0.5 was added to each cell stratum (Kleinbaum et al., 1982; SAS Institute, 1990). Logistic regression models were used to adjust for covariates that differed among deployment groups and known risk factors for selected birth defects. Statistical significance was designated at \(p < 0.05 \) or 95% CI that excluded 1.

RESULTS

Population Characteristics

Linked data from 2,271,747 military personnel and 2,314,908 live births in the six states identified 45,013 infants who were born between 1989–93 to individuals who served in the military in February 1991. One fourth \((n = 11,961) \) infants were born to GWVs. An equal proportion of GWVs (27.4%) and NDVs (25.8%) separated from the military by December 1993. Approximately 10% \((n = 4416)\) of infants were born to women veterans. Of these, 450 (10%) infants had a GWV mother and 3966 infants had a NDV mother. Compared to female NDVs, GWV women were significantly younger, more likely to be black, unmarried, had fewer prenatal visits, served in the Army or Marine Corps, were members of the U.S. Reserves or National Guard and were less likely to be officers (Table 1). No differences were observed between GWV and NDV women with regards to infant's gender, proportion with low birth weight (<2500 gm) or preterm delivery (<37 weeks' gestation by ultrasound or physician's estimate), mean birth weight, paternal age, maternal education, parity, plurality, gestational weight gain, preeclampsia, prenatal smoking and prenatal alcohol.

The majority of infants \((n = 40,597)\) were born to male veterans, including 11,511 (28%) infants with GWV fathers and 29,086 infants with NDV fathers. Infant's gender and proportion with low birth weight or preterm delivery did not differ by paternal deployment status. Infants of GWV men had lower mean birth weight, had younger parents, and were more likely to have a mother who was black or Hispanic, had a high school education or less, was unmarried, had fewer prior pregnancies, had a singleton birth (for the current pregnancy), fewer prenatal visits, and lower gestational weight gain (Table 2). The frequency of preeclampsia, and exposure to prenatal smoking and prenatal alcohol did not differ among infants of GWV and NDV men. Infants of male GWVs were more likely to have a father who served in the Marine Corps, were either active-duty military personnel or members of the National Guard during the war, and were enlisted personnel.
Table 1
Demographic and Parental Characteristics of Infants Born in Arizona, Arkansas, California, Georgia, Hawaii, and Iowa to Female Military Personnel, by Gulf War Status

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>GWV (%)</th>
<th>NDV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>450</td>
<td>3,966</td>
</tr>
<tr>
<td>State of birth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arizona</td>
<td>53 (11.8)</td>
<td>455 (11.5)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>19 (4.2)</td>
<td>140 (3.5)</td>
</tr>
<tr>
<td>California</td>
<td>82 (18.2)</td>
<td>734 (18.5)</td>
</tr>
<tr>
<td>Georgia</td>
<td>69 (15.3)</td>
<td>315 (7.9)*</td>
</tr>
<tr>
<td>Hawaii</td>
<td>202 (44.9)</td>
<td>2,277 (57.4)*</td>
</tr>
<tr>
<td>Iowa</td>
<td>25 (5.6)</td>
<td>45 (1.1)*</td>
</tr>
<tr>
<td>Infants' gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>221 (48.1)</td>
<td>1,989 (50.1)</td>
</tr>
<tr>
<td>Female</td>
<td>229 (50.9)</td>
<td>1,977 (49.9)</td>
</tr>
<tr>
<td>Year of Birth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>93 (20.7)</td>
<td>747 (18.8)</td>
</tr>
<tr>
<td>1990</td>
<td>48 (10.7)</td>
<td>726 (18.3)*</td>
</tr>
<tr>
<td>1991</td>
<td>45 (10.0)</td>
<td>815 (20.5)*</td>
</tr>
<tr>
<td>1992</td>
<td>140 (31.1)</td>
<td>950 (24.0)*</td>
</tr>
<tr>
<td>1993</td>
<td>124 (27.5)</td>
<td>728 (18.4)*</td>
</tr>
<tr>
<td>Mean birth weight (gm)</td>
<td>3,351.0</td>
<td>3,341.2</td>
</tr>
<tr>
<td>Low birth weight (< 2,500 gm)</td>
<td>28 (6.2)</td>
<td>270 (6.8)</td>
</tr>
<tr>
<td>Preterm (< 37 weeks)</td>
<td>39 (8.7)</td>
<td>364 (9.3)</td>
</tr>
<tr>
<td>Mean maternal age (years)</td>
<td>25.3</td>
<td>25.9*</td>
</tr>
<tr>
<td>Maternal age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 19</td>
<td>12 (2.7)</td>
<td>135 (3.4)</td>
</tr>
<tr>
<td>20–24</td>
<td>215 (47.9)</td>
<td>1,682 (42.4)*</td>
</tr>
<tr>
<td>25–29</td>
<td>143 (31.8)</td>
<td>1,285 (32.4)</td>
</tr>
<tr>
<td>30–34</td>
<td>63 (14.0)</td>
<td>604 (15.2)</td>
</tr>
<tr>
<td>≥ 35</td>
<td>16 (3.6)</td>
<td>259 (6.5)*</td>
</tr>
<tr>
<td>Mean paternal age (years)</td>
<td>27.2</td>
<td>27.5</td>
</tr>
<tr>
<td>Maternal Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>228 (50.7)</td>
<td>2,398 (59.7)*</td>
</tr>
<tr>
<td>Black</td>
<td>173 (38.4)</td>
<td>1,236 (31.2)*</td>
</tr>
<tr>
<td>Hispanic</td>
<td>25 (5.6)</td>
<td>163 (4.1)</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>18 (4.0)</td>
<td>163 (4.1)</td>
</tr>
<tr>
<td>Other</td>
<td>6 (1.3)</td>
<td>36 (0.9)</td>
</tr>
<tr>
<td>Maternal Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ High school</td>
<td>246 (55.2)</td>
<td>2,102 (53.4)</td>
</tr>
<tr>
<td>> High school</td>
<td>200 (44.8)</td>
<td>1,838 (46.6)</td>
</tr>
<tr>
<td>Maternal marital status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>305 (71.8)</td>
<td>2,886 (77.2)*</td>
</tr>
<tr>
<td>Not married</td>
<td>120 (28.2)</td>
<td>853 (22.8)</td>
</tr>
<tr>
<td>Parity (mean)</td>
<td>0.58</td>
<td>0.58</td>
</tr>
<tr>
<td>Multiple birth (yes)</td>
<td>7 (1.6)</td>
<td>98 (2.5)</td>
</tr>
<tr>
<td>Prenatal visits (mean)</td>
<td>11.2</td>
<td>31.8</td>
</tr>
<tr>
<td>Weight gained (lbs)</td>
<td>30.8</td>
<td>31.8</td>
</tr>
<tr>
<td>Preeclampsia (yes)</td>
<td>12 (3.1)</td>
<td>129 (3.5)</td>
</tr>
<tr>
<td>Smoking (yes)</td>
<td>32 (7.2)</td>
<td>348 (8.9)</td>
</tr>
<tr>
<td>Alcohol (yes)</td>
<td>5 (1.4)</td>
<td>47 (1.5)</td>
</tr>
<tr>
<td>Branch of Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Army</td>
<td>288 (64.0)</td>
<td>1,389 (35.0)*</td>
</tr>
<tr>
<td>Navy</td>
<td>77 (17.1)</td>
<td>1,501 (37.9)</td>
</tr>
<tr>
<td>Marine Corps</td>
<td>50 (11.1)</td>
<td>198 (50.0)*</td>
</tr>
<tr>
<td>Air Force</td>
<td>35 (7.8)</td>
<td>878 (22.1)</td>
</tr>
<tr>
<td>Component</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Duty</td>
<td>342 (76.0)</td>
<td>3,476 (87.6)*</td>
</tr>
<tr>
<td>Reservist</td>
<td>70 (15.6)</td>
<td>455 (11.5)*</td>
</tr>
<tr>
<td>National Guard</td>
<td>38 (8.4)</td>
<td>35 (0.9)*</td>
</tr>
<tr>
<td>Paygrade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1–E6 Enlisted</td>
<td>401 (90.9)</td>
<td>3,469 (87.5)</td>
</tr>
<tr>
<td>E7–E9 Staff Enlisted</td>
<td>5 (1.1)</td>
<td>61 (1.5)</td>
</tr>
<tr>
<td>01–010 Officers</td>
<td>35 (7.9)</td>
<td>436 (11.0)*</td>
</tr>
</tbody>
</table>

Arizona births from 1989–1992 only. *p < 0.05 or 95% CI exclude 1.
GWV, Gulf War veteran; NDV, nondeployed veteran.
Table 3
Birth Defect Prevalence Among Infants Conceived Pre-Gulf War to Gulf War and Nondeployed Female Veterans, Arizona, Arkansas, California, Georgia, Hawaii, Iowa, 1989–1991

<table>
<thead>
<tr>
<th>Birth defect</th>
<th>GWV (n = 142)</th>
<th>NDV (n = 2,007)</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Rate* (95% CI)</td>
<td>n</td>
</tr>
<tr>
<td>Anencephalus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spina bifida without anencephalus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Encephalocele</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Microcephalus</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hydrocephalus without spina bifida</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anophthalmia/microphthalmia</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Congenital cataract</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Aniridia</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anota/microtia</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Common truncus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Transposition of great arteries</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tetralogy of Fallot</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ventricular septal defect</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Endocardial cushion defect</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pulmonary valve atresia, stenosis</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pulmonary valve insufficiency</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tricuspid atresia and stenosis</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tricuspid valve insufficiency</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ebstein's anomaly</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aortic valve stenosis</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hypoplastic left heart syndrome</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dextrocardia</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Coarctation of aorta</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Choanal atresia</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lung agenesis/hypoplasia</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cleft palate without cleft lip</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleft lip with or without cleft palate</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Esophageal atresia/tracheoesophageal fistula</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pyloric stenosis</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectal/large intestinal atresia/stenosis</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hirschsprung disease</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Biliary atresia</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hypospadias and epispadias</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Renal agenesis/hypoplasia</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bladder extrophy</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Obstructive genitourinary defect</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reduction deformity, upper limbs</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Reduction deformity, lower limbs</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Goldenhar syndrome</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cystic fibrosis</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Omphalocele</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Diaphragmatic hernia</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Down syndrome</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trisomy 13</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trisomy 18</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chromosomal anomalies</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Fetal alcohol syndrome</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Amniotic bands</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Rate per 10,000 live births.

GWV, Gulf War veteran; NDV, non-deployed veteran.

Infants Conceived Prewar
A total of 26,934 infants were conceived before the war (7005 to GWVs and 19,929 to NDV). Among the infants conceived prewar to GWV women (n = 142) and NDV women (n = 2007), birth defects prevalence for each of the 48 selected birth defects categories did not differ (Table 3). Similarly, birth defects prevalence for each of the 48 selected birth defects categories did not differ among infants conceived prewar to GWV men (n = 6863) and NDV men (n = 17,922, Table 4), suggesting no difference in predisposing risk for these birth defects between deployment groups. Further, only one (0.7%) of the infants conceived prewar to female GWVs had at least one of the selected 48 birth defects; this rate did not differ from that of infants conceived prewar to female NDVs (2.3%, 46/2007; RR, 0.31; 95% CI, 0.04–2.21; p = 0.37). A total of 107 (1.5%) infants conceived prewar to male GWVs had at least one of the selected 48 birth defects, which was similar to that of infants conceived prewar to male NDVs (1.76%, 316/17,922; RR, 0.88; 95% CI, 0.71–1.10; p = 0.30).

Infants Conceived Postwar
A total of 4956 (41%) GWV infants and 13,123 (40%) NDV infants were conceived during or after the war. As
<table>
<thead>
<tr>
<th>Birth defect</th>
<th>GWV (n = 6,863)</th>
<th>NDV (n = 17,922)</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anencephalus</td>
<td>0</td>
<td>1</td>
<td>0.6 (0.03-3.6)</td>
</tr>
<tr>
<td>Spina bifida without anencephalus</td>
<td>3</td>
<td>10</td>
<td>5.6 (2.8-10.6)</td>
</tr>
<tr>
<td>Encephalocele</td>
<td>2</td>
<td>2</td>
<td>1.1 (0.2-4.9)</td>
</tr>
<tr>
<td>Microcephalus</td>
<td>6</td>
<td>19</td>
<td>10.6 (6.6-16.9)</td>
</tr>
<tr>
<td>Hydrocephalus without spina bifida</td>
<td>3</td>
<td>14</td>
<td>7.8 (4.4-13.5)</td>
</tr>
<tr>
<td>Anophthalmia/microphthalmia</td>
<td>1</td>
<td>9</td>
<td>5.0 (2.5-9.9)</td>
</tr>
<tr>
<td>Congenital cataract</td>
<td>2</td>
<td>3</td>
<td>1.7 (0.4-5.3)</td>
</tr>
<tr>
<td>Aniridia</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Anotia/microtia</td>
<td>1</td>
<td>1</td>
<td>0.6 (0.03-3.6)</td>
</tr>
<tr>
<td>Common truncus</td>
<td>2</td>
<td>1</td>
<td>0.6 (0.03-3.6)</td>
</tr>
<tr>
<td>Transposition of great arteries</td>
<td>3</td>
<td>7</td>
<td>3.9 (1.7-8.6)</td>
</tr>
<tr>
<td>Tetralogy of Fallot</td>
<td>3</td>
<td>6</td>
<td>3.3 (1.4-7.7)</td>
</tr>
<tr>
<td>Ventricular septal defect</td>
<td>13</td>
<td>45</td>
<td>25.1 (18.5-33.9)</td>
</tr>
<tr>
<td>Endocardial cushion defect</td>
<td>0</td>
<td>8</td>
<td>4.5 (2.1-9.2)</td>
</tr>
<tr>
<td>Pulmonary valve atresia, stenosis</td>
<td>6</td>
<td>10</td>
<td>5.6 (2.8-10.6)</td>
</tr>
<tr>
<td>Pulmonary valve insufficiency<sup>a</sup></td>
<td>0</td>
<td>2</td>
<td>1.6 (0.3-6.6)</td>
</tr>
<tr>
<td>Tricuspid atresia and stenosis</td>
<td>0</td>
<td>3</td>
<td>1.7 (0.4-5.3)</td>
</tr>
<tr>
<td>Tricuspid valve insufficiency<sup>a</sup></td>
<td>8</td>
<td>24</td>
<td>19.7 (12.9-29.8)</td>
</tr>
<tr>
<td>Ebstein's anomaly</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aortic valve stenosis</td>
<td>0</td>
<td>4</td>
<td>2.2 (0.7-6.1)</td>
</tr>
<tr>
<td>Hypoplastic left heart syndrome</td>
<td>1</td>
<td>2</td>
<td>1.1 (0.2-4.5)</td>
</tr>
<tr>
<td>Dextrocardia</td>
<td>7</td>
<td>3.9 (1.7-8.4)</td>
<td></td>
</tr>
<tr>
<td>Coarctation of aorta</td>
<td>1</td>
<td>7</td>
<td>3.9 (1.7-8.4)</td>
</tr>
<tr>
<td>Choanal atresia</td>
<td>3</td>
<td>5</td>
<td>2.8 (1.0-6.9)</td>
</tr>
<tr>
<td>Lung agenesis/hypoplasia</td>
<td>3</td>
<td>10</td>
<td>5.6 (2.8-10.6)</td>
</tr>
<tr>
<td>Cleft palate without cleft lip</td>
<td>2</td>
<td>17</td>
<td>9.5 (5.5-15.5)</td>
</tr>
<tr>
<td>Cleft lip with or without cleft palate</td>
<td>7</td>
<td>19</td>
<td>10.6 (6.6-16.9)</td>
</tr>
<tr>
<td>Esophageal atresia/tracheoesophageal fistula</td>
<td>2</td>
<td>3</td>
<td>1.7 (0.4-5.3)</td>
</tr>
<tr>
<td>Pyloric stenosis</td>
<td>14</td>
<td>25</td>
<td>13.9 (9.2-20.9)</td>
</tr>
<tr>
<td>Rectal/large intestinal atresia/stenosis</td>
<td>1</td>
<td>8</td>
<td>4.5 (2.1-9.2)</td>
</tr>
<tr>
<td>Hirsprung disease</td>
<td>0</td>
<td>3</td>
<td>1.7 (0.4-5.3)</td>
</tr>
<tr>
<td>Biliary atresia</td>
<td>1</td>
<td>6</td>
<td>3.3 (1.4-7.7)</td>
</tr>
<tr>
<td>Hypoplasias and epiphasids</td>
<td>22</td>
<td>51</td>
<td>28.5 (21.4-37.7)</td>
</tr>
<tr>
<td>Renal agenesis/hypoplasia</td>
<td>0</td>
<td>8</td>
<td>4.5 (2.1-9.2)</td>
</tr>
<tr>
<td>Bladder extrophy</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Obstructive genitourinary defect</td>
<td>9</td>
<td>29</td>
<td>16.2 (11.0-23.6)</td>
</tr>
<tr>
<td>Reduction deformity, upper limbs</td>
<td>2</td>
<td>6</td>
<td>3.3 (1.4-7.7)</td>
</tr>
<tr>
<td>Reduction deformity, lower limbs</td>
<td>2</td>
<td>4</td>
<td>2.2 (0.7-6.1)</td>
</tr>
<tr>
<td>Goldenhar syndrome</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Gastrostomia</td>
<td>1</td>
<td>9</td>
<td>5.0 (2.5-9.9)</td>
</tr>
<tr>
<td>Omphalocele</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Diaphragmatic hernia</td>
<td>0</td>
<td>1</td>
<td>0.6 (0.03-3.6)</td>
</tr>
<tr>
<td>Down syndrome</td>
<td>9</td>
<td>21</td>
<td>11.7 (7.4-18.2)</td>
</tr>
<tr>
<td>Trisomy 13</td>
<td>0</td>
<td>2</td>
<td>1.1 (0.2-4.5)</td>
</tr>
<tr>
<td>Trisomy 18</td>
<td>1</td>
<td>7</td>
<td>3.9 (1.7-8.4)</td>
</tr>
<tr>
<td>Chromosomal anomalies</td>
<td>2</td>
<td>13</td>
<td>7.3 (4.0-12.8)</td>
</tr>
<tr>
<td>Fetal alcohol syndrome<sup>d</sup></td>
<td>0</td>
<td>4</td>
<td>2.4 (0.8-6.5)</td>
</tr>
<tr>
<td>Amniotic bands</td>
<td>0</td>
<td>4</td>
<td>2.2 (0.7-6.1)</td>
</tr>
</tbody>
</table>

^aIncludes 113 (0.5%) conceived prior to father's return in 1991.
^bRate per 10,000 live births.
^cCalifornia births excluded.
^dArkansas births excluded.
GWV, Gulf War veteran; NDV, nondeployed veteran.

As shown in Table 5, among infants conceived postwar to female GWVs (n = 308) and female NDVs (n = 1959), the prevalence of hypospadias was significantly higher among sons conceived postwar to female GWVs (4/194 infant boys) compared to female NDVs (4/967 infant boys; RR, 6.3; 95% CI, 1.5-26.3; p = 0.015). Although hypospadias and epiphasids are jointly reported, none of the infants conceived postwar to female veterans had epiphasids. The proportion of infants who had at least one of the 48 selected defects did not differ among infants conceived postwar to GWV and NDV women (2.92% vs. 1.74%; RR, 1.68; 95% CI, 0.81-3.48; p = 0.16).

As shown in Table 6, among infants conceived postwar to male veterans, the prevalence of congenital tricuspid valve insufficiency or regurgitation (RR, 2.7; 95% CI, 1.1-6.6; p = 0.039) and aortic valve stenosis (RR, 6.0; 95% CI, 0.3-10.4).
Table 5
Birth Defect Prevalence Among Infants Conceived Post Gulf War to Gulf War and Nondeployed Female Veterans, Arizona, Arkansas, California, Georgia, Hawaii, and Iowa, 1991–1993a

<table>
<thead>
<tr>
<th>Birth defect</th>
<th>GWV (n = 308)</th>
<th>NDVs (n = 1,959)</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anencephalus</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Spina bifida without anencephalus</td>
<td>0</td>
<td>1</td>
<td>5.1 (0.3–33.1)</td>
</tr>
<tr>
<td>Encephalocele</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Microcephalus</td>
<td>0</td>
<td>1</td>
<td>5.1 (0.3–33.1)</td>
</tr>
<tr>
<td>Hydrocephalus without spina bifida</td>
<td>1</td>
<td>32.5 (1.7–209)</td>
<td></td>
</tr>
<tr>
<td>Anophthalmia/microphthalmia</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Congenital cataract</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aniridia</td>
<td>0</td>
<td>1</td>
<td>5.1 (0.3–33.1)</td>
</tr>
<tr>
<td>Anotia/microtia</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Common truncus</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Transposition of great arteries</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetralogy of Fallot</td>
<td>0</td>
<td>1</td>
<td>5.1 (0.3–33.1)</td>
</tr>
<tr>
<td>Ventricular septal defect</td>
<td>1</td>
<td>32.5 (1.7–209)</td>
<td></td>
</tr>
<tr>
<td>Endocardial cushion defect</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pulmonary valve atresia, stenosis</td>
<td>1</td>
<td>32.5 (1.7–209)</td>
<td></td>
</tr>
<tr>
<td>Pulmonary valve insufficiency</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tricuspid valve atresia and stenosis</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tricuspid valve insufficiencya</td>
<td>0</td>
<td>1</td>
<td>6.5 (0.3–42.1)</td>
</tr>
<tr>
<td>Ebstein anomaly</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aortic valve stenosis</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hypoplastic left heart syndrome</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dextrocardia</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Coarctation of aorta</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Choanal atresia</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lung agenesis/hypoplasia</td>
<td>0</td>
<td>1</td>
<td>5.1 (0.3–33.1)</td>
</tr>
<tr>
<td>Cleft palate without cleft lip</td>
<td>0</td>
<td>1</td>
<td>5.1 (0.3–33.1)</td>
</tr>
<tr>
<td>Cleft lip with or without cleft palate</td>
<td>1</td>
<td>32.5 (1.7–209)</td>
<td></td>
</tr>
<tr>
<td>Esophageal atresia/tracheoesophageal fistula</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pyloric stenosis</td>
<td>0</td>
<td>5</td>
<td>25.5 (9.4–63.2)</td>
</tr>
<tr>
<td>Rectal/large intestinal atresia/stenosis</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hirschsprung disease</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Biliary atresia</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hypoplasias and epispadias</td>
<td>4</td>
<td>129.8 (41.6-352)</td>
<td></td>
</tr>
<tr>
<td>Renal agenesis/hypoplasia</td>
<td>1</td>
<td>32.5 (1.7–209)</td>
<td></td>
</tr>
<tr>
<td>Bladder extrophy</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Obstructive genitourinary defect</td>
<td>1</td>
<td>32.5 (1.7–209)</td>
<td></td>
</tr>
<tr>
<td>Reduction deformity, upper limbs</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Reduction deformity, lower limbs</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Goldenhar syndrome</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Gastrochisis</td>
<td>0</td>
<td>1</td>
<td>5.1 (0.3–33.1)</td>
</tr>
<tr>
<td>Omphalocele</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Diaphragmatic hernia</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Down syndrome</td>
<td>1</td>
<td>32.5 (1.7–209)</td>
<td></td>
</tr>
<tr>
<td>Trisomy 13</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trisomy 18</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chromosomal anomaliesd</td>
<td>0</td>
<td>2</td>
<td>11.0 (1.9–44.2)</td>
</tr>
<tr>
<td>Fetal alcohol syndrome</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amniotic bands</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

a1993 Arizona births not represented.
bRate per 10,000 live births.
cCalifornia births excluded.
d1992 Arizona births excluded.
GWV, Gulf War veteran; NDV, nondeployed veteran.

1.2–31.0; p = 0.026) was significantly higher for GWV infants compared to NDV infants. Coarctation of the aorta was also elevated among infants of GWV men compared to NDV men, but was not statistically significant (RR, 4.0; 95% CI, 0.96–16.8; p = 0.053). The proportion of infants conceived postwar with at least 1 of the 48 selected defects was similar by father's deployment status (GWV: 1.55% vs. NDV: 1.61%; RR, 0.96; 95% CI, 0.73–1.26; p = 0.83). Treatment Comparisons Among GWV Infants

Temporal Comparisons Among GWV Infants

No temporal differences in birth defects prevalence were observed between infants conceived prewar and postwar to female GWVs (Table 7), nor among female NDVs (data on Tables 3 and 5). The proportion of infants who had at least one of the 48 selected defects did not differ among infants conceived postwar and prewar to GWW women (2.92% vs. 2.91% (0.95–5.65).
<table>
<thead>
<tr>
<th>Birth defect</th>
<th>GWV (n = 4,648)</th>
<th>NDV (n = 11,164)</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rateb (95% CI)</td>
<td>Rateb (95% CI)</td>
<td></td>
</tr>
<tr>
<td>Anencephalus</td>
<td>0 (0.05-5.8)</td>
<td>1 (0.05-5.8)</td>
<td>1.0 (0.2-4.9)</td>
</tr>
<tr>
<td>Spina bifida without anencephalus</td>
<td>2 (0.7-17.4)</td>
<td>5 (1.6-11.1)</td>
<td></td>
</tr>
<tr>
<td>Encephalocele</td>
<td>0 (0.05-5.8)</td>
<td>1 (0.05-5.8)</td>
<td>1.0 (0.3-4.0)</td>
</tr>
<tr>
<td>Microcephalus</td>
<td>3 (1.7-20.5)</td>
<td>7 (2.7-13.5)</td>
<td></td>
</tr>
<tr>
<td>Hydrocephalus without spina bifida</td>
<td>2 (0.7-17.4)</td>
<td>7 (2.7-13.5)</td>
<td>0.7 (0.1-3.0)</td>
</tr>
<tr>
<td>Anophthalmia/microphthalmia</td>
<td>0 (0.05-5.8)</td>
<td>1 (0.05-5.8)</td>
<td></td>
</tr>
<tr>
<td>Congenital cataract</td>
<td>0 (0.05-5.8)</td>
<td>0 (0.05-5.8)</td>
<td></td>
</tr>
<tr>
<td>Aniridia</td>
<td>0 (0.05-5.8)</td>
<td>0 (0.05-5.8)</td>
<td></td>
</tr>
<tr>
<td>Anotia/microtia</td>
<td>2 (0.7-17.4)</td>
<td>2 (0.3-7.2)</td>
<td>2.4 (0.3-17.1)</td>
</tr>
<tr>
<td>Common truncus</td>
<td>0 (0.05-5.8)</td>
<td>1 (0.05-5.8)</td>
<td>0.8 (0.08-7.7)</td>
</tr>
<tr>
<td>Transposition of great arteries</td>
<td>2 (0.1-13.9)</td>
<td>3 (0.7-8.6)</td>
<td></td>
</tr>
<tr>
<td>Tetralogy of Fallot</td>
<td>2 (0.7-17.4)</td>
<td>0 (0.05-5.8)</td>
<td></td>
</tr>
<tr>
<td>Ventricular septal defect</td>
<td>10 (10.9-40.9)</td>
<td>36 (22.9-45.1)</td>
<td>0.7 (0.3-1.3)</td>
</tr>
<tr>
<td>Endocardial cushion defect</td>
<td>7 (2.7-13.5)</td>
<td>6 (2.7-13.5)</td>
<td>1.2 (0.3-4.8)</td>
</tr>
<tr>
<td>Pulmonary valve atresia, stenosis</td>
<td>3 (1.7-20.5)</td>
<td>6 (2.7-13.5)</td>
<td></td>
</tr>
<tr>
<td>Pulmonary valve insufficiency</td>
<td>0 (0.05-5.8)</td>
<td>1 (0.05-5.8)</td>
<td></td>
</tr>
<tr>
<td>Tricuspid valve atresia, stenosis</td>
<td>2 (0.7-17.4)</td>
<td>1 (0.05-5.8)</td>
<td>4.8 (0.4-53.0)</td>
</tr>
<tr>
<td>Tricuspid valve insufficiency</td>
<td>10 (14.6-54.6)</td>
<td>9 (10.7-21.1)</td>
<td>0.7 (1.1-6.6)</td>
</tr>
<tr>
<td>Ebstein's anomaly</td>
<td>0 (0.05-5.8)</td>
<td>2 (0.4-9.6)</td>
<td></td>
</tr>
<tr>
<td>Aortic valve stenosis</td>
<td>10 (3.9-26.7)</td>
<td>2 (0.3-7.2)</td>
<td>6.0 (1.2-31.0)</td>
</tr>
<tr>
<td>Hypoplastic left heart syndrome</td>
<td>2 (0.7-17.4)</td>
<td>2 (0.3-7.2)</td>
<td>2.0 (0.3-17.1)</td>
</tr>
<tr>
<td>Dextrocardia</td>
<td>2 (0.1-15.9)</td>
<td>4 (0.7-5.5)</td>
<td>0.6 (0.07-5.5)</td>
</tr>
<tr>
<td>Coarctation of aorta</td>
<td>5 (3.9-26.7)</td>
<td>3 (0.7-8.6)</td>
<td>4.0 (0.96-16.8)</td>
</tr>
<tr>
<td>Choanal atresia</td>
<td>0 (0.05-5.8)</td>
<td>0 (0.05-5.8)</td>
<td></td>
</tr>
<tr>
<td>Lung agenesis/hypoplasia</td>
<td>8 (2.6-23.6)</td>
<td>7 (2.7-13.5)</td>
<td>1.4 (0.4-4.7)</td>
</tr>
<tr>
<td>Cleft palate without cleft lip</td>
<td>4 (1.1-9.8)</td>
<td>3 (1.1-9.8)</td>
<td></td>
</tr>
<tr>
<td>Cleft lip with or without cleft palate</td>
<td>4 (1.1-9.8)</td>
<td>2 (0.3-7.2)</td>
<td>2.4 (0.04-7.1)</td>
</tr>
<tr>
<td>Esophageal atresia/tracheoesophageal fistula</td>
<td>5 (1.6-23.6)</td>
<td>1 (0.05-5.8)</td>
<td></td>
</tr>
<tr>
<td>Pyloric stenosis</td>
<td>2 (1.2-13.3)</td>
<td>1.2 (0.3-7.2)</td>
<td>0.3 (0.03-1.6)</td>
</tr>
<tr>
<td>Rectal/large intestinal atresia/stenosis</td>
<td>6 (1.7-20.5)</td>
<td>5 (1.6-11.1)</td>
<td>1.4 (0.3-6.0)</td>
</tr>
<tr>
<td>Hirschspring disease</td>
<td>0 (0.05-5.8)</td>
<td>2 (0.3-7.2)</td>
<td></td>
</tr>
<tr>
<td>Biliary atresia</td>
<td>0 (0.05-5.8)</td>
<td>1 (0.05-5.8)</td>
<td></td>
</tr>
<tr>
<td>Hypospadias and epispadias</td>
<td>32 (18.8-54.5)</td>
<td>35 (22.2-44.1)</td>
<td>1.0 (0.6-1.9)</td>
</tr>
<tr>
<td>Renal agenesis/hypoplasia</td>
<td>10 (3.9-26.7)</td>
<td>5 (1.6-11.1)</td>
<td>2.4 (0.2-8.3)</td>
</tr>
<tr>
<td>Bladder extrophy</td>
<td>1 (0.05-5.8)</td>
<td>1 (0.05-5.8)</td>
<td></td>
</tr>
<tr>
<td>Obstructive genitourinary defect</td>
<td>19 (9.4-38.2)</td>
<td>21 (11.9-29.3)</td>
<td>1.0 (0.5-2.2)</td>
</tr>
<tr>
<td>Reduction deformity, upper limbs</td>
<td>0 (0.05-5.8)</td>
<td>1 (0.05-5.8)</td>
<td></td>
</tr>
<tr>
<td>Reduction deformity, lower limbs</td>
<td>0 (3.6-11.9)</td>
<td>4 (3.6-11.9)</td>
<td></td>
</tr>
<tr>
<td>Goldenhar syndrome</td>
<td>0 (0.05-5.8)</td>
<td>0 (0.05-5.8)</td>
<td></td>
</tr>
<tr>
<td>Gastrochisis</td>
<td>3 (1.7-20.5)</td>
<td>3 (0.7-8.6)</td>
<td>2.4 (0.5-11.9)</td>
</tr>
<tr>
<td>Omphalocele</td>
<td>2 (0.1-13.9)</td>
<td>2 (0.3-7.2)</td>
<td>1.2 (0.1-13.2)</td>
</tr>
<tr>
<td>Diaphragmatic hernia</td>
<td>0 (0.05-5.8)</td>
<td>0 (0.05-5.8)</td>
<td></td>
</tr>
<tr>
<td>Down syndrome</td>
<td>3 (1.7-20.5)</td>
<td>13 (6.5-20.4)</td>
<td>0.6 (0.2-1.9)</td>
</tr>
<tr>
<td>Trisomy 13</td>
<td>0 (0.05-5.8)</td>
<td>2 (0.3-7.2)</td>
<td></td>
</tr>
<tr>
<td>Trisomy 18</td>
<td>4 (3.6-11.9)</td>
<td>4 (3.6-11.9)</td>
<td></td>
</tr>
<tr>
<td>Chromosomal anomalies</td>
<td>1 (6.5-21.5)</td>
<td>12 (6.5-21.5)</td>
<td>0.2 (0.03-1.6)</td>
</tr>
<tr>
<td>Fetal alcohol syndrome</td>
<td>0 (0.05-5.8)</td>
<td>0 (0.05-5.8)</td>
<td></td>
</tr>
<tr>
<td>Amniotic bands</td>
<td>0 (0.05-5.8)</td>
<td>2 (0.3-7.2)</td>
<td></td>
</tr>
</tbody>
</table>

*1993 Arizona births not represented.

2Rate per 10,000 live births.

*California births excluded.

*1992 Arizona births excluded.

GWV, Gulf War veteran; NDV, nondeployed veteran.

0.72%; RR, 4.24; 95% CI, 0.5-33.8; p = 0.18) or to NDV women (1.7% vs. 2.3%; RR, 0.8; 95% CI, 0.5-1.2; p = 0.22).

Among infants of GWV men, the prevalence of aortic valve stenosis (5/4648, Table 6) was significantly higher among infants conceived postwar than prewar (0/6863; RR, 16.3; 95% CI, 0.9-294; p = 0.011). Comparatively, birth defects prevalence did not increase temporally among infants of GWV men conceived postwar than prewar (1.7% vs. 2.3%; RR, 0.8; 95% CI, 0.5-1.2; p = 0.22).
Table 7
Birth Defect Prevalence Among Infants Conceived Pre and Post-Gulf War to Female Gulf War Veterans, Arizona, Arkansas, California, Georgia, Hawaii, and Iowa, 1989–1993a

<table>
<thead>
<tr>
<th>Birth defect</th>
<th>Post-war to GWVs (n = 308)</th>
<th>Pre-war to GWVs (n = 142)</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anencephalus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spina bifida without anencephalus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Encephalocoele</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Microcephalus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hydrocephalus without spina bifida</td>
<td>1</td>
<td>32.5 (1.7-209)</td>
<td>70.4 (3.7-445)</td>
</tr>
<tr>
<td>Anophthalnia/microphthalmia</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Congenital cataract</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aniridia</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anotia/microtia</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Common truncus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Transposition of great arteries</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tetralogy of Fallot</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ventricular septal defect</td>
<td>1</td>
<td>32.5 (1.7-209)</td>
<td>0</td>
</tr>
<tr>
<td>Endocardial cushion defect</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pulmonary valve atresia, stenosis</td>
<td>1</td>
<td>32.5 (1.7-209)</td>
<td>0</td>
</tr>
<tr>
<td>Pulmonary valve insufficiency</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tricuspid valve atresia and stenosis</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tricuspid valve insufficiency</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ebstein anomaly</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aortic valve stenosis</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hypoplastic left heart syndrome</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dextrocardia</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Coarctation of aorta</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Choanal atresia</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lung agenesis/hypoplasia</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleft palate without cleft lip</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleft lip with or without cleft palate</td>
<td>1</td>
<td>32.5 (1.7-209)</td>
<td>0</td>
</tr>
<tr>
<td>Esophageal atresia/tracheoesophageal fistula</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pyloric stenosis</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectal/large intestinal atresia/stenosis</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hirschprung disease</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Biliary atresia</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hypospadias and epispadias</td>
<td>4</td>
<td>129.8 (41.6-352)</td>
<td>0</td>
</tr>
<tr>
<td>Renal agenesis/hypoplasia</td>
<td>1</td>
<td>32.5 (1.7-209)</td>
<td>0</td>
</tr>
<tr>
<td>Bladder extrophy</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Obstructive genitourinary defect</td>
<td>1</td>
<td>32.5 (1.7-209)</td>
<td>0</td>
</tr>
<tr>
<td>Reduction deformity, upper limbs</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reduction deformity, lower limbs</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Goldenhar syndrome</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gastrochisis</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Omphalocele</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Daphragmatic hernia</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Down syndrome</td>
<td>1</td>
<td>32.5 (1.7-209)</td>
<td>0</td>
</tr>
<tr>
<td>Trisomy 13</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trisomy 18</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chromosomal anomalies</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fetal alcohol syndrome</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Amniotic bands</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*1993 Arizona births not represented.

bRate per 10,000 live births.
GWV, Gulf War veteran; NDV, nondeployed veteran.

Adjusted Prevalence

The increased prevalence of tricuspid valve insufficiency and aortic valve stenosis among infants conceived postwar to male GWVs did not differ significantly when adjusted by state, maternal age, paternal age, race, marital status, education, plurality, parity, number of prenatal visits, gestational weight gain, branch of military service, or military rank (data not shown). Known risk factors for cardiovascular defects are few and include maternal diabetes mellitus, rubella, fever, and the absence of periconceptional multivitamin use (Botto et al., 2000). Family history, medication, welding, lead soldering, ionizing radiation and exposure to organic solvents or paint stripping have been associated with selected cardiovascular defects (Correa-Villaseñor et al., 1993), however, such exposure information was not available.

Moderate prenatal alcohol exposure and fetal growth retardation have been associated with renal agenesis or hypoplasia (Moore et al., 1997). Adjusting for prenatal
<table>
<thead>
<tr>
<th>Birth defect</th>
<th>Post-war to GWVs (n = 4,648)</th>
<th>Pre-war to GWVs (n = 6,863)</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Rateb (95% CI)</td>
<td>n</td>
</tr>
<tr>
<td>Anencephalus</td>
<td>0</td>
<td>4.3 (0.7-17.4)</td>
<td>0</td>
</tr>
<tr>
<td>Spina bifida without anencephalus</td>
<td>2</td>
<td>4.3 (0.7-17.4)</td>
<td>3</td>
</tr>
<tr>
<td>Encephalocele</td>
<td>3</td>
<td>6.4 (1.7-20.5)</td>
<td>6</td>
</tr>
<tr>
<td>Hydrocephalus without spina bifida</td>
<td>2</td>
<td>4.3 (0.7-17.4)</td>
<td>3</td>
</tr>
<tr>
<td>Anophthalmia/microphthalmia</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Congenital cataract</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Anotia/microtia</td>
<td>2</td>
<td>4.3 (0.7-17.4)</td>
<td>1</td>
</tr>
<tr>
<td>Common truncus</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Transposition of great arteries</td>
<td>1</td>
<td>2.2 (0.1-13.9)</td>
<td>3</td>
</tr>
<tr>
<td>Tetralogy of Fallot</td>
<td>2</td>
<td>4.3 (0.7-17.4)</td>
<td>3</td>
</tr>
<tr>
<td>Ventricular septal defect</td>
<td>10</td>
<td>21.5 (10.9-40.9)</td>
<td>13</td>
</tr>
<tr>
<td>Endocardial cushion defect</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pulmonary valve atresia, stenosis</td>
<td>3</td>
<td>6.4 (1.7-20.5)</td>
<td>6</td>
</tr>
<tr>
<td>Pulmonary valve insufficiency</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tricuspid atresia, stenosis</td>
<td>2</td>
<td>4.3 (0.7-17.4)</td>
<td>0</td>
</tr>
<tr>
<td>Tricuspid valve insufficiency*</td>
<td>10</td>
<td>28.7 (14.6-54.6)</td>
<td>8</td>
</tr>
<tr>
<td>Ebstein's anomaly</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aortic valve stenosis</td>
<td>5</td>
<td>10.8 (3.9-26.7)</td>
<td>0</td>
</tr>
<tr>
<td>Hypoplastic left heart syndrome</td>
<td>2</td>
<td>4.3 (0.7-17.4)</td>
<td>1</td>
</tr>
<tr>
<td>Dextrocardia*</td>
<td>1</td>
<td>2.4 (0.1-15.9)</td>
<td>0</td>
</tr>
<tr>
<td>Coarctation of aorta</td>
<td>5</td>
<td>10.8 (3.9-26.7)</td>
<td>1</td>
</tr>
<tr>
<td>Choanal atresia</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Lung agenesis/hypoplasia</td>
<td>4</td>
<td>8.6 (2.8-23.6)</td>
<td>3</td>
</tr>
<tr>
<td>Cleft palate without cleft lip</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Cleft lip with or without cleft palate</td>
<td>2</td>
<td>4.3 (0.7-17.4)</td>
<td>7</td>
</tr>
<tr>
<td>Esophageal atresia/tracheoesophageal fistula</td>
<td>2</td>
<td>4.3 (0.7-17.4)</td>
<td>2</td>
</tr>
<tr>
<td>Pyloric stenosis</td>
<td>7</td>
<td>15.1 (6.6-32.9)</td>
<td>14</td>
</tr>
<tr>
<td>Rectal/large intestinal atresia/stenosis</td>
<td>3</td>
<td>6.4 (1.7-20.5)</td>
<td>1</td>
</tr>
<tr>
<td>Hirschsprung disease</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bilary atresia</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hypospadias and epispadias</td>
<td>15</td>
<td>32.3 (18.8-54.5)</td>
<td>22</td>
</tr>
<tr>
<td>Renal agenesis/hypoplasia</td>
<td>5</td>
<td>10.8 (3.9-26.7)</td>
<td>0</td>
</tr>
<tr>
<td>Bladder exstrophy</td>
<td>1</td>
<td>2.2 (0.1-13.9)</td>
<td>0</td>
</tr>
<tr>
<td>Obstructive genitourinary defect</td>
<td>9</td>
<td>19.4 (9.4-38.2)</td>
<td>9</td>
</tr>
<tr>
<td>Reduction deformity, upper limbs</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Reduction deformity, lower limbs</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Goldenhar syndrome</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gastrochisis</td>
<td>3</td>
<td>6.4 (1.7-20.5)</td>
<td>1</td>
</tr>
<tr>
<td>Omphalocele</td>
<td>1</td>
<td>2.2 (0.1-13.9)</td>
<td>1</td>
</tr>
<tr>
<td>Diaphragmatic hernia</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Down syndrome</td>
<td>3</td>
<td>6.4 (1.7-20.5)</td>
<td>9</td>
</tr>
<tr>
<td>Trisomy 13</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trisomy 18</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Chromosomal anomalies*</td>
<td>1</td>
<td>2.4 (0.1-15.9)</td>
<td>2</td>
</tr>
<tr>
<td>Fetal alcohol syndrome</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Amniotic bands</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*1993 Arizona births not represented.

bRate per 10,000 live births.

cCalifornia births excluded.

dLogit estimator method.

1992 Arkansas births excluded.

GWV, Gulf War veteran; NDV, nondeployed veteran.

alcohol exposure and intrauterine growth retardation did not account for the higher prevalence of renal agenesis or hypoplasia among infants conceived postwar to GWV men. The increased prevalence of hypospadias did not differ when adjusted by state, maternal age, race, marital status, education, plurality, smoking, alcohol use, branch of military service, or military rank (data not shown). The etiology of hypospadias is multi-factorial and is hypothesized to be associated with endocrine abnormalities, preeclampsia, being small for gestational age, low birth weight, low parity, and paternal age (McIntosh et al., 1995; Fredell et al., 1998; Akre et al., 1999; Moller and Weidner, 1999). Adjusting for low birth weight, small for gestational age,
low parity, paternal age, and preeclampsia, however, did not account for the increased prevalence of hypospadias among infants conceived postwar to GWV women.

Cardiovascular Defects

Cardiovascular defects are complex, occurring concomitantly with other cardiac and noncardiac anomalies, and can be caused by many disorders (Waller et al., 1994; Bernstein et al., 1996). All birth defects codes of the postwar infants with congenital tricuspid valve insufficiency or aortic valve stenosis were reviewed in a blinded manner by a pediatric cardiologist (Dr. Lorenzo Botto, CDC) with training in cardiovascular epidemiology, dysmorphology, and genetics. Echocardiographic descriptions, however, were needed but were not available for 10 of these 23 case infants. Without such information, it is unclear if these cardiovascular defects occurred as structural malformations, or appeared as a minor component of other cardiovascular anomalies, or a condition secondary to cardiac congestive failure. Cardiac and noncardiac defects of these 23 case infants appear in Table 9.

DISCUSSION

In the absence of clinical evaluations for all GWV infants, the lack of national active surveillance for birth defects, and the absence of a Department of Defense Birth Defects Registry before 1998, this investigation provided an estimate of the prevalence of birth defects in a sample of GWV infants. The participating states represented all the active birth defects surveillance programs operating between 1989–93. Collectively, they are geographically and ethnically diverse and account for 14% of all national births. Such prevalence rates have not been previously determined among GWV progeny where birth defects prevalence are 1) determined through active case ascertainment; include 2) birth defects diagnosed through the first year of life; 3) birth defects occurred as structural malformations, or appeared as a minor component of other cardiovascular anomalies, or a condition secondary to cardiac congestive failure. Cardiac and noncardiac defects of these 23 case infants appear in Table 9.

Our observations were similar to those of Kang (2001) where an excess of “isolated anomalies” among infants conceived postwar to GWVs was reported. Cardiovascular and gastrointestinal anomalies comprised 30% of these “isolated anomalies,” however, birth defects were based on veteran self-reported data and were not validated against medical records. Kang et al. (2001) and Cowan et al. (1997) combined multiple birth defect codes into broad categories including “undescribed isolated heart abnormality,” “selected chromosomal anomalies,” and “selected congenital anomalies of the circulatory system,” whereas we reported prevalence for 48 specific birth defects categories. We found no differences in the risk for any of the combined 48 selected defects by deployment status. We observed an elevated risk of 4 birth defects, however, and these differences persisted after adjustment for known risk factors and population differences.

Our results differ from the studies of Cowan et al. (1997) and Penman et al. (1996) and are likely due to this study’s more thorough method of ascertainment cases. Data based on active surveillance methods offer a higher level of case ascertainment of birth defects than passive surveillance methods, hospital discharge data, or vital records (Lynberg et al., 1992). For example, half of cardiovascular defects are diagnosed after the neonatal period and would have been missed in a study based solely upon newborn diagnoses. Our observation of a temporal increase of aortic valve stenosis and renal agenesis or hypoplasia among infants of male GWVs could not have been reported in prior studies that were limited to live births conceived after the Gulf War. The excess of hypospadias among infants conceived postwar to female GWVs was not observed in previous studies because our cohort included admissions to nonmilitary hospitals, where 40% of such case infants were diagnosed.

No temporal differences in birth defects prevalence were observed among NDV infants. This suggests that the increased prevalence of tricuspid valve insufficiency, aortic valve stenosis, and hypospadias among GWV infants was not an artifact of reduced prevalence of these defects among NDV infants.

Etiologic factors and confounders associated with the reported birth defects trends could not be identified because the study was designed to measure birth defects prevalence. Although state birth defects programs collect selected risk factor and prenatal exposure information, this study was not able to identify specific military exposures, adverse events, or teratogenic influences during the periconceptional and prenatal periods. Unlike chemical defoliants like Agent Orange, a teratogen in laboratory animals, and a lipophilic agent where trace levels could be detected among veterans years after the Vietnam War (Stephenson et al., 1996), there is currently no single, recognized teratogen that can be measured precisely among Gulf War veterans.

Although this study had several advantages over previous Gulf War veteran’s birth defects studies, some methodological limitations must be acknowledged. Sampling in five of the six states was population based; however, the generalizability of data from our California military cohort might be questioned. The California Birth Defects Monitoring Program does not have access to data in military hospitals, therefore surveillance data were limited to those diagnosed in nonmilitary hospitals. Approximately 40% of births to military personnel occur in nonmilitary hospitals. It is unclear if the prevalence and types of birth defects differ among infants treated in military and nonmilitary hospitals. When data analysis excluded California for three birth defects categories that are not included in California’s birth defects surveillance activities, an excess risk of tricuspid valve insufficiency was observed among infants conceived postwar to male GWVs in the remaining five states.

Birth defects surveillance in Iowa from 1991–93 accounted for just two-thirds of the state’s births. Surveillance was not limited to selected counties or months; therefore, the denominator of live births could not be restricted to the sampled population. Instead, the denominator included all state births, which would likely underestimate the true prevalence rates. Military births in Iowa, however, accounted for just 3% of our military birth cohort. Further, when data analysis excluded Iowa, the observed trends persisted.

Our ability to identify military infants through linkage of military and birth certificate data depended on the availability of compatible unique personal identifiers. Linkage was likely more precise among states that recorded the social security number, or those with a maximum number of personal identifiers, such as Hawaii, where the sensitivity (87%), specificity (99%), and positive predictive value (97%) of the linkage algorithm was high (Araneta, 2000b). These were tested by comparing the estimated number of
Table 9
Infants Conceived Postwar with Tricuspid Valve Insufficiency or Aortic Valve Stenosis

<table>
<thead>
<tr>
<th>Infant</th>
<th>Parental data</th>
<th>Birth defects as abstracted from the birth defects surveillance case report</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33 yo Army, GV</td>
<td>Down syndrome (trisomy 21), tricuspid valve insufficiency or regurgitation (congenital), ostium (septum) secundum defect</td>
</tr>
<tr>
<td></td>
<td>25 yo G,F, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boy, 3,459 gm, 40 wks</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>34 yo Marine, GV</td>
<td>Tricuspid valve insufficiency or regurgitation (congenital), ventricular hypertrophy, patent ductus arteriosus, other specified anomalies of brain, other mishapen ear, other specified anomalies of nose, unilateral absence/agenesis/dysplasia/hypoplasia of kidneys (right), polyvcsytic kidneys (left, infantile type), congenital hydrocephrosis (left), adrenogenital syndrome</td>
</tr>
<tr>
<td></td>
<td>31 yo G,F, Asian</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Girl, 30 wks</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>24 yo Army, GV</td>
<td>Ventricular septal defect, atrial septal defect, tricuspid valve insufficiency or regurgitation (congenital), congenital stenosis of aortic valve, mitral valve insufficiency or regurgitation (congenital), anomalies of myocardium, hypoplastic right, ventricle, ventricular hypertrophy, other defects of the aorta, patent ductus arteriosus, unspecified coarctation of aorta, pulmonary artery stenosis, hypospadias (alone)</td>
</tr>
<tr>
<td></td>
<td>23 yo G,F, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boy, 3,203 gm, 38 wks</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>24 yo Navy, GV</td>
<td>Atrial septal defect, pulmonary valve insufficiency or regurgitation (congenital), tricuspid valve insufficiency or regurgitation (congenital), aortic valve insufficiency or regurgitation (congenital), mitral valve insufficiency or regurgitation (congenital), persistent left superior vena cava, other specified anomalies of great veins, tongue tie, displacement or transposition of stomach, malrotation of small intestine (alone), unilateral absence/agenesis/dysplasia/hypoplasia of kidneys (right), other and unspecified obstructive defects of renal pelvis and ureter, bowing (femur, right), hypoplasia of lower limb, other anomalies of ribs (right), other specified anomalies of spleen, situs inversus abdominis</td>
</tr>
<tr>
<td></td>
<td>19 yo G,F, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Girl, 2,015 gm, 34 wks</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>23 yo Army, GV</td>
<td>Single ventricle, ventricular septal defect, tricuspid valve insufficiency or regurgitation (congenital), congenital stenosis of aortic valve, Lutemmbacher's syndrome, absence/atria/hypoplasia of mitral valve, hypoplastic left heart syndrome, dextrocardia, without situs inversus, levocardia, other specified anomalies of heart, hypoplastic left ventricle, tricuspid valve insufficiency or regurgitation (congenital), renal anomalies of aorta, other specified anomalies of aorta, aneurysm of pulmonary artery, other specified anomaly of pulmonary artery, total anomalous pulmonary venous return, anomaly of the great veins, single umbilical artery, megalencephaly, pulmonary hypoplasia</td>
</tr>
<tr>
<td></td>
<td>22 yo G,F, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preeclampsia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boy, 4,309 gm, 39 wks</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>23 yo Navy, GV</td>
<td>Ventricular septal defect, ostium (septum) secundum defect, pulmonary valve insufficiency or regurgitation (congenital), tricuspid valve insufficiency or regurgitation (congenital), congenital stenosis of aortic valve, mitral valve insufficiency or regurgitation (congenital), congenital anomalies of heart, unspecified coarctation of aorta, hypoplasia of aorta</td>
</tr>
<tr>
<td></td>
<td>21 yo G,F, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boy, 2,410 gm, 33 wks</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>38 yo Air Force, GV</td>
<td>Tricuspid valve insufficiency or regurgitation (congenital), congenital stenosis of aortic valve, mitral valve insufficiency or regurgitation (congenital), other specified anomalies of heart, unspecified coarctation of aorta, hypoplasia of aorta</td>
</tr>
<tr>
<td></td>
<td>29 yo G,F, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boy, 2,797 gm, 29 wks, multiple birth</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>22 yo Navy, GV</td>
<td>Nonclosure of foramen ovale, atrial septal defect, tricuspid valve insufficiency or regurgitation (congenital), other anomalies of ribs</td>
</tr>
<tr>
<td></td>
<td>20 yo G,F, Asian</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Girl, 652 gm, 25 wks</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>26 yo Army, GV</td>
<td>Nonclosure of foramen ovale, tricuspid valve insufficiency or regurgitation (congenital), other anomalies of ribs</td>
</tr>
<tr>
<td></td>
<td>28 yo G,F, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ smoking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Girl, 1,035 gm, 36 wks</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>25 yo Marines, GV</td>
<td>Tricuspid valve insufficiency or regurgitation (congenital), hydrocephalus secondary to intraventricular hemorrhage or central nervous system bleed, other specified anomalies of brain, ventricular cysts, hypoglycemia</td>
</tr>
<tr>
<td></td>
<td>23 yo G,F, Hispanic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boy, 3,402 gm, 40 wks</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>37 yo Army, GV</td>
<td>Trisomy 18, microcephaly, posteriorly rotated ears, webbing of neck, congenital anomaly of neck, single ventricle, ventricular septal defect, atrial septal defect, tricuspid atresia, stenosis or hypoplasia, congenital stenosis of aortic valve, proximal coarctation of aorta, cleft lip (unilateral), other specified anomalies of face (bilateral), anomalies of fingers (bilateral), anomalies of hand (bilateral), anomalies of lower limb (foot, bilateral), hypertelorism, hypoplastic nails, other specified anomalies of breast (bilateral)</td>
</tr>
<tr>
<td></td>
<td>32 yo G,F, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boy, 1,965 gm, 38 wks</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>25 yo Air Force, ND</td>
<td>Spina bifida aperta, meningocele (thoracolumbar, lumbosacral, with hydrocephalus) atrial septal defect, tricuspid valve insufficiency or regurgitation (congenital), other specified anomalies of the aortic valves, absence/atria/hypoplasia of mitral valve, hypoplastic left heart syndrome, patent ductus arteriosus, unspecified coarctation of aorta, ateria of aorta, hypoplasia of aorta, other specified anomalies of aorta</td>
</tr>
<tr>
<td></td>
<td>24 yo G,F, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Girl, 2,550 gm, 37 wks</td>
<td></td>
</tr>
</tbody>
</table>

military infants based on electronic linkage against Hawaii birth certificates, which elicits and records parental military status (Arana et al., 2000a,b). Hawaii is the only state that records parental employment in the military on the birth certificate. As such, it was the only state for which we could evaluate the efficiency of our electronic linkage al-

Infants Conceived Postwar with Tricuspid Valve Insufficiency or Aortic Valve Stenosis (Continued)

<table>
<thead>
<tr>
<th>Infant</th>
<th>Parental data</th>
<th>Birth defects—as abstracted from the birth defects surveillance case report</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>31 yo Air Force, NDV</td>
<td>Blepharophimosis, other misshapen ear, ventricular septal defect, nonclosure of foramen ovale, tricuspid valve insufficiency or regurgitation (congenital), hypoplastic nails, ascites (congenital)</td>
</tr>
<tr>
<td>14</td>
<td>21 yo Navy, NDV</td>
<td>Tricuspid valve insufficiency or regurgitation (congenital), patent ductus arteriosus</td>
</tr>
<tr>
<td>15</td>
<td>30 yo Navy, NDV</td>
<td>Other specified ventricular septal defect, nonclosure of foramen ovale, tricuspid valve insufficiency or regurgitation (congenital), ventricular hypertrophy, patent ductus arteriosus, other specified anomalies of larynx and bronchus</td>
</tr>
<tr>
<td>16</td>
<td>21 yo Army, NDV</td>
<td>Ostium (septum) secundum defect, Lutembacher’s syndrome, single common atrium, stenosis of pulmonary valve, pulmonary valve insufficiency or regurgitation (congenital), tricuspid valve insufficiency or regurgitation (congenital), Ebstein anomaly, unspecified anomalies of the aortic valves, hypoplastic left ventricle, ventricular hypertrophy, patent ductus arteriosus, other specified anomaly of pulmonary artery, ascites (congenital)</td>
</tr>
<tr>
<td>17</td>
<td>20 yo Navy mother, NDV</td>
<td>Patent ductus arteriosus, neuroblastoma</td>
</tr>
<tr>
<td>18</td>
<td>25 yo Air Force, NDV</td>
<td>Neuroblastoma</td>
</tr>
<tr>
<td>19</td>
<td>37 yo Air Force, NDV</td>
<td>Nonclosure of foramen ovale, tricuspid valve insufficiency or regurgitation (congenital), mitral valve insufficiency or regurgitation (congenital), other specified anomalies of heart, anomalous bands of heart</td>
</tr>
<tr>
<td>20</td>
<td>29 yo Navy, NDV</td>
<td>Patent ductus arteriosus, neuroblastoma</td>
</tr>
<tr>
<td>21</td>
<td>22 yo Army, NDV</td>
<td>Common atrioventricular canal, congenital stenosis of aortic valve, hypoplastic left ventricle, patent ductus arteriosus</td>
</tr>
<tr>
<td>22</td>
<td>35 yo Air Force, NDV</td>
<td>Patent ductus arteriosus</td>
</tr>
<tr>
<td>23</td>
<td>35 yo Air Force, NDV</td>
<td>Patent ductus arteriosus</td>
</tr>
</tbody>
</table>

GWV, Gulf War veteran; NDV, nondeployed veteran; yo, years old.
of reported miscarriages among postwar conceptions of male GWVs compared to male NDVs. The availability of prenatal diagnosis of selected birth defects including Down syndrome, other chromosomal defects, and neural tube defects, has resulted in an increase in elective terminations, and a consequent reduction in the birth prevalence of such conditions. Enumerating the prevalence of birth defects among induced abortions is complex, however, because elective terminations are not reportable procedures in all states. A study by Forrester et al. (1998) demonstrated that birth prevalence rates for selected defects can increase by more than 50% if electively terminated cases are included.

Birth defects surveillance was limited to the infant’s first birthday; therefore, birth defects diagnosed after infancy are not represented. This is not a major limitation because 95% of birth defects are diagnosed during the initial 12 months of life (Stierman, 1994). Appropriate classification of birth defects, particularly cardiovascular and multiple defects, is an important factor in studies of birth defects prevalence. Prevalence rates of individual component defects may not capture the constellation of complex, multiple defects, or syndromes. Without prospective clinical data, including echocardiographic information, we were not able to implement a hierarchical classification system to assign infants with multiple anomalies to a single diagnostic group, giving the highest priority to structural malformations of the earliest embryonic origin.

Finally, multiple comparisons were carried out to test several independent tests of significance. We did not have any a priori hypotheses about associations between exposure to the Gulf War and risk of particular birth defects. We expected some of the relative risks to be significantly different, and that some associations might be spurious and attributable to chance. For example, among infants conceived postwar to male veterans, we computed relative risks for 26 birth defects categories. Differences were observed in 2 of 26 birth defects categories, but we expected 5%, or 1.3 of 26 birth defects categories to have a statistically significant result by chance. Similarly, when comparing GWV infants conceived postwar versus prewar, we found statistically significant differences in 2 of 24 birth defect categories, and expected 1.2 of 24 birth defects categories to differ due to chance alone. Among infants conceived postwar to women, prevalence was compared for seven birth defects categories; a significant difference was observed in one of seven categories, but 0.35 of 7 was expected to differ by chance.

The linkage algorithms in this study are currently used by some of the participating states to routinely link their vital statistics and birth defects surveillance data. These linkage methods have not been previously employed to assemble birth defects data among military progeny. This unique collaboration between the military and state health departments demonstrates the utility of linkage tools for epidemiological research. Moreover, it emphasizes the important role that state birth defects surveillance programs offer in monitoring birth defects trends.

CONCLUSION

Birth defects affect 1 of every 33 live births, with an unknown etiology for two thirds of all congenital anomalies. Evaluating the relationship between wartime environmental exposures and teratogenesis is complex because of methodological challenges including limited statistical power for rare events, multiple comparisons, problems in measuring and documenting myriad exposures, discerning paternal from maternal exposures, and case ascertainment and classification concerns. We suggest a higher prevalence of tricuspid valve insufficiency, aortic valve stenosis and renal agenesis or hypoplasia among infants conceived postwar to GWV men, as well as hypospadias among infants conceived postwar to female GWVs. We did not, however, have the ability to determine if the excess was caused by inherited, environmental, or synergistic factors, or was due to chance. Future studies should measure the prevalence of birth defects in other population-based samples of GWV progeny and consider etiologic factors that might be associated with specific birth defects.

ACKNOWLEDGMENTS

The authors thank C.M. Anderson, University of California, San Diego, for designing the matching algorithm, and K.S. Kaiser and A.C. Zau, formerly of Naval Health Research Center, for data review, management, and analysis. We appreciate the data preparation contributions of T. Hughes and Dr. M. Blair, Arizona Birth Defects Program; T.-M. Lin, Arkansas Department of Health; S. Hopkins, Arkansas Reproductive Health Monitoring System; B. Warmerdan, California Birth Defects Monitoring Program; E. Rhodenheiser, CDC, Metropolitan Atlanta Congenital Defects Program; M.B. Forrester, formerly with the Hawaiian Birth Defects Program; and W. Budelier, Iowa Birth Defects Registry. We thank Dr. L. Paulozzi, CDC, Metropolitan Atlanta Congenital Defects Program, for providing birth defects data; Dr. L. Botto, CDC, Birth Defects and Pediatric Genetics Branch, for interpreting and classifying cardiovascular defects; and Dr. C.A. Moore, CDC, Birth Defects and Pediatric Genetics Branch, for guidance in data interpretation.

REFERENCES

elective termination on the prevalence of selected birth defects in
Goss Gilroy, Inc. 1998. Health Study of Canadian Forces Personnel Involved
in the 1991 Conflict in the Persian Gulf. Ontario, Canada: Goss Gilroy
1:69–70.
discharge diagnoses index and the birth certificate as sources of infor-
Gulf War veterans: a population-based survey of 30,000 veterans. Ann
Epidemiol 11:504–511.
Epidemiologic research. Principles and quantitative methods. New
Kline J, Stein Z, Susser M. 1989. Conception and reproductive loss: proba-
bilities. In: Conception to birth, epidemiology of prenatual develop-
McIntosh GC, Olshan AF, Baird PA. 1995. Paternal age and the risk of birth
Defects Program procedure manual: Birth defects and genetic diseases
branch 6-digit code for reportable congenital anomalies. Atlanta, GA:
Centers for Disease Control and Prevention A32–87.
Moller H, Weidner IS. 1999. Epidemiology of cryptorchidism and hypos-
sumption during pregnancy increase the risk for renal anomalies
NIH Technology Assessment Workshop Panel. 1994. The Persian Gulf
Experience and Health. JAMA 272:391–396.
Penman AD, Currier MM, Tarver RS. 1996. No evidence of increase in birth
defects and health problems among children born to Persian Gulf War
Cary, NC.
Stephenson J. 1996. New IOM report links Agent Orange exposure to risk of
British vets suspect link between illness, birth defects in offspring.
United States General Accounting Office. 1994. Operation Desert Storm:
questions on possible exposure to reproductive toxins. Washington,
DC:GAO/PEMD. pp. 94–130.
aortic regurgitation. A clinical morphologic assessment—Part I. Cln
Cardiol 17:85–92.
Canada: InfoSoft Inc.
Title and Subtitle
Prevalence of Birth Defects among Infants of Gulf War Veterans in Arkansas, Arizona, California, Georgia, Hawaii, and Iowa, 1989-1993

Authors
Maria Rosario G. Araneta, PhD, MPH; Karen M. Schlangen, MA; Larry D. Edmonds, MSPH; Daniel A. Destiche, BA; Ruth D. Merz, MS; Charlotte A. Hobbs, MD, PhD; Timothy J. Flood, MD; John A. Harris, MD, MPH; Diane Krishnamurti, MS; and Gregory C. Gray, MD, MPH

Performing Organization Name(s) and Address(es)
Naval Health Research Center
P.O. Box 85122
San Diego, CA 92186-5122

Abstract
Previous studies of birth defects prevalence among infants of Gulf War veterans (GWV) were limited to military hospitals, newborn diagnoses, self-reports, or small sample sizes. The objective is to measure the prevalence of birth defects among GWV infants in states that conducted active case ascertainment of birth defects between 1989 and 1993. Military personnel and dependents’ data were matched against birth certificate records from Arizona, Hawaii, Iowa, and selected counties of Arkansas, California, Georgia. Birth certificate data of these military infants were linked with state birth defects surveillance records. Data from 684,645 GWVs and 1,587,102 nondeployed veterans (NDV) were linked with 2,314,908 birth certificate records; 45,013 military births were identified (11,961 GWV infants and 33,052 NDV infants). Of these, 18,079 (40%) were postwar conceptions.

Main Outcome Measures:
- 46 selected birth defects categories.

Results:
- Among postwar conceptions, GWV infants had an increased prevalence of tricuspid valve insufficiency or regurgitation (Relative risk (RR): 2.7, 95% confidence intervals (CI): 1.1-6.4), aortic stenosis (RR: 6.6 (1.4-44.9), and coarctation of the aorta (RR: 4.4 (1.1-21.2) compared to postwar NDV conceptions.
- Among GWV infants, renal agenesis and hypoplasia was significantly higher among postwar conceptions than prewar conceptions.
- Among women GWVs, postwar conceptions had a higher prevalence of hypospadias than postwar conceptions of NDV women.

Conclusions: Future investigations should evaluate the etiology of these birth defects among GWV infants conceived after the Gulf war.

Subject Terms
Aortic stenosis, birth defects, coarctation of the aorta, congenital anomalies, hypospadias, Persian Gulf War, renal agenesis and hypoplasia, surveillance, tricuspid valve insufficiency and regurgitation

Distribution/Availability Statement
Approved for public release; distribution unlimited.

Security Classification
UNCL

1. Report Date (DD MM YY)
 Oct 31, 2000

2. Report Type
 New

3. Dates Covered (from - to)
 1989-1993

5a. Contract Number:
5b. Grant Number:
5c. Program Element:
5d. Project Number:
5e. Task Number:
5f. Work Unit Number: 6373D.4464.001-6423

8. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)
 Chief, Bureau of Medicine and Surgery
 MED-02
 2300 E St NW
 Washington DC 20372-5300

10. Sponsor/Monitor’s Acronyms(s)
 BUMED

12. Distribution/Availability Statement
 Approved for public release; distribution unlimited.

13. Supplementary Notes
 Published in Birth Defects Research (Part A), 2003, 67, 246-260

14. Abstract (maximum 200 words)
 Previous studies of birth defects prevalence among infants of Gulf War veterans (GWV) were limited to military hospitals, newborn diagnoses, self-reports, or small sample sizes. The objective is to measure the prevalence of birth defects among GWV infants in states that conducted active case ascertainment of birth defects between 1989 and 1993. Military personnel and dependents’ data were matched against birth certificate records from Arizona, Hawaii, Iowa, and selected counties of Arkansas, California, Georgia. Birth certificate data of these military infants were linked with state birth defects surveillance records. Data from 684,645 GWVs and 1,587,102 nondeployed veterans (NDV) were linked with 2,314,908 birth certificate records; 45,013 military births were identified (11,961 GWV infants and 33,052 NDV infants). Of these, 18,079 (40%) were postwar conceptions. Main Outcome Measures: 46 selected birth defects categories. Results: Among postwar conceptions, GWV infants had an increased prevalence of tricuspid valve insufficiency or regurgitation (Relative risk (RR): 2.7, 95% confidence intervals (CI): 1.1-6.4), aortic stenosis (RR: 6.6 (1.4-44.9), and coarctation of the aorta (RR: 4.4 (1.1-21.2) compared to postwar NDV conceptions. Among GWV infants, renal agenesis and hypoplasia was significantly higher among postwar conceptions than prewar conceptions. Among women GWVs, postwar conceptions had a higher prevalence of hypospadias than postwar conceptions of NDV women. Conclusions: Future investigations should evaluate the etiology of these birth defects among GWV infants conceived after the Gulf war.

15. Subject Terms
 Aortic stenosis, birth defects, coarctation of the aorta, congenital anomalies, hypospadias, Persian Gulf War, renal agenesis and hypoplasia, surveillance, tricuspid valve insufficiency and regurgitation

17. Limitation of Abstract
 UNCL

18. Number of Pages
 15
