Award Number: DAMD17-00-1-0361

TITLE: Breast Cancer Training Program

PRINCIPAL INVESTIGATOR: Kenneth H. Cowan, M.D., Ph.D.

CONTRACTING ORGANIZATION: University of Nebraska Medical Center
Omaha, Nebraska 68198-6810

REPORT DATE: August 2003

TYPE OF REPORT: Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.
Breast Cancer Training Program

Kenneth H. Cowan, M.D., Ph.D.

University of Nebraska Medical Center
Omaha, Nebraska 68198-6810

E-Mail: kcowan@unmc.edu

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Approved for Public Release; Distribution Unlimited

The Breast Cancer Training Program (BCTP) in the Eppley Cancer Institute of the University of Nebraska Medical Center offers predoctoral and postdoctoral trainees a comprehensive training environment in breast cancer by supporting, in part, and outstanding breast cancer seminar program, a short course in cancer biology, a breast cancer focus group and by providing stipend support to trainees performing research that is highly relevant to breast cancer. In the first three years of this award, we have provided stipends to seven predoctoral and nine postdoctoral trainees. Four of the seven of the predoctoral trainees have completed their graduate training and have secured postdoctoral positions in outstanding laboratories in research areas directly related to breast cancer. Four of the postdoctoral trainees have obtained new positions, one is pursuing additional educational training and four remain in training. Publications in highly ranked journals are beginning to result from the research of the BCTP trainees. We are currently evaluating a large group of highly qualified applicants for support in year four.

Breast cancer, institutional training grant, predoctoral training, postdoctoral training

Unclassified

Unclassified

Unclassified

Unlimited
Table of Contents

Cover.........................................................................................1

SF 298......................................................................................2

Table of Contents.........................................................................3

Introduction................................................................................

Body..........................................................................................

Key Research Accomplishments..............................................4

Reportable Outcomes..............................................................8

Conclusions..............................................................................

References.................................................................................

Appendices...............................................................................10
I. Key Accomplishments.

Task 1. We will develop and maintain a Breast Cancer Training Program for graduate students and postdoctoral fellows that will include the following academic programs (programs and activities were detailed in application). The Breast Cancer Focus Group continues to meet monthly and the Student/Fellow Research Forum continues to meet weekly during the academic year. The 2003 Short Course in Cancer Biology was held May 12-14 and the internationally recognized visiting faculty for this course are listed in Table 1. The Eppley Institute continues to sponsor an outstanding seminar program with a strong emphasis on breast cancer. Speakers on breast cancer in the 2002-03 academic year are listed in Table 2.

<table>
<thead>
<tr>
<th>Faculty</th>
<th>Institution</th>
<th>Title of Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Jeffrey Holt</td>
<td>University of Colorado Health Science Center, Denver, CO</td>
<td>Pathobiology and Genetics of Breast Cancer</td>
</tr>
<tr>
<td>Dr. Nita Maihle</td>
<td>Mayo Clinic, Rochester, MN</td>
<td>Growth Factor Regulation of Breast Cancer</td>
</tr>
<tr>
<td>Dr. William Mueller</td>
<td>McGill University, Quebec, ON, Canada</td>
<td>Transgenic Models of Breast Cancer</td>
</tr>
<tr>
<td>Dr. Mary (Nora) Disis</td>
<td>Washington University, Seattle, WA</td>
<td>Novel Therapeutic for the Treatment of Breast Cancer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Speaker</th>
<th>Institution</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 26, 2002</td>
<td>Dr. Martin Privalsky</td>
<td>University of California at Davis</td>
<td>A Molecular Toggle Switch: Nuclear Hormone Receptors and Transcriptional Regulation</td>
</tr>
<tr>
<td>October 10, 2002</td>
<td>Dr. Joe W. Gray</td>
<td>UCSF Comprehensive Cancer Center</td>
<td>Genome Evolution in Breast Cancer: Predictive Markers to Therapeutics Targets</td>
</tr>
<tr>
<td>October 24, 2002</td>
<td>Dr. David Zava</td>
<td>ZRT Laboratory Beaverton, Oregon</td>
<td>Hormonal Imbalance and Cancer Risk: The Estrogen Matrix</td>
</tr>
<tr>
<td>October 31, 2002</td>
<td>Dr. Al Reynolds</td>
<td>The Vanderbilt-Ingram Cancer Center</td>
<td>p 120-Catenin: Tumor Suppressor or Metastasis</td>
</tr>
<tr>
<td>November 7, 2002</td>
<td>Dr. Barbara Vonderhaar</td>
<td>NCI</td>
<td>Prolactin in Mammary Development and Tumorigenesis</td>
</tr>
<tr>
<td>November 14, 2002</td>
<td>Dr. Philip Thorpe</td>
<td>UT Southwestern Medical Center</td>
<td>Vascular Targeting Agents for the Treatment of Solid Tumors</td>
</tr>
<tr>
<td>January 16, 2003</td>
<td>Dr. Robert Cardiff</td>
<td>University of California, Davis</td>
<td>Breast Cancer: Lessons from the mouse</td>
</tr>
<tr>
<td>February 6, 2003</td>
<td>Dr. Russell Reiter</td>
<td>The University of Texas Health Science Center</td>
<td>Actions of Melatonin</td>
</tr>
<tr>
<td>March 13, 2003</td>
<td>Dr. Donald Patrick McDonnell</td>
<td>Duke University Medical Center</td>
<td>Nuclear receptor-cofactor interactions: Points of convergence between multiple signaling pathways</td>
</tr>
<tr>
<td>April 10, 2003</td>
<td>Dr. Chu-Xia Deng</td>
<td>NIH</td>
<td>BRCA1 and Tumorigenesis</td>
</tr>
<tr>
<td>April 17, 2003</td>
<td>Dr. Jerry Zambetti</td>
<td>St. Jude Children's Research Hospital</td>
<td>Regulators and mediators of the p53 tumor suppressor pathway.</td>
</tr>
<tr>
<td>April 24, 2003</td>
<td>Dr. Jose Russo</td>
<td>Fox Chase Cancer Center</td>
<td>A new paradigm in the prevention of human breast cancer</td>
</tr>
<tr>
<td>May 1, 2003</td>
<td>Dr. Gail Prins</td>
<td>University of Illinois at Chicago</td>
<td>Estrogenic regulation of steroid receptors, morphogens and signaling pathways during prostate development</td>
</tr>
</tbody>
</table>
Task 2. We will recruit qualified students and fellows to the Breast Cancer Training Program and, through the laboratories of the training faculty, provide a stimulating, comprehensive and multidisciplinary training experience pertaining directly to breast cancer. Seven predoctoral and nine postdoctoral trainees have been supported by this training grant during the first three years of the four year award period. Four of the seven predoctoral trainees have now completed their training in the Eppley Institute and have moved to other positions. Four of the nine postdoctoral trainees supported in the past three years remain in training. One former fellow is pursuing further clinical training. A summary of the research of each trainee is presented below.

Djuana Harvell, Ph.D.; predoctoral trainee in year 01
Dr. Harvell demonstrated that a 40% restriction of dietary energy consumption inhibits estrogen-induced mammary carcinogenesis in the female ACI rat. This inhibition occurs at a step subsequent to development of focal regions of atypical hyperplasia. Three first author manuscripts were published in the past two years and a fourth has been submitted for publication. Dr. Harvell is now a postdoctoral fellow in the laboratory of Dr. Kate Horwitz at the University of Colorado Health Sciences Center, where she is continuing to study the role of progesterone hormones in breast cancer.

Michelle VanLith, Ph.D.; predoctoral trainee supported in year 01
Dr. VanLith defined the cellular bases of tumor-specific immune responses to MUC-1. She is first author of a manuscript, listed below, that has been accepted for publication. A second first author manuscript has been submitted for publication. Dr. VanLith is currently a postdoctoral fellow in the laboratory of Dr. V. Englehardt at the University of Virginia, working in the area of tumor immunology.

Jennifer Brennan, Ph.D.; predoctoral trainee supported in year 01
Dr. Brennan demonstrated that kinase suppressor of ras (KSR) cycles through the nucleus in a phosphorylation dependent manner. Cellular localization was also impacted by specific interactions with MEK. Dr. Brennan is currently a postdoctoral fellow at St. Jude Children’s Hospital working in the laboratory of Dr. John Cleveland.

Martin Tochacek, Ph.D.; predoctoral trainee in year 02
The title of Dr. Tochacek’s dissertation was Genetics of Susceptibility to Estrogen-Induced Mammary Cancers in the Rat. Dr. Tochacek completed his doctoral training in 2002 and remains a postdoctoral fellow at Duke University working in the laboratory of Dr. Donald McDonnell. Two manuscripts from Dr. Tochacek’s research work with Dr. Shull have been submitted for publication.

Kimberly Wielgus; predoctoral trainee supported in year 02
Ms. Wielgus is working toward her Ph.D. in nursing and is investigating fatigue in patients with advanced stage breast cancer. Although Ms. Wielgus is in the early stages of her dissertation research, her participation in the activities of the Breast Cancer Research Program has enabled her to gain a fundamental understanding of the disease process as well as its genetic and molecular bases. Ms. Wielgus is working on her proposal dissertation for stage 3 & 4 breast cancer patients studying the symptomology of fatigue/sleep and melatonin levels and circadian melatonin rhythms. She recently received a four-year Scholarship in Cancer Nursing from the American Cancer Society.
Scott Stoeger, BS; postdoctoral trainee in year 03
Scott is an MD/PhD student working on understanding how the Kinase Suppressor of Ras (KSR) may play a role in determining cellular sensitivity to chemotherapeutic agents. In addition, he is examining the expression of KSR in a variety of cancer cell lines. He is an author on one manuscript that is submitted for publication.

Tracy Strecker, Ph.D.; predoctoral trainee in year 03
Mr. Strecker is nearing completion of his doctoral studies and has one manuscript submitted for publication at this time. He is currently working on 2 additional manuscripts. His work focused on the identification of genetic loci involved in estrogen-induced tumorigenesis in ACI and Copenhagen Rats.

Benjamin (Bin) Xie, M.D., Ph.D.; postdoctoral trainee in year 01
Dr. Xie demonstrated that expression of progesterone receptor (PR) is much higher in the focal regions of atypical hyperplasia and mammary carcinoma induced in ACI rats by continuous treatment with estradiol than in normal or hyperplastic mammary glands. These data are included in two published manuscripts. Dr. Xie also demonstrated that expression of Cdkn2a is markedly down-regulated as an early event in estrogen-induced mammary carcinogenesis. Dr. Xie has completed his training and is pursuing additional clinical training with the intent to begin clinical practice. One additional manuscript describing Dr. Xie’s work is nearing submission.

Constance Dooley, Ph.D.; postdoctoral trainee supported in year 01
Dr. Dooley tested the hypothesis that ectopic Kinase Suppressor of Ras (KSR) will inhibit the transformation properties of human cancer cells in vitro and the tumorigenic potential of mammary tissue in vivo. Dr. Dooley successfully generated high-titer recombinant baculovirus for full-length KSR, KSR with two mutated phosphorylation sites, the carboxy terminal half of KSR, the amino terminal half of KSR, and two forms of KSR with reduced or absent activity. Dr. Dooley is currently a postdoctoral fellow in the lab of Dr. Monica Vetter at the University of Utah. She is focusing on the regulation of the activity of the basic-helix loop-helix, class of transcription factors by Kinase GFK3 beta in retinal development.

David Smith, Ph.D.; postdoctoral trainee supported in year 01
Dr. Smith investigated the regulation of the human MUC1 gene. MUC1 has been shown to be up-regulated in many forms of cancer including breast cancer. He performed in vivo footprinting experiments to locate the positions of transcription factor binding sites in the promoter region of the MUC1 gene. Finally, he initiated a translational study in which cDNA array technologies are being used to compare gene expression profiles in primary breast cancers and associated axillary lymph node metastasis. Dr. Smith is currently an instructor in the UNMC Department of Surgery. He is also working in K.C. Balaji’s lab at UNMC, studying the role of the Protein Kinase Cα gene in prostate cancer.

Beverly Schaffer, Ph.D.; postdoctoral trainee in year 02
Dr. Schaffer joined the BCTP in December of 2001. She is generating congenic rat lines in which Brown Norway alleles for Emca1, Emca2 and Emca3 are carried on the ACI background. She has We have demonstrated that these Emca loci determine susceptibility to estrogen-induced mammary cancer in crosses between the ACI and BN rat strains. The congenic lines will be characterized to define the roles of each Emca locus in estrogen-induced mammary carcinogenesis and to define map each Emca locus. Dr. Schaffer recently received an individual postdoctoral fellowship from the DOD BCRP. She has one manuscript nearing submission and
has presented her research at the 2002 meeting of the BCRP and the 2003 Histopathology of Cancer Workshop supported by the AACR and the NIH.

Nicolas Moniaux, Ph.D.; postdoctoral trainee supported in year 02
Dr. Moniaux has cloned and characterized the MUC4 genes from rat and human and is defining the interactions between MUC4 and HER2. He is testing the hypothesis that MUC4/HER2 interactions contribute to pathogenesis of breast cancer. Dr. Moniaux’s currently a research assistant professor in the Department of Biochemistry and Molecular Biology at UNMC. The overall goals of Dr. Moniaux’s research are to understand the impact of the membrane-anchored mucin, MUC4, on breast cancer. Preliminary data reveal an upregulation of MUC4 in 45% of the breast carcinomas. When expressed, MUC4 participates in the subcellular localization of HER2. He is testing the hypothesis that MUC4 contributes to the pathogenesis of breast cancer, and is an important factor in the resistance of breast cancer to classical treatment.

Adrian Reber, Ph.D.; postdoctoral trainee supported in year 02
Dr. Reber explored the role of invariant chain (Ii) in breast tumor cells. In addition to its normal expression on antigen-presenting cells, Ii expression is upregulated in many breast tumors. He has found that expression of Ii on breast tumor cells results in an increase in the number of cell surface major histocompatibility complex class I molecules, but also destabilizes the binding of antigenic peptides to those molecules. Thus the expression of Ii by tumor cells qualitatively and quantitatively alters the presentation of antigens on those cells. In addition, Dr. Reber has tested fms-like tyrosine kinase 3 (Flt3) ligand, delivered by recombinant adenovirus, as a therapy for breast cancer in a mouse model. In these experiments, he has compared the dose response and kinetics of adenovirally delivered Flt3 ligand to soluble Flt3L. Most notably, he has discovered that adenovirus-Flt3 ligand has superior effectiveness at lower dosage than soluble Flt3 ligand, in that a single intravenous injection of adenovirus-Flt3L causes tumor regression. Dr. Reber is first author on 2 manuscripts which are nearing submission. Dr Reber is currently at the University of Georgia as a postdoctoral fellow in the Department of Large Animal Medicine at the University of Georgia working on vaccine research and development.

Lois Beckerbauer, Ph.D.; postdoctoral trainee in year 03
Dr. Beckerbauer continues her training in Dr. Shull’s laboratory and recently received an individual postdoctoral fellowship from the DOD BCRP. She is coauthor on Dr. Xie’s manuscript that is nearing submission and is first author on a second manuscript nearing submission. She had a poster presentation accepted at the 2003 meeting of the AACR.

Chao Jiang, BS, M.D.; postdoctoral research associate in year 03
Dr. Jiang is currently studying the roles of the transcription cofactors in estrogen receptor-mediated transcription and tumorigenesis. She has given two presentations at the meeting of Cancer Genetics & Tumor Suppressor Genes at Cold Spring Harbor, New York in August 2002. Dr. Jiang is first author on 2 papers which have been submitted.

Task 3. We will maintain oversight of the Breast Cancer Training Program to ensure that all progress reports and communications are submitted as required and that the training faculty and trainees fulfill their respective obligations to the program. We are currently evaluating predoctoral and postdoctoral candidates for support from the training grant. All progress reports have been submitted as required. All activities associated with the Breast Cancer Training Program, as described in our application, are being organized.
II. Reportable Outcomes.

A. Published Manuscripts (funded trainees are underlined):


B. Degrees obtained:

Michelle VanLith, Ph.D. degree granted August 2001.
Martin Tochacek, Ph.D. degree granted June 2002.

C. Cell lines generated:

B. Xie/J. Shull normal mammary epithelium, ACI rat
B. Xie/J. Shull normal mammary epithelium, Copenhagen rat
B. Xie/J. Shull estrogen-induced mammary carcinoma, ACI rat
C. Jiang/ H. Xiao cultured these cell lines HepG2-TIP30 and HepG2-TIPM3

D. Related funding:
Beverly Schaffer received an individual postdoctoral fellowship from the DOD BCRP. Lois Beckerbauer received an individual postdoctoral fellowship from the DOD BCRP. Kim Wielgus, Scholarship in Cancer Nursing, American Cancer Society, 2002-2006 and an additional grant for her research studies from NASA. Scott Stoeger has been awarded a graduate studies assistantship from UNMC.

E. Employment received:

Dr. Michelle VanLith (Ph.D., June 2001) accepted a postdoctoral position in the laboratory of Dr. V. Englehard at the University of Virginia, working in the area of tumor immunology.

Djuana Harvell (Ph.D., December 2001) accepted a postdoctoral position in the laboratory of Dr. Kate Horwitz at the University of Colorado Health Science Center. She is studying steroid hormones and breast cancer.

Jennifer Brennan (Ph.D., December 2001) accepted a postdoctoral position in the laboratory of Dr. John Cleveland at St. Jude Children's Hospital.

Martin Tochacek (Ph.D., June 2002) accepted a postdoctoral position in the laboratory of Dr. Donald McDonnell at Duke University, working in the area of steroid hormone action.

Constance Dooley (postdoctoral trainee, 2000-2002) accepted a postdoctoral position in the laboratory of Monica Vetter at the University of Utah.

Nicholas Moniaux (postdoctoral trainee 2002-2003) accepted a research assistant professorship in the Department of Biochemistry and Molecular Biology at UNMC.

David Smith (postdoctoral trainee supported in 2001-2002) accepted a position of Instructor in the UNMC Department of Surgery.

Adrian Reber (postdoctoral trainee supported in year 2001-2002) accepted a position of Postdoctoral Fellow at the University of Georgia in the Department of Large Animal Medicine.
Rat Strain Specific Attenuation of Estrogen Action in the Anterior Pituitary Gland by Dietary Energy Restriction

Djuana M. E. Harvell, Linda K. Buckles, Karen A. Gould, Karen L. Pennington, Rodney D. McComb, and James D. Shull

1Eppley Institute for Research in Cancer, 2Department of Pathology and Microbiology, and 3Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE

The purpose of this study was to compare the effects of a 40% restriction of dietary energy consumption, relative to that consumed by rats allowed to feed ad libitum, on the ability of 17β-estradiol (E2) to induce pituitary tumorigenesis in two inbred rat strains, ACI and Copenhagen (COP), which are very closely related genetically. Ovary-intact ACI and COP rats were fed either a control or an energy-restricted diet beginning at 8 wk of age. Continuous treatment with E2, released from subcutaneous Silastic tubing implants, was initiated at 9 wk of age and the animals were killed 12 wk later. Estrogen-induced pituitary tumorigenesis is associated with rapid induction of lactotroph hyperplasia, increased pituitary mass, and hyperprolactinemia. E2 significantly increased pituitary mass and circulating prolactin (PRL) in both ACI and COP rats, and this response was significantly greater in ACI rats relative to COP. Dietary energy restriction did not inhibit E2-induced pituitary growth in the ACI rat. By contrast, E2-induced pituitary growth in COP rats was attenuated by dietary energy restriction, as evidenced by quantification of pituitary mass, pituitary weight to body weight ratio, circulating PRL, and pituitary cell proliferation. This study indicates that sensitivity to the inhibitory actions of dietary energy restriction on E2-induced pituitary tumorigenesis is genetically determined.

Key Words: ACI rat; COP rat; prolactin; lactotroph; estrogen; tumorigenesis.

Introduction

Estrogens exert several well-defined actions on the prolactin (PRL)-producing lactotroph of the mammalian anterior pituitary gland (reviewed in 1, 2). Specifically, estrogens stimulate lactotroph proliferation (3–5), promote lactotroph survival (6, 7), and activate transcription of the PRL gene (8–11). In certain inbred rat strains, including Fischer 344 (F344) (12, 13), ACI (14–16), and Copenhagen (COP) (16, 17), several weeks of continuous treatment with estrogens results in up to a 20-fold increase in pituitary mass and associated hyperprolactinemia. Histologically, the grossly enlarged pituitary glands of the estrogen-treated rats exhibit lactotroph hyperplasia and hypertrophy, significantly increased proliferation within the lactotroph population, and, in some instances, they exhibit lactotroph adenoma (1, 2, 4, 5, 18, 19). Pituitary mass in the estrogen-treated rats correlates with both the DNA content of the pituitary gland (12, 20, 21) and the level of PRL in the circulation (16), indicating that the increase in pituitary mass results in large part from an expansion of the lactotroph population. Although prolonged treatment of rats with estrogens can on occasion lead to development of pituitary carcinoma, morbidity and/or mortality generally result from the mass effect of the markedly enlarged pituitary gland on the brain and/or hyperprolactinemia before these malignant lesions develop (2). Consequently, these rat models of estrogen-induced pituitary tumorigenesis are best suited for studying the early events associated with estrogen-induced carcinogenesis.

The lactotroph of the anterior pituitary gland also provides a valuable model for the study of the genetic factors that impact cellular responsiveness to estrogens. Whereas the F344, ACI, and COP rat strains each exhibit a significant and highly reproducible increase in pituitary mass in response to continuous estrogen treatment, these three rat strains differ quantitatively in the extent to which pituitary mass and circulating PRL increase in response to a defined duration of estrogen treatment (2, 12, 16, 22, 23). Moreover, other rat strains, including Brown Norway (BN) (16, 23) and Holtzman (12, 20), exhibit very little increase in pituitary mass in response to continuous estrogen treatment. Several studies indicate that the extent to which estrogens increase pituitary mass and hyperprolactinemia in different rat strains is genetically determined (2, 12, 13, 16, 21, 24). Wendell et al., in genetic crosses between the F344 and BN rat strains, have mapped to rat chromosomes 2, 3, 5, and 9 six distinct loci that determine the extent to which estrogens increase pituitary mass (21, 24). Our laboratory has mapped to rat chromosomes 1, 3, 6, and 10 five genetic loci that determine...
estrogen-induced pituitary mass in crosses between the ACI and COP rat strains (Strecker et al., manuscript submitted). Interestingly, the genetic loci mapped in the crosses between the F344 and BN strains are for the most part distinct from those mapped in the crosses between the ACI and COP rat strains, indicating that multiple genes determine the manner and/or the extent to which the pituitary gland responds to estrogens. Although the identities of the genes that reside within each of these loci and determine the actions of estrogens on the lactotroph population are not currently known, the recent initial release of the rat genome sequence and the continuing development of rat genetic databases is expected to facilitate greatly the identification of these genes.

Dietary energy consumption appears to be an important determinant of cancer risk in human populations and is a potent modulator of carcinogenesis in several animal models (25–30). It has often been suggested that dietary energy consumption might impact carcinogenesis by modulating the endocrine system. For the past few years our laboratory has been evaluating the effects of differing levels of dietary energy consumption on estrogen-induced pituitary tumorigenesis in inbred rat strains in which the genetic bases of sensitivity to the pituitary-tumor-inducing actions of estrogens are relatively well defined. Data from these studies demonstrate rat-strain-specific effects of dietary energy consumption on estrogen-induced tumorigenesis in the pituitary gland. A 40% restriction of dietary energy consumption virtually abolished the increase in pituitary mass in F344 rats treated continuously with either the synthetic estrogen diethylstilbestrol (DES) or the naturally occurring estrogen 17β-estradiol (E2), relative to that observed in F344 rats that were allowed to feed ad libitum (5,20,31). In contrast, no inhibitory effect of dietary energy restriction was observed in E2-treated ACI rats (31–33). In order to define further the interactions between dietary energy consumption and estrogens in the regulation of the lactotroph population of the anterior pituitary gland, we have in this study directly compared the effect of dietary energy restriction on estrogen-induced hyperplastic growth and hyperprolactinemia in the genetically related ACI and COP rat strains. The data presented herein indicate that the ACI and COP strains differ significantly in sensitivity to the antitumorigenic actions of dietary energy restriction and set the stage for future studies in which diet-estrogen-gene interactions can be assessed.

Results

Rat-Strain-Specific Inhibitory Action of Dietary Energy Restriction on Estrogen-Induced Pituitary Growth and Hyperprolactinemia

Twelve weeks of E2 treatment significantly increased pituitary mass in female ACI rats fed the control diet, from a mean of 12.0 mg in untreated rats to 41.0 mg in E2-treated rats ($p < 0.01$) (Fig. 1A). Treatment with E2 also signifi-

![Fig. 1. Dietary energy restriction does not inhibit 17β-estradiol-induced pituitary growth in ovary-intact ACI rats. Female ACI rats were fed the control or energy restricted diet and treated with E2 for 12 wk as described in Materials and Methods. The anterior pituitary gland was removed and weighed immediately following death. (A) Each bar represents the mean (± SEM; n = 7–8) anterior pituitary weight. (B) Each bar represents the mean (± SEM; n = 7–8) ratio of anterior pituitary weight to final body weight. Numerals: 1, indicates a statistically significant difference ($p \leq 0.05$) between untreated and E2-treated animals fed the same diet; 2, indicates a statistically significant difference ($p \leq 0.05$) between similarly treated animals fed the different diets.](image-url)
Fig. 2. Dietary energy restriction inhibits 17β-estradiol-induced pituitary growth in ovary-intact COP rats. Female COP rats were fed the control or energy-restricted diet and treated with E2 for 12 wk as described in Materials and Methods. The anterior pituitary gland was removed and weighed immediately following death. (A) Each bar represents the mean (± SEM; n = 7–8) anterior pituitary wet weight. (B) Each bar represents the mean (± SEM; n = 7–8) ratio of anterior pituitary wet weight to final body weight. Numerals: 1, indicates a statistically significant difference (p ≤ 0.05) between untreated and E2-treated animals fed the same diet; 2, indicates a statistically significant difference (p ≤ 0.05) between similarly treated animals fed the different diets.

Fig. 3. Rat-strain-specific effects of dietary energy restriction on 17β-estradiol-induced hyperprolactinemia. PRL in serum from trunk blood collected from (A) ACI and (B) COP rats was quantified by radioimmunoassay as described in Materials and Methods. Each data point represents mean (± SEM; n = 7–8) level of circulating PRL at the time of sacrifice. Numerals: 1, indicates a statistically significant difference (p ≤ 0.05) between untreated and E2-treated animals fed the same diet; 2, indicates a statistically significant difference (p ≤ 0.05) between similarly treated animals fed the different diets.

Pituitary growth was examined in ovariecetomized ACI rats (32) or ovary-intact ACI rats examined in the context of a mammary carcinogenesis study (33).

In contrast to the observed lack of inhibition of E2-induced pituitary growth in female ACI rats, energy restriction significantly inhibited E2-induced pituitary growth in female COP rats. Pituitary mass in COP rats fed the control diet was increased in response to 12 wk of E2 treatment from 14.2 to 33.5 mg (p < 0.01), whereas in COP rats fed the energy-restricted diet pituitary mass was increased only from 7.3 to 11.5 mg (p < 0.05) (Fig. 2A). The inhibitory effect of dietary energy restriction on E2-induced pituitary growth in the COP rat remained apparent when pituitary weight was normalized to body weight (Fig. 2B). Whereas the ratio of pituitary mass to body mass was significantly increased (p < 0.05) in response to E2 in COP rats fed either the control or the energy-restricted diet, this ratio was significantly greater in E2-treated rats fed the control diet relative to treated rats fed the energy restricted diet (p < 0.05) (Fig. 2B).

Treatment with E2 increased circulating PRL 160-fold (p < 0.01), from 4 to 640 ng/mL, in ACI rats fed the control diet (Fig. 3A). Induction of hyperprolactinemia was even greater in ACI rats fed the energy restricted diet. In the energy restricted rats, circulating PRL was increased 520-fold (p < 0.01) in response to E2, from 2 to 1040 ng/mL. Dietary energy restriction significantly inhibited induction
of hyperprolactinemia in COP rats. Whereas E2 increased circulating PRL 58.2-fold, from 9 to 524 ng/mL, in COP rats fed the control diet, circulating PRL was increased only 20.5-fold, from 6 to 123 ng/mL, in COP rats fed the energy-restricted diet (Fig. 3B). Although circulating PRL in E2-treated ACI and COP rats fed the control diet was proportional to pituitary mass, this relationship was not evident in rats fed the energy restricted diet.

The level of circulating E2 in the treated rats was not affected by either rat strain or diet. In E2-treated ACI rats fed either the control or energy-restricted diet, serum E2 levels averaged 165.1 ± 24 and 157 ± 18 pg/mL \((p = 0.81)\), respectively, at the time of death. In treated COP rats fed these diets, serum E2 levels averaged 306.3 ± 119 and 255 ± 77 pg/mL \((p = 0.75)\), respectively. Although mean E2 levels were lower in treated ACI rats than in COP rats, this difference was not statistically significant \((p = 0.32)\). The levels of circulating E2 in the treated animals were within the range observed in rats during pregnancy.

**Effects of Dietary Energy Restriction and Estrogen on Pituitary Histology and Cell Proliferation**

The pituitary glands of untreated, ovary-intact, ACI and COP rats were indistinguishable when examined by light microscopy (Figs. 4A and 4B). In the PRL-producing lactotroph was the most common cell type in these glands (Figs. 5A and 5B). Twelve weeks of treatment with E2 induced a diffuse hyperplasia in the pituitary glands of the ACI and COP rats. The nuclei were enlarged and the nucleoli were more prominent in the pituitary glands of the treated rats (Figs. 4C and 4D), relative to those of untreated females (Figs. 4A and 4B). Moreover, the pituitary cells in the E2-treated rats often contained juxtanuclear inclusions (Figs. 4C and 4D). Lactotrophs comprised the most common cell type in the glands of the E2-treated ACI and COP rats (Figs. 5C and 5D). Lactotroph hyperplasia was evident in the pituitary glands of the E2-treated ACI and COP rats fed either experimental diet upon estimation of average cell volume (data not shown). No reproducible discernable differences in pituitary gland histology were noted between the ACI and COP rat strains or in E2-treated ACI or COP rats fed the two experimental diets (Figs. 4 and 5).

The number of pituitary cells incorporating BrdU (cells exhibiting black nuclear staining in Fig. 5) was similar in untreated ACI and COP rats and was not significantly impacted by dietary energy restriction (Fig. 6). Administered E2 significantly induced pituitary cell proliferation in both ACI and COP rats. E2-induced cell proliferation was similar in ACI rats fed either the control or energy-restricted diets (Fig. 6A). By contrast, dietary energy restriction significantly \((p < 0.05)\) attenuated the ability of E2 to stimulate pituitary cell proliferation in the COP rat. Whereas the number of pituitary cells staining positive for BrdU was increased 8.9-fold in E2-treated COP rats fed the control diet, the number of BrdU positive cells was increased only 3.6-fold in E2-treated COP rats fed the energy restricted diet (Fig. 6B).

**Discussion**

Although it is clear from numerous epidemiologic and laboratory studies that diet is a strong determinant of cancer risk, the mechanisms underlying these diet–cancer associations are not currently understood. Our studies in this regard address the premise that the amount of energy consumed in the diet alters the responsiveness of specific target cell populations to estrogens and thereby impacts tumorogenesis in estrogen-responsive tissues such as the pituitary and mammary glands. In this study, we have compared the actions of a 40% restriction of dietary energy consumption on the ability of administered E2 to induce hyperplastic growth in the pituitary lactotroph population of two genetically related inbred rat strains. The data presented herein indicate that the ACI and COP rat strains differ dramatically in sensitivity to the inhibitory actions of dietary energy restriction on E2-induced pituitary growth and associated hyperprolactinemia. These data indicate that presently unidentified genetic factors determine whether or not dietary energy restriction attenuates the responsiveness of the pituitary lactotroph to estrogens.

Estrogens induce hyperplastic growth in the pituitary gland by stimulating lactotroph proliferation and enhancing lactotroph survival (2). Administered E2 stimulated lactotroph proliferation in both ACI and COP rats, as evidenced by BrdU labeling indices. Dietary energy restriction attenuated E2-stimulated cell proliferation in the COP rat, but not in the ACI rat. It is probable that this attenuation of the proliferative response of the COP lactotroph population to E2 contributed to the observed inhibitory effect of dietary energy restriction on induction of increased pituitary mass and hyperprolactinemia observed in this strain. Although these experimental endpoints were affected by dietary energy restriction in a rat-strain-specific manner, neither rat strain nor dietary energy restriction had any discernable effect on pituitary gland histology. The effect of dietary energy restriction on lactotroph survival was not examined in this study, because apoptotic cells in the pituitary gland are rapidly phagocytosed making their quantification very difficult (5-7,34). We have previously demonstrated that dietary energy restriction markedly inhibits induction of E2-induced and DES-induced pituitary growth and associated hyperprolactinemia in the F344 rat strain (5,20,31). However, in contrast to the current finding in the female COP rat, inhibition of pituitary tumorogenesis in the F344 rat did not appear to be associated with an attenuation of estrogen-stimulated lactotroph proliferation (5,20). That observation led us to suggest that dietary energy restriction inhibits estrogen-induced pituitary tumorogenesis in the F344 rat by inhibiting the ability of administered hormone to enhance lactotroph survival. Together, these data suggest that dietary energy restriction...
might act through multiple mechanisms to inhibit estrogen-induced hyperplastic growth in the pituitary lactotroph population and that these mechanisms may be rat strain specific.

The mechanisms through which estrogens regulate lactotroph proliferation and survival are under active investigation in several laboratories (reviewed in 1,2). Published studies indicate that autocrine and/or paracrine pathways involving galanin (35–39) and members of the transforming growth factor beta family (40–44) contribute to this regulation. Additional pathways involving the tuberoinfundibular dopaminergic neurons of the hypothalamus are also likely to play an important role in this regulation (45,46). Whether or not dietary energy consumption modulates regulation of any of these pathways by estrogens remains to be determined.

Genetic studies indicate that induction of lactotroph hyperplasia by estrogens is a highly complex process that is regulated through the actions of multiple genes (2,16,21,23,24). Our laboratory has mapped five distinct genetic loci that determine estrogen-induced pituitary growth in male F2 progeny generated in reciprocal crosses between the ACI and COP strains (Strecker et al., manuscript submitted). A model based on these genetic data suggests that three of these loci contribute to estrogen-induced pituitary growth in the ACI strain, whereas the remaining two loci contribute to estrogen-induced pituitary growth in the COP strain. Future studies will determine the impact of dietary energy restriction on the actions of each of these five genetic loci.

In summary, the data presented herein extend our previous studies of modulation of estrogen action in the rat anterior pituitary gland by dietary energy restriction. It is clear from these studies that dietary energy restriction attenuates induction of lactotroph hyperplasia in a rat-strain-specific manner. These findings are significant in that they indicate that dietary energy consumption can modulate at least two estrogen-regulated processes, i.e., cell proliferation and cell survival, and that this modulation is strongly determined by genetic background. It is also apparent that the inhibitory effects of dietary energy restriction on estrogen-induced tumorigenesis are cell type specific. In this study, no inhibitory effect of dietary energy restriction was observed in the pituitary gland of the ACI rat. In contrast, dietary energy restriction markedly inhibits development of estrogen-induced mammary cancer in the ACI rat strain (33,47). Because estrogens are implicated in the etiology of several cancer types, these findings suggest potential mechanisms through which dietary energy consumption might modify cancer risk.

Materials and Methods

Care and Treatment of Animals

The Institutional Animal Care and Use Committee of the University of Nebraska Medical Center approved all procedures involving live animals. Ovary-intact ACI (Harlan, Indianapolis, IN) and COP rats (National Cancer Institute Breeding Program, Frederick, MD) were obtained at approx 7 wk of age and housed one animal per cage within a barrier animal facility under controlled temperature, humidity, and lighting (12-h light/12-h dark cycle) conditions. Upon arrival at our facility, the rats were initially fed a semipurified control diet that was formulated in accordance with guidelines established by the American Society of Nutritional Science (48). Approximately 1 wk later, the rats were randomly assigned to groups fed either this control diet or an energy-restricted diet. The compositions of these diets and the methods used in their preparation have been described previously (33). Animals fed the control diet were allowed to eat ad libitum and their food consumption was monitored twice weekly. Animals maintained on the energy-restricted diets were fed each day at the beginning of the dark phase of the lighting cycle. Each rat fed the energy-restricted diet received 0.64 g of food per g of food consumed per day by rats fed the control diet. Because of the manner in which the diets were formulated, animals fed the energy-restricted diet consumed 40% less energy, derived from carbohydrate and fat, but equivalent amounts of protein, vitamins, minerals, fiber, and other nutrients, relative to that consumed by animals fed the control diet. The rats were allowed continuous access to water. Half of the rats on each of the two experimental diets were treated with E2, beginning at approx 9 wk of age. The remaining rats received empty implants. Silastic tubing implants, empty or containing 27.5 mg of E2, were prepared and surgically inserted subcutaneously in the interscapular region while the rats were under ether anesthesia (15,17). Published studies from our laboratory indicate that animals treated with E2 in this manner for various lengths of time exhibit circulating E2 levels at sacrifice that are within the physiologic range (5,15,33,49).

Body weights were monitored weekly. Four hours prior to killing, each rat received an intraperitoneal injection of 5-bromo-2'-deoxyuridine (BrdU; Sigma Chemical Co., St. Louis, MO) solubilized in sterile phosphate-buffered saline and administered at a dose of 50 mg/kg body weight, to allow pituitary cells in the S phase of the cell cycle to be identified using immunohistochemical techniques. Each experimental group consisted of seven or eight rats.

Collection of Pituitary Tissues and Analysis of Circulating Hormones

The rats were killed by decapitation following 12 wk of E2 treatment. Trunk blood was collected, allowed to clot at 4°C and centrifuged at 1300g for 15 min. Serum was retained and stored at −80°C. Circulating E2 and PRL in serum from trunk blood were measured by radioimmunoassay as previously described (5,15,33,49). Pituitary glands were removed immediately following death, weighed, fixed in 10% neutral buffered formalin and processed for histology. Because pituitary mass correlates directly with pituitary DNA content and circulating PRL in rats treated con-
Fig. 4. Effects of 17β-estradiol and dietary energy restriction on pituitary histology. Pituitary glands were collected, fixed, sectioned, and stained with hematoxylin/eosin. Anterior pituitary glands from untreated ovary intact ACI (A) and COP (B) rats fed the control diet were indistinguishable from one another. Hyperplastic and hypertrophic changes were observed in the pituitary glands of ACI (C) and COP (D) rats fed the control diet and treated with E2 for 12 wk, as evidenced by increased cellular volume, increased nuclear size, and prominent nucleoli. Juxtanuclear inclusions, indicated by arrows, were prominent in the pituitary glands of E2-treated ACI and COP rats relative to untreated rats. The anterior pituitary glands of E2-treated ACI (E) and COP (F) rats fed the energy-restricted diet were similar in histologic appearance to those of treated rats fed the control diet. The bar in each of the panels corresponds to 20 μm.

continuously with estrogens (12,16,20,21), pituitary mass is a useful and valid surrogate indicator of absolute lactotroph number.

Immunochemistry of Pituitary Tissue

Pituitary lactotrophs were identified immunohistochemically using an antibody to rat PRL (National Hormone and
Fig. 5. Effects of 17β-estradiol and dietary energy restriction on lactotroph proliferation. Lactotrophs were identified immunohistochemically using an antibody to rat PRL. Cells exhibiting brown staining in the cytoplasm were defined as lactotrophs. Cells in S phase were identified using an antibody to BrdU. Cells exhibiting black staining over the nucleus, indicated by arrows, were defined as being in the S phase of the cell cycle during the 4 h period preceding death. Lactotrophs were the most prevalent cell type in the pituitary glands of untreated ovary-intact ACI (A) and COP (B) rats fed the control diet. Twelve weeks of E2-treated stimulated lactotroph proliferation in ACI (C) and COP (D) rats fed the control diet. Note that the BrdU positive nuclei are usually observed in cells exhibiting PRL-positive cytoplasm and/or juxtanuclear inclusions. Pituitary glands from E2-treated ACI (E) and COP (F) rats fed the energy-restricted diet are similar in appearance to the pituitary glands of rats fed the control diet. The bar in each of the panels corresponds to 40 μm. Quantitative data on the proportion of the pituitary cell population staining positive for BrdU are presented in Fig. 6.

Pituitary Program, NIDDK, NIH; lot number AFP425_10_91) and proliferating pituitary cells in the S phase of the cell cycle were identified using a mouse monoclonal antibody to BrdU (Amersham, Arlington Heights, IL) as described previously (5,17). At least 1000 cells from each pituitary section were defined as positive or negative for PRL and
Fig. 6. Effects of 17β-estradiol, genetic background, and dietary energy restriction on pituitary cell proliferation. Female ACI (A) and COP (B) COP rats were treated as described in Fig. 1 and Materials and Methods. Each animal received an intraperitoneal injection of BrdU, administered at a dose of 50 mg/kg, 4 h prior to death. Anterior pituitary cells in S phase of the cell cycle were identified by immunohistochemical detection of BrdU-positive cells. A minimum of 1000 cells was counted for each pituitary gland. Each bar represents the average (± SEM) number of BrdU-positive pituitary cells expressed as a percentage of total anterior pituitary cells. Numerals: 1, indicates a statistically significant difference (p ≤ 0.05) between untreated and E2-treated animals fed the same diet; 2, indicates a statistically significant difference (p ≤ 0.05) between similarly treated animals fed the different diets.

Acknowledgments

This research was supported by grants R01-CA68529, R01-CA77876, T32-CA09476 and P30-CA36727 from the National Institutes of Health, grant 97A146 from the American Institutes for Cancer Research; and grant DAMD 17-00-1-0361 from the U.S. Army Breast Cancer Research Program.

References