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Preface

This report documents the research conducted by the Northwestern University Computer
Science Department, Evanston, IL under contract C-DAAN02-98-C-4023-sponsored by
the Defense Advanced Research Projects Agency (DARPA), Arlington, VA and
monitored by the U.S. Army Soldier Systems Center, Natick, MA. The research was
conducted between June 1998 and June 2002.

The work under this contract provided support for structured representations and simple
cognitive processing in multi-robot systems, leading to greatly improved component
reusability. This can allow humans to direct robots with useful high-level instructions
and allow solution of dramatically more complex tasks. Single-agent architectures,
known collectively as role-passing architectures, can be extended to multi-robot systems
by linking team members with a wireless network to exchange sensor and inference data.
This can provide team members with a shared situation assessment and limited on-
demand access to the sensory data of other team members. The architecture can enable
improvements in situational awareness, team coordination, and human-robot
coordination, as well as software component reusability, reduced system complexity and
performance of dramatically more sophisticated tasks.
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SHARED SEMANTIC REPRESENTATIONS FOR COORDINATING
DISTRIBUTED ROBOT TEAMS

Summary

Northwestern University’s Computer Science Dept. has developed Highly Interconnected
Verbose Mind (HIVEMind), a multi-robot control architecture that supports efficient
sharing of symbolic information between team members. Based on role-passing [1],
HIVEMind can efficiently implement quantified inference over unary predicates and
provide hard real-time guarantees for synchronization of knowledge bases between team
members and the world. Objects in a team member’s working memory are bound to a
small, fixed set of roles such as agent, patient, source, destination, etc. When a role is
bound to an object, a visual tracking system is dynamically allocated to it and tagged with
the name of the role. Since the number of roles is relatively small, we can represent sets
of roles, and thereby sets of objects, as bit-vectors, with one bit representing each role.

This representation allows inference to be compiled directly to straight-line machine code
consisting only of load, store, and bit-mask instructions. While more limited than a full
logic-programming system, it does allow us to express most of the kinds of inference
used on physical robots today. The inference rules are completely rerun on every cycle of
the system’s control loop, allowing the robots to respond to contingencies as soon as they
are sensed. The compiled code is sufficiently efficient that inference is effectively free —
1000 Horn clauses of 5 conjuncts each can be completely updated at 100Hz using less
than 1% of a current CPU.

The bit-vector representation also allows for very compact representation of the robot’s
knowledge base. Unary predicates are stored in one machine word. Function values are
represented using small arrays indexed by role. For the kinds of tasks currently
implemented by multi-robot teams, this representation is sufficiently compact to allow the
entire knowledge base to fit into a single User Datagram Protocol (UDP) packet. Robots
can therefore share information by periodically broadcasting the knowledge base. This
simple communication and coordination model provides each robot with transparent
access to every other robot’s state, a kind of “group mind.” It allows the team to
efficiently maintain a shared situational awareness and to provide hard real-time response
guarantees; when a team member detects a contingency, other members respond in O(1)
time without the need for complicated negotiation protocols.

We have tested the architecture with a three-member team consisting of two robots and
an operator control unit running the same architecture (without sensors or effectors) to
monitor and control the team. Sensing, inference and control decisions are performed at
10Hz, allowing the robots to move at 1 m/s. The team can be dynamically tasked on
simple natural language to perform systematic spatial search tasks ranging from
informing everyone in a building of an announcement to finding and containing an
intruder.




1. Introduction
Traditional robot control architectures are firmly split between those architectures that support
sophisticated high-level inference and those architectures that have been run successfully on real
teams of robots. This report describes a novel, implemented, multi-robot control architecture that
cleanly joins symbolic reasoning with sensory-motor control.

1.1. Problems with previous reactive and behavior-based architectures

Reactive control architectures allow the designer to specify a functional mapping from
sensor readings to effector commands. Typically, this mapping is specified in terms of a
set of stimulus/response pairs together with some arbitration mechanism (see [2] for a
survey). The stimulus is some predicate over possible sensor values, and the response is
some effector command. The need for arbitration arises because the environment may
generate multiple stimuli at one time, causing the control system to feed contradictory
commands to the effectors. The arbitration mechanism reads all proposed effector
commands and uses some sort of conflict resolution strategy, such as weighted averaging
(motor Schemas), weighted voting (the Carnegie Mellon University (CMU) Distributed
Architecture for Mobile Navigation (DAMN) architecture), or absolute prioritization
(subsumption). Behavior-based architectures are essentially the same, except they allow
the modules implementing stimulus/response pairs (aka “behaviors™) and/or the
arbitration mechanism to include internal state.

Reactive and behavior-based architectures limit the designer to very simple
representations. Communication between modules is typically limited to simple signals
in which a simulated wire carries a binary or numeric value whose value is recomputed
with each cycle of the control system. This has the twin advantages of being efficient and
of interfacing well with sensors and effectors. However, it makes it nearly impossible to
express high-level abstractions such as predicate/argument structure. In other words you
can have a distance wire that carries the distance to the nearest object, but not a
distance(x) predicate that tells the distance of x for any given x.

The worst effect of these limitations is a loss of modularity. Rather than implementing
one get(x) behavior, a behavior-based system might implement separate get-red-puck,
get-green-puck, and get-blue-puck behaviors. Behavior-based solutions have been
proposed for problems requiring predicate/argument structure (Maes’ blocks world
solution [3], Nippon Telephone and Telegraph (NTT) reactive dialog system [4]);
however, they all involve using duplicate behaviors for each possible predicate/argument
combination, and so have only been implemented in simulation. Maes’ system, for
example, requires a control system whose size is cubic in the number of objects in the
world.

The loss of modularity increases system complexity, which in turn increases cost, size,
power consumption, and debugging time. It also hinders code reuse since modules must

be highly specialized.



The loss of the ability to express abstractions and predicate/argument structure also
hinders the instructability of the system. Because all representations are expressed in
terms of low-level sensor values rather than high-level semantic roles or predicates with
arguments, it is effectively impossible to build components like parsers or natural
language generators. As a result, human interfaces are typically restricted to systems that
directly dump sensor data and behavior activation levels. True high-level instructability
and monitoring require the commander to be able to issue orders and receive reports in
terms of meaningful high-level structures such as explicit situation descriptions (attacking
a specified target, fallback to a specified position, search for a specified object, evasion,
control of a specified perimeter, etc.).

1.2. Problems with symbolic control architectures

The attraction of symbolic control architectures is that they promise to allow just these
kinds of high-level abstractions to be represented and communicated to the user.
However, the success of reactive control architectures is due in large part to the difficulty
of implementing symbolic control architectures on real robots.

Symbolic architectures typically assume an articulated world model consisting of every
true fact that might be relevant to the decisions the system must make. Making this work
on real robots introduces serious engineering problems:

o The perceptual system must build the model somehow

o The representations used by the perceptual system and the problem solver are
typically very different; mediating between them can be an expensive operation.

¢ Since the perception system can’t build a model of every true fact about the
environment, it must be given some kind of guidance about what information is
relevant to the problem solver’s current goals

¢ Since the world is changing continually, the perceptual system must have some way
of informing the problem solver of changes in the environment

e The problem solver must then keep a record of which inferences depend on which
elements of the sensory data, so the inferences can be updated when the sensory data
changes.

These problems are serious. No general, workable solution to them has been proposed.
In practice, the linkage between the problem solver and the peripheral systems is dealt
with in an ad-hoc manner. The problem solver provides primitives for updating parts of
the world model by forcibly triggering different perceptual operations. It is left largely to
the programmer to make sure that the right things are checked at the right times. If they
are not, the robot can do stupid things, sometimes with disastrous consequences.

Another problem with symbolic systems is their cost. Full-blown planners and problem
solvers typically require a full lisp environment running on a workstation-class machine.
Placing a workstation-class machine inside of a mobile robot and running it off of
batteries is extremely cumbersome given today’s technology. For example, the Real-
World Interface (RWI) B14 system ($15K) is shipped with a Pentium-class machine




running Unix. While convenient for programming, the system is not terribly well adapted
to signal processing problems like real-time vision. Moreover it has a battery life of only
an hour or two (assuming batteries in optimal condition). As a result, labs typically use
machines like the RWI B21, which has considerably more compute power and over a
kilowatt-hour of battery power (allowing it to run for 4-6 hours). It is, however,
considerably more expensive ($40-60K). It is also somewhat larger than human-size,
making it non-trivial for it to get through a standard 36” doorway without running into the
dead-zones of its sonars.

The final issue with symbolic systems is speed. Reactive systems are fast in part because they
restrict themselves to computations that are easily parallelized and that run in constant time.
Most problem solvers rely on exponential-time search techniques. Inference is also hard to
parallelize. For example, the unification algorithm used by nearly all problem solvers to match
tule patterns to database entries is believed to be unparallelizable because it is P-complete and so
its efficient parallizability would imply the parallelizability of arbitrary polynomial-time
algorithms, see [5].

1.3. Tiered Architectures

The traditional solution to the problems of these architectures is to join a traditional
reactive system and one or more traditional symbolic systems together. The result is
called a “tiered” or “hybrid” architecture (see [2] for a survey). Tiered architectures
combine many of the advantages of the two classes of architectures. They provide real-
time response for sensory-motor primitives yet allow more advanced representations to be
used.

However, tier architectures also combine many of the disadvantages of both
architectures. Since there is still no theory of how the world model is to be updated, it is
still left to the individual programmer to ensure that the symbolic system runs the right
operators (or posts the right daemons to wait to the right events) at the right times so as to
ensure that the world model is up to date. It is also up to the programmer to add explicit
failure and cleanup clauses to the symbolic system to force a non-local return if an event
occurs that invalidates a decision made by a supergoal of the current goal.

The problem is exacerbated when multiple symbolic systems are used. The most
common tiered architecture consists of a behavior-based system that implements sensory-
motor primitives, a planner that chooses sequences of primitives, and an executive (on-
line problem solver) that issues the primitives and attempts to perform error detection and
recovery. Performing error detection and recovery (EDR) is difficult unless the executive
is given explicit knowledge of the domain, the system’s overall goal, and the logic of how
the plan is supposed to achieve the goal. Without this knowledge, the executive cannot
know what results in the world would actually constitute a plan failure, much less how to
recover from it. However, with the knowledge, the executive would be nearly able to
solve the task itself, leaving little work for the planner. To make matters worse, the



planner and executive typically each have their own symbolic world models, which must
not only be kept in sync with the world, but with each other.

In practice, the problems are severe enough that the planner is either never used, or is
used on hand-entered data that is known in advance not to be changeable (such as a floor-
plan). This alleviates the problem of generating the planner’s model from sensor data.
The “three-tiered” (3T) architecture [6], which is in wide use for National Aeronautics
and Space Administration (NASA) crewed space projects, uses its planner in only about
5% of tasks; their biggest engineering problem is keeping the models up to date.

1.4. Role-passing architectures

We have developed a class of architectures, called role-passing architectures that cleanly
implement a limited but highly useful subset of symbolic inference using parallel feed-
forward networks whose inputs are easily generated by sensory systems. The result is a
system with the look-and-feel of a traditional symbolic architecture and the performance
characteristics of a behavior-based architecture: the system continually recomputes all
inferences at sensor rates, responding immediately to contingencies by switching plans
and subgoals as the need arises.

A role-passing system represents the agent’s task and environment in terms of a set of
predicates and a set of bindings of external objects to roles. Predicates, as in first-order
logic, describe the properties of objects. However, in role passing, the domain of a
predicate (the set of things you can apply it to) is limited to a finite set of indexical roles.
The bindings of the roles to actual objects in the world are implemented by pools of
sensory systems (such as visual trackers) or memory systems (such as images of objects).
When the problem-solver directs a sensory system is to track a given object, it also
provides a role to bind the object to. A single object can be represented in many different
pools, provided that it is bound to the same role in each pool. In effect, roles are simply
an attention mechanism. Real agents have limited perceptual bandwidth and can only
attend to a limited set of objects at one time. Role passing simply makes this restriction
visible within the problem solver.

Communication between subsystems is performed mostly in terms of roles. The sensory
and memory systems report to the problem solver what roles they have bound. They also
report what roles satisfy various predicates, such as near(x), facing(x), etc. When the
problem solver wants the motor control system to follow a given object, it provides the
motor system with the role name of the object to be followed. The motor system then
forwards the role to sensory systems that might be able to provide it with the appropriate
information about the object. Whichever sensory system is bound to that role will then
route the appropriate signals to the motor system in real time.

The architecture makes it possible to compile inference rules written in a subset of modal
logic with equality into fast feed-forward networks that can be evaluated and updated in
parallel. Such networks are easily and compactly implemented on a variety of




architectures, including conventional microcontrollers, distributed networks of
microcontrollers, true parallel machines, and even field programmable gate arrays
(FPGAs). Current microcontroller technologies, such as the Intel X-Scale architecture
could conservatively easily run rule base of 1000 inference rules at 1000 Hz (1000
complete revisions of the knowledge base per second) on a power budget on the order of
100mW. FPGAs could reach the megahertz level, if there were an application which
warranted it.

Role passing allows the designer to program using declarative representations that specify
the behavior of the domain directly, rather than specifying canned plans for achieving
particular tasks. This allows the agent to dynamically infer the correct next action as
sensory data changes, seamlessly switching between error recovery actions and normal
activities as the world changes. Although not as powerful as a full planning system, it
provides dramatically more power than a behavior-based system and dramatically better
performance, both in speed and robustness, than either a symbolic reasoner or a hybrid
system.

1.5. Shared high level representations for effective robot teamwork

Many advanced multi-agent planning systems are moving toward the use of explicit
representations of teamwork (e.g. STEAM [7]). In these systems, each team member has
a representation of a set of shared beliefs, intentions, goals, and plans. While such
systems are highly effective in simulation (e.g. the IICAI-97 RoboCup simulated soccer
tournament), they have not yet been demonstrated on real robot hardware. One assumes
that this is due in large part to the difficulty of porting a large symbolic Al system
(STEAM runs under the SOAR production system architecture) and interfacing its
database to real sensors.

Role passing offers the possibility of implementing such high-level coordination simply
and cheaply. Since the architecture already consists of a parallel network of signals
(sensor readings, inferences, etc.), it is a straightforward matter to distribute the network
across robot bodies. We simply choose a set of signals within the network to make
available to other members of the team. Each robot periodically collects together the
values of its signals and transmits them as a broadcast packet on a wireless network. As
each robot receives broadcast packets, it stores them in memory and uses them as the
source of selected signals of its own network. In effect, the wireless network implements
a large set of wires tying the internal networks of the different robots together. This kind
of network is very robust with respect to network failure, since packet loss simply causes
a temporary failure to update other robots, rather than blocking, deadlock, or complete
system failure. Robots can also keep time stamps for the packets they’ve received so that
they can tell when information is stale. This will allow team members cut off from the
network to explicitly represent what team members they are cut off from and how
accurate their current data is. They can then explicitly reason about what data to trust and
what actions to take to regain contact with the group (if any).




Distributing the network across team members provides explicit representations of
teamwork for free. The group can collaboratively maintain a shared situational
assessment that tracks

Shared goals and objectives

Classification of global situation (advancing, fallback, search, evade, ambush, ...)
Threats

Team member status (on-line, dead, damaged)

Team member role within current operations (team leader, point, rear guard, advance
patrol, ...)

e Shared plans for attaining objectives

For example, if a team member encounters an enemy team member, it can activate the
ambush situation for the entire team and bind the Jocation role to its own Global
Positioning System (GPS) coordinates. Other team members will then have immediate
access to that information and can begin to act accordingly. '

Again, these features can be implemented in hard real-time using small, low cost, low
power components.

1.6. High level human interface

The shared plans, goals, and situational assessment used to coordinate the team internally
are just exactly the type of data that a human commander would want to make command
decisions. The architecture thus provides all the hooks necessary to implement a high-
level multi-media command station that will allow human commanders to quickly and
efficiently determine the status of their team, gather further data, and communicate a
decision.

We have developed a laptop command station that provides dynamic status information.
The command station gathers information by listening to the broadcast stream from the
team members and displaying the appropriate information in the appropriate modality.
The station is implemented as a role-passing control system. The same language used to
program the robots is used to program the command station.

Control of the team is achieved by injecting traffic into the network. To instruct the team
to search for a green ball, the command station need only assert the find command and
bind the target role to the red-green-blue (RGB) coordinates for the green ball. A human
commander can signal this simply by typing:

Find green.

The command station parses the command, broadcasts the find command, and the role
bindings used by it.




1.7. Related work

Most implemented multi-robot systems are limited to simple reactive architectures [8,9,10].
These architectures interface cleanly to sensors and effectors, support limited incremental
development, and can support real-time performance on low cost compute hardware [11].
However, they limit the designer to simplistic representations such as numeric signals. These
limitations make design reuse difficult by permitting only very restricted parameter passing.
Moreover, they severely restrict the space of tasks that can be performed at all, since tasks that
require inference, natural language understanding, etc. do not map cleanly into these
representations.

Behavior networks are a common example [3]. While convenient for problems such as
arbitrating between feeding and predator avoidance, behavior networks become combinatorially
explosive when implementing behaviors such as picking up or stacking objects that are logically
parameterized by an object in the world. For these tasks, separate behaviors must be
implemented for each possible object. Even simple problems such as block stacking require
impractically large networks, and so have never been implemented on real hardware [3]. Similar
problems occur when applying these technologies to human/computer or human/robot
communication. In a human/computer dialog system, for example, Hasegawa et al. [4] were
forced to use a separate behavior for each possible utterance of each possible speaker.

Rosenschein and Kaelbling [12] implemented propositional inference in a subset of modal logic
by compiling it to fast logic networks. The system is very similar to our system, but does not
support any kind of variable binding or predicate/argument structure. Agre and Chapman [13]
argued that the need for variable binding could be reduced by the use of deictic representation, a
technique in which the pre-existing attention mechanisms of the perception system are used to
implement a kind of variable binding. By pushing variable binding out to the peripheral systems,
they were also able to implement reasoning with a simple combinational logic network. Role
passing can be seen as an addition of a small amount of variable binding to deictic representation.
Nilsson [14] directly addressed the variable-binding problem in his work on teleo-reactive trees.
He built a system that incrementally grew a Rosenschein-and-Kaelbling-style inference network
as it executed a conventional Lisp program. Whenever the program encountered a procedure call
with novel arguments, it would add circuitry to the network to implement it. It can be seen as
similar to the SOAR architecture, where chunking is replaced by the growing of the network.
The work did not attempt to address the issues of grounding a growing network in the perception
system. Shastri and Ajjanagadde [15] describe an inference system called SHRUTI that
implements a reasonably full version of inference with frames and data structures. SHRUTI is
based on current neurological theories of binding in the neocortex. Although the motivations
(and limitations) of SHRUTI and role passing are somewhat different, they are substantially
similar in spirit: both implement a limited form of variable binding in which the total number of
outstanding bindings is limited. Minsky [16] also describes a proposal for c-lines, a frame
implementation mechanism similar in spirit to role passing, although the details were never
worked out. None of these proposals, except Rosenschein and Kaelbling’s system, have been
implemented on real robot hardware.




Traditional symbolic architectures [17] and hybrid planner/reactor architectures [6] support the
sophisticated structured representations required for high level cognitive tasks but require all
sensory data used by the symbolic system to be fused into a central symbolic representation. To
date, no general-purpose approaches to this problem have been proposed. In practice, symbolic
architectures that are deployed on real robots use carefully hand-coded domain-specific rules to
mediate between sensors and the symbolic model. This is a cumbersome process that must often
be repeated for every new task. The models so built fall far short of building the kinds of
elaborate, detailed models required by real Al planners. As a result, even when full-blown
Stanford Research International Planning System (STRIPS) planners are implemented on real
robots, they are rarely, if ever, executed. When they are used, they are typically used with world
models that are hand-entered and assumed to be unchanging. For example, in the 3T architecture
[6], which appears to be becoming the standard for NASA, the planner is only used for a few
percent of the applications [18], and then only for resource scheduling.

One particularly extreme project is the GOLOG project at the University of Toronto. This is an
attempt to develop a complete architecture based on first-order logic with the full situation
calculus. The focus of this project is inferential power, not real-time performance or sensor
grounding. Although the group has made some initial tests on real hardware, the majority of the
work has been done in simulation.

There are a number of projects that are focusing on explicit representation of teamwork. The
most applicable example is Tambe’s STEAM system [7] that provides high-level group
coordination for teams of robot helicopters and robot soccer players. Again, this project depends
on a full traditional symbolic inference system, so porting it to run on real robots involves a large
engineering effort. However, the group is actively working on a real-hardware entry for the
RoboCup soccer tournament. Other implemented collaboration systems for sofiware agents are
Jennings” GRATE* system [19], and Rich and Sidner’s COLLAGEN system [20], which is an
application-independent toolkit for human/computer interaction with software agents based on
explicit models of shared intentions. All of these systems are based on the frameworks of shared
intentions [21] or Shared Plans [22].

Mataric [8] has proposed to achieve robustness, reliability, and (implicitly) code reuse in
distributed multi-robot systems by using basic behaviors. The idea is to develop a fixed set of
sensory-motor systems that are sufficient to jointly generate the entire space of desired behaviors.
This reduces programming to a problem of designing the arbitration unit, for which Mataric used
variants of reinforcement learning. Basic behaviors drastically simplify the learning problem,
although it is hard to know when one has a good generating set, or whether a universal generating
set might exist.




2. Methods, Assumptions, and Procedures

This section describes the basics of variable binding and inference in role passing. For
specific information on sensory-motor systems, the natural language parsers, or the details
of the current implementation, see [1,23].

Ultimately, the most expensive operation in inference is variable binding. Inference
without variables (propositional inference) is easily parallelized. Inference with variables
but no term expressions or other data structures (e.g. DATALOG) can be performed in
polynomial time, but is believed not to be parallelizable (because it’s P-complete).
Inference with term expressions then becomes progressively more expensive as different
combinations of quantifiers are allowed. Full first-order inference is only semi-decidable.
That is, although algorithms exist that can prove any true theorem, no algorithm can
identify all false theorems, even in principle. -

The task, then, in designing efficient inference systems is to find limited forms of variable
binding that can be efficiently implemented. ‘We have chosen to develop the most
expressive representation we can that can still be completely parallelized. By compiling
the inference rules into a parallel network, we not only get good performance, but
automatic updating of inferences as sensor data changes. A simplified data flow during
inference is shown in Figure 1.
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system \
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Behavior |[——®

Figure 1. Simplified data flow during inference

2.1 Binding variables in sensory and memory systems

We implement variable binding by allowing a sensory or memory system to be tagged
with the name of the variable to which the object it represents is bound. We refer to these
tags as roles because they correspond to the semantic roles of frame structures (e.g. agent,
patient, source, destination, etc.). When a sensory/memory system is initially allocated to
track/represent an object, a role is also specified for that sensory/memory system. We
then say that that system, and the object it represents, is bound to that role.
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We constrain the set of allowable roles in advance to some reasonably small set (32 in our
current implementation, although a few hundred would be manageable). We can then
represent an arbitrary set of roles as a bit-vector. A bit vector representation of role sets is
shown in Table 1.

Table 1. Bit-vector representation of role sets

Agent  Patient  Source  Destination
1 0 1 1

We can represent an individual role by a singleton set (a set with only one element) and
so we can represent the role to which a given sensory or memory system is bound by a
bit-vector (this also allows us to bind an object to multiple roles, if we so desire).

Now suppose we have some perceptual systems that can determine whether the objects
they track are nearby (e.g. a set of color blob trackers in an active vision system). We can
compute the set of objects that are near the robot simply by ORing together the bit vectors
of those systems whose targets are nearby. For example, suppose we have four color-
blob trackers bound to agent, source, patient, and destination, respectively. A
computation of the bit vector representation of near(x) is shown in Table 2.

Table 2. Computing the bit-vector representation of near(x)

Near? Agent  Patient  Source Destination
Tracker 1 Yes
Tracker 2 No
Tracker 3 Yes
Tracker4  No

Bitwise OR

-IO Qe O
-—O - O @
o =9
[ R — I - )

This last row gives us the set of roles of the objects that have been measured to be nearby.
It is effectively the extension of the predicate near(x) under a closed world assumption.
We can rapidly compute this extension on any computer architecture, serial or parallel,
given the nearness measurements of the trackers and the bit-vectors to which they are
bound. We can use the same basic technique to compute scalar-valued functions, like
distance(x), however we must use a vector of numbers rather than a bit vector to represent
the output. Each tracker drives the output for distance(r) with its measured distance iff it
is bound to r. Again, this can be computed efficiently on both parallel and serial
machines.

2.2. Inference in role-passing systems

Now suppose we have sensory systems that compute both the predicate near(x) and the
predicate facing(x). Then we can implement the inference rule as shown in Table 3:

For all x, grabable(x) <> near(x) and facing(x)

using bitwise and:
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Table 3. Inference using bit vectors

Predicate Agent  Patient  Source  Destination
near(x) 1 1 0 0
Sfacing(x) 0 1 1 1
grabable(x) 0 1 0 0

Note, again, that this is efficiently computable on arbitrary machine architectures, from
microcontrollers to FPGAs. On stock hardware, the inference would compile to the C
code:

grabable = near & facing;

assuming there are no more than 32 roles, so that an integer variable can store the
complete bit-vector for the extension of a predicate.

2.3. Reasoning about knowledge and goals

This representation for predicates makes no distinction between x not being near, and x ‘s
distance being unknown (e.g. because no tracker is tracking it). Since modern robots
have active perception systems whose attentional resources must be explicitly allocated to
specified objects, it is important for those robots to be able to represent and reason about
their own attentional states and states of knowledge. We can do this by computing a set
of valid bits for each predicate in parallel with its extension by ORing together the bit
vectors to which each tracker is bound (regardless of whether the tracked object is near or
not). For example, as shown in Table 4:

Table 4. Computing the know() modal for a sensory primitive

Near? Agent Patient  Source Destination

Tracker 1 Yes 1 0 0 0
Tracker 2 No 0 0 1 0
Tracker 3 Yes 0 1 0 0
Tracker 4 0 0 0 0
know(near(x)) 1 1 1 0

(here we have assumed that tracker 4 is as yet unallocated, so it is not bound to any role).
We can compute the valid bits for derived predicates, like grabable(x), from the valid bits
of the predicates from which they are derived as shown in Table 5:
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Table 5. Computing the know() modal for an inferred predicate

Predicate Agent  Patient  Source  Destination
know(near(x)) 1 1 1 0
know(facing(x)) 1 1 1 0
know(grabable(x)) 1 1 1 0

(This assumes the axiom know(a(x) and b(x)) < know(a(x) and know(b(x)) ; stronger
axioms can also be implemented).

It is also desirable to introduce modalities to represent whether near(x) is a goal of the
system, or even whether know(near(x)) is a goal. Again, each of these can be represented
with a single machine word, so the total space used by the system is four machine words
per predicate in the system. Using this representation, it is possible to write inference
rules like:

for all x, goal(know(near(x))) = goal(see(x))

which says that seeing an object is a way of knowing its distance.

2.4. Motor control

Ultimately, the robot has to do things in the world. To fire actions, the inference network
computes the bit-vector of the object to perform the action on and passes it as input to a
conventional behavior-based system that implements the action. The behavior will need
to obtain sensory data about the specified object, so it will pass on the bit-vector to an
appropriate set of perceptual systems that can provide the information the behavior needs.
The perceptual systems then compare the bit-vector to the bit-vectors they are bound to.
When a perceptual system finds a match, it routes its information to the behavior. If no
perceptual system has the information needed, no information will be sent to the
behavior, and the behavior will be disabled.

The inference system can then implement control rules like:
if goal(in-hand(x)) and grabable(x) then grab(x)

which corresponds to the chunk of circuitry in Figure 2.
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Figure 2. Data flow for firing the grab behavior

The inference network computes the bit-vector for the object to grab (if any) from the bit-
vectors for near(x), facing(x), and goal(in-hand(x)). The bit-vector for the object to grab
is sent as input to the grab behavior, which forwards it to the visual trackers. The trackers
compare it and route the appropriate information back to the behavior. If there is no
object the system wants to grab (or can grab), then the bit-vector routed to the grab
behavior will be all zeros. In this case, no tracker can match it, and so the behavior is
disabled. More complicated control rules are also possible, such as:

if goal(see(x)) and not see(x) and know(color(x)) then start-visual-search-for(x)

which states that if the robot is trying to see an object and knows its color, it should tell
the visual system to allocate a tracker to it an initiate a visual search for it

2.5. The HIVEMind System

We have developed a distributed role passing architecture called HIVEMind (Highly
Interconnected Very Efficient Mind) that supports very efficient sharing of symbolic
information between team members. It combines the efficiency and responsiveness of
traditional behavior-based systems and the high-level expressiveness of symbolic
systems.
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Figure 3 shows an abstract HIVEMind configuration for a two-robot team. Each team
member has its own inference network. The network is driven both by its own sensory
system and by the incoming data from the other team members. Outputs from the current
robot’s sensory systems are fed into aggregation functions on other team members. The
output from those aggregation functions is then fed into the inference rules that drive the
motor behaviors.

Robot 1
Sensory » Aggregation | Inference N .
Systems Functions " Rules * Behaviors
»
Sensory » Aggregation Inference N .
Systems Functions Rules ¥ Behaviors
Robot 2

Figure 3. Abstract view of HIVEMind

The aggregation functions are used to combine information from teammates and sensors
into a single coherent output for the inference rules to reason over. In an » robot team,
each robot’s inference network has »n distinct sets of inputs, one generated internally, and
the rest received from the robot’s teammates. These distinct inputs are first fused into a
single set of inputs:

K=Bki, kpy ..., )

where the £; are the tuples of inputs from each robot, K is the final fused tuple, and B is
some aggregation function that performs the fusion. For example, if a particular
component of the input was a proposition, the aggregation function might simply OR
together the corresponding components of the k;. Thus the robot would believe the
proposition if and only if some robot had evidence for it. In more complicated cases,
fuzzy logic or Bayesian inference could be used. Real-valued data is likely to require
task-specific aggregation. For example,

1. The team is assigned to scout an area and report the number of enemies observed.
Each team member has a slightly different count of enemy troops. In this case, the
best solution is probably to average the disparate counts.

2. The task is “converge on the target”. Each robot’s sensors report a slightly
different position for the target. In this situation, it appears to make sense that
each team member rely on its own sensor values to track the target and only rely
on other robots when the robot’s own sensors are unable to track the target, e.g.
the target is out of sight.
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Figure 4 shows how aggregation is performed in the actual system. As packets arrive on
from other robots, they are unpacked into buffers for their respective robots, replacing
whatever data had been stored previously for that robot. In parallel with this process, the
main control loop of the robot aggregates the inputs from each robot and reruns the
inference rules on the result. These inference rules then enable and disable low-level
behaviors for sensory-motor control. Since the main control loop is performing real-time
control, it runs much faster than the 1Hz update used for communication (10Hz in our
current implementation).

Current Robot  ———p Current Perceptual Vector
Robot 2 Robot 2 Perceptual Vector
Robot 3  —— Robot 3 Perceptual Vector

3

Final Perceptual Vector \

L.

Figure 4. Data aggregation in HIVEMind

Inference Rules

The entire HTIVEMind can be considered a single, parallel control network whose
components happen to be distributed between the different robot bodies being controlled.
Wires crossing between bodies are simulated using the RF broadcast mechanism, so that
each member of the team is “connected” to every other member in a web-like structure of
virtual wires. In our current implementation, each robot broadcasts its sensory data and
state estimates in a single UDP packet at predefined intervals. Presently, broadcasts are
made every second. Faster or slower rates could be used when latency is more or less
critical. However, 1Hz has worked well for our applications. To reiterate, we expect that
currently implementable robot systems could store all the sensory inputs to the inference
system in a single UDP packet (1024 bytes). Current autonomous robots are severely
limited in their task capabilities, and hence their communication needs, by their sensors
and actuators. Therefore, we feel that there is plenty of available bandwidth for
communication in the foreseeable future. As robots develop more complicated sensoria, it
may be necessary to use more complicated protocols, perhaps involving multiple packets,
or packets that only contain updates for wires whose values have changed since the last
transmission. For the moment, however, these issues are moot.
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Given the current single-packet-protocol, the aggregate bandwidth required for
coordination is bounded by 1KB/robot/sec, or about 0.1% of a current radio frequency
(RF) local area network (LAN) per robot. Thus robot teams on the order of 100 robots
should be practical from a communication standpoint. However, hardware failure limits
most current robot teams to less than 10 members, so scaling limits are difficult to test
empirically.

2.6. SEEKers

We have implemented the HIVEMind system on a robot team that performs three tasks
involving the systematic traversal of space:
1. Find Static Object
The team systematically searches for a brightly colored object in a known
environment. Team members explore the environment in a systematic manner
until one of the team members locates the object or all searchable space is
exhausted. When the object is found, all team members converge on its location.
2. Town Crier
This task involves making announcements in the same known environment. The
team cooperatively travels to each landmark on a map and makes an
announcement at every landmark.
3. Capture Evading Target
Similar to task 1, except now the target can maneuver. The team members must
cooperate to trap the evading object, which in this case, is a human.

Task 1 is considered solved if all team members arrive at the general location of the target
and halt. Task 2 is complete when all the landmarks have been visited. Finally, task 3 is
solved when the target can no longer maneuver, i.e. every immediate corridor the target
could turn to is occupied by a robot. The team automatically loses if the target ever moves
to an escape point and leaves the search area. In Figure 5, there is only one exit point —
the Gauntlet. So reaching Andrew Ortony’s office would be considered victory for the
target.

The commander specifies the task to perform using an operator control unit (OCU). The
commander can monitor and direct the team through the OCU, which appears as an
additional, albeit non-performing, member of the team. The OCU passes command and
control data to the team through the same virtual wires mechanism used for inter-robot
communication. We have tested all tasks with a two-robot team.

The robots have a topological map of the area to be searched, which is assumed to be an

indoor office environment. All tests discussed here were performed in the west wing of
1890 Maple Ave (Figure 5). A robot team on search mission is shown in Figure 6.
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Figure 6. Robot team on search mission

2.7. Hardware infrastructure

The robotic bases used in this experiment are first generation Real World Interface (RWT)
Magellan bases. The Magellan provides sonars, infrared sensors and bump switches, a
total of 16 each, arrayed around the circular base. Visual sensing is provided by a
ProVideo Charge-Coupled Device (CCD) camera connected by a Nogatech frame grabber
to a laptop. The computing platforms used were COTS laptops — Dell Latitude CPis with
450MHz Pentium II processors, 384Mb of RAM and 11Gb hard drives. The laptops ran
Windows98, and communicate with the base through a serial cable. RF COMS used the
IEEE 802.11b standard running at 11Mb/s (Lucent Orinoco Silver PCMCIA cards).

2.8. Software infrastructure

High level control, including the role-passing system, was implemented in Generic Robot
Language (GRL), an architecture-neutral language for behavior-based systems [25]. GRL
programs take the form of high-level descriptions of parallel networks of signals that are
updated continuously. The GRL compiler constructs a custom circuit-simulator for these
networks and compiles it to a single while-loop containing straight line code. The output
code can be C, C++, BASIC or Scheme (a dialect of LISP).

Lower-level code for image processing, network I/O, and serial I/O were written largely
in C++, with some additional Scheme code.
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2.9. Operator Control Unit (OCU)

The OCU for the HIVEMind team is based on the Cerebus project [23]. It provides a
natural-language interface for the human user and allows commands such as ‘find green
ball’ or ‘announce “talk at 7! to be entered. The task is bound to the activity role,
and any arguments are bound to other appropriate roles, e.g. green would be bound to
object inthe former example. The current bindings are represented in alist form and
transmitted on a virtual wire to all members to the team. The OCU appears as another
robot to other team members, albeit one that is not doing any physical work. The OCU
also provides status information in the form of display windows based on the broadcast
knowledge it is receiving from other team members (see Figure 7). Using this interface,
the human commander can inject new information into the team, as well as receive data
about the current state of the “group mind”.
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Figure 7. Map display from OCU

2.10. Sensory Systems

Most sensory systems in HIVEMind are grouped into pools. Trackers are allocated from
these pools on demand whenever a robot needs to attend to an object. The pools drive the
inference rule network, which in turn drives the low-level behaviors that actually control
the robot. Figure 8 shows a high-level view of the system.
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Figure 8. Control flow from sensors to behaviors in a single robot

The tracker pool consists of a set of visual trackers that utilize a variant of k-means
clustering for tracking blobs of color in the robots visual image. The trackers can drive
low-level behaviors with image-plane coordinate of the objects they track. In addition,
they generate the low-level predicates see-object (X) and near-object (X) for
input to the inference network. The trackers are not used in the Town Crier task.

The color pool is a memory system stores color coordinates of different objects in a
format suitable for use by the visual tracking system. Although not a sensory system per
se, it allows colors to be specified to the tracking system by binding them to roles. For
example, when the user directs the team to seek a green ball, the OCU binds the color
pool entry to green to the appropriate role. The bindings are then automatically passed
over the network to the robots.

The place pool is a probabilistic localization system that uses a topological, i.e. landmark-
based, map. Roles can be bound to landmarks and the system can determine the next
appropriate waypoint in order to reach a landmark specified by role. The place pool also
records the set of landmarks that have been visited with high probability and can
determine the closest unvisited landmark. The current map contains 11 landmarks
distributed over the west wing of the 3™ floor of the Northwestern Computer Science
Department.

The action pool is used to allow the robot to “sense” the state of its own internal
behaviors, as well as to control them. It is used to allow the OCU to explicitly invoke
behaviors.

2.11. Communication
The following information is communicated during performance of all tasks:
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1. The current role bindings, including bindings for the current activity or task, and

any bindings for pertinent arguments
2. A bit-vector specifying the set of landmarks that the robot has personally visited
The bit vector for the see—~object (X) predicate
4. An array representing the location (X) function, which give the two nearest
landmarks, if known, for any role X

w

All of these are low-level outputs of the various pools, except for the current role
bindings, which has to be stored on a separate latch on the user console. When the team
is performing the Town Crier task, the latter two communication structures, i.e. see-
object (X) and location (X), are not utilized for reasoning.

2.12. Inference rules
One of the advantages of role-passing is that it allows relatively compact specification of
control tasks through inference rules. The inference rules for the find object task are:
1. If see-object (X) istrue, then goto (X) .
2. If location (X) is known, and see-object (X) is false, then
goto (location (X)) .
3. Iflocation (X) is unknown, and see-object (X) is false, then
goto (next-unsearched-location()).

The inference rules for the town-crier task are:

a. Ifat-landmark (X) and not-announced-at (X), then speak-
string ().
b. If true,then goto (next-unsearched-location()).

The inference rules for the Capture Evading Target task are somewhat more complicated:

If not (observed (X)), then goto (next-unsearched-location()).

If see-object (X) orlocation (X) isknown,then set-

observed (X).

¢. Ifnot(all-see (X)) and see-object (X),then set-current-
role (sentry).

d. Ifcurrent-role () is sentry, then stop-moving () and announce-
taunt ().

e. Ifnot (see-object (X)) and location (X) is known, then set-
current-role (stalker).

f. If current-role () is stalker, then goto (
trapping-path (location(X))).

g. Ifall-see (X),then goto (X) and announce-capture ().

op

The seven rules above are responsible for moving the robot between three states: search,
stalk and trap. The robots start out in search mode (Rule 1) looking for the intruder.
When the intruder is seen, the robots transition out of search mode (Rule 2). The robot

22

TR




that sees the intruder goes into sentry mode (Rules 3 & 4), while the other robot becomes
the stalker (Rules 5 & 6). The stalker plans a path to the location of the intruder that
takes into account the location of the sentry. That is, with the sentry on one end of the
intruder’s corridor, the stalker enters that corridor from the other end, trapping the
intruder in between the two robots. Finally, when both robots have the intruder in sight,
they move in for the kill (Rule 7).

The function next-unsearched-location () returns the current location if there
are no new locations to travel to. Goto () is a behavior that drives to a specified object,
as specified by a role. However, its exact behavior depends on the sensory system in
which the object is bound. If the argument is bound to a location, then the robot will
navigate to that landmark. If the argument is bound to a color in the color pool, then the
robot approaches the largest object matching that color in its view. Goto () activates the
four behaviors described below as necessary to accomplish its current task.

2.13. Behaviors

There are four motor behaviors that drive the robot:

1. Approach drives to an object specified by role. It attempts to keep the object in
the middle of its visual image.

2. Turn-to swivels the robot to face a new direction. It is used when the robot
arrives at a landmark and needs to turn in a new direction to reach another
landmark.

3. Unwedge activates when the robot becomes stuck in some corner unexpectedly. It
swivels the robot in the direction in which it thinks has the greatest open space so
the robot can continue moving.

4. Follow-corridor navigates the hallways. It tries to remain centered in the middle
of the corridor to facilitate easy recognition of environmental features.

The behaviors are arbitrated strictly through a priority stack. Behaviors that are higher on
the stack have higher priority, and, if active, will be chosen to run over those of lower
priority. Since HTIVEMind always ensures that all team members are up-to-date on the
current situation, each robot always knows the appropriate behavior to activate for the
current situation and no conflict between team members arises.
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3. Results and Discussion

We have tested the system with a three-member team consisting of two robots and the
command console. The team was tested in the west wing of the 3 floor of the Computer
Science Department building. The wing consists of a network of six corridors spanning
an area approximately 6 x 20m with an aggregate path length of SOm. The network of
corridors is represented by 12 landmarks in the topological map showing the locations of
features such as corners and intersections. The robots drive at approximately 1m/s on
straightaways, although stopping for ballistic turns at corners and intersections somewhat
reduces their mean velocity. Sensing, inference and control decisions are each performed

at 10Hz. ’

3.1. Search for a static object

In the Find-Object experiments, all team members were started from a central point at the
extreme east end of the wing. The goal object, a green ball, was placed out of view, 15-
20m from the starting point. The object was always at least two corridors and three
landmarks away from the starting point. When the command “find green” was entered on
the command console, the robots begin a systematic search of the wing for the goal
object. Unlike stochastic search techniques such as foraging, the systematic search
guarantees that each landmark is searched at most once and that all landmarks are
guaranteed to be searched, if necessary. Using a greedy algorithm for landmark selection,
the team was consistently able to find the landmark within 30 seconds provided that there
were no catastrophic failures of the place recognition system. On typical runs, the team
found the object in approximately 20 seconds. A robot team member in the Find Object

task is shown in Figure 9.
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Figure 9. Team member in Find Object task

3.2. Systematic traversal of space

For the Town Crier task, team members were again started from a central point at the
extreme east end of the wing. The objective was for the robots to go through each
landmark at least once, making the announcement at each landmark that the robots passed
through. If a robot had already spoken at a particular landmark, then no further
announcement should be made there, since we do not wish to inundate any nearby offices
with multiple announcements. Again, barring any catastrophic failures of the place
recognition system, the team was able to complete the task successfully.

3.3. Search for an Evading Target

Finally, for the Capture Evading Target experiment, the robots were started from the
same position as the Find Object experiments. As in the static target case, the
localization code formed the greatest impediment. The inference architecture performed
flawlessly once again; the relevant inferences and sensory data were transparently shared
between all team members (including the commander console) in an efficient manner.
Figure 7 shows a screenshot of the status windows on the commander console. The
highlighted corridor between the nodes labeled rob and aaron shows the location of the
human intruder. The second (stalker) robot is near the brian node, performing a pincer
move in order to come around and trap the human. Figure 10 (left) shows the intruder in
front of the stalker robot. When the intruder attempts to escape to the other corridor, the
stalker doesn’t follow, but instead lets the other robot trap the intruder. In the end, the
intruder was trapped in a corner, as shown in Figure 10 (right).
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Figure 10. Team capturing an evading target

3.4. Discussion

The place recognition system is the weak point of the current implementation. Minor
errors are common and occasional catastrophic failures can cause one of the team
members to think that it has traversed its intended destination when in fact it has not.
While we are working on improving the place recognition system, it should be stressed
that the actual control and coordination architecture worked without error.

It may seem inefficient for each robot to have its own separate copy of the inference
network. However, to have a single robot perform each inference and share the results
would require much more complicated coordination protocols [21] analogous to the
multi-phase commit protocols used in distributed database systems. Since
communication bandwidth is a scarce resource and inference in our system is essentially
free, it is more efficient for HIVEMind robots to perform redundant computation.

Limitations

Although HIVEMind has performed very well in our experiments, it does rely on a
convergence property for the shared data. This requires that all team members will
converge on identical world models in finite time, provided of course that the world
doesn’t change in the intervening period. This is guaranteed by the timestamping
protocols used on packets provided that those packets contain state information not event
information. That is, provided that the true state of the world can be inferred from the
most recently transmitted packets without having to have also received any past packets.
The problem is illustrated by the transition diagram shown in Figure 11.
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Figure 11. Problematic state transitions

If the robots communicate state information (e.g. “I’m in state A”), the situation is non-
problematic. If, however, the robots share only event information, then packet loss can
lead to desynchronization/decohesion of the team when the loss of an A report causes
some team members to believe the system is still in state 1 instead of state 2. The
problem can be solved by replacing UDP with some kind of reliable multicast protocol
such as Scalable Reliable Multicast (SRM) [24].

However, would require robots to wait for their team members to acknowledge old
communications before sending new communications, leading the team to fail entirely
should one member fall temporarily out of communication. Another approach would be
to transmit the last few events in each packet rather than just a single event. The system
could be made arbitrarily reliable at the cost of increased communication bandwidth by
increasing the size of the event buffer. In our work, however, we have chosen to solve
the problem by transmitting the state information directly rather than by transmitting
update events.

Another issue is the limited physical range and geographical coverage. Wireless
networks have finite range. If the task area is large enough, team members will fall out of
communication range. These issues could potentially be solved using tree-based
algorithms such as prefix scans. However, we have not yet attempted this.
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4. Conclusions

The HIVEMind architecture is an attempt to extend parallel reactive inference to a multi-
robot environment. It allows behavior-based systems to abstract over both objects and
sensors, while remaining efficient enough in both inference speed and bandwidth
consumption to be usable on physical robot teams. HIVEMind provides multi-robot
system designers with more powerful representations than behavior-based systems, and
has a simple, efficient model for group coordination. We believe that the right set of
representational choices can allow the kinds of inference presently implemented on robots
to be cleanly grounded in sensor data and reactively updated by a parallel inference
network. By continually sharing perceptual knowledge between robots, coordination can
be achieved for little or no additional cost beyond the communication bandwidth required
to share the data. The effect is a kind of “group mind” in which robots can treat one
another as auxiliary sensors and effectors. We have implemented and validated the
architecture on three tasks and achieved very good results.
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