AFRL-IF-RS-TR-2003-212

Final Technical Report
September 2003

CONFIGURING EMBEDDABLE ADAPTIVE
COMPUTING SYSTEMS FOR MULTIPLE
APPLICATION DOMAINS WITH MINIMAL SIZE,
WEIGHT, AND POWER

Texas Tech University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F297, J468

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2003-212 has been reviewed and is approved for publication.

APPROVED: Is/
JULES BERGMANN
Project Engineer

FOR THE DIRECTOR: Is/
EUGENE C. BLACKBURN, Chief
Information Technology Division
Information Directorate

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-

4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE
SEPTEMBER 2003

3. REPORT TYPE AND DATES COVERED

Final Jul 97 — Oct 01

4. TITLE AND SUBTITLE

CONFIGURING EMBEDDABLE ADAPTIVE COMPUTING SYSTEMS FOR
MULTIPLE APPLICATION DOMAINS WITH MINIMAL SIZE, WEIGHT, AND
POWER

6. AUTHOR(S)
John K. Antonio

5. FUNDING NUMBERS
C -F30602-97-2-0297

PE -62301E
PR -D002
TA - 02

WU - P6

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Texas Tech University

203 Holden Hall

Lubbock TX 79409-1035

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFTC
3701 North Fairfax Drive 26 Electronic Parkway
Arlington Virginia 22203-1714 Rome New York 13441-4514

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-212

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Jules P. Bergmann/IFTC/(315) 330-2244/ Jules.Bergmann@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

The advantages of using DSP chips for high-performance embedded signal processing applications have been
demonstrated during the past decade. However, it is now apparent that even DSP chips can be overkill for some

computations found in common embedded military applications. This project investigates the advantages of integrating
configurable hardware together with a multiprocessor DSP/GPP platform. The computational engine of the configurable
hardware used in this project was comprised of FPGA chips. A primary goal of our project was to demonstrate that for
given computational loads--associated with instances of embedded radar signal processing applications—the total size,
weight, and power (SWAP) could be reduced by integrating FPGA-based components as part of the embedded
computational platform.

15. NUMBER OF PAGES
142

14. SUBJECT TERMS
Digital Signal Processing, Hybrid Computer Architecture, Embedded Systems, Field Programmable

Gate Arrays, Radar Signal Processing Size, Weight, and Power Optimization 16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

Ty igo]o (1T (o] IO OO OO SO USSR 1
Organizational Structure 0f the REPOIT.........ccuiiiiiiiiei et 1
PrOJECT OVEIVIBW ...ttt ettt ettt b e bbb e Rt e R e ee e e b e nb e e bt e b e e meenbenbeebesbesbeebeeneannenen 2
Brief Descriptions of Major Parts of the REPOI ..o 3

Part 1: Optimal Multiprocessor Configuration for SARccoov e 5
Overview of References [1A], [2B], and [3]....ccoeeiiimiiiieiieeere et 5

Part 2: Optimal Communication SCheduling fOr STAPcooiiii e 9
Overview of References [4C], [5D], [6E], [7], and [8] . ccvecevviiirieiieieiee e 9

Part 3: FPGA Power Prediction and APPlICALIONScccveieiiiicre s 12
I o o €Y N o1V = To T o] o PR PRPSRSSN 12
Overview of References [9F] and [L0]ooeeeiirieiiie et e 12
OVerview Of REfEFENCE [LLG]coviieii ettt sttt be s b e beaneera e e enee s 14
I o o Y AN AN o] o] o 11 o] 1SR 14
Overview of References [12H] @and [L3]cvoeierieiiriieeieiee e 14
OVerview Of REFEIENCE [LA] ..ottt bbbt e b bbbt b e e 15
OVerview Of REFEFENCE [L51] ...cveiiieie ittt s a et e e aeete e et s 16
Overview of References [16J] and [17] . .voveveveereiire st 18

Part 4: Hybrid FPGA/DSP/GPP PIAtFOIMoviiiiiiiiiieicie ettt 19
Overview Of REfEreNCE [L8K]o i e bbbt e 19

(073 To] 1117 o] o HO OSSPSR 33
QLo a0 [T 1Y I 13 (-1 SRS 33
= FL =T = o] TS OR 33

RETEIBICES ...ttt b bbbt bt e bt e st e s e ee e e b e e b e e b e e bt e Rt e R b et e b e ke ebeeb e e neeneennennan 35

AAAItIONA] MALEITAISeiviieiecie ettt sttt et sttt sb et et nbe e 38

QLIETed Lo LI (=T oo PSS 38

Appendix A: Jeffrey T. Muehring and John K. Antonio, “Optimal Configuration of an Embedded Parallel
System for Synthetic Aperture Radar Processing,” Proceedings of the International Conference on Signal
Processing Applications & Technology, Boston, MA, Oct. 1996, pp. 1489-14%.........ccccccevvviiviivciiesnennn, 40
Appendix B: Jeffrey T. Muehring and John K. Antonio, “Optimal Configuration of Compute Nodes for
Synthetic Aperture Radar Processing,” Proceedings of the International Workshop on Embedded HPC
Systems and Applications (EHPC “98), in Lecture Notes in Computer Science 1388: Parallel and
Distributed Processing, edited by Jose Rolim, sponsor: IEEE Computer Society, Orlando, FL, USA, Apr.
1998, PP. 987993, . ettt bbb b b e Rt bt E e bt b e b et e b et eneneereas 47
Appendix C: Jack M. West and John K. Antonio, “Simulation of the Communication Time for a Space-
Time Adaptive Processing Algorithm on a Parallel Embedded System,” Proceedings of the International
Workshop on Embedded HPC Systems and Applications (EHPC “98), in Lecture Notes in Computer
Science 1388: Parallel and Distributed Processing, edited by Jose Rolim, sponsor: IEEE Computer
Society, Orlando, FL, USA, Apr. 1998, PP. 979-986.......ccciiiiririiieieieie sttt 55
Appendix D: Jack M. West and John K. Antonio, “A Genetic Algorithm Approach to Scheduling
Communications for a Class of Parallel Space-Time Adaptive Processing Algorithms,” Proceedings of the
5" International Workshop on Embedded/Distributed HPC Systems and Applications (EHPC 2000), in
Lecture Notes in Computer Science, IPDPS 2000 Workshops, sponsor: IEEE Computer Society, Cancun,
Mexico, May 2000, PP. 855-8B1L.iieiieiieiiie ettt sttt sttt bbbt e e e bbb e e e 64
Appendix E: Jack M. West and John K. Antonio, “A Genetic-Algorithm Approach to Scheduling
Communications for Embedded Parallel Space-Time Adaptive Processing Algorithms,” Journal of Parallel
and Distributed Computing, Vol. 62, No. 9, Sept. 2002, pp. 1386-1406.ccccecererrirerieinirieiicseeenes 72
Appendix F: Timothy Osmulski, Jeffrey T. Muehring, Brian Veale, Jack M. West, Hongping Li, Sirirut
Vanichayobon, Seok-Hyun Ko, John K. Antonio, and Sudarshan K. Dhall, “A Probabilistic Power
Prediction Tool for the Xilinx 4000-Series FPGA,” Proceedings of the 5" International Workshop on

Embedded/Distributed HPC Systems and Applications (EHPC 2000), in Lecture Notes in Computer
Science, IPDPS 2000 Workshops, sponsor: IEEE Computer Society, Cancun, Mexico, May 2000, pp. 776-
=1 ST RSTT R SSPR 94
Appendix G: Hongping Li, John K. Antonio, and Sudarshan K. Dhall, “Fast and Precise Power Prediction
for Combinational Circuits,” Proceedings of the IEEE Symposium on VLSI, sponsor: IEEE, Tampa, FL,
FED 2003, PP. 254-259.eiiiiiiie ettt ettt b ettt bt a et et b e 103
Appendix H: Nikhil D. Gupta, John K. Antonio, and Jack M. West, “Reconfigurable Computing for Space-
Time Adaptive Processing” Proceedings of the Sixth Annual IEEE Symposium on Field Programmable
Custom Computing Machines (FCCM), Napa, CA, USA, Apr. 1998, pp. 335-336.cccvrivrrrerierennrnnnnns 110
Appendix I: Jeffrey T. Muehring and John K. Antonio, “Minimizing Power Consumption using Signal
Activity Transformations for Very Deep FPGA Pipelines,” Proceedings of the Military and Aerospace
Applications for Programmable Devices and Technologies Conference (MAPLD 2000), sponsors: NASA
and Johns Hopkins University/Applied Physics Laboratory, Laurel, MD, Sep. 2000.cccccevvrvrrrnnnne. 113
Appendix J: S. Vanichayobon, Sudarshan K. Dhall, S. Lakshmivarahan, and John K. Antonio, “Power-
speed Trade-off in Parallel Prefix Circuits,” Proceedings of ITComm 2002, High-Performance Pervasive
Computing Conference, sponsor: SPIE, Boston, MA, July/Aug. 2002, pp. 109-120.ccccvvivrvevernennn. 117
Appendix K: Jack M. West, Hongping Li, Sirirut Vanichayobon, Jeffrey T. Muehring, John K. Antonio,
and Sudarshan K. Dhall, “A Hybrid FPGA/DSP/GPP Prototype Architecture for SAR and STAP,”
Proceedings of the Fourth Annual High Performance Embedded Computing Workshop, sponsors: U.S.
Navy and Defense Advanced Research Projects Agency (DARPA), MIT Lincoln Laboratory Publications,
Group 18, Lexington, MA, Sep. 2000, PP. 29-30. ..c..ciiiiriiiierieisie ettt srere s 130

List of Figures

Figure 1. Organizational structure of the report.ccocveveiieiiece e 1

Figure 2. This diagram illustrates the method of performing sectioned fast convolutions
on azimuth input data with a pre-stored kernel. Given that the kernel size is fixed,
then if the section size is made large, a relatively small fraction of samples are
discarded for each section, thus making processor efficiency high. Conversely, if the
section size is small, then a relatively large fraction of samples must be discarded for
each section, resulting in poor processor efficiency, but relatively small memory

FEQUITEIMEBNTS. ..ttt ettt bbbttt e et e bt e bttt b e e e e e e e 6
Figure 3. Optimal CN Configurations of the CN-constrained Model [2B].cccveue..... 8
Figure 4. Measured power consumption of the configuration files and data sets from [9F].

.. 14
Figure 5. Structure of the deep PIPEliNe.oci i 17
Figure 6. Using activity transformations to minimize power consumption. 18
Figure 7. Block diagram of the FPGA/DSP/GPP prototype architecture........................ 20
Figure 8. Detail of the FPGA/DSP/GPP prototype architeCture.ccceevvieneeienennens 21
Figure 9. Photograph of the FPGA/DSP/GPP prototype architecture.c.cccovevenene. 22

Figure 10. Interface Design: Communication from Annapolis FPGA (F) to Mercury. ... 23
Figure 11. Interface Design: Communication from Mercury to Annapolis FPGA (B).... 24
Figure 12. Illustration of how the major computational components of SAR processing

can be mapped onto the hybrid SYSTEM. ... 24
Figure 13. Hlustration of how the major computational components of STAP processing

can be mapped onto the hybrid SYStEM.ccceiviiiiiiiece e 25
Figure 14. Figure 14. SAR Processing FIOW.cccociiiiiiiie e 25
Figure 15. Data distribution for Parallel SAR Processing on Mercury.cc.ccocveevennn. 26
Figure 16. Space-time diagram for streaming parallel SAR processing.........c..cccccevvvenee. 27
Figure 17. Throughput requirements achieved for streaming parallel SAR processing... 28
Figure 18. Streaming parallel RT_STAP on Mercury Subsystem...........ccccvverenneniennnnns 29
Figure 19. Parallel RT_STAP on Mercury SUBSYStem.ccccoviiiiininiiieee e 30
Figure 20. Space-time diagram for parallel RT_STAP. ... iieiiveiiee e 31

Figure 21. Throughput requirements achieved for the medium case parallel RT_STAP. 32

Acknowledgments

I would first like to acknowledge and thank the graduate students that worked on this
project. Every publication associated with the project was co-authored with one or more
graduate assistants and was based on research conducted in conjunction with a PhD
dissertation or MS thesis.

Jeff Muehring (initially an MS student and later a PhD student) conducted research in
the area of determining optimal configurations for SAR (synthetic aperture radar)
processing. His work included the application of mathematical programming techniques
for determining optimal multiprocessor configurations for SAR. His techniques centered
on the concept of making the proper trade-off between processing hardware and memory
so as to minimize the overall power consumption of the system, while satisfying
throughput requirements. Jeff also made contributions in the domain of FPGA (field
programmable gate array) design by proposing a new way of implementing two-
dimensional signal processing tasks (including SAR) using very deep FPGA pipelines. In
addition, Jeff played an important role in designing and implementing the hardware
portions of the custom interfaces between the FPGA and DSP/GPP subsystems of the
constructed prototype platform.

Jack West (initially an MS student and later a PhD student) conducted research in the
area of minimizing communication time for STAP (space-time adaptive processing)
executing on a multiprocessor. By minimizing communication overhead, he
demonstrated that less hardware is required for given instances of STAP, thereby
reducing SWAP (size, weight, and power). The first phase of Jack’s work included the
development of a simulator for Mercury’s RACEway® interconnection network. This
fast and efficient simulator was used in the second phase of his work in which genetic
algorithm approaches were developed for solving the communication scheduling
problem. Jack also played important roles in developing the prototype system by helping
with the STAP application software implementation and by designing and implementing
the software portions of the custom interfaces connecting the FPGA and DSP/GPP
subsystems.

Tim Osmulski (MS student) developed and implemented an analytical tool, in
software, for estimating power consumption of a configured FPGA chip. This tool,
which was the first of its kind, demonstrated that it is indeed possible to accurately
predict FPGA power consumption by applying existing analytical approaches. The
accuracy of Tim’s tool was verified by comparing its predicted values with actual
measured power consumption taken from an instrumented FPGA board.

Hongping Li (PhD student) developed a new analytical approach for estimating power
consumption of circuits, including those implemented on a FPGA. His approach is based
on a Markov chain signal model, and directly accounts for correlations present among the
internal signals of the circuit. Hongping verified the accuracy of his approach using
PSpice® based simulation studies. Hongping also lead the effort in implementing the
parallel SAR application software on the multiprocessor system.

Nikhil Gupta (MS student) developed FPGA circuit designs to support core
calculations required by STAP. His work demonstrated that 16-bit block floating point

arithmetic provides acceptable accuracy for many situations. The advantage of using
block floating point arithmetic, instead of standard floating point, is the significant
reduction in the size and power consumption of the corresponding circuits. His research
illustrated that if the values of the input data are approximately uniformly distributed,
then the block floating point approach delivers acceptable accuracy.

Brian Veale (initially an MS student and later a PhD student) conducted a study
comparing different FPGA designs and implementations for an inner product co-
processor. He studied two architectural approaches for the co-processor and two different
types of arithmetic (integer and floating point) for a total of four combinations. For each
implementation, he also studied the effect that employing different degrees of pipelining
had on each design in terms of size, speed, and power consumption. His study of
pipelining resulted in some counterintuitive results. In particular, while it is well known
that increasing the degree of pipelining generally enables custom designs to be run at
faster clock rates, the same is not always true for FPGA designs.

Sirirut Vanichayobon (PhD student) studied the power-speed trade-off for a class of
circuits known as prefix circuits. These circuits are important in their own right, and are
representative of the type of circuit often required in high-performance embedded
applications. Through extensive analysis of a number of known prefix circuits, her work
illustrates that the trade-off between power and speed is not always obvious to the circuit
designer. Based on discoveries made through her research, some important guidelines for
properly matching circuit characteristics with power and speed requirements are
provided. Sirirut also lead the effort in implementing the parallel STAP application
software on the multiprocessor system.

I would also like to acknowledge the work and contributions of faculty colleagues. Dr.
Sudarshan Dhall served as co-PI on this project since the Fall of 1999; the time at which |
became Director of Computer Science at the University of Oklahoma. Dr. Dhall made
contributions in nearly all aspects of the project, and was particularly instrumental in
guiding the research of graduate assistants Sirirut VVanichayobon and Hongping Li. Dr.
Dhall’s expertise in system modeling — and probabilistic techniques in particular — was
extremely valuable. The project also benefited greatly by the contributions of Dr. S.
Lakshmivarahan. It was Dr. Lakshmivarahan that originally proposed the topic of
Sirirut’s research, and he and Dr. Dhall served as co-advisors of her PhD committee.

Next, | would like to acknowledge the assistance and guidance of key defense
personnel, starting with Rick Metzger of Rome Laboratory. Rick served as program
manager for a related prior project | performed for Rome Laboratory, and it was this past
work experience that enabled me to be successful in proposing and completing the
present project for DARPA.

I would like to acknowledge the support and encouragement of José Mufioz, who
served as the original program manager for DARPA’s ACS (Adaptive Computing
Systems) program. José provided valuable feedback and perspective throughout the
contract period. | had the opportunity to meet with José and his staff frequently, including
at annual reviews, Pl meetings, and other professional conferences. He actively
encouraged and facilitated interaction and collaboration among the Pls of different

projects, which ensured that the ACS program was cohesive and integrated. The
interactions with other Pls was stimulating, and served to accelerate and improve the
quality and relevance of the results delivered by all project Pls.

Assisting José Mufioz with the management of this project was Ralph Kohler of Rome
Laboratory. 1 met with Ralph on a regular basis at meetings and conferences and
communicated with him frequently through e-mail and telephone correspondence. Ralph
made a number of technical contributions and refinements to the project, and often served
as a sounding board on behalf of the military. He related to me the actual needs of the
war fighter, and these insights helped us to provide results that were more applicable than
would have otherwise been possible. Ralph also helped me tremendously with the overall
management and organization of the project.

Finally, I would like to thank Jules Bergmann of Rome Laboratory, who had the
unenviable task of encouraging me to complete and submit this final report. Jules was
most gracious and professional; he gently, but persistently, encouraged me to finish this
report. 1 would not want to think when this report would have been delivered without the
interaction and encouragement provided by Jules.

Vi

Introduction
Organizational Structure of the Report

A challenge in organizing this report was to provide sufficient detail to readers that desire
it, while also providing a relatively high-level summary of the entire project. Published
materials that resulted from this project currently include eleven conference/journal
papers, two PhD dissertations, and five MS theses. The eleven published papers are
included in printed form in the appendices of this report. It was natural to include copies
of the papers in printed form and refer readers interested in further details to the
dissertations and theses (which are available online) because the papers were generally
derived from the dissertations and theses. It was infeasible to incorporate the
dissertations and theses in printed form; there are over 800 pages associated with these
documents. The report is organized hierarchically, as illustrated in Figure 1.

- 2
rs3z (
28 | o] | [ero | [N
2 @ m
°
L
o [%2]
£ e
o y=l
° © =
S 88 .
E ca Appendix D
= 3
S5 Appendix E
oS
N N
e e
(%)
c
s g Dissertation
[« o < <
= g
[= = n i
5 22 Thesis
£ k=)
£ < 28 L
= ~
S
< =
=5) [summeries | [Repors | [presentaions | | posters |
=5
5
NI

Figure 1. Organizational structure of the report.

The main body of the report provides a summary of basic results, and includes four
major parts: (1) Optimal Multiprocessor Configuration for SAR; (2) Optimal
Communication Scheduling for STAP; (3) FPGA Power Prediction and Applications;
and (4) Hybrid FPGA/DSP/GPP Platform. Each of these parts is supported by a
collection of published papers, theses, and dissertations produced during the project
period. Copies of the published papers are included in the appendices of the report.
References to these publications are labeled with a number followed by the letter of the
appendix where a copy of the publication can be found. For example, reference label
[1A] indicates that a copy of the referenced publication can be found in Appendix A. Due
to size considerations, copies of theses and dissertations, such as reference [3], are not
included in an appendix; however, online links for all references are provided in the list
of references. For conference papers, links to the associated presentation materials are
also provided within the list of references. As illustrated in Figure 1, additional materials
are also available online, including annual project summaries, technical reports, and
presentations and posters given at conferences and PI (principal investigator) meetings.
Online links to additional materials are provided in the section entitled Additional
Materials, which follows the References section.

Each major part is divided into subsections, and each subsection provides an overview
of one or more published papers. Overviews of some of the conference papers (e.g.,
[151] and [18K]) actually expand upon the publication by including content from the
presentation materials associated with that publication. Readers not needing the level of
detail found in these overviews are encouraged to first read the Acknowledgments
section, which includes a paragraph on the work conducted by each student assistant. Of
course readers requiring more detail are encouraged to pursue copies of the papers found
in the appendices, online links of presentation materials found in the References section,
and/or the online links found in the Additional Materials section.

Project Overview

The advantages of using digital signal processing (DSP) chips for high-performance
embedded signal processing applications have been demonstrated during the past decade.
DSP chips often win over general purpose processors (GPPs) because their complexity
(measured, for example, in terms of silicon area, number of transistors, or power
consumption) is better matched to the highly regular and numerical-intensive
computations required by many signal processing based embedded applications.
However, it is now apparent that even DSP chips can be overkill for some computations
found in common embedded military applications. That is, in some cases DSP chips are
equipped with much more architectural complexity than is actually needed, resulting in
inefficiencies and greater power consumption than absolutely necessary.

In this project, we investigated the advantages of integrating configurable hardware
together with a multiprocessor DSP/GPP platform. The computational engine of the
configurable hardware used in this project was comprised of FPGA chips. A primary goal
of our project was to demonstrate that for given computational loads — associated with
instances of embedded radar signal processing applications — the total size, weight, and

power (SWAP) could be reduced by integrating FPGA-based components as part of the
embedded computational platform.

Reconfigurable computing devices, such as FPGAs, can offer a cost-effective and
more flexible alternative than the use of application specific integrated circuits (ASICs).
FPGAs are especially cost-effective compared to ASICs when only a small number of the
chip(s) are required. Another major advantage of FPGAs over ASICs is that they can be
reconfigured to change their functionality while still resident in the system, which allows
hardware designs to be changed similar to software, and dynamically reconfigured to
perform different functions at different times.

A number of theoretical and empirical studies were conducted during the project
period to understand and demonstrate the advantages and disadvantages of DSP/GPP
versus FPGA technologies with respect to SWAP. A prototype heterogeneous
FPGA/DSP/GPP-based platform was constructed using commercial off-the-shelf (COTS)
components to demonstrate the utility of a hybrid system containing all three types of
technologies. A number of systematic approaches and tools based on mathematical
programming and modeling were developed to optimally configure FPGA/DSP/GPP-
based platforms for applications in the radar signal-processing domain. The two major
applications considered were SAR (synthetic aperture radar) and STAP (space-time
adaptive processing).

The prototype system was constructed using COTS components from two vendors:
Annapolis Micro Systems, Inc. and Mercury Computer Systems, Inc. We had excellent
support from both companies, and we designed and implemented a custom interface to
allow communication between two disparate product lines of these vendors.
Implementation of a custom interface was necessary because at that time (1997-98) there
were few interfacing standards among vendors such as the two we were working with
and little customer demand (excluding us, of course!) for providing such an interface.
The availability of products and support to more easily interface components from
different vendors, including the two we worked with, is much better today. In fact, the
output of our research, which illustrated the potential benefits of a hybrid
FPGA/DSP/GPP platform, served as a catalyst for these industry sectors to invest
significant resources and provide support and standards appropriate for interfacing their
product lines.

Brief Descriptions of Major Parts of the Report

Part 1: Optimal Multiprocessor Configuration for SAR - describes research for
determining optimal multiprocessor configurations for instances of the SAR processing
problem. The research was targeted at how to optimally configure a multiprocessor
system for given instances of the SAR problem so that the resulting power consumption
of the multiprocessor system is minimized. The key to the approach involved making the
proper trade-off between the number of processors and amount of memory associated
with the multiprocessor configuration. References associated with this work are [1A],
[2B], and [3].

Part 2: Optimal Communication Scheduling for STAP — describes research for
determining how to best schedule inter-processor communications of a parallel STAP
algorithm mapped onto a Mercury Race Multiprocessor. The approach is based on a
genetic algorithm, and the research also resulted in the development of a fast and
accurate network simulator for the RACEway® interconnection network. References
associated with this work are [4C], [5D], [6E], [7], and [8].

Part 3: FPGA Power Prediction and Applications — describes mathematical models and
other approaches developed for predicting power consumption for FPGA circuits. We
found that predicting power consumption for FPGAs was particularly difficult, as it
strongly depends on precisely how the chip is configured and the “activity”
characteristics of the input data being processed. Nevertheless, we generated new and
important results and tools in this area. We also demonstrated the utility of using FPGA
circuits for portions of the SAR and STAP applications. References associated with this
work are [9F], [10], [11G], [12H], [13], [14], [151], [16J], and [17].

Part 4: Hybrid FPGA/DSP/GPP Platform — describes a prototype hybrid platform that
was constructed for this project. It includes the detailed design and development of the
custom interfaces implemented to interconnect the disparate products of the two vendors.
Some performance results are also included. The reference associated with this work is
[18K].

Part 1: Optimal Multiprocessor Configuration for SAR
Overview of References [1A], [2B], and [3]

The real-time embedded application considered in this part, i.e., SAR, as well as many
others of military interest, are characterized by a common theme: processing a continuous
stream of data collected from radar sensors. The rate at which data samples flow from the
sensor(s) to the computational platform is typically very high — often on the order of tens
or hundreds of millions of samples per second and even higher. Furthermore, the number
of calculations to be performed on each sample is typically at least 100 FLOPs (floating-
point operations), which amounts to an overall computational throughput requirement
ranging from at least one to ten billion FLOPs (and often much higher).

At the beginning of the contract period, approaches capable of providing a
computational platform that could achieve these types of computational throughput rates
typically involved a “pipeline of interconnected processors” style of architecture. Such an
approach could be a valid and effective architecture in some cases. However, situations
often arose in which the throughput requirements dictated that 100 or more SHARC® (or
similar) DSP processors were required. In many situations, the associated level of power
requirement for the computational platform alone posed a severe problem, because of the
strict power budgets available on UAVs (unmanned aerial vehicles) and satellites where
these systems are deployed.

In the paper [1A], we showed how a DSP/GPP-based multiprocessor system could be
optimally configured using two types of processor/memory daughtercards to minimize
overall power consumption for SAR applications. We showed that by careful (and often
counterintuitive) selection of parameters associated with both the hardware (the number
of daughtercards of two possible types) and the application software (a parameter known
as the azimuth section size), an optimal configuration (one with minimal power
consumption) can be derived based on the application of mathematical programming
techniques.

Our approach centered on the derivation of two mathematical formulas for given
instances of the SAR problem: one for the total numbers of processors required and the
other for the total memory required. Both of these functions are dependent on the choice
of the section size parameter. The derived functions dictate that if a small section size is
used, then the associated memory requirements are small, but the processor requirements
are high. On the other hand, a large section size was shown to result in a requirement for
fewer processors, but more memory.

The reason a large section size implies that fewer processors are required is because
only a small fraction of data is discarded during the calculation of the so-called sectioned
fast convolutions (refer to Figure 2). This implies that the processors are being used with
high efficiency when the section size is large. On the other hand, when a small section
size is used, then more processors are required because a relatively large fraction of data
is overlapped. From Figure 2, note that the overlapped data samples are actually
processed twice. Although achieving high processor efficiency is a traditional objective,
the trade-off is that implementing the associated large section sizes requires extra

memory, and extra memory consumes extra power. It is this inherent trade-off between
processor efficiency, memory, and section size that our approach optimized.

-— iy —
FFT size

§] Overlap
Kernel] ¥

Discard

< Section >

Large Overlap/Section ratio = Small azimuth memory, large number azimuth processors
Small Overlap/Section ratio = Large azimuth memory, small number azimuth processors

Figure 2. This diagram illustrates the method of performing sectioned fast convolutions
on azimuth input data with a pre-stored kernel. Given that the kernel size is
fixed, then if the section size is made large, a relatively small fraction of
samples are discarded for each section, thus making processor efficiency high.
Conversely, if the section size is small, then a relatively large fraction of
samples must be discarded for each section, resulting in poor processor
efficiency, but relatively small memory requirements.

The two daughtercards assumed to be available in our approach were: Type 1, which
had six SHARC® processors and a total of 32MB of memory; and Type 2, which had
two SHARC® processors and a total of 64MB of memory. Thus, our optimization
procedure was based on minimizing total consumed power based on proper selection of
three parameters: section size, number of Type 1 cards, and number of Type 2 cards.
Note that allowing two daughtercards in the configuration put additional constraints on
the types of configurations that were possible. Thus, in general, arbitrary numbers of
processors and amounts of memory could not me configured. However, the underlying
concept of trading the efficiency of processors for more memory was still present.

One interesting lesson learned from our study happened when we considered a
situation in which only Type 1 cards were assumed to be available for configuring the
system (recall that the Type 1 card is “processor rich” and “memory poor” as compared
with the Type 2 card). For this case of configuring only with Type 1 cards, the
optimization procedure selected very small section sizes — smaller than one would think
to be reasonable. We had to think about why this was happening; it went against our
intuition. After some thought, we realized the reason — the objective of our optimization,
afterall, was to minimize consumed power, not to maximize processor efficiency. The
mathematical programming procedure had no regard for processor efficiency; its only
concern was to use the available resources (in this case a lot of processors, and not much
memory) to minimize total consumed power. If that means inefficient use of the
processors, then so be it.

Consider why it is generally not optimal to force our expectations about what
“reasonable” processor efficiencies should be for the case discussed in the previous
paragraph. To achieve such efficiencies may require substantial memory (refer to Figure

2). So, if “reasonable” processor efficiencies are forced into the configuration, then the
number of cards required by the configuration must increase — not because more
processors are required, but because more memory is required. In fact, some processors
will be idle while the few “efficient ones” are working away — the resource being fully
used is the memory. Recall that consumed power is in direct proportion to the number of
cards in the configuration. This helped us understand a new interpretation for what our
optimization procedure was actually doing: piecing together the “pre-configured silicon”
cards available in the most power efficient way possible. Forget about the importance of
processor efficiencies that we study/teach in our parallel processing courses!

References [2B] and [3] further refine the results of [LA]. The most notable refinement
involves the concept of configuring a compute node. In the Mercury system, a compute
node (CN) is an entity on a daughtercard consisting of one or more compute elements
(CEs). A compute element, in this context, is a SHARC® processor. In our study, the
Type 1 cards were populated with CNs in which each CN contains 3 CEs; and the Type 2
cards were populated with CNs in which each CN contains 2 CEs. In [2B] and [3], we
defined formulations to our optimization problem in which the utilization of each CN is
determined by the optimization procedure.

Figure 3 illustrates optimal configurations for a wide range of SAR operating points.
The horizontal resolution axis represents the desired SAR image resolution in meters, and
the vertical velocity axis is the speed of the vehicle (e.g., UAV) in meters/sec. The legend
on the right side of the figure indicates two possible choices (X and Y) for CN
configurations. The value of Xy and Yt indicate the card Type (1 or 2) selected for the X
and Y configurations. For example, the red square symbol ‘[J’ is associated with the use
of card Type 1 for the X configuration (i.e., Xy = 1) and card Type 2 for the Y
configuration (i.e., Yt = 2). Furthermore, for the X configuration, one CE (for each CN) is
utilized for range processing (i.e., X; =1) and two CEs are used for azimuth processing
(i.e.,, X3 = 2). Similarly, for the Y configuration, none of the CEs are used for range
processing, and both CEs (for each CN) are used for azimuth processing (because Y, =0
and Y, = 2). For the sake of comparison, consider now the configurations associated with
the blue times symbol “x’ where both the X and Y configurations use the Type 1 card, but
the utilization of the CNs for X and Y are distinct. The number of configured CNs, and
thus the total number of cards of each type, is also provided by the optimization
procedure, but is not shown on Figure 3.

Although subtle, perhaps, this part of the work is extremely important because it cuts
to the heart of a bigger issue. The most fundamental questions of interest for these types
of systems should not necessarily be expressed in terms of processor efficiencies, or even
processors or memories at all; what is important is the “configuration of the silicon,” i.e.,
how can it be configured to minimize SWAP. The mixing of the two card types we
studied is only a rough approximation to this general concept of “configurable silicon.”
With two discrete card types available, many, but not anywhere near all, possible
combinations of processors and memories can be configured. But remember, processors
and memory are not the only things we can build out of silicon. More specialized
functional units can also be built.

Parts 3 and 4 of this report deal with a key aspect of the project — namely, is it always
necessary to configure silicon as discrete processor and memory modules? Could it be
that silicon configurations consisting of modules or functional units less complex than
processors and memories are also possible, and have superior SWAP characteristics in
some situations? Before getting to the answers to these questions, the next part of this
report deals with optimizing the SWAP performance of a multiprocessor implementation
for STAP. Although Part 2 is similar to Part 1 in the sense that only processors and
memories (and not reconfigurable computing) are assumed in the computing platform,
the mechanism for minimizing SWAP in the STAP application centers around effective
use of the interconnection network that supports interprocessor communication.

40000 000000X x xOOOX X X X X
O0000000OX XX X XOOX X X X
OO00O0OOOOOX X X X X X X X XX X
ODO0O0O0O0OO0OX X X X XX XX XX X
O00000OOOOX X X OX XOX X X
00000000000 xO0X x xOX
OOO0O0OOOOX xOOOOX X X O X
3000 00000O0xO0Xx xOOxOXx xO0Ox
O00000O0OO00O000OX X xOOX X X OX
OOvOOOOOOOOOOXxOOOX X0OX X
sell0 0000000000 DOOOdx xOxx
O0O00O0OOOOxOO0O0OOXxOOOX x0OX X
OOx 0000000000000 0Ox00 X X
OOxO000O0xO000000O0xOx00 X X
20oxooooOoOxO00000O0Ox0O0x x0O
OOxO000D0D00000O0O0xOxOOXx x0O
ooOoOoOoOoOooOooooow Ox x0O
15000 000000000x0Ox0Ox0 x O %
ooooooooooo O O
ooooooox0O0 O
OxOoOoooooo O O
10gg x oo oo]
OxOxOxOOoOo
ooOoxOoooo
5000 O . Y

0.5 1 15 2
Resolution

YLYY

350

X X X X X 0O
X X X X

X

_i

X

X

NNR RPRRPRRPRRPRRRPNOR

X X X X X X X

X
O

Velocity
O0O0OOX X XX XXX xxO0O

X X X X X X XX x0O
OOX X XX XXxxO0O
PO WWNRREPREPREREF
RPFNNOORNMNMNDNNEDN
NP
NFRPPFRPOOFROONDN
ORL FRPNNFPNR P

X X
d

Figure 3. Optimal CN Configurations of the CN-constrained Model [2B].

Part 2: Optimal Communication Scheduling for STAP
Overview of References [4C], [5D], [6E], [7], and [8]

The work here develops and evaluates a genetic-algorithm-based (GA-based)
optimization technique for the scheduling of messages for a class of parallel embedded
signal processing techniques known as space-time adaptive processing (STAP). The GA-
based optimization is performed off-line, resulting in static schedules for the compute
nodes of the parallel system. These schedules are utilized for the on-line implementation
of the parallel STAP application. The primary motivation and justification for devoting
significant off-line effort to solving the formulated scheduling problem is the resulting
reduction of hardware resources required for the actual on-line implementation. Studies
illustrate that reductions in hardware requirements of around 50% can be achieved by
employing the results of the proposed scheduling techniques. This reduction in hardware
requirement is of critical importance for STAP, which is typically an airborne application
in which the size, weight, and power consumption of the computational platform are
often severely constrained.

For an application implemented on a parallel and embedded system to achieve
required performance, it is important to effectively map the tasks of the application onto
the processors in a way that reduces the volume of inter-processor communication traffic.
It is also important to schedule the communication of the required message traffic in a
manner that minimizes network contention so as to achieve the smallest possible
communication times.

Mapping and scheduling can both — either independently or in combination — be cast
as optimization problems, and optimizing mapping and scheduling objectives can be
critical to the performance of the overall system. For embedded applications, great
importance is often placed on determining minimal hardware requirements that can
support a number of different application scenarios. This is because there are typically
tight constraints on the amount of hardware that can be accommodated within the
embedded platform. Using mappings and schedules that minimize the communication
time of parallel and embedded applications can increase the overall efficiency of the
parallel system, thus leading to reduced hardware requirements for a given set of
application scenarios.

The work here focuses on using a GA-based approach to optimize the scheduling of
messages for STAP algorithms. STAP is an adaptive signal processing method that
simultaneously combines signals received from multiple elements of an antenna array
(the spatial domain) and from multiple pulses (the temporal domain) of a coherent
processing interval. The focus of this research assumes STAP is implemented using an
element-space post-Doppler partially adaptive algorithm; refer to references [6E], [7],
and [8] for details.

STAP involves signal processing methods that operate on data collected from a set of
spatially distributed sensors over a given time interval. Signal returns are composed of
range, pulse, and antenna-element digital samples; consequently, a three-dimensional (3-
D) data cube naturally represents STAP data. A distributed memory multiprocessor

machine is assumed here for the parallel STAP implementation. The core processing
requirement proceeds in three distinct phases of computation, one associated with each
dimension of the STAP data cube. After each phase of processing, the data must be re-
distributed across the processors of the machine, which represents the communication
requirements of this parallel application. Thus, there are two primary phases of inter-
processor data communication required: one between the first and second phases of
processing and one between the second and third phases of processing. After all three
phases of processing are complete for a given STAP data cube, a new data cube is input
into the parallel machine for processing.

A proposed GA-based approach is used to solve the message-scheduling problem
associated with each of the two phases of inter-processor data communication. This GA-
based optimization is performed off-line, and the results of this optimization are static
schedules for the compute nodes of the parallel system. These schedules are used within
the on-line parallel STAP implementation. The results of the study show that significant
improvements in communication time performance are possible using the proposed
approach for scheduling. It is then shown that these improvements in communication
time translate to reductions in required hardware for a class of scenarios. Performance of
the mappings and schedules are evaluated based on a Mercury RACEway® network
simulator developed under this project and described in references [4C] and [7].

For this work, the STAP data cube is partitioned into sub-cube bars of vectors where
each vector is mapped onto a given CN (compute node), refer to [6E] for more details. A
two-dimensional process set, as described in [8], defines the mapping of data onto CNs
for each computational phase. Additionally, the process set defines the communication
pattern for the required “distributed corner turns” of the STAP data cube.

Summarizing the results published in [6E] and [8], it is demonstrated that off-line GA-
based message scheduling can significantly improve the communication performance in a
parallel system. When compared to baseline and randomly generated schedules, the GA-
based schedules are significantly superior — typically reducing communication times by
between 20% and 50%, see [8] for details.

Interestingly, it is shown that the best mapping — defined as a mapping that minimizes
a mapping objective function — is not always the best choice in terms of minimizing
overall communication time. In particular, as the number of CNs is increased, optimal
mappings that require only one phase of communication generally report higher overall
communication times than those good (but not optimal) mappings that require two non-
trivial phases of communication.

The optimization of mapping and scheduling, either independently or in combination,
is critical to the performance of the STAP application for embedded parallel systems. For
such systems, great significance is placed on minimizing overall execution time, which
includes both computation and communication components. Such reductions in execution
time also translate into improved hardware efficiency and thus reduced hardware
requirements, which is often critical.

Through extensive numerical studies, it is shown in [6E] and [8] that the GA-based
optimization approaches can yield mappings and schedules that greatly improve the on-

10

line performance and reduce the hardware requirements of the parallel embedded system.
Examples are provided that illustrate the optimal mapping and scheduling methodologies
of [6E] and [8] can produce hardware savings of 50% and more when compared to
typical solutions to the mapping and scheduling problems that might be employed by
practitioners. Because of limitations on the size of problems that were
executed/simulated, systems up to a size of only 32 processors were investigated.
However, from the trends observed in overall completion times, it is apparent that even
more significant savings in hardware/power requirements are realizable for STAP
applications that require substantially larger systems having hundreds or even thousands
of processors.

11

Part 3: FPGA Power Prediction and Applications

We discovered during the project period that predicting power consumption for an FPGA
is a very difficult task. There were no commercially available tools that accurately
predicted power consumption for any of the existing FPGAs. Thus, a major focus of this
part of the work involved the development of accurate methods for predicting FPGA
power consumption. References generated by this project in the area of power prediction
include [9F], [10], and [11G], which are overviewed in Section 3.1.

In addition to trying to understand and predict FPGA power consumption, we also
studied the types of computations that could be effectively mapped onto FPGASs. In
theory, given enough gates, one could imagine configuring an FPGA board to behave as
a microprocessor. Thus, again in theory, an FPGA board could be used to perform any
type of calculation. However, based on the available technology, this would be extremely
impractical. Our goal was to therefore use FPGAs to devise useful modules that are much
less complex than a microprocessor, thereby reducing the SWAP overhead inherent when
computations are performed only on microprocessors and/or DSPs. So, one of our aims
was to characterize the types of computations that can be practically implemented in
FPGAs. References produced in the area of mapping applications onto FPGAs include
[12H], [13], [14], [151], [16J], and [17], and these are overviewed in Section 3.2.

3.1 FPGA Power Prediction
Overview of References [9F] and [10]

The work published in [9F] and [10] describes a practical and accurate power prediction
tool for the Xilinx® 4000-series FPGA. The utility of the tool is that it enables FPGA
circuit designers to evaluate the power consumption of their designs without resorting to
the laborious and expensive empirical approach of instrumenting an FPGA board/chip
and/or taking actual power consumption measurements. Preliminary evaluation of the
tool indicates that an error of less than 5% is usually achieved when compared with
actual physical measurements of power consumption.

The tool, which is implemented in Java, takes as input two files: (1) a configuration
file associated with an FPGA design and (2) a pin file that characterizes the signal
activities of the input data pins to the FPGA. The configuration file defines how each
CLB (configurable logic block) is programmed and defines signal connections among the
programmed CLBs. The configuration file is a text file that is generated using a Xilinx®
M1 Foundation Series utility called ncdread. The pin file is also a text file, but is
generated by the user. It contains a listing of pins that are associated with the input data
for the configured FPGA circuit. For each pin number listed, probabilistic parameters are
provided which characterize the signal activity for that pin.

Based on the two input files, the tool propagates the probabilistic information
associated with the pins through a model of the FPGA configuration and calculates the
activity of every internal signal associated with the configuration. The activity of an
internal signal s, denoted a, is a value between zero and one and represents the signal’s

12

relative frequency with respect to the frequency of the system clock, f. Thus, the average
frequency of signal s is given by asf.

Computing the activities of the internal signals represents the bulk of computations
performed by the tool. Given the probabilistic parameters for all input signals of a
configured CLB, the probabilistic parameters of that CLB’s output signals are determined
using a mathematical transformation. Thus, the probabilistic information for the pin
signals is transformed as it passes through the model of the configured logic, defined by
the configuration file. However, the probabilistic parameters of some CLB inputs may
not be initially known because they are not directly connected to pin signals, but instead
are connected to the output of another CLB for which the output probabilistic parameters
have not yet been computed (i.e., there is a feedback loop). For this reason, the tool
applies an iterative approach to update the values for unknown signal parameters. The
iteration process continues until convergence is reached, which means that the
determined signal parameters are consistent based on the mathematical transformation
that relates input and output signal parameter values, for every CLB.

The average power dissipation due to a signal s is modeled by % Cy)V %as f, where
d(s) is the Manhattan distance the signal s spans across the array of CLBs, Cy) is the
equivalent capacitance seen by the signal s, and V is the voltage level of the FPGA
device. The overall power consumption of the configured device is the sum of the power
dissipated by all signals of the configured FPGA.

For the study conducted in [9F], a total of 70 power measurements were made using
five different configuration files and fourteen different data sets. Descriptions of these
configuration files and data sets are given in [9F]. Each of the configuration files used
take a total of 32-bits of data as input. The first three configurations (fp_mult, fp_add,
int._mult) each take two 16-bit operands on each clock cycle, and the last two (serial_fir
and parallel_fir) each take one 32-bit complex operand on each clock cycle. The 32 bits
of input data are numbered as O through 31, and two key parameters are used to
characterize these bits: an activity factor, a and a probability factor, p. As mentioned
earlier, the activity factor of an input bit is a value between zero and one and represents
the signal’s relative frequency with respect to the frequency of the system clock, f. The
probability factor of a bit represents the fraction of time that the bit has a value of one.

Figure 4 shows plots of the measured power for all combinations of the configuration
files and data sets considered. For all cases, the clock was run at f = 30 MHz. With the
exception of the fp_mult configuration file, the most active data set file (number 6) is
associated with the highest power consumption. Also, the least active data set file
(number 5) is associated with the lowest power consumption across all configuration
files. There is somewhat of a correlation between the number of components utilized by
each configuration and the power consumption; however, it turned out that even though
the serial_fir implementation is slightly larger than parallel_fir, it consumes less power.
This is likely due to the fact that the parallel_fir design requires a high fan-out (and thus
high routing capacitance) to drive the parallel multipliers.

In addition to the graph shown in Figure 4, additional figures are provided in [9F] that
overlay estimates of power consumption predicted by the tool developed in this project.

13

As mentioned above, predicted values of power were generally within 5% of actual
measured values.

5.0 ‘ Configure files:
—0O— fp_mult
\ —O—fp_add
45 —A— int_muilt
L —v— serial_fir
—O— parallel_fir

* <& / *— ¢
35 \ /I\ 77 \ /<> /

N
1
——]

<
)
/
/
\

d

Power Consumption (w)

data sets

Figure 4. Measured power consumption of the configuration files and data sets from [9F].

Overview of Reference [11G]

The method used by the above tool to compute signal activities was based on a
previously published approach from another research group. That approach has some
difficulties, primarily related to its time complexity. In [11G], a new analytical approach
was developed by us for calculating signal activities. Our approach is based on a Markov
chain signal model, and directly accounts for correlations present among the signals. We
verified the accuracy of the approach by comparing signal activity values calculated
using our approach with corresponding values produced through simulation studies. It
was also demonstrated that the proposed approach is much more computationally
efficient than competing approaches. In addition to describing the new approach for
calculating signal activities, [11G] also provides a comprehensive review of past
approaches, including the approach implemented for the tool described in [9F] and [10].

3.2 FPGA Applications

Overview of References [12H] and [13]

In references [12H] and [13], techniques for mapping portions of space-time adaptive
processing (STAP) computations onto FPGAs are described. The output of STAP is a
weighted sum of multiple radar returns, where the weights for each return in the sum are
calculated adaptively and in real-time. The most computationally intensive portion of
most STAP approaches is the calculation of the adaptive weight values, which typically

14

constitutes over 90% of all the computations needed in adaptive processing. Calculation
of the weights involves solving a set of linear equations based on an estimate of the
covariance matrix associated with the radar return data. The traditional approach for
computing the adaptive weights is based on a direct method called QR-decomposition.
This method has a fixed computational complexity, which depends on the size of the
equation matrix and provides the exact solution. An alternative approach based on an
iterative method called Conjugate Gradient was investigated, which allows for trading off
accuracy for reduced computational complexity. The two approaches are analyzed and
compared in [13]. The results show that the Conjugate Gradient approach can reduce the
computations needed at the cost of reduced accuracy in some cases.

Existing computational strategies for STAP typically rely exclusively on the use of
multiple DSPs and/or GPPs. An alternative strategy is proposed in [12H] and [13], which
makes use of FPGASs as vector co-processors that perform inner product calculations.
Two different “inner-product co-processor” designs are introduced for use with a host
DSP or GPP. The first has a multiply-and accumulate structure and the second uses a
reduction-style tree structure having two multipliers and an adder. For a fixed clock rate,
the second design can provide a higher throughput, but requires more computation from
the host (to perform the final summation of the partial sums).

In the work of [12H] and [13], the two inner-product co-processors were implemented
using a block floating point format, which is much simpler to implement than standard
floating point units. We also investigated overall accuracy of block floating point versus
full floating point. It was demonstrated that the block floating point co-processors
produce acceptable accuracy results for input data distributions that are uniformly
distributed. Poor results are obtained, however, for cases where one or a few of the
elements are much larger than the rest of the numbers. This is because the block-floating-
point architecture normalizes all the exponents to the maximum exponent by shifting out
the least significant bits of the mantissa so that all the exponents are equal, and then all
the operations are integer arithmetic operations (based on the resulting mantissas), which
are much easier to perform than general floating-point operations. The shifting out of the
bits produces inaccuracy in the computations. For all the ranges of numbers considered,
if the numbers are uniformly distributed, then the exponent distribution has an increasing
exponential shape with a majority of the numbers close to the maximum value in the
exponent domain. This results in a small number of bits from the mantissas of the
numbers being shifted out, on the average. Another important point is that the multiply
implementation uses a 15-bit mantissa, which implies that the mantissa of the input
floating-point number is truncated to 15 bits from 23 bits, which itself introduces some
inaccuracies.

Overview of Reference [14]

In reference [14], further studies of inner-product co-processor designs were conducted.
In contrast to the inner product designs of [12H] and [13], which were based on a block
floating point format, both floating point and integer formats were used in [14], both
using 16-bit formats. The studies demonstrated that inner-product co-processors, for both

15

integer and floating-point data, could fit into current (at that time) FPGA technology and
achieve significant speed and throughput. The results of the implementations show that it
is feasible and beneficial under certain circumstances to implement floating-point and
integer operations in FPGAs (i.e., such as when a custom data format can be used, as
with the SHARC® DSP which can convert back and forth between IEEE 32-Bit floating
point and the SHARC® DSP 16-bit floating point formats).

The studies in [14] also considered the advantages and disadvantages of employing
different degrees of pipelining in the inner product designs. One interesting (and
somewhat counterintuitive) outcome related to pipelined versions of the designs was that
adding more pipeline stages did not always allow for an increased clock speed at which
the circuit could be executed. This was due to the fact that adding in the pipeline stages
also added more overall complexity, which made it more difficult for the place-and-route
routines of the FPGA design tool to find good implementations. Thus, as more pipelined
stages were added, critical signal lengths sometimes increased, dictating that the clock
rate actually had to be decreased. Estimates of power consumption were also evaluated
for all designs considered in [14].

Overview of Reference [151]

Two major contributions are presented in [151]. First, it is shown that the core
computations from the SAR application, including both the range compression and
azimuth processing phases, can be structured as a single deep computational pipeline that
can be implemented directly on an array of FPGAs. Past results for high-throughput SAR
processing (e.g., refer to [1A], [2B], and [3]) typically assume the computations are to be
mapped onto a distributed memory multiprocessor system in which a subset of the
available compute elements (CEs) is assigned to perform range processing and the
remaining CEs perform azimuth processing. In this type of traditional approach, a
number of processed range vectors are sent from the range CEs to the azimuth CEs where
they are buffered in memory. After a prescribed number of compressed range vectors are
present in the memory space of the azimuth CEs, azimuth processing commences on the
azimuth CEs. Because of the significant intermediate buffer storage required by this
approach, and the associated placing and fetching of data in this memory space by the
range and azimuth CEs, respectively, this type of SAR implementation is generally not
thought to be “purely streaming.” However, as is presented in [151], these computations
(both phases) can in fact be structured as a single computational pipeline, which can be
directly mapped onto an array of FPGAsS.

In the proposed approach, no intermediate memory buffer is required between the two
phases of computation. Instead, within the structure of the computational pipeline are
long segments of delay elements that effectively provide the intermediate storage
associated with the more traditional approach. Figure 5 illustrates the structure of the
computational pipeline. In the figure, small values of parameters are used for the purpose
minimizing the size of the pipeline, while still illustrating its basic structure. Realistic
parameters values would be on the order of thousands, resulting in a pipeline with
millions of registers. Further details on sizing analysis and hardware comparisons

16

between a deep pipeline implementation versus a multiprocessor implementation are
provided in the online link to the presentation materials for reference [15I].

Example: no.rangebins=n=4 rangekernel size=r=2 azimuth kernel size =a=3

Ro R; —» Ry Rg R¢ > R; > Rg Ry

> > > > > >

input
stream

output
Stream

no.registers =(@axn)—(n-r) no.KCMs =(axr)

Figure 5. Structure of the deep pipeline.

One potential advantage of the proposed approach is that data need not be
continuously stored and then fetched from a separate memory module by CEs (which,
incidentally, can require significant power consumption). Instead, the data streams
continuously through a long computational pipeline. Within this pipeline are the taps of
the FIR (finite impulse response) implementations of both the range and azimuth
processing, interspersed with segments of delay elements. Although the resulting pipeline
may be thousands of stages long for practical values of SAR parameters, it is a viable
approach because end-to-end latencies on the order of 1 millisecond are typically
acceptable, provided that the required throughput is achieved.

The second contribution presented in [151] demonstrates how signal activity
parameters of incoming data can be transformed, before the data are processed by a
computational pipeline, as a means of reducing overall power consumption. The key to
understanding this approach is the realization that the activity levels of the input signals
to the computational pipeline dictate its level of power consumption. The activity of a
given input signal (i.e., bit position) is defined as the fraction of time that the signal
transitions relative to the system clock. We demonstrated that increasing/decreasing the
signal activities of input data to a pipelined circuit implemented on an FPGA also

17

increases/decreases the power consumption of the circuit. In [151], we introduce a
concept for how the activities of the input data can be transformed (pre-processed) so that
the resulting (transformed) signals that are input into the computational pipeline have
activity values that are well-matched with the pipelined circuit in terms of minimizing
consumed power. At the end of the computational pipeline, an inverse transformation is
applied to the output values to convert them back to their proper (and meaningful)
representation. This concept is illustrated in Figure 6. The approach is based on two
fundamental assumptions: (1) that the power consumption of the computational pipeline
is significantly higher than that of the computational structures implemented to perform
the transform and inverse transformation of the data and (2) that the computations
performed within the computational pipeline are linear and time invariant.

nout a a’ Deep Pipeline outout
inpu Assume Power Model P
stream P@) stream

Figure 6. Using activity transformations to minimize power consumption.

Overview of References [16J] and [17]

References [16J] and [17] present a comparative study of different parallel prefix circuits
from the point of view of power-speed trade-off. The prefix circuit plays an important
role in many applications such as the carry-look-ahead adder, ranking, packing, and radix
sort. The power consumption and the power-delay product of seven parallel prefix
circuits were compared. By assuming a linear capacitance model, combined with
PSpice® simulations, we investigated the power consumption in the parallel prefix
circuits. The degrees of freedom studied include different parallel prefix architectures and
voltage scaling. The results show that the use of the linear output capacitance assumption
provides power estimates that are consistent with those obtained using PSpice®
simulations. It was found that the divide-and-conquer prefix circuit, which is the fastest
circuit considered, consumes the most power. Also — according to PSpice® simulations —
the power-delay product of the LYD (Lakshmivarahan-Yang-Dhall) prefix circuit was
the best (i.e., lowest) among the circuits studied, while the power-delay product of the
divide-and-conquer was the highest. This study demonstrates the importance of careful
analysis of the speed-power trade-off when considering architectural choices for
implementing a given computational function in hardware.

18

Part 4: Hybrid FPGA/DSP/GPP Platform
Overview of Reference [18K]

The prototype platform was developed to demonstrate the advantages and trade-offs
associated with the combined use of different hardware technologies for two embedded
radar-processing applications, namely SAR and STAP. The primary metrics of interest
are size, weight, and power utilizations. The developed system can be configured with
FPGAs, DSPs, and/or GPPs. Although the prototype system was not evaluated through
fielded studies, experiments involving continuous input streams at relatively high rates
were conducted in the laboratory using unprocessed radar data as input.

The FPGA components of the prototype system are commercially available
Wildone™ and WildForce™ boards (from Annapolis Microsystems) populated with
4000-series Xilinx® parts. The WildForce™ boards each have four 4085-series FPGAs
plus one control FPGA. The DSP/GPP components of the system are within a Mercury
Race Multicomputer configured with both SHARC® and PowerPC® CNs. The Mercury
system can be configured with up to eight PowerPC® nodes and eight SHARC®
compute nodes (each SHARC® CN actually contains three SHARC® DSP chips).

An overview of the overall architecture is depicted in Figure 7. A more detailed view
of the major components of the hybrid system are illustrated in Figure 8, and a
photograph of the actual prototype system is provided in Figure 9.

The source PC is responsible for initially loading unprocessed radar data (from disk)
into a circular buffer within its main memory. Once the input data is loaded into the
circular buffer, the source PC then continuously (and repeatedly) streams this data into
the front-end FPGA subsystem, denoted as (F) in Figures 7, 8, and 9. It was necessary to
locate the input data in a large main memory buffer in order to achieve realistic data
throughput rates, which would otherwise not be possible if the data were streamed
directly from the disk of the source PC. All of the Annapolis FPGA boards are PCI-
based and reside on the data source and/or data sink PCs. A total of four WildForce™
boards are available, and zero or more of these may reside on the source and sink PCs.
The source and sink PCs also contain one WildOne™ board each. The WildOne™
boards are not used for computation; they handle the data communication (through the
PCI bus) between the PCs and the FPGA subsystems. The data communication among all
FPGA boards is through two types of 36-bit wide connectors, one called systolic and one
called SIMD.

The data communication between the front-end FPGA subsystem (F) and the
DSP/GPP subsystem is a custom interface developed using the systolic connector from
Annapolis and the RIN-T input device from Mercury. Similarly, the data communication
between the DSP/GPP subsystem and the back-end FPGA subsystem (B) is through a
custom interface developed using the ROUT-T output device from Mercury and the
systolic connector from Annapolis. More details on the design of the interfaces between
the Mercury and the front- and back-end subsystems are provided in Figures 10 and 11,
respectively.

19

Hybrid FPGA/DSP/GPP Prototype Architecture

Block Diagram

Custom Custom PCl
Annapolis —_ —— Annapolis

1 1
120 MB/sec System 120 MB/sec 120 MBJ/sec System 120 MBI/sec
]

(F) (B)

PE PE

DSP/GPP
Subsystem

Reconfigurable
Subsystem

Reconfigurable
Subsystem

]
1
1
1
1
: PE PE
1
1
1
1
1

Figure 7. Block diagram of the FPGA/DSP/GPP prototype architecture.

Design and implementation of the interface connecting the Mercury to the back-end
FPGA subsystem (B), shown in Figure 11, was particularly challenging. The clock signal
used to strobe the data from the Mercury was not programmable; it was fixed at 33 MHz.
It turned out that the input impedance of the back-end FPGA subsystem was not very
well matched with the output of the Mercury subsystem. As a result, the maximum clock
rate possible was only about 8Mhz, or about one-fourth of fixed 33Mhz clock available.
So, we implemented a scheme in which four copies each data word was transmitted from
the Mercury, which effectively reduced the clock rate by a factor of four. We also had to
include a packing scheme, which encoded two bits of each transmitted word to enable
detection of the boundary between groups of copied data. This was necessary because the
actual number of copies of each word received by the back-end GPGA subsystem was
unpredictable, and varied between two and four. More details on this scheme can be
found at the online link to the presentation materials for reference [18K].

Figures 12 and 13 illustrate how the major computational components of the SAR and
STAP applications can be mapped onto the prototype system. A candidate mapping is
defined by assigning the computations of each major component to one or both of the
symbols shown in each block (which correspond to one of the FPGA or DSP/GPP
subsystems defined in Figure 7). Using SAR to illustrate, one mapping would be to

20

perform all of the range compression on the front-end FPGA subsystem (F) and then
perform all azimuth processing on the DSP/GPP subsystem. Another possible mapping is
defined by using the FPGA subsystems and the DSP/GPP for both components of
computation. It is also possible to use only the DSP/GPP subsystem for both components
of computations.

Hybrid FPGA/DSP/GPP Prototype Architecture

Logical Detail

Mercury
DSP/GPP
Subsystem

SPARC
Annapolis .
EPGA Annapolis
Subsystem FPGA
F) Subsystem

Data Source
PC

(B)

/ Data Sink
PC

\ Custom/

Interface
Cables

Figure 8. Detail of the FPFGA/DSP/GPP prototype architecture.

The SAR studies were designed by adapting the RASSP (Rapid Prototyping of
Application Specific Signal Processors) benchmark developed originally by Lincoln
Laboratory at MIT. The benchmark, which was originally implemented in serial C code,
was first modified to execute on the parallel DSP/GPP subsystem. A data-streaming
component was also added so that input data can be sent continuously from the data
source of the prototype system. Core computations from the range compression and
azimuth processing components were implemented for the FPGA subsystems, as
described earlier in Part 3 of this report.

An overview of SAR processing flow is provided in Figure 14. The data distribution
scheme for SAR is illustrated in Figure 15. For the case shown in the figure, a total of
eight CNs were utilized: two SHARC® CNs (one for input and the other for output) and
six PowerPC® CNs (two for range processing and four for azimuth processing). A
detailed timing diagram is shown in Figure 16. Note from this figure that the processing

21

is well balanced and that the amount of idle time for each CN is relatively small. A
summary of time and throughput results are provided in Figure 17. Note that the required
input and output throughputs realized for this particular study, 0.71 Mbytes/sec and 1.42
Mbytes/sec, are well within the maximum capacity supported by the custom interfaces of
60 Mbytes/sec and 31 Mbytes/sec (refer to Figures 10 and 11). This implies that the
constructed prototype system is capable of processing much more intensive instances of
SAR processing.

Hybrid FPGA/DSP/GPP Prototype Architecture
Photograph

Mercury
DSP/GPP
Subsystem

Data Sink——
/ | PC

Annapolis

b
| FPGA
/S

ubsystem'

Custom Interface Cables

Figure 9. Photograph of the FPGA/DSP/GPP prototype architecture.

The STAP studies were designed by adapting the RT_STAP (Real Time STAP)
benchmark developed originally at the MITRE Corporation. This benchmark was already
implemented for parallel execution on a PowerPC-based Mercury system. This
implementation was expanded to also enable execution on SHARC® compute nodes. The
same basic data streaming component that was developed for SAR was also adapted to
enable the STAP input data to be sent continuously from the data source. Core
computations from the range compression and weight computation components from the
STAP processing flow were implemented for the FPGA subsystems.

Similar to the figures associated with SAR, an overview of the scheme used to stream
STAP processing is provided in Figure 18. Note from the figure that two SHARC®
compute nodes are used for 1/0 and eight PowerPC® are used to actually perform the

22

STAP computations (for the particular instance of STAP considered). Unlike SAR, where
CNs are dedicated exclusively to one particular phase of the computation, in the STAP
implementation all CNs work on all three phases of computation. Figure 19 illustrates the
three phases of computation required by STAP and the two communication phases (i.e.,
re-partitioning of the data cube) between the three phases. A space-time diagram is
provided in Figure 20 followed by a summary of obtained throughput results in Figure
21. As was the case for SAR, note from Figure 21 that the required input and output
throughputs realized for this particular study are well within the maximum capacity
supported by our custom interfaces.

Communication from Annapolis FPGA (F) to Mercury
Interface Design

Mercury Subsystem

Annapolis FPGA Subsystem (F)

Init RIN-T
Wait

A 32 Data*
suspend? suspend? A 4
v Strobe not_empty | \wait for | cOMPlete

. . " «—
Init Write_to_ Valid data
4 RIN-T B
& Suspend

A

A 4

y

\ 4

A

buffer_full2 buffer_empty3
A\ 4 y
Determine_
Read_from Dest_CN @_Data
_Host >
-—

1 Suspend from the RIN-T
2 FPGA memory buffer is full
3 FPGA memory buffer is empty

Create_DX_
transfer

*Peak throughput achieved to date: (15 MHz) x (4 Bytes) = 60 Mbytes/sec
Figure 10. Interface Design: Communication from Annapolis FPGA (F) to Mercury.

23

Communication from Mercury to Annapolis FPGA (B)
Interface Design

Mercury Subsystem
Annapolis FPGA Subsystem (B)

Init ROUT-T
Wait

-

A
d) v 32 Data* valid? valid?
ata_ready | wait_for > >
e — Strobe
o [[freen.
valid ¢)
P A
< Suspend buffer_empty? buffer_full3

Pack_Data

\ 4
Send_Data 2
_to_ROUT-T Write_to_
Host
A
1 valid output from the ROUT-T

2 FPGA memory buffer is empty
3 FPGA memory buffer is full

A 4

Replicate_ Create_DX_
Data transfer

replication factor\A . packing factor
*Peak effective throughput: (33 MHz)x(4 Bytes)x(1/4)x(30/32)=31 Mbytes/sec

Figure 11. Interface Design: Communication from Mercury to Annapolis FPGA (B).

| OJVAN AN)

Range > Azimuth
Compression Processing

Figure 12. Illustration of how the major computational components of SAR processing
can be mapped onto the hybrid system.

24

© A /A AN)

Range - Doppler - Weight
Compression Filtering Computation

Figure 13. IHlustration of how the major computational components of STAP processing
can be mapped onto the hybrid system.

SAR Processing Flow*

Input Data

Range-Compressed
Pulse return Pulse return

— T Digital 1/Q N range cells N range cells
_ Float N g o e e e e Pulse Compression | =P CI T T T T T T T 11
complex)

Corner-Turning
Double-Buffer Output Image Buffer

K Azm. Compression
-Fast Convolution | =9 [Magnitude >
(sectioned)
>

N Range cells

N Range cells

N=2048
K: Pulse Number =512

*Figure Derived from:T. Einstein, “Realtime Synthetic Aperture Radar Processing on the
RACE Multicomputer,” App. Note 203.0, Mercury Computing Sys, 1996.

Figure 14. Figure 14. SAR Processing Flow.

25

Data Distribution for Parallel SAR Processing on Mercury
Using 6 PPC CNs for Processing and 2 SHARC CNs for I/O

Input
(Odd purses From CN 2 Input Buffer 1 512 1024 1536 2048
SHARC CN 1 1,2, ey e, 2048 CN2
), ' 2, , —_— s
(2048 range gates) Range Processing QN 2 Output Buffer

y
[cN2 DMA|[cN3 DMA] [CN2 DMA][CN3 DMA] [CN2 DMA][CN3DMA] [CN2 DMA][CN3 DMA|
1

A J
|CN4 Input Buffer| |CN5 Input Buffer| |CN6 Input Buffer| |CN7 Input Buffer|
I
Y
CN 4 CN5 CN 6 CN7
Corner Turn Corner Turn Corner Turn Corner Turn
512 / \
CN 4
Double-Buffered Memory CN 4 DMA
(512 * 1024 double
L complex data) 4*512
*512
1 L 10—24 CN 6 DMA
o - [CNTOVA]—

CN 4 Output Buffer
Azimuth Processing - Ou?p’: '?I(riggg%arer

Figure 15. Data distribution for Parallel SAR Processing on Mercury.

26

Space-Time Diagram for Streaming Parallel SAR Processing
Using 6 PPC CNs for Processing and 2 SHARC CNs for I/O

CN1 |

I
(input) (512 pulses) / / A Gi2pulses) % M 12 putses) - I

S
““““\

CN2

L\ Y N N
CN3 256 Pulses) 256 Pulses) 256 Pulses)

/

CN4 =

.. (512 range gates) .. (512 range gates)

CN5 % %//// | ... (512 range gates) ... (512 range gates) -
1\

|
CN6 P /%- ... (512 range gates) % ... (512 range gates)

v .
CN7 % _ ... (512 range gates) % ... (512 range gates)
1

CNS i

... (2048 range gates)

I\
N\

_ ... (2048 range gates)
|

t=0 t=5.6s t=11.2s t=16.8s

(output)I

[
|

Iodd pulses Ieven pulses comm. time |dIe time

A\

Figure 16. Space-time diagram for streaming parallel SAR processing.

27

Streaming Parallel SAR Processing Throughput Requirements
Using 6 PPC CNs for Processing and 2 SHARC CNs for |/O

—@ @@ @—

Input Output
Data @ Data
Azimuth
\ Processor
: O Range
Processor

@

»

5.6 sec 5.6 sec
Input Data Size =512 x 2 x 2032 x 2 | Output Data Size =512x2048x2x 4
=4 MBytes = 8 Mbytes

Input Throughput =4 MBytes/5.6 sec Out Throughput =8 MBytes/5.6 sec
=0.71 MBytes/sec =1.42 MBytes/sec

Figure 17. Throughput requirements achieved for streaming parallel SAR processing.

28

Streaming Parallel RT STAP on Mercury Subsystem

Input Manager

(SHARC)

RINT

2 —4Kx18
FIFOs

SYNC
@ [l

(data)

Distribute Input Data Cube

(PowerPCs)

(0
(o)
(o)

Processing CNs

SMB
(data)

Sync

SMB
(data)

Sync

SMB
(data)

Sync

SMB
(data)

Sync

Output Manager
(SHARC)

A

Lo

ROUT

2 —4Kx18
FIFOs

o

Gather Output Data Matrix

sync
SMB Y

(data)

Figure 18. Streaming parallel RT_STAP on Mercury Subsystem.

29

Parallel RT STAP on Mercury Subsystem*

Pulse Compress Doppler Filter QR Decomposition
(range dimension whole) (pulse dimension whole) (channel-range seq.
planes whole)

g@@

Input Data Cube
i Output Data Matr

O

*Figure Derived from:M. Skalabrin and T. Einstein, “STAP Processing on Multiprocessor Systems: Distribution of
3-D Data Sets and Processor Allocation for Efficient Interprocessor Communication,” ASAP Workshop, Mar. 1996.

Figure 19. Parallel RT_STAP on Mercury Subsystem.

30

Space-Time Diagram for Parallel RT_STAP
Using 8 PPC CNs for Processing and 2 SHARC CNs for I/O

Input Data Cube 1 Input Data Cube 2
A

| |
SHARC
(Input) [%

CN1

cng | %%%%%%%
CN3 ' | I
CN4 %%/ -

CN5 %% % /

cne | ////
I E—

|
CN7

[

SHARC% 4
(Output) % _ % Al //

Output Data Matrix
t=4s T=4.5s

t=0

Icomm. time |dle time

\\\\\\\\

Figure 20. Space-time diagram for parallel RT_STAP.

31

Throughput Requirements for Medium Case Parallel RT_STAP
Using 8 PPC CNs for Processing and 2 SHARC CNs for 1/0

Samples (1920)

> Function Time

g Distribute Input Data 4 sec

T Eecibe & Pulse Compress 299.48 msec

5 Q&‘a@% First Rotation 21.18 msec
Doppler Filter 25.32 msec
Second Rotation 112.48 msec
QR Decomposition 99.36 msec
Gather Output Data 23 msec

Total Time 4.5 sec

Input Data Size = 16 x 64 x 1920 x 2 = 4 MBytes
Output Data Size = 64 x 480 x 8 = 0.25 MBytes

Input Throughput = 4 Mbytes/4.5 sec
= 0.89 Mbytes/sec

Output Complex
Data Matrix

Dopplers (64)

Output Throughput =0.25 Mbytes/4.5 sec
Ranges (480) = 0.056 Mbytes/sec

Figure 21. Throughput requirements achieved for the medium case parallel RT_STAP.

32

Conclusion
Technology Transfer

Technology transfer took place along five main paths: (1) the DARPA Adapted
Computing Systems (ACS) community through PI (Principal Investigator) meetings and
other conferences (plus communications with Pls and program managers in related
areas); (2) the employees and technical support contacts at Mercury Computer Systems,
Inc.; (3) the employees and technical support contacts at Annapolis Micro Systems, Inc.;
(4) contacts with various defense contractors such as Northrop Grumman; and (5) the
academic high-performance embedded computing research community.

Regarding path (1), we worked with DARPA and other Pls associated with related
projects to ensure efficient transfer of information and technology. We attended all Pl
meetings and helped support DARPA in presenting the results of this effort for further
program funding.

For paths (2) and (3), we consulted with the vendors on a regular basis, especially
during the period of time in which the prototype system was being constructed. We kept
both vendors informed on the current status of the prototype throughout the project. The
success of our project sparked interaction between the two vendors in terms of defining
and refining interface standards for interconnecting their products. These new standards,
which were not available at the time we were constructing our prototype, make it much
easier to construct an FPGA/DSP/GPP system such as the one implemented for this
project.

The transfer along path (4) was important because it enabled our proposed approaches
to be considered and evaluated by defense systems designers and end-users. Also, staying
in close contact with major defense contractors and other contractors that were part of the
ACS program, ensured that the approaches and systems we developed were realistic.

As indicated by path (5), it was important to keep the academic research community
informed about our developments. The publications that resulted from this project have
made an impact and serve to illustrate the types of research of interest to DARPA. It also
illustrated that there is an abundance of basic, fundamental research to be done on the
way to solving important problems of military interest.

Deliverables

This project delivered an abundance of results of both practical and theoretical
importance. Many of these results have been published as journal and conference papers,
and copies of these papers are provided in the appendices of this report. Online links to
delivered publications, presentation materials, dissertations, theses, and additional
materials are provided in the References and Additional Materials sections of the report.
Associated with each publication is one or more tool or technique of immediate practical
importance to practitioners in the area of embedded high-performance systems design
and implementation. Also delivered was a prototype platform in which the three
technologies of interest (FPGA, DSP, and GPP) were integrated into a single high-
performance computational engine. This platform served as a test bed in which

33

experimental tests, evaluations, and assessments associated with the research were
conducted.

The theme of the project was to focus on techniques and systems for minimizing
power consumption requirements for two particular radar-processing applications. In
addition to providing results along these lines, many of the techniques and results
delivered are applicable to a much broader set of problems that arise in high-
performance, SWAP-constrained embedded systems.

34

References

[1A]

[2B]

[3]

[4C]

[5D]

[6E]

Jeffrey T. Muehring and John K. Antonio, “Optimal Configuration of an
Embedded Parallel System for Synthetic Aperture Radar Processing,”
Proceedings of the International Conference on Signal Processing Applications
& Technology, Boston, MA, Oct. 1996, pp. 1489-1494.

Location: Appendix A and http://www.cs.ou.edu/~antonio/pubs/conf033.pdf

Jeffrey T. Muehring and John K. Antonio, “Optimal Configuration of Compute
Nodes for Synthetic Aperture Radar Processing,” Proceedings of the
International Workshop on Embedded HPC Systems and Applications (EHPC
‘98), in Lecture Notes in Computer Science 1388: Parallel and Distributed
Processing, edited by Jose Rolim, sponsor: IEEE Computer Society, Orlando, FL,
USA, Apr. 1998, pp. 987-993.

Location: Appendix B and http://www.cs.ou.edu/~antonio/pubs/conf035.pdf
Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf035.pdf

Jeffrey T. Muehring, Optimal Configuration of a Parallel Embedded System for
Synthetic Aperture Radar Processing, Master’s Thesis, Department of Computer
Science, Texas Tech University, Lubbock, TX, Dec. 1997.

Location: http://www.cs.ou.edu/~antonio/pubs/muehring_thesis.pdf

Jack M. West and John K. Antonio, “Simulation of the Communication Time for
a Space-Time Adaptive Processing Algorithm on a Parallel Embedded System,”
Proceedings of the International Workshop on Embedded HPC Systems and
Applications (EHPC “98), in Lecture Notes in Computer Science 1388: Parallel
and Distributed Processing, edited by Jose Rolim, sponsor: IEEE Computer
Society, Orlando, FL, USA, Apr. 1998, pp. 979-986.

Location: Appendix C and http://www.cs.ou.edu/~antonio/pubs/conf036.pdf
Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf036.pdf

Jack M. West and John K. Antonio, “A Genetic Algorithm Approach to
Scheduling Communications for a Class of Parallel Space-Time Adaptive
Processing Algorithms,” Proceedings of the 5" International Workshop on
Embedded/Distributed HPC Systems and Applications (EHPC 2000), in Lecture
Notes in Computer Science, IPDPS 2000 Workshops, sponsor: IEEE Computer
Society, Cancun, Mexico, May 2000, pp. 855-861.

Location: Appendix D and http://www.cs.ou.edu/~antonio/pubs/conf042.pdf
Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf042.pdf

Jack M. West and John K. Antonio, “A Genetic-Algorithm Approach to
Scheduling Communications for Embedded Parallel Space-Time Adaptive
Processing Algorithms,” Journal of Parallel and Distributed Computing, Vol. 62,
No. 9, Sept. 2002, pp. 1386-1406.

Location: Appendix E and http://www.cs.ou.edu/~antonio/pubs/jour016.pdf

35

[7]

[8]

[9F]

[10]

[11G]

[12H]

[13]

[14]

Jack M. West, Simulation of Communication Time for a Space-Time Adaptive
Processing Algorithm on a Parallel Embedded System, Master’s Thesis,
Department of Computer Science, Texas Tech University, Lubbock, TX, Aug.
1998.

Location: http://www.cs.ou.edu/~antonio/pubs/west_thesis.pdf

Jack M. West, Processor Allocation, Message Scheduling, and Algorithm
Selection for Space-Time Adaptive Processing, Doctoral Dissertation, Department
of Computer Science, Texas Tech University, Lubbock, TX, Aug. 2000.

Location: http://www.cs.ou.edu/~antonio/pubs/west_diss.pdf

Timothy Osmulski, Jeffrey T. Muehring, Brian Veale, Jack M. West, Hongping
Li, Sirirut Vanichayobon, Seok-Hyun Ko, John K. Antonio, and Sudarshan K.
Dhall, “A Probabilistic Power Prediction Tool for the Xilinx 4000-Series FPGA,”
Proceedings of the 5" International Workshop on Embedded/Distributed HPC
Systems and Applications (EHPC 2000), in Lecture Notes in Computer Science,
IPDPS 2000 Workshops, sponsor: IEEE Computer Society, Cancun, Mexico, May
2000, pp. 776-783.

Location Appendix F and http://www.cs.ou.edu/~antonio/pubs/conf041.pdf
Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf041.pdf

Timothy A. Osmulski, Implementation and Evaluation of a Power Prediction
Model for a Field Programmable Gate Array, Master’s Thesis, Department of
Computer Science, Texas Tech University, Lubbock, TX, May 1998.

Location: http://www.cs.ou.edu/~antonio/pubs/osmulski_thesis.pdf

Hongping Li, John K. Antonio, and Sudarshan K. Dhall, “Fast and Precise Power
Prediction for Combinational Circuits,” Proceedings of the IEEE Symposium on
VLSI, sponsor: IEEE, Tampa, FL, Feb 2003, pp. 254-259.

Location Appendix G and http://www.cs.ou.edu/~antonio/pubs/conf046.pdf
Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf046.pdf

Nikhil D. Gupta, John K. Antonio, and Jack M. West, “Reconfigurable
Computing for Space-Time Adaptive Processing” Proceedings of the Sixth
Annual IEEE Symposium on Field Programmable Custom Computing Machines
(FCCM), Napa, CA, USA, Apr. 1998, pp. 335-336.

Location: Appendix H and http://www.cs.ou.edu/~antonio/pubs/conf037.pdf

Nikhil D. Gupta, Reconfigurable Computing for Space-Time Adaptive Processing,
Master’s Thesis, Department of Computer Science, Texas Tech University,
Lubbock, TX, August 1998.

Location: http://www.cs.ou.edu/~antonio/pubs/qgupta_thesis.pdf

Brian F. Veale, Study of Power Consumption For High-Performance
Reconfigurable Computing Architectures, Master’s Thesis, Department of
Computer Science, Texas Tech University, Lubbock, TX, August 1999.

Location: http://www.cs.ou.edu/~antonio/pubs/veale_thesis.pdf

36

[151]

[16J]

[17]

[18K]

Jeffrey T. Muehring and John K. Antonio, “Minimizing Power Consumption
using Signal Activity Transformations for Very Deep FPGA Pipelines,”
Proceedings of the Military and Aerospace Applications for Programmable
Devices and Technologies Conference (MAPLD 2000), sponsors: NASA and
Johns Hopkins University/Applied Physics Laboratory, Laurel, MD, Sep. 2000.
Location Appendix I and http://www.cs.ou.edu/~antonio/pubs/conf044.pdf
Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf044.pdf

S. Vanichayobon, Sudarshan K. Dhall, S. Lakshmivarahan, and John K. Antonio,
“Power-speed Trade-off in Parallel Prefix Circuits,” Proceedings of ITComm
2002, High-Performance Pervasive Computing Conference, sponsor: SPIE,
Boston, MA, July/Aug. 2002, pp. 109-120.

Location Appendix J and http://www.cs.ou.edu/~antonio/pubs/conf045.pdf
Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf045.pdf

Sirirut Vanichayobon, Power-Speed Trade-Off in Parallel Prefix Circuits,
Doctoral Dissertation, School of Computer Science, University of Oklahoma,
Norman, OK, 2002.

Location: http://www.cs.ou.edu/~antonio/pubs/sirirut_diss.pdf

Jack M. West, Hongping Li, Sirirut Vanichayobon, Jeffrey T. Muehring, John K.
Antonio, and Sudarshan K. Dhall, “A Hybrid FPGA/DSP/GPP Prototype
Architecture for SAR and STAP,” Proceedings of the Fourth Annual High
Performance Embedded Computing Workshop, sponsors: U.S. Navy and Defense
Advanced Research Projects Agency (DARPA), MIT Lincoln Laboratory
Publications, Group 18, Lexington, MA, Sep. 2000, pp. 29-30.

Location: Appendix K and http://www.cs.ou.edu/~antonio/pubs/conf043.pdf
Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf043.pdf

37

Additional Materials
Annual Reviews and Kickoff Presented to DARPA

Fall 1999 Annual Review: http://www.cs.ou.edu/~antonio/pubs/p-ann rev99acs.pdf
Fall 1998 Annual Review: http://www.cs.ou.edu/~antonio/pubs/p-ann rev98acs.pdf
Fall 1997 Kickoff: http://www.cs.ou.edu/~antonio/pubs/p-kickoff97acs.pdf

Pl Meeting Presentations and Posters

Presentation, Spring 2000 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/p-

sp00acs.pdf
Poster, Spring 2000 Pl Meeting: http://www.cs.ou.edu/~antonio/pubs/poster-sp00acs.ppt

Presentation, Fall 1999 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/p-fall99acs.pdf
Poster, Fall 1999 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/poster-fall99acs.ppt

Poster, Spring 1999 Pl Meeting: http://www.cs.ou.edu/~antonio/pubs/poster-sp99acs.ppt

Poster, Fall 1998 Pl Meeting: http://www.cs.ou.edu/~antonio/pubs/poster-fall98acs.ppt

Poster 1, Spring 1998 Pl Meeting:
http://www.cs.ou.edu/~antonio/pubs/poster1-sp98acs.ppt

Poster 2, Spring 1998 Pl Meeting:
http://www.cs.ou.edu/~antonio/pubs/poster2-sp98acs.ppt

Presentation, Fall 1997 Pl Meeting: http://www.cs.ou.edu/~antonio/pubs/p-fall97acs.pdf
Poster, Fall 1997 P1 Meeting: http://www.cs.ou.edu/~antonio/pubs/poster-fall97acs.pdf

Technical Report

Hongping Li, John K. Antonio, and Sudarshan K. Dhall, “Fast and Precise Power
Prediction for Combinational Circuits,” University of Oklahoma, School of Computer
Science, Technical Report No. CS-TR-02-001, Nov. 2002, 42 pages.
http://www.cs.ou.edu/~antonio/pubs/tr013.pdf (expanded content of [11G]).

38

List of Acronyms

ACS
ASIC
CE
CLB
CN
COTS
DARPA
DSP
FLOP
FPGA
GA
GPP
IEEE
MIT
PC

PCI

PI
RASSP
RT_STAP
SAR
SHARC®
STAP
SWAP
UAV

Adaptive Computing Systems

application specific integrated circuit
compute element

configurable logic block

compute node

commercial off the shelf

Defense Advanced Research Projects Agency
digital signal processor

floating-point operation

field programmable gate array

genetic algorithm

general-purpose processor

Institute of Electrical and Electronics Engineers
Massachusetts Institute of Technology
personal computer

peripheral component interconnection
principal investigator

rapid prototyping of application specific signal processors
real-time space-time adaptive processing
synthetic aperture radar

“super” Harvard architecture

space-time adaptive processing

size, weight, and power

unmanned aerial vehicle

39

Appendix A: Jeffrey T. Muehring and John K. Antonio, “Optimal Configuration of an
Embedded Parallel System for Synthetic Aperture Radar Processing,” Proceedings of the

International Conference on Signal Processing Applications & Technology, Boston, MA,
Oct. 1996, pp. 1489-1494.

40

Optimal Configuration of an Embedded Parallel System

for Synthetic Aperture Radar Processing *

Jeffrey T. Muehring and John K. Antonio
Department of Computer Science
Texas Tech University
Lubbock, Texas 79409-3104
{jmuehrin, antonio}@cs.ttu.edu

Abstract-The creation of a synthetic aperture radar
(SAR) image involves processing radar return signals
in real-time using a computing platform on board the
aircraft that houses the SAR system. In such envi-
ronments, it is important to minimize the total power
consumption of all onboard systerns. This is especially
true for applications that utilize small unmanned air-
craft or satellites. In this paper, o mathematical op-
timization technique is formulated - based on nonlin-
ear progr ing - for determining the optimal (i.e.,
minimal consumed power) configuration of an onboard
porallel computing platform for SAR processing. The
target hardware for this study is a Mercury Race Sys-
tem that is assumed to be configurable using a com-
bination of two types of daughtercards: one type has
iz processors and a total of 32MB of memory; the
other type has two processors and o total of 64MB of
memory.

1 INTRODUCTION

Because radar is a ranging instrument, the resolu-
tion associated with a single radar return depends on
the width of the transmitted pulse; the shorter the
pulse, the higher the resolution. However, generating
short radar pulses requires high power [2]. In many
applications where very high-resolution radar images
are desired, there are hard constraints on the allow-
able size, weight, and power of the radar system (e-g.,
satellites and unmanned aircraft). Thus, radar sys-
tems that can generate extremely narrow pulses are
not feasible in such applications because of their asso-
ciated large size and/or high power requirements.

Synthetic aperture radar (SAR) is a processing
technique for achieving high-resolution images from
relatively small and low-power radar systems. Specif-
ically, SAR involves the processing of multiple low-
resolution radar returns to emulate a high-resolution

*This work was supported by Rome Laboratory under grant
oumber F30602-96-1-0098.

return. Typical applications for SAR include ground
surveillance and terrain mapping. Advantages of us-
ing SAR instead of optical imaging techniques include
radar’s immunity to weather and lighting conditions.
Image resolutions for typical SAR applications can
range from 50 m down to 0.5 m [3]. Due to space
limitations, detailed background information on the
theoretical foundations of SAR processing is not in-
cluded here; however, there are numerous excellent
boeks on the topic {e.g., see [2]).

In addition to the size and power associated with
the radar equipment itself, the size and power of the
computing platform used to perform the SAR process-
ing can also become significant. Minimizing the power
of the computing platform used for SAR, processing,
for a given radar system, is the focus of this paper.

SAR processing can be parallelized and performed
on an embedded parallel computing platform. As a
first step toward deciding how to configure such a
computing platform, the aggregate required process-
ing throughput associated with a given set of sys-
tem parameters can be derived (see [3] for details).
However, the throughput requirement alone does not
uniquely specify how to configure the embedded com-
puter. As described in more detail in Section 2, the
computational strategy assumed here involves using
the technique of sectioned fast convelution [5]. The
choice of the “section size” used in this technique die-
tates the relative efficiency of the processors used and
the amount of memory required. In general, a large
section size implies better computational efficiency at
the expense of requiring more memory. To further
complicate the issue, there are practical constraints
on how the embedded computer can be configured.
Specifically, the number of processors and amount of
memory for a configuration must be realizable by us-
ing combinations of different types of daughtercards.
In this paper, two types of daughtercards are assumed
to be available: one that has six processors and a total

1489

41

of 32MB of memory and one that has two processors
and a total of 64MB of memory.

The proposed formulation involves the deriva-
tion of a parameterized objective function that de-
fines the power consumption of the embedded com-
puter. This objective function depends on radar-
dependent parameters, application-dependent param-
eters, processor-dependent parameters, a software-
dependent parameter, and configuration-dependent
parameters (i.e., the number of daughtercards of
each type). For a fixed set of radar-, application-,
and processor-dependent parameters, values of the
software- and configuration-dependent parameters are
determined that minimize the derived objective func-
tion (i.e., the consumed power of the embedded com-
puter).

The rest of the paper is organized in the follow-
ing manner. In Section 2, an overview of the basic
computational strategy is provided and mathematical
relationships among the underlying parameters are de-
rived. Based on these mathematical relationships, the
proposed optimization problem is formulated in Sec-
tion 3. A solution technique for the proposed opti-
mization problem and numerical studies are included
in Section 4 to illustrate the utility of the proposed
approach.

2 COMPUTATIONAL FRAMEWORK

The basic computational framework assumed here
is the same as that described in [3]. The description
given here is an overview; for more details refer to [3].

Processors are divided into range and azimuth pro-
cessors. That is, every processor is dedicated exclu-
sively to the processing of data either in the range or
azimuth direction. The range direction is perpendic-
ular to the line of flight and the azimuth direction is
parallel to the line of flight.

After radar returns have been sampled and con-
verted to digital signals, samples are typically read
into memory at a rate of 5-50 Msamples/s [3]. By
visualizing memory as a 2-dimensional grid, a row
of memory contains the returns from a single radar
pulse, whereas a column contains returns of different
pulses from the same range. Memory is therefore se-
quentially filled a row at a time. When a sufficient
number of rows have been filled, this data is sent to
a range processor. These blocks of data are sent to
the range processors in a round-robin fashion. Af-
ter a number of range processors have processed data,
the conglomerate block of data is “corner-turned,” or
matrix-transposed, and then sent to the azimuth pro-
cessors. Note that the number of range and azimuth
processors need not be the same. The matrix transpo-

sition of the data dictates that the azimuth processors
receive the range-processed rows as columns and the
unprocessed columns of the azimuth direction as rows.

Processing of the samples in the range direction pri-
marily involves convolving the data with a reference
kernel. The most efficient method of performing this
convolution is with the use of FFTs, which is known
as a fast convolution [5, 7]. It is assumed that the en-
tire vector of range samples for a given pulse return is
processed as a single section of data.

The azimuth processors perform similar operations
on the data as the range processors (i.e., fast convo-
lution) but with one important difference: the length
of the data stream in the azimuth direction is indef-
inite whereas in the range direction it is of a fixed
length. Therefore the data cannot be convolved as a
single entity in the azimuth dimension. Sectioned fast
convolution [5] provides a method for processing data
streams of indefinite length. For such a data stream,
the data is divided into sections of arbitrary length.
A section is then convolved with the prestored kernel
as in the case of a regular fast convolution. However,
overlapping the sections by an amount equal to the
kernel size and performing fast convolutions on each
averlapped section yields the same result as if the en-
tire data stream were convolved at once. But there
is a price to be paid in computational efficiency for
using this method. A portion (of length equal to the
kernel size) of each convolution resultant must be dis-
carded. Therefore, computational efficiency decreases
as the ratio of the section of new data to the kernel
size decreases.

Besides memory, another limiting factor to the size
of the new data to be convolved is the O(N1g N) time
complexity of the standard FFT algorithm. An impor-
tant objective is to balance computational efficiency
with memory requirements. For instance, selecting a
section size that maximizes computational efficiency
alone, without regard for concomitant memory re-
quirements, may be unfavorable due to high power
consumption of the required memory. Accounting for
this tradeoff is an important aspect of the model pre-
sented in this section.

A fast convolution consists of an N-point FFT, N
complex multiply operations, and an N-point inverse-
FFT, where N is the number of data points to be pro-
cessed, including any overlap. The complexity of this
computational load is therefore L = O(N1gN + N).
The exact number of floating point operations gen-
erally depends on processor- and implementation-
specific details. For the purposes of this paper,
SHARC processors are assumed, for which the exact

1490

42

number of floating point operations is given by [3]:
L=10NIgN +6N.

The computational load per sample is obtained by di-
viding L by the number of new data points processed,
which reflects the efficiency of the calculation. For
range processing this load per sample, ¢,, due to the
fast convolution is given by

_ 10F,IgF, +6F,
= o ,

where F). is the FFT size for the range and S, is the
number of points in the range to be processed. These
two values can differ because of the stipulation in the
FFT algorithm that requires the FFT size to be a
power of two (i.e., F, = 2%). Although this implies
some ineficiency, it is usually still faster than using
a direct convolution algorithm based on the exact se-
quence length.

The number of range points S, is equal to the range
swath R, divided by the desired resolution § (thisis an
intuitive result based on the physical interpretations
of R, and §). Using this expression, the equation for
& becomes

ér

_SF.(6+101gF.)

br i

Similarly, the azimuth processing load per sample
due to the fast convolution is given by

_ Fu(64 101gF,)
T s

where Fj, is the azimuth FFT size and S, is the section
length. It should be noted that for both range and
azimuth processing, the reference kernels are prestored
and dependent only upon physical parameters of the
system.

To compute the number of processors required for
both range and azimuth processing, the total com-
putational load must be computed. The fast con-
volution comprises the majority of the load. How-
ever, several other operations are also involved, in-
cluding fix-to-float conversion, complex signal forma-
tion, motion compensation, magnituding, and the ma-
trix transpose already mentioned [3]. It is important
to realize that different operations can take different
amounts of time, even if they are considered to be
a “single floating point operation.” Therefore, calcu-
lating the total computational load requirement per
data sample involves dividing the number of real op-
erations per sample of each type by their respective
tested throughputs for a given type of processor. This

¢a

value multiplied by the sample rate yields the total
number of processors required.

Range and azimuth processing have unique load re-
quirements in addition to the fast convolution load and
are noted by the constants a, and a,, respectively.
The required number of range processors is then de-
fined by

M

where Q is the sample rate and -y is the throughput
in Mflops for a fast convolution based on the assumed
processor type used. Similarly, the number of azimuth
processors required is given by

¢ﬂ

P, = Qg + 5
Q("

o
P.= rt —)
Qla, + 'y)

@

It can be shown that the sample rate is determined by
the following equation [3]:

vR,
82’
where v is the velocity of the platform. If this expres-

sion is substituted for @ and the expressions for ¢,
and ¢, are also applied, then Eqgs. (1) and (2) become

_ v(66F, + a,vR, + 106F,1g F.)
= 5

e vR,(aq + EAG=11.2.9) ﬁtgil i)
a = 52 - (4)

The total memory required for range processing is
a product of the number of range processors, P,, and
the number of range samples, S,. This value repre-
sents the number of complex range samples that are
stored in memory at a given instant, each complex
sample consisting of 16 bytes. Therefore the total
range memory required is

Q=

P, ®)

M, = 16P,8,, (5)

or equivalently,

_ 16R,u(66F, + a,yR, + 106F,Ig F,)

M, e

(6)

Azimuth memory needs dominate total system
memory, requiring a double-buffer (for the matrix
transpose operation) and an output image buffer, both
of size 5,.(Ss + K,), where K, denotes the length of
the azimuth reference kernel. The double-buffer must
store complex values; the output image buffer stores
reals. The total azimuth memory requirement in bytes
is expressed as

M, = 10S,(S, + K.). (7)

1491

43

The value of K, can be expressed in terms of basic
parameters of the radar. Let A be the wavelength of
the radar. The value for K, is derived in [3] to be:

AR

Ka:ﬁ'

Substituting this expression and S, = R,/d into
Eq. (7) yields

R,(AR + 26%S,
M, = LORAITS:), ®)

3 FORMULATION OF AN OpTiMAL CONFIGU-
RATION PROBLEM

The final equations derived above for P, Ps, M.,
and M,, given by Egs. (3), (4), (6), and (8), depend
on many different types of basic system parameters.
These basic parameters can be divided into four major
categories:

e radar-dependent parameters: R (range), R,
(range swath), and A (wavelength);

application-dependent parameters: § (desired
resolution) and v (platform velocity);

o processor-dependent parameters: ay, &g, and ;
and

o software-dependent parameter: S,.

From Egs. (3), (4), (6), and (8), it appears that there
is also a dependence on the parameters F,. (range FF'T
size) and F, (azimuth FFT size). However, recall that
F. and F, are functions of S, and S, + K, respec-
tively, and S, and K, can both be expressed in terms
of basic radar- and application-dependent parameters.

For the purposes of this section, denote the total
processor requirement (P, + P,) and the total mem-
ory requirement (M, +M,) as P and M. To formulate
an optimal configuration problem, it is assumed that
all radar-, application-, and processor-dependent pa-
rameters are specified, and S, is to be determined.
To emphasize this dependence solely on the parame-
ter S,, P and M are denoted by P(S,) and M(S,).
The question that naturally arises is how to optimally
choose the value of S,? More fundamentally, how does
the value of S, affect the resulting configuration of the
computing platform and its value of consumed power?
Recall that the desired objective is to minimize the to-
tal power consumption of the computing platform.

A possible (yet unrealistic) approach would be to
model consumed power of the computing platform as

K'P(S") + ﬁM(sﬂ)7

where x and 3 are constants that represent power re-
quirements on a per processor and per byte of memory
basis, respectively. Determining a value of Sg, say S,
which minimizes this function could be used to define
an optimal configuration - i.e., a configuration that
has P(S%) processors and M(S3) bytes of memory.

Modeling total consumed power as described above
is unrealistic because it allows configurations to have
arbitrary numbers of processors and amounts of mern-
ory. This would require, in general, that such a config-
uration be realized at the chip-level, i.e., customized
boards may have to be developed to support the de-
rived optimal configurations.

In reality, it is more practical to constrain the set of
configurations to those that are realizable using com-
mercially available boards that contain differing num-
bers of processors and amounts of memory. For this
study, the computing platform is assumed to be based
on a Mercury Race System that is configurable using
a combination of two possible types of daughtercards:
(1) the S2T16B, which has a total of six SHARC pro-
cessors and 32MB of memory and (2) the S1D64B,
which has a total of two SHARC processors and 64MB
of memory. Each of these card types has a correspond-
ing maximum power consumption rating: the type 1
card is rated at 12.2 watts and the type 2 card is rated
at 9.6 watts [6]. Under this framework, the total power
consumption is modeled based on the number of cards
of each type utilized.

Let C; and C, denote the number of type 1 and
type 2 cards utilized, respectively. Thus, the function
for total consumed power, denoted as W, is defined as

)

Next, two required constraint equations naturally fol-
low based on the values of P(S,) and M(S,):

W = 12.2C1 +9.6C..

6C; + 2C; > P(Sa) (10)

ay
These constraint equations insure that the total num-
ber of processors in the configuration is no less than
the total number of required processors and the total
amount of memory in the configuration is no less than
the total amount of memory required. In this frame-
work, values for the parameters C; and Cs must be
optimized (in addition to the value of the parameter
S,). Although the parameter S, does not explicitly
appear in the objective function that is to be mini-
mized, i.e., W, its effect is implicit through the con-
straint equations.

To summarize, the proposed optimization problem
is stated as follows: find nonnegative integer values

32C; + 64C, > M(Sa).

1492

44

for Cy, Cy, and S, such that W is minimized and
constraint Egs. (10) and (11) are satisfied.

4 SowLviNeé THE OPTIMAL CONFIGURATION
PROBLEM

4.1 Proposed Solution Technigue

As formulated, the proposed optimization problem
can be classified as an integer programming problem.
Solving such optimization problems can be computa-
tionally intensive (see [4] for a summary on integer
programming techniques).

Instead of directly applying an integer program-
ming technique, an alternative approach is proposed
here for solving the formulated optimization problem.
Notice that the objective and the constraint equations
are nearly continuous functions of the optimization
variables Cy, C,, and S,. If the objective and con-
straints were continuous, then nonlinear programming
techniques (e.g., see [1]) could be applied. Such ap-
proaches often have fast convergence properties. The
only discontinuous portion in the formulation is due to
the definition of F,, which is a discontinuous function
of Sa. (Recall that F, is defined as the smallest inte-
ger power of two that is greater than S, + K,.) This
discontinuous function prevents the direct application
of nonlinear programming. However, by selecting F,
as an integer power of two, and adding a constraint to
ensure that K, + S, is no greater than this selected
value, the discontinuity can be removed. Thus, in ad-
dition to the constraints given by Eqgs. (10) and (11),
the following constraint equation is added

Ko+ 8. < Fy, (12)

where the value of F, = 2¢ > K, is fixed (the
value of K, is known based on the values of the
specified basic parameters). Thus, to ensure opti-
mality, it may be necessary to solve several con-
strained optimizations based on different feasible val-
ues for F,. In practice, however, only a few val-
ues for F; need to be tried: from the smallest
feasible value up to the point at which the op-
timal value of S, is such that K, + 5, < F,
(ie., the constraint becomes inactive).

4.2 Numerical Studies

The solution technique proposed in the previous
subsection is applied to find optimal configurations
based on four different sets of application-dependent
parameters: (1) =1,v = 300; (2) d = 1, v = 200; 3)
0 =15, v =2300; and (4) § = 1.5, v = 200 (the units
for § and v are meters and meters/s, respectively). For

all four cases considered, the radar-dependent parame-
ters and processor-dependent parameters were fixed at
the following values: R = 10°, R, =2 x 10%, A = 0.03,
ayp = 0.3528, a, = 0.9068, and v = 94. These values
are derived in {3] based on a Mercury Race System
configured using SPARC processors.

Intuitively, case 1 represents the most computation-
ally demanding scenario of the four cases considered
— it has the largest platform velocity and the finest
desired SAR resolution. Case 4, on the other hand,
represents the other end of the spectrum - it is the
scenario with the smallest velocity and coarsest reso-
lution. Thus, it would be expected that case 1 have
the highest power consumption requirement and case
4 the lowest — this intuition is confirmed in the numer-
ical studies described next.

The formulated optimization problem was solved
using a routine from the Optimization Toolbox of
MATLAB called constr. This routine was executed
interactively (in MATLAB’s command line mode) on
a Sun SparcStation, and the response time for solving
each optimization was almost immediate (less that one
second).

To illustrate the advantage associated with allowing
configurations to have two types of cards (i.e., hetero-
geneous configurations), optimizations were also con-
ducted in which only one card type is allowed (i-e., ho-
mogeneous configurations). Mathematically, finding
an optimal homogeneous configuration corresponds to
setting the value of either C; or C, to zero and solving
the resulting optimization. Tables 1, 2, and 3 sum-
marize the results of the numerical studies that were
conducted. Table 1 shows the results for the optimal
heterogeneous configurations, in which both types of
cards are allowed (i.e., solving the optimization as de-
scribed in the previous subsection). Tables 2 and 3
show the results of optimal homogeneous configura-
tions, in which Cy and Cj, respectively, were defined
to be zero in the formulation. In all tables, the optimal
values of S,, Ci, Cs, and F, as well as the correspond-
ing optimal value of the consumed power are tabulated
for each of the four cases considered.

Notice that optimal values of S, and F, given in
Table 2 are substantially less than those in Table 3.
This is logical considering that the memory to pro-
cessor ratio for the type 2 card is much higher than
that for the type 1 card, and memory requirements
grow linearly with the value of S, (refer to Eq. (7)).
In reality, of course, a fractional number of cards can-
not be installed in an actual configuration. Thus, the
values for C; and C, would need to be rounded up to
the nearest integers so that the processor and memory
constraints are satisfied.

1493

45

Table 1: Optimal Heterogeneous Configurations:
Type 1 and 2 Cards
case no. S, | CL | Co F, Power
(6:v) (in watts)
1 548 | 4.8 | 4.2 | 2048 94.7
(1:300)
2 548 [2.1 [5.3 | 2048 7.3
(1:200)
3 357 [1.5 1.4 | 1024 31.9
(1.5 : 300)
4 357 | 0.7 | 1.8 | 1024 26.0
(1.5 : 200)

Table 2: Optimal Homogeneous Configurations: Type
1 Cards Only

case no. Sa C: |Cy | F, Power
(5:v) (in watts)

1 259 | 11.0] 0 | 2048 1344
(1:300)

2 1751 1051 0 | 2048 127.9
(1:200)

3 1741 3.5 0 | 1024 42.8
(1.5 : 300)

4 118 { 3.3 0 [1024 39.9
(1.5 : 200)

Table 3: Optimal Homogeneous Configurations: Type
2 Cards Only

case no. S. [C1] Co F, Power
(6:v) (in watts)

1 2154 | 0 | 11.4 | 4096 109.7
(1 : 300)

2 1559 | 0 9.6 | 4096 91.8
(1 : 200)

3 13421 0 4.2 | 2048 40.2
(1.5 : 300)

4 975 0 3.4 | 2048 329
(1.5 : 200)

5 CONCLUSIONS

A formal approach for optimally configuring an em-
bedded computing platform for SAR processing was
introduced. The formulation allows the platform to be
configured using a combination of two types of cards.
The variables that are optimized include the number
of cards of each type and an FFT section size param-
eter. The advantage ~ in terms of minimizing con-
sumed power — of optimally utilizing two card types
(instead of restricting configurations to have only one
card type) was illustrated through numerical stud-
ies. Also, an intuitive correspondence between opti-
mal power consumption requirement and application-
dependent parameters (i.e., SAR image resolution and
platform velocity) was illustrated.

ACKNOWLEDGMENTS

The authors thank T. Einstein for his help in ex-
plaining some of the finer points of the computational
framework assumed in this paper, which was origi-
nally described in [3]. We also thank A. G. Antonio
for sharing with us his expertise in radar systems and
SAR processing.

REFERENCES

[1] M. S. Bazaraa, H. D. Sherali, C. M. Shetty,
Nonlinear Programming: Theory and Algorithms,
Second Edition, John Wiley & Sons, New York,
NY, 1993.

2

J. C. Curlander and R. N. McDonough, Synthetic
Aperture Radar: Systems and Signal Processing,
John Wiley & Sons, New York, NY, 1991.

3

T. Einstein, “Realtime Synthetic Aperture Radar
Processing on the RACE Multicomputer,” Appli-
cation Note 203.0, Mercury Computing Systems,
Inc., Chelmsford, MA, 1995.

[4] F. S. Hillier and G. J. Lieberman, Introduction
to Operations Research, Sixth Edition, McGraw-

Hill, New York, NY, 1995.

[5

A. V. Oppenheim and R. W. Schafer, Digital Sig-
nal Processing, Prentice-Hall, Englewood Cliffs,
NJ, 1975.

[6] “SHARC DSP Compute Nodes (3.3-Volt),” Mer-
cury Computing Systems, Inc., Chelmsford, MA,
Sept. 1995.

[7] J. S. Walker, Fast Fourier Transforms, Second
Edition, CRC Press, New York, NY, 1996.

1494

Appendix B: Jeffrey T. Muehring and John K. Antonio, “Optimal Configuration of
Compute Nodes for Synthetic Aperture Radar Processing,” Proceedings of the
International Workshop on Embedded HPC Systems and Applications (EHPC “98), in
Lecture Notes in Computer Science 1388: Parallel and Distributed Processing, edited by
Jose Rolim, sponsor: IEEE Computer Society, Orlando, FL, USA, Apr. 1998, pp. 987-
993.

47

Optimal Configuration of Compute Nodes for Synthetic
Aperture Radar Processing

Jeffrey T. Muehring and John K. Antonio

Deptartment of Computer Science, P.O. Box 43104, Texas Tech University,
Lubbock, TX 79409-3104
{muehring, antonio }@ttu.edu

Abstract. Embedded systems often must adhers to strict size, weight, and
power (SWAP) constraints and yet provide tremendous computational
throughput. Increasing the difficulty of this challenge, there is a trend to utilize
commercial-off-the-shelf (COTS) components in the design of such systems to
reduce both total cost and time to market. Employment of COTS components
also promotes standardization and permits a more generalized approach to
systemn evaluation and design than do systems designed at the application-
specific-integrated-circuit (ASIC) level. The computationally intensive
application of synthetic aperture radar (SAR) is by nature a high-performance
embedded application that lends itself'to parallelization. A system performance
model, in the context of SWAP, iz developed based on mathematical
programming, This work proposes an optimization technique using a
combination of constrained nonlinear and integer programming.

1 Introduction

This work focuses on modeling and optimizing the processor-memory relationships of
an embedded system for synthetic aperture radar (SAR) processing. The hardware
computing platform of investigation is one constructed with commercial off-the-shelf
(COTS) components that are based on danghtercards and the compute-node concept.
A danghtercard consists of one or more compute nodes, where a compute node is
defined as an entity consisting of one or more processors, a block of shared memory,
and the requisite glue logic. Within the framework of the models developed,
optimization is performed on parameters such as the convolation section size and the
choice and number of danghtercards comprising the svstem.

Size, weight, and power (SWAP) constraints ofien motivate the maximization of
performance density for a given SAR system, especially in the case of unmanned
aerial vehicles (UAVs) or satellites, which often accomm odate SAR systems. SAR in
itself is an approach to densifving aradar system by substituting a large degree of data
postprocessing for radar equipment with prohibitively high size, weight, and power
characteristics. Minimizing the power consumption of the compute platform used for

48

SAR processing is the fundamental objective in this research (although with sufficient
parameter guidelines, size and weight could also be minimized using the same

approach).

2 Fundamentals of SAR Processing

The specific mode of SAR investigated in this research is known as stripmapping. In
stripmapping, successive radar pulses are transmitted and returned in the range
dimension, which is orthogonal to the line of flight. Each received series of pulses
from an individual transmitted pulse is then convolved with a reference kernel to
achieve range compression. The entire range dimension is processed at once in this
way. Detailed coverage of SAR and SAR processing is available in such works as [1,
2].

To create a two-dimensional SAR image, processing in the azimuth dimension is
also necessary. The azimuth dimension is parallel to the line of flight and is
conceptually infinite in length. Thus, processing of the entire azimuth vector, created
from stacked range-processed wvectors, is infeasible. To counter this problem,
sectioned convolution is emploved.

Sectioned convolution extracts a piece (or section) of the azimuth wvector,
convolves it with a reference kernel as in the range dimension, and then discards a
portion of the result equal to the length of the reference kernel. Successively
processed azimuth sections are then overlapped (with overlaps equal to the discarded
kernel length) to form continuous vectors in the azimuth dimension. As is mtuitive, a
large azimuth section length requires more memory than a small section.
Correspondingly, small azimuth sections require more total processing than do large
sections becanse the percentage of new data processed, which is not discarded, is low
(the size of the reference kernel being fixed).

A key point in this work is the exploitation of the section size and the concomitant
processor-memory tradeoff [3]. Different danghtercards are better suited for different
scenarios depending on the memory per processor ratio associated with the
danghtercard, which is largely dependent on the chosen section size. The
combination of the choices for the section size and number and tvpes of danghtercards
emploved greatly affects the overall performance and associated power consumption
of the computational platform.

3 Optimization Models

Two models are presented in this work, which address the problem of determining the
optimal parameter values for configuring the system. Both methods are based on
mathematical programming, which provides a method of formulating an optimization
problem given an objective and set of constraints [4, 5]. This work proposes
optimization techniques using a combination of constrained nonlinear and integer
programming.

49

The first model is based on the agsumption of an ideal shared-memory system. It
treats all the memory contributed by individual danghtercards as a conglomerate
block, equally accessible by all processors located on all danghtercards. For a system
that is tightly predicated on the compute node with relatively high penalties for inter-
compute-node communication, this is an inaccurate oversimplification. However, it is
useful to initially investigate the optimization of the SAR system based on such an
assumption because it provides clear insight mto the interrelationships between
variables and the effects of perturbation of other external parameters. In addition,
without constraints on the amount of local memory available to a processor, the ideal
mem ory-per-processor ratio can be derived from the optimization solution.

The second model removes the assumption of global shared mem ory and purposes
to address system configuration more realistically. With this goal comes an increase
in the complexity of the optimization formulation. The constraint set is modified to
ensure only local memory access by processors. To accomplish this optimization, a
much higher degree of integer programming is required than in the first model,
entailing greater computational intensity to perform the optimization. The benefits of
this second model include solutions that consist of a complete specification of how
system resources are to be utilized, whereas the first model only specifies which
resources are to be emploved.

Parallelization of SAR processing involves the allocation of system resources for
either range or azimuth processing [6]. In the first model, range and azimuth
processors and memory are treated as aggregate requirements that somehow must be
met with an appropriate number of danghtercards of each type. The second model,
however, specifies how many processors and how much memory on each compute
node per danghtercard is allocated for each fimction to prevent remote memory access
during computation. Note that a single compute node can perform both range and
azimuath processing, although each processor within a compute node must be
dedicated to a single task.

4 Numerical Studies

Test data is based on the availability of two different daughtercards. The first is
comprised of two compute nodes. Each compute node on this daughtercard consists
of three processors and a shared memory block of 16 MB. The second danghtercard
consists of a single compute node with two processors and 64 MEB of memory. The
first danghtercard consumes 12.2 watts of power and the second 9.6 watts.
Throughput data for the significant operations mvolved in SAR processing is based
on SHARC processors [7].

MATLAB’s constr function in the Optimization Toolbox was used to solve the
nonlinear constrained programming problem presented by both models. The
nonlinear nature of the problem results from the equations that express the required
system memory and number of processors, which are derived in [8]. The constr
implements a Sequential Quadratic Programming algorithm [9]. Integer
programming, the need for which results from the inherently discrete number of

50

processors per compute node and total compute nodes in a system, is implemented by
multiple optimizations over the feasible discrete permutations.

Figs. 1 through 3 illustrate the result of solving the optimization problem of one of
the models many times across arange of values for different platform velocities and
desired resolutions. In each case, the platform velocity ranges from 50-400 m/s and
the resolution from 0.5-2.0 m.

The utility of optimization of the section size is demonstrated by comparison of
results produced by a heuristic used to determine section size, which defines the
section size to be equal to the kernel size. This section size definition and resultant
systemn configuration is designated as meminal. This work finds that the nominal
section size, although relatively efficient in processing, is too large for most scenarios
becanse of the excessive memory requirements involved. The optimizations
performed show that forcing relatively inefficient processing with an associated
reduction in memory requirements is optimal if power is to be minimized. Optimal
section sizes thus often are found to be only a fraction of the kernel size, entailing the
processing of more old data that is to be discarded than new data.

Fig. 1. Ratio of power consumption of the nominal section size to the optimal section size.

51

1000
SOt

600 ¢

power (w)

400 4

20004 _
400

05

"200

15

2 velocity (m/a)
rasolution {m)

Fig, 2. Power consumption of the CN-constrained model.

Figure 1 shows the surface plot of the ratio of results ohtained by employment of the
nominal section size to the optimized section size of the first model. As would be
expected, the optimized section size always results in equal or lower power
consumption than does the nominal section size. The optimized section size adjusts
to take advantage of unutilized processor and/or memory resources resulting from
changes in system requirements produced by changes in the velocity (axis labeled v)
and/or resolution (axis labeled &).

In both models, higher wvelocities and/or finer resolutions require more
danghtercards and thus more power. All other radar parameters such as wavelength,
range, range swath, and pulse width remain fixed at values representative of a real
system [0]. These trends are illustrated in Fig. 2, which represents the optimal power
consumption associated with the second model.

Fig. 3 displays the danghtercard configurations necessary for the optimal power
values represented in Fig. 2. A configuration is defined as the processor and memory
allocation (for range or azimuth processing) per compute node for a particular
daughtercard type. An optimal system configuration consists of one or two
danghtercard configurations. The two configurations are denoted as X and ¥, with the
subscipts 7, r, and a designating the danghtercard type (7)), number of range
processors per compute node of that type danghtercard (), and the number of azimuth
processors (c).

52

S Summary and Conclusions

Comparison of the two models shows the first model to be a good approximator to the
second model. Both the simplicity of formulation and the speed of data collection
lend the first model to be a useful method for obtaining a preliminary estimate for
total required system power and number of daughtercards. Refer to [8] for a full
comparison of the optimal power consumptions produced by the two models

This work demonstrates the advantage of employing more than one type of
daughtercard in a system. Different daughtercards are characterized by different
power requirements and the processor-memory ratio of the compute nodes that they
house. Optimization exploits these differences and determines the optimal system
configurations.

Generalization of the models developed in this work is straightforward. Although
data is collected based on sample daughtercards and compute nodes deemed to be
representative of actual systems, the values that characterize the daughtercards are
expressed as functions that can be immediately adapted to accommodate any number
of additional components.

400 XK X XK KK K K %
HOR K] WK K K K K e
XX X X OV Y x X
350 & K K TR K KKK KR KKK
3 OO O X XX KK w0 0 112
Ox<]<]® X %O X x5/X XX
i % % <]<] XX ORI OKT T AR 0 211
v 300 pd K DxDxxDﬁxx + 112 121
e X K X XX K] R X
: 212 % %% xxxﬂg * 112 201
o 250 3 <] xxgxxxxx o 112 202
; 5 XXX x 112 211
I XXX K
t 5 3 ﬁ KRR K 121 202
v 0050 Jodordirs |9 130 202
fmis) : Xg % w130 211
150 & <] P X X 202 211
ﬁg OO X% 211 220
100 &1 < <]
X
So-g DR G QORI L
0.5 | L5 2

resolution ()

Fig. 3. Configurations of the CN-constrained model.

53

Acknowledgements

This work was supported by Rome Laboratory under Grant No. F30602-96-1-0098
and Defense Advanced Research Projects Agency (DARPA) under Contract No.
F30602-97-2-0297.

References

1. I. C. Curlander and R. N. McDonough, Swuthetic dperture Radar: Systems and Sigral
Processing, John Wiley & Sons, New York, NY, 1991,

2.W. 3. Carrara, R 5. Goodman, and R. M. Majewski, Sporlight Sprthetic dperture Radar:
Stgnal Processing Algorithms, Artech House, Boston, MA, 1595,

3. I T.Muehring and J. K. Antonio, “Cptimal Configuraion of Parallel Embedded Systems for
Synthetic Aperture Radar,” Proceedings of the 7° Imternational Conference on Signal
Processing & Applied Technology, October 1996, pp. 1189-1194,

4, F. 8 Hillier and G. I Lieberman, Introduction to Operations Research, Sixth Edition,
MeGraw-Hill, New York, NY, 1995,

5. M. 5. Bazaraa, H D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory and
Algorithms, Second Edition, John Wiley & Sons, New York, NY, 1993,

. T. Einstein, “Realtime Synthetic Aperture Radar Processing on the RACE Multicomputer,”
Application Note 203.0, Mercury Computing Systerns, Inc., Chelmsford, MA, 1956,

7. "SHARC DSP Compute Nodes (3.3-Volt)," Mercury Computing Systems, Inc., Chelmsford,
MA, Sept. 1095,

8. 1. T. Muehring, Cptimal Configuration of a Parallel Embedded Sypstem for Synthetic
dperture Radar Processing, M. 8. Thesis, Texas Tech TUniversity, 1997
{(http:/fhpcl.cs ttuedu/darpa/opt_config/thesis. pdf)

9. P E Gill, W. Murray, and M. H. Wright, Practical Optimizarion, Academic Press,
London, 1981,

54

Appendix C: Jack M. West and John K. Antonio, “Simulation of the Communication
Time for a Space-Time Adaptive Processing Algorithm on a Parallel Embedded System,”
Proceedings of the International Workshop on Embedded HPC Systems and Applications
(EHPC “98), in Lecture Notes in Computer Science 1388: Parallel and Distributed

Processing, edited by Jose Rolim, sponsor: IEEE Computer Society, Orlando, FL, USA,
Apr. 1998, pp. 979-986.

55

Simulation of the Communication Time for a Space-Time
Adaptive Processing Algorithm on a Parallel Embedded
System

Jack M. West and John K. Antonio

Department of Computer Science, P.O. Box 43104, Texas Tech University, Lubbock, TX
70408-3104
{west, antonio }@ttu. edu

Extended Abstract

The focus of this work involves the investigation of parallelization and performance
improvement for a class of radar signal processing techniques known as space-time
adaptive processing (STAP). STAP refers to an extension of adaptive antenna signal
processing methods that operate on a set of radar returmns gathered from multiple
elements of an anterna array over a specified time interval. Because the signal
retums are composed of range, pulse, and antenna-element samples, a three-
dimensional (3-D) cube naturally represents STAP data. Typical STAP data cube
processing requirements range from 10-100 giga floating point operations per second
(Gflops). Imposed real-time deadlines for STAP applications restricts processing to
parallel computers composed of numerous interconnected compute nodes (CNs). A
CN has one or more processors connected to a block of shared memory.

Developing a solution to any problem on a parallel system is generally not a trivial
task. The overall performance of many parallel systems 1s highly dependent upon
network contention. In general, the mapping of data and the scheduling of
commumications impacts network contention of parallel architectures. The primary
goals of many applications implemented on parallel architectures are to reduce
latency and minimize interprocessor communication time (IPC) while maximizing
throughput. It is indeed necessary to accomplish these objectives in STAP processing
environments. In most STAP implementations, there are three phases of
computations, one for each dimension of the data cube (i.e., range, pulse, and
channel). To reduce computational latency, the processing at each phase must be
distributed over multiple CNs using a single program multiple data (SPMD)
approach. Additionally, prior to each processing phase, the data set must be
partitioned in a fashion that attempts to equally distribute the ¢ omputational load over
the available CNs. Because each of the three phases process a different dimension of
the data cube, the data must be redistributed to form contiguous vectors of the next
dimension prior to the next processing phase. This redistribution of data or
distributed “comer-tun” requires IPC. Minimizing the time required for
interprocessor communication helps maximize STAP processing efficiency.

Driven by the need to solve complex real-time applications that require tremendous
computational bandwidths such as STAP algorithms, commercial-off-the-shelf

56

(COTS) embedded high-performance computing svstems that emphasize upward
scalability have emerged in the parallel processing environment. In a message
passing parallel system, CNs are connected with each other via a commeon data
commurication fabric or interconnection network. For the purposes of discussion and
illustration, assume that a crossbar with six bidirectional channels is the building
block for the interconnection network. Each of the six input/output channels is
bidirectional, but may only be driven in one direction at a time. The versatility of the
six-port crossbar allows for the interconnect to be configured into a number of
different network topologies, including two-dimensional (2-D) and 3-D meshes, 2-D
and 3-D rings, grids, and Clos networks. However, the most common configuration is
a fat-tree, where the crossbars are connected in a parent-child fashion. In a fat-tree
configuration, which is the configuration assumed in this paper, each crossbar has two
parent ports and four child ports. The fat-tree architecture helps alleviate the problem
of communication bottlenecks at high levels of the tree (present in conventional tree
architectures) by increasing the number of effective parallel paths between CNs.
Unfortunately, the addition of multiple paths between CNs increases the complexity
of the communication pattern in applications such as STAP that involve data
redistribution phases.

Additional complexity emerges when each CN is composed of more than one
processor or compute element (CE) configured with the shared-memory address space
of the CN. In a system with one CE per CN, the communication pattern during
distributed corner-turn phases is very regular and well-understood (ie., a matrix
transpose operation implemented in parallel). However, the overall complexity of
hoth the mapping and scheduling of communications increases in systems where the
CNs contain more than one CE, for two reasons. First, the communication pattern can
be less regular. Second, the message sizes are not uniform.

Two major challenges of implementing STAP algorithms on embedded high-
performance systems are determining the best method for distributing the 3-D data set
across CNs (L.e., the mapping strategy) and the sche duling of communication prior to
each phase of computation. At each of the three phases of processing, data access is
either vector-oriented along a data cube dimension or a plane-oriented combination of
two data cube dimensions. During the processing at each phase, the contiguous
vectors along the dimension of interest are distributed among the CNs for processing
in parallel. Additionally, each CE may be responsible for processing one or more
vectors of data during each phase. Before processing of the next phase can take place,
the data must be redistributed among the available CNs to form contignous vectors of
the next dimension. Determining the optimal schedule of data transfers during phases
of data repartitioning on a parallel system is a formidable task. The combination of
these two factors, data mapping and communication scheduling, provides the key
motivation for this work.

One approach to data set distribution in STAP applications is to partition the data
cube into sub-cube bars (see Fig. 1). Each sub-cube bar is composed of partial data
samples from two dimensions, while preserving one whole dimension of the data-
cube. After performing the necessary computations on the current whole dimension,
the data vectors must be redistributed to form contiguous sub-cube bars of the next
dimension to be processed. By implementing a sub-cube bar partitioning scheme,
IPC between processing stages is isolated to clusters of CNs and not the entire system

57

(ie., the required data exchanges occur only between CNs in the same logical row or
column).

To illustrate the impact of mapping, consider the two examples shown in Fig. 2 and
Fig. 3. For these two examples, assume that the parallel system is composed of four
CNs, with each having three CEs, and connected via one six-port crossbar (see Fig 4).
Additionally, the number on each sub-cube bar indicates the processor to which the
sub-cube bar 15 initially distributed for processing. Fig. 2 illustrates a mapping
scheme where the sub-cube bars are raster-numbered along the pulse dimension. In
contrast, the sub-cube bars are raster-numbered along the channel dimension in Fig. 3.
As illustrated in the two examples, the initial mapping of the data prior to pulse
compression affects the mumber of required communications during the data
redistribution phase prior to Doppler filtering. In the case where the data cube is
raster-numbered along the pulse dimension, six messages, totaling 20 units in size,
must be transferred through the interconnection network. By implementing the
mapping scheme in Fig. 3, the mmmber of required data transfers increases to twelve,
while the total message size expands to 36 units. For this small example, the initial
mapping of the sub-cube bars greatly affects the communication overhead that ocours
during phases of data repartitioning.

To illustrate the mpact of scheduling communications during data repartitioning
phases, consider the problem depicted in Fig. 5, which is the same problem as shown
in Fig. 3. The left-hand portion of the figure shows the cwrrent location of the STAP
data cube on the given processors after pulse compression. The data cube on the
right-hand side of the figure illustrates the sub-cube bars of the data cube after
repartitioning. The coloring scheme indicates the destination CN of the data for the
data prior to the next processing phase. If any part of the sub-cube bar is a different
color than its current processor color in the left-hand data cube, the data must be
transferred to the corresponding colored destination node. In this example, the
repartitioning phase involves transferring six data sets through the interconnection
network. If the six messages were sequentially communicated (i.e., no parallel
communication) through the network, the completion time {7-) would be the sum of
the length of each message, which totals 20 network cyvcles. If two or more messages
could be sent through the network concurrently, then the value of 7. would be
reduced (i.e., below 20).

Scheduling the communications for each of the six messages through the
interconnection network greatly affects the overall performance (even for this small
system consisting of only one crossbar). Fig. 6 shows the six messages, labeled A
through F, in the outgoing first-in-first-out (FIFO) message queues of the source CNs.
Each message’s destination is indicated by its color code. The number in parenthesis
by each message label represents the relative size of the message. The minimal
achievable communication time is dependent upon the CN with the largest
commurication time of all outgoing and incoming messages. For this example, the
minimum possible communication time is the sum of all outgoing and incoming
messages on the CNs having two messages, which equals fourteen message units.
The actual communication time, T, that would result from this example with the
given message queue orderings (l.e., schedule) is 17 units. However, changing the
ordering of the messages in the outgoing queues will vield an optimal schedule of

58

messages. The message queues in Fig. 7 are identical to those in Fig. 6 except the
positions of messages C and F have been swapped in the outgoing queve. Swapping
the ordering of the messages on the green CN allows for an increase in the number of
messages that can be communicated in parallel. For this new ordering of queued
messages, the actual completion time achieves the optimal completion time of
fourteen umts. The purpose of this example is to illustrate that the order (ie., the
schedule) in which the messages are queued for transmission can impact how much
(if any) concwrent communication can ococur. The method used to decompose and
map the data onto the CNs will also impact the potential for concurrent
commurication.

The current research involves the design and implementation of a network
simulator that will model the effects of data mapping and communication scheduling
on the performance of a STAP algorithm on an embedded high-performance
computing platform. The purpose of the simulator is not to optimally sefve the data
mapping and scheduling problems, but to sirndate the different data mappings and
schedules and resultant performance. Thus, the simulator models the effects
associate d with how the data is mapped onto CNs, composed of more that one CE, of
an embedde d parallel system, and how the data transfers are scheduled.

The network simulator is designed in an object-oriented paradigm and
implemented in Java using Borland’s JBuilder Professional version 1.0. Java was
chosen over other programming languages because of its added benefits. First, Java
code ig portable. This feature allows the simulator to mn on various platforms
regardless of the architecture and operating system. Additionally, Java can be used to
create both applications (i.e., a program that executes on a local computer) and
applets (i.e., an application that is designed to be transmitted over the Internet and
executed by a Java-compatible web browser). Third, Java source code is written
entirely in an object-oriented paradigm, which is well-suited for the simulator’s
design. Fourth, Java provides built-in support for multithreaded programming.
Finally, Java development tools, like Borland’s JBuilder, provide a set of tools in the
Abstract Window Toolkit (AWT) for visually designing and creating graphical user
interfaces (GUIs) for applications or applets.

The simulator’s functionality is encompassed by a friendly GUI. The main user
interface of the simulator provides a facility for the user to enter the corresponding
values of the three dimensions of a given STAP data cube and the number of CNs to
allocate to processing the STAP data cube using an element-space post-Doppler
heuristic and a sub-cube bar partitioning scheme. After providing the problem
definition information, the user selects an initial mapping that includes a set of
predefined mappings (e.g., raster-numbering along the pulse dimension, raster-
munbering along the channel, etc), a random mapping, or a user-definable
customized mapping. Furthermore, the user selects the ordering of the messages in
the outgoing queues from a predefined set of scheduling algorithms (e.g., short
messages first, longest messages first, random, custom, etc). After providing the
necessary mput, the network simulator simulates the defined problem and produces
the timing results from both phases of data repartitioning. The level of detail that the
simulator models could be defined as a medium- to fine-grained simulation of the
interconnection network. The simulator assumes the network is circuit switched, and
the contention resolation scheme is based on a port number tie-breaking mechanism

59

to avoid deadlocks. In addition, the simulator incorporates a novel and efficient
method of evaluating blocked messages within the interconnection network and
queued messages waiting for transfer.

The simulator can be used as a tool for collecting and analvzing how the
performance of a system 1is affected by changing the mapping and scheduling. If it is
determined that mapping and/or scheduling choices have a significant impact on
performance, then the simulator will serve as a basis for future research n
determining the optimal mappings and communications.

Acknowledgements

This work was supported by Rome Laboratory under Grant No. F30602-96-1-0098
and Defense Advanced Research Projects Agency (DARPA) under Contract No.
F30602-97-2-0297.

Channels

Doppler Filtering &

Range

Fig. 1. STAP data cube partitioning by sub-cube bars
(This method of partitioning was first described in [1]).

[1] M. F. Skalabrin and T. H. Einstein, “STAP Processing on a Multicomputer: Distribution of

3-I» Data Sets and Processor Allocation for Optimum Interprocessor Communication,”
Proceedings of the Adaptive Sensor drray Processing (4 54P) Workshop, March 1996,

60

Data Set Re-Partitioning Prior to Doppler Filtering
with raster ordering in the pulse dimension

Fle-Partiti oning

v

Channels

Required Data Transfers

Toodeel Alessagme Sige Count ®
=F+I+dHd+I+T
=2 units

s A

Fig, 2 Data set repartitioning with mster-numbering along the pulse dimension.

Data Set Re Partitioning Prior to Doppler Filterin:
with raster ordenng in the channel dimensi on

Re-Partitioning

Channels

W

Eequired Data Tran sfers

Tokel Mersoge Sz Couni
=dduniks

e, s @ ' © ;
08 0%8 <0 o

Fig, 3 Duta set repartitioning with mster-numbering along the channel dimension.

@6

61

@woﬂc Interconmeetion Cmggurat%

Fig, 4 An example confipuration of a four CN {twelyve CE) interconnection network.

/ Pulse Compression Doppler Fﬂteﬂng\

Eequired Data Transfers
Tofal M essageSize Count
Range =20 units
A4

Channel

Fip. 5 Anexample of sub-cube bar repartitioning prior to Doppler filtering,

~

Mininmm Communication Time:

T8, [EN], BH] B, - 1, ¢[CH], = 7, ¢ [EH],
6-Port Tc{} :Toutgoing+ Tincoming:{3+4}+{3+4}
Crosshar
=14 nessage cyclkes j
’J LI ﬂtual Communic ation Tlmex

Ty = maxT, @), 7, @
CH
=Ims.
13 =T, (Eh=3ms.
T6) =T,(E)=4me.
T(10) =T, ()= 4ms.
1114 =T, (@)= 3 me.

Cutgoing Message Queuss Qc = | 17 message cycks /

Tig. 6 A sub-aptimal communication scheduling example.

/Actunl Communic ation 'Hme\
Ti0) = max [T, (B, T, @

=3mec.

T(3) =max[T, O T ©n

=3imc.
16 =T,{8)=4me.
10 =1,{O)=a4msc.

Q = 14 nmgecycles/
=

Outgoing Message Quenes

Tip. 7 An optimal canmmumnication scheduling example.

63

Appendix D: Jack M. West and John K. Antonio, “A Genetic Algorithm Approach to
Scheduling Communications for a Class of Parallel Space-Time Adaptive Processing
Algorithms,” Proceedings of the 5™ International Workshop on Embedded/Distributed
HPC Systems and Applications (EHPC 2000), in Lecture Notes in Computer Science,

IPDPS 2000 Workshops, sponsor: IEEE Computer Society, Cancun, Mexico, May 2000,
pp. 855-861.

64

A Genetic Algorithm Approach to Scheduling
Communications for a Class of Parallel Space-Time
Adaptive Processing Algorithms

Jack M. West and John K. Antonio

Johool of Cormputer Seience
University of Oldahoma
200 Felgar Strest
Wortman, OK 72019
Phone: (405)325-4624

{west, antonio}@ou.edu

Abstract, An important consideration in the maximization of performance in
parallel processing systerns i3 scheduling the cormmunication of messages
during phases of data movement to reduce networl contention and overall
communication time. The work presentsd in this paper focusse on off-line
optimization of message schedules for a clazs of radar signal processing
techniques lnow asz space-time adaptive processing on a parallel embedded
gyetern. In this worly a genstic-algorithm-based approach for optimizing the
scheduling of ressages iz introduced. Preliminary resultz indicate that the
propozed genetic approach to message scheduling can provide significant
deoreages in the comrmmunication time.

1 Introduction and Background

For an application on a parallel and embedded system to achieve required
performance given tight system constraints, it is important to efficiently map the tasks
and/or data of the application onto the processors to the reduce inter-processor
communication traffic. In addition to mapping tasks efficiently, it is also important to
schedule the communmication of messages in a manner that minimizes network
contention so as to achieve the smallest possible communication time.

Mapping and scheduling can both — either independently or in combination — be
cast as optimization problems, and optimizing mapping and scheduling objectives can
be critical to the performance of the overall system. For parallel and embedded
systems, great significance is placed on minimizing execution time (which includes
both computation and communication components) and/or maximizing throughput.

The work outlined in this paper involves optimizing the scheduling of messages for
a class of radar signal processing techniques known as space-time adaptive processing
(STAP) on a parallel and embedded system. A genetic algorithm (GA) based
approach for solving the message-scheduling problem for the class of parallel STAP
algorithms is propesed and preliminary results are provided The GA-based
optimization is performed off-line, and the results of this optimization are static

65

schedules for each compute node in the parallel system. These static schedules are
then used within the on-line parallel STAP implementation. The results of the study
show that significant improvement in communication time performance are possible
using the proposed approach for scheduling. Performance of the schedules were
evaluated using a RA CEway network simulator [6].

2 Overview of Parallel STAP

STAP is an adaptive signal processing method that simultaneously combines the
signals received from multiple elements of an antenna array (the spatial domain) and
from multiple pulses (the temporal domain) of a coherent processing interval [5]. The
focus of this research assumes STAP is implemented using an element-space post-
Doppler partially adaptive algorithm, refer to [5, 6] for details. Algorithms belonging
to the class of element-space post-Doppler STAP perform filtering on the data along
the pulse dimension, referred to as Doppler filtering, for each channel prior to
adaptive filtering. Afier Doppler filtering, an adaptive weight problem is solved for
each range and pulse data vector.

The parallel computer under investigation for this work is the Mercwry RACE®
multicomputer. The RACE® multicomputer consists of a scalable network of
compute nodes (CNs), as well as various high-speed I/O devices, all interconnected
by Mercury’s RACEway interconnection fabric [4]. A high-level diagram of a 16-CN
RACEway topology is illustrated in Figure 1. The interconnection fabric is configured
in a fattree architecture and is a circuit switched network. The RACEway
interconnection fabric is composed of a network of crossbar switches and provides
high-speed data communication between different CNs. The Mercury multicomputer
can support a heterogeneous collection of CNs {e.g., SHARC and PowerPCs), for

more details refer to [6].

dé@b @fé(b TR OO

Fig. 1. Mercury RACE® Fat-Tres Architecturs configured with 16 CNa,

Achieving real-time performance requirements for STAP aleorithms on a parallel
embedded system like the Mercury multicomputer largely depends on two major
issues. First is determining the best method for distributing the 3-D STAP data cube
across CNs of the multiprocessor system (i.e., the mapping sirategy). Second is

66

determining the scheduling of communications between phases of computation. In
general, STAP algorithms contain three phases of processing, one for each dimension
of the data cube (i.e., range, pulse, channel). During each phase of processing, the
vectors along the dimension of interest are distributed as equally as possible among
the processors for processing in parallel. An approach to data set partitioning in STAP
applications is to partition the data cube into sub-cube bars. Each sub-cube bar is
composed of partial data samples from two dimensions while preserving one whole
dimension for processing. The work here assumes a sub-cube bar partitioning of the
STAP data cube, for further details refer to [6]. Figure 2 shows an example of how
sub-cube partitioning is applied to partition a 3-D data cube across 12 CNs.

Range

Channels

Channels
Channals

Fig. 2. Tlluztration of the sub-cube bar mapping technique for the case of 12 CNz. The mapping
of the sub-cube bars to CNa defines the required data cormnmunications. (a) Exarmple illustration
of the communication requirements from CN 1 to the other CNs (2, 3, and 4) after cormpletion
of the range processing and prior to Doppler processing. (b) Exarnple illustration of the
cornmunication requirements from CN 1 to other CNg (5 and 9) after the commpletion of Doppler
processing and prior to adaptive weight proceszsing,

During phases of data redistribution (i.e., communication) between computational
phases, the number of required communications and the communication pattern
among the CNs is dependant upon how the data cube is mapped onto the CNs. For
example, in Figure 2{a) the mapping of sub-cube bars to CNs dictates that after range
processing, CN 1 must transfer portions of it data sub-cube bar to CNs 2, 3, and 4.
{Each of the other CNs, likewise, is required to send portions of their sub-cube bar to
CNs on the same row.) The scheduling (ie., ordering) of outeoing messages at each
CN impacts the resulting communication time. For example, in Figure 2{a) note CN 1
could order its outgoing messages according to one of 3! = & permutations (i.e.,
[2.3.4], [3.2.4], etc.). Similarly, a scheduling of outgoing messages must be defined
for each CN. Improper schedule selection can result in excessive network contention
and thereby increase the time to perform all communications between processing
phases. The focus in this paper is on optimization of message scheduling, for a fixed
mapping, using a genetic algorithm methodology.

67

3 Genetic Algorithm Methodology

A GA is a population-based model that uses selection and recombination operators to
generate new sample points in the solution space [3]. A GA encodes a potential
solution to a specific problem on a chromosome-like data structure and applies
recombination operators to these structures in a manner that preserves critical
information. Reproduction opportunities are applied in such a way that those
chromosomes representing a better solution to the target problem are given more
chances to reproduce than chromosomes with poorer solutions. GAs are a promising
heuristic approach to locating near-optimal solutions in large search spaces [3]. Fora
complete discussion of GAs, the reader is referred to [1, 3].

Typically, a GA is composed of two main components, which are problem
dependent: the exncoding problem and the evaluation funciion. The encoding problem
involves generating an encoding scheme to represent the possible solutions to the
optimization problem. In this research, a candidate solution (i.e., a chromosome) is
encoded to represent valid message schedules for all of the CNs. The evaluation
Junction measures the quality of a particular solution. Each chromosome is associated
with a fitness value, which in this case is the completion time of the schedule
represented by the given chromosome. For this research, the smallest fitness value
represents the better solution. The “fitness” of a candidate is calculated here based on
its simulated performance. In previous work [0, 7], a software simulator was
developed to model the communication traffic for a set of messages on the Mercury
RACEway network. The simulation tool is used here to measure the “fitness” (ie., the
completion time) of the schedule of messages represented by each chromosome.

Chromosomes evolve through successive iterations, called generations. To create
the next generation, new chromosomes, called offspring, are formed by (a) merging
two chromosomes from the current population together using a crossover operator or
{b) modifying a chromosome using a mutation operator. Crossover, the main genetic
operator, generates valid offspring by combining features of two parent chromosomes.
Chromosomes are combined together at a defined crossover rate, which is defined as
the ratio of the number of offspring produced in each generation to the population
size. Mutation, a background operator, produces spontanecus random changes in
various chromosomes. Mutation serves the critical role of either replacing the
chromosomes lost from the population during the selection process or introducing
new chromosomes that were not present in the initial population. The mutation rate
controls the rate at which new chromosomes are introduced into the population. In
this paper, results are based on the implementation of a position-based crossover
aperator and an insertion mutation operator, refer to [1] for details.

Selection is the process of keeping and eliminating chromosomes in the population
based on their relative quality or fitness. In most practices, a roulette wheel approach,
either rank-based or value-based, is adopted as the selection procedure. In a ranked-
based selection scheme, the population is sorted according to the fitness values. Each
chromosome is assigned a sector of the roulette wheel based on its ranked-value and
not the actual fitmess value. In contrast, a value-based selection scheme assigns
roulette wheel sectors proportional to the fitness value of the chromosomes. In this
paper, a ranked-based selection scheme is used. Advantages of rank-based fitness

68

assignment is it provides uniform scaling across chromosomes in the population and
is less sensitive to probability-based selections, refer to [3] for details.

4 Numerical Results

In the experiments reported in this section, it is assumed that the Mercury
multicomputer is configured with 32 PowerPC compute nodes. For range processing,
Doppler filtering, and adaptive weight computation, the 3-D STAP data cube is
mapped onto the 32 processing elements based on an 84 process set (ie., 8 rows
and 4 columns), refer to [2, 6]. The strategy implemented for CN assignment in a
process set is raster-order from left-toright starting with row one and column one for
all process sets. (The process sets not only define the allocation of the CNs to the data
but also the required data transfers during phases of data redistribution.) The STAP
data cube consists of 240 range bins, 32 pulses, and 16 antenna elements.

For each genetic-based scenario, 40 random schedules were generated for the
initial population. The poorest 20 schedules were eliminated from the initial
population, and the GA population size was kept a constant 20. The recombination
operators included a position-based crossover algorithm and an insertion mutation
algorithm. A ranked-based selection scheme was assumed with the angle ratio of
sectors on the roulette wheel for two adjacently ranked chromosomes to be 1+1/F,
where F is the population size. The stopping criteria were: (1) the number of
generations reached 500; (2) the current population converged (ie., all the
chromosomes have the same fitness value); or (3) the current best solution had not
improved in the last 150 generations.

Figure 3 shows the simulated completion time for three genetic-based message
scheduling scenarios for the data transfers required between range and Doppler
processing phases. Figure 4 illusirates the simulated completion time for the same
three genetic based message scheduling scenarios for the data transfers required
between Doppler and adaptive weight processing phases. In the first genetic scenaric
(GA 1), the crossover rate (Pyuy) 18 20% and the mutation rate (Py,,4) is 4%. For GA
2, Power 18 50% and Py, is 10%. For GA 3, Py, i3 90% and Py, is 50%. Figures 3
and 4 provide preliminary indication that for a fixed mapping the genetic-algorithm-
based heuristic is capable of improving the scheduling of messages, thus providing
improved performance. All three genetic-based scenarios improve the completion
time for both communication phases. In each phase, GA 2 records the best schedule
of messages (ie., the smallest completion time).

69

0.94

e 092

=
=
I

088
086 ‘k“_. ——0GAl

cormpletion time in microseconds

@
SR ol N o
082 S N e a s s e s s
0.8 \"‘
S o \u(—n—l—n—l—l—u—x
nie T T T T T
0 100 200 300 400 500 800
Genaration

Fig. 3. Simulated cormpletion time of the comrmnication requirements for data redistribution
after range procezeing and prior to Doppler processing for the parameters dizcuszed in Section
4. For GA 1, the crossover rate (Pyyeer) = 20% and the mutation rate Py = 4%. For GA 2,
Prower = 50% and Py = 10%. For GA 3, Proyer = 90% and Py = 50%.

32

&
i

wh

i d
(e} D
I
__.J

Fitnags

{completion time in microssconds,

\! —a—GA 1
H— G3h 2

—a—GA 3

I = I
h [a1% o |

Fok
}'¢=—-——"—'

IR |
4.4 T T T T T T
0 a0 100 130 200 230 300 330
Generation

Fig, 4. Simulated corrpletion time of the communication requirements for data redistribution
after Doppler processing and prior to adaptive weight computation for the paramsters stated in
Section 4. For GA 1, the crossover rate (Prgyer) = 20% and the mutation rate (P) =4%. For
GA 2, Prower = 50% and Py = 10%. For GA 3, Pryeer = 20% and Py = 50%,

70

5. <Conclusion

In conclusion, preliminary data demonstrates that off-line GA-based message
scheduling optimization can provide improved performance in a parallel system.
Futwre work will be conducted to more completely study the effect of changing
parameters of the GA, including crossover and mutation rates as well as the methods
used for crossover and mutation. Finally, future studies will be conducted to
determine the performance improvement between a randomly selected scheduling
solution and the one determined by the GA. In Figures 3 and 4, the improvements
shown are conservative in the sense that the initial generations”™ performance on the
plots represents the best of 40 randomly generated chromosomes (ie., solutions). It
will be interesting to determine improvements of the GA solutions with respect to the
“average” and “worst” randomly generated solutions in the initial population.

Acknowledgements

This work was supported by DARPA under contract no. F30602-97-2-0297,

References

1. M. Gen and R. Cheng, Genetic Algorithms and Engineering Design, John Wiley & Sons,
Ine., New Yorlk, NY, 1997,

2. M. F. Slkalabrin and T. H. Einstein, “STATF Procezging on a Multicornputer: Distribution of
3-D Data Seta and Processor Allocation for Optimurn Interprocsgsor Cornrnunication,”
Proceedings of the Adaptive Sensor Array Processing (A54AP) Workshop, March 1996,

3. L. Wang, H. I Siegel, V. P. Roychowdhury, and A A, Macigjewsld. *Tasl Matching and
Scheduling in Heterogeneous Cormputing Environments Tsing a Genetic-Algorithm Baged
Approach,” Journal of Parallel and Distributed Computing, Special Issus on Parallsl
Evolutionary Cormputing, Vol. 47, No 1, pp. 8-22, Nov. 25, 1997,

4. The RACE Multicormputer, Hardware Theory of Operation: Proceszors, I/O Interface, and
RACEway Intersonnect, Volumne I, ver. 1.3,

5. 1 Ward, Space-Time Adaptive Processing for Aitborne Radar, Technical Report 1015,
Magzachusstts Instituts of Technology, Lincoln Laboratory, Lexington, MA, 19594,

6. 1 M. Weat, Simudation of Communication Time for & Space-Time Adaptive Processing
Algorithm Implemented on o Parallel Embedded System, Master’s Thesiz, Cormputer
Soience, Texas Tech University, 1998,

7. I M. West and I K. Antonio, "Simulation of the Cornmmnication Time for a Space-Time
Adaptive Processing Algorithm on a Parallel Embedded Systemn," Proceedings of the
International Workshop on Embedded HPC Syvstems and Applications (EHPC *28), in
Lecture Notes tn Computer Science 13388 Papallel and Distributed Processing, edited by
Joss Rolim, gponsor: IEEE Cormputer Socisty, Orlando, FL, TIS A, Apr. 1998, pp. 979-986,

71

Appendix E: Jack M. West and John K. Antonio, “A Genetic-Algorithm Approach to
Scheduling Communications for Embedded Parallel Space-Time Adaptive Processing

Algorithms,” Journal of Parallel and Distributed Computing, Vol. 62, No. 9, Sept. 2002,
pp. 1386-1406.

72

Journal of Parallel and Distributed Computing 62, 1386-1406 (2002)
doi:10.1006/jpdc.2002.1852

A Genetic-Algorithm Approach to
Scheduling Communications for
Embedded Parallel Space-Time
Adaptive Processing Algorithms

Jack M. West and John K. Antonio'

School of Computer Science, University of Oklahoma, 200 Felgar Street, Norman, Oklahoma 73019-6151
E-mail: west(@ ou.edu; antoniow@.ou.edu

Received March 29, 2000; accepted January 29, 2002

Computational efficiency is of great significance for high-performance
embedded applications. The work here develops and evaluates a genetic-
algorithm-based (GA-based) optimization technique for the scheduling of
messages for a class of parallel embedded signal processing techniques known
as space—time adaptive processing (STAP). The GA-based optimization is
performed off-line, resulting in static schedules for the compute nodes of the
parallel system. These static schedules are utilized for the on-line implementa-
tion of the parallel STAP application. The primary motivation and
justification for devoting significant off-line effort to solving the formulated
scheduling problem is the resulting reduction of hardware resources required
for the actual on-line implementation. Numerical studies illustrate that
reductions in hardware requirements of around 50% can be achieved by
employing the results of the proposed scheduling techniques. This reduction in
hardware requirement is of critical importance for STAP, which is typically an
airborne application in which the size, weight. and power consumption of the
computational platform are severely constrained. ¢ 2002 Elevier Scicnce (USA)

Key Words: embedded processing: genetic algorithms; hardware minimiza-
tion; mapping; scheduling.

1. INTRODUCTION

For an application implemented on a parallel and embedded system to achieve
required performance, it is important to effectively map the tasks of the application
onto the processors in a way that reduces the volume of inter-processor
communication traffic. It is also important to schedule the communication of

'To whom correspondence should be addressed.

0743-7315°02 $35.00 1386
© 2002 Elsevier Science (USA)
All rights reserved.

73

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1387

messages in a manner that minimizes network contention so as to achieve the
smallest possible communication times.

Mapping and scheduling can both—either independently or in combination—be
cast as optimization problems, and optimizing mapping and scheduling objectives
can be critical to the performance of the overall system. For embedded applications,
great importance is often placed on determining minimal hardware requirements
that can support a number of different application scenarios. This is because there
are typically tight constraints on the amount of hardware that can be accommodated
within the embedded platform. Using mappings and schedules that minimize the
communication time of parallel and embedded applications can increase the overall
efficiency of the parallel system, thus leading to reduced hardware requirements for a
given set of application scenarios.

The work outlined in this paper focuses on using a genetic-algorithm-based (GA-
based) approach to optimize the scheduling of messages for a class of parallel radar
signal processing algorithms known as space-time adaptive processing (STAP).
STAP is an adaptive signal processing method that simultaneously combines
the signals received from multiple elements of an antenna array (the spatial
domain) and from multiple pulses (the temporal domain) of a coherent processing
interval [6]. The focus of this research assumes that STAP is implemented using an
element-space post-Doppler partially adaptive algorithm, refer to Appendix A and
[6, 7] for details.

STAP involves signal processing methods that operate on data collected from a set
of spatially distributed sensors over a given time interval. Signal returns are
composed of range, pulse, and antenna-element digital samples; consequently, a
three-dimensional (3-D) data cube naturally represents the STAP data. A distributed
memory multiprocessor machine is assumed here for the parallel STAP implementa-
tion. The core processing requirement proceeds in three distinct phases of
computation, one associated with each dimension of the STAP data cube. After
each phase of processing, the data must be re-distributed across the processors of the
machine, which represents the communication requirements of this parallel
application. Thus, there are two primary phases of inter-processor data commu-
nication required: one between the first and second phases of processing and the
other between the second and third phases of processing. After all three phases of
processing are complete for a given STAP data cube, a new data cube is input into
the parallel machine for processing.

A proposed GA-based approach is used to solve the message-scheduling problem
associated with each of the two phases of inter-processor data communication. This
GA-based optimization is performed off-line, and the results of this optimization are
static schedules for the compute nodes of the parallel system. These static schedules
are used within the on-line parallel STAP implementation. The results of the study
show that significant improvements in communication time performance are possible
using the proposed approach for scheduling. It is then shown that these
improvements in communication time translate to reductions in required hardware
for a class of scenarios. Performance of the mappings and schedules are evaluated
based on a Mercury RACE" network simulator developed in [7] and described in
Appendix C.

74

1388 WEST AND ANTONIO

The rest of the paper is organized as follows. Section 2 investigates the issue of
defining suitable mappings of the STAP data cube onto the multiprocessor system.
The GA-based approach for scheduling messages associated with the two phases on
inter-processor communication is given in Section 3. The benefits of using the GA-
based approach are illustrated through numerical studies in Section 4, followed by
conclusions in Section 5.

2. DATA MAPPING FRAMEWORK

For this work, the STAP data cube is partitioned into sub-cube bars of vectors
where each bar is mapped onto a given compute node (CN), refer to Appendix B for
more details. A two-dimensional process set, as described in [8], defines the mapping
of data onto CNs for each computational phase. Additionally, the process set defines
the communication pattern for the required “distributed corner turns™ of the STAP
data cube [3].

Figure 1 illustrates the application of a two-dimensional process set to a STAP
data cube prior to processing contiguous data in the range dimension. The STAP
data is distributed to the processors based on the process set definition. Defining a
process set requires two important steps. First, the two dimensions of the process set
should be specified such that the product of the two dimensions is not greater than
the number of available processors. Second, each CN number should be assigned a
location (row and column) in the process set. In this example, the STAP data cube,
which contains L range samples, M pulse samples, and N channel elements, is
partitioned by a 3 x 4 process set (i.e., three rows and four columns for a total of 12
CNs). The 3 x 4 process set defines the partitioning of the data cube prior to range
processing. The CNs are assigned in a raster ordering from left to right. Each of the
12 CNs is assigned a sub-cube of contiguous data vectors of size L x 4 x 4 based on
their respective location in the process set.

Recall that STAP requires three phases of processing, one associated with each
dimension of the data cube. Consequently, a process set must be defined for each

STAP Data Cube (N = M x L)

x

Each CN is assigned a sub-cube of M
data vectors of size: L X e

N
3

| v

3 % 4 Process Set

(lef-to-right raster ordering of CNs)

FIG. 1. Process set partitioning of a STAP data cube for range processing.

75

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1389

phase of processing. The process sets not only define the allocation of CNs to data
but also the required data transfers during phases of data redistribution. To
illustrate, let 7; represent the process set for range processing and 7> define the
process set for processing in the pulse dimension. The process sets 7} and 7> define
the required message traffic to form contiguous vectors in the pulse dimension after
range processing is complete. The row and column dimensions of 7; and 75 affect the
communication pattern that is induced for the first communication phase. Similarly,
the row and column dimensions of 7> and 73 affect the volume and pattern of the
second communication phase. Refer to Appendix B for a more detailed explanation
of how mapping choices impact communication requirements.

The possible values for the row and column dimensions of a given process set,
denoted by (R, C), is defined by the following:

R.Cye{(,Nlij=p}, O]

where p is the number of processors (i.e., the number of CNs). A complete mapping
is defined by specifying the dimensions of all three process sets; thus, the number of
complete data cube mappings is given by

) 1ij= pil.)

To illustrate, for p=12 there are six possible process sets: {(1,12),(2,6),
(3,4),(4,3),(6,2),(12,1)}. Because a process set must be applied to each of the
three dimensions of the data cube, there are a total of 6% =216
possible mapping alternatives. It is noted that the number of possible schedules
associated with a single mapping is generally much larger than the number of
mappings. In Section 3, a GA-approach to optimal scheduling for a given mapping is
developed.

Based on the class of mappings defined above, an objective function is developed
next for defining the merit of individual mappings. The mapping objective function
quantifies the quality of the mapping associated with a collection of three process
sets. The message size and the distance each message must travel (i.e., the number of
crossbar connections required for transmission) are key parameters of the objective
function. The process sets 7 and 7> induce message traffic requirements as do the
process sets 7> and 73. The induced message traffic produced by process sets 7} and
T, is quantified using the following expression:

Y Imyldy, (3

. ESH

where S| represents the set of all messages induced by process sets 7 and 75, m;j
defines a message from CN i to CN j, |m;;| is the message size, d;; is the distance the
message traverses from source to destination. By combing the above expression with
a similar expression for the message traffic between process sets T> and 73, an
objective measure of overall mapping quality is defined as

Z |myjld;; + Z [l 4)

(i,)IES) (i, p)esa

76

1390 WEST AND ANTONIO

0.7

0.6 1

0.4 4 =4 CNs
8 CNs
0.3 1 | =16 CNs

(x 10"6)

0.2

Objective Function Values

0 T T T T
0 50 100 150 200 250

Rank

FIG. 2. Tlustration of the mapping objective function values associated with mapping a 240 x 32 x 16
STAP data cube mapped onto a 4, 8, and 16 CN system.

Figure 2 compares mapping objective function values associated with mapping a
240 x 32 x 16 STAP data cube onto a 4, 8 and 16 CN system. The results shown in
the figure illustrate that as the number of CNs is increased, the (ranked) objective
function values also increase. It should be noted that the addition of more CNs
decreases the underlying parallel computation time because the data cube size is fixed
and thus each CN has less work to accomplish. However, the addition of more
processors provides a greater dissection of the data; thus, repartitioning the data
among computational stages requires a greater number of messages between a
greater number of processors. More messages and more processors generally require
greater communication time and more network resources. The overall goal, of
course, is to produce the minimal overall execution time (which includes both
computation and communication phases). This goal will be considered later in
Section 4.

In general, the results in Fig. 2 (and many more studies conducted in 8])
illustrate a wide variation of objective function values. In addition to this variation,
it was discovered that multiple mappings produce the same mapping objective
function values. The computed ratio in objective function values between good and
poor mappings range from one-third to one-half, refer to [8] for more detailed
studies.

It is noted that there is no guarantee that a mapping having a minimal objective
function value, once implemented, is necessarily the best overall choice. This is
because the scheduling of messages also has a significant impact on performance.
How to optimally schedule messages for a given mapping using a GA-based
approach is the topic of the next section.

77

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1391

3. GENETIC-ALGORITHM APPROACH TO MESSAGE SCHEDULING

A GA is a population-based model that uses selection and recombination
operators to generate new sample points in a solution space [5]. A GA encodes a
potential solution to a specific problem on a chromosome-like data structure and
applies recombination operators to these structures in a manner that preserves
critical information. Reproduction opportunities are applied in such a way that
those chromosomes representing a better solution to the target problem are given
more chances to reproduce than chromosomes with poorer solutions. GAs are a
promising heuristic approach to locating near-optimal solutions in large search
spaces [5]. For a complete discussion of GAs, the reader is referred to [2, 5, 8].

Typically, a GA is composed of two main components, which are problem
dependent: the encoding problem and the evaluation function. The encoding problem
involves generating an encoding scheme to represent the possible solutions to the
optimization problem. In this research, a candidate solution (i.c., a chromosome) is
encoded to represent valid message schedules for all of the CNs. The evaluation
Junction measures the quality of a particular solution. Each chromosome is
associated with a fitness value, which in this case is the simulated completion time
of the schedule represented by the given chromosome. For this research, smaller
completion times indicate better fitness. The network simulator described in
Appendix C is used to determine the communication time of the schedule encoded
by each chromosome.

Chromosomes evolve through successive iterations, called generations. A new
generation is created when new chromosomes, called offspring, are formed by (a)
merging two chromosomes from the current population together using a crossover
operator or (b) modifying a chromosome using a mutation operator. Crossover, the
main genetic operator, generates valid offspring by combining features of two parent
chromosomes. Chromosomes are combined together at a defined crossover rate,
which is defined as the ratio of the number of offspring produced in each generation
to the population size. Mutation, a background operator, produces spontaneous
random changes in various chromosomes. Mutation serves the critical role of either
replacing the chromosomes lost from the population during the selection process or
introducing new chromosomes that were not present in the initial population. The
mutation rate controls the rate at which new chromosomes are introduced into the
population. In this paper, results are based on the implementation of a position-
based crossover operator and an insertion mutation operator, refer to [2] for details.

Selection is the process of ordering (i.e., ranking) chromosomes in the population
by their fitness values from the best to worst. There are two fundamental paradigms
for implementing the selection process: (1) value-based roulette wheel selection
scheme and (2) rank-based roulette wheel selection scheme. In a value-based scheme,
the probability of a chromosome being selected for reproduction is proportional to
its fitness value. Each chromosome is allocated a sector on a roulette wheel
proportional to its fitness value. To better illustrate the value-based approach to
selection, let P denote the population size and 4; denote the angle allocated to the ith
chromosome. In addition, let f; represent the fitness of the ith chromosome, and let
the average fitness of the population be f,. In this selection scheme, the ith

78

1392 WEST AND ANTONIO

chromosome is allocated a sector of the roulette wheel with area proportional to
fave/fi [5]. This proportionality assumes the best chromosome has the smaller fitness
value; therefore, it is allocated a larger slice of the roulette wheel.

In a value-based scheme, chromosomes with the same fitness values have the same
probability of being selected. In contrast, chromosomes in a rank-based scheme that
have the same fitness value are arbitrarily ranked among themselves. The Oth ranked
chromosome is the fittest and has the sector with the largest angle 4¢; the (P — 1)th
ranked chromosome is the least fit and has the smallest angle 4,_, [5]. The ratio
between two adjacent chromosomes is a constant R = A4;/4,;;. If the 360” of the
roulette wheel are normalized to one, then

(I1-R)

A=RP T
T —RPY

(5)

where R > 1, 0<i<P, and 0<4; <1 [5].

The selection step involves the generation of P uniformly distributed random
numbers ranging from zero to one. Each number maps to a location on the roulette
wheel, thereby selecting the chromosome allocating that sector of the wheel. Because
better solutions occupy larger portions of the wheel than poorer solutions, the better
candidates have a higher probability of selection. This selection process produces P
candidates for recombination and mutation operations, where multiple copies of the
same candidate are permissible. For this research, the size of the next generation is
always kept a constant P, and a rank-based selection scheme is used. Advantages of
rank-based fitness assignment is, it provides uniform scaling across chromosomes in
the population and is less sensitive to probability-based selections, refer to [5] for
details.

As successive generations emerge in the GA heuristic, it is important to compare
the best solution found thus far to the best solution in the current population. The
best solution is updated whenever the fitness value (i.e., the completion time) of a
particular candidate is smaller than the current best solution. After evaluating and
possibly updating the best solution, the stopping criteria are evaluated. The
algorithm terminates if one of the stopping criteria are true, otherwise the algorithm
continues by performing the states of selection, crossover, and mutation.

The optimization of schedules during phases of data redistribution between CNs
on the parallel system can be viewed as a problem with discrete objects (i.e., the
source and destination locations of the messages are fundamental to the encoding of
the chromosomes). Optimization problems involving discrete data sets are called
combinatorial optimization problems. In traditional genetic-based algorithms,
chromosomes are represented as binary strings. However, this representation is
not well suited for all combinatorial problems. The most natural representation, and
the one implemented in this research, is a permutation representation. In this
approach, messages are listed in the order in which they appear in each CN queue by
a decimal number representing the destination node of the message. This
representation (see Fig. 3) is called path representation.

The illustrative example in Fig. 3 shows four CNs with associated message queues.
The boxes represent a message, and the number in the box indicates the destination

79

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1393

Message @
2
3

Queue

2
3
4
l i

Sn=12[3|41-1'1|4j-1|1|2j4

—
Te[s 7]

FIG. 3. Tllustration of the encoding of a chromosome,

of the message. For example, CN 1 needs to send a message to CN 2, 3, and 4. A
chromosome for a schedule is composed of a particular ordering of all the messages
for all four CNs. One permutation of the messages for each CN is combined together
to form a chromosome, in this case Sy. The message identifiers for the CNs are
appended in sequence starting with the first CN. For the work in this paper, special
separation tags (i.e., —1 values) are inserted between the orderings of successive CNs.
Crossover operations are applied to sections of the chromosome bounded by the
separation tags, thus eliminating the prospect of creating invalid chromosomes. In
addition to separation tags, a termination tag (i.e.. —2) is appended to the end of the
chromosome to signal the end of the chromosome.

4. NUMERICAL RESULTS
4.1. GA-Based Message Scheduling

The GA-based approach is applied to the two phases of communications induced
by a given mapping for a given data cube. Forty random schedules were initially
generated; then the poorest 20 schedules were eliminated from this population and
the GA population size was kept a constant 20 after each iteration (i.e., generation).
The recombination operators included a position-based crossover algorithm and an
insertion mutation algorithm. A rank-based selection scheme was employed with the
angle ratio of sectors on the roulette wheel for two adjacently ranked chromosomes
to be 1+ 1/P, where P is the population size. The stopping criteria were: (1) the
number of generations reached 500; (2) the current population converged (i.e., all the
chromosomes have the same fitness value); or (3) the current best solution had not
improved in the last 150 generations.

Figures 4 and 5 show the evolution of fitness values—which are simulated
communication times—for the GA-based message scheduling approach applied to
the two phases of communication induced by the [8 x 4,8 x 4,8 x 4] mapping
(32 CNs) for a STAP data cube assumed to have 240 range bins, 32 pulses, and 16

80

1394 WEST AND ANTONIO

_ 094
]
2 092
=]
@ 09
7]
8 oas L\
o 0.88
o E —e—GA1
o ~ 0.86
@ £ \ N ——GA2
= O b
i E 084 P ——GA3
= e] To-o-o—\ -
.E 0.82 e ey
3 o8 "”‘\
§ o7s At
L3
0.76
0 100 200 300 400 500 600
Generation
FIG. 4. Simulated communication completion time for the co ication requir for data
redistribution after range processing and prior to processing in the pulse dimension. For GA 1, the
crossover rate (Power) = 20% and the mutation rate (Pyy) = 4%. For GA 2, Py = 50% and Py = 107,

For GA 3, Per = 90% and Py = 50%.

antenna elements. Figure 4 is for the first communication phase (between processing
in the range and pulse dimensions) and Fig. 5 is for the second communication phase
(between processing in the pulse and element dimensions). The three curves in each

5.2
@ 51
€
S 5
o
S 4.9
g E \
gé 4.8 —GA1
.= 47 e e ——GA2
= 4
S ——GA3
 PUE SE.
& = i\
3_ 4.5 = _
4.4
0 50 100 150 200 250 300 350
Generation

FIG. 5. Simulated communication completion time for the communication requirements for data
redistribution after processing in the pulse dimension and prior to the final phase of processing. For GA 1,
the crossover rate (Puwer) = 20% and the mutation rate (Py,) = 4%. For GA 2, P = 50% and
Pt = 10%. For GA 3, Pugwer = 90% and Py = 50%.

81

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1395

figure correspond to different values for the crossover and mutation probability
parameter settings. In the first GA scenario (GA 1), the crossover rate (Pgyer) is 20%
and the mutation rate (P) is 4%. For GA 2, Piover is 50% and Py, is 10%. For GA
3, Pover 18 90% and Py is 50%.

Figures 4 and 5 illustrate that for a fixed mapping, the GA-based approach is
capable of improving the scheduling of messages, thus providing improved overall
performance for a given mapping. All three genetic-based scenarios improve the
completion time for both communication phases. In each phase, GA 2 records the
best schedule of messages (i.e., the smallest completion time). Extensive numerical
studies involving different mappings, data cube sizes, and numbers of CNs have been
conducted, but are not included here due to space limitations. A summary of some of
these results will be given at the end of this section; for more details and analysis, the
reader is referred to [8].

To better understand the interplay between mapping and scheduling, the
following four process set mappings were considered for a 32 CN multi-
computer: [32 x 1,32 x 1,32 x 1], [16 x 2,16 x 2,16 x 2], [8 x 4,8 x 4,8 x 4], and
[8 % 4,2 x 16,16 x 2]. Based on a data cube of size 32 x 32 x 32, the best mapping
objective function value (from all possible mappings) is the [32 x 1,32 x 1,32 x 1]
mapping. The ranking of the [16 x 2,16 x 2,16 x 2] mapping was 13th, the
[8 x 4,8 x 4,8 x 4] mapping ranked 3lst, and the [8 x 4,2 x 16,16 x 2] mapping
ranked 111th. For this example, the number of possible mappings was 6* = 216.

The results illustrated in Fig. 6 compare the communication times associated with
the best GA-schedules for each of the four mappings defined above (when applied
to a 32 x 32 x 32 data cube). The required communications between the range
and pulse processing is denoted by Phase 1 label; Phase 2 label refers to the

0.5+

254
o
-
§ 21
2
2
% 1.54

ac

2%

Eg . DOPhase 2
g OPhase 1
k]

o
E
o
L

32x1, 32x1, 16x2,16x2, Bx4, Bx4, 8x4 8x4, 2x16,
32x1 16x2 16x2

Mapping

FIG. 6. Hlustration comparing communication times associated with four different mappings schemes
using the best GA-based schedules for each mapping. The STAP data cube is of size 32 x 32 x 32 and
there are 32 CNs in the multiprocessor system.,

82

1396 WEST AND ANTONIO

communications between processing in the pulse and element dimensions. Based on
the mapping objective function, the [32 x 1,32 x 1,32 x 1] mapping receives the
highest ranking. With this mapping, there is no required communication in the first
phase of communication. Thus, the communications for this mapping is entirely in
the second data transfer phase. And although the mapping objective function is
minimal, the network is flooded with messages during the second communication
phase resulting in high levels of network contention. In two of the other mappings,
the data transfers are dispersed between two phases of traffic, thereby resulting in a
smaller overall communication time. The poorest ranked mapping considered (i.e.,
[8 % 4,2 x 16,16 x 2]), is indeed associated with the poorest overall communication
time. Unlike the case presented here, other sets of mappings and data cube sizes are
considered in [8] in which the rankings of the mappings remain consistent with the
resulting rankings of the overall communication times associated with using the best
GA-based schedules.

4.2. SWAP Analysis

For many airborne radar systems, the goal of minimizing the total size, weight,
and power (SWAP) of the computing platform can be critical. Until recently, very
little research has focused on the effect data mapping and message scheduling have
on overall SWAP requirements for a parallel computing platform.

Figure 7 shows the total computation time and three candidate communication
completion times (total, for both communication phases) for a set of processors
ranging from 4 to 32. For this figure, the STAP data cube consisted of 480 range
bins, 64 pulses, and 16 channel elements. The computation time component
was measured from an actual Mercury system executing the Real-Time STAP

300

250 .

200 A S
= —o— Computation |
E 150 —e—Scenario #1 |
E —&— Scenario #2
F —— Scenario #3

100 A

50 3 FU— 3% “
0+ T T T r T T T

4 8 12 16 20 24 28 32 36
Processors

FIG. 7. Comparison of the computation time and communication times for three mapping/scheduling
scenarios for a STAP data cube composed of 480 range bins, 64 pulses, and 16 channel elements.

83

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1397

—@— Scenario #1

g —2— Scenario #2

Y —>— Scenario #3

-E — — — Optimal 8 CN
------ Optimal 16 CN

4 8 12 16 20 24 28 32 36
Processors

FIG. 8. Comparison of the overall completion times. including both computation and communication,
for the three mapping/scheduling scenarios of Fig. 7. The optimal mapping/scheduling for 8-processor and
16-processor systems are indicated with dashed lines.

benchmark provided by Mitre [1]. Scenario 1 communication time corresponds to
the best time reported by the GA optimization utilizing the best mapping for the
given number of assigned processors. The communication completion times for a
baseline scheduling of transfers given a typical mapping is illustrated by scenario 2,
and communication scenario 3 consists of a typical mapping and a poor schedule.
The illustration shows a distinctive variation in the communication scenarios’
completion times. Additionally, note that as the number of processors increases, the
computation time decreases.

To better visualize the affect data mapping and scheduling have on hardware
requirements, the computation time can be added to each of the three communica-
tion scenarios shown in Fig. 7; the resulting completion times are depicted in Fig. 8.
The intersection of optimal 8 processor dashed line and scenario 1 line represent the
optimal mapping and scheduling for an 8 processor system. In this case, the
completion time is around 140 ms; however, if scenario 3 was used the completion
time would be closer to 170 ms per data cube. Obviously with the optimal mapping
and scheduling (scenario 1), more data cubes per unit time can be processed; thus, in
a unit of time more data cubes can be processed than with scenario 2 or 3. Note also
from the figure that if a poor mapping/scheduling strategy (scenario 3) were utilized,
then 11 or 12 processors would be required in order to match the performance of the
optimally mapped (scenario 1) 8 processor system. This represents a potential
reduction in hardware requirements of around 50% by utilizing the overall optimal
mapping and scheduling scheme.

An optimal 16 processor system, which includes optimal data mapping and
scheduling, can achieve the same performance as a 24 processor system with a poor

84

1398 WEST AND ANTONIO

mapping and scheduling. As a result, if a poor mapping and scheduling was selected
for a 24 processor system, the same performance could be realized with an optimal
16 processor configuration. The overall SWAP requirements for a 16 processor
system would be less than a 24 processor system. Therefore, by optimizing the
mapping of data and the scheduling of messages the SWAP requirements can be
reduced.

This example illustrates that by utilizing the optimal mapping and scheduling
methodologies of Sections 2 and 3, hardware savings of 50% and more can be
realized when compared to sub-optimal solutions to the mapping and scheduling
problems. Because of limitations on the size of problems that could be executed/
simulated, systems up to a size of only 32 processors were investigated. However,
from the trends observed in overall completion times, it appears that even more
significant savings in hardware/power requirements are realizable for STAP
applications that require substantially larger systems having hundreds or even
thousands of processors.

4.3. Summary of Numerical Studies

The results recorded here for message scheduling demonstrate that off-line GA-
based message scheduling can significantly improve the communication performance
in a parallel system. In most cases, a moderate level of crossover (50%) and mutation
rates (10%) yielded the best schedules. Although not included here, when compared
to baseline and randomly generated schedules, the GA-based schedules are
significantly superior—typically reducing communication times by between 20%
and 50%. see [8] for details.

Interestingly, it is shown here that the best mapping—defined as a mapping that
minimizes a mapping objective function—is not always the best choice in terms of
minimizing overall communication time. In particular, as the number of CNs is
increased, optimal mappings that require only one phase of communication
generally report higher overall communication times than those good, but not
optimal mappings that require two non-trivial phases of communication.

5. CONCLUSION

The optimization of mapping and scheduling, either independently or in
combination, is critical to the performance of the STAP application for embedded
parallel systems. For such systems, great significance is placed on minimizing overall
execution time, which includes both computation and communication components.
Such reductions in execution time also translate into improved hardware efficiency
and thus reduced hardware requirements, which is often critical. The focus of this
research is off-line optimization of data mapping and message schedules for a class
of STAP algorithms to be implemented on a parallel embedded system.

An objective function is proposed and developed to measure the merit of a class of
mappings for STAP for implementation on the Mercury multicomputer. The
objective-function-based ranking provides a measure of the communication costs

85

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1399

associated with a given mapping. A combination of the message size and required
network resources for each message are key attributes used by the objective function.

A GA-based approach is proposed and developed for solving the message-
scheduling problem for a given mapping. A GA is a population-based optimization
model that uses selection and recombination operators to generate new sample
points in the solution space. Reproduction opportunities are applied in such a way
that those chromosomes representing a better solution to the targeted problem are
given more opportunities to reproduce than poorer chromosomes. Each chromo-
some is associated with a fitness value, which in this case is the communication
completion time of a schedule. The fitness of a candidate solution is calculated based
on its simulated performance. The GA-based optimization is performed off-line, and
the results of this optimization are static schedules for each CN in the parallel
system. These static schedules can then be used within the online parallel STAP
implementation. Through extensive numerical studies, it is shown that the off-line
optimization approaches can yield mappings and schedules that greatly improve the
on-line performance and reduce the hardware requirements of the parallel embedded
system.

APPENDIX A: OVERVIEW OF STAP

STAP algorithms have been developed to extract desired signals from potential
target returns comprised of Doppler shifts associated with radar platform motion,
clutter returns, and interference including jamming. In order to solve complex, large-
scale, and real-time problems such as STAP, parallel processing has emerged as a key
hardware technology. This appendix provides a brief overview of STAP methods; for
a thorough theoretical treatment of STAP, the reader is referred to [6].

Current and future airborne radars must detect smaller targets in the presence of
increasing interference such as clutter, jamming, noise, and platform motion. If the
interference is localized in frequency and comes from a limited number of sources,
targets can be detected by using adaptive spatial weighting of the data from each
element of an antenna array [6]. By applying computed weights (determined in real
time) to the data, the effects of interference can be reduced.

For an airborne radar platform that is in motion, the Doppler spread of the clutter
returns is significant and the clutter characteristics are highly variable due to the
changing ground terrain. In this type of an environment the weights must be adapted
from the data in both the time and space dimensions. This general type of signal
processing method, which is referred to as STAP, is an adaptive processing technique
that simultaneously combines signals received from multiple elements of an antenna
array (the spatial domain) and from multiple pulses (the temporal domain). The
paragraphs to follow provide a general description of the computational complexity
involved in implementing STAP algorithms. For a detailed theoretical foundation
and analysis of these and other STAP algorithms, the reader is referred to [6].

Consider an N element airborne radar array that transmits a coherent burst of A/
pulses at a constant pulse repetition frequency (PRF) f; = 1/7T;, where T, is the pulse
repetition interval (PRI). The time interval over which the echo returns are collected
is referred to as the coherent processing interval (CPI), and the resultant length of

86

1400 WEST AND ANTONIO

MN samples for

afixed raW

Array Range
Element

PRI

FIG. Al. The STAP CPI three-dimensional data cube (derived from [6]).

one CPI is MT,. For each of the M pulses, L range samples are collected by each
array element. With M pulses and N array channels, the return signal for one CPI is
composed of LMN complex signal samples. Because the signal returns are composed
of L range gates, M pulses, and N antenna array samples, the data may be
represented by the 3D data set shown in Fig. Al. This L x M x N data set will be
referred to as a CPI data cube (or simply a data cube) [6].

Let x,, represent the nth array element and the mth pulse at the /th range sample
time [6]. Next, define x,,; to represent an N x 1 column vector, or a spatial snapshot,
composed of the complex return signals from each array element for the mth pulse
and the /th range. By combining all of the spatial snapshots at a given range of
interest, an N x M matrix X; can be formed, where X; = (x5, x2,,x3.0,...,%u;.1). The
shaded plane in Fig. Al, referred to as a range gate, represents the X; spatial
snapshot at the /th range. To detect the presence of a target within a range gate, a
space-time processor combines the data samples from the range gate to produce a
scalar output, which is then passed through a threshold process for target detection.

The major components of a generic space-time processor are illustrated in
Fig. A2. First, a set of rules called the training strategy is applied to the data to
estimate the interference. The objective of the training strategy is to provide a good
estimate of the interference at a given range gate. Because the interference is
unknown, the training data is estimated data-adaptively from the STAP data cube.

The training data is used as input to the next component where the adaptive
weight vector is calculated. The weight computation component is the most
computationally intense portion of the space-time processor (and this component is
the focus of attention in this paper). Weight computation itself is typically performed
with three phases of processing: the first two phases involving linear filtering and the
final phase requiring the solution of a set of linear equations [6]. After completing
each phase of processing associated with weight computation, the data must be re-
distributed across the compute nodes of the machine, which represents the
communication requirements of STAP. Thus, there are two primary phases of
inter-processor data communication required: one between the first and second
phases of processing and one between the second and third phases of processing.

87

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1401

CPI Data Cube SPACE-TIME PROCESSOR
L
Q’;;? / Target
f Data Weight z Ihreshold
» Application » Detection
1 | z=why 4]
agN -
£ 2 !
E L Target
PRI M Weight Decision
Computation
Training
Data
CPI
Data . Training
Strategy

FIG. A2. Generic space—time adaptive processor (derived from [6]).

After all three phases of processing for weight computation are complete for a given
STAP data cube, a new data cube is input into the parallel machine for processing.
The space-time processor produces a scalar output by computing the inner
product of the weight vector and range gate of interest. The scalar output is
compared to a threshold value to determine if a target is present at a specified angle
and Doppler [6]. Because a potential target’s angle and velocity are unknown, the
space-time processor computes multiple weight vectors to cover a range of possible
target angles, ranges, and velocities at which target detection is to be queried.

APPENDIX B: PARALLEL STAP ON THE MERCURY SYSTEM

The weight computation component of any STAP algorithm is the most
computationally intensive of the three components illustrated in the generic space—
time processor of Fig. A2; it is the component that typically requires significant
parallel computing resources in order to perform the required computations in a
real-time setting. For this reason, our focus in this paper is on mapping and
scheduling strategies for the weight computation component of processing.
Furthermore, the terms “STAP™ and “*STAP computation™ are understood to refer
to the weight computation component unless noted otherwise.

Typical processing requirements of STAP range from 10 to 1000 giga-floating-
point operations (Gflops), which can be met by multiprocessor systems composed of
numerous interconnected compute elements (CEs) [3]. A CE contains a processor,
local memory, and a connection to the network interconnecting the CEs. In the
parallel STAP implementation assumed here, the network supports the three phases
of inter-processor communication in which data must be exchanged among CEs.

The parallel computing system targeted for this work is the Mercury RACE"
multicomputer. The RACE" multicomputer consists of a collection of compute

88

1402 WEST AND ANTONIO

Crossbar Crossbar r
FOOD GOOO TRO® FTRO®

FIG. B1. Mercury RACE" fat-tree architecture configured with 16 CNs.

nodes (CNs), as well as various high-speed 1/O devices, all interconnected by
Mercury’s RACEway" interconnection network [4]. A CN is a collection of one or
more CEs, where the CEs within a CN are interconnected locally by a shared-
memory. A high-level diagram of a 16-CN RACEway" topology is illustrated in
Fig. BI. The interconnection network is configured in a fat-tree topology and is a
circuit switched network. The RACEway" interconnection network is composed of
a network of crossbar switches and provides high-speed data communication among
the CNs. The Mercury multicomputer can support a heterogeneous collection of CN
types (e.g.. SHARC and PowerPCs processors), for more details refer to [7].

Achieving desired performance requirements for STAP implemented on a parallel
embedded system like the Mercury multicomputer largely depends on two major
issues. First is determining the best method for distributing the 3D STAP data cube
across CNs of the multiprocessor system (i.e., the mapping strategy). Second is
determining the scheduling of communications between phases of computation.

STAP computations contain three phases of processing. one for each dimension of
the data cube (i.e., range, pulse, channel). During each phase of processing, the
vectors along the dimension of interest are mapped as equally as possible among the
CNs for processing in parallel. The framework assumed here for mapping is to
partition the data cube into sub-cube bars. Each sub-cube bar is composed of partial
data samples from two dimensions while preserving one whole dimension for
processing. Fig. B2 shows an example of how sub-cube partitioning is applied to
map a 3D data cube across 12 CNs. The sub-cube bar mapping approach was first
described in [3].

During phases of data redistribution (i.e., communication) between computational
phases, the number of required communications and the communication pattern
among the CNs is dependant upon how the data cube is mapped to the CNs for each
computational phase. For example, in Fig. B2(a) the mapping of sub-cube bars to
CNs dictates that after range processing, CN I must transfer portions of it data sub-
cube bar to CNs 2, 3, and 4. (Each of the other CNs, likewise, is required to send
portions of their sub-cube bar to CNs on the same row.) The scheduling (i.c.,
ordering) of outgoing messages at each CN impacts the resulting communication
time. For example, in Fig. B2(a) note CN | could order its outgoing messages
according to one of 3! =6 permutations, i.e., (2,3,4), (3,2,4), etc. Similarly, a
scheduling of outgoing messages must be defined for each CN. Improper schedule

89

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1403

A4

—> L]

[

B £

€ @

5 £

z =]
[&]

{a)

w
§ [®
£ c
H -3
F= y =
[+] (5]

(b)

FIG. B2. Illustration of the sub-cube bar mapping technique for the case of 12 CNs. The mapping of the
sub-cube bars to CNs defines the required data communications. (a) Example illustration of the
communication requirements from CN | to the other CNs (2, 3, and 4) after completion of the range-
dimensions processing and prior to Doppler (i.e., pulse-dimension) processing. (b) Example illustration of
the ication requi from CN 1 to other CNs (5 and 9) after the completion of Doppler
processing and prior to the final phase of processing.

selection can result in excessive network contention and thereby increase the time to
perform all communications between processing phases. Likewise, different
mappings can be defined by considering all the combinations of process set
dimensions whose product equals the number of processors. The example in Fig. B2
illustrates a 3 x4 process set, but other dimensions are possible, i.e.,
4x3,2x6,14 x 12, etc.

Once the mapping and scheduling is defined for each of the STAP computation
and communication phases, respectively, the communication time for both of the
communication phases can be evaluated. In this paper, evaluation of communication
performance is made using a network simulator developed in [8].

APPENDIX C: RACEway" NETWORK SIMULATOR

Each CN in the multicomputer interfaces the network through the RACE"
network chip. The network chip is a crossbar with six bi-directional channels
consisting of 32 parallel data lines and eight control leads [4]. Each crossbar transfers
data synchronously at a clock rate of 40-MHz. Each channel is bi-directional but is
only driven in one direction at a time at a rate of 160 MB/s [4]. Among the six ports
comprising a RACE" crossbar, each switch can either interconnect any three port
pairs, providing an aggregate bandwidth of 480 MB/s, or can cause data to be
broadcast to all or a subset of the remaining five ports [4]. These crossbars are

90

1404 WEST AND ANTONIO

interconnected in a parent—child fashion to form a fat tree topology as shown in
Fig. BI.

The RACE" network is circuit-switched, thus a CN establishes a path through the
network prior to data transfer. The RACEway network is actually preemptive in
that a high-priority message can suspend (preempt) other active paths. When
arbitration for a given crossbar port, or sequence of ports, becomes necessary, the
arbitration is carried out on the basis of a combination of the user-programmable
packet priority and a fixed hardware priority at each crossbar based on the entry and
exit ports at the given crossbar [4]. For this work, the user-programmable packet
priority is assumed equivalent for all data packets, thus, the hardware priority
arbitration rules at each crossbar are used to resolve contention.

If two contending transactions have different priority levels at a given crossbar,
then the transaction having the highest hardware priority level kills the contending
lower-priority level transaction. If a transaction requires a port already occupied by
a lower-priority transaction, then the transmission of the lower-priority message is
suspended (i.e., preempted) and the released port is then taken by the higher-priority
transaction. The unsent data associated with the suspended transaction is re-
packaged as a new message at the originating CN and begins the process of
establishing a new path through the network. If two or more contending transactions
have the same priority level, the first one started holds off any other contending
transactions at the same level until the transmission of its data is completed.

The functionality of the RACEway" network has been encoded as a network
simulator for use in this research. The details of the implementation and operation of
the simulator are not given here, but can be found in [7, 8, 9]. Provided here is an
overview of experimental studies performed that illustrate the accuracy of the
simulator when compared with measured communication times taken from an actual
Mercury multicomputer.

Two classes of communication patterns were employed to evaluate the accuracy of
the simulator: simple test patterns and complex test patterns. Simple test patterns
included the following three test categories: (1) single-source message tests; (IT) two-
source message tests (non-contending and contending paths); and (IIT) 3..N-source
message tests (non-contending and contending paths). Complex communication
patterns included the following categories: (IV) all-to-all personalized test and (V)
randomized message queue communication test.

For the all-to-all personalized test, the outgoing message queues on each CN
contained one message to each of the other CNs in the network. For the randomized
message queue communication test (which closely resembles the communication
pattern required by STAP) a random number of messages are sent from each of the
CNs to randomly selected destinations. The outgoing message queues at each CN
were randomly scheduled (i.e., ordered). For all test cases. identical communication
patterns were executed on the actual Mercury computer and the network simulator.

A small subset of the tests performed are presented here. For each test, 50
independent trials were performed and averages computed for both the actual system
and the software simulator. (Note that both the actual system and the simulator are
non-deterministic.) The CNs are numbered left-to-right starting with 1 and
incrementing by 1 for each successive CN. For instance, the first crossbar located

91

A GA FOR SCHEDULING PARALLEL STAP COMMUNICATIONS 1405

TABLE Cl1

Comparison of Measured and Simulated Communication Times for Different Communication
Patterns for Messages of Size 64 kB

Category Description Measured Simulated Percent

time (ms) time (ms) error (%)
I 256,37 0.41119 0.40013 2.69
(non-contending)
11 24,354 0.84948 0.79608 6.29
(contending)
it 253,354 1.19329 1.19097 0.19
(contending) 4-2
11 256,356 1.28852 1.21279 5.88
(contending) 6—-4
v 5-16,7,8} 3.67124 3.40914 7.14
6—{5,7,8}
7-1{5,6,8}
8—1{5,6,7}
v All-to-all personalized 9.52672 10.12816 —6.31
communication
involving

CNs 2 through 8

\% 2514.6,8) 3.85421 3.45185 5.89
3515,7)
4512,6,8)
57,3}
6 {8,4,2}
7515,3)
85 16,4,2

at the bottom left of the fat-tree contains the first four CNs, numbered 1, 2, 3, and 4.
The next four CNs (i.e., 5, 6, 7, and 8) are connected to the second (lowest-level)
crossbar from the left, and so forth. Provided in Table C1 are representative results
of the tests conducted. For all cases shown in the table, all transmitted messages were
of size 64 kB. This study demonstrates the accuracy of the simulator, in that it
typically has errors of around 5% or less. For a detailed discussion of these and
other tests, the reader is referred to [8].

ACKNOWLEDGMENT

This work was supported by DARPA under Contract F30602-97-2-0297.

92

1406 WEST AND ANTONIO

REFERENCES

1. K. C. Cain, J. A. Torres, and R. T. Williams, “‘Real-Time Space-Time Adaptive Processing
Benchmark,” Mitre Technical Report: MTR 96B0000021, Mitre, Center for Air Force C3 Systems.
Bedford. MA, February 1997.

2. M. Gen and R. Cheng, “Genetic Algorithms and Engineering Design,” Wiley, New York, 1997.
. M. F. Skalabrin and T. H. Einstein, STAP processing on a multicomputer: distribution of 3-D data

w

sets and processor allocation for optimum interprocessor communication, i “Proceedings of the
Adaptive Sensor Array Processing (ASAP) Workshop,” March 1996.

4. The RACE Multicomputer, “Hardware Theory of Operation: Processors. 1/O Interface, and
RACEway Interconnect,” Vol. I, version 1.3.

[

. L. Wang, H. J. Siegel, V. P. Roychowdhury. and A. A. Maciejewski. Task matching and scheduling in
heterogeneous computing environments using a genetic-algorithm-based approach, J. Parallel Distrib.
Comput. (Special Issue on Parallel Evolutionary Computing) 47 (November 1997), 8-22.

6. J. Ward, “Space-Time Adaptive Processing for Airborne Radar,” Technical Report 1015,

Massachusetts Institute of Technology. Lincoln Laboratory, Lexington, MA, 1994.

7. J. M. West, “Simulation of Communication Time for a Space-Time Adaptive Processing Algorithm
Implemented on a Parallel Embedded System.” Master’s thesis, Computer Science, Texas Tech
University, 1998.

8. J. M. West, “Processor Allocation. Message Scheduling, and Algorithm Selection for Parallel Space—
Time Adaptive Processing.” Dissertation, Computer Science, Texas Tech University, 2000.

9. J. M. West and J. K. Antonio, Simulation of the communication time for a space-time adaptive

processing algorithm on a parallel embedded system, in “‘Proceedings of the International Workshop

on Embedded HPC Systems and Applications (EHPC ‘98)” (J. Rolim. Ed.), Lecture Notes in

Computer Science, Vol. 1388: Parallel and Distributed Processing, pp. 979-986. IEEE Computer

Society, Orlando, FL, April 1998.

JACK M. WEST received the B.S., M.S., and Ph.D. in computer science from the Texas Tech
University, Lubbock, Texas, in 1995, 1998, and 2000, respectively. After graduation, he was involved in
post-doctoral work at the University of Oklahoma in the area of embedded high-performance systems. He
is currently a software developer with RiskMetrics Group.

JOHN K. ANTONIO received the B.S.. M.S., and Ph.D. from the Texas A&M University, College
Station, Texas, in 1984. 1986, and 1989, respectively. He is currently professor and director of the School
of Computer Science at the University of Oklahoma. Before joining the University of Oklahoma, he was
with the Department of Computer Science at Texas Tech University and the School of Electrical and
Computer Engineering at Purdue University. He is a member of the Tau Beta Pi. Eta Kappa Nu, and Phi
Kappa Phi honorary societies and is a senior member of the IEEE Computer Society. Dr. Antonio’s
current research interests include embedded high performance computing, reconfigurable computing,
parallel and distributed computing, and cluster computing.

93

Appendix F: Timothy Osmulski, Jeffrey T. Muehring, Brian Veale, Jack M. West,
Hongping Li, Sirirut VVanichayobon, Seok-Hyun Ko, John K. Antonio, and Sudarshan K.
Dhall, “A Probabilistic Power Prediction Tool for the Xilinx 4000-Series FPGA,”
Proceedings of the 5™ International Workshop on Embedded/Distributed HPC Systems
and Applications (EHPC 2000), in Lecture Notes in Computer Science, IPDPS 2000
Workshops, sponsor: IEEE Computer Society, Cancun, Mexico, May 2000, pp. 776-783.

94

A Probabilistic Power Prediction Tool for the Xilinx
4000-Series FPGA

Timothy Osmulski, Jeffrey T. Muehring, Brian Veale, Jack M. West, Hongping L1,
Sirirut Vanichayobon, Seok-Hyun Ko, John K. Antonio, and Sudarshan K. Dhall

Sohool of Cormputer Seience
University of Oldahorma
200 Felgar Street
Wormman, OK 73019
FPhone: (405) 325-7859
antonio@ou. edu

Abstract, The worlt deseribed hers introducss a prastical and accurats tool for
predicting power conzurmnption for FPGA circuits. The utility of the tool is that it
enables FPGA circuit designers to evaluate the power consumption of their
designs without resorting to the laborious and expensive errpirical approach of
instrumenting an FPGA board/chip and taking actual power consurnption
meagurements. Preliminary results of the tool presented hers indicate that an
error of less than 5% iz usually achieved when corpared with actual physical
meagurements of power consumption.

1 Introduction and Background

Reconfigurable computing devices, such as field programmable gate arrays (FPGAs),
have become a popular choice for the implementation of custom computing systems.
For special purpose computing environments, reconfigurable devices can offer a cost-
effective and more flexible alternative than the use of application specific integrated
circuits {(ASICs). They are especially cost-effective compared to ASICs when only a
few copies of the chip(s) are needed [1]. Another major advantage of FPGAs over
ASICs is that they can be reconficured to change their functionality while still
resident in the system, which allows hardware designs to be changed as easily as
software and dynamically reconfigured to perform different functions at different
times [6].

Often a device’s performance (i.e., speed) is a main design consideration; however,
power consumption is of growing concern as the logic density and speed of ICs
increase. Some research has been undertaken in the area of power consumption in
CMOS (complimentary metal-oxide semiconductor) devices, e.g., see [4, 5]
However, most of this past work assumes design and implementation based on the use
of standard (basic cell) VLSI techniques, which is typically not a valid assumption for
application circuits designed for implementation on an FPGA.

95

2 Overview of the Tool

A probabilistic power prediction tool for the Xilinx 4000-series FPGA is overviewed
in this section. The tool, which is implemented in Java, takes as input two files: (1} a
configuration file associated with an FPGA design and (2) a pin file that characterizes
the signal activities of the input data pins to the FPGA. The configuration file defines
how each CLB (configurable logic block) is programmed and defines signal
connections among the programmed CLBs. The configuration file is an ASCII file
that is generated using a Xilinx M1 Foundation Series utility called s#cdread. The pin
file is also an ASCII file, but is generated by the user. It contains a listing of pins that
are associated with the input data for the confioured FPGA circuit. For each pin
number listed, probabilistic parameters are provided which characterize the signal
activity for that pin.

Based on the two input files, the tool propagates the probabilistic information
associated with the pins through a model of the FPGA configuration and calculates
the activity of every internal signal associated with the configuration [1]. The activity
of an interal signal s, denoted a,, is a value between zero and one and represents the
signal’s relative frequency with respect to the frequency of the system clock, /. Thus,
the average frequency of signal s is given by a.f

Computing the activities of the internal signals represents the bulk of computations
performed by the tool [1]. Given the probabilistic parameters for all input signals of a
configured CLB, the probabilistic parameters of that CLB’s output signals are
determined using a well-defined mathematical transformation [2]. Thus, the
probabilistic information for the pin signals is transformed as it passes through the
confioured logic defined by the configuration file. However, the probabilistic
parameters of some CLB inputs may not be initially known becanse they are not
directly connected to pin signals, but instead are connected to the output of another
CLB for which the output probabilistic parameters have not yet been computed (i.e.,
there is a feedback loop). For this reason, the tool applies an iterative approach to
update the values for unknown signal parameters. The iteration process continues
until convergence is reached, which means that the determined signal parameters are
consistent based on the mathematical transformation that relates input and output
signal parameter values, for every CLB.

The average power dissipation due to a signal s is modeled by ¥ Gy ¥ %a.f, where
d(s) is the Manhattan distance the signal s spans across the array of CLBs, Cy;, is the
equivalent capacitance seen by the signal 5, and ¥ is the voliage level of the FPGA
device. The overall power consumption of the configured device is the sum of the
power dissipated by all signals. For an ¥ x N armray of CLBs, Manhattan signal
distances can range from 0 to 2N. Therefore, the values of 2V + 1 equivalent
capacitance wvalues must be known, in general, to calculate the overall power
consumption. Letting § denote the set of all internal signals for a given configuration,
the overall power consumption of the FPGA is given by:

1 2
Pavg = 2 E Cai(s)V asf

FES

1
=EV2f2Cd(S)as. (1)
fhy

96

The values of the activities (i.e., the a,’s) are dependent upon the parameter values
of the pin signals defined in the pin file. Thus, although a given configuration file
defines the set 5 of internal signals present, the parameter values in the pin file impact
the activity values of these infernal signals.

3 Calibration of the Tool

Let & denote the set of signals of length i, ie., S, =455 |d(s)=17}. So, the set of
signals 5 can be partitioned into 2¥ + 1 subsets based on the length associated with
each signal. Using this partitioning, Eq. 1 can be expressed as follows:

1
P, =EV2f Co Y a,+C Y a, ++Coy Y a,)
5y T8 G

To determine the values of the tool’s capacitance parameters, actual power
consumption measurements are taken from an instrumented FPGA using different
configuration files and pin input parameters. Specifically, 2N + 1 distinet
measurements are made and equated to the above equation using the activity values
{i.e., the @5} computed by the tool. For the f-th design/data set combination, let P
denote the measured power and let 4;; denote the aggregate activity of all signals of
length & The resulting set of equations is then solved to determine the 2V + 1

unknown capacitance parameter values:

Ao,o Ao,l AO,Z‘N Co Po
A A e A o B
ly 2 },0 11 . 1,.2.N .1 _ .1 3)
2 : . : : :
Aowp Aary Aapaw | Coy By

Solving the above equation for the vector of unknown capacitance values is how the
tool is calibrated.

4 Power Measurements

For this study, a total of 70 power measurements were made using 5 different
configuration files and 14 different data sets. Descriptions of these configuration files
and data sets are given in Tables 1 and 2, respectively. All of the configuration files
listed in Table 1 each take a total of 32-bits of data as input. The first three
configurations (fp_mult, fp add, int mult) each take two 16-bit operands on each
clock cycle, and the last two (serial fir and parallel fir) each take one 32-bit complex
operand on each clock cyele. The 32 bits of input data are numbered as O through 31
in Table 2, and two key parameters are used to characterize these bits: an activizy
Jactor, a and a probability factor, p. The activity factor of an input bit is a value

97

between zero and one and represents the signal’s relative frequency with respect to the
frequency of the system clock, /. The probability factor of a bit represents the fraction
of time that the bit has a value of one.

Fig. 1 shows plots of the measured power for all combinations of the configuration
files and data sets described in Tables 1 and 2. For all cases, the clock was run at /=
30 MHz. With the exception of the fp_mult configuration file, the most active data set
file {(number 6) is associated with the highest power consumption. Also, the least
active data set file (number 5) is associated with the lowest power consumption across
all configuration files. There is somewhat of a correlation between the number of
components utilized by each configuration and the power consumption; however, note
that even though the serial fir implementation is slightly larger than parallel fir, it
consumes less power. This is likely due to the fact that the parallel_fir design requires
a high fan-out (and thus high routing capacitance) to drive the parallel multipliers.

Table 1. Charactsristics of the configuration files,

Configuration Description Component
File Name Utilization of
Xilinx 4036xla
Custorn 16-bit floating point multiplier with 11-
fp_rmult bit mantizsa, 4-bit exponent, and a signbit [3]. 368
Custorn 16-bit fleating peint adder with 11-bit
add gb 339
- rmantizsa, 4-bit exponent, and a gign bit [3].
— 16-bit integer array multiplier; produces 32-bit 500
- produst [3].
FIR filter implementation using a ssral-
serial fir rultiply with a parallel reduction add tree. 1060
- Input data iz 32-bit integer complex. Constant
coefficient multipliers and adders from cors
generator,
FIR filter implementation using a parllsl-
parallel_fir rultiply with a series of delayed adders. Input 1055

data iz 32-bit integer complex. Constant
coefficient multipliers and adders from core
generator,

98

Table 2. Characterizstics of the data seta,

Data Set Description
Number
1 Pins O through 15 = p=00and ¢= 0.0,
Pinz 16 through 31 =p=05anda=1.0
P Ping Othrough 15 = p=00and =010
Ping 16 through 31 =p=075and a=04
3 Ping O through 15 = p=025and 4=045
Ping 16 through 31 = p=00and =00
4 Ping Othrough 15 =p=05and =10
Ping 16 through 31 = p=00and =00
5 Ping Othrough 31 = p=00and =00
Iy Pins Othrough 31 = p=05and ¢= 1.0
7 Even numbered ping = p=00and =00

Odd nurnbered ping = p=05and 2=1.0

2 Even numnbered ping = p=03 and =105
Odd numbered ping = p=07and a=05

] Even numbered ping = p=05anda=1.0
Odd numbered ping =p=0.0and a=0.0

10 Even numbered ping = p= 08 and a=10.1
Odd numbered ping = p=0.2and ¢=0.13

1 For all pins, p and a selected at random
{different from data set 12).

19 For all ping, p and a selected at random
(different frormn data 2et 117,

13 Ping Othrough 2, p=01and = 0.1

Ping 3 through 5, p=02 and a=0.2, etc.,
plecontinue to increase in stepe of 0.1 and o7
increass to 0.5 in atepa of 0.1 and then
deoreasze back down to 0.0,

14 Pin0,p=01and a=02
Pinl,p=02and a=04

Pin2, p=03 and a=08, etc.,

p's continue to increasze to 1.0 in steps of 0.1

(and then decrease) and «’s increass to 1.010n
steps of 0.2 (and then decrease).

99

5.0 | Configure files:
—O—fp_rmuk
—0—fp_add
45 —&— int_rmult
L / \ — 77— serial_fir
—— parallel_fir
4.0 ——]

NENI NSRS
ool \\\M/ R\ //5 \vﬁvw\/v_v\o/ A
ALY T

25
P e
"2\ PR \é[T 0 /D
20 _o—F—=0)
' o S p oo o—o—ogo—7
2 4 5 8 10 12 14
data sets

[~

Power Consumption (w)

0

Fig, 1. Meazsured power consurmmption for the configuration files and data sets desoribed in
Tables 1 and 2.

5 Experimental Evaluation of the Tool

Becanse 73 values are used to model all of the internal capacitances of the device used
in this study, at least three more measurement scenarios are required to calibrate all
capacitance values (by solving the complete set of linear equations defined by Eq. 3).
Fortmately, however, we were able to calibrate a subset of capacitance values by
considering the power consumption of the two FIR filters (serial fir and parallel_fir).
This was because there tumed out to be a total of only 28 non-zero entries for the
rows of the mairix of Eq. 3, coresponding to aggregate activities for the two FIR
filter designs.

Fig. 2 shows the measured power consumption curve along with 20 different
prediction curves generated by the tool for the serial FIR filter design. One of the
prediction curves comresponds to predicted wvalues based on using all 28 measured
values to calibrate the tool’s capacitance values (this curve is labeled "all” in the
legend of the figure). This curve naturally has excellent accuracy; predicted power
consumption values match measured values nearly perfectly.! The remaining 28
prediction curves are associated with capacitance values determined by using all but
one of the measured data values to calibrate the tool (the data set not used is indicated
in the legend of the figure). For each of these curves, the data set not used in the

1 The reason the predicted values do not match measured valuss exactly is because the equations used to
determine capacitance valuss did not have full ranl, and thus a least-squaras solution was determined.

100

4.2 -

4.0 -

38 -

26 -

24 -

32 -

3.0 -

Power (Y}

28

26 -

24 -

22

20 1 1 L 1 L 1 L 1 L 1 L 1 L 1 L

Data Sets

Fig, 2. Measured and predicted power congumption curves uging various calibration scenarios
for the serial FIR filter implementation,

£5

50—

45 —

4.0

a5 -

Power (W)

2.0 -

25 -

20 N 1 L 1 L 1 L 1 L 1 L 1 L 1 L

Data Sets

Fig 3. Measured and predicted power consurnption curves using various calibration scenarios
for the parallel FIR filter implementation.

101

calibration of the tool’s capacitance values generally associates with the highest error
in the predicted value for that data point. For example, note that when data set number
six for the serial FIR (labeled S6 in the figure’s legend) was not used in the calibration
process, the resulting prediction for that value was highest (around 10% error). When
data sets associated with the parallel FIR design were not included, the prediction
curves did not change, thus those curves are all drawn as solid lines with no symbols.
Fig. 3 shows the same type of results as Fig. 2, except for the parallel FIR instead of
the serial FIR.

6 Summary

To summarize the results for both filter designs, when all 28 sets of measurements
are used to calibrate the tool, the maximum error in predicted versus measured power
is typically less than about 5%. With one data set removed, the maximum error
increases to about 10%, and the predicted value with this highest error is typically
associated with the data set not used in calibrating the tool. This level of error is
acceptable for most design environments, and represents a considerable
accomplishment in the area of power prediction for FPGA circuits. Thus, these
preliminary results indicate that the tool is able to adequately predict power
consumption (i.e., for data sets not used in calibrating the tool). By using more data
sets to calibrate the tool in the future, it is expected that even greater prediction
accuracy and robustness will be achieved.

Acknowledgements

This work was supported by DARPA under contract no. F30602-07-2-0297. Special
thanks go to Anmapolis Micro Systems, Inc. for their support and for providing the
instrumented FPGA board that was used to take power measurements.

References

1. T, Qermmlsld, fmplementation and Evaluation of a Power Prediction Model for Field
Programmable Gate Array, Magter's Thesiz, Computer Science, Texas Tech University,
1998,

2. K. P Parker and E. T McClusley, “Probabilistic Treatment of General Combinatorial
Networls,” IEEE Trans. Computers, vol. C-24, pp. 668-670, Tuns 1975,

3. B Veale, Study of Power Consumption for High- Performance Reconfigurable Computing
Architectures, Master’s Thesis, Computsr Sciencs, Texas Tech University, 1999,

4, T. L. Chou, K. Roy, and 8. Prazad, “Estimation of Cireuit Activity Considering Signal
Correlations and Simultaneous Switching,” Proc. JEEE 'l Conft Comput, Aided Design,
pp. 300-303, Nov, 1994,

5. A Nannarelli and T. Yang, “Low-Powsr Divider,” IEEE Trans, Computers, Vol 48, No. 1,
Jan. 1999, pp. 2-14.

&, Xling XCLO00E and XC4L000X Sertes Field Programmable Gate arrays, Product

Specification, XKilink Inc, v1.5, httpifwerwxiling com/partinfo/databool htm#xed 000,
1999,

102

Appendix G: Hongping Li, John K. Antonio, and Sudarshan K. Dhall, “Fast and Precise
Power Prediction for Combinational Circuits,” Proceedings of the IEEE Symposium on
VLSI, sponsor: IEEE, Tampa, FL, Feb 2003, pp. 254-259.

103

Fast and Precise Power Prediction for Combinational Circuits

Hongping T, John K. Antonio, and Sudarshan K. Dhall
School of Computer Science, University of Oklahoma
200 Felgar Street, Norman OK 73019-6151
hongping(@ou. edu, antonio@ou. edu, sdhalli@ou. edu

Abstract

The power consumed by a combinational circuit is
dictated By the switching activities of all signals
assaciated with the circuit Ar analytical approach is
proposed for calewlating signal activities for
combinational cireuits. The approach is based on a
Markov chain signal model and divectly accounts for
correlations present among the signals. The ccaracy
of the approach is verified by comparing signal activity
values calculated wsing the proposed approach with
corresponding values produced through simadation
shidies. It is also demonstrated that the propased
approach is computationally efficient.

1. Introduction

Power consumption of integrated circuits (I1Cs) is of
growing concern as more electronic devices are being
deploved in mobile and portable applications, e.g.,
PDAs, mobile telephones, and other battery-powered
electronic devices. As the functionality of such devices
increases, so does the complexity and sophistication of
the underlying circuits. More complexity and faster
clock rates generally translate into higher power
consumption for a given hardware implementation
technology. Because battery technology has not
improved at the same rate as IC technology, there is
strong motivation to design circuits that are as power
efficient as possible to extend battery life for portable
devices.

The focus of this paper is the development of an
analytical tool for predicting power consumption of
combinational circuits. This tool, which is implemented
in software, can be utilized during the design phase to
give the designer quick and accurate predictions of
power consumption for a given circuit design.

Several similar and related approaches to this
problem have been proposed in the past, incliding
simulation-based [1] and analytical approaches [2, 3, 4].

A good survey of past approaches can be found in [5].
Generally, simulation-based approaches achieve high
accuracy but require long execution times; in contrast,
the analytical approaches are faster but are generally less
accurate. In this paper a new analytical approach is
proposed that achieves fast execution time and accuracy
that is comparable with simulation-based methods. As
explained below, the particular focus is on power
consumption of circuits implemented in CMOS, but the
proposed approach may be applicable for other
technologies as well.

Power consumption in a CMOS circuit is primarily
due to three types of current flow: leakage curent,
switching transient cwrrent, and load capacitance
charging current [9]. The last is the dominant
component of power consumption in CMOS devices,
and is strongly dependent on signal switching activity.

Let § denote the set of all signals associated with a
circuit. For each 5 £ 5, let ({s5) denote the capacitive
load associated with signal s. Also, let ofs) denote the
activity of signal s, which has a value between zero and
one, and represents the signal’s normalized average
frequency relative to the frequency of a system clock, £
Thus, fois) gives the average frequency of signal s.
Based on these assumptions and notation, the average
power for a CMOS circuit operating at a voltage level of
¥ can be expressed as [4, 5]:

Power,,, = %VZ fZC(s)a(s) . {1
se

The problem addressed in this paper is to determine
the activity of all signals of a combinational circuit
given an appropriate probabilistic model for the primary
input signals that drive the circuit. The signal model
proposed in this paper is based on a Markov chain. The
signal activity is easily computed from the parameters
associated with the proposed signal model. In the
proposed approach, signals with known Markov chain
representations are propagated through the circuit to
produce Markov chain representations for the outputs of
all gates in the circuit. Accuracy of the approach is
verified by comparing signal activities produced by the

104

proposed method with comesponding activities
produced through simulation studies. When compared
with other related approaches, a key aspect of the
proposed approach is that correlations present among
the signals due to re-convergent fan-out are accounted
for directly.

2. Previous Related Approaches
2.1 Signal Probability Calculation

In [2], probabilistic signal modeling for
combinational circuits was first introduced. Each signal
is modeled with a single probabilistic parameter that
defines the probability of a signal having a logical value
of one. For signal x, the probability that x has logic
value 1 is defined by P(x)=P(x=1). Two algorithms

for calculating signal probabilities are introduced in [2].
These approaches require that a Boolean function
expression assoclated with each signal be derived in
terms of the primary inputs. Because the number of
terms in these expressions can grow exponentially with
the number of inputs, the complexity of these
approaches can be prohibitive for practical circuits.

A computationally efficient algorithm for calculating
signal probabilities is introduced i [7], named
“Algorithm 1,” which operates by propagating
probability values through the gates of circuit, thereby
drastically reducing the size of the Boolean functions
that must be evaluated. This algorithm is simple and fast
— it has a linear complexity in the number of gates — but
is not accurate for all classes of circuits.

Another algorithm is proposed in [7] called the
Weighted Averaging Algorithm (WAA), which
generally achieves better accuracy than Algorithm 1 and
has a comparable time complexity. However, the WAA
still does not always produce correct values.

A method for accounting for signal probability
correlations was developed in [6] named the correlation
coefficient method (CCM). By using this approach, the
probability of the output of a two-input gate can be more
accurately calculated, given the probabilities of the two
mputs and an associated correlation factor associated
with the two signals. In this algorithm, the correlation
factor can also be caleulated analytically by means of a
set of basic propagation rules.

2.2, Signal Activity Calenlation

The above-described approaches of [2], [6], and [7]
are concerned with determining the probabilities of
signal values, not the probabilities of signal transitions,
ie., activities, which are necessary for estimating power

consumption, refer to Eq. 1. An early approach for
estimating signal activities was developed in [3], in
which signals of a circuit are modeled to be mutually
independent strict-sense-stationary (SSS) mean-ergodic
0-1 processes. Under these assumptions, the activity of a
signal y from a circuit with z-primary inputs can be
expressed as

o pf &
a(=S Pl = lxix 2
o) ; [axi}l(+) (2)
where Jy/dx; is the Boolean difference of function y
with respect to x; and is defined by

& _ -
a_xi =¥ |X[=1 &y ‘x[=[]* y(xlz"':xz—lalaxHh' ' -,)Cn) 3)
By X O X ar e X)
Intuitively, the Boolean difference &y/0x; defines

whether a transition of signal x; will cause a transition in
output signal y. Specifically, if the Boolean difference
function evaluates to one, then a fransition of signal x;
causes a ftransition in y. So, the probability of the

X

Boolean difference function, P[Q] , defines the
probability that a change in ¥ will occur given that there
is a change in x,.

The calculation of the probability of the Boolean

X

difference terms, ie., P[i} this calculation can be
complicated for large and complex circuits. In [3], the
caloulation of these terms is accomplished by first
representing the nodes of the oircuit with a binary
decision diagram (BDD) [3, 5]. In practice, the BDD
approach often achieves linear or near linear time
complexity; however, in the worst case the complexity
can grow exponentially with the number of gates.

It is noted mn [4] that Eq. 2, ie., the approach
described in [3], fails to consider the effect of
simultaneous switching of gate inputs. Each Boolean
difference term associated with Eq. 2 describes an input-
switching event in which exactly one of the inputs
makes a transition. Thus, Eq. 2 does not account for
events involving simultaneous switching of two or more
of the input signals. The concept of the generalized
Boolean difference was introduced in [4] to account for
simultaneous switching, and is denoted as follows:

ayk ‘bil>bi2:"'ﬁbik

oy o el Do =8y, =By Xy = 8) (g
I R

(}"x;', =b,x =E,--->xi~ =&).

£ e Y

where k£ is a positive integer, x,
o

. =12k, are

distinet mutually independent primary mputs of y, and

105

bij are binary values of 0 or 1. Note that if the
generalized Boolean difference evaluates to one, then
the simultaneous transitions of signals (%, ,%, ... %,)

fom (b,,b,.b) to (BB, ...B) or from

5 D e
(l:»zl,l:»i2 ,...,bzk) to (bil,b,q ,...,b,k) will cause a transition

at y.

Eq. 2 is adapted in [4] using the generalized Boolean
difference concept to account for simultaneous
switching, resulting in:

aly)= i_ch(:—i)[ce(xJH[lf a(x;)]] &)

{Zfen

k ™ Fyl .
+E[E[PC[@}+PG{%]:|[Q[X’)Q(;CJJ$@E)—[}!J} (,)]]}+

! 3% boo ESY™ vk T
+F[Pc[ax16x? Exj +PC[6I15X? a:;,] +. +P{Exlax? ﬁ&]][l:i[%)J

where Pc&, Pc% B oo g pcmare
& % 4 ey by - -+ B,

conditional probabilities of the generalized Boolean
differences under the condition that only the indicated
nputs simultaneously switch, and the rest do not.
Details on how to caleulate these conditional
probabilities can be found in [4].

The approaches of [3] and [4] can have high
computational complexities because the number of
terms i the underlying equations/transformations can
grow exponentially with the number of primary inputs
to the circuit. Trade-offs between computational
complexity and accuracy are possible relative to the
evaluation of Eq. 2 and Eq. 5 (associated with [3] and
[4], respectively). Instead of deriving a signal’s logic
function in terms of the circuit’s primary inputs, the
parameters to the immediate inputs of the signal’s logic
gate can be used. This type of “gate-by-gate™ technique
will generally introduce emor because it does not
account for correlations present among the internal
signals that drive the gates within the circuit.

i

3. Markov Chain Signal Model
3.1. Preliminaries

In this section we introduce a signal model that is
baszed on a Markov chain having three event parameters.
It is shown that the proposed Markov chain model is
equivalent to the two-parameter probability/activity
signal model of [3] and [4]. The advantage of modeling
signals with Markov chains is that it makes it possible to
compute correlations between signals related to both
probability and activity.

The approach derived here can be viewed as a
generalization of the approach in [6]. Instead of
tracking a correlation factor for the single probability
parameter model, transformations for correlation factors
associated with the three parameters of the Markov
model are derived. This ultimately leads to a fast and
acourate “gate-by-gate™ algorithm for calculating signal
probabilities and activities.

As illustrated in Figure 1, the proposed Markov chain
signal model has three event parameters for signal 4.
The event denoted by A represents the signal being in
state 1, and 4, and A, represent the events that there is a
transition from state 0 to 1 and from state 1 to 0,
respectively. Note that the probability of event 4 is
denoted by P(4), and is equivalent to the signal
probability defined in the previous section.

A4,

43
Figure 1. Proposed Markov chain signal model.

A

For notational convenience and clarity, we will
denote the value of P(4) as py (for the value of the
probability of signal 4) and the value of the activity
old) as oy (for the value of the activity of signal A)
throughout the rest of the paper. Using these notations
and applying basic properties of Markov chains along
with the definition of signal activity, the following
expressions can be derived for P(4), P(4,) and P(4,):

G4

=%, pay=Zi (6)
H-pp

Pld)=p,. P4
2y

Thus, if the values of both the probability and activity
parameters of a signal are known (i.e., py and ay), then
the probabilities of the three events associated with the
proposed Markov model for the signal are completely
determined. Likewise, knowing the probability values of
the three parameters of the Markov model fully
determines the probability and activity parameters of the
signal.

In order to define correlations between two signals
modeled with Markov chains, some basic definitions are
needed. Let 4 and B denote two events and let P(45)
denote the probability of both 4 and B cccurring. From
basic probability theory [8], P(4F) = P(4/B)P(&), where
P(A4/B) represents the probability of 4 given B. Also, the
correlation coefficient of two events 4 and B is defined
as

106

fax
Py =—2 (M
T40p

where o5 is the covariance and o, and &, are the
positive square roots of the variances of 4 and B. It can
be shown that

P(ABY— P{AYP(B)
P PLA)P(B)Y1- P(B))
In order to simplify later derivations, it is convenient to

define the correlation factor Cyz of two events 4 and £
as

(8

Piap =

P(4B) P(4/B) P(B/A)
42T = = . ®
(HP(B) P4 P(B)

By applying Eq. § to Eq. 9, the following relationship
can be derived:

oo P P(B)
¥ JPLAI- Py JPBYI- P(B))

(Cp-1)-(10)

Thus, Cyz is related to o4z through scaling and shifting.
The value of pyz, by definition [8], is a real number in
the interval [-1, 1]; therefore, according to Eq. 10, Cyp
takes on real non-negative wvalues. Also, pgz = 0
corresponds to Cyz =1, and indicates that the events 4
and B are mutually independent. Similarly, gy < 0 (ie.,
A and B are negatively correlated) corresponds to 0 <
Ciz = 1, and pgz = 0 (ie, 4 and B are positively
correlated) corresponds to Cyp > 1.

3.2. Markov Chain Maodel for Basic Logic Gates

The focus in this subsection is on deriving the
Markov chain model for the output of a basic logic gate
in which the Markov chain models of the input signals
are known. The simple case of a NOT gate is considered
first followed by the analysis of two-input basic logic
gates.

For a NOT gate with input 4, the Boolean output
function is given by ¥ = 4. From Figure 1, it is clear
that the Markov model for Yis given by

P(Y)=1-P(4), P(¥)=P(dy), P(,) = P(4,)). (1)

Congsider now the case of a two-input basic logic
gate. Assuming the Markov chain models of inputs 4
and & are known, the objective is to derive the Markov
chain model for output signal ¥. A ke to deriving the
Markov chain model for signal ¥ is to represent the state
transition diagram associated with the gate’s two inputs,
as shown in Figuwe 2. The fouwr states in the figure
correspond to the four input combinations for the two

inputs. The first digit of each state label corresponds to
the value of 4, and the second to the value of B, e.g., the
state labeled “01” comesponds to 4 = 0 and B = 1.
Although not labeled on the figure, the directed edges
represent transition events. To illustrate the notation to
label transition events, “00-=>10" will be used to
represent the event that input signal 4 transitions from 0
to 1 and signal B stays in state 0.
O'="0
".E

Figure 2. State transition diagram for a two-
input gate.

The lmown parameters of the Markov chain models
for signals 4 and B are given by P(A), P(4d)), P(4:),
P(B), P(B)), and P(B;). Also assumed to be known are
the correlation factors for pairs of events associated with
the Markov chain models for the inputs. From Eq. ¢
note that P{4B) = PUAW(B)Cp where Cyp is the
correlation factor associated with events 4 and 5.
Similarly, the comelation factor C,; enables the

calculation of P{4,8;) wusing the fact that
P(4B,)=P(4)P(B,)C,p, . Recall from Eq. 10 that

independent events comespond to a correlation factor of
unity. Given the Markov chain models for signals 4 and
B (and the corresponding comrelation factors) it is
possible to derive the probability associated with every
event shown in the state transition diagram of Figure 2.
A complete tabulation of these expressions can be found
in[11].

Deriving a Markov chain model for the output (¥) of
a two-input gate depends on the particular function of
the gate. To illustrate, consider the specific example of
an AND gate, i.e., ¥ =48, For an AND gate, the output
takes on logic value 1 if and only if both inputs are 1.
Thus,

PM)y=PAD) = pyappCyz - a2

The event ¥ is associated with three events from Figure
2, namely: 00—11, 0111, and 10—11. Thus, equality
can be established as follows:

POP(Y;) = POOYPO0 — 11) + PODPOO — 11)

(13)
+PODPO0 > 11).

107

Solving Eq. 13 for P(¥) and using Eqs. 6 results in the
following expression:

1 1
PRy=(zdpeas+—Appacp) (1= p40:Cap)
2 2 (1)

1
- h(&q Cam + A0 08 —AC 4z)Q'Aaa M- parsCag)}

The parameters A, A4, and Az are simply functions of
probabilities and correlations factors and are used for
notational convenience; expressions for these
parameters can be found in [11]. Derivation for P(¥))
follows in a similar fashion and can be expressed as

Py =TT, (15)
2p
Derivations of P(¥), P(Y)), and P(Y;) for two-input OR
and XOR gates are included in [11]. Methods for
caleulating/propagating correlation factors through basic
elements of a circuit are also included n [11].

4, Markov Chain Propagation Algorithm

This section describes a proposed Markov Chain
Propagation (MCP) algorithm for determining the
Markov chain models for all signals of a given
combinational circuit. The Markov chain signal model
of Section 3 is employed, and it is assumed that the
parameters of the model are known for the circuit’s
primary inputs. The overall approach is to
propagate signal information associated with the
Markov chain model through the circuit in a “gate-by-
gate” fashion. Recall that once the Markov chain
model 13 determined for all signals, the signal
activities and circuit power estimate are determined
using Hq. 6 and Eq. 1, respectively. It is assumed that
the given circuit is specified at the level of basic logic

gates.

MCP Algorithm

Step 1: Represent the given combinational circuit as
a directed acyclic graph (DAG).

Vertices of the DAG corvespond to basic gates
and edges represent signals. Twa extra vertices
(@ source and « sink) are inchuded in the DAG
to accommodate the primary inputs and
outputs of the circuit. An example of how to
represent « circuit with the DAG model is
ilhistrated by Figures 3(a) and 3¢b).

Perform a topological sort [10] on the DAG
to obtain an ordering of the gates.

See Figure 3(c).

Transform to two-input basic logic gates.

As shown in Figure 3¢d), replace all basic
gates having move than two inputs with an
equivalent sequence of twa-input basic gates.

Step 2:

Step 3:

108

Step 4

Step 5:

Partition the circuit into levels.

As shown in Figure 3(e), levels are defined at
the input and output of each basic gate. Note
that there is at most one gate bebween any wo
consecutive levels.

Successively apply propagation rules at each
level.

Apply the propagation rules from [11] for
caleulating the parameters of the Markev
model for the buasic gate outputs and the
associated corvelation factors.

Figure 3. lllustration of the MCP Algorithm.

For a circuit with M signaly and N gates, the time
complexity of the MCP Algorithm can be shown to be
OM +N). Due to space limitations, a detailed

derivation of the time complexity of the MCP Algorithm
is not included here, but can be found in [L1].

5. Experimental Results

The MCP Algorithm has been implemented and
evaluated using several test circuits. To verify the
accuracy of the results produced by the MCP algorithm,
PSpice® circuit simulations were performed on the same
test circuits. In the simulation studies, time-series
realizations from the assumed Markov chain model for
each primary input were used to drive the circuit
simulation. Estimates of signal probabilities were
derived from the simulations by counting the fraction of
time each signal took on a value of unity. Estimates of
signal activities were derived from the simulations by
counting signal transitions.

The MCP Algorithm was also evaluated using a
circuit named C432 from the ISCAS-85 Benchmark Set.
For this circuit there are a total of 145 distinct signals,
not inchiding the primary inputs. (Note that there are a
total of 432 physical signals, which includes fan-out
signals.) Table 1 shows the distribution of absolute
differences and relative percentage errors between
activity values computed by the MCP Algorithm and
those derived through simulation. Other cirenits were
also tested and these results also indicate the accuracy of
the MCP Algorithm.

Table 1. Accuracy for the MCP Algorithm.

Absolute Diff. | Number of | | Relative Error | Number

Range Signals Range (%) |of Signals
[0, 0.01] 70 [0, 1] 43
(0.01, 0.02] 35 (1, 2] 41
(0.02, 0.03] 19 (2, 5] 31
(0.03, 0.04] 10 (5, 10] 25
(0.04, 0.05] 10 (10, 20] 3
(0.05, 0.08] 1 (20, 50] 2
{(0.06,1] 0 =50 0

6. Summary and Future Work

The problem of determining the activities of all
signals of a combinational circuit is addressed in this
paper. A new signal model is proposed based on a
Markov chain. Signal activity is easily computed from
the parameters associated with the proposed signal
madel. In the proposed approach, signals with known

Markov chain representations are propagated through
the cireuit to produce a Markov chain representation for
the cutput of each gate in the circuit. Accuracy of the
approach is verified by comparing signal activities
produced by the proposed method with corresponding
activities produced through simulation studies. These
initial testing results will be extended in futare work by
testing more and larger circuits.

Acknowledgments

This research was supported by DARPA under Contract
F30602-97-2-0297. The authors would like to thank Dr.
S. Lakshmivarahan for his contributions to this work.

References

[1] R. Burch, F. N. Najm, P. Yang, and T. Trick, “A Monte
Carlo Approach for Powsr Estimation”, IFEE Trans. VLST
Svatems, Vol 1, No. 1, Mar, 1293, pp. 63-71.

[2] K. P. Parker and E. J. McClugkey, “Probabilistic Treatment
of General Combinational Networks” JEEE Trams
Computers, Vol. C-24, No. 6, Tune 1975, pp. 668-670,

[3] F. N. Najm, “Transition Density: A New Measure of
Activity in Digital Circuits,” IEEE Trans. Computer-dided
Design of Itegrated Circuits and Systems, Vol 12, No, 2,
Feb, 1993, pp. 310-323.

[4] T-L. Chou and K. Roy, “Estimation of Activity for Static
and Domino CMOS Circuits Considering Signal Correlations
and Simultaneous Switching,” IEEE Trans. Computer-dided
Design of Integrated Circuits and Systems, Vol. 15, No. 10,
Oat, 1996, pp 1257-1265,

[5] F. N. Najm, “A Survey of Power Estimation Techniques in
VLEI Circuits,” IEEE Trans. on VLST Systems, Vol. 2, No., 4,
Dea. 1994, pp. 446-455.

[6] 8. Ercolani, M. Favalli, M, Dramiani, P. Olovo, and B,
Riceo, “Betimate of Signal Probability in Combinational Logic
Networks,” Proec. IEEE European Test Conference, April
1989, pp. 132-138.

[7] B. Krishnamurthy and I. G. Tollis, “Improved Techniques
for Estimating Signal Probabilities,” IEEE Trans. Computers,
Wol. 38, No. 7, Tuly 1989, pp. 1041-1045.

[8] 1. B. Thomas, 4r Introduction fo Applied Frobability and
Random Processes, Krieger Publishing, Huntington, NY,
1981,

[9] M. 1. M. Smith, dpplication-Specific Integrated Circuits,
Addison Wesley, Reading, MA, 1997,

[10] T. H. Cormen, C. E. Leigerson, R. L. Rivest, and C. Stein,
Introduction to dlgorithms, MoeGraw-Hill New York, NY,
2001,

[117 H. Li, T. K. Antonio, and 8. K. Dhall, *“Fast and Precize
Powser Prediction for Combinational Circuits,” Technical
Report No. CS-TR-02-001, School of Computer Science,
University of Cklahoma, Nov. 2002.

109

Appendix H: Nikhil D. Gupta, John K. Antonio, and Jack M. West, “Reconfigurable
Computing for Space-Time Adaptive Processing” Proceedings of the Sixth Annual IEEE

Symposium on Field Programmable Custom Computing Machines (FCCM), Napa, CA,
USA, Apr. 1998, pp. 335-336.

110

Reconfigurable Computing for Space-Time Adaptive Processing

Nikkil D. Gupta, John K. Antonio, and Jack M. West
Department of Computer Science
Box 43104
Texas Tech University
Lubbock, TX 79409-3104 USA
Tel: 806-742-1659
{gupta, antonio, west}{@ttu.edu

1. Introduction

Space-time adaptive processing (STAP) refers to a class of
signal processing techniques uzed to process returns of an antenna
array radar system [4]. STAP algorithms are designed to extract
desired target signals from returns comprised of Doppler shifts,
ground clutter, and jamming interference. STAP simultaneously
and adaptively combines the signals received on multiple
elements of an antenna array — the spatial domain — and from
rmultiple pulse repetition periods — the temporal domain.

The output of STAP is a weighted sum of multiple returns,
where the weights for each return in the sum are calculated
adaptively and in real-time. The most computationally intensive
portion of most STAP approaches iz the calculation of the
adaptive weight values, Calculation of the weights involves
solving a set of linear equations based on an estimate of the
covariance malrix associated with the radar refurn data.

Hxisting approaches for STAP typically rely on the use of
multiple digital signal processors (DSPs) or general-purpose
processors (GFPs) to calculate the adaptive weights. These
approaches are often based on solving multiple sets of linear
equations and require the calculation of numerous wector inner
products. This paper proposes the use of FPGAs as vector co-
processors capable of performing inner product calculation,

Two different “inner-product co-proceszor” designs are
introduced for use with the host DSP or GPP. The first has a
multiply-and-accumulate structure, and the second uses a
reduction-style tree structure having two multipliers and an adder.

2. STAPFP Weight Calculation
2.1 Basic Formulation

The STAP algorithm assumed here i known as K®order
Doppler factored STAP, which is classified as a partially adaptive
technique. Due to the space limitation, it will not be possible to
fully extplain this algorithm. Instead, the focus here will be on the
necessary notation and core calculations required to determine the
values of the adaptive weights. For more information on STAP,
the reader is referred to [1, 4].

Detenmnining the values for the z-vector of adaptive weights,
denoted by w , involves solving a system of linear equations of
the form:

¥w=75,

4y

This worlt was supported by DARPA under conftract mumber F30602-97-
20297

111

where s iz a known a-vector called the steering vector and ¥
ig an estimate of the covariance matrix, which iz determined
based on the sampled radar retums. ¥ is derived based on
space-time data matrix X which isan »# x & matrix defined by

X =[% %, .5, Based on this the definition, ¥ is given
by

1
N
2.2 QR-Decomposition and Conjugate Gradient

v-—yx¥ ()

The QR -decomposition approach is a direct approach for
solving a system of linear equations. The QR approach always
gives an exact solution and the complexity of the algorithm is
fixed. It involves performing a QR-decomposition on the matrix
X, the result of which is an N XN orthogonal matrix ¢ and an
X N upper triangular matrix R such that ¥ = OR. The final
result iz obtained by forward and backward substitution. For
more details the reader is referred to [1].

The conjugate gradient approach is an iterative method
that provides a general means for solving a system of linear
equations [2]. For the systemn of equations given in Eq. (1), it is
based on the idea of minimizing the following function:

(3

The function f iz minimized when itz gradient is zew, ie,
Vf =Ww—5 =0, which corresponds to the solution to the

original systern of linear equations. The wvery repetitive and
regular numerical structure of the conjugate gradient update
equations makes it a prime candidate for implementation on an
FPGA system.

Numerical studies were conducted using Matlab
implementations of the QR-decomposition and CG methods on
actual STAP dafa collected by the Multi-Channsl Airborne
Radar Measurement (MCARM) system of Rome Lab [3].
Further details of thiz study can be found in [6].

Fw) = %@T\P\I)fs‘ﬁ) .

3. Inner-Product FPGA Co-Processor

Hach of the two methods outlined above requires
calculating a number of inner products. Given enough
resources, all the inner products could be done in parallel on
FPGAs. Because the available system has only two FPGAs [5],
the computations was divided among the host processor and the
FPGA board. The two schemes that were implemented are
outlined below. For both schemes, the data vectors are assumed
to be in block-floating-point format [9]. Additiconally, the

multiplier implementation is based on discussion in [7] and the
adder unit uses 4-bit camry-look-ahead adders [8] in each stage of
the adder pipe.

3.1 Multiply-and- Accumulate Implementation

In the first implementation shown in Figure 1, the FPGA iz
configured to perform the multiply-and-accumulate operations on
the input vectors. The implementation consists of a multiply unit
and an accumulator, which is composed of a normalization unit
and an adder. The normalization unit shifts the binary point of the

E
I H ‘
N O E S|2n+1t6lsls:‘
T £ |p——— :
Rk
E
R
c
a
N
HOST N
PROCESSOR c .
T
o
N)
]
B 5 ®
U H S
L :
E I
R

Figure 1. Block diagram implementation of the multiply-and-
accumulate unit on WildOne FPGA board.

mantizsa and makes a compensating adjustment to the exponent
prior to the addition. The output of the adder is fed back and
accumulated with the next product term.

The single cycle multiply-and-accumulate iz achieved by
pipelining each unit of the implementation. This unit reads in two
operands and performs two operations per cycle. Thus, the unit
reduces two M-vectors to a constant number of partial sums equal
to the number of stages in the accumulator pipe. The
implementation allocates approximately 88% of the configurable
logic blocks (CLBEs) on the Xilimt 4028EX FPGA. The
implementation can be clocked at 40MHz thus giving a
throughput of 80 million block-floating-point operations per
second.

3.2 Multiply-and-Add Implementation

Figure 2 illustrates the second implementation that performs
an inner product, i.e, 3 multiply-and-add operation on the two
input vectors. The design incorporates two 16-bit multiply units
and an adder, By using this approach, two multiplies can be
performed in parallel, and afterwards, the adder computes the
sum of the two products.

A challenge associated with this implementation is that four
16-bit input operands, i.e., 64 bits, are required per computation
cycle. Unfortunately, the data-path to the FPGA board is only 36-
bits wide. The solution to this problem involves clocking the
input state machine at twice the frequency of the multiply-and-
add state machine, and registering the first two operands for one
input state machine clock cycle.

112

The multiply-and-add unit reads in four operands and
performs three block-floating-point operations per cycle, Thus,

:
i
F
¥ Slgn+16 bt
s
:: > ; % L e
HOST
PROCESSOR

ndlE ZO—HAEZZOO0REAZ—

FEL L R LE]

Figure 2: Block diagram implementation of the multiply-and-
add unit on WildCne FPGA board.

the two input M-vectors are reduced to an M2-vector of partial
sums. This implementation, however, involves an additional
A2 addition operations to obtain the inner product result. For
thiz implementation, approximately 99% of the available CLBs
on the Xilinx 4028EX FPGA are required. In summary, for a
fixed clock rate, the second design can provide a higher
throughput, but requires more computation from the host {to
perform the final summation of the partial sums).

4.
(1]

References

K. C Cain, J. A Torres, and B T, Williams, “Real-Time
Space-Time Adaptive Pracessing Benchmark”, Mitre TR
MTR 26B0000021, Mitre, Bedford, MA, February 1997,

L. G, Luenberger, Linear and Nonlineqr Frogrammiing,
Second Edition, Addison-Wesley, Reading, MA, 1984,

Real-Time MCARM Data Sets, http/fsunrize.oc.rl.af.mil.

1. Ward, Space-Time Adaptive Procesving for Airborne
Radar, Technical Report 1015, Massachusstts Institute of
Technology, Lincoln Laboratory, Lexington, MA, 1904,

Wila-One Hardware Reference Maonual 11927-0000
Reviston 0.1, Annapolis Micro Systems Inc, MD, 1997,

Nikhil D. Gupta, Reconfigurable Computing for Space
Time Adaptive Processtng, MS Thesizs Proposal, TTT,
http:#hpel st edw/darpasreconfigurables, 1997,

(3]

(6]

[7] T.T.Do, HKropp, P. Pirsch, “Implementation of Pipelined
Multipliers on Xilinx FPGAs,” Proceedings of the 7
International Workshop on Field-Programmable Logic
and Applicarions, Springer Verlag, September] 397

[8] M. Morris Mano, Digital Logic and Computer Design,
Second Edition, Prentice Hall, Englewood Cliffs, NJ, 1992
[9] W.W. Smith,]. M. Smith Hendbook of Real-Time Fast
Fourter Transforms, IEEE Press, New Tork, NY, 1995

Appendix |I: Jeffrey T. Muehring and John K. Antonio, “Minimizing Power
Consumption using Signal Activity Transformations for Very Deep FPGA Pipelines,”
Proceedings of the Military and Aerospace Applications for Programmable Devices and
Technologies Conference (MAPLD 2000), sponsors: NASA and Johns Hopkins
University/Applied Physics Laboratory, Laurel, MD, Sep. 2000.

113

Minimizing Power Consumption using Signal Activity Transformations
for Very Deep FPGA Pipelines

Jeffrey T. Muehring and John K. Antonio

School of Computer Science
University of Oklahoma
200 Felgar Street
Norman, OK 73019-6151
Phone: 405-325-7859

Fax: 405-325-4044

antonio{@on.edu

Submitted to:
2000 MAPLD Conference

The 3" Annual Military and Aerospace Applications of Programmable Devices and
Technologies International Conference

June 2000
Abstract

The density of commercially available FPGAs (field programmable gate arrays) has
increased dramatically in the past several years. Because of this trend, it has become
possible to move more and more computations associated with high-performance
embedded applications from DSPs (digital signal processors) onto FPGA devices. The
potential advantages of utilizing FPGAs instead of DSPs, in this context, include
reductions in the utilization of size, weight, and power (SWAP) required to implement
the computational platform. These types of reductions are of particular interest for
military applications such as synthetic aperture radar (SAR) processing, which is often
performed on a small unmanned aerial vehicle (UAV) having limited available power for
the on-board computational platform.

Two major contributions are presented in this paper. First, it is shown that the core
computations from the SAR application, including both the range compression and
azimmth processing phases, can be structured as a single deep computational pipeline that
can be implemented directly onto an array of FPGAs. Past results for high-throughput
SAR processing typically assume the computations are to be mapped onto a distributed
memory mmltiprocessor system in which a subset of the available processing elements
(PEs) are assigned to perform range compression and the remaining processors perform
azimuth processing. In this type of traditional approach, a number of compressed
(processed) range vectors are sent from the range PEs to the azimuth PEs where they are
buffered in memory. After a prescribed number of compressed range vectors are present
in the memory space of the azimmth processors, azimuth processing commences. Because
of the significant intermediate buffer storage required by this approach, and the

114

associated placing and fetching of data in this memory space by the range and azimuth
PEs, respectively, this type of SAR implementation is generally not thought to be a
“purely streaming” application. However, as is presented in this paper, these
computations (both phases) can in fact be structured as a single computational pipeline,
which can be directly mapped onto an array of FPGAs. In the proposed approach, no
intermediate memory buffer is required between the two phases of computation. Instead,
within the structure of the computational pipeline are long segments of delay elements
that effectively provide the intermediate storage associated with the more traditional
approach. One potential advantage of the proposed approach is that data need not be
continuously stored and then fetched from a separate memory module by PE (which,
incidentally, can require significant power consumption). Instead, the data streams
continuously through a long computational pipeline. Within this pipeline are the taps of
the FIR (finite impulse response) implementations of both the range and azimuth
processing, interspersed with long segments of delay elements. Although the resulting
pipeline may be thousands of stages long for practical values of SAR parameters, it is a
viable approach because end-to-end latencies on the order of 1 millisecond are typically
acceptable, provided that the required throughput is achieved.

The second contribution presented in this paper demonstrates how signal activity
parameters of incoming data can be transformed, before the data are processed by a
computational pipeline, as a means of reducing overall power consumption. The key to
understanding this approach is the realization that the activity levels of the input signals
to the computational pipeline dictate its level of power consumption. The activity of a
given input signal (i.e., bit) is defined as the fraction of times that the signal transitions
relative to the system clock. It has been demonstrated that increasing the signal activities
of input data to a pipelined circuit implemented on an FPGA also increases the power
consumption of the circuit [1]. In the present paper we illustrate how the activities of the
input data can be transformed (pre-processed) so that the resulting (transformed) signals
that are input into the computational pipeline have activity values that are well-matched
with the pipelined circuit in terms of mimimizing consumed power. At the end of the
computational pipeline, an inverse transformation is applied to the output values to
convert them back to their proper (and meamingful) representation. This approach is
based on two fundamental assumptions: (1) that the power consumption of the
computational pipeline is significantfly higher than that of the computational structures
implemented to perform the transform and inverse transformation of the data and (2) that
the computations performed within the computational pipeline are linear and time
invariant.

The final version of this paper will contain further details related to the two
contributions outlined here. Details on the structure and depth of the computational
pipeline associated with the proposed SAR processing approach will be provided. This
approach, in terms of estimated power consumption, will be compared with more
traditional approaches that make use of a multicomputer architecture. Also presented will
be measurements and estimates of overall power savings possible by using the proposed
signal activity transformation approach.

115

Reference

[1] Timothy Osmulski, Jeffrey T. Muehring, Brian Veale, Jack M. West, Hongping Li,
Sirirut Vanichayobon, Seok-Hyun Ko, John K. Antonio, and Sudarshan K. Dhall, “A
Probabilistic Power Prediction Tool for the Xilinx 4000-Series FPGA,” Proceedings of
the 5" International Workshop on Embedded/Distributed HPC Systems and Applications

(EHPC 2000}, in Lecture Notes in Computer Science, sponsor: IEEE Computer Society,
Cancun, Mexico, May 2000, pp. 776-783.

116

Appendix J: S. Vanichayobon, Sudarshan K. Dhall, S. Lakshmivarahan, and John K.
Antonio, “Power-speed Trade-off in Parallel Prefix Circuits,” Proceedings of ITComm
2002, High-Performance Pervasive Computing Conference, sponsor: SPIE, Boston, MA,
July/Aug. 2002, pp. 109-120.

117

Power-speed Trade-off in Parallel Prefix Circuits

S. Vanichayobon, Sudarshan K. Dhall, S. Lakshmivarahan, J. K. Antonio
School of Computer Science, University of Oklahoma, Norman, OK 73019.

ABSTRACT

Optimizing area and speed in parallel prefix circuits have been considered important for long time. The issue of power
consumption in these circuits, however, has not been addressed. The paper presents a comparative study of different
parallel prefix circuits from the point of view of power-speed trade-off. The power consumption and the power-delay
product of seven parallel prefix circuits were compared. A linear output capacitance assumption, combined with PSpice
simulations, is used to investigate the power consumption in the parallel prefix circuits. The degrees of freedom studied
include different parallel prefix algorithms and voltage scaling. The results show that the use of the linear output
capacitance assumption provides results that are consistent with those obtained using PSpice simulations. The study can
help identify parallel prefix algorithms with the desirable power consumption with a given throughput.

Keywords: Parallel prefix circuits, power, power-speed trade-off,
L. INTRODUCTION

The three most widely accepted metrics for measuring the quality of a circuit are its area, speed, and power
consumption. Optimizing area and speed have been considered important for long time, but minimizing power
consumption has been gaining prominence only recently [1, 5, 10]. One important reason for minimizing power
consumption of a circuit is the proliferation of portable electronic systems, such as laptops, mobile phones and wireless
devices, where maximizing battery life is important. Since it is desirable to minimize the size and weight of batteries in
such devices, while increasing the time between battery recharges, finding methods of reducing power consumption has
assumed considerable importance.

In this paper, we study power-speed trade-off for prefix circuits. The prefix circuits play an important role in many
applications. It appears in a number of areas such as the carry-look-ahead adder, ranking, packing, radix sort, etc. [8].
Many new approaches for prefix circuits with the goal of optimizing depth (i.e., speed) and size (i.e., area) have been
proposed [2, 6, 8, 9, 12]. As a result, performance in terms of the speed and area has improved. The issue of power
consumption in these circuits, however, has not been addressed. Therefore, our goal is to make a comparative study of
different prefix circuits from the point of view of power-speed trade-off in order to facilitate the design choices,
specifications, and resource limitations. In this study, we use the power-delay product as a quality measure for the prefix
circuits. The power-delay product is the product of the circuit's power consumption and propagation delay, which
represents the energy consumed by the circuit per operation.

In this paper, we first propose power modeling of prefix circuits. Then, the analysis, combined with PSpice simulations
[3], is used to investigate the power consumption in the prefix circuits considered. The simulations were carried out on
voltage scaling. It is found that the divide-and-conquer prefix circuit, which is the fastest circuit, consumes the most
power. Also according to PSpice simulations, the power-delay product of the LYD prefix circuit seems to be the best
amongst the circuits considered while the power-delay product of the divide-and-conquer is the highest.

The rest of this paper is divided into five sections. Section 2 provides an overview of prefix circuits. Section 3 reviews
the sources of power consumption in a CMOS circuit and presents strategies to estimate power consumption of the
circuit. Section 4 focuses on modeling the power consumption of the prefix circuits studied here. Section 5 describes the
analysis of power-speed trade-off of prefix circuits considered. Finally, Section 6 concludes the results of the paper.

2. PREFIX CIRCUITS - AN OVERVIEW

A prefix computation is the process of taking N input values X Xpsen Xy, Xy and producing N output
values yy, ys,..., ¥y_y» yy such that y, =x;, and

Java/Jini Technologies and High-Performance Pervasive Computing, Ken Arnold, Guang R. Gao,
Sudipto Ghosh, Editors, Proceedings of SPIE Vol. 4863 (2002) © 2002 SPIE - 0277-786X/02/$15.00

118

110

Vi Vi1®X% =x;exye..ex_ ex, for 2<i< N

where ® is an associative binary operation. A prefix circuit with N inputs can also be viewed as a layered directed
acyclic graph with N input nodes, N output nodes, and at least N-1 operation nodes. An operation node is neither an input
nor an output node. Figure 1 illustrates the layout and the components of a prefix circuit. The numbers along the lefi-
hand side of the layout give the depth (level) of the operation nodes on the right.

The traditional metrics for measuring the performance of a prefix circuit include its size, depth, fan-in, and fan-out. The
size of a prefix circuit, size(N), is the total number of operation nodes in the circuit. The depth of a prefix circuit,
depth(N), is the length of the longest path measured in terms of the number of operations along the path in the circuit
from its input nodes to its output nodes. The circuit depth is related to its computation time. In VLSI implementation, a
circuit with smaller depth is generally faster than one with greater depth when the fan-out of most nodes in the two
circuits is similar [14]. A prefix circuit is depth-optimal if the circuit has the smallest depth among all possible circuits.
An N-input prefix circuit is (size, depth)-optimal if size + depth = 2N — 2 [12]. Every prefix circuits have size-depth
trade-off property [6] — a reduction of the circuit depth is achieved at the cost of an increase in circuit size. The fan-in of
a prefix circuit is the maximum fan-in of all nodes in the circuit. The fan-out of a prefix circuit is the maximum fan-out
of all nodes in the circuit. In this study, we are interested in prefix circuits with a fan-in of two and we assume that the
fan-out of the prefix circuit is a fanction of . In the rest of this section, we give a brief review of the design of some
prefix circuits. For full description of these circuits, refer to [8] and [13].

2.1 The Serial Prefix Circuit

The layout of the serial circuit for N inputs, denoted S(N), is illustrated in Figure 2. Clearly, both size and depth of this
circuit is N-1. The serial prefix circuit has the smallest size amongst all prefix circuits. Moreover, the circuit is (size,
depth)-optimal since the sum of its size and depthis 2N - 2.

2.2 Parallel Prefix Circuits

Figures 3 to 9 give illustrations of divide-and-conquer, Ladner-Fischer (LF), Ladner-Fischer (LFy), Brent-Kung, Snir,
Shih-Lin, and LYD prefix circuits, respectively. Information about their size, depth, and fan-out is given in Table 1. For
complete details, refer to [8]. All these circuits have a depth O(lg N). Snir circuits are a family of circuits whose depth
lies in the range [max (Ig N, 2Ig N— 2), N — 1]. The divide-and-conquer circuit and LF, have fan-out O(N), whereas all
the other circuits have a fan-out of O(lg N). Ladner and Fischer [6] were the first to discuss the size-depth trade-off in
prefix circuits. They introduced a family of circuits, LF(N), where k(0<k < I_lg N—]) refers to the extra depth (above
l—lgN 1) used to bring about the reduction in size. The circuit size and depth depend on the value of k. Snir [12] showed
that the sum of depth and size of any prefix circuit with N inputs is bounded below by 2N —~ 2. He also introduced an
algorithm to construct the (size, depth)-optimal prefix circuit for any N with the depth in the range
rlg N]Sdepth(N)< max([- lgNl2|—lg N-]— 3)may not exist. Lakshmivarahan, Yang, and Dhall [7] were the first to
introduce an algorithm for a (size, depth)-optimal parallel prefix circuit with the depth in the above range. Their design
provides (size, depth)-optimal circuits with a smaller depth than hitherto known. Furthermore, for N=9 to 12, 17 to 20,
and 33, the LYD circuits are not only (size, depth)-optimal, but are also depth-optimal.

2.3 Comparison

Table 1 provides a comparison of the prefix circuits illustrated in the previous subsection. While the parallel prefix
circuits have desirable depths, which are O(lg N), they differ widely in the number of operations performed. Only four
prefix circuits (i.e., serial, Snir, Shih-Lin, and LYD prefix circuits) are (size, depth)-optimal. The divide-and-conquer
circuit and the LF; prefix circuit have the shortest depth and the serial circuit has the smallest size.

The size-depth trade-off does apply to any prefix circuit. For example, the serial prefix circuit performs fewest
operations (i.e., smallest size) compared to the others, but has the longest depth while the divide-and-conquer prefix
circuit has the largest size, but has the smallest depth. Although the Shih-Lin prefix circuit and the Snir prefix circuit
have similar circuit layouts, Shih-Lin’s circuit has a smaller depth than Snir’s circuit. All circuits have unbounded fan-

out except the serial circuit that has a constant fan-out of two. The divide-and-conquer prefix circuit and the LFO prefix
circuit have the largest fan-out ((N/2)+1). Brent-Kung’s circuit, Shih-Lin’s circuit and Snir's circuit have the same
fan-out ([Ig NV T+1), which is smaller than that of the LY D circuit (Nign]-2).

Proc. SPIE Vol. 4863

119

3. POWER CONSUMPTION IN CIRCUITS

In the previous section Wwe examined size and depth trade-offs of different prefix circuit designs. We want to examine the
power consumption characteristics of these circuits. In this section, the sources of power consumption in circuits are
reviewed and the strategies to estimate the power consumption of the prefix circuits are presented.

3.1 Sources of Power Consumptions

Presently, CMOS (Complementary-symmetry Metal-Oxide Semiconductor) technology is the most popular technology
used by the digital IC (Integrated Circuit) industry because of its low power consumption, its good scalability and its
speed [5, 10, 14]. In CMOS circuits, power consumption is due to the following three types of current flow [14] (a) static
power consumption due to leakage currents (b) dynamic power consumption due to short-circuit currents, and (c)
dynamic power consumption due to switching currents from repetitively charging and discharging the parasitic
capacitances at the transistors’ gates (Figure 10). In properly designed CMOS circuits, the major portion of the power
consumption is from dynamic switching [S, 10, 14]. As a result, in this study, we focus on the dynamic component due
to the repetitive charging and discharging of the capacitive loads.

The average power consumption in a CMOS gate or module (e.g., an adder) due to switching can be written as [5, 14]:

2

Povirching = CogVon S » 3.1
where C 4 is the effective capacitance switched, Vp, is the supply voltage, and f is the clock frequency. C, o has two
components, the switching activity (signal transition activity) per clock cycle, p ¢ » and the load capacitance, C; . Thus,

for a given circuit running at a given speed (i.e., C; and f constant), power consumption is a function of the supply

voltage and switching activity. Therefore, power reduction can be achieved by either operating the circuit at a lower
voltage or by choosing an architecture that reduces the switching activity of the circuit’s signals.

Effect of Voltage Scaling

Due to the quadratic relationship between the supply voltage and the power consumption, lowering supply voltage can
be an effective way to achieve dramatic power savings. However, as the supply voltage is decreased, the circuit delay
generally increases relatively independent of the logic function and style(Figure 11). Thus, reducing supply voltage
unfortunately reduces the system throughput. This loss in throughput can be recovered in some cases by applying
architectural techniques to compensate for the additional delay (e.g., using parallelism and pipeline). Reference [5]
shows that by changing circuit architecture it is possible to gain significant speed improvements with only a slight
increase in power, hence enabling some voltage down-scaling while maintaining the throughput.

Effect of Switching A ctivity

The power in CMOS circuits is dissipated when the signals in the circuit switch (i.e., change values). As a result, the
amount of switching activity is an indicator of the power consumption. The manner in which the nodes in a circuit are
interconnected can have a strong influence on the overall switching activity [5]. Some architectures induce extra
transition activity at the operation nodes called glitching transitions or dynamic hazards, which consume extra power.
Glitching is a major problem that increases the effective switching activity, causing a circuit node to undergo several
rapid transitions in a single clock cycle {5, 10].

Figure 12 illustrates an example of the glitching behavior for a chain of eight NAND gates [10] by using a PSpice®
simulation [3]. In the simulation, all bits of the first input were set to logic ‘one’ and all bits of second input transition
from logic ‘zero’ to ‘one’. For an ideal circuit without propagation delays, the resultant outputs VOUT2, 4, 6 and 8
would stay logic ‘one’ all the time. However, due to the presence of delays, these outputs switch to low temporarily.
This glitching causes extra power to be consumed. Outputs VOUT1, 3, 5 and 7 do not glitch; they just have some
propagation delay. It is noted that the degree of glitching depends on the switching pattern of the input signals [10].

To reduce glitching activity, the depth of the signal paths in the circuit should be balanced. Figure 13 gives an
illustration of two different circuit architectures of a 4-input adder. We assume that all primary inputs (A, B, C, and D)

arrive at the time #, and the implementation is non-pipelined. While the adder in Figure 13a makes one transition by
computing A+B, the second adder also makes one transition based on C and the previous (initial) value of A+B. After

Proc. SPIE Vol. 4863

120

111

112

the correct value of A+B has propagated through the first adder at time say 7, +¢ »» the second adder re-evaluates

(A+B)+C, which is complete at time?, + 2tp . Thus, there is a second transition at the second adder. Similarly, there

will be three transitions at the third adder. With a path-balancing approach of Figure 13(b), while the first and second
adders make one transition the third adder will make only two transitions to produce the same output as in Figure 13(a).
In [5], the “total switched capacitance” of the circuit layout in Figures 13(a) and 13(b) has been simulated by using a
switch-level simulator over random input patterns. The results show that the switched capacitance of the circuit layout in
Figure 13(a) is larger than that of the layout in Figure 13(b) by a factor of 1.5 for a four input addition, and 2.5 for an
eight input addition. Hence, increasing circuit depth generally increases the total switched capacitance due to glitching
and thus increases power consumption [5]. As a consequence, the amount of transition activity (switching activity) for a

layered and non-pipelined circuit can be a function of depth d and the number of nodes at each level i, w;, as [5]

d
Siw, . 32)
2

From this, it follows that in the worst case estimate for the switching activity of such a circuit can grow according to
O(d?) , assuming a constant number of nodes at each level.

From the previous discussion and the example of Figure 13, we have seen that different circuit architectures for
performing the same function can consume different amounts of power. Therefore, the implementation of the various
prefix circuits in an application will have different power consumption as well. However, in the prefix circuits, we
cannot say with certainty that the circuit with the longer depth will consume more power than one with shorter depth.
The reason is that both depth and the number of operation nodes among the candidate prefix circuits differ. In prefix
circuits, when the depth decreases, the number of operation nodes (i.e., size) generally increases and vice versa. This is
known as the size-depth trade-off [6, 8]. As a result, the switching activity in a prefix circuit not only depends on its
logic depth but also on the number of operation nodes at each level. The circuit with shorter depth and more nodes might
have more switching activity than the one with longer depth and fewer nodes.

3.2 Power C ption and F: t

Besides the switching activity at an operation node, the node’s fan-out also has an effect on power consumption in a
circuit design in VLSI [4, 14]: the larger the fan-out, the more power the circuit consumes because there are more
signals. For example, by using the PSpice over random input patterns, the power consumed by a 2-input XOR gate is
dependent on the fan-out and the relationship is linear (Figure 14). Hence, fan-out should be taken into account when a
power consumption estimate is made for the prefix circuit.

4. POWER MODELING OF PREFIX CIRCUITS

In this section, we will analyze switching activity and fan-out for each prefix circuit considered. We then use this to
further estimate and investigate the power-speed trade-off between various types of prefix circuits.

Having seen the various sources of power consumption in general circuits we now focus on analytical model under
linear output capacitance assumption for predicting the average power consumption of a prefix circuit. As mentioned
previously, the signal switching activity has a major influence on the power consumption. Therefore, the switching
activity will be used as a basis to determine power consumption of prefix circuits. Further, as mentioned in Section 3.2,
the power consumption of an operation node is a linear function of fan-out [4]. Therefore, to take into account the effect
of fan-out on the output load capacitance of an operation node, we assume that the load capacitance of a node with fan-

out k is equal to Co+C'(k~1), where C, is the load capacitance of a node with fan-out 1, and C is the load
capacitance for each additional fan-out (Figure 15).
The effective circuit capacitance of a prefix circuit, cap,g(N), is the effective load capacitance of all nodes in the

circuit. As defined here, the effective circuit capacitance depends on input signal patterns and the effects of signal
glitching. Thus if a node output experiences two transitions due to glitching, its effective capacitance is twice that of the
physical capacitance. Because the degree of glitching depends on input signal patterns, we consider derivations of the
worst case scenario in which glitching at the nodes are assumed to be the maximum possible. By scaling the effective

circuit capacitance by the circuit clock frequency and VL;D , we arrive at our power estimate

Proc. SPIE Vol. 4863

121

P=cap s (NWppf . “.1
The capacitance evaluation for various circuits according to our model is made in two steps. As a first step, in Section
4.1, we assume that load capacitance for each operation node is independent of the fan-out, ie., the load capacitance is
constant C, . In the second step we first compute the residual circuit by deleting one output of each operation node with
fan-out = 1. We then compute the load capacitance of the residual circuit assuming that the load capacitance of each

node is C , independent of the fan-out. This step is repeated k —1 times where & is the fan-out of the given circuit. This
step is performed in Section 4.2. The effective circuit capacitance is the sum of the values obtained in step 1 and step 2.

In the following, we compute the effective circuit capacitance for the divide-and-conquer prefix circuit. The effective
circuit capacitance for the other prefix circuits can be computed similarly (for details refer to [13]).

4.1 Step 1 - The Constant Output Capacitance
In this step, we assume that the physical output capacitance of each operation node is constant. Let Kcap . (N)be the
effective circuit capacitance under the constant output capacitance assumption, depth(N) be the depth of the circuit, w;

be the number of operation nodes in the circuit at level i, and C as the assumed constant load capacitance of one node.
depth(N)
Then from Eq. 3.2, Keapz(N)=| 3iw; [C.
i=1

4.1.1. The Divide-and-Conquer Parallel Prefix Circuit
Let N =2". From the layout of the divide-and-conquer prefix circuit, DC(N), in Figure 3, DC(N) is built from
two DC(N /2) circuits and by connecting output 1: N/2 from the first DC(N/2) to each of the output of the
second DC(N /2) atlevel depth(N/2)+1 =1g(N/2)+1=IgN . Thus,

Keap,; (N)=(2Kcap,z (N12)+(N/D)1gN)-Cy, with Keap 5 (2)=1-C,.
The first part of Kcap,,(N)is the constant output capacitance from the two circuits with (N/2) inputs while the
second part is the capacitance from the last level of DC(NV) . Solving this recurrence, we get

Keapys (N) =(N 1){ag M) +1g N),

Keapyy(N)for the other prefix circuits can be computed similarly, although they are generally more challenging

because w; is not always constant (for details refer to [13]).

4.2. Step2 - Capacitance of Residual Circuit

We have assumed that a node with fan-out k > 1, has a physical output capacitance given as Cy + (k- DC' . However,
the capacitances computed in Section 4.1 for various circuits are based on the assumption that the capacitance of each
node is C, irrespective of the fan-out of the node. We still need to account for the component (k—1)C' for a node with
fan-out k, k >1. To get this value, we introduce the concept of the residual circuit. The residual circuit of a prefix circuit
is the circuit obtained by eliminating one of the fan-outs from each operation node of the given prefix circuit. For
example, Figure 16 shows the residual circuit of the divide-and-conquer prefix circuit. This residual circuit is the result
of removing one of the fan-outs from each operation node of the circuit in Figure 3. We can compute the capacitance of
this residual circuit, Rcap 4 (N), by assuming constant output capacitance (C') for all operation nodes. We then

construct the residual circuit of the current residual circuit by removing one fan-out from each operation node and
compute its residual output capacitance. We continue accumulating the capacitances after every reduction until there are
no more fan-outs to remove. Thus, the effective circuit capacitance of the prefix circuit using the linear output
capacitance assumption is given by

capy (N) = Keap 5 (N)C, +Reap 5 (N)C'.

Proc. SPIE Vol. 4863

122

113

114

4.2.1. The Divide-and-Conquer Parallel Prefix Circuit
From the layout of the divide-and-conquer prefix circuit in Figure 3, an operation node at level depth(N /2)has the
maximum fan-out, which is ((N/2)+1) . After removing the vertical fan-outs, the residual circuit is shown in Figure 16.
The operation node of the residual circuit at level depsh(N /2) has the maximum fan-out, which is (N /2).
Let N =2". The capacitance of the residual circuit is as follows:

Reap g (N)=(2Rcapz (N 12)+(N 1) 1gN /D)C, with Reap,; (2)=0.
The first part of Reap,z (N) is the residual output capacitance of the two circuits with (N /2) inputs while the second
part is the residual output capacitance of the last node in the fist residual circuit.
Solving the recurrence, we get

Reap 4 (N)=(2Reap; (N 12)+ (N 12)1g(N 1 2))C =(N 1 4){ag N)? ~lgN)C' .
Thus, the effective circuit capacitance for the divide-and-conquer prefix circuit is as follows.
capgy W)=k 1 9lag My +1g Nic, +{v 1 9lagm2 —1g Nl

To summarize, the divide-and-conquer prefix circuit has O(N1g N) size, O(lg N) depth, and O(N(Ig N)?) effective
circuit capacitance. Table 2 provides a comparison of the effective circuit capacitance of the prefix circuits described in
Section 2. The serial prefix circuit has the largest effective circuit capacitance (O(N 2)). All parallel prefix circuits have
O(NIgN) effective circuit capacitance, except the divide-and-conquer prefix circuit and the LF, prefix circuit whose
values are O(N(lgN)z) .

5. SIMULATION STUDIES

In Section 4, the power modeling for various prefix circuits was proposed. This section deals with the circuit simulations
(using PSpice) we conducted to investigate the prefix circuits’ behavior to match with the prediction of the effective
circuit capacitance. The degrees of freedom studied include different prefix circuit designs and voltage scaling. Voltage
scaling is used because power consumption is a quadratic function of the voltage.

Theoretical Results
Figures 18, 20, and 22 give estimated delay, power consumption, and power-delay product obtained from our theoretical
model in Section 4. Figure 18 is the result obtained by assuming the circuits’ delay to be proportional to the circuits’
depth and applying the normalized delay from Figure 17 in order to take the effect of the supply voltage on the delay.
The power consumption is estimated using the formula of Eq. 4.1. For this study we used C3 =0.9 and C "=03 [11].
For example, at a supply voltage of 2.8V, the normalized power consumed by the divide-and-conquer prefix circuit is:
P(normalized) = cap i (NY2 f =(2.496C \2.8)° £/(C') =19,569.
The estimated power consumption of parallel prefix circuits described in Section 2 is shown in Figure 20. According to
the figure, the divide-and-conquer prefix circuit consumes the most power. Figure 22 illustrates the power-delay product.
The Brent-Kung prefix circuit has the highest power-delay product while the divide-and-conquer and the LF, prefix
circuits have the power-delay product lower than that of the Brent-Kung prefix circuit, the Snir prefix circuit, the Shih-
Lin prefix circuit and the LYD prefix circuit.
Table 3 shows the estimated power consumption of the different prefix circuits at fixed and reduced supply voltage when
N =64. When the supply voltage is fixed at 2.8V, amongst parallel prefix circuits considered, the divide-and-conquer
prefix circuit consumes more power than other circuits. To lower power consumption by reducing the supply voltage, let
us assume a fixed acceptable delay. Further, assume that delay is proportional to depth and that a delay proportional to a
depth of 10 with Vp, =2.8 volts is acceptable. Thus the voltage of the Brent-Kung and Snir circuits cannot be lowered,
and the delay of the serial circuits is not acceptable. Thus, the voltages of five prefix circuits (i.e., the divide-and-
conquer prefix circuit, the LFy prefix circuit, the LF, prefix circuit, the Shih-Lin prefix circuit, and the LYD prefix
circuit) can be dropped from 2.8V and still achieve the acceptable delay. For example, because the delay for the divide-
and-conquer prefix circuit is proportional to 6 at 2.8V, the voltage can be dropped from 2.8V to 1.48V. The operating

Proc. SPIE Vol. 4863

123

frequency can be decreased by a factor of 0.6. Thus the normalized power consumed by the divide-and-conquer prefix
circuit is:

P(normalized) = cap 4 (N)V 3, f = (2,496c‘ Xl 487(0.65)/(C'F)=3,280.
After scaling the supply voltage, there is a power improvement in the circuits having depth shorter than 10. Among these
circuits, the LFo prefix circuit has a major reduction in power due to its shortest depth.

Simulation Results

PSpice simulation was carried out on different parallel prefix circuits with 64 inputs using XOR gate as an associative
binary operation. Figures 19, 21, and 23 give delay, power consumption, and power-delay product obtained through the
simulation over random inputs. As expected, amongst the parallel prefix circuits considered, the divide-and-conquer
prefix circuit consumes the most power. As the supply voltage is reduced, power consumption is also reduced. Also,
though the delay of the divide-and-conquer prefix circuit is the least for some values of the voltage supply, it is not so for
lower voltages. This may be due to its very high fan-out compared to others (O(N) vs O(lg N)). From the point of view
of the power-delay product metric, the LYD prefix circuit is found to be the best across the entire voltage scaling. This
means that the circuit provides the best trade-off between power and delay. Another result of the simulation studies
shows that the power-delay product of the divide-and-conquer circuit is the highest, followed by that of the LF, circuit.
This is at variance with our model prediction and may be due to the fact that these circuits have a very high fan-out (see
Table 1 for fan-out). In our theoretical results, we do not take into account the effect of fan-out on the delay.

Also according to the simulation, with voltage-scaling technique, the LYD prefix circuit has the least power
consumption compared to other circuits. For example, let us assume the maximum acceptable delay is 6.4 ps. From
Figures 19 and 21, to achieve this time-delay, the supply voltage of the divide-and-conquer, LFy, LF,, Shih-Lin, and
LYD prefix circuits can be 1.8V, 1.78V, 1.78V, 2V, and 1.8V, respectively. Therefore, the powers that the divide-and-
conquer, LFp, LF}, Shih-Lin, and LYD prefix circuits consume are 2.25, 1.94, 1.59, 1.64, and 1.44 W, respectively. This
shows that power reduction of about 1.6 times can be obtained without speed loss by using the LYD prefix circuit
compared with using the divide-and-conquer prefix circuit by using appropriately chosen supply voltage.

6. CONCLUSIONS

The power consumption and the power-delay product of seven parallel prefix circuits were compared. We have shown
that the use of our effective circuit capacitance provides results that are accurate when compared to PSpice simulations.
We have also shown that parallelism at a certain level coupled with the use of low supply voltage can be used to reduce
the power consumption in the circuit without throughput loss. The main discrepancy between the model and the
simulation is the power-delay product metric. This may be due to the fact that the fan-out of the divide-and-conquer and
the LF, prefix circuit is very high as compared to other circuits. In this analysis, we have assumed that the delay is
uniquely determined by the depth of the circuit. The results of the simulation of the divide-and-conquer circuit in
particular indicate that large fan-out in addition to contributing to more power may also indirectly affect the delay.

ACKNOWLEDGEMENTS

This work was supported by DARPA under contract No. F30602-97-2-0297.

REFERENCES

1. C. Belady, “Cooling and Power Consideration for Semiconductors Into the Next Century”, Proceedings of the 2001
International Symposium on Low Power Electronics and Design, pp.100-105, 2001.

2. R.P.Brent, and H. T. Kung, “A Regular Layout for Parallel Adders”, IEEE Transactions on Computers, Vol. 31,
pp. 260-264, 1982,

3. Cadence Design Systems, Inc., PSpice User’s Guide Manual, Version 9.2, San Jose, CA, January 2000.

4. T.K Callaway, Area, Delay, and Power Modeling of CMOS Adder and Multipliers, Ph.D, Dissertation, The
University of Texas at Austin, 1996.

5. A.P.Chandrakasan, and R. W. Brodersen, Power Digital CMOS Design. Kluwer Academic Publishers, Norwell,
MA, 1995.

Proc. SPIE Vol. 4863

124

115

10.

11.

12.

13.

14.

R.E. Ladner, and M. J. Fischer, “Parallel Prefix Computation”, Journal of ACM, Vol. 27, pp. 831-838, 1980.
S Lakshmivarahan, C. M. Yang, and S. K. Dhall, “Optimal Paralle] Prefix Circuits with (size, depth)y=2N -2

and '—logN] Sdepth< IV 2logN _l— 37, Proceedings of the International Conference on Parallel Processing, pp.
58-65, 1987.

S. Lakshmivarahan, and S. K. Dhall, Parallel Computing Using the Prefix Problem. Oxford University Press, New
York, NY, 1994,

Y. M. Lin, and C. C. Shih, “A New Class of Depth-Size Optimal Parallel Prefix Circuits”, Journal of
Supercomputing, Vol. 14, pp. 39-52, 1999,

J. M. Rabaey, A. Chandrakasan, and B. Nikolic, “Chapter 6: Designing Combinational Logic Gates in CMOS”,
Digital Integrated Circuits A Design Perspective, early draft of the 2nd edition, April 2001,
http:/bwrc.eecs.berkeley.edu/Classes/IcBook/2ndEdition.html.

M. Smith, Application-Specific Integrated Circuits, Addison Wesley, Menlo Park, CA, 1997.

M. Snir, “Depth-Size Tradeoffs for Parallel Prefix Computation”, Journal of Algorithms, Vol. 17, pp. 185-201,
1986.

S. Vanichayobon, Power-speed Trade-off in Parallel Prefix Circuits, Ph.D. Dissertation, School of Computer
Science, The University of Oklahoma, 2002.

N. H. E. Weste, and K. Eshraghian, Principles of CMOS VLSI Design: A System Perspective, Addison-Wesley, MA,
1993.

Figures
input node
> x X, £ X, 1 2 3 N-1
level - Jevel
1 AAAAA 1
2 < 2
4 operation node
N-2
Y1 Y2 Y3 Ya N-1
Ct i 2 1 12 13 N1 1IN
Figure 1: An illustration of the prefix circuit’s layout. Figure 2: An illustration of the serial prefix circuit, S(N).
12 X LU A N INpUT 1 2 X AR N INpUT
I S I | -]
4 N N
() o(3) (5] (3]
L2 1:% 1;¥+u:%+2 1: N OUTPUT 12 1:% l:¥+ll:§+2 1: N OuTPUT]
Figure 3: An illustration of the divide-and-conquer prefix Figure 4: An illustration of the Ladner-Fischer paralle]
circuit, prefix circuit when k = 0, LFy(N), derived from [6].

116

Proc. SPIE Vol. 4863

125

1 2 3 4

™~ N

N-3 N2 N-1 1 2 3

Ml ||

absent
if N even

(5]

1 12 13

(%)
1:4 L:N-3 LiIN-2 IN-1 I:N ’\

1 12 13

Figure 5: An illustration of the Ladner-Fischer parallel prefix
circuit when k # 0, LF(N), derived from [6].

1:4

1I:N-3 LN2 L:N-1 LN OUTPUT

Figure 6: A Brent-Kung parallel prefix circuit, BK(N), based on
divide-and-conquer strategy (0 = odd, e =even).

Part 1

1 2 Nyl

Part 2

Ny Nl NpNol INPUT 12

112 LN-LLN, LN NN OUTPUT Io12

1

Ni-1 N N+l NNyl INPUT

PNl EN LN L N#NEL oyrpyT

Figure 7: An illustration of the Snir prefix circuit, SN(N).

Figure 8: An illustration of the Shih-Lin prefix circuit, SL(N).

Figure10: An illustration of capacitance charging current.

_____ t
t+1
_________ H1+N
1: NN,
PR “+2+N
[T J i JUN
art 1 Part 2 Part3 Parl4
Figure 9: The structure of LYD(N), derived from [8].
B2 S - T]
= muktiplier
;g clock gemerator 2.04m technology -]
source source 6001

% 550 -
Q 5001 .
4501 -
gatee—{ [oat § ot 1
2l _ ring oscillator |
QO 250 -1
drain drain = 200 peToreded DS ctip |
150~ adder” .

1004~ adder (SPICE) h

Figure 11: Plots of normalized delay vs. supply voltage (Vgq)

for a variety of different logic circuits, derived from [51.

126

Proc. SPIE Vol. 4863

117

118

T

(a) Chain Model (b) Tree Model

Figure 13: An illustration of extra transition activity, derived from [5].

Figure 12: An illustration of the glitching behavior
of a chain of eight NAND gates, derived from [10].

0.06
0.05
0.04
0.03
0.02
0.01 1
0+

Average Power
Consumption (W)

fan-out =k

[c

123456782910
Fan-out Number

]

1gure 14: Effect of fan-out on power consumption

of a 2-input XOR gate.
i 2 & N N, N INPUT
2 2 2
2
flRES 1:ﬂ+-11:i+2 1: N output
2 2 2

fix circuit, DC

Normatized Delay

Figure 16: The residual circuit of the divide-and-conquer
shown in solid lines.

12 14 18 18 20 2z 24 28
Supply Voltage (V)

Figure 18: Estimated delay of parallel prefix circuits when N=64.

Proc. SPIE Vol. 4863

127

Figure 15: The load capacitance of a node with fan-out k.

03 1 12 s ts 18 2
v

22 24

Figure 17: Plot of supply voltage vs. normalized delay from
[51.

=
o] o e e

s] 1

T T
20 22 24 26 28 30 32

Supply Voltage (V)

Figure 19: Delay of the 64-bit XOR parallel prefix

14000}

iEd
\\.

Power Consumption (W)
55 8 8 5
\\
N

114

738

i

e S

!

Normalized Power Consumption

!

LU A S S S s s e s s |
12 14 16 18 20 22 24 26 28 30 32

Supply Voltage (V)

]
°
T

»
{

T
18

20 22 24 26

Supply Voliage (v)

Figure 20: Estimated power consumption of parallel prefix
circuits when N=64.

Figure 21: Power consumption of the 64-bit XOR paralle]
prefix circuits, obtained through PSpice simulation.

160000

i

:

Normalized Power-delay Product
i h

!

12 14 16 18 20 22 24 26 28 a0 a2
Supply Voitage (V)

144

Power-delay Product

Figure 22: Estimated power-delay product of parallel prefix
circuits when N=64.

——
30 a2

Figure 23: Power-delay product of the 64-bit XOR parallel
prefix circuits, obtained through PSpice simulation.

Table 1: A Comparison of the six prefix circuits illustrated in Section 2, when N=2".

A . (size, depth)-
Prefix Circuit Size Depth Fan-out optimal
Serial N-1 N-1 2 Yes
Divide-and- No
N/2)igN 1gN N/2)+1 .

Conquer N/l : ™ depth-optimal
LF, AN~ F(S+IgN)+1

IgN+k Yy Lk
LF, 2NQ+ /2)~ F(S+1gN —k)-k+1 & w2+ No
when 0 <k4<@!—2
LF; 2N -1gN- = N
Sreree 2N-IgN-2 2igN-2 IgN +1
Brent-Kung 2N-IgN-2 2IgN -2 1IgN +1 No

max -
Snir IN -2 depth (IgN, 21gv-2) 1eN +1

<depth< N-1 Yes
LYD 2N -2 depth 21gN ~6 < depth < 21gN -3 21gN -2 Yes
Shih-Lin 2N ~2—depth 2lgN —~5<depth<2IgN -3 IgN +1 Yes

128

Proc. SPIE Vol. 4863

119

120

Table 2: Comparison of effective circuit capacitance of prefix circuits

Prefix Circuit

cap)

N(N— 1)} {(N 1NN~ 2)}

Divide-and-Conquer

5
{% (1g Ny +lgN}L,, { (agny? —1gN)}»

Brent-Kung

3 N NY 1 N N\
1+= NlN——-’N+1N +IgNiC, + e Xy g
{ SNl [(gN) +lg]} {a[uzlg:) 2(3N+(lg2) -ng]}c

3 i .
{% (1gNY +|.,~}q, { (agN):-.gN)}C‘S,_Ft . {l+:xV1gN—E[2N+(lgN)'+lgN]}C,,+

{H-—lg —— 3N+(]g)+lg]}

l+iN(lgN) 208, 1058, +0g,)] [[agn)1- ngN).!+(

e

|
[3[N7 NT --(w +(lg—) +lg %]+ [lgN.*[N:—1)+-2-(N§-3N2+z)]}c'

{
{
{

Shih-Lin

{[x+ N, (lzN y [2N +(gN) +(1gN,)]+ [N:r”gN.ﬂ*PlgN.)%[N;:N’J]}Cu*
2

{3[1+N‘ o —-—(3N +(lg~) +1«ﬂ]]+ [flgN.ItVz-1)+%(N§-3N:+2)}}C'

{[1+ N,IgA, [[2N, +(IgN))* +1gN, I:I+{ZFlg;v'T+2[lgA'lT+M+l}+
[(N3 +N, (flgN 1+] %(Nj + N+ (N_,N‘)]}Ca +
{[NT gi -—(31v +(lg—) +lg—):| [zflgN,PflgN,'l’ +@]+

[—’ hgn, T+ N, +1)+—+N ligN,]+ NN, +1——~]}c

Table 3: Estimated power consumption based on Eq. 3 for various prefix circuits for N = 64, Co=3C".

Power (normalized) NewPower
Prefix Circuit Depth cap.(64) Vo= 2.8V (normalized)
= & after reducing Vgy
Serial 63 2016C, +1953C 62,728 -
Divide-and-Conquer 6 672C, +480C’ 19,569 3,280
q o - Vag= 148V
Brent-Kung 10 492C, +372C 14,488 v ::4282\,
LF, 6 625C, +457C’ 18,283 e
LF, 7 527C, +390C 15453 V.: S
) : 14,363
Snir 10 487C, +371C 14,363 Vs 28V
. : 9,491
Shih-Lin 9 487C, +370C 14,355 e
LYD 8 528C, +410C 15,633 v‘:;iszlv

Proc. SPIE Vol. 4863

129

Appendix K: Jack M. West, Hongping Li, Sirirut Vanichayobon, Jeffrey T. Muehring,
John K. Antonio, and Sudarshan K. Dhall, “A Hybrid FPGA/DSP/GPP Prototype
Architecture for SAR and STAP,” Proceedings of the Fourth Annual High Performance
Embedded Computing Workshop, sponsors: U.S. Navy and Defense Advanced Research

Projects Agency (DARPA), MIT Lincoln Laboratory Publications, Group 18, Lexington,
MA, Sep. 2000, pp. 29-30.

130

A Hybrid FPGA/DSP/GPP Prototype Architecture for SAR and STAP

Jack M. West, Hongping Li, Sirirut Vanichayobon, Jeffrey T. Muchring,
John K. Antonio, and Sudarshan K. Dhall

School of Computer Science
University of Oklahoma
200 Felgar Street
Norman, OK 73019-6151
Phone: 405-325-7859
Fax: 405-325-4044
antonio{@ou.edu

HPEC 2000
The Fourth Annual Workshop on High-Performance Embedded Computing

Abstract

A prototype system is described that demonstrates the advantages and trade-offs
associated with the combined use of different hardware technologies for two embedded
radar processing applications. The primary metrics of interest are size, weight, and power
utilizations. The system can be configured with FPGAs (field programmable gate arrays),
DSPs (digital signal processors), and/or GPPs (general purpose processors). The two
radar applications evaluated are SAR (synthetic aperture radar) and STAP (space-time
adaptive processing). Although the prototype system is not evaluated through actual
fielded studies, experiments involving continuous input streams at relatively high rates
are conducted in the laboratory using stored and unprocessed radar data as input.

The FPGA components of the prototype system are commercially available WildOne
and WildForce boards (from Annapolis Microsystems) populated with 4000-series Xilinx
parts. The WildForce boards each have four 4085-series FPGAs plus one control FPGA.
The DSP/GPP components of the system are within a Mercury Race Multicomputer
configured with both SHARC and PowerPC compute nodes. The Mercury system can be
configured with up to eight PowerPC nodes and eight SHARC compute nodes (each
SHARC compute node actually contains three SHARC DSP chips). An overview of the
overall architecture is depicted in Figure 1.

The source PC is responsible for initially loading unprocessed radar data (from disk)
mnto a circular buffer within its main memory. Once the input data is loaded into the
circular buffer, the source PC then continuously (and repeatedly) streams this data into
the front-end FPGA subsystem, denoted as (F) in Figure 1. It was necessary to locate the
mput data in a large main memory buffer in order to achieve realistic data throughput
rates, which would otherwise not be possible if the data were streamed directly from the
disk of the source PC.

All of the Annapolis FPGA boards are PCI-based and reside on the data source and/or
data sink PCs. A total of four WildForce boards are available, and zero or more of these
may reside on the source and sink PCs. The source and sink PCs also contain one
WildOne board each. The WildOmne boards are not used for computation, but handle the

131

data communication (through the PCI bus) between the PCs and the FPGA subsystems.
The data commmunication among all FPGA boards is through two types of 36-bit wide
connectors, one called systolic and one called SIMD.

The data communication between the front-end FPGA subsystem (F) and the
DSP/GPP subsystem is a custom interface developed using the systolic connector from
Annapolis and the RIN-T input device from Mercury. Similarly, the data communication
between the DSP/GPP subsystem and the back-end FPGA subsystem (B) is through a
custom interface developed using the ROUT-T output device from Mercury and the
systolic connector from Annapolis.

Figures 2 and 3 illustrate how the major computational components of the SAR and
STAP applications can be mapped onto the prototype system. A candidate mapping is
defined by assigning the computations of each major component to one or both of the
symbols shown in each block (which correspond to one of the FPGA or DSP/GPP
subsystems). Using SAR to illustrate, one mapping would be to perform all of the range
compression on the front-end FPGA subsystem (F) and then perform all azimmth
processing on the DSP/GPP subsystem. Another possible mapping is defined by using the
FPGA subsystems and the DSP/GPP for both components of computation. It is also
possible to use only the DSP/GPP subsystem for both components of computations.

The SAR studies were designed by adapting the RASSP (Rapid Prototyping of
Application Specific Signal Processors) benchmark developed originally by Lincoln
Laboratory at MIT. The benchmark, which was originally implemented in serial C code,
was first modified to execute on the parallel DSP/GPP subsystem. A data-streaming
component was also added so that input data can be sent continuously from the data
source of the prototype system. Core computations from the range compression and
azimuth processing components were implemented for the FPGA subsystems.

The STAP studies were designed by adapting the RT_STAP (Real Time STAP)
benchmark developed originally at MITRE. This benchmark was already implemented
for parallel execution on a PowerPC-based Mercury system. This implementation was
expanded to also enable execution on SHARC compute nodes. The same basic data
streaming component that was developed for SAR was also adapted to enable the STAP
input data to be sent continuously from the data source. Finally, core computations from
the range compression and weight computation components from the STAP processing
flow were implemented for the FPGA subsystems.

The size, weight, and power utilizations of various mappings and problem instances
are under investigation. Initial indications are that heterogeneous configurations, which
utilize two or more hardware technologies of the prototype system, are preferred over
homogeneous configurations.

132

Custom Custom
: 1 1 .
Annapoliy —— A nnapolis

PARIELS> System 20 FRYESY System

() (B)

Data < -

Source

Sink

FPGA
Subsystem

]

I

I

I

I

I ; ;
: Data
I

I

I

1

Figure 1. Overview of the architecture of the prototype system.

- JVAN A @

Range = Azimuth
Compression Processing

Figure 2. Major computational components of SAR processing flow.

VAN AN AN

Range — Doppler > Weight

Compression Filtering Computation

Figure 3. Major computational components of STAP processing flow.

133

