AFRL-PR-WP-TM-2003-2116

CONCURRENT RESEARCH ON HIGH GRAVITY (g) COMBUSTION AND ENABLING MATERIALS

Joseph Zelina and R.J. Kerans

Combustion Sciences Branch (AFRL/PRTS)
Turbine Engine Division
Propulsion Directorate
Air Force Research Laboratory, Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7251

SEPTEMBER 2003

Approved for public release; distribution is unlimited.

PROPULSION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7251
NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE U.S. GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT HAS BEEN REVIEWED BY THE OFFICE OF PUBLIC AFFAIRS (ASC/PA) AND IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

/s/ Joseph Zelina, PhD
Combustion Sciences Branch
Turbine Engine Division

/s/ Robert D. Hancock, PhD
Chief, Combustion Sciences Branch
Turbine Engine Division

/s/
JEFFREY M. STRICKER
Acting Chief Engineer
Turbine Engine Division
Propulsion Director

Do not return copies of this report unless contractual obligations or notice on a specific document require its return.
A gas turbine engine has been proposed that uses a near constant temperature (NCT) cycle and Inter-Turbine Burner (ITB) to provide large amounts of power extraction from the low-pressure turbine. This level of energy is achieved with a modest temperature rise across the ITB. The additional energy can be used to power a large fan for an ultra-high bypass ratio transport aircraft, or to drive an alternator for large amounts of electrical power extraction. Conventional gas turbine engines cannot drive ultra-large diameter fans without the use of excessive turbine temperatures, and cannot meet high power extraction demands without a loss of engine thrust. Reducing the size of the main combustor and ITB is essential to reducing or maintaining overall engine weight and size for the NCT cycle. Concepts for an ultra-compact combustor (UCC) are being explored experimentally. The basic combustor design involves flame-holding in a cavity within which the flow is strongly swirled. Experimental results at atmospheric pressure indicate that the combustion system flame holding zone operated at 95 – 99 percent combustion efficiency over a wide range of operating conditions. Flame lengths were extremely short, at about 50 percent those of conventional systems.
LABORATORY ANNUAL TASK REPORT

LRIR: 99PR12ENT

Title: Concurrent Research on High Gravity (g) Combustion and Enabling Materials

Lab Task Managers: Dr. Joseph Zelina (AFRL/PRTS) Dr. R. J. Kerans (AFRL/MLLN)
Commercial Phone (937) 255-7487 (937) 255-9823
Mailing Address: AFRL/PRTS, Bldg 490 AFRL/MLLN, Bldg 655
1950 Fifth Street 2240 Tenth St STE 1
WPAFB OH 45433-7103 WPAFB OH 45433-7817
E-Mail Address: joseph.zelina@wpafb.af.mil ronald.kerans@wpafb.af.mil

AFOSR Program Manager: Drs. Julian Tishkoff, Joan Fuller, and Thomas Hahn

Research Objectives: 1) Establish science needed for an ultra-compact, high-energy-density Inter-Turbine Burner (ITB) that will enable a constant temperature (CT) cycle engine. 2) Establish science-based methodology for concurrent development of new component strategies and enabling materials via interactive studies needed for development of ITB.

Background: This is a joint program between MLLN and PRTS. A key technology essential for the development of a propulsion system that operates on a CT cycle is an ITB that will efficiently add heat between the turbine stages and is constructed of advanced, lightweight ceramic-matrix composites (CMC) materials.

Summary of Progress and Forecast for Next Year FY: Progress: Concepts for an ultra-compact combustor (UCC) which uses high g loading are being explored experimentally. The rig, which simulates the flameholding zone in a circumferential cavity, uses a centerbody to simulate the actual engine configurations. The fuel is introduced in the cavity at 6 discreet injection sites equally spaced around the circumference. Part of the total combustion air is admitted into the cavity to mix with the fuel and provide a stability zone for the flame. The cavity mixture burns and transports to the axial main air zone, where the mixture is quenched and reactions continue to completion. A parametric study was conducted to investigate the effect of airflow rates into the swirling cavity. Results of the best design were very encouraging, indicating that the combustion system flame holding zone operated at 99+% combustion efficiency over a wide range of cavity fuel-air ratios and combustor pressure drop conditions burning JP-8 +100 fuel. Flame lengths were extremely short, at about 50% that of conventional systems. High heat release rates on the order of 2 times conventional primary zone heat release rates were seen while maintaining high combustion efficiencies. It is believed that combustor cavity g-loading, on the order of 1000 g’s compared to conventional combustion systems near 100 g’s, enhanced reaction rates and provided a longer residence time for un-reacted mixture via centrifugal forces, thereby increasing the combustion efficiency. CFD tools were used successfully to determine test matrix designs and to understand physical processes in the high g-loaded combustor. Forecast: Investigation into the effects of fuel injection method into highly swirling flow, and the impact of atomization, fuel velocity, and fuel-air mixing on combustion performance will continue. Additionally, the study of mixture transport from the cavity to the main air stream will continue by investigation of strut and vane configurations. The combustion system will be investigated at modest pressure ratio to study pressure effects on system performance.

The materials portion status of this program is included in a separate AFOSR report provided by Dr. Ronald Kerans, AFRL/MLLN.

<table>
<thead>
<tr>
<th>Use of Funds: (FY00, $370K)</th>
<th>In House</th>
<th>Capital Equip.</th>
<th>On Site Contractor</th>
<th>Contracts/Grant</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>$60K</td>
<td>$10K</td>
<td>$120K</td>
<td>0</td>
</tr>
<tr>
<td>ML</td>
<td>$55K</td>
<td>0</td>
<td>$135K</td>
<td>0</td>
</tr>
</tbody>
</table>

Funding Profile ($K): FY01 FY02 FY03
Core $350 $370 $380
Fallout $90 $100 $100
Total $440 $470 $380
APPENDIX A: IN-HOUSE ACTIVITIES

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree</th>
<th>Discipline</th>
<th>Involvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. M. Roquemore</td>
<td>PhD</td>
<td>Physics</td>
<td>10%</td>
</tr>
<tr>
<td>R. D. Hancock</td>
<td>PhD</td>
<td>Mechanical Engineering</td>
<td>10</td>
</tr>
<tr>
<td>J. Zelina</td>
<td>PhD</td>
<td>Mechanical Engineering</td>
<td>60</td>
</tr>
<tr>
<td>R. J. Kerans</td>
<td>PhD</td>
<td>Metallurgical Engineering</td>
<td>10</td>
</tr>
<tr>
<td>N. J. Pagano</td>
<td>PhD</td>
<td>Engineering Mechanics</td>
<td>10</td>
</tr>
<tr>
<td>R. S. Hay</td>
<td>PhD</td>
<td>Geological and Geophysical Sciences</td>
<td>10</td>
</tr>
<tr>
<td>R. John</td>
<td>PhD</td>
<td>Civil Engineering</td>
<td>10</td>
</tr>
<tr>
<td>L. P. Zawada</td>
<td>M.S.</td>
<td>Materials Science and Engineering</td>
<td>10</td>
</tr>
<tr>
<td>M. K. Cinibulk</td>
<td>PhD</td>
<td>Materials Science and Engineering</td>
<td>10</td>
</tr>
</tbody>
</table>

On-Site Contractors

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree</th>
<th>Discipline</th>
<th>Involvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. R. Katta</td>
<td>PhD</td>
<td>Aerospace Engineering</td>
<td>5%</td>
</tr>
<tr>
<td>G. J. Sturgess</td>
<td>PhD</td>
<td>Aerospace Engineering</td>
<td>20</td>
</tr>
<tr>
<td>T. A. Parthasarathy</td>
<td>PhD</td>
<td>Metallurgical Engineering</td>
<td>20</td>
</tr>
<tr>
<td>R. Brockman</td>
<td>PhD</td>
<td>Mechanical Engineering</td>
<td>10</td>
</tr>
<tr>
<td>D. Buchanan</td>
<td>MS</td>
<td>Materials Science and Engineering</td>
<td>20</td>
</tr>
<tr>
<td>G. P. Tandon</td>
<td>PhD</td>
<td>Mechanics and Materials Science</td>
<td>20</td>
</tr>
<tr>
<td>M. K. Cinibulk</td>
<td>PhD</td>
<td>Materials Science and Engineering</td>
<td>10</td>
</tr>
<tr>
<td>T. Mah</td>
<td>PhD</td>
<td>Ceramic Engineering</td>
<td>10</td>
</tr>
<tr>
<td>K. Keller</td>
<td>MS</td>
<td>Materials Science and Engineering</td>
<td>20</td>
</tr>
</tbody>
</table>

Publications, Patents and Invention Disclosures

Seminars and Workshops

Program Planning Meeting for Future Joint Reheat Programs – NASA, NAVAIR, NAVSEA, DOE, May 8-9, 2002 at AFRL.
Professional Affiliations

Dr. R.J. Kerans, American Ceramic Society (Fellow), Materials Research Society, TMS-AIME
Dr. R.S. Hay, American Ceramic Society, Materials Research Society, American Geophysical Union
Dr. R. John, ASTM, American Ceramic Society, Society for Experimental Mechanics
Mr. L. P. Zawada, American Ceramic Society, ASTM
Dr. R. A. Brockman, American Society for Mechanical Engineers
Dr. M. K. Cinibulk, Member American Ceramic Society, Materials Research Society
Dr. W. M. Roquemore, AIAA (Fellow), APS, ASME and The Combustion Institute
Dr. Joseph Zelina, Senior Member AIAA, Member ASME, Member Combustion and Fuels Committee IGTI, Member ILASS.