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Abstract

A large mobile robot was used as a platform for research in continuous localization and
path planning. Continuous localization is a technique that allows a robot to maintain an
accurate estimate of its location by performing regular, small corrections to its odometry.
Continuous localization utilizes an evidence grid representation, a common representation
scheme that is used by other map-dependent processes, such as path planning. Although
techniques exist for building evidence grid maps, most are not adaptive to changes in the
environment. In this research, the continuous localization technique is extended by adding
a learning component. This allows continuous localization to update the long-term map
(evidence grid) with current sensor readings. Results show that the addition of the learn-
ing behavior to continuous localization allows the system to adapt to changes in its envi-
ronment without a loss in its ability to remain localized. Continuous localization with the
learning behavior was combined with a wavefront propagation path planner to produce a
robust navigation system. This system was tested on a Nomad 200 mobile robot.

Keywords: mobile robots, continuous localization, evidence grids, wavefront propagation
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1.0 Introduction

1.1 Motivation

In countless novels and movies, robots imitate intelligent human behaviors such
as bipedal locomotion, speech, and insight. These truly autonomous mobile robots,
however, currently exist only in science fiction. Much improvement is needed before
robots will be able to walk, interactively communicate, and think completely on their
own.

The potential uses for such robots are unlimited. Modern applications, however,
can be satisfied with robots of a more limited nature. The Navy needs autonomous
robotic systems that can be deployed in remote and hazardous environments. Potential
Navy applications of autonomous systems include shipboard fire fighting, hazardous
material handling, surveillance, salvage, and undersea equipment maintenance.

A truly autonomous robot currently does not exist. Before high-level tasks can
be carried out by mobile robots, robot systems must incorporate four basic abilities.
First, a truly autonomous robot would create a map of its environment without a priori
information and subsequently updates the map when changes in the environment are
identified. Second, the robot always would know its location and orientation relative to
the map. Third, the robot system would devise efficient, robust paths to goal locations.
Fourth, while traveling to the goal locations, the robot would avoid any unexpected
obstacles while proceeding along the most efficient path to the goal. These four abilities
comprise the “robot problem,” for which a complete solution has not been devised.

This study focused on improving two abilities of autonomous mobile robots. The
robot was provided an a priori map of its environment. Once an optimal path to the next
goal location was devised, the robot employed a simple, non-optimal collision avoidance
strategy. This project contributes to the design of future autonomous systems by
extending recent results in continuous localization and mobile robot navigation.

1.2 Overview

An important feature of mobile robot systems is the ability to operate in dynamic
environments without degradation in performance. In other words, the robot systems
must adapt the robots’ behaviors to account for any changes which occur in the
environment. Examples include a person walking near a robot or, for a fire-fighting
robot onboard ship, a missile striking the ship and creating a hole in the bulkhead of a
passageway through which the robot normally travels.

For mobile robots to perform autonomously in dynamic environments, they first
need the ability to determine their location in the world. This includes the ability to learn
maps of their environment and to use these maps to localize themselves over an extended
period of time. Localization is the process of determining the robot’s pose (position and




orientation) relative to its surroundings.
A map is a robot’s model of its world. Maps are required for the robot to

perform tasks, such as moving two feet forward or planning the most efficient path to a
goal, and to allow the robot to reason about the spatial characteristics of its environment.
Most mobile robot systems provide the robot with an a priori map so that the robot will
have an estimate -- sometimes an exact representation -- of its environment. When an a
priori map is not available, the robot must learn a map by recording the locations of
objects the robot senses.

While many researchers have addressed map learning, most have not addressed
methods to update maps to reflect changes in a dynamic environment. The researchers
assume the room will remain static. In the real world, however, environments are
dynamic and do change over time. Since most robot processes use a map, itis
imperative to maintain a map that accurately models the environment.

Simple localization techniques, such as dead reckoning, can place the robot
within its map, but do not provide accurate and reliable localization estimates. Dead
reckoning records the movement of the robot's wheels in order to determine the current
pose relative to a known starting point. This process is similar to the inertial navigation
used by airplanes and missiles. Relying solely on dead reckoning causes a robot to veer
considerably off course over time because odometric errors accumulate quickly.
Odometric error is the difference between the robot’s odometry (the pose it thinks it
holds) and its actual pose. Odometric error is caused primarily by the intermittent
slippage of the wheels in the course of normal operation. Other factors include slippery
spots, dirt on the floor, and uneven surfaces, all of which can cause one wheel to spin
faster than the others.

More advanced localization techniques typically depend on recognizing, and in
some cases learning, individual landmarks in the environment (Thrun, 1996). Landmark
recognition, which often is used in conjunction with dead reckoning, is more accurate
than dead reckoning alone. Natural landmarks (i.e. walls or surfaces that make up the
perimeter of the permanent region) or artificial landmarks (such as beacons or other
objects placed in a region only to be used as navigation aids) are observed with cameras,
infrared imagers, ultrasound, or other sensors. But landmark navigation also relies on
the navigation aids remaining static. If the supposedly fixed landmarks move, then the
robot will not know its true location, nor have a means of obtaining it.

Researchers have looked at using the same map for their localization technique
and navigation scheme (Yamauchi et al., 1997a). Most localization schemes are fairly
robust, even when changes in the environment are not recorded in the world map.
However, the ability to localize or navigate will degrade when the world map does not
model substantial changes to the environment.

Continuous localization (Section 4.2) uses a robot's local environment, the area
within the range of its sensors, to periodically correct its odometry error on the fly.
Continuous localization has been demonstrated to eliminate the accumulation of
odometry error while maintaining a constant translational error on the order of five
inches (Schultz, et al., 1996).

The continuous localization method uses an evidence grid representation to
model its environment (Elfes, 1992; Moravec, et al., 1985; Hughes et al., 1992).



Evidence grid representations have also been used for navigation, path planning, and
other map-based tasks. Using the same representation in both the localization and other
processes allows for a more uniform representation and a simpler system.

In previous work, continuous localization utilized a priori evidence grid maps of
the environment. Other recent work has looked at learning the initial evidence grid maps
through an exploration strategy (Yamauchi et al., 1997b). These learned maps can then
be used as initial maps by continuous localization.

In this research, the continuous localization technique is extended so that it
allows the long-term map of the environment to adapt to changes in the environment by
incorporating incoming sensor data. The results indicate that the addition of the ability
to learn dynamic changes in the environment does not degrade the performance of
localization, and at the same time yields a more accurate long-term map for other
processes that use the map.

Once a robot knows its pose precisely, it can perform higher-level functions such
as path planning and navigation. Most mobile robot systems utilize a deliberative-
reactive architecture. An explicit path planner (the deliberative portion) computes a
route to the goal location specified by the human user. Ideally, the path planner will
produce an optimal (most efficient) route. The navigation scheme uses this route as a
guide; the robot will follow the path to the goal until it encounters an unmodeled
obstacle, in which case it will reflexively avoid a collision.

The potential field method (Section 4.3.1) is an example of a non-optimal and
error-prone path planner (Arkin, 1989). The robot models its world much like a
gravitation field. The goal location exerts an imaginary attractive force on the robot
while obstacles repel the robot. A rasterized grid stores the sum of all imaginary forces
acting on every point in space. The robot moves to the adjacent cell with the greatest net
attractive force. Hence, the robot follows the least-cost path to the goal, much as water
flows down hill or a positive charge is drawn toward a negatively charged magnet.
However, potential fields do not provide robust solutions. They can direct the robot into
a modeled obstacle. Or, if the sum of forces at a position other than the goal equals zero,
the robot might navigate to this position and stop.

Wavefront propagation (Section 4.3.2) is an improved form of potential field
representation. Trulla is a wavefront propagation path planner that provides robust
routes to the goal (Hughes et al., 1992). Trulla’s solution is a vector field that tells the
robot, from every point in modeled space, the optimal direction to travel. By planning
every optimal path for every position beforehand, when the robot reactively avoids an
unmodeled obstacle, it will find a new optimal path to the goal. In some situations,
unmodeled obstacles will completely block the path planner’s optimal routes. After
using the robot’s sensors to learn these obstacles, the path planner can be re-invoked.
The resulting optimal paths will direct the robot around the now-modeled obstacles.

Current implementations of Trulla possess problems. First, at approximately two
inches per second, the speed at which the robots travel is extremely slow (Murphy et al.,
1997). Secondly, the robot system lacks an accurate localization technique. By relying
on dead reckoning, the robot’s odometric error accumulates over time. '

This study solved these problems. By incorporating continuous localization
(with learning behavior) and a wavefront propagation path planner, unmodeled obstacles




were assimilated into the map and a new optimal path was computed on the fly. The
author’s system maintains an accurate update of the robot’s position while moving at
five times the speed of Murphy’s robot.



2.0 History of Mobile Robots

Primitive robots were controlled remotely by human operators and did not possess
the ability to maneuver themselves. The addition of a television camera on a robot
allowed humans to control the robot beyond visual range. The inherent disadvantage of
these remotely operated vehicles (ROVs) is evident in interplanetary explorers. Even at
the speed of light, a signal sent from Earth takes minutes to travel to even the closest
planet. Improvements in sensors, the efficiency of algorithms, and sheer processing power
have made mobile robots more independent of human control. However, even today’s
robots are not truly autonomous. Although the robot’s computer performs all of the calcu-
lations and controlling schemes, humans still manipulate the robot by loading a priori
maps into the robot’s memory or making artificial adjustments to the environment (such as
radio beacons or objects from which a visual reference can be obtained). In the artificial
intelligence community, “autonomous” refers to a robot whose programming allows it to
navigate from a starting point to a goal without remote control while recognizing and
overcoming unpredictable situations. This project takes one more step toward the creation
of a truly autonomous robot.

2.1 Shakey

Shakey was the first attempt at an autonomous
mobile robot. Completed at Stanford Research Institute in
1969 and used until 1972, Shakey employed the premiere
technology of the time: a television camera, a range finder,
and a radio link to a powerful offboard computer which pro
cessed the vision and planning elements. The onboard com
puter only had the capacity to control the motors.

Dead reckoning, enhanced with a uni-camera vision §
system and a range finder, provided for Shakey’s localiza-
tion. Shakey determined its position by first locating the
boundary between floor and wall (in the image provided by §
the camera). Shakey then compared the length and angle of
that line segment with a predicted length and angle. The
predicted values were determined from the world model
Shakey kept in memory (i.e. what Shakey thought it should
see based on the stored map and pose estimate). The angu-
lar discrepancy between actual and predicted values was
used to correct Shakey’s pose estimate. Since the entire Shakey (Moravec, 1981)
process took over 10 seconds, Shakey could not be moving
when it localized or else it would have updated its pose based on an outdated position.
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The uni-camera system’s range error was 5-10%, and the angular error was 5% (Nilsson,
1984). This error was due to mechanical constraints of the camera as well as shadows and

reflections.

Figure 1 shows a representation of Shakey’s path analysis approach. Shakey’s path
planner analyzed the world map created from the images provided by the camera. Objects
were modeled as circles. All of the possible routes from robot to goal that traversed the
tangents of the obstacles were recorded onto a tree data structure. To minimize computing
time, the chosen path was determined by a breadth-first search of this tree. Thus, Shakey
travelled the path with the fewest legs (line segments) rather than the shortest distance

(Nilsson, 1984).

WALL GOAL
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Figure 1: Shakey’s Path Planner (Nilsson, 1984)

Although Shakey was a tremendous advance in robotics, the inaccuracies of both
its dead reckoning and vision system hindered performance. Shakey’s odometry error was
so large that in complex environments the distances and angles of the line segments from
jts images could not be matched with the predicted values from the world map (Meystel,
1991). In these situations, the robot did not find the goal.




2.2 The Cart

Hans Moravec, one of the pioneers in the field of autonomous mobile robots, worked on
the Cart at the Stanford University Artificial Intelligence (AI) Lab from 1973-1981. This
research vastly improved the use of vision as a navigation tool. The television camera
mounted onboard the Cart allowed remote control. It also gave the robot the ability to
make maps and navigate without direct human guidance. Though slow (in both physical
speed and processor speed), the Cart was able to make an accurate internal model of its
environment and successfully navigate around and in-between objects. Depth perception
was achieved by imitating the way in which a lizard bobs its head back and forth while
assessing the fly it is about to catch with a tongue flick. Every time the Cart stopped to
localize, the camera took a picture from each of nine angles by sliding the camera along a
track (Moravec, 1981). The work was continued at Carnegie-Mellon University (1981-
1984).

The Cart (Moravec, 1981)

2.2.1 Drawbacks of Cameras and other Sensors

Uni-camera systems such as Shakey and the Cart had numerous limitations. After
taking a picture, the frame was represented as a rasterized grid (Figure 2). Each cell was
assigned a number from zero to sixty-three to represent the shade of the object, with lower
numbers corresponding to lighter shades. By grouping cells of similar shade the robot
identified objects and consequently determined distances and angles. The two primary
drawbacks of this method of navigation are obvious: shadows and reflections confused the
camera’s limited depth perception, and objects of the same color were difficult to differen-
tiate.
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Figure 2: Example of a region and its corresponding rasterized map

Additional sensory inputs were added to battle the limitations of single cameras,
though robust solutions still were not achieved. Laser range finders were mounted along-
side cameras in order to improve distance measurements. Although they are accurate to a
distance of 0.5 inches, each reading only provided the distance to a particular point in
space. In order to scan an area 5 feet by 5 feet, it would have taken a laser range finder 7
seconds. Although this sounds like a short time period, if the robot or the object is mov-
ing, the delay would have caused the robot to think the object was many feet from its

actual location.

Stereo vision -- two cameras with overlapping fields of view -- yielded improved
depth perception. However, it required lengthy computation time and thus reduced the
number of points that could be tracked. This in turn degraded the detail of the produced
map (Elfes, 1987). Moravec’s fastest computers took 30-60 seconds to process a low-res-
olution image, during which the Cart traversed one meter (Moravec, 1984). A system of
localization was needed that provided accurate distances to objects and required low-cost

hardware and little computation.




2.3 Neptune

Moravec’s next robot, Neptune,
relied on sonar to overcome the
inherent errors and lengthy computa-
tion time of vision-based systems.
Twenty-four wide-angle sonars pro-
vide 360 degree coverage (Moravec,
1984). As the beam width of each
sonar was 30 degrees, the overlap-
ping coverage guaranteed that almost
the entire area in the path of the
sonar wave would be seen by at least
two sonars. The transducers that
heard the ultrasonic echo could iden-
tify objects out to thirty-five feet.
(See Section 4.1.1 for a thorough
description of the operation of
sonars.)

11
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Neptune was the first robot to The Neptune (Elfes, 1987)

incorporate the evidence grid repre-
sentation (Section 4.1) to model its world.

2.4 Coyote

The Navy Center for Applied Research in Artificial
Intelligence (NCARAI) maintains two Nomad 200 robots,
Coyote and Roadrunner. All experiments described in this
paper were performed using Coyote.

.

Coyote is equipped with four groups of sensors. In the
picture at right, the two bumpers can be seen encircling the
robot’s cylindrical base. When Coyote runs into an object
with sufficient force to trigger a bumper, all movement

ceases. Ideally, the navigation scheme will avoid all objects.

The sixteen-sided turret, located above the base, holds
two groups of sensors. Sixteen infrared sensors (which are
too small to be visible in the picture at right) circle the bot-
tom of the turret and sixteen sonars circle the top. Infrared

sensors emit light in the frequency range 10'2 t0 1014 Hz.
The sensors detect the intensity of the light reflected off of
an object and have a maximum range of approximately six-
teen inches. The reading, a number between 1 and 16,

May 8, 1997
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approximates the distance to the object in inches. Infrared readings are not reliable esti-
mates of distance because the color, texture, and material of the object affect the intensity
of the reflected light. The infrared sensors’ angular range is 20 degrees. Coyote'’s sonars
sense objects within a 25 degree cone out to a range of approximately thirty-five feet.

Coyote’s fourth sensor, a structured light range finder, resides above the turret. The
box mounted directly to the turret works in conjunction with the camera (the cylindrical
object with the wire connecting it to the turret). The laser and camera remain fixed to the
turret. The turret turns so that the sonars and laser can point directly at any object. Except
when backing up to avoid an obstacle, Coyote typically moves only in the direction the
camera faces. A laser travels through a cylinder within the box and is emitted as a hori-
zontal plane at an angle of 30 degrees. The human eye (and the camera) can see a red line
where the laser plane strikes an object. The camera records the image it sees at a rate of
30 Hz. The laser line is modeled as 240 individual points (the width, in pixels, of the
image). Since the camera and laser are in fixed positions relative to each other, each pixel
corresponds to a constant distance. A point higher in the image equates to a greater dis-
tance. Thus the robot determines two-dimensional range data simply by determining the
laser point’s pixel coordinates and using geometric equations to convert that value to a dis-
tance. The structured light range finder is accurate to within one millimeter at a distance

of twelve feet.

An Intel 120MHz Pentium processor comprises the onboard computer. It operates
using LINUX, a UNIX operating system. The onboard computer continually runs a robot
daemon, which is an interface between the program and the actual signals to the robot’s
motors and from the robot’s sensors. The daemon constantly checks for new motor com-
mands and immediately executes them. However, the programs written for the robot do
not normally reside on this computer. Instead, they are stored and executed on a Sun
workstation. The commands are delivered to Coyote via a wireless ethernet connection
with the robot. Occasionally, a program will reside on the robot’s computer. Since no
connection with a network exists, these programs execute faster than if they were to be run
from a Sun workstation. Examples of such programs include video processing (because of
the intensive amount of data that otherwise would be transmitted across the network) and
collision avoidance (which requires immediate response to avoid obstacles in the robot’s
path). Most programs do not require the improved performance from being run on Coy-

ote.

Coyote employs five lead-acid batteries, two to power the motors and three for the
computer. These batteries need to be recharged approximately every 100 minutes.
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3.0 Modern Robotic Systems |

3.1 Evidence Grid Representation

3.1.1 The Operation of Sonars

The evidence grid representation originally was created to take advantage of sonar
sensors. As of 1984, sonar provided an inexpensive means of determining ranges to
nearby objects, though few people had attempted to build maps from sonar readings
(Moravec, 1984). Sonar waves are emitted as a spherical wavefront. However, since
most implementations use only two-dimensional maps, the wave is commonly represented
as a two-dimensional cone (Figure 3). The cone’s angle of coverage (angular range)
depends on the receiver’s sensitivity. Range readings are determined when an echo (a
reflection off of an object) is detected by the emitting sonar’s transducer. It is imperative
to understand that a transducer records only the first echo it receives from each wave emit-
ted; all subsequent data are ignored. Half of the time of travel multiplied by the speed of
the wave yields the distance to the object.

/\

sonar

sensor l >
2Ny

R =range

BW = beamwidth

Figure 3; Volumetric Cone of a
Sonar Beam

Notice that the exact direction to the object that caused the echo is unknown. Each
reading yields a range to the closest object within the sonar cone. The position of the
sonar on the robot and the sonar’s angular range provide merely an estimate of the object’s
location.

Only a fuzzy image of the perimeter of objects can be constructed from sonar read-
ings because of specular reflection and the attenuation of ultrasonic waves. Specular
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reflections occur when a sonar beam does not reflect directly back to the sensor; the range
reading is greater than the actual distance to the closest object (Figure 5). Thus specular
reflections cause the robot to record on its map that it detected an object at a position much
further away than the object’s true location. Natural attenuation of an ultrasonic wave
results from a weak signal, usually when an object lies near the edge of the volumetric
cone (the least sensitive portion of the receiver). For narrow-beam (1-3 degrees) sonar, the
inherent error is minimal. However, to implement narrow-beam sonar, 120-360 such
sonars are necessary. This is impractical because of the inordinate computation time
needed to scan all 360 degrees around the robot. Wide-angle sonars are preferred, even
though their waves attenuate more than narrow-beam ultrasonic waves. Overlapping the
volumetric cones of wide-angle sonars reduces the number of sonars and thus the compu-
tation time (Figure 4).

Several characteristics of sonar cones are illustrated in Figure 6. The values repre-
sent the evidence of occupancy for that cell. A greater value corresponds to a greater
probability of occupancy. The first observation from Figure 6 is that a single wide-angle
sonar reading possesses inherent error. Occupancy values are assigned to cells that obvi-
ously are not occupied. Secondly, sonars are reliable at identifying empty space. In this
example, every space that holds a value of 0 actually is empty. Due to the equations gov-
erning sonar readings, evidence that indicates emptiness is more dependable than values
that indicate occupancy. The fringes of occupied space provide the most unreliable read-
ings. Third, overlapping empty and occupied volumes reinforce the evidence provided by
each other. Also, the evidence of a single specular reflection is reduced when averaged
with multiple correct readings. In Figure 6, the overlapping sonars in Part B provide more
accurate readings than the single sonar in Part A.

Figure 4: Overhead view of
overlapping sonars



Range = 10

Sonar sensor

— actual range to closest object = 10
- - range reading (i.e. the distance the wave actually traveled) = 26

Figure 5: Specular Reflection
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Part B: Overlapping volumetric cones reinforce occupied and empty values.

Figure 6: Overlapping Sonar Cones (Chung et al., 1992)
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3.1.2 Evidence Grids

Moravec and Alberto Elfes (1984) made a breakthrough in localization theory by
inventing a method of representing ultrasonic data that overcame sonar’s inherent error.
Since each individual sonar reading provided a range and a rough estimate of direction,
Moravec mapped the sensory data statistically. Probability equations modeled the reliabil-
ity of each reading. Although a single sonar reading provides inconclusive data, combin-
ing hundreds of sonar readings accumulated during one second of time yielded a fairly
accurate and reliable map (Moravec, 1984).

Moravec’s new method modeled Neptune’s room with a rasterized grid. One cell on
this map corresponded to a 30cm by 30cm square in the room. Each cell was assigned two
numbers -- the degree of certainty that the cell was empty (Emp(X,Y) ) and the probabil-
ity that the cell was occupied ( Occ(X,Y) ) -- that were updated with each sonar reading.
Both numbers ranged the interval [0, 1], and were initially set at 0 (unknown, or no evi-
dence to suggest one way or the other). Due to the nature of Moravec’s methods for com-
bining evidence, the probability that the cell was occupied and the probability that the cell
was empty do not necessarily sum to a value of one. For example, if cell (2,3) contained
the values Emp(2,3) := 0.0335 and Occ(2,3) := 0.8842, you would be quite confident that
the cell is occupied.

Moravec processed the raw data to correct for erroneous readings. He discarded any
readings beyond an experimentally determined threshold (which was slightly less than the
maximum range of the sonar) to reduce specular reflection. Fluctuations in the trans-
ducer’s sensitivity were minimized by disregarding readings below the minimum range of
the sensor. Also, since natural errors caused a dispersion of readings taken from a single
sensor at the same position, Moravec averaged all data received while the robot remained
stationary.

To account for the inaccuracy of the readings, a stochastic sensor model determined
the readings’ influence on each cell. The sonar cone was modeled by probability distribu-
tion functions (Appendix A). The equations for combining multiple sensor readings are
found in Appendix B. These statistical functions, also referred to as probability density
functions, represented the degree of certainty that the points inside the beam’s cone were
empty (since no echo was returned from them) as well as the uncertainty of the exact loca-
tion of the point which reflected the beam.

The values of Emp(X,Y) and Occ(X,Y) for each grid cell within the volumetric cone
were entered into these equations. The solution was a single value (for each grid cell) in
the range (-1, 1) that represented the overall probability of that cell’s occupancy. This
result was added to the value already stored in that cell.

One of Moravec’s final evidence grids is given in Figure 7. A negative number
denoted a probably empty point and was represented on the final map with white space.
An increasingly negative value correlated to more evidence that the point in space was
empty. Likewise, a positive number signified a probably occupied point and was charac-
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terized by a ‘+’. A larger ‘+’ corresponded to a greater probability of occupancy. A value
near 0 indicated that the occupancy of the cell was unknown. Either no evidence at all was
obtained about that point (e.g. it was behind a wall and thus beyond reach of the sonar
beams) or the cumulative sum of all evidence totalled zero. An unknown region was

denoted by a ‘..

The most significant aspect of Moravec’s representation is that the use of Bayesian
statistics bestows evidence grids with the ability to fuse readings from any sensor. Robots
equipped with a variety of sensors could utilize Moravec’s evidence grid representation to
combine sensor data on one map used by all robot processes.

................................................................
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Figure 7: Example Evidence Grid

3.2 Continuous Localization

The evidence grid representation provides a robust means of mapping a mobile
robot’s environment. However, in order to use this representation, the robot must be local-
ized. Moravec intended Neptune to be placed in an unknown environment without a pri-
ori information on the region where it would create an evidence grid with which to
navigate accurately. But the odometry error introduced into the maps degraded pose esti-

mates over time.

Horn and Schmidt (1995) innovated a method of correcting odometry error by
integrating single-image localization and dead-reckoning data approximately every 2.4
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seconds. They named this technique continuous localization. Previous localization meth-
ods localized less often, usually only after the robot’s uncertainty of odometry error
passed a threshold. Single-image localization was achieved by matching “vertical planar
surfaces extracted from a 3D-laser-range-image with corresponding surfaces predicted
from a 3D-environmental model” (Horn et al., 1995). However, this approach required an
a priori map and did not model uncertainties in the map.

The Navy Center for Applied Research in Artificial Intelligence (NCARATI) simul-
taneously developed a different method of continuous localization which modeled the
map’s uncertainties. Although their method also needed an a priori map, the use of evi-
dence grids allows the robot to fuse data from all types of sensors incrementally as well as
model slow changes in the environment.

Any continuous localization technique requires the periodic registration of local
perceptions with some description of the environment (a map). The first important issue
to be considered is, therefore, the representation used to store the map. The second issue
is how often to perform the registration.

Continuous localization uses evidence grids for its representation because they
provide a uniform framework for fusing temporally and spatially distinct sensor readings.
All robot sensors contribute to the task of localization, and the system is robust in the face
of sensor failures and noise in individual sensor readings.

The evidence grid representation divides a volume into equally sized cells. Each
cell contains a single real number between -1 and +1 that describes the evidence of that
cell being occupied. A value near +1 suggests reasonable assurance that the cell is inhab-
ited, while -1 signifies substantial evidence that the cell represents empty space. Cells are
initialized to O (unknown).

Cells are updated from sensor readings that are filtered through Moravec’s proba-
bility distribution functions. After each sensor reading, all relevant cells are updated using
the new evidence from the sensor. Several methods have been used to update the evidence
in the cells including Bayesian statistics (Elfes, 1992; Moravec, 1988) and Dempster-
Schafer theory (Hughes et al., 1992). In the work presented here, the Bayesian update
method was used.

The second issue in localization, how often to relocalize the robot within its envi-
ronment, is addressed in many techniques by only relocalizing when either an error in
position is detected or after an unacceptable level of odometry error has accumulated.
Continuous localization, however, makes regular, incremental corrections to the odometry
rather than intermittent corrections requiring expensive computation. Since the pose error
accumulated during the time interval between corrections is small, the registration search
can be restricted to a small area around the current pose, reducing the computational effort
required and sustaining the higher relocalization frequency.

_ Continuous localization utilizes an a priori long-term map which is assumed to be
an evidence grid representation of the region (room) in which the robot is currently operat-
ing. The robot builds a continual series of short-term perception maps of its immediate
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environment, each of which is of brief duration and contains a small amount of pose error.
After several time intervals, the oldest (most “mature”) short-term map is used to position
the robot within the long-term map via a registration process.

The registration process consists of sampling the possible poses within a small
area around the robot’s current pose. Small adjustments in position and orientation are
made to the values of the current odometry, but the robot does not actually move to the
new pose. For each tested pose, the mature short-term map is adjusted by the offset
between the hypothetical pose and the robot’s actual pose. A match score for each pose is
calculated based on the number of cell values of the short-term map which are equivalent
to their corresponding cell values on the long-term map. The match scores for all tested
poses are then treated as masses and the offsets as distances, and a center of mass calcula-
tion is performed to determine the offset that corresponds to the highest match score. This
offset is applied to the robot’s odometry, placing it at the pose which causes its local per-
ceptions to best match the long-term map. All robot processes subsequently use this new
odometry. After the registration takes place, the most mature map is discarded.

In this research, the continuous localization algorithm has been extended to allow
the long-term map to be updated with current sensor data from the short-term perception
maps, thereby making the long-term map adaptive to its environment.

Rather than immediately discarding the most mature short-term map after registra-
tion, the short-term map is corrected in pose, weighted, and its cells combined with the
spatially corresponding cells of the long-term map. The weight applied to the short-term
map is a learning rate that controls how much effect the short-term map has on the long-
term map. The learning behavior can be triggered on or off at runtime.

3.3 Path Planners

Continuous localization provides a robot with the ability to correct its odometry.
However, in order to travel intelligently, a robot needs a separate process to plan a path
from its current location to a specified goal. Continuous localization merely tells the robot

its pose as it travels along a path.

3.3.1 Potential Fields

Ronald Arkin and Robin Murphy (1989) designed potential fields to serve as an
optimal path planner. Although potential fields can be used by any sensor type to con-
struct a world map, its method of modeling the world is too simplistic. Many situations
exist where potential fields will not plan an optimal path to the goal.

The potential field representation models the world much like a gravity field.
~ Obstacles exert imaginary repelling forces while the goal location attracts the robot. A
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rasterized grid stores the sum of all imaginary forces acting on every cell. In mathematical
terms, the repulsive force (Fyy) for each cell (x, y) is proportional to the probability of

occupancy of the cell and inversely proportional to the distance of the cell from the center
of the robot. The attractive force (Fy), though related to the distance from the goal to the

center of the robot, largely depends on an experimentally determined constant. The attrac-
tive force added to the sum of (ny) yields the resultant force (Fg) (Koren et al., 1991).

The robot moves to the adjacent cell with the greatest net attractive force. Hence, the
robot follows the least-cost path to the goal, much as water flows downhill.

Three fundamental problems of potential fields have been identified. First, a robot
may become trapped in a local minimum. A local minimum exists where the resultant
force at every adjacent cell directs the robot toward the cell the robot currently occupies.
Therefore, the path planner cannot compute a path away from the cell. Thus the robot
stops moving because it thinks it has reached the goal (Figure 8). Second, two obstacles
can be spaced such that a navigable passage between them exists, but their repulsive forces
overlap and do not permit passage. Third, a robot travelling through a narrow corridor
will receive repulsive forces from both walls simultaneously. This will result in an oscil-
lating motion; although the robot will advance through the corridor, much time will be
wasted following a winding path. (Koren et al., 1991).

The most commonly cited example that demonstrates potential fields’ shortcom-
ings is the box canyon (Figure 8). Although the obstacle exerts a repelling force on the
robot, the greater force from the goal attracts the robot into the canyon. Once in the can-
yon, potential fields offer no hope of escape because the attractive force does not let the
robot move far enough away from the goal to exit the canyon. A separate scheme (usually
a random motion generator) is needed to override the potential fields.
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Figure 8: Example of Local Minimum Caused by a Box Canyon
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3.3.2 Trulla

Path planning is a computationally expensive task. Ken Hughes (1992b) devised
the Trulla algorithm to reduce the cost of a path planner by taking advantage of parallel
architecture.

Wavefront propagation techniques are characterized by their ability to compute a
near-optimal path to the goal by allowing neighboring cells on a rasterized map to share
with each other information regarding the best path to the goal.

The Trulla algorithm possesses several improvements over previous wavefront
propagation methods. First, it performs simple computations on local data. Second,
Trulla allows repeated propagations which converge to a solution. Third, the algorithm
computes near-optimal paths from all locations to the goal instead of one optimal path
from the robot’s current position to the goal. This last factor makes Trulla ideal for a
deliberative/reactive architecture. By computing the set of all near-optimal paths before-
hand, reaction to an unmodeled obstacle does not require recomputation since the robot is
merely displaced to another near-optimal path (Murphy et al., 1997b).

Hughes’s Trulla implementation possesses a few drawbacks as well. It assumes
that the robot operates in a static environment and depends on an a priori map. The map
contains a weight for each cell that indicates traversibility, or the effort the robot must
expend to navigate through that cell. A cell with a cable across the floor has a higher
weight than a cell which is completely empty. Moreover, Trulla only allows eight-neigh-
bor connectivity. In other words, only eight possible angles (corresponding to the eight
cardinal directions) can be given to the robot.

For every cell in which a direct path cannot be executed to the goal, a subgoal is
established. The heart of the Trulla algorithm is a set of rules that determines when a path
can be propagated to its neighbors unaltered and when a new subgoal must be established.
Trulla also must determine, at each cell, whether the current best path should be replaced

by a best path from a neighboring cell.

Robin Murphy (1997b) improved upon the Trulla algorithm. Her work assumes
operation within a dynamic environment and has the ability to update its map when the
robot's sensors detect unmodeled obstacles. Also, the resultant vector (direction and
velocity) assigned to any grid cell can be at any angle (as opposed to eight-neighbor con-
nectivity) (Figure 9). Darker shades correspond to a higher weight of traversibility.

Murphy's implementation also loads the weights a priori. Each grid cell on the
robot's map has dimensions equal to the diameter of the robot. An entire cell is considered
to be occupied if an object inhabits any part of the cell. This excludes a path from being
propagated through a corridor narrower than the robot (except when unmodeled obstacles

are present).
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Unmodeled obstacles may trap a robot by creating a situation similar to a box can-
yon. In such a configuration, the robot system must learn the location of the obstacles and
replan a path around them. Much research has been devoted to how often the robot system
should replan. Continuous replanning is best, if computational expense is not a factor
(Murphy et al., 1997b).

Murphy tested her system against four scenarios: (1) an unmodeled box canyon,
(2) an unmodeled wall (where the robot can travel on either side to get to goal), (3) part of
a wall modeled a priori, with a portion of the wall (in the direction Trulla would send the
robot) unmodeled, and (4) an unmodeled wall similar to scenario 2, except that the wall
intersects another wall perpendicularly and hence is untraversible on that side.

The algorithm boasts a replanning time that never exceeds .94 seconds. This is due
to the parallel architecture of the robot system and the large grid size. However, during the
experiments, the robot moved at approximately two inches per second! Murphy’s results
may not be applicable to a robot moving at a reasonable speed (Koren et al., 1991).
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Figure 9: Example Trulla world map
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4.0 Experiments and Results

This study was divided into two phases. The experiments in Phase I were designed
to determine, for a changing environment, if the mean odometry error is comparable under
both the learning and non-learning continuous localization techniques, and if the learning
technique could provide accurate maps of the modified environment. In Phase II, continu-
ous localization (with the learning behavior turned on) was combined with the Trulla path
planner. The experiments for Phase II tested the performance of the composite robot sys-
tem in various scenarios, and the results were compared to those of potential fields and
Murphy's implementation of Trulla in similar situations.

4.1 Phase I

The first experiment established a mean odometry error for both the learning and
non-learning localization techniques when the long-term map represented the true room
configuration, i.e. there were no errors in the a priori long-term map. The experiment was
composed of 8 runs for each technique, all with the same room configuration. Each run
consisted of Coyote beginning at a randomly determined pose and then wandering the
room randomly for fifty minutes, avoiding obstacles while continuous localization cor-
rected its odometry. The randomness reduced the impact of the room configuration on the
robot’s ability to localize. The random wandering scheme was developed to maximize
Coyote's coverage of the room. At one minute intervals all of Coyote’s motors stopped to
allow the robot to record its internal odometry and a human to physically measure the
robot’s true location. These paired pose readings allowed the error in the robot’s odometry
to be computed. The data obtained from this experiment was used as a control for the next

experiment.

The second experiment tested each technique’s ability to provide accurate localiza-
tion when the a priori map significantly differed from the robot’s true environment.
Before each run, eight objects (such as chairs, desks, etc.) were moved in the real world,
though their positions in the a priori map did not change. Each object was displaced thirty
inches in a random direction from its original, true position and then rotated a random
amount between -30 and +30 degrees from the original orientation. During each run the
objects remained static. For each of eight distinct room configurations, one learning and
one non-learning run were conducted. The learning rate was set to 10% (a weight of 0.1),
and the random wandering scheme from the first experiment was used. Again, the robot
was stopped each minute to record its internal odometry and true location.

The results of Phase I are summarized in Figure 10. Each data point in the graph
represents the average of the eight runs for each of learning (dotted line) and non-learning
(solid line) trials. The data points on the left show the average translational error when the
true room did not deviate from the a priori map, and the data points on the right show the
experiments where the room differed significantly from the a priori map.
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As expected, in cases where the room had no changes, continuous localization
with learning performed no better than the non-learning version (4.91 inches of transla-
tional error compared to 4.54 inches of error). The learning behavior assumed that the
robot’s pose was accurate, and it consequently altered the long-term map with inaccurate
short-term perceptions.
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Figure 10: Amount of Change to Room

In the second experiment, where the room differed significantly from the map, the
learning technique’s mean odometry error of 9.29 inches performed marginally better than
the non-learning result of 10.02 inches of error. Statistical analysis demonstrated that
these two values correlated to the same number.

In addition to the odometry data collected, the long-term evidence grids used dur-
ing the learning experiments were recorded at each update. These were used to produce an
animation of the state of the long-term map while it was adapting to the environment. !

1. This animation can be seen at http://www.aic.nrl.navy.mil/~schultz/research/cont-local/
animation.mov .
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In Figure 11a, the initial frame of this animation is shown. This is accurate for a room
with no difference from the original map, but is incorrect for the current, altered room. In
Figure 11b, a frame from several minutes into the run shows how the map quickly con-
verged to the true room configuration.

(a) (b)

a priori map Global map after 9 minutes

Figure 11: Continuous Localization (with the learning behavior)

4.2 Phase 11

The second portion of this study demonstrated the parallel path planning and navi-
gation structure implemented for Coyote (Figure 12). Continuous localization with the
learning behavior ran beneath a deliberative/reactive architecture composed of Murphy’s
Trulla algorithm and the author’s collision avoidance scheme. Trulla has been modified to
use the maps generated by continuous localization’s learning technique. This was
achieved by converting the probability of occupancy of each evidence grid cell into a
Trulla weight of traversibility.
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Figure 12: The Combined Robot System

Four significant differences exist between Murphy's and the author's system.

1) Grid Size. The author’s system uses maps with a grid size of approximately
five inches. The width of each square in Murphy’s representation equals the diameter of
the robot. (The diameter of Coyote is roughly two feet.) Thus the maps used by the
author’s system provide more detail.

Using a grid size equal to the robot’s diameter provides the advantage that a path
cannot be planned through a corridor too small for the robot to fit through. With grid cells
only five inches wide, Trulla might plan the most optimal path through a space only five
inches wide. Coyote would never get to the goal.

The author overcame this by artificially growing obstacles on the long-term map.
The dimensions of each untraversible cell (i.e. walls and objects in the middle of the room)
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were expanded by roughly the radius of Coyote and assigned a weight of 9. This reduced
the probability of Trulla planning a path that would cause Coyote to collide with an obsta-

cle.

Figure 13 shows a sample graphics window of the author’s Trulla implementation.
A green arrow is drawn in every empty cell. Although the arrow heads were removed to
make the small line segments easier to distinguish, it is evident that they all point toward
the goal (the red square). Yellow-green lines correspond to a weight of 4 (a mid-range
probability on the evidence grid). The dark green lines, which are barely visible, are
found adjacent to obstacles and the room’s perimeter. They correspond to the area grown
around untraversible space (a Trulla weight of 9). The yellow square labels the robot’s
current position, and the black trail behind the yellow square marks the path the robot has

already traversed. :

2) Continuous localization. The addition of continuous localization provided
Coyote with an accurate update of its pose. Although both systems require an initial pose
estimate, continuous localization allows the robot to run indefinitely without manually
correcting the pose.

3) Update rate. Murphy’s implementation replans when a complex set of criteria
are met that indicate the robot has significantly deviated from the optimal path. The
implementation presented in this study replanned when a new long-term map was created
by continuous localization. Continuous replanning would not have provided an advantage
since new evidence was not available until a new long-term map was generated by the
learning behavior.

4) Robot speed. Murphy's robot moved at only two inches per second, an
extremely slow speed for mobile robots. If an unmodeled obstacle existed in the robot’s
path 20 inches away, her robot would have 10 seconds to acquire data and replan a path
around the object. Coyote, which moved at 10 inches per second, would only have 2 sec-
onds to avoid an object at the same distance. With the increased reaction time, Murphy’s
robot system could plan a more-optimal path in the presence of unmodeled obstacles.
However, the system this study presents would travel to the goal in less overall time.

During the experiments for Phase II, continuous localization’s learning rate was set
at.5. Continuous localization generated an updated map after every 12 inches of robot
translation.

Trial 1 tested the robot system’s ability to explicitly plan a path around an unmod-
eled box canyon. The a priori map (Figure 15a) did not model the crates that blocked
Coyote’s direct route to the goal (Figure 15b). For each of ten runs, Coyote began from
an identical position with a random orientation. The initial position bisected the obstacle.
When Coyote’s collision avoidance stopped the robot from hitting the wall blocking its
path, equal probability existed to navigate left or right around the obstacle.




Figure 13: An Example Path Planner Graphics Window
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The results from the first trial are displayed in Figure 14. Coyote navigated to the
goal at an average of 104.5 seconds. During each run, the path planner guided Coyote into
the box canyon. Once it reached the perpendicular wall, Coyote oscillated until its sensors
detected the walls and a new long-term map was generated. The long-term evidence map
only learned the perimeter of obstacles directly in Coyote’s path (Figure 15c).

Coyote established an optimal time of 52.1 seconds when it traveled from the goal
to the initial position with an a priori map that exactly modeled the room configuration.

Run Time (sec.) Number of Updates
1 103.0 16
2 95.9 16
3 95.0 5
4 117.0 20
5 114.3 20
6 128.5 22
7 93.8 15
8 101.7 16
9 97.5 15
10 98.0 15
Average 104.5 17

Figure 14: Time to Travel out of Box Canyon (Phase II, Trial 1)
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Figure 15a: A Priori Map (Phase II, Trial 1)
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Figure 15b: Actual Room Configuration with Box Canyon (Phase II, Trial 1)
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Figure 15c: Continuous Localization Learned the Box Canyon (Phase II, Trial 1)
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Trial 2 tested the robot system's ability to navigate through a passageway slightly
wider than Coyote's diameter (Figure 16). The collision avoidance was modified to
ignore sonar readings (which would not have allowed the robot to within 15 inches of an
object). The sonars were still used for continuous localization. The corridor measured 13
inches wider than Coyote’s diameter. Coyote’s speed was set at 10 inches per second.

The repulsive forces from both walls simultaneously acted upon the robot. By
avoiding the right wall, Coyote steered left and arrived in a cell that directed it back to the
right, and vice versa. This oscillating motion severely slowed Coyote’s progress. The
robot navigated the twenty foot corridor in 196.6 seconds (an average of 1.2 inches per

second).

After determining that Coyote could navigate a narrow corridor, albeit slowly, the
third trial tested the robot system'’s ability to detect an unmodeled, more efficient route to
the goal. An object was modeled a priori (Figure 17a). However, a portion of the object
was removed before runtime to allow a short cut to the goal (Figure 17b). Twenty runs
were conducted. Coyote began and ended each run bisecting the gap at a distance of four
feet from the crates. The goal location of the previous run became the initial position of
the following run, and continuous localization updated maps throughout the entire trial.

The robot system did not navigate Coyote through the gap. A few of the long-term
maps showed that a gap existed between the two crates. However, before the robot system
replanned using one of these maps, more recent sonar readings caused the learning scheme
to think that the corridor had been sealed off. This occurred because Coyote moved away
from the gap too quickly. When the robot was directly between the two crates, a sonar
beam travelled the entire length of the gap and the system learned the hole. However,
when a sonar entered the gap at an angle, it would strike one of the crates. When the sys-
tem updated every cell within the volumetric cone, enough occupied evidence existed in
the actually empty cells that the robot system interpreted the gap to be closed.
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5.0 Discussion

Three observations can be made regarding the results obtained from Phase I. First,
the original, unmodified continuous localization technique performed much better than
anticipated when the true room deviated from the a priori map used for localization. This
robustness seems to be due to the way registration was performed, which tended to ignore
differences between the maps and concentrated on similar regions. Note that in these
experiments, furniture was moved, but not all of the furniture nor the walls of the room. If
the walls of the room were moved, a much larger corresponding error in the non-learning
localization would be expected.

A second observation is that with learning, the map quickly adapts to the changes
in the environment and learns the correct room layout. In the animations, it is possible to
see rapid changes in the evidence grid as the map adapts due to the new sensor readings.

The third observation, noticed from the animations, is that after a long period of
updating the odometry, some noise would start accumulating in the map. This effect
tended to be noticed only after long periods of updating, such as 30 to 60 minutes. This
noise is produced as a side effect of the method used to update the long-term map from the
short-term map, and because the maps still have a constant error of up to 5 inches. How-
ever, this does not affect continuous localization’s ability to remain accurately localized,

as seen in these results.

The second phase confirmed that a solution of the robot problem necessitates all
four low-level autonomous mobile robot abilities to be truly robust. However, a simple
collision avoidance scheme proved ample for environments without narrow, navigable
passageways.

Trial 1 demonstrated that this study's robot system achieved its objectives. The
evidence grids generated by continuous localization were used by the path planner to cre-
ate a vector field that provided the robot with an optimal direction to the goal from any
position on the map. The learning component of continuous localization updated the a
priori map by fusing local sensor data with the long-term map. The robot system
replanned optimal routes on the fly while the robot moved at 10 inches per second. The
replanning time varied between .5 and 1.5 seconds. This compares favorably with Mur-
phy's results. The evidence grids created by continuous localization contain 16,384 cells.
Murphy's grid of the same area would hold merely 712 cells.

After replanning, Coyote navigated to the goal while maintaining accurate pose.
Minor errors have little impact on the navigation of a short distance. Odometry error will
not accumulate rapidly. But in long-distance travel, small changes to the a priori map that
remain uncorrected will cause the robot to become lost. The experiments in Phase I deter-
mined that continuous localization will maintain an average error of five inches indefi-
nitely, even when the a priori map differs significantly differed from the actual
surroundings. In a previous experiment with non-learning continuous localization, Coy-
otes began a run 50 inches away from the initial position it was told it was at, and recov-
ered to within five inches of error.
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Occasionally, instead of reaching the goal, Coyote entered an orbit around it. The
path planner was not at fault. Rather, the problem occurred when the motor commands
given to Coyote did not rotate the robot quickly enough. Before Coyote could face the
goal, it had moved to an adjacent cell. At such a close proximity to the goal, the angles to
the goal from adjacent cells differ immensely. When stuck in this situation, the robot wan-
ders in circles indefinitely because it never aims toward the goal.

Variable velocity commands would alleviate this problem. Increasing the rota-
tional velocity and decreasing the translational velocity as the robot approaches the goal
would cause Coyote to follow a direct path to the goal. This compares to an automobile
driver easing off of the brake pedal as the car comes to a stop.

The second and third trials attested to the poor performance of a purely-reactive
collision avoidance scheme in a situation that demanded fine-tuned navigation. In Trial 2,
Coyote oscillated along a winding path instead of traveling directly between the walls (as
the path planner suggested). In Trial 3, when Coyote's sensors detected an open corridor,
the robot system failed to lead Coyote along this short cut.

NCARALI is developing a collision avoidance scheme which would capitalize on
the situations of the second and third trials (Yamauchi et al., 1997a). It divides open space
into corridors wide enough for the robot and then chooses the corridor that provides an
optimal path to the goal.
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6.0 Conclusions

The first phase of this study compared a learning and a non-learning technique for
continuous localization. Both continuous localization techniques maintained a constant
mean translational error over time. Although the performance of the two techniques was
essentially identical, the learning technique offers a tremendous advantage over its non-
learning counterpart: a map that accurately represents the surrounding region.

An open question derived from this study is, if learning is left operational over
even longer periods of time, will the noise in the learned map render it unusable for local-
ization? NCARAL is investigating several ways to address this. First, it is possible to look
at the actual updates made over time to the encoders, and learn a model of the error. In the
case of systematic error, this model can be used to compensate for the residual error that
would result from direct application of the correction. Removing this residual error before
updating the map should allow the map to be updated for many hours with no appreciable
accumulation of error in the map.

Second, results suggest that updated maps from continuous localization’s learning
not be saved as the true map of the room. Current research at NCARAI combines a map-
building exploration strategy with the continuous localization (Yamauchi, 1997). When
the robot enters an unexplored region, it builds a new map, and then stores that map for
that room. When the robot enters that room again, the stored map is used, along with the
adaptive continuous localization technique. The updated map is used while in the room
for navigation and reasoning about the spatial characteristics of the room, but when the
robot exits the room and reenters, the original map is used, without the updates. This
should work well because the continuous localization with learning quickly learns new

features of the room.

The results from Phase II demonstrated that the Trulla algorithm, when combined
with continuous localization and a collision avoidance scheme, provided a competent
deliberative/reactive navigation system. However, the system performed poorly in narrow
passageways due to its simple collision avoidance.

NCARAI currently uses this study's robot system. A future addition will include
the creation of a separate collision avoidance scheme that resides on Coyote and works in
conjunction with any motion-based process. The author augmented current work at NCA-
RAI by developing a method for mapping a room that does not require giving the robot an
initial pose (Yamauchi et al., 1997b). After the robot performs this mapping task, the
resulting map will become the a priori map for continuous localization and the path plan-
ner.

Coyote's inability to learn unmodeled empty space raises an interesting question.
Should a mobile robot system learn empty and occupied space at different rates?

Coyote's structured light range finder quickly identifies unmodeled occupied
space. Its probability profile equations attribute a great deal of certainty to a reading. (No
readings are available when the laser plane strikes outside of the camera's view.) How-
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ever, transient objects, such as a person briefly walking past a robot, should not be
recorded on the long-term map. Perhaps unmodeled occupied space should be learned
slowly.

Unmodeled empty space represents an object removed since the creation of the a
priori map, such as furniture. If this object is unlikely to reappear, unmodeled empty
space should be assimilated into the long-term map quickly.

Current robot systems share few abilities with science fiction robots. Mobile
robots soon will accomplish high-level tasks without human oversight. This study con-
tributed toward a universal solution to the robot problem by incorporating a learning con-
tinuous localization behavior and a robust path planner.

The work in this study has produced two papers for the author (Graves et al., 1997,
Yamauchi et al., 1997b). The latter paper has been accepted for presentation at the Four-
teenth National Conference on Artificial Intelligence (AIII-97). The former paper was
accepted to the IEEE International Symposium on Computational Intelligence in Robotics
and Automation. The author will present the paper in Monterey, California, on July 10,
1997.
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Appendix A

Probability Profiles of a Volumetric Sonar Cone

The following equations were devised by Moravec and Elfes to model the behavior
of ultrasonic waves.

“Consider a position P = (x,y,z) belonging to the volume swept by the sonar beam.
Let:

R be the range measurement returned by the sonar sensor,

€ be the mean sonar deviation error,

o be the beam aperture,
S = (x; ,¥; »Zg ) be the position of the sonar sensor,
5 be the distance from P to S,

6 be the angle between the main axis of the beam and SP.” (Moravec, 1984)

Moravec’s Probability Profiles graphically demonstrate the two regions of the
sonar beam (Figure A-1). The empty region represents the points inside the beam
(8<R-¢ and 6<w/2) that are probably empty. The somewhere occupied region corre-
lates to the points encircling the front of the cone (8 € [R-(g,R+¢)] and 8<w/2) that
account for the inaccuracy of the range. Both probabilities (pg and pg) are functions of
distance and direction.
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Figure A-1: Probability Profiles (Moravec, 1984)

The functions were then applied to the preprocessed data. The empty probability
distribution function is:

PE(X,Y,Z) = E,(8)- E,(8)
Where: E,(S) = 1_((8_Rmin )/(R—E—Rmin)z) for = [Rmin,R - €]

E.(8) =0 otherwise

and:  E 0) = 1- 26/w)’ for eel-w/2,0/2]
The occupied probability density function is denoted by:

Po(X,¥,2) = 0,(8)-0,(8)



47

where: 0,(8) = 1-(5-R)/e)’>  for 8e[R-gR+e)

0,0) =0  otherwise

and:  0,(6) = 1-(20/0)* for 6e[-w/2, w/2]

The two probability distribution functions are not identical because they model two
distinct regions. The empty area is assumed to be empty. However, an uncertainty is asso-
ciated with the occupied area, especially around the edges of the readings.
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Appendix B

Bayesian Statistics

The data from each sonar reading was entered into these functions, and then the
results were normalized and combined using Bayes’ theorem. A brief review of probabil-
ity will aid in understanding Bayes’ theorem. Let p(A|B) represent the probability (esti-
mated degree of certainty) of situation A given that information B is true, and p(A)
represent the likelihood of situation A given no information. More specifically, p(o(xy)|M)
relates the probability that cell (x,y) is occupied given the sonar data M, and, when speak-
ing of only one particular cell, p(o) relates the probability that that cell is occupied when
no information is given. Also, A refers to the alternative of A. Then the following axioms
hold true:

p(A)<0 forall A Al

p(aja) =1 forall A A2

p(A|B)+ p(A[B) = 1 . A3
AAB) = p(A|B)p(B - P(AAB)

p(AAB) = p(A|B)p(B) or  p(A|B) B A4

Moravec expressed Bayes’ theorem as the following:

plo|M) _ p(M|o), p(o)
plo|M)  p(Mlo) p(o) (Moravec, 1989)

Moravec chose this representation because the independent sources of information o and

M are combined into a single estimate: p(olM). However, Moravec realized that trying to
produce a map from new information M; and M), after each had been processed into a map
individually (i.e. determine p(olM ;M) given p(oIM;) and p(0IM2) ), would be trying to
determine p(A”B) given p(A) and p(B). There simply was not enough information. But by
assuming the independence of A and B, Moravec could express the following:

p(AAB) = p(A)p(B) instead of using A4. This yielded the combining equation:
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p(o|M; AM,) _ p(OIMl)xp(OIMz)
plo|M, AM,) plo|lM)) plo|M,)

If a robot remains stationary then the sonars will return the same information for (at least)
two consecutive readings, even though they were taken from the same pose and therefore
do not add new information to the map. In mathematical terms, M; and M, are not

entirely independent. They share common information M,. Moravec’s combining equa-
tion then became:

polM AM,) _ plolM,) plo|My)  p(o|M,)
plo|M; AM,) p(o|M,) p(o|M,) plo|M,)

Moravec used p(olM;) to represent the evidence grid that was being updated and p(olM,)

as a reading (Moravec, 1989). Note that this method allows a robot to fuse data from all
of its sensor inputs, not just sonar.

After Moravec’s combining equation was applied to the sonar data, pg and pgy were

added to each cell on the map. Each time that the grid was updated the two resulting num
bers in each cell were then compared against each other to yield a final value:

. Occ(X,Y) if Occ(X,Y)2Emp(X,Y)
Map(X.Y) := { —Emp(X,Y)  if Oce(X,Y)<Emp(X,Y)

Thus Max(X,Y) is a number on the interval [-1, 1]. This result is added to the value
currently held in cell (X,Y) to yield the updated evidence of occupancy.




